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CHARPTER 1

INTRODUCTION

1.1 Proximity Recording

    Over the past few years, disk drive manufacturers have been focusing their efforts on

increasing the areal density and capacity of their drives. It was estimated that the annual

growth rate of areal density was about 60%, which enabled the hard disk drive industry to

decrease storage costs by approximately 40% per year (Rottmayer, et al., 1997). This rate

of improvement still shows no signs of abating and promises to continue at the present

rates or even accelerate. A recent record for the areal density set by IBM was 2.64

Gbit/in2 (News, 1997), and it is expected that the areal density can reach 10 Gbit/in2 by

2000 (Singer, 1997).

    To achieve a high areal density, part of the strategy is to have the read-write head to fly

as close to the disk surface as possible. The reason for reducing the magnetic spacing is

that the readback signal obtained from a magnetic recording channel is inversely

proportional to the exponential of the magnetic spacing (Talke, et al. 1973; Best, 1997).

The most desirable configuration from a magnetic viewpoint is the one of contact

between the magnetic medium and the magnetic head. Unfortunately, the contact

between the sliding surfaces generally results in wear and materials interactions, and this,

in turn, results in a degradation of the performance and reliability of the recording

system.
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    The flying height in current hard drives has been reduced to under 50 nm, and some

drives now employ so-called proximity sliders that are designed to operate at some level

of interference between the slider and the peak asperities on the disk. This ultra-low

flying condition brings into being some new interface phenomena such as particle

contamination, thermal asperities, etc. The existence of these phenomenon seriously

decreases the reliability of hard drive operation. The study of their mechanisms and

methods to reduce their effects is the motivation of this thesis.

1.2 Particle Contamination

    When a slider flies very close to the disk surface, the particle contamination becomes a

serious problem to the reliable operation of the hard drive. The effects of the particle

contamination, such as abrasive wear and scratch on a disk surface, magnetic spacing

modulation, unstable flying of the slider, etc., have been studied by several other

researchers (Koka, 1989; Hiller, et al., 1993; Liu, et al., 1996). It was found that the

effects were closely related to the flying characteristics of the slider and the sizes and

hardnesses of the particles. Generally, the interaction of the particles with the slider/disk

interface can be classified into two categories based on particle size. That is, particles

small enough to go into the air bearing and particles too large to go into the air bearing.

The small sized particles interact with the slider/disk interface (SDI) and accumulate on

the slider surface so as to change the spacing of the interface. This not only causes

unsteady flying of the slider, but also causes abrasive wear on the disk (Koka and

Kumaran, 1991; Hiller and Singh, 1991). Hiller and Singh’s experiment also shows that

the contamination usually occurs on the taper surface at the leading edge and the rail
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surface at the trailing edge of the slider. The contamination on the slider surface at the

trailing edge occurs in the form of whiskers that can grow in size and eventually break

off. After that they are brought by the airflow back into the tapers where they are

deposited again. It is observed that this indirect deposition is the main cause of

contamination on the tapers.

    The interactions of large particles with the tapers depend on the hardness of the particle

and the angle of the tapers. They may result in scratches on the disks with the particles

being embedded on the disks, or they may be broken into smaller parts if they are brittle,

which may ultimately lead to unstable flying of the slider (Hiller and Brown, 1993; Koka,

1989a). The interaction between the particles and slider or disk surface is a complicated

process related to momentum exchange, material properties and dynamic characteristics

of the slider.

    Most of the works mentioned above were focused on the observations of sliders and

disks before and after the contamination tests, and little attention was paid on the process

of particles moving in a SDI. Actually, one of the major sources of contamination comes

from the particles that are suspended in the air and interact with a slider or disk during the

operation of a hard drive. Therefore, the knowledge of how the particles move in a SDI

will help in understanding the mechanism of the contamination, and finally in finding

some ways to controlling the contamination.

1.3 Thermal Asperity

    For proximity recording, another serious problem is the so called “thermal asperity”

related to the magnetoresistive (MR) head. The principle of the MR head is simply that
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the resistance of the MR transducer changes with the change of the magnetization in it.

Since the resistance is also temperature dependent, any temperature change can result in a

significant noise in the MR readback signal. One such phenomenon called thermal

asperity is induced by the contact of a MR transducer with the disk surface, which causes

the temperature to rise nearby the MR transducer. This phenomenon can be simplified as

a heat source moving on the head surface. Therefore, the problem is classified as one of

heat conduction inside a slider. In this way, Hempstead (1974) studied the thermal

response of a MR head due to friction heating between the head surface and dust particles

or other asperities on the recording medium surface during relative motion of the head

and medium. He assumed that the heat source produced by the interaction between the

slider surface and a particle or an asperity was a point heat source moving across the

surface of a semi-infinite solid, that the heat transfer in the air bearing was negligible, and

that the solid surface could be regarded as insulated except for a moving point heat

source. Thus, the transient temperature distribution inside the solid could be obtained by

integration of the heat conduction equation (Carslaw and Jaeger, 1986).

    Jander, et al. (1996) proposed a simplified geometric model for simulating the heat

conduction in a MR head. They assumed that the current in the MR sensor is uniform,

resulting in a uniform heat generation. By neglecting the heat transfer in the air bearing,

they simplified the problem to that with a planar rectangular heat source (MR transducer)

embedded in an infinite stratified medium consisting of the gap dielectric, shields,

underlayer and overcoat. With these assumptions, they obtained the temperature

distribution around the heat source by solving the heat conduction equation (Carslaw and

Jaeger, 1986).
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    A common point in the works mentioned above is that the heat transfer in the air

bearing was neglected. But a recent paper (Tian, et al., 1997) showed that such a

simplification was questionable. They found experimentally that when a slider flies over

an asperity without contact, the MR readback signal fluctuates following the fluctuation

of the slider’s flying height. The closer the slider is to the disk surface, the lower the

magnitude of the MR readback signal. Since no contact was observed in the experiment,

they concluded that the signal fluctuation, which is related to the resistance variation of

the MR transducer, was caused by the fluctuation of the heat transfer in the air bearing,

and that the air bearing acted as a “coolant”.

    If we regard a slider as a solid block, then the MR transducer can be regarded as a heat

source insider the block when a current pass through it. The temperature distribution is

affected by this heat source as well as the heat exchange with the air bearing and the disk.

The so-called thermal asperity is a special case, where work is done by the slider/disk

contact to produce an amount of heat in the slider, so as to cause a significant temperature

rise around the contact point on the slider. To simulate the temperature in the MR

transducer, it is important to know the mechanism of the heat transfer between a slider

and air bearing, irrespective of contact, because the heat exchange between the slider and

air bearing is one of the most important factors affecting the heat balance inside the

slider.

1.4 Micro-structure Consideration

    Micro-structure consideration is an important issue in dealing with fluids and heat

transfer problems in a head disk air bearing. The flow can be regarded as micro-structure
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flow if its length of the molecular mean free path λ is comparable to some significant

dimension L of the flow field. The dimensionless ratio Kn=λ/L is called the Knudsen

number and is used to distinguish the different flow regimes. Clearly, larger Knudsen

number implies more rarefied gas flow. For flows in which the Knudsen number is not

negligible, some departures from the continuum gas dynamics phenomena may be

expected to occur. Of course, the change from one regime to another is gradual; but to fix

ideas, the flow regimes are defined by following limits (Schaaf, et al, 1961):

continuum : Kn < 0.01,

slip : 0.01 < Kn < 1,

transition : 1 < Kn < 3,

free molecular : 3 < Kn.

When a flow is out of the continuum regime, the traditional theorems based on the

continuum assumptions are no longer valid. New approaches, or the modified traditional

methods, need to be considered in solving the micro-structure problems.

    In a typical SDI, the air bearing spacing is about 50 nm and the recess depth is about 3

µm. If taking length of the mean free path to be 65 nm, then we get the Knudsen number

to range from 0.02 to 1.3, or the flow is within slip or transition regime. Therefore,

micro-structure treatment needs to be considered in solving the fluid and heat transfer

problems in it. These methods will be discussed in details in the related chapters later.

1.5 Research Objectives

    This project consists of two parts: studying the mechanism of particle contamination

and studying the mechanism of the heat transfer between the slider and the SDI. Since it
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is very difficult to establish the experimental methods to get direct observation results, we

resort to numerical simulation in our analysis.

    In studying the particle contamination, we focus our work on the motion of particles in

a SDI. We first develop a model describing the motion of these particles in the air

bearing. Using this model, we simulate paths of particles moving in the SDI and find the

factors affecting their motion. Based on the simulation results, we try to create some

slider designs that are good for reducing particle contamination.

    In studying the thermal asperity, we focus our work on the mechanism of the heat

transfer in a SDI. As in the particle contamination problem, we first develop a model

describing the heat transfer. Using this model, we simulate the heat flux through the

interface of the slider and air bearing and analyze the mechanism of the heat transfer

between them. Then we study a special case of a slider flying over an asperity without

contact. Through these simulations, we are able to understand how the air bearing acts as

a “coolant”, and how the MR readback signal fluctuates when the slider flies over an

asperity without contact.

1.6 Dissertation Structure

    The thesis consists of eight chapters. The first chapter is the introduction and the eighth

chapter is the conclusion. Chapter 2 to Chapter 5 illustrate the study of particle

contamination and Chapter 5 and 6 illustrate the study of the thermal asperity. The model

related to the particle contamination is presented in Chapter 2, and the numerical

approach is illustrated in Chapter 3. Chapter 4 studies the characteristics of the particle
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motion in a SDI, and Chapter 5 presents some slider designs for controlling particle

contamination.

    The heat transfer model of an air bearing is presented in Chapter 6, and the simulation

results are presented in the same chapter. Chapter 7 is concerned with the modeling and

simulation of the heat flux variation between a slider and air bearing when the slider flies

over an asperity. The numerical approaches used in the thermal analysis are briefly

presented in these two chapters.

     Tables in all chapters appear in the text, while the figures are attached after the end of

each chapter. The references are listed after the conclusion of the thesis.
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CHARPTER 2➊

MODEL OF PARTICLE MOTION IN A

SLIDER DISK INTERFACE

2.1 Introduction

    Particle motion in a flow is a very complicated process because it is not only related to

the ambient flow, but also related to the interaction between the different particles if

particles are densely spaced in the fluid. Since the particles can be regarded as dilute in a

typical SDI, we can focus our study on a single particle’s motion by ignoring the

interaction between different particles.

    Maxey (1993) studied the motion of a single spherical particle in an unsteady ambient

flow and derived the motion equation of the particle. This equation includes terms of

added-mass, Faxen corrections to the quasi-steady Stokes drag and Basset history. The

basset history term is associated with the gradual viscous diffusion of vorticity away from

the sphere. Since there exist a history integral term in this equation, the computation in a

numerical simulation can be a time consuming process.

    For the contamination of a hard drive, the particles we are interested in are extremely

small and usually have much larger density than that of air. Therefore, the Basset history

term and added mass term are relatively small and can be neglected, and the particle

motion equation can be much simplified.

                                                          
➊ Part of this chapter has been published in Zhang, et al., (1997b).
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    In the following sections, we adopt a Lagrangian type analysis to express the motion

equations of a particle, in which the flow related forces and body forces are included.

This approach has been widely used in analyzing the particle motions in fluids by many

other researchers (Shimomizuki, et al. 1993, Liang, et al., 1993, Sommerfeld, et al.,

1993). As a simplification, we assume the particles are spherical and have uniform

density in the following analysis. The slider/disk system as well as the related coordinates

used in the following analysis are shown in Fig. 2-1

2.1 Particle Motion Equations

    Using a Lagrangian approach, we can write the particle motion equations as:

p
p

dt

d
v

x
= (2-1)

m
d

dtp
p

i
i

v
f= ∑ , (2-2)

where mp is the mass of the particle, xp is the position and vp the velocity vector of the

particle in the SDI, f i are forces acting on the particle. These forces may be drag force,

Saffman force (Saffman, 1964), gravity force, Magnus force (Rubinow, et al 1961),

electro-magnetic force and possibly others.

    Saffman force is a lift force for a particle moving in a shear flow. Magnus force is

caused by the spin of a particle in a fluid. According to Saffman’s analysis (1965),

Magnus force is less by an order of magnitude than Saffman force unless the rotating

speed is very much greater than the rate of shear. This conclusion is true for a particle

moving in a SDI (Zhang, et al., 1997a). Therefore, we neglect the Magnus force in the

motion equation (2-2). For the electro-magnetic force, we assume it is only significant
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when the particle is very close to the slider or disk surface and will not consider it in the

model. Thus, the RHS of equation (2-2) only includes three major contributions: drag

force, Saffman force and gravity force.

2.2.1 Drag Force

   For a rigid spherical particle moving in an airflow, the drag force can be expressed as:

( )ppwdd dCC vvvvf −−= 2

8
ρπ

(2-3)

where Cd is the drag coefficient; Cw is the coefficient of the wall effects correction which

tends to one when the particle is far from the wall; d is the diameter of the sphere; ρ is the

density of the air; v is the velocity in the air phase.

    The drag coefficient Cd is usually related to the flow and physical properties of the

fluid and the shape and size of the particle. Many researchers have considered Cd and

obtained results, theoretically and experimentally, for various cases. For a particle

moving in a viscous flow, a simplification known as the “creeping flow” approximation

applies at very low Reynolds number. In this approximation, the convective terms in the

momentum equation are neglected and a solution known as “Stokes Law” is obtained.

For the case of a particle moving in a rarefied gas, some researchers suggest a “slip

correction factor” to modify the results obtained from the assumption of continuous flow

(Clift, R., et al, 1978).

    Liu, et al (1965) studied the drag of a sphere in a flow of rarefied gas by using

Boltzmann’s equation for Maxwellian molecules. They obtained result that is a

modification to the result of a free molecular flow and is expressed as follows:

( )
C C

B S

Knd dfm
d

= −








1 (2-4)
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S
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e
S

S

T

Tdfm

s
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
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








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

+
−

∞
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4

1

2

2

32

4 2
2

2

π
π

(2-5)

where the speed ratio S=vg−vp/(2RT∞)1/2;  the Knudsen number Knd=λ/d, and λ is the

mean free path of the air; B(S) is a function of the speed ratio S (Liu, et al, 1965); Cdfm is

the free molecular drag of the sphere (Schaaf, et al, 1961). The free molecular flow is a

regime of extreme rarefaction in which the molecular mean free path is many times the

characteristic dimension of a body located in a gas flow. The molecules which hit the

surface of the body and are then reemitted, on the average, travel very far before colliding

with other molecules. It is consequently valid to neglect the effect of the reemitted

particles on the incident stream, at least so far as their effects on the body itself are

concerned. The incident flow is therefore assumed to be entirely undisturbed by the

presence of the body.

    Liu, et al (1965), compared their calculations with Millikan’s experimental results of

sphere drags corresponding to the rarefied flows which cover a range of Knudsen number

(0.01 < Knd < 10) at very low speed ratio (S < 10-5). It was found that the calculated

results agree very well with Millikan’s experimental results over a range of  (0.2 < Knd <

10)➊. It is also noted that over a wide range of speed ratio (S < 1), the drag coefficient

ratio Cd/Cdfm  only slightly depends on the speed ratio S. Therefore, it is reasonable to

extend the validation of equation (2-4) and (2-5) to a wider range on S (say S < 1).

    The wall effect coefficient Cw appears in different forms for particles moving parallel or

perpendicular to the wall. For particles moving parallel to a single wall, Chen and

                                                          
➊ Experimental results of sphere drags corresponding to  the near-free molecular flows rarely exists except
for the measurement by Millikan. Liu et al’s (1965) results agrees very well with Millikan’s results at
points over the range of Knudsen number of 0.5<Knd<10, which can be reasonably extended to a wider
range of 0.2< Knd <10 based on the comparison of both results.
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McLaughlin (1995) calculated Cw by applying Goldman et al’s (1967), O'Neill’s (1964)

and Faxen's (1923) results, respectively, for the three different regions, based on the

distances of particles from the wall. That is, applying Goldman et al's (1967) result for

δ/a<0.01, O'Neill's (1964) result for 0.01<δ/a<10, and Faxen's (1923) result for δ/a >10.

Here, δ = l w− a , where lw and a are respectively the distance of the particle’s center from

the wall and the particle’s radius. Wakiya (1957) calculated the drag force for viscous

flow past a spheroid between two parallel plane walls. For a sphere located at one-quarter

of the distance between the two planes, Wakiya obtained Cw for Poiseuille flow and

Couette flow. A comparison between GOF➊  and Wakiya's results is shown in Fig. 2-2.

    It is seen that when a/lw < 0.8, there is little difference in Cw among the three results.

When a/lw > 0.8, the GOF’s result becomes much larger than Wakiya's results for both

Poiseuille and Couette flows and tends to infinity when a/lw → 1. For a particle moving

within the mean free path (mfp) distance to a wall in a rarefied gas flow as in the cases in

the following, this infinite wall effect correction factor can be neglected in practical

application. We assume, in this thesis, that Cw is finite when particles are close to the

wall.

    The results in the Fig. 2-2 also show that Cw does not change very much from the one

plane wall case (GOF) to the two plane wall cases (Wakiya's results) for a/lw < 0.8. For

the sphere closer to the wall with a/lw > 0.8, we assume that Wakiya's results are better

approximations to Cw. Since we are only interested in small particles around which the

velocity field can be regarded as linear, we adopt Wakiya's result for Couette flow in

calculating Cw, which can be expressed as:

                                                          
➊ GOF is used to represent the combined results of Goldman et al (1967), O'Neill’s (1964) and Faxen's
(1923) results in the respective range.
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( ) ( ) ( )
C C

a l a l a l
wx wy

w w w

= =
− + −

1

1 0 6526 0 0 297
3 4

. / .4003 / . /
, (2-6)

where, subscripts x and y represent the corrections for the x and y directions of motion,

and lw is taken as the closest wall distance of the sphere.

    For a sphere moving perpendicularly towards a solid plane wall, Brenner (1961)

obtained a correction to the Stoke's Law by solving the creeping flow equations. His

result shows that the value of the correction tends to infinity when the sphere moves

closer to the wall. A reason for this is that Brenner used a continuum model to solve the

problem. Chen and McLaughlin (1995) argued that the Van der Waals force becomes

important when the sphere moves within a distance less than the mfp of the air to the

wall. As a simplification, they assumed that contact occurs when the sphere is within the

mfp distance away from the wall.

    In this thesis, we use Wakiya's result (1960) for a sphere moving towards to a solid

plane wall. This result agrees very closely with Brenner's result for a/lw < 0.1. When the

sphere moves close to the wall, Wakiya's result shows a finite value for the correction

instead of an infinite value as found in Brenner's result. Wakiya's wall correction is

expressed as:

( ) ( )
C

a l a l
wz

w w

=
− +

1

1 1125 0 5
3

. / . /
, (2-7)

where, subscript z represents the motion in the z direction.

    It should be noted that the Cw’s in (2-6) and (2-7) are derived from some continuous

media models, while in this report, particles are regarded as moving in a rarefied gas. An

ideal approach to treat these cases is to apply the Cw’s derived directly from some models

considering the rarefied gas or slip boundary conditions. But unfortunately, to the
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Authors’ knowledge, there are still no such results available in the published literature.

Therefore, we use the results from continuous media models for an approximation in this

thesis. The major effect due to the introduction of the wall effect is that the particle paths

are closer to the streamlines (Zhang, et al., 1997a and 1997c).

2.2.2 Saffman Force

    McLaughlin (1993) presented a solution for the lift force acting on a small rigid sphere

that moves parallel to a flat wall in a linear shear flow. This lift force can be expressed as:

2/1
29






∆=

ν
µ

π
G

UaJfs , (2-8)

where µ and v are the viscosity and kinematic viscosity of the air; ∆U is the velocity of

the sphere relative to the air flow; G is the magnitude of the velocity gradient; J is an

integral coefficient. For a sphere sufficiently far from the wall (lw→∞), J converges to

Saffman's value, that is, J→2.255. When the sphere is close to the wall, J will take

different values depending on the ratio ε=(ReG)1/2/Res  and a non-dimensional distance

lw
* =(G/v)1/2lw. Here, Res=∆Ua/v and ReG=Ga2/v. For sufficiently large ε and lw

* <1, the

value of J from McLaughlin reduces to the result obtained by Cox and Hsu (1977), which

can be expressed as:

J lw= +





π
ε

2

16

1 11

6
* . (2-9)

    For the airflow in a recessed region of a slider, the thickness dimension is usually

several micro-meters, and the relative velocity ∆U  is on the order of 0 1. �U . The diameter

of the particles of interest here is around 200 nm. Thus, Res~0.01 and ReG~ �Ua2 /hv~0.01
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which leads to ε ~10, and lw
*  ~ 1 or less. Therefore, the conditions for applying equations

(2-8) and (2-9) are satisfied.

    Since the air flow in a recessed region is approximately a planar flow, its velocity

component in the z direction is close to zero and can be neglected. By such an

approximation, ∆U  and k in (2-8) can be expressed as:

( ) ( )
22 vu

vvvuuu
U pp

+

−+−
=∆  , (2-10)

z

v

vu

v

z

u

vu

u
k

∂
∂

∂
∂

2222 +
+

+
=  , (2-11)

where (u, v, w) refer to the velocity components in the (x, y, z) directions and subscripts p

represent the particle. This prescription is valid throughout the following analysis unless

there is a special denotation. Note that the sign of (2-10) is positive when the sphere

moves faster than the airflow where it is located, which causes the lift force expressed as

(2-10) to be positive, or to point to the slider. This result is consistent with Saffman’s

prescription for the direction of the Saffman force.

2.2.3 Gravity force

    The gravity force is expressed as:

( ) zpg gaf ρρπ −= 3

3

4
, (2-12)

where gz is the component of the gravity acceleration in the z direction. In (2-12),

buoyancy is involved although it is negligible compared to the gravity force.

    It should be pointed out that the models used for calculating the various forces on the

particle require that certain conditions be met for their validity. In some cases these
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conditions are based on a Knudsen number defined in terms of the particle size, and in

others the Knudsen number is based on the minimum dimension of the flow channel. For

flow in the recessed region of the slider, the channel’s minimum dimension is about 3

µm, giving a Knudsen number of about 0.02, which is small enough for the continuum

assumption to be valid in calculating the flow field and also is appropriate for the first

order slip model used in our flow calculations. The Saffman force calculation in a

continuum flow field is valid if two different Reynolds numbers are small enough and

one of them is much smaller than the other. These conditions are satisfied for the flows

and particles considered here. When considering the drag we note that for particles of

about 350 nm or less in size such as those considered here the Knudsen numbers related

to their dimension is on the order of 0.2 or greater, which is within the transitional flow

regime. Therefore, the rarefied gas considerations are significant, and the drag force

calculation based on Liu’s model (1965) is preferable.

2.3 Non-dimensional Motion Equations

    We have analyzed and given explicitly all the forces appearing in equation (2-2).

Substituting them into equation (2-2) and rearranging the results in a non-dimensional

form, we obtain the following component expressions for the motion equations of a

particle:

dX

dT
R Up

l p= , (2-13)

dY

dT
R Vp

l p= , (2-14)
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dZ

dT
R Wp

h p= , (2-15)

( )p
wxd

p
h

p UUU
D

CC
R

dT

dU
−=

ρ
ρ

4

3
, (2-16)

( )p
wyd

p
h

p VVU
D

CC
R

dT

dV
−=

ρ
ρ

4

3
, (2-17)

( ) ×




 ++−= *

6

111

32

27

4

3
wp

wzd

p
h

p lWWU
D

CC
R

dT

dW

ερ
ρ

z
m

p
h

p
hh g

U

h
RG

D

U
ReR

ˆ
1

~
2/12/1







−−

ρ
ρ

ρ
ρ

(2-18)

where, X=x/l, Y=y/l, Z=z/hm are non-dimensional position variables, l is the length of the

slider and hm the initially specified height of the air bearing at the trailing edge; U=

u/ �U ,V=v/ �U   and W=w/ �U  are non-dimensional velocity components; non-dimensional

time T t= �Ω , and �Ω  is the rotation speed of the disk; U = [(U−Up)
2 + (V−Vp)

2 +

(W−Wp)
2]1/2  and 

~
U =∆U/Û  are non-dimensional velocities; non-dimensional diameter

D= d/hm; non-dimensional numbers Rl= lU Ω̂/ˆ , Rh= mhU Ω̂/ˆ , and the Reynolds number

Reh=Û hm/v.

     Equations (2-13) to (2-18) are simultaneous ODE's. They can be solved for the given

initial conditions. Without losing generality, we write the initial conditions as follows:

Xp(0)=Xp0,

Yp(0)=Yp0,

Zp(0)=Zp0, (2-19)

Up(0)=Up0,

Vp(0)=Vp0,
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Wp(0)=Wp0.

2.4 Air Phase Flow

    To solve equations (2-13) to (2-18), we need to know the velocity field of the air flow

in the SDI. This is a typical lubrication problem because the spacing of the SDI is much

smaller than the length of it. The governing momentum equations for it are a set of

reduced Navier-Stokes equations. The detailed derivation can be found in related

document (Gross, et al., 1980) and will not be presented in this thesis. Here, we only list

the results as follows:






=

z

u

zx

p

∂
∂µ

∂
∂

∂
∂

, (2-20)






=

z

v

zy

p

∂
∂µ

∂
∂

∂
∂

, (2-21)

∂
∂
p

z
= 0 , (2-22)

where  p is the pressure in the air phase. It is clear that the pressure is independent of  z

and is only a function of  x and y.

    Based on different boundary conditions, equations (2-20)~(2-22) have different

solutions. The simplest case is the so-called “no-slip” condition, which assumes that the

velocity of the fluid at the boundary is equal to the velocity of the surface it is adjacent to.

For the flow in a SDI, its spacing dimension is so small that the flow is regarded as in the

“slip” region. The flow of this kind is often solved by conventional methods with

modified boundary conditions such as “first order slip” (Burgdorfer, 1959) , “second

order slip” (Hsia, et al, 1983),  “1.5 order slip” (Mitsuya, 1993) , etc.. Some other
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researchers apply the Boltzmann equation to solve the flow in an ultra-thin film (Fukui

and Kaneko, 1988, 1990). In this thesis, we adopt the “first order slip” condition which is

expressed as follows:

( )
0

ˆ0
=

+==
zz

u
aUzu

∂
∂λ , (2-23)

( )
hzz

u
ahzu

=

−==
∂
∂λ , (2-24)

( )
0

ˆ0
=

+==
zz

v
aVzv

∂
∂λ , (2-25)

( )
hzz

v
ahzv

=

−==
∂
∂λ , (2-26)

where h is the height of the air bearing and �V  is the flying speed of the slider in the y

direction, and a=(2−σM)/σM and σM is the momentum accommodation factor.

    With boundary conditions (2-23)~(2-26), we can solve equations (2-20)~(2-22), which

can be expressed as follows:

( ) 






+
+−+−+

∂
∂−=

λ
λλ

µ 2
1ˆ

2

1 2

h

z
Uzhzha

x

p
u , (2-27)

( ) 
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+−+−+
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λ
λλ

µ
υ

2
1ˆ

2

1 2

h

z
Vzhzha

y

p
. (2-28)

Or in non-dimensional form:

( ) 





+
+−+−−=
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ZKn
HaKnZHZ

X

P
Re
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ρ
, (2-29)

( ) 
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ˆ

ˆ2
2

2
0

∂
∂

ρ
, (2-30)
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where P=p/p0, and p0 is the ambient pressure, H=h/hm is the non-dimensional thickness of

the air bearing, and Knh=λ/hm is the Knudsen number related to the height hm.

    Solutions (2-29) and (2-30) are still incomplete because the pressure P is unknown. To

get P, we can solve Reynolds equation as follow:

σ ∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

PH

T X
QPH

P

X
PH

Y
QPH

P

Y
PHx y= −



 + −





3 3Λ Λ , (2-31)

where, σ=12µ Ω̂ l2/p0hm
2 is the squeeze number, Q is the flow factor, Λx and Λy are the

bearing numbers Λx=6µÛ l/p0hm
2 and Λy=6µV̂ l/p0hm

2.

    Equation (2-31) is actually a generalized Reynolds equation with an optional flow

factor Q based on different models (Ruiz, et al, 1990a). For the continuum model, 1st

order slip model, 2nd order slip model and Fukui-Kaneko model, Q has the forms as

follows:

Q = 1, (2-32)

Q a
Kn

PH
= +1 6  , (2-33)

Q
Kn

PH

Kn

PH
= + + 



1 6 6

2

, (2-34)

Q f
Kn

PH
= 



 , (2-35)

where f(Kn/PH) is given by Fukui, et al. (1988, 1990). To solve (2-31), we can obtain the

pressure distribution in the air phase, and then the velocity field by equations (2-29) and

(2-30).
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2.5 Summary

    The motion equations of particles in a SDI are expressed in (2-13)~(2-18) by using a

Largrangian approach in which the drag force, Saffman force and gravity force are

considered. We will see in the following chapters that the Saffman force is important

only for the relatively large particles that can fly in recessed regions. For small particles

that can go in an air bearing (usually with size d<100 nm), the Saffman force is very

small and can be neglected.

    Equations (2-13)~(2-18) need to be solved simultaneously. Before solving them, the

velocity field in a SDI needs to be known, which in turn requires the solution of the

Reynolds equation to obtain the pressure distribution. The numerical methods for both of

these calculations are presented in Chapter 3.
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Fig. 2-1   Slider disk system and coordinates
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CHAPTER 3

NUMERICAL APPROACHES

3.1 Introduction

    We modeled the particle motion equations in a SDI by using a Lagrangian approach.

To solve these equations, we need to calculate various forces acting on the particle, which

are related to the calculation of the airflow field in the SDI. The calculation of the airflow

field can be finally realized by solving the Reynolds equation to get the pressure

distribution and then the velocity field.

    Research on the numerical solution of air bearing slider problems has been ongoing in

the Computer Mechanics Laboratory over the past decade.  Garcia-Suarez et al. (1984)

proposed a finite element method with an upwind scheme for air bearing simulations.

Miu and Bogy (1986b) simulated taper-flat sliders using the factored implicit scheme of

White and Nigam (1980).  Ruiz and Bogy (1990a) implemented the second order slip

correction and the Fukui and Kaneko (1988) model. Cha and Bogy (1995) developed a

factored implicit scheme for irregular rail geometry based on a control volume

formulation of the linearized Reynolds equation, and solved it using an alternating

direction implicit method with time stepping. Lu and Bogy (1995) applied a control

volume formulation (Patanka, 1980) to the original non-linear generalized Reynolds

equation without linearization as in previous methods, and solved the problem efficiently

by a combination of the alternating direction line sweeping method with a multi-grid

solver.
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    In this chapter, we present the solution methods to the Reynolds equation and particle

motion equations. We do not focus our work on improving the numerical solution of  the

Reynolds equation,. We will use the newest results by Lu and Bogy (1995) in our

analysis. Nevertheless, we give a brief description of how the control volume method

works in the solution of the Reynolds equation, so as to make the analysis in the

following chapters understandable. Since we are only concerned with the mechanism of

particle motion in a SDI, we restrict our study to the steady cases of air bearing flow and

drop the unsteady term in the Reynolds equation. The solution procedure requires us to

solve the Reynolds equation first. Then using the finite difference method and equations

(2-32) and (2-33), we obtain the velocity field in the SDI. Finally, we use a 4th order

Runge-Kutta method to solve the particle motion equations (2-13)~(2-18).

3.2 Integration of the Reynolds Equation

3.2.1 Reynolds Equation

   Referring to equation (2-31), we can write the steady Reynolds equation as follow by

dropping the unsteady term:

033 =




 Λ−+





 Λ− PH

Y

P
QPH

Y
PH

X

P
QPH

X yx ∂
∂

∂
∂

∂
∂

∂
∂

. (3-1)

This equation can be expressed in a simply form as:

∂
∂

∂
∂

J

X

J

Y
x y+ = 0 , (3-2)

where Jx and Jy are the total fluxes defined by

J PH
P

Xx x≡ −Λ Γ
∂
∂

, (3-3)
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J PH
P

Yy y≡ −Λ Γ
∂
∂

, (3-4)

where Γ=QPH3.

    Note that the diffusion coefficient Γ is a function of the dependent variable P.

Therefore, the equation (3-2) is non-linear. A typical treatment of this non-linearity in

numerical fluid and heat transfer problem is to use the iteration by updating Γ with the

newest value of the dependent variable.

3.2.2 Integration of the Reynolds Equation

    As described in Lu and Bogy (1995), we use Patankar’s (1980) control volume method

to integrate the Reynolds equation. A 2-D control volume is depicted in Fig. 3-1, where

the shaded area is the control volume, and ∆X and ∆Y are lengths of its two edge. The

capital letters E, S, W, N and P represent the grid nodes and small letters e, s, w and n

represent the related control volume surfaces.

    Now integrating equation (3-2) over the control volume we get

0=
∂
∂

+
∂
∂

∫ ∫∫ ∫ dXdY
Y

J
dXdY

X

J n

s

e

w

yn

s

e

w

x . (3-5)

If we assume the values of the fluxes are constant along each surface of the control

volume, we can expand (3-5) as:.

0=∆−∆+∆−∆ XJXJYJYJ
synywxex . (3-6)

    To evaluate the values of the fluxes along each surface of the control volume, Lu and

Bogy (1995) used the mean average value for the dependent variable term and the central

difference for the differential term in the fluxes. The results can be expressed as:

( ) ( ) ( )
,

)(2

1
Y

x

PP
YPPHJ

e

PE
ePEexex ∆

−
Γ−∆+Λ=

δ
(3-7)
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( ) ( ) ( )
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w
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δ
(3-8)
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δ
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( ) ( ) ( )
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XPPHJ
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sPSsysy ∆

−
Γ−∆+Λ=

δ
(3-10)

where Γ is evaluated with the newest iteration results at each surface.

    Substituting (3-7)~(3-10) into (3-6) and rearranging, we can regroup (3-6) into the

following form:

a P a P a P a P a P bP P E E W W N N S S= + + + + , (3-11)

where

( )
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x

Y
a ex

e

e
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∆Λ
−

∆Γ
=

δ
, (3-12)
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a wx
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δ
, (3-13)
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a ny
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=

δ
, (3-14)

( )
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2

XH
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X
a sy

s

s
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∆Λ
+

∆Γ
=

δ
, (3-15)

   ( ) ( )[ +∆Λ−∆Λ++++= YHYHaaaaa wxexSNwEP

( ) ( ) ]XHXH
syny ∆Λ−∆Λ , (3-16)

0=b . (3-17)

    In solving a partial deferential equation numerically, an often-met problem is that of

stability, which is usually related to the choice of the grid size. For example, if we choose
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δx and δy too large, the coefficients aE and aN may become negative. The consequent

iteration results may be that the value of PP becomes unstable. Since the coefficients aE,

aW, aN and aS represent the effects of the fluxes at the adjacent grids on the property at the

grid P, it is required that all coefficients aE, aW, aN , aS and aP should be positive if we use

the form as (3-11). Otherwise, it will lead to a solution without physical meaning.

    A variety of schemes have been devised to overcome the instability caused by the

application of the central difference scheme. The resulting coefficients for these schemes

(Patankar, 1980) can be summarized as:

( ) ( ) ( )[ ]0,max YHPA
x

Y
a exe

e

e
E ∆Λ−+

∆Γ
=

δ
, (3-18)

( ) ( ) ( )[ ]0,max YHPA
x

Y
a wxw

w

w
W ∆Λ+
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δ
, (3-19)

( ) ( ) ( )[ ]0,max XHPA
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X
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N ∆Λ−+
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δ
, (3-20)

( ) ( ) ( )[ ]0,max XHPA
y

X
a

sys
s

s
S ∆Λ+

∆Γ
=

δ
, (3-21)

( ) ( )[{ +∆Λ−∆Λ++++= YHYHaaaaa wxexSNwEP ,0max

( ) ( ) ]]}XHXH
syny ∆Λ−∆Λ , (3-22)

( ) ( ) ( ) ( ) ][ ]{ }XHXHYHYHb
synywxex ∆Λ+∆Λ∆−Λ+∆Λ−= ,0max ,

(3-23)

where the function A(|P|) depends on the convective scheme chosen and can be found in

the related documents (Patankar, 1980; Lu and Bogy, 1995).

    The slider-air bearing has a geometrical peculiarity, namely, the clearance

discontinuities.  This poses a numerical difficulty for finite difference methods based on



29

the differential form of the Reynolds equation.  An artificial smooth function has to be

used in place of the discontinuity, thus reducing the accuracy of the solution.  In the

present integrated control volume formulation, the clearance discontinuity does not cause

any numerical difficulty.  However, when a discontinuity crosses the boundary of a

control volume, accuracy can be improved by using the mass flow-averaging scheme of

Cha, et al. (1995).  In this technique the mass flux on a control volume boundary with

discontinuity is averaged by appropriately weighting the contribution from both sides of

the discontinuity. To locate the discontinuity on the control volume  boundary, Cha, et al.

(1993) used an analytical method by calculating the intersection of the rail boundary and

the control volume boundary. Lu, et al. (1995) used an alternative method for the general

case of multiple recess levels.

3.2.3 Numerical Solver

    An alternating direction line sweep method combined with a multi-grid method (Shyy,

et al., 1992; Lu, et al., 1995) is implemented to solve the discretized Reynolds equation

mentioned above. Compared with conventional single-grid methods, the multi-grid

method solves equations on a hierarchy of grids so that all frequency components of the

error are reduced at comparable rates. Inexpensive iteration on the coarse grid rapidly

diminishes exactly those components of the error that are so difficult and expensive to

reduce by fine grid iteration alone. This results in a dramatic reduction of solution time.
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3.3 Velocity Field and Stream Function

3.3.1 Velocity Field

    We need to know the velocity field of the air bearing for solving the particle motion

equations (2-13)~(2-18). The velocity can be obtained by using the equations (2-29) and

(2-30), in which the pressure gradient is required. We use the central difference to

calculate the pressure gradient at the boundary of the control volume. For example, the

pressure gradient at the “e” boundary is

( )e

PE

e x

PP

X

P

δ
−

=
∂
∂

. (3-24)

The pressure gradients at other surfaces of the control volume can be obtained in a

similar way.

    Note that the location of the pressure gradient (3-24) is not coincident with any original

grid points for P, as are the velocity components U and V. This is called the “staggered

grids” technique which stores pressure P and velocities U and V in three different grid

systems. Figure 3-2 shows how the staggered grids work, where the empty circles

represent the original grids for P, solid circles represent the new grids for ∂P/∂X (or U),

and solid squares represent new grids for ∂P/∂Y (or V).

3.3.2 Stream Function

    Equation (3-2) is actually a mass conservation equation. Thus, there exist a stream

function ψ satisfying it. By virtue of equation (3-2), we can write the stream function as:

Y
J x ∂

∂= ψ
, (3-25)

X
J y ∂

∂−= ψ
. (3-26)
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    The stream function ψ can be calculated by integrating equations (3-25) and (3-26),

which in turn requires the pressure solution to get the mass fluxes (see (3-3) and (3-4)).

As in calculating the velocity field, a staggered grid arrangement is applied, in which the

stream function grid lines coincide with the control volume faces (Lu, 1997).

3.4 Solution of the Particle Motion Equations

    We use the fourth order Runge-Kutta method to solve the particle motion equations. It

is a single step method. It usually consists of an explicit method as a predictor and a

implicit method as a corrector, which makes it an explicit single step method but with

higher local truncation error. The fourth order Runge-Kutta method is a multi-level

predictor-corrector method that uses the Forward Cauthy-Euler method (FCE), Backward

Cauthy-Euler method (BCE), Mid-Point method and Simpson’s method. The diagram of

the 4th order Runge-Kutta method is shown in Fig. 3-3, where     is used to denote y-

values and • is used to denote y′-values.

    Now let’s turn back to the particle motion equations (2-13)~(2-18). Clearly, this is a

problem of simultaneous ordinary differential equations (ODE). We can express it in a

simpler form by defining two vectors ℵ and ℜ:

ℵ = (Xp, Yp, Zp, Up, Vp, Wp)
T, (3-27)
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where superscript “T” represents the transpose. With these definitions, we can write the

particle motion equations as:

( )ℵℜ=ℵ
,T

dT

d
. (3-29)

Or, in a component form with initial conditions added:

( )

( )











ℵ=ℵ

ℵℵℵℵℵℵℜ=
ℵ

00

654321 ,,,,,,

ii

i
i

T

T
dT

d

(i=1, ⋅⋅⋅⋅⋅⋅, 6). (3-30)

    For equations (3-30), the fourth order Runge-Kutta method can be written as:

( )iiiinini kkkk
T

,4,3,2,1,1, 22
6

+++∆+Φ=Φ + ,   (i=1, ⋅⋅⋅⋅⋅⋅, 6) (3-31)

where Φi are the numerical solution related to the true solution ℵi, and

( )nnnii Tk ,6,1,1 ,....,, ΦΦℜ= , (3-32)
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

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( )6,3,61,3,1,4 ,....,, TkTkTTk nnnii ∆+Φ∆+Φ∆+ℜ= , (3-35)

where the subscript “n” represents the nth iteration and ∆T is the integration time step.

Equations (3-32)~(3-35) represent, respectively, the evaluations of the derivative parts of

the FCE, BCE, mid-point and Simpson methods.

    Fourth order Runge-Kutta method has an error of (∆T)4. Theoretically, if we reduce the

time step ∆T repeatedly, we may get the numerical results convergent to the true solution.

But a smaller ∆T requires more computation time. In our calculation, we first choose a

∆T, say a number within 10-7~10-6, and obtain a solution ΦI. Then we reduce the ∆T by

half and obtain another solution ΦII. If the two solutions satisfy ΦΦI − ΦII< δ, where

•  is a chosen norm and δ is a small number, we say the solution is convergent and we

take ΦII as the final result.

3.5 Summary

    The overall procedure for solving the particle motion equations includes two parts: first

solving the velocity field of the SDI, which in turn requires the solution of the Reynolds

equation; then solving the motion equations (2-13)~(2-18) with the velocity field known.

In this chapter, we first discussed how to use the control volume method to discretize the

Reynolds equation. The discretized Reynolds equation can be solved efficiently by an

alternating direction sweep method combined with a multi-grid control volume method.

Then we introduced the fourth order Runge-Kutta method that will be used to solve the

simultaneous ODE’s (2-13)~(2-18). Note that the integration of the particle motion
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equations needs the values of velocity and velocity gradient in the SDI, which are stored

at the separated grid nodes. If the location of a particle does not fall on one of these nodes

at a integration step, say it falls inside a control volume, then the calculation at this step is

finished by evaluating all the required information of the SDI using a linear interpolation.

Here the staggered control volumes for pressure P and the velocity U and V should not be

miss-used.
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Fig. 3-3 Diagram for the 4th order Runge-Kutta method
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CHAPTER 4➊

CHARACTERISTICS OF PARTICLE MOTION

IN A SLIDER DISK INTERFACE

4.1 Introduction

    Particle contamination on the slider is one of the major issues in the contamination of

hard drives. Previous studies showed that particles often accumulate on the surfaces of

rail tapers, surfaces of rails at the trailing edge and upper surfaces of cavities. These kinds

of contamination are mainly contributed by the particles suspending in the air. Therefore,

it is necessary to know how they move and where they go in a SDI if we want to study

the mechanism of the contamination.

    In the following analysis, we focus our study on the paths of a single particle moving

in a SDI, so to investigate what causes them to go to the observed contamination zones

mentioned above. Since the interaction of a particle with a slider surface or a disk surface

is a very complicated process, we will not discuss it in this thesis and will do it in a future

work. The model used in the following analysis is that presented in the Chapter 2. It is

solved by two steps: velocity field solution and particle motion solution. The velocity

field of the SDI is calculated by the CML Air Bearing Simulator (Lu, et al., 1995), in

which Partanka’s control volume method combined with a multi-grid control volume is

used to solve the Reynolds equation. With the velocity field known, the particle motion

                                                          
➊ Part of this chapter has been published in Zhang, et al. (1997c).
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equations are solved using a fourth order Runge-Kutta method. All these methods have

been experienced in the Chapter 3.

4.2 Effects of the Saffman Force on the Motion of Particles

    We will see later that the Saffman force is important only for the relatively large

particles. Therefore, to study the effects of the Saffman force, we need only consider

those particles moving in a recessed region. To study the characteristics of particles

moving in a recessed region, one encounters the problem of how to treat the irregular

surfaces of the sliders, which usually cause complicated flow in the region. Since we are

only interested in the motion characteristics of the particles, we can consider a simple

slider which causes a simple flow close to that in a recessed region of a real slider. For

convenience, we adopt an "infinitely wide, no-rail slider" with some parameters fixed

close to those of a recessed region, for example, with hm =3.05µm, l=2.05 mm, pitch

angle=150 µrad. The reason for taking hm =3.05µm is that the recessed height is usually

about 3 µm for a real slider and the flying height is about 50 nm. Using the CML Air

Bearing Simulator, we obtain the pressure profile for this case, which is shown in Fig. 4-

1.

4.2.1 Effects of Particle Sizes

    From equation (2-18), we know that the Saffman force is sensitive to the particle size

because its magnitude is proportional to the square of the particle radius. In this case, we

simulate four particles with the same density of ρ p =8000 kg/m3 and different diameters

of 200 nm, 300 nm, 330 nm, and 340 nm respectively. All of them enter the recessed
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region with initial velocity of Up0 =1 and initial vertical position of Zp0=0.2. The

simulation results are shown in Fig. 3-2.

    The particles with the given initial velocity usually move faster than that of the air flow

in the recessed region, which makes the Saffman force point to the slider. It is seen that

all four particles, which are acted by the upward Saffman force, go up when they enter

the recessed region. The particle with d = 200 nm rises only a small distance and then

goes almost parallel to the disk surface, while the particle with d = 340 nm goes up

sharply and hits the surface of the slider. This implies that the Saffman force has a more

significant effect on the motion of large particles.

   In our previous studies (Zhang and Bogy, 1996), we assumed that the motion of small

particles (<100 nm) was two dimensional, or planar. Based on the current simulation

results, we see that this assumption is reasonable, because the lift force has little effect on

the motion of small particles in a SDI. Another interesting phenomenon is that the

particles have sharp upward motion when they just enter the recessed region, and then

move smoothly after a short time except for particle 4, which hits the surface of the

slider. The reason for this may be that the magnitudes of the relative velocity (relative to

the airflow) of the particles are very large at the entrance, which affects the Saffman lift

force significantly.

4.2.2 Effects of the Relative Velocity

    From Saffman's analysis (Saffman, 1965), we know that the direction of the Saffman

force depends on the direction of the velocity gradient and the sign of the relative

velocity of the particle with respect to the airflow. For the fixed velocity gradient such as

the case in our study, the direction of the Saffman force points to the slider if the particle
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moves faster than the airflow, or points to the disk if the particle moves slower than the

airflow. To study the effects of the relative velocity, we simulate four particles with the

same diameter d=340 nm and density ρp=8000 kg/m3 but with different initial velocities

of Up0=0.2, 0.4, 0.6, 0.8. The simulation results are shown in Fig. 4-3.

    It is seen that the particle with high (or low) initial velocity, which implies large

magnitude of relative velocity, goes up (or down) sharply when it enters the recessed

region. The larger the magnitude of the relative velocity, the more sharply the particle

moves up or down.

    Note that a particle usually has a large magnitude of relative velocity when it just

enters the recessed region. Afterwards, it is accelerated or decelerated by the action of the

drag force and moves gradually close to the velocity of the local air flow. In other words,

its magnitude of relative velocity gradually decreases towards zero. Since the airflow for

a real slider usually has lower velocities in a recessed region, the relative velocities of

particles have positive signs. Therefore, the particles entering it are acted on by an

upward Saffman force to bring them to the slider surface. Thus, it is predicted that

contamination should occur at the corners between the rail and the upper surface of  the

recessed region. As mentioned, this is often observed.

    A similar situation occurs for the particles entering the air bearing under a taper. For

this case, the Saffman force also gives a strong lift. This, at least partially, explains why

the contamination easily concentrates on tapers.

4.2.3 Effect of Particle Density

    To study the effects of the particle density, we simulated four particles with densities

of  2000, 4000, 6000 and 8000 kg/m3. All of them have the same diameter of 340 nm, and
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they enter the recessed region with the same initial velocity of Up0 = 1 at the same initial

height of Zp0 = 0.2.  The simulation results are shown in Fig. 4-4.

    It is seen that the particles with larger density go up more sharply than those with

lower density. In other words, the Saffman force has a more significant effect on the

vertical motion of a particle with higher density. This phenomenon is actually the result

of the fact that the relative velocity makes a significant contribution to the Saffman force.

Note that a particle usually has a large magnitude of relative velocity when it just enters

the recessed region. If its density is very small, the drag will have strong effects to cause

the particle to reach the velocity of airflow quickly (see (2-16)~(2-17)), or the relative

velocity goes to zero rapidly. Under such a situation, only during a short time does the

Saffman force show large values to push the particle up or down. But if the density is

high, the inverse results occur. To check this mathematically, we artificially divided the

drag terms in equations (2-16)~(2-18) by 3 and simulated the cases with the same given

conditions as mentioned above. The simulation results are shown in Fig. 4-5.

    It is clear that the particle shows close paths for different densities this time, which is

much different from the case with the original drag. Also, the particle goes up more

sharply for the lower density instead of the higher density as in the original case. This

implies that the smaller drag forces make the Saffman lift force contribute more to the

vertical motion of the particle.

4.3 Planar Motion of Small Particles in a SDI

    In this section, we focus our study on the small particles which can move in an air

bearing. We know that the Saffman force is negligible for the small particles, therefore
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their motion can be regarded as planar. For convenience, we choose a 50% slider

(2mm×1.6mm) as an example in the analysis. The slider has a recess depth of 3 µm and

taper length and angle of 0.2 mm and 0.01 rad, respectively, and is loaded by 3.5 g.

Except for some specially denoted cases, the slider is assumed to fly at the position r=23

mm from the center of the disks while the disk rotates at 5400 rpm. The slider rails

(shaded) are shown in Fig. 4-6. Its air bearing pressure profile is shown in Fig. 4-7 and its

major flying characteristics are given in Table 4-1.

Table 4-1.  Flying Characteristics
Position r (mm) Skew (degree) Pitch (µ rad) Roll (µ rad) FH-CTE✞ (nm)

23 0.0° 188.2 0.0 34.2

✞Flying height at the central trailing edge

4.3.1 Effects of the Particle Density

    To study the effects of the density, we consider these quite different values: ρp=1000

and 8000 kg/m3. The diameter of the particle is chosen to be 30 nm, and the initial

velocities are Up0 = 1 and Vp0 = 0. Seven particles enter the interface from the leading

edge. The simulation results are shown in Fig. 4-8, where solid lines denote the particle

paths for ρp=1000 kg/m3 and dashed lines denote the particle paths for ρp=8000 kg/m3. It

is seen that the particle paths coincide for particles with different densities. This fact

implies that the density does not influence the particle motion significantly if the particle

size is small and the density varies in a practical range.
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4.3.2 Effect of the Initial Velocity

    We also choose seven particles in this case, each with density ρp = 8000 kg/m3 and

diameter d = 30 nm , entering the interface of the slider from the leading edge as shown

in Fig. 4-9. For each particle, we assign two different initial velocities (Up0 , Vp0) = (1, 1)

and (0, -1), respectively. It is seen that the particle paths change slightly with the

variation of the initial velocities. Only when the particles reach the central rail at the

trailing edge do the paths depart a significant amount. This implies that the variation of

initial velocity affects the particle paths more than the variation of the density within a

practical variation interval. But generally, its affect is still weak for small particles, even

if the particles have significant differences in Up0 and Vp0.

4.3.3 Effects of Particle Size

    At the beginning of this section, we mentioned that we would focus our studies on

small particles (say 30 nm) because we are only interested in particles that can go through

the air bearing. However, for some special cases, for instance those particles moving in

the recessed regions, it is desirable to consider larger particles. Note that we keep the

d≤200 nm so we can ignore the effect of Saffman force in the analysis. We do not treat

the effects of collisions of the particle with the surfaces of the slider. Therefore, the

calculation is stopped when the particle hits the rails.

    Figures 4-10 and 4-11 show the effects of density with different particle sizes. In Fig.

4-10, the particle diameter is chosen to be d = 30 nm and the initial velocity is U0 = 1, V0

= 0. It is seen that the paths of particles with ρp = 1000 and 8000 kg/m3, which are

denoted by solid lines and dashed lines respectively, show little difference for this

diameter. In Fig. 4-11, we changed the particle diameter to d = 200 nm and kept the same
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initial velocities. This time, the particle paths for ρp = 1000 and 8000 kg/m3 show obvious

differences as compared to the case with d = 30 nm. This implies that inertia plays a more

significant role in the particle motion for larger particles. Similar results can be seen for

changing the initial velocities with different particle sizes in Figs. 4-12 and 4-13, which

show the results for d=30 and 200 nm, respectively. For each particle size, two initial

velocities are used, that is, (U0 , V0) = (1, -1) and (0, 1). The density is chosen as ρp=8000

kg/m3 for both cases. The paths of particles show little difference for different U0 and V0

for d=30 nm (Fig. 4-12).  But for d = 200 nm, their paths show significant difference for

different U0 and V0. Therefore, the variation of the initial velocity will have an important

effect on the particle motion for large particles.

4.3.4 Particle Paths and Streamlines

    Seven particles, each with diameter d=30 nm, density ρp=4000 kg/m3 and initial

velocities U0 = Û  and V0 = 0, enter the SDI from the leading edge in this case (Fig. 4-

14). The  particle paths are drawn in wide lines to be distinguished from thin lines that

represent the "stream lines" of the air flow. Here, the "stream lines" are drawn based on

stream functions defined by (3-25) and (3-26). It can be seen that the streamlines are

relatively dense in the recessed regions.  This is because the mass flow rate is much

higher due to the large spacing in the recessed regions.  It is also shown that the

streamlines in the recessed regions largely follow the contour of the rail shape, because

only a small portion of the flow can squeeze into or out of the bearing area. Looking at

particle paths, we see that all particles follow the streamlines very well, and most of them

leave the SDI from the sides for this slider. This provides an idea to design a slider for

reducing the particle contamination, which will be presented in the next chapter.
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4.4 Summary

    We studied the characteristics of the particles moving in a SDI by considering various

forces acting on them. Through simulations for various cases, we obtained the following

results:

(1) Particle size is an important parameter affecting the Saffman force. For a

small particle (d≤200 nm), Saffman force is relative small and can be neglected;

(2) The magnitude of the relative velocity affects the Saffman force, or vertical

motion of a particle, significantly. Since the air flow has a lower velocity in the

recessed region, the relative velocity usually has a large magnitude with positive

sign when a particle enters it, which causes a relatively strong Saffman force

pointing to the slider. Therefore, the corners between the rail and the upper

surface are likely to attract the particles that result in the contamination.

Similarly, the contamination on tapers is caused, at least partially, by the large

relative velocity of the particles entering the air bearing under the tapers;

(3) The particles with higher densities go up or down more sharply than the

particles with lower densities. This is because the larger density will reduce the

contribution of the drag to the motion of the particle, so as to make particles

move with a high magnitude of relative velocity (or high Saffman force) during

a longer time;

(4) Small particles follow the streamlines very well. The inertia effect increases

with the increase of the particle sizes.
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(5) For some specific slider designs, more particles leave the SDI from sides

instead of from the trailing edge.
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CHAPTER 5➊

SLIDER DESIGNS FOR CONTROLLING

PARTICLE CONTAMINATION

5.1 Introduction

    Previous studies by other researchers (Hiller, et al. 1991; Koka, et al., 1991) showed

that the taper surface at the trailing edge and the rail surface at the trailing edge are the

two main zones for producing contamination on a slider. The latter plays a key role

because it not only collects particles itself, but also indirectly contributes to the particle

deposition on the taper surfaces. An efficient way of reducing the particle contamination

is to reduce the contamination on the rail surfaces at the trailing edge, which also helps to

reduce the particle contamination on the taper surfaces simultaneously. A strategy for

realizing this is to find ways to make as many particles as possible leave the SDI from its

two sides instead of from the trailing edge. Seen from another perspective, this strategy is

reasonable for reducing particle contamination because if we can make most of the

particles leave the SDI from the sides, we actually reduce the time for them to stay in the

SDI. The less time a particle spends in an air bearing, the less chances there are for it to

be deposited on the slider.

    From Chapter 4, we know that the small particles that can move in an air bearing

follow the streamlines very well. This suggests the use of the airflow in a SDI to blow the

particles out from its sides, which we call the “inherent cleaning process” or “self

                                                          
➊ Part of this chapter has been published in Bogy, et al. (1996).
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cleaning process”. Note that we already have such a slider design (Fig. 4-6) with this

required property (Fig. 4-14). The characteristic of this slider is that it has two small rails

at the leading corners and one large rail at the center. The main advantage of these two

small rails is they construct two “channels” together with the central rail to produce the

airflow in the SDI to “lead” particles out of the SDI from the two sides. In addition, their

existence also provides two tapers that are beneficial to the taking off of the slider and

increases the flying stability. The rail at the trailing edge provides a “secondary channel”

with two ends of the central rail, which has a similar function as the “first channel”.

Clearly, most of the particles entering into the SDI from the leading edge leave it from its

sides for this special design (Fig. 4-14), which is what needed for reducing the particle

contamination.

    In this chapter, we will make a detailed analysis of this design and explain its

properties. Since we are only interested in the small particles that can move in air

bearings, we neglect the lift force and gravity force in the simulation. For convenience of

illustration, we call our sample slider (Fig. 4-6) “Sample-I”, which distinguishes it from

the modified designs later. We also choose a tri-pad slider and study the motion patterns

of particles in its SDI, and compare its results with those of our sample sliders. We will

also explain how to improve the design to make it more efficient for reducing particle

contamination.
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5.2 Slider Designs for Controlling Particle Contamination

5.2.1 Effects of the Rail Shapes

    For the convenience of comparison, we choose a 50% design for both the tri-pad slider

and Sample-I slider. Both have the same taper angle and length of 0.01 rad and 0.2 mm,

and recess depth of 3 µm. They fly at the radial position of 23 mm (MD) from the center

of the disks while the disks rotate at 5400 rpm. The rail shapes are shown in Fig. 5-1 and

the pressure profiles are shown in Fig. 5-2. Their flying characteristics are shown in

Table 5-1.

Table 5-1.  Flying Characteristics of the Tri-pad and Sample-I Sliders
Position (mm) Skew (degree)Pitch (µ rad) Roll (µ rad) FH-CTE (nm)

Tri-pad

Sample-I

23

23

0.0

0.0

210.6

188.2

8.6

2.1

33.8

34.2

    Figure 5-3 shows the comparison of particle paths for the two designs. For both cases,

we place seven particles of diameter 30 nm, initial velocity Û (or Up0=1) in the x

direction and density 4000 kg/m3 along the leading edges. It is seen that all particles move

through the SDI and leave it from the trailing edge for the tri-pad slider (Fig. 5-3(a)),

which provides more chances for the particles to be deposited on the slider surface. For

the Sample-I slider, it is seen that most of the particles are blown out of the SDI from the

two sides (Fig. 5-3(b)). Therefore, less particles have chances to deposit on the rail

surface at the trailing edge and less time is spent for most of particles in the SDI. All of

these are regarded as beneficial to the reduction of the particle contamination.
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    The Sample-I slider is not perfect in that there is one particle passing through the air

bearing of the rail at the trailing edge (Fig. 5-3(b)), which may increase the probability

for it to deposit there. As a improvement, it is suggested to sharpen the leading edge of a

rail or broaden the back corners of a rail to make the airflow more smoothly carry the

particles out of the SDI. Following this strategy, we designed a new slider based on the

Sample-I slider and we call it the Sample-II slider. The rail shape and pressure profile of

the Sample-II are shown, respectively, in Fig. 5-4 and Fig. 5-5, and its flying

characteristics are given in Table 5-2. The flying height of the new slider is close to the

two old ones.

Table 5-2.  Flying Characteristics the Sample-II Slider
Position r (mm) Skew (degree) Pitch (µ rad) Roll (µ rad) FH-CTE (nm)

23 0.0° 266.4 8.9 31.3

    We also place seven particles, all having the same diameter of d=30 nm and density of

ρp=4000 kg/m3, along the leading edge. The initial velocities for these particles are given

by Up0 = 1 and Vp0 = 0. Since the particles may enter the interface from the two sides

when the slider moves radially over the disk, we also put seven particles at each side and

give them a non-zero Vp0, that is, Up0 = 1 and Vp0 = 0.5 for those from the inner side, and

Up0 = 1 and Vp0 = −0.5 for those from the outer side.

    Obviously, most of particles entering the interface from the leading edge leave the

interface from the two sides. The particles starting from the two sides have less chances

to go a long distance in the interface. The particle from the central leading edge goes

through the interface and leaves the trailing edge by passing around the end rail instead of
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going through the air bearing under it as in Fig. 5-6. This demonstrates the advantage of

the modified slider.

5.2.2 Effects of the Slider Position (ID or OD)

    We know that small particles follow the streamlines very well. If the flow field

changes, for instance when the slider moves to the OD or ID resulting in a non-zero skew

angle, how will the motion of the particles be affected?  Is the Sample-II slider still good

for reducing the particle contamination? To study the effects of the slider position, we

examine two cases for the Sample-II slider, at the ID with r = 15 mm and skew = −7.5°

and at the OD with r = 31 mm and skew = 7.5°. Here, the minus sign corresponds to the

case when the flow comes from the outer leading edge towards the inner trailing edge.

The flying characteristics for the two cases are shown in Table 5-3.

Table 5-3.  Flying Characteristics for the Sample-II Slider at ID and OD
Position r (mm) Skew (degree) Pitch (µ rad) Roll (µ rad) FH-CTE (nm)

15

23

31

−7.5°

0.0

7.5°

475.5

266.4

98.4

9.8

8.9

6.5

40.8

31.3

20.1

    The particles simulated for both cases are the same as in the section 5.2.1 except for

the particle size which we take as d = 20 nm for the ID case and 30 nm for the OD case,

because we want the particle size to be consistent with the flying height at the central

trailing edge. As in the last case, seven particles are placed along the leading edge and

each of the two sides. The simulation results are shown in Figs. 5-7 and 5-8. For both
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cases, most of particles from the leading edge leave the interface from the two sides,

which is qualitatively the same as the MD case. For particles from the inner or outer side,

one more particle, compared with the MD case in Fig. 5-6, enters the interface from

positions close to the trailing edge. Since this particle travels a short distance through the

recessed region at the end corners, it has less chance to deposit on the end rail than those

that enter the interface from the leading edge and leave from the trailing edge through or

close to the air bearing under the end rail. Therefore, the Sample-II slider still retains its

advantage for reducing particle contamination at the ID and OD.

5.3 Optimal Design

    Flying stability is an important consideration in slider designs for proximity recording.

One requirement in stability design is to reduce the flying height variation for the slider

across the radius of a disk. From Table 5-3, we see that the Sample-II slider can not meet

this requirement satisfactorily. Since the flying characteristics are significantly affected

by the air bearing surface, we can optimize a slider design by changing the geometry of

its air bearing surface to make it be much less sensitive to changes in radius. This work

can be done by using the CML Air Bearing Optimization Program (O’Hara, et. al., 1995).

    The objective function of this problem is to minimize the difference in flying height

over the radius of the disk. The simulated annealing method is employed as explained the

optimization algorithm (O’Hara, et al., 1996). This technique minimizes the expense of

calculating derivatives in gradient-based optimization algorithms and handles the high

number of parameters efficiently. Additionally, it can achieve globally optimal solutions

for multi-term objective functions. The optimization of the Sample-II slider was
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performed by Mathew O’Hara, and the result is given here. We call the optimized shape

the Sparrow slider. Figure 5-9 shows its rail structure and Fig. 5-10 shows the pressure

profile of its air bearing at the MD. Its flying characteristics are shown in Table 5-4.

Clearly, the flying height difference across the disk radius for the Sparrow slider is much

less that for the Sample-II slider (Table 5-3).

Table 5-4.  Flying Characteristics of the Sample-II Sliders
Position r (mm) Skew (degree) Pitch (µrad) Roll (µrad) CTFH* (nm)

23.0
31.0
15.0

0.0
−7.5
7.5

255.0
313.0
178.0

2.7
−32.0
33.0

28.0
22.0
27.4

    To study the characteristics of the particle motion in the SDI of the Sparrow slider, we

placed seven particles with d=22 nm, ρp=4000 kg/m3 and Up0=1 and Vp0=0 along the

leading edge for the MD case. The results (Fig. 5-11) show that most of the particles

leave the SDI from the sides, which is beneficial to the reduction of the particle

contamination.

    The particle paths are also simulated for the OD and ID cases. Figure 5-12 shows the

OD case for skew=7.5° and radial position r=31 mm, and Fig. 5-13 shows the ID case

with skew=−7.5° and radial position r=15 mm. Seven particles with d=20 nm enter the

SDI from the leading edge and each of the two sides. It is seen that most of the particles

from the leading edge leave the SDI from the sides. Two of them, together with some

from the two sides, leave the SDI from the trailing edge by passing around the rail there.

Therefore, the characteristics of reducing contamination for the Sparrow slider still

remains for the OD and ID cases.



61

5.4 Summary

    A strategy for reducing the particle contamination on a slider is to make as many

particles as possible leave the SDI from its sides, instead of leaving the SDI from the

trailing edge. This not only may reduce the particle contamination on the surface of the

trailing edge rail and tapers, but also reduces the time for a particle to stay in a SDI,

which in turn reduces the probability for the particle to deposit on the slider surface.

Since the particles suspending in the air are one of major sources causing the

contamination, it may be helpful to employ the airflow in the SDI to blow the particles

out of it from the two sides, which we call “inherent cleaning” or “self cleaning”. This

strategy may be realized by specially designing the geometry of the air bearing.  Through

simulating various cases, we designed some sliders that have the desired characteristics.

After the optimization calculation, we designed a sparrow-like slider that not only has the

anti-contamination characteristics, but also has good performance in flying stability

across the radius of the disk.
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Fig. 5-6 Particle paths in the SDI of the Sample-II slider: MD case
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Fig. 5-7 Particle paths in the SDI of the Sample-II slider: ID case
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Fig. 5-12 Particle paths in the air bearing of the Sparrow slider: ID case
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CHAPTER 6➊

A HEAT TRANSFER MODEL

FOR THE THERMAL FLUCTUATIONS IN A

THIN SDI

6.1  Introduction

    The magnetoresistive (MR) transducer was developed (Hunt, 1971) using the principle

that its resistance varies with the variation of the ambient magnetization. A problem with

the MR head is that it is very sensitive to temperature variation because the resistance is

also temperature dependent. One such phenomenon is that the MR readback signal

fluctuates with the fluctuation of the flying height when the slider flies over an asperity

without contact (Tian, et al., 1997). It is concluded that the heat transfer in the air bearing

makes a significant contribution to the fluctuation of the MR readback signal, and the air

bearing acts as coolant. In this chapter, we conduct a theoretical study of the heat transfer

in the air bearing to find the mechanism of this “cooling” effect.

    One important issue in solving the heat transfer problem between a slider and the air

bearing is that the traditional lubrication theory, which is based on the continuum

assumption, is not valid when the air bearing is very thin. For example, the flying height

of a typical MR head, which usually has a recessed depth of 3 µm, is around 50 nm in

today’s hard disk drive. The Knudsen number Kn=λ/h, where λ is mean free path of the

air and h is the spacing of the slider/disk interface, is between 0.02 to 1 under this

                                                          
➊ Part of this chapter has been published in Zhang, et al. (1997d).
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condition. The air flow with such a Knudsen number is regarded as within the slip and

transition regimes, and far out of the continuum region of Kn<0.01 (Schaaf, S.L., et al.,

1963). One approach to solve the heat transfer problems in these regimes is to apply the

Maxwell-Boltzman equation of the kinetic theory of gases. However, solving a complete

Maxwell-Boltzman equation requires very large computation time. Another approach is

to assume that the continuum-based governing equations, such as Navier-Stokes (N-S)

equation and the energy equation, are still usable. As a modification, the discontinuous

boundary conditions are applied (Kennard, E.H., 1938). These methods have been used

previously in solving for the velocity distribution in an air bearing by several researchers

(Burgdorfer, A., 1959; Gans, R., 1985; Fukui, et al., 1988).

    Another important issue in solving the heat transfer problems is that the continuity

equation, momentum equation and energy equation, if we use the method mentioned

above, need to be solved simultaneously, because the physical properties of air depend on

the temperature, which usually makes the problem more complicated, and leads to the

need of more computation time in the numerical analysis.  A simple approach is to

assume the properties are constant if the temperature variation is not too large, so we can

evaluate the properties at a certain reference temperature, say the average temperature of

the two surfaces. With such an approximation, the momentum and energy equations can

be decoupled for solution. Since the temperature difference between the slider and disk

surfaces is expected to be very small, it is reasonable to apply a constant  property

assumption in an air bearing. Thus, we can solve the momentum and energy equations

separately.
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    In the following analysis, we first simplify the N-S and energy equations by

dimensional analysis. Then we solve the reduced N-S equation with slip boundary

condition to get the velocity distribution and solve the energy equation with jump

boundary conditions to get the temperature distribution in the air bearing. Using Fourier’s

law, we obtain an expression for the heat flux between a slider and air bearing. A

computer program is implemented to simulate the heat flux for several cases. The

slider/disk system as well as the related coordinate system used in the analysis are the

same as that used in the contamination analysis (Fig. 2-1).

6.2 Governing Equations in the SDI

    In the following analysis we focus on the steady case, so the time dependent terms in

the related equations disappear. Using dimensional analysis, we reduce these equations to

simpler forms.

6.2.1 Navier-Stokes (N-S) Equation

    The simplification of the N-S equation in an air bearing has been performed by many

researchers (Gross, W.A., et al., 1980). The results have been used in Chapter 2 for the

solution of the velocity field in a SDI. For the completeness of the analysis, we list the

reduced N-S equation again here:
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where u, υ, p and µ are respectively velocities in the x and y directions, pressure and the

viscosity of the air, which are the same as in Chapter 2. For simplification, we assume µ

is uniform in the air bearing.

6.2.2 Energy Equation

    As in the N-S equation, the energy equation can also be simplified by using

dimensional analysis in the air bearing. Since the magnitudes ∂/∂x~ ∂/∂y<< ∂/∂z, we

neglect the relative small terms and write the energy equation as:
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where ρ is the density, cp is the specific heat, k is the heat conductivity and is assumed

uniform in the air bearing, and T is the temperature of the air.

    As in simplifying the N-S equation, we use the characteristics of the air bearing to

reduce the energy equation (6-4). Let’s first define the non-dimensional variables:

u*=u/Û , υ*=υ/Û , T*=T/∆T, p*=p/P0, x*=x/L, y*=y/L, z*=z/L, where Û  is the disk

velocity, ∆T is the temperature difference between the slider and disk surfaces and P0 is

the reference pressure (say the ambient pressure), L is the length of the slider and h is the

thickness of the air bearing. Substituting these variables into equation (6-4) we obtain the

following expression:
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where α=k/ρcp  is the thermal diffusivity.

    For a typical head/disk air bearing, we can take ρ~1 kg/m3, cp~103 W⋅s/kg⋅K, k~0.03

W/m⋅K, µ~10-5 kg⋅m/s, Û ~15 m/s, L~2 mm, h~50 nm, T0~300 K, and P0~105 kg/m⋅s2. The

temperature difference ∆T depends on the value of resistance of the MR transducer and

the electrical current passing through it, and it usually has a magnitude of 10 °C. Tian, et

al. (1997) measured➊ the ∆T of three MR heads with resistance ranging from 27 Ω to 33

Ω and electrical current of 13 mV. They obtained the temperature difference ∆T changing

between 30 °C and 45 °C for the three cases. Here we choose ∆T~20 °C. Thus

Û h2/αL~PrRe(h/L)~10-6, (P0Û h2)/(kL∆T)~(PrReM2)(T0/∆T)(h/L)(p0/ρÛ 2)~10-5, and

µÛ 2/k∆T~PrM2(T0/∆T) ~10-2, where Pr is the Prandtl number defined by Pr=µcp/k, Re is

the Reynolds number defined as Re=Û h/v, M is the Mach number defined by

Û /(γRT0)
1/2, and T0 is a reference temperature. Therefore, compared with the conduction

term in equation (6-5), the non-linear terms in the LHS are small and can be neglected.

The energy equation is thus reduced to:
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    Strictly speaking, this equation is valid only when PrRe(h/L)<<1, (PrReM2)(T0/∆T)

(h/L) × (p0/ρÛ 2)<<1 and h/L<<1. Fortunately, these conditions are usually satisfied in a

slider/disk air bearing.

                                                          
➊ The temperature was not measured directly in Tian, et al’s paper. They first measured the voltage across
the MR transducer to determine the changes of the MR resistance. Then they used a correlation obtained by
experiment to estimate the temperature change of the MR transducer.
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6.2.3 Boundary Conditions

    We assume that the disk has a non-zero velocity Û  in the  x direction and zero velocity

V̂ in the y direction, which is approximately the case of a slider flying at a middle radius

of the disk. As for the temperature, considering the disk has a much larger size than the

air bearing and rotates with high speed, we assume that it has a constant and uniform

surface temperature that is the same as that of the ambient air flow. We also assume that

the slider’s surface temperature is uniform. Introducing the slip condition for the velocity

and the jump condition for the temperature at the boundaries of the air bearing (Schaaf,

S.L., et al., 1963; Kennard, E.H., 1938), we can write the boundary conditions for

velocity and temperature as:
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where σM is the momentum accommodation coefficient and σT is the thermal accommo-

dation coefficient, γ is the ratio of cp to cv, which are specific heats at, respectively,
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constant pressure and constant volume, Ts and Td are , respectively, the slider surface

temperature and disk surface temperature. For convenience, we write a=(2−σM)/σM and

b=2(2−σT)γ/σT (γ+1)Pr in the following analysis.

6.3. Heat Transfer between the Slider and the SDI

    To get the heat transfer in a SDI, we need to know the temperature distribution in it.

This requires us to solve the N-S equation and the energy equation. Because of the

approximation of constant properties of the air, we can decouple the N-S and the energy

equations and solve them separately.

6.3.1 Velocity Distribution

    The velocity distribution can be obtained by integrating the reduced N-S equations (6-

1) ~ (6-3) with boundary conditions (6-7)~(6-10). The procedure is straight forward and

was done by other researcher (Burgdorfer, A., 1959; Mitsuya, Y., 1993). Here we list the

results of the solution:
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These results are the same as those used in Chapter 2, except that the velocity component

V̂ is taken as zero.

    In the RHS of equation (6-13), the first term is the contribution of the Poiseuille flow

and the second term is the contribution of the Couette flow. While in (6-14) only the

Poiseuille flow result is involved because we take the y-component of the disk velocity
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V̂ =0. Clearly, these results are not complete because we still do not know the pressure

gradient in the x and y directions. To finish the solution we need to solve the Reynolds

equation, which comes from the integration of the continuity equation (Burgdorfer, A.,

1959; Fukui, et al., 1988), to obtain the pressure distribution first. To get the solution, a

numerical method is required (Cha, E.T., et al., 1995; Lu, S., et al., 1994).

6.3.2 Temperature Distribution

    Substituting the velocity solutions (6-13) and (6-14) into the energy equation (6-6) and

integrate it, we obtain the temperature distribution in the air bearing
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    As in the velocity solutions, the temperature T also consists of contributions from the

Poiseuille flow and Couette flow. In addition, extra terms exist which are the combined

effects of the both flows.

6.3.3 Heat Transfer

    Using Fourier’s Law q=−k∂T/∂z at z=h and the temperature solution (6-15), we can

obtain the heat transfer into the slider as follows:
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We can also write the heat transfer equation (6-16) in a non-dimensional form as:
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6.4. Analysis and Discussion

    We know that the velocity field obtained by equations (6-13) and (6-14) is the result of

the Couette flow and Poiseuille flow. It is natural to think that the heat transfer in the SDI

is also related to the two flows. In order to reveal the physical meaning of each term in

the heat flux equation (6-16), we study the heat transfer for the single Couette flow and

Poiseuille flow between two plane plates, respectively. The velocity fields for the two

types of flows are shown in Figs. 6-1 and 6-2.

6.4.1 Couette flow

    Using the linear expression for the Couette flow, in which the velocity is unidirectional

(say in the x direction), and the boundary conditions (6-7) and (6-8), we can obtain the

velocity distribution as:
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Substituting this velocity solution into the energy equation (6-6) and integrating it, we

obtain the temperature distribution and then the heat transfer between the upper plane and

the air flow by Fourier’s Law:
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We can also write this heat transfer equation in a non-dimensional form as:
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    A similar expression as equation (6-21) can also be found in Schaaf’s (1961), in which

no derivation is given out. Comparing equation (6-20) with equation (6-16), we see that

the second term in the RHS of (6-16) is the contribution from the viscous dissipation by

Couette flow.

6.4.2 Poiseuille Flow

    The velocity field in the Poiseuille flow is also unidirectional and can be obtained by

integrating equation (6-1) and applying the boundary conditions (6-4) and (6-5) with

Û =0. The solution is:
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µ
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    In a similar way as used with the Couette flow, we can express the temperature

distribution and  the heat transfer between the upper plane and the air flow as:
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Or in the non-dimensional form:
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    Comparing equation (6-24) with equation (6-16), we see that the third term in the RHS

of (6-16) is the contribution from the viscous dissipation of Poiseuille flow. Clearly, the

fourth term is a combined contribution of both Couette flow and Poiseuille flow.

6.4.3 Heat Conduction

    The first term in the RHS of equation (6-16) is the contribution of heat conduction.

Due to the introduction of the temperature jump at the boundary, the effect of the heat

conduction is reduced by a factor of (1+2bλ/h) compared to the continuum case. Note

that because of the effect of viscous dissipation, the heat transfer between the slider and

air bearing is not zero when the temperature difference between the slider surface and the

disk surface vanishes,.

6.5 Simulation Results

    In this section, we compute several cases for sliders flying close to the disk surface.

We assume that the slider has a surface temperature either equal to that of the disk or
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higher than that of the disk because of an electrical current that goes through the MR

transducer (Tian, et al., 1997). For convenience, we choose a 50% (2mm×1.6mm) tri-pad

slider with taper length and angle of 0.2 mm and 0.01 rad, respectively, and with a

recessed depth of 3µm. The load is given by 3.5 g. The slider is fixed at a radial position

r=23 mm. The rail shape of it is shown in Fig. 6-3. Note that this slider has a slight

difference in rail size compared with that used in the contamination study (Fig. 5-1),

because we want a higher flying height that is close to that for a typical MR head used

today.

6.5.1 “Cooling” Effects of the Air Bearing

    In this case, we choose the disk rotation Ω=6400 rpm. With this rotation, the pressure

distribution of the air bearing is solved by using the CML Air Bearing Simulator (Lu, S.,

et al., 1995) and shown as in Fig. 6-4, and the flying characteristics are shown in Table 6-

1. We know that the viscous dissipation term is about 10-2 of the heat conduction term in

magnitude with the temperature difference ∆T=(Ts−Td)~20 °C. For the convenience of

comparing the relative relation of the two terms, we take a smaller temperature difference

∆T~1 °C in the analysis of this chapter.  The heat flux for this ∆T is calculated and shown

in Fig. 6-5. Note that positive values mean that heat is transferred from the slider to the

air bearing.

Table 6-1  Flying Characteristics
Disk rotation (rpm) Pitch angle (µrad) Roll (µrad) CTE-FH✞ (nm)

6400 176 8 44
✞ Central trailing edge flying height
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    It is seen that even at a small temperature difference ∆T=1 °C, the heat conduction still

dominates the overall heat transfer and results in a net heat flux from the slider to the air

bearing, except at some points around the edges of end rail, where the viscous dissipation

is comparable to the heat conduction. Figure 6-6 shows the simulation result for ∆T=0

°C, in which only viscous dissipation exists. For convenience, we use the positive value

to represent the heat flowing into the slider in this case. It is seen that the heat flux takes

negative values and has larger magnitude at the corners of end rail. The reason for this

maybe that the pressure at these points has larger gradient (Fig. 6-4), which makes the

magnitude of the heat flux increase sharply there (referring to equation (6-16)).

Comparing Fig.6-5 with Fig.6-6, we easily conclude that the viscous dissipation has a

smaller magnitude than the heat conduction, except for some points around the edge of

the end rail and some cases in which the temperature difference is very close to zero.

6.5.2 Effect of the Flying Height and Disk Speed

    From Fig.6-5, we see that heat flux shows different values in the air bearing and

recessed region, which implies that the heat flux changes with the SDI spacing. In the

following cases, we study the relation of the heat flux to the CTE-FH. Note that to change

the flying height, we have to change the disk rotation speed simultaneously if we keep the

other parameters the same. Therefore, the heat flux is actually affected by both the disk

rotation speed and the flying height. Table 6-2 shows the related flying characteristics for

different cases.

    The heat flux for ∆T=1 °C at a single point (5 µm inside the CTE) is plotted in Fig.6-7.

The average heat flux over the surface of the end rail, which is important for the

temperature variation of the MR transducer, is plotted in Fig.6-8. It is seen that both the



81

single point and average heat flux increase with the decrease of the flying height under

the given temperature difference (Ts−Td=1 °C). This means that more heat is transferred

to the air bearing when the slider flies closer to the disk surface.

Table 6-2.    Flying characteristics for different rpm
Disk rotation (rpm) Pitch angle (µrad) Roll (µrad) CTE-FH (nm)

4000 126.5 4.8 15.7
4500 139.0 5.4 20.0
5000 150.4 6.1 25.2
5500 160.0 6.7 32.1
6000 169.3 7.5 39.0
6500 176.9 8.2 47.2
7000 183.7 8.9 56.3
7500 189.4 9.8 66.4
8000 193.9 10.4 77.2
8500 197.3 11.4 88.5

    Two similar cases are simulated for ∆T=0 °C and plotted in Figs. 6-9 and 6-10, in

which negative value means the heat is transferred to the slider because of viscous

dissipation. As in Fig. 6-7 and 6-8, the heat flux for both the single point and the

averaged value over the surface of the end rail decreases in magnitude with the decrease

of the flying height. In other words, if only viscous dissipation exists, less heat will be

transferred to the slider when the slider flies closer to the disk surface. Combining this

result with that for ∆T=1 °C, we can say that the overall “cooling” effect increases with

the decrease of the flying height. This conclusion is identical to the experimental result

by Tian, et al. (1997). Since the flying height is proportional to the disk speed (Table 6-

2), we can also say that the “cooling” effect of the air bearing increases with the decrease

of the disk speed.
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    Figure 6-11 shows the maximum heat flux in the SDI for ∆T=0. Note that the

“maximum” here means the maximum magnitude, or maximum heat flux into the slider.

It is seen that this maximum heat flux increases with the decrease of the flying height. A

reason for it may be that the pressure profile at some points such as the trailing corners of

the rear rail (Fig. 6-4), where usually there exists a drastic pressure variation at the low

flying heights, becomes smoother at the higher flying height.

    Figure 6-12 is the maximum heat flux for ∆T=1 °K. Since the heat conduction

dominates the heat transfer in this case, it is seen that the maximum heat flux increases

with the decrease of the flying height.

6.6 Summary

    We solve the N-S and energy equations with discontinuous boundary conditions to get

the heat transfer between a slider and an air bearing. In solving these equations, we make

an assumption that the air properties remain the same across the air bearing because the

temperature variation is not significant, so we can decouple the N-S equation and energy

equation and integrate them separately. The results show that the heat transfer between

the slider and air bearing depends on both the heat conduction, which transfers heat to the

air bearing if the slider has a higher surface temperature than the disk, and viscous

dissipation, which transfers heat to the slider. In most cases heat conduction dominates

the heat transfer, and therefore the net result is that heat is transferred from the slider to

the air bearing. Under this situation, the air bearing is regarded as a coolant. But when the

temperature difference is nearly equal to zero, viscous dissipation dominates the heat

transfer and heat is transferred into the slider, so the air bearing acts as a heater. Since the
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magnitude of the viscous dissipation is not large, this heating effect is not significant.

Simulation results also show that the heat conduction effect increases with the decrease

of the flying height (or disk rotation speed), but the viscous dissipation effect decreases

with the decrease of the flying height (or disk rotation speed). In other words, the

“cooling” effect increases with the decrease of the flying height (or disk rotation speed).
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Fig. 6-1  Diagram for Couette flow Fig. 6-2  Diagram for Poiseuille flow
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CHAPTER 7➊

VARIATION OF THE HEAT FLUX IN A SDI

AND ITS EFFECTS ON THE MR READBACK

SIGNAL

7.1 Introduction

    Tian, et al. (1997) showed that the MR readback signal fluctuates following the

fluctuation of the flying height when the slider flies over an asperity without contact.

They concluded that the signal fluctuation was mainly caused by the fluctuation of the

heat transfer in the air bearing, and that the air bearing acted as a “coolant”. To

investigate the “cooling” effect of the air bearing, we developed a steady model for the

heat transfer in a SDI (Chapter 6), and we found that the “cooling” effect exists. That is,

the heat transferred to the air bearing increases with a decrease of the flying height (or

disk rotation speed) when the slider has a higher surface temperature than the disk.

    Note that the above conclusion is obtained based on the simulation of a steady model.

When we want to decrease the slider flying height using this model, we need to decrease

the rotation speed of the disk simultaneously. The latter also affects the heat transfer in

the air bearing (Fig. 6-16). Therefore, when we say the heat transferred to the air bearing

increases with a decrease of the flying height we mean that the heat transferred to the air

bearing increases with a decrease of both flying height and disk rotation speed. Now we

ask: if we change the flying height for a fixed disk rotation speed, as in Tian et al.’s

                                                          
➊ Part of this chapter has been published in Zhang, et al. (1997e).
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paper, can we still obtain the result that the air bearing is a “coolant”? What kind of

modification we need to do for the model?

    In this chapter, we expand the analysis in the Chapter 6 to the case of a slider flying

over an asperity, and we introduce a dynamic model that determines the heat transfer

fluctuation in an air bearing. With this dynamic heat transfer model, we study the

mechanism which causes the fluctuation of the MR readback signals. As in the Chapter 6,

we still assume the physical properties of the air are uniform in the SDI.

7.2 Model

    The heat flux between a slider and the air bearing is influenced by the slider’s flying

height, pressure distribution in the air bearing and the disk rotation speed. When a slider

flies over an asperity or a bump, its flying height fluctuates, which causes the pressure

and the heat transfer in the air bearing to also fluctuate. Therefore, the whole problem is

actually an unsteady problem, and the heat transfer is related to the pressure and velocity

distribution in the air bearing for each transient flying state. The solution of this problem

needs not only the solution of the air bearing flow field, but also the solution of the

dynamic state of the slider.

7.2.1 Dynamics of the Slider

    The two-dimensional equations of the motion of a slider flying over a rotating disk are:

( )dAPpF
dt
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s ∫ −+= 02
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, (7-1)
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where m is the slider’s mass, z is the slider’s vertical displacement, θ and ϕ are the

slider’s pitch and roll angles, Iθ and Iϕ are the slider’s moments of inertia, xg and yg are

the coordinates of the slider’s center of gravity. Fs, Msθ and Msϕ are the force and

moments exerted on the slider by the suspension, p is the pressure distribution in the air

bearing, and P0 is the ambient air pressure.

    Dynamic analysis of a slider flying over a rotating disk requires simultaneous solution

of the slider motion equation (7-1) ~ (7-3), Reynolds equation (2-31) and the suspension

motion equation. When the slider is disturbed from its steady flying state, its suspension

applies a time-dependent loading force Fs, and moments Msθ and Msϕ  to the slider. Thus,

the slider’s motion is determined by the balance of the air bearing pressure, suspension

force and the inertia. The suspension force can be represented using either the flexure

stiffness and damping coefficients or the suspension dynamics. One efficient approach is

to use modal analysis (Cha, et al., 1995). The eigenvalue solution of the suspension is

first sought using the finite element method, then the dynamic response of the suspension

assembly is represented by a truncated linear combination of mode shapes.

7.2.2 A Quasi-steady Heat Transfer Model in the Air Bearing

    When a slider flies over an asperity, its flying height fluctuates with time. The same is

true of the pressure and heat transfer in the air bearing. Therefore, strictly speaking, the

heat transfer in the air bearing in this case is an unsteady problem.

    Extending the energy equation (6-6) to the unsteady case, we obtain the result:
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where ρ, cp, k and µ  are, respectively, the density, specific heat, heat conductivity and

viscosity of the air, T is the temperature, and u and υ are velocity components of the

airflow.

    Note that an important characteristic of a slider air bearing is that its thickness is ultra-

thin. For example, a typical thickness dimension for a hard drive using MR head is about

50 nm or less. For such a small thickness, we can expect that any small thermal

disturbance may cause a transient change in the temperature distribution, or the

temperature distribution may shift to a new equilibrium very quickly. To justify this

view, let’s look at the transient term (LHS) and the conduction term (1st term in RHS) in

Eq. (7-4). If we assume the magnitude of the temperature variation in the conduction term

is ∆Tcond~Ts−Td, where Ts and Td are the temperatures of the slider and disk surfaces, then

the magnitude of the temperature variation in the transient term can be approximated as

∆Ttran~(∆h/h) ∆Tcond , where ∆h is the variation of the flying height. Usually, ∆h/h is

smaller than 1 for a flying slider. If we further assume that t~L/Û  and z~h, we can write

the ratio of the transient term to the conduction term as: (∆h/h)(h2Û /Lα) ~PrRehh/L,

where α=k/ρcp, Pr=v/α and Reh=Û h/v. For the air bearing and slider studied in this

report, Pr~0.7, h~5×10-8 m, L~10-3 m, Û ~15 m/s, v~10-5 m2/s.  Thus PrRehh/L has a

magnitude of 10-6, or the transient term is negligible compared with the conduction term.

Dropping the transient term in (7-4), we can write the energy equation as:
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This equation is a quasi-steady expression of the energy equation.

    We can also simplify the N-S equation in a similar way. Here we use its x component

as an example:
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Using the dimensional analysis and values of the related physical properties, we obtain

the ratio of the transient term (LHS) to the diffusion term (2nd on the RHS) as: Rehh/L ~

10-7. Thus, we can drop the transient term in (7-6) and get:
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Similarly, we can reduce the y component of the N-S equation. Note that equations (7-5)

and (7-7) have the same forms as equations (6-6) and (6-1). Solving them by applying the

slip condition for velocity and the jump condition for temperature, we can obtain the

temperature distribution and then the heat flux between the slider and the air bearing. The

results have been solved in Chapter 6. For convenience of analysis, we write it out here

again:
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where all the variables and parameters are the same as in the Chapter 6.
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7.3 Solution Approaches

    The solution of the heat flux is decoupled from the solution of the dynamic slider air

bearing because of the introduction of the quasi-steady heat transfer approximation. The

unsteady Reynolds equation, which needs to be solved first, is discretized using

Partanka’s (1980) control volume method and solved by an alternative directional sweep

method combined with a multi-grid control volume method. Equations (7-1)~(7-3) are

integrated directly. At each iteration, the pressure profile is obtained by solving the

Reynolds equation for a given flying height. Then the pressure profile is used to solve

equations (7-1) ~ (7-3) to obtain the new displacements of the slider. The new

displacements are compared with the previous ones to check if further iteration is needed.

The detailed description of these approaches can be found in the related documents (Cha

and Bogy, 1995; Lu and Bogy, 1994; Hu, 1996) and will not be presented here.

    With the pressure distribution and the air bearing spacing obtained, the pressure

gradient can be calculated and then the heat flux between the slider and air bearing is

obtained using equation (7-8) for each flying state (or each iteration step). Note that the

air bearing spacing used in solving the Reynolds equation is evaluated by considering the

height of the asperity, bump, or any other roughness on the disk surface. This spacing is

also used in solving the heat transfer in the air bearing. The whole solution procedure is

implemented by using a thermal analysis code combined with the CML Air Bearing

Dynamic Simulator (Hu and Bogy, 1995).
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7.4 Simulation Results and Discussions

    For convenience, we choose a 50% (2mm×1.6mm) tri-pad slider (Fig. 6-3) as used in

Chapter 6, as an example, in the analysis. The slider has all given conditions as before

and is fixed at a radial position r=23 mm with a disk rotation speed 6400 rpm. The

pressure profile is shown in Fig. 6-4, and the steady state flying height is 44 nm.

    In the following analysis, unless otherwise stated we use the convention that a positive

heat flux means the heat is transferred out of the slider.

7.4.1 Slider Flying Over a Square Asperity

    In this section, we study the heat transfer between a slider and the air bearing when the

slider flies over a rectangular asperity. The asperity used is 30 nm in height, 150µm in

length and 300µm in width. Since the slider usually has a higher temperature than the

ambient air or disk, we take Ts−Td=20 °C and we assume that these temperatures remain

constant through the whole process. Figure 7-1 shows the variation of the air bearing

thickness at a single point close to the central trailing edge (about 5 µm away from it),

and Fig. 7-2 is the related heat flux. We also plot the heat conduction and viscous

dissipation components in Fig. 7-3 and 7-4 separately to see their contribution to the total

heat flux. From these figures it is clear that the heat conduction dominates the heat

transfer in this case.

    When the tri-pad slider flies over the asperity located along its centerline, the air

bearing thickness does not change until the asperity reaches and passes under the trailing

edge rail (TER) (Fig.7-1). This is because the slider’s flying state is affected by the

pressure profile in the air bearing, which does not change much when the asperity goes

through the recessed region. When the asperity gets close to the TER, the air bearing
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thickness first slightly increases, which is caused by the increase of the slider’s flying

height, and then decreases sharply as the TER passes over the asperity. Note that the air

bearing thickness here is a combined result of  the increase of the flying height and the

reduction of the asperity height. When the asperity leaves the trailing edge, the air

bearing thickness increases sharply and then decreases and starts to vibrate around its

steady value.

    Corresponding to the variation of the air bearing thickness, the heat conduction

decreases slightly at first and then increases sharply (Fig. 7-3) when the asperity reaches

the TER. When the asperity leaves the trailing edge, it goes down sharply and then goes

up and starts to vibrate afterwards. Comparing Fig. 7-3 with Fig.7-1, we see that the

variation of the heat conduction follows inversely the air bearing thickness almost

exactly. That is, the heat conduction increases with a decrease of the air bearing thickness

and decreases with an increases of the air bearing thickness. In other words, more heat is

transferred out of the slider when the air bearing thickness is smaller. This is a natural

conclusion because the smaller the thickness, the smaller the thermal resistance for

conduction.

    From the results of the viscous dissipation (Fig.7-4), we draw the same conclusion as

for the heat conduction. But here the heat flux takes negative values, which means the

heat is transferred from the air bearing to the slider. Therefore, less heat is dissipated into

the slider with the decrease of the air bearing thickness.

    The total heat flux is the sum of the above two portions of heat transfer (Fig.7-2). Its

profile is the same as that in Fig.7-3 and 7-4. Combining all these results, we can say that

the “cooling” effect increases with a decrease of the air bearing thickness. This
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conclusion is similar to the results in the Chapter 6, in which the variation of the heat flux

was obtained for various steady cases by changing the flying height through changing the

disk rotation speed.

    In the above analysis, we studied the mechanism of the heat flux variation for a single

point. But a MR sensor is actually affected by the heat flux over a finite surface area

around it. To study this overall thermal effect, we use the same case as above but we

focus on the average values of the heat flux determined over the air bearing surface of the

TER. We also shift to compare them with the flying height at the central trailing edge

(FH-CTE) instead of with the local air bearing thickness at a point. Simulation results for

flying height, heat flux, heat conduction component and heat dissipation components are,

respectively, shown in Fig. 7-5 to 7-8. It is seen that the FH-CTE does not change before

the asperity reaches the TER (Fig.7-5). When the asperity reaches the TER and goes

through the air bearing, the FH-CTE increases sharply and then decreases when the

asperity leaves the trailing edge, after which it vibrates around the steady state flying

height. Corresponding to the variation of the FH-CTE, the response of the average heat

conduction can be divided into two intervals as shown in Fig.7-7. In the interval I, the

average heat conduction increases when the asperity begins to occupy the air bearing of

the TER, which leads to a decrease of the average air bearing thickness. After that, the

heat conduction decreases due to the increase of the average air bearing thickness

contributed by the asperity leaving the TER air bearing. In the interval II, since the effect

of the asperity height vanishes, the variation of the air bearing thickness directly follows

that of the flying height. Therefore, the average heat conduction increases with the

decreases of the FH-CTE, and decreases with the increases of the FH-CTE.
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    It is interesting to note that the average viscous dissipation decreases when the asperity

begins to occupy the air bearing of the TER, or more heat is dissipated into the slider

when the average air bearing thickness decreases (Fig. 7-8). This result is opposite to that

for a single point analyzed (see Fig.7-4). It may be related to the effects of the maximum

heat dissipation in the SDI. In Chapter 6, we point out that the maximum viscous

dissipation increases in magnitude as the FH-CTE, or the average air bearing thickness,

decreases. The reason for this may be that the pressure profile at the corners of the TER,

where there exists more drastic pressure variations at the smaller air bearing thickness,

becomes steeper at the smaller air bearing thickness, which increases the pressure

gradient and also the magnitude of the viscous dissipation at these points. Due to the

contribution of these points, the magnitude of the average viscous dissipation increases

when the asperity goes through the air bearing under the TER. After the asperity leaves

the trailing edge, the average viscous dissipation fluctuates with a small magnitude.

    The average heat flux is shown in Fig.7-6. Its profile is close to that of the heat

conduction because the heat conduction dominates the heat transfer in this case. Clearly,

more heat is transferred out of the slider when the FH-CTE becomes lower, except for

during a small period in interval I.

7.4.2 Initial Impulse

    An often-met case for a working hard drive is that the drive is acted on by a sudden

external impact, which causes the flying height to fluctuate drastically. To study the

corresponding heat flux variation, we give an initial impulse to a steadily flying slider.

For simplification, we only give a non-zero value wg0=0.001 m/s to the initial vertical
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velocity at the gravity center of the slider. The simulation results are shown in Figs. 7-

9~7-11.

    It is seen that the flying height has a deflection away from its steady value at the

beginning, then it vibrates and damps to its steady flying state (Fig.7-9). Since there is no

effect of asperities, the variation of the flying height reflects the variation of the air

bearing thickness. Following the variation of the flying height, the heat flux at a single

point (same point as in the asperity case) increases with the decrease of the flying height

(Fig.7-10). Similarly, the average heat flux also increases with the decrease of the FH-

CTE (Fig. 7-11).

7.4.3 Effect of the Heat Flux Variation on the MR Readback

    We know that the MR read-back signal is very sensitive to the temperature variation in

the MR sensor, which is affected significantly by the heat transferred in or out of the MR

sensor. Therefore, the variation of the heat flux caused by the fluctuation of the air

bearing thickness will affect the temperature in the MR sensor, and hence its signal

output. To evaluate the magnitude of this effect, we introduce a simple heat transfer

model for the MR sensor, in which we assume that the MR sensor, together with its

shields, is a thin plate (Fig. 7-12). The plate has an uniform temperature caused by

balancing the heat generated by the current through it and the heat transfer between the

plate and the air bearing. When the slider flies over an asperity, the heat flux between the

plate and the air bearing changes, which in turn changes the heat balance in the sensor

and causes a variation of the temperature in it. This change can be approximated as:

tqThc ssss ∆∆≈∆ρ (7-9)
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where  ρs, cs and hs are, respectively, the density, specific heat and thickness of the MR

sensor, ∆Ts is the temperature variation in the MR sensor, ∆q is the variation of the heat

flux between the sensor and air bearing and ∆t is the heating time.

    For a typical MR sensor, we can take ρs~8000 kg/m3, cs~400 J/kg⋅K and hs~2 µm. We

also have ∆q~7×104 W/m2 and the related ∆t~10-5 sec (Fig. 7-7) for the slider flying over

an asperity. Thus, we obtain the temperature variation ∆Ts~0.11 °C by equation (7-9).

Based on a correlation between the temperature and resistance (Tian, et al, 1997), we

obtain the resistance variation in the MR sensor as: ∆Rs=αRs∆Ts≈ 0.00239×30×0.11 ≈

0.008 Ω, where Rs is the resistance of the MR sensor which is about 30 Ω and ∆Rs is its

variation, and α is a coefficient obtained by experiment. Note that the typical resistance

variation during MR readback is about 0.5% (Waldera, 1997). So the flying height

variation caused by a slider flying over an asperity can result in about 5% of the variation

of the MR readback signal.

7.4 Summary

    We introduced a quasi-steady model for the heat transfer in the air bearing combined

with a dynamic air bearing design model in this chapter. Using this model, we studied the

mechanism of the variation of the heat flux when a slider flies over an asperity and when

a slider is given an initial impulse. The simulation results show that the heat flux is

related to the air bearing thickness. That is, a decrease in the air bearing thickness will

increase the heat transferred out of the slider. When a slider flies over an asperity, its

flying height fluctuates, which causes the air bearing thickness and the heat flux between

the slider and the air bearing to fluctuate simultaneously. Since a decrease of the flying
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height usually causes a decrease of the air bearing thickness, it therefore increases the

heat transferred out of the slider.

    A similar result is obtained for a flying slider given an initial impulse, which causes the

fluctuation of the flying height and then causes a variation of the heat flux between the

slider and the air bearing.

    Based on a simple heat transfer model for the MR sensor, we estimate the temperature

variation caused by the fluctuation of the slider’s flying height to be about 0.1 °C, which

causes the MR signal output to vary by about 5%.
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Fig. 7-1 Variation of the air bearing thickness (single point located at 5 µm from the
CTE) for a tri-pad slider passing over an asperity
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Fig. 7-2 Variation of the heat flux (single point located at 5 µm from the CTE) for a tri-
pad slider passing over an asperity
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Fig. 7-3 Variation of the heat conduction component (single point located at 5 µm from
the CTE) for a tri-pad slider passing over an asperity
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Fig. 7-4 Variation of the heat dissipation component (single point located at 5 µm from
the CTE) for a tri-pad slider passing over an asperity
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Fig. 7-5 Variation of the flying height for a tri-pad slider passing over an asperity
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Fig. 7-7 Variation of the heat conduction component (averaged value over the TER) for a
tri-pad slider passing over an asperity
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Fig.7-9 Variation of the flying height for a tri-pad slider given an initial impulse
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Fig.7-10 Variation of the heat flux (averaged value over the TER) for a tri-pad slider
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pad slider given an initial impulse
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CHAPTER 8

CONCLUSION

    Particle contamination and thermal asperity are two concerns in proximity recording in

the hard drive industry. The former may cause SDI failures, resulting in loss of data on

the disk media; the latter is detrimental to the MR head and may disturb the feedback

loops for gain and timing control and cause the signal amplitude to exceed the dynamic

range of the circuit, resulting in device saturation and signal clipping. Both of these

phenomena reduce the reliability of the operations of hard drives. In this thesis, we

studied, separately, the mechanism of the particle contamination in a SDI, cooling effect

of the air bearing and the thermal effect on the MR readback when a slider flies over an

asperity without contact.

8.1 Particle Contamination

    We develop a model describing the motion of particles in a SDI using a Lagrangian

approach. We focus our study on a single particle since the particles are dilute in a real

SDI, so that the interaction between different particles is negligible. Various forces, such

as drag, Saffman lift and gravity forces, are considered in the model. The Saffman force

arises when the particle moves in a shear flow, and it acts on the particle in a direction

perpendicular to the local air flow. The motion equations are simultaneous ODE’s and the

overall solution of them includes two steps: first, solving the velocity field in the SDI,

which involves solving the Reynolds equation using a multi-grid control volume method

combined with a alternative direction sweep method; second, solving the motion
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equations by a fourth order Runge-Kutta method. The computation is implemented by a

FORTRAN program.

    Through simulations of various cases, we obtained the following characteristics for a

particle moving in a SDI:

(1) Saffman force is significant for larger particles, and is negligible for the

particles with size d<200 nm;

(2) Large particles with higher relative velocity are acted on by a larger Saffman

force pointing to the slider surface. Since the air flow has a lower velocity in a

recess region, the particles entering into the recess region usually have a high

relative velocity and are brought by the Saffman force to the slider surface.

Therefore, contamination is prone to occur on the surface of a cavity or a

recess region;

(3) Small particles follow the streamlines very well. Changes in density and

relative velocity do not result in significant changes in their motion paths.

    Based on the above results, we designed an anti-contamination slider. The principal

concept of this design is that the particle contamination on a slider can be reduced if we

can make as many particles as possible leave the SDI from its sides, instead of from its

trailing edge. This requirement can be realized by using the flow in the SDI to blow

particles out of it from sides, which we call the “inherent cleaning process”.

    Since flying stability is also a requirement in designing a slider, we modified the anti-

contamination slider by using the CML Optimization Program to make it fly stably (with

minimum variation in flying height) from ID to OD. The new slider is named the
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“Sparrow” slider because it has a sparrow-like rail shape. Simulation results show that the

anti-contamination characteristics still remain for the “Sparrow” slider.

    Particle contamination in a SDI is a very complicated process. It is not only related to

the motion characteristics of a particle, but also related to the interaction modes of a

particle with the disk surface or slider surface, which in turn is related to the momentum

exchange, deformation, material properties, and dynamic characteristics of the slider. In

this thesis, we focus our study on the motion of a single particle in a SDI to investigate

the mechanism of the contamination by simulating the particle paths without considering

the interaction of the particle with disk or slider surface. Since the latter is also an

important issue in particle contamination, we need to expand this study in a future

project.

8.2 Thermal Asperity

    Thermal asperity was proposed originally to describe the thermal effect on the MR

readback by the contact between the MR head and roughness points on the disk surface.

A recent paper (Tian, et al., 1997) showed that there exists another thermal effect when a

slider flies over an asperity without contact. It was concluded that the air bearing acted as

a coolant in this situation. To study the mechanism of the cooling effect of the air bearing

is the motivation of this project.

    We first develop a steady heat transfer model in a SDI. This is a micro-structure heat

transfer problem because the spacing of the SDI is comparable to the mean free path of

the air. In developing this model, we choose a simple approach by assuming that the

governing equations which are based on the continuum assumption are still valid. As a
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modification, we apply the discontinuous boundary conditions for both the N-S equation

and energy equation. We also assume that the physical properties of the air are constant

throughout the SDI because the velocity of the air flow is much smaller than the sound

speed and the temperature variation across the spacing is also much smaller than the

reference temperature. Therefore, we can decouple the N-S equation and the energy

equation to make the solution much simpler.

    The heat transfer between a slider and the SDI is obtained by integrating the reduced

N-S and energy equations. The result shows that the heat transfer consists of two parts:

heat conduction which transfers heat from the slider to the SDI if the slider has a higher

surface temperature than that of the disk, and viscous dissipation which transfers heat to

the slider. The heat conduction usually has a larger magnitude than the viscous

dissipation, except for some points at the corners of the trailing edge air bearing or the

temperature difference between the disk and slider surfaces are close to zero.

    We also studied the heat flux variation by changing the flying height of the slider. Note

that the model we used is a steady model. Therefore, changing the flying height is

actually realized by changing the disk rotation speed (we fix the slider position). Through

simulation we find the lower the flying height (or disk rotation speed), the more heat

flows out of the slider (assume the slider surface has higher temperature than the disk

surface).

    We still can not use the results from the steady model to verify Tian, et al’s (1997)

work, not only because the heat flux variation mentioned above is a combined result of

changing flying height and disk speed, but also because Tian, et al’s work was done for a
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slider flying over an asperity, which is an unsteady problem. Therefore, we expanded the

steady analysis to the dynamic cases.

    We proved through dimensional analysis that the heat transfer in the air bearing for a

slider flying over an asperity without contact is quasi-steady. Therefore, we can use the

heat transfer expression obtained from the steady state model in the dynamic model.

Through solving the dynamic heat transfer model, we find that the heat flux varies

following the variation of the air bearing spacing. The closer the slider to the disk

surface, the more heat is transferred out of the slider. In other words, the air bearing acts

as a coolant. This result is identical to the conclusion obtained by Tian, et al. Using a

simplified model, we estimate that the variation of the MR readback caused by the

fluctuation of the flying height (or air bearing spacing) is about 5% of the total MR

readback output.

    The temperature response of a MR transducer is a complicated process for a slider

flying over an asperity with contact or without contact. Its variation causes the changes of

the heat flux between the slider and air bearing, which in turn changes the temperature of

the MR transducer again. Therefore, the whole process is dynamic and needs to be solved

using an unsteady heat transfer model which combines unsteady heat conduction inside

the slider and dynamic heat transfer in the air bearing. The computation time is likely to

be huge for the numerical solution of such a model.
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