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Abstract

Optimization of Hard Disk Drive Components

by

Matthew Arnold O’Hara

Doctor of Philosophy in Engineering-Mechanical Engineering

University of California, Berkeley

Professor David B. Bogy, Chair

Computer hard disk drives have been used as large capacity storage devices for better

than three decades.  Over the course of that time, the amount and density of information held has

increased manyfold.  Current hard disk drives combine technology from the fields of magnetics,

material science, signal processing, mechanics and fluid dynamics.  Optimization allows a

number of the considerations from these various fields to be addressed simultaneously

This dissertation focuses on the development and application of global optimization

techniques to the problem of hard disk drive component design.  Genetic algorithms and the

Simulated Annealing (SA) algorithm are compared for their applicability to the problem of hard

disk drive component optimization.  Through empirical and theoretical study SA has been found

to be superior for this problem.  An accompanying software package that utilizes an

implementation of SA has been developed that allows for the multi-objective optimization of air

bearing slider and suspension designs.  It is demonstrated that through proper application of the

guiding principles of global optimization the slider air bearing and suspension design problems

can be solved in an efficient and systematic fashion for various design objectives.



In order to understand the underlying physics of the problem, a description of the

governing equation of the physical process--the Reynolds’ equation--is presented in addition to

the method implemented to solve it numerically.  Also, a survey of deterministic and stochastic

global optimization techniques is given to provide a backdrop for the current study.

The parameters used in the simulated annealing algorithm that allow it to achieve global

optima for the problem at hand in a more efficient manner are determined.  Separate suggestions

are given for the slider design and suspension design problems.  The suspension design problem

demands an implementation that requires more function evaluations due to the sensitivity of the

objective function to the parameters employed.  Several examples are given in support of this

claim.

Application of SA to the problem of slider altitude sensitivity optimization is presented.

It is demonstrated that altitude insensitive designs can, indeed, be achieved through use of SA.

The application of SA to the problem of sub-ambient pressure minimization is also presented.  It

is demonstrated that sub-ambient pressure minimization can be achieved through use of SA

The problem of slider dynamic fly height variation is addressed through optimization.

Through modification of static characteristics of the bearing, an attempt was made to modify the

dynamic characteristics of the bearing.  Although the optimization algorithm optimized the

quantities that were included in the objective function, the resulting designs did not minimize the

dynamic fly height variation.

Finally, the application of SA to the problem of suspension optimization is shown.  This

problem is shown to be feasible.  It demonstrates that the procedure of structural optimization is

possible through application of the SA algorithm using an appropriately generous cooling

schedule.



iii

TABLE OF CONTENTS

LIST OF FIGURES_________________________________________________________ vi

LIST OF TABLES _________________________________________________________ ix

CHAPTER 1 INTRODUCTION___________________________________________ 1

CHAPTER 2 SOLUTION OF THE REYNOLDS EQUATION _______________________ 7
INTRODUCTION___________________________________________ 7
MATHEMATICAL FORMULATION______________________________ 9

GENERALIZED REYNOLDS' EQUATION ___________________ 9
DISCRETIZATION OF THE REYNOLDS' EQUATION __________ 11
MULTI-GRID METHOD ______________________________ 14

CHAPTER 3 OPTIMIZATION INTRODUCTION AND BACKGROUND ______________ 17
INTRODUCTION__________________________________________ 17
DETERMINISTIC METHODS_________________________________ 20

COVERING METHODS_______________________________ 21
TUNNELING METHOD_______________________________ 22
INTERVAL ANALYSIS _______________________________ 23

STOCHASTIC METHODS ___________________________________ 23
STOCHASTIC PATH FOLLOWING METHODS_____________________ 25
CONCLUSIONS __________________________________________ 26

CHAPTER 4 SIMULATED ANNEALING AND GENETIC ALGORITHMS ____________ 28
INTRODUCTION__________________________________________ 28
BACKGROUND __________________________________________ 28

AIR BEARING SIMULATOR ___________________________ 28
GENETIC ALGORITHMS______________________________ 30
SIMULATED ANNEALING ____________________________ 36
COOLING SCHEDULE _______________________________ 38

EXAMPLE ______________________________________________ 39
NUMERICAL RESULTS_______________________________ 41

CONCLUSION ___________________________________________ 48



iv

CHAPTER 5 SIMULATED ANNEALING IN DEPTH___________________________ 50
INTRODUCTION__________________________________________ 50
SIMULATED ANNEALING __________________________________ 50

COOLING SCHEDULE _______________________________ 55
NON-LINEAR CONSTRAINTS________________________________ 58
EXAMPLE ______________________________________________ 60
CONCLUSIONS __________________________________________ 68

CHAPTER 6 ALTITUDE INSENSITIVITY __________________________________ 69
INTRODUCTION__________________________________________ 69
PROBLEM DESCRIPTION___________________________________ 70
MATHEMATICAL FORMULATION_____________________________ 71

OBJECTIVE FUNCTION ______________________________ 71
CONSTRAINTS_____________________________________ 72

RESULTS_______________________________________________ 73
CONCLUSIONS __________________________________________ 82

CHAPTER 7 SUB-AMBIENT PRESSURE OPTIMIZATION ______________________ 83
INTRODUCTION__________________________________________ 83
MATHEMATICAL FORMULATION_____________________________ 84

OBJECTIVE FUNCTION ______________________________ 84
CONSTRAINTS_____________________________________ 85

NUMERICAL RESULTS_____________________________________ 86
CONCLUSIONS __________________________________________ 88

CHAPTER 8 OPTIMIZATION OF AIR BEARING DYNAMIC PERFORMANCE ________ 90
INTRODUCTION__________________________________________ 90
MATHEMATICAL FORMULATION:  SENSITIVITY OPTIMIZATION _____ 92

OBJECTIVE FUNCTION ______________________________ 92
CONSTRAINTS_____________________________________ 93

NUMERICAL RESULTS_____________________________________ 94
MATHEMATICAL FORMULATION:  CROWN SENSITIVITY OPTIMIZATION 99

OBJECTIVE FUNCTION ______________________________ 99
CONSTRAINTS____________________________________ 102

NUMERICAL RESULTS____________________________________ 102
CONCLUSIONS _________________________________________ 106

CHAPTER 9 SUSPENSION OPTIMIZATION _______________________________ 107
INTRODUCTION_________________________________________ 107
MATHEMATICAL FORMULATION____________________________ 110

OBJECTIVE FUNCTION _____________________________ 110
CONSTRAINTS____________________________________ 111

NUMERICAL RESULTS____________________________________ 112
CONCLUSION __________________________________________ 116



v

CHAPTER 10 CONCLUSIONS AND FUTURE WORK _________________________ 117
CONCLUSIONS _________________________________________ 117
FUTURE WORK_________________________________________ 120

REFERENCES__________________________________________________________ 121

APPENDIX A THE CML AIR BEARING OPTIMIZATION PROGRAM VERSION 1.5___ 128

APPENDIX B EXAMPLE LISTING OF CONSTRAINT.DAT FILE __________________ 149

APPENDIX C EXAMPLE LISTING OF ORIGINAL RAIL.DAT FILE _________________ 151

APPENDIX D EXAMPLE LISTING OF ORIGINAL STEADY.DEF FILE_______________ 152



vi

LIST OF FIGURES

CHAPTER 1

Figure 1.1:  Plot of fly height vs. year as reported in relevant literature

CHAPTER 2

Figure 2.1:  Representative control volume

CHAPTER 4

Figure 4.1:  Outline of generational genetic algorithm
Figure 4.2:  Outline of “spinning wheel” method of selection for genetic algorithms
Figure 4.3:  Depiction of “stochastic universal sampling” method of selection for genetic
algorithms
Figure 4.4:  Example of GA crossover procedure
Figure 4.5:  Plot of probability distribution for new parameter selection for simulated
annealing algorithm
Figure 4.6:  Parameters used in optimization
Figure 4.7:  Plot of objective function value versus parameter value including ten best
configurations obtained from genetic algorithm (denoted by o’s)
Figure 4.8:  Plot of objective function value versus parameter value including best
configuration found from simulated annealing algorithm
Figure 4.9:  Contour plot of objective function versus both parameters employed
including optimal solutions found by genetic algorithm (*) and simulated annealing (o)

CHAPTER 5

Figure 5.1:  Outline of rail intersection algorithm
Figure 5.2:  Constraints employed in contamination optimization
Figure 5.3:  Progression of objective function for contamination slider optimization
Figure 5.4:  Progression of objective function and parameter temperature
Figure 5.5:  Optimized contamination slider
Figure 5.6:  Comparison of fly height profiles for original and optimized design



vii

CHAPTER 6

Figure 6.1:  Original (dashed) and optimal (solid) designs with constraints (all dimensions
in mm)
Figure 6.2:  Fly height profile of original design at ambient and 2000m equivalent
pressure
Figure 6.3:  Fly height profile of optimized design at ambient and 2000m equivalent
pressure
Figure 6.4:  Constraints used in second altitude sensitivity optimization
Figure 6.5:  Optimal configuration of slider air bearing for second iteration of altitude
sensitivity optimization including constraints (recess depth = 2.23 microns)
Figure 6.6:  Fly height profile of second iteration of optimized design at ambient and
2000m equivalent pressure
Figure 6.7:  Pressure profile for second iteration of altitude insensitive design at ambient
pressure equivalent to sea level; calculated at outer radius of disk (31mm, negative 17.39
deg. skew)
Figure 6.8:  Pressure profile for second iteration of altitude insensitive design at ambient
pressure equivalent to 2000m; calculated at outer radius of disk (31mm, negative 17.39
deg. skew)

CHAPTER 7

Figure 7.1:  Example area used for pressure integration
Figure 7.2:  Original (dashed) and optimized (solid) designs including constraints for sub-
ambient pressure optimization
Figure 7.3:  Pressure profile of original design at outer radius
Figure 7.4:  Pressure profile at outer radius of sub-ambient pressure optimized design

CHAPTER 8

Figure 8.1:  Original design with geometric constraints (all dimensions in mm)
Figure 8.2:  Optimized design (solid) with original design (dashed) and constraints (all
dimensions in mm)
Figure 8.3:  Measured, filtered surface used in dynamic fly height simulation
Figure 8.4:  Calculated absolute fly height of original design
Figure 8.5:  Absolute fly height of optimized design
Figure 8.6:  Fly height versus crown for original design (light colored line:  same
computational grid for all points, dark line:  new computational grid created at each
point)
Figure 8.7:  Sensitivity calculated from fh vs. crown data (light colored line:  same
computational grid for all points, dark line:  new computational grid created at each
point)



viii

Figure 8.8:  Original and optimal design with constraints (normalized coordinates)
Figure 8.9:  Objective function value vs. iteration number for first crown optimization
Figure 8.10:  Crown term value vs. iteration number for first crown optimization
Figure 8.11:  Original and optimal designs (including constraints) for second crown
sensitivity optimization

CHAPTER 9

Figure 9.1:  Isometric view of half suspension assembly used in optimization
Figure 9.2:  Plan view of half suspension assembly used in optimization
Figure 9.3:  Bottom view of half suspension assembly used in optimization
Figure 9.4:  Frame of suspension base used in optimization
Figure 9.5:  Plot of cost (upper) and parameter (lower) temperatures vs. iteration
Figure 9.6:  Progression of objective function vs. iteration
Figure 9.7:  Plot of cost (upper) and parameter (lower) temperatures vs. iteration for
second cooling schedule
Figure 9.8:  Progression of objective function vs. iteration for second cooling schedule



ix

LIST OF TABLES

CHAPTER 4

Table 4.1:  Table of radius and skew values used for example
Table 4.2:  Table of non-varied parameters used in example
Table 4.3:  Table of control parameters used with genetic algorithm for example problem
Table 4.4:  Table of results for one-dimensional problem using GA
Table 4.5:  Table of control parameters used by GA
Table 4.6:  Table of optimal solutions obtained by GA for two-dimensional problem
Table 4.7:  Three solutions for the 12 generation genetic algorithm run that exceeded
those of the 8 generation case
Table 4.8:  Two solutions for the 16 generation genetic algorithm run that exceeded those
of the 12 generation case

CHAPTER 5

Table 5.1:  Table of radius and skew values used in evaluation of objective function

CHAPTER 6

Table 6.1:  Objective function term values including weighting
Table 6.2:  Pitch of optimized slider in mrad at ambient and 2000m equivalent pressure
Table 6.3:  Table of fly heights and pressure values for second iteration of altitude
insensitive design

CHAPTER 7

Table 7.1:  Table of radius and skew values used in sub-ambient pressure optimization
Table 7.2:  Table of pressure values for original and sub-ambient pressure optimized
slider designs

CHAPTER 8

Table 8.1:  Table of objective function values at inception and conclusion of optimization
(values include weighting factors)



x

CHAPTER 9

Table 9.1:  Table of parameter ranges and initial values
Table 9.2:  Table of final parameter values



xi

A C K N O W L E D G M E N T S

First of all, I would like to thank Prof. David B. Bogy. Without his guidance and

support, graduation would not have been a possibility. I would also like to thank Profs.

Pisano and Sangiovanni-Vincentelli for reviewing this thesis. This research was

supported primarily by the Computer Mechanics Laboratory with some portion provided

by the National Storage Industry Consortium (NSIC).

I would also like to thank those who made material contributions to the

completion of this thesis: Ryan Jurgenson, Jim Mahoney, Tom Christienson, and

specifically Bob Evans of Hutchinson Technology for help with the suspension study;

Nestor Queipo, a former colleague at Berkeley, for help in more thoroughly

understanding Genetic Algorithms; Dr. C. Singh Bhatia of IBM for managing the head

disk interface group of the NSIC project and for his constant “encouragement”; and

Jennifer Chen (,@ @ $fi) for her patience and valuable assistance.

Although there are too many to mention, I would like to acknowledge all the

people I have worked with at the Computer Mechanics Laboratory. In particular, I would

like to thank Yong Hu and Sha Lu for all of the collaborative efforts we have made. I

would also like to recognize these two as the complement of the “three-headed dragon.”

Finally, I would like to acknowledge all of the people who have provided support

and love. In particular, I would like to thank my parents for providing me the space to

grow into adulthood and my girlfriend Yuming He (@ T Sa) for having such an impact

on my life.



1

CHAPTER 1

INTRODUCTION

The current demand for memory of digital information is rapacious.  Current hard

disk drive technology is continually being pushed to higher levels of density and speed

concomitant with downward pressures on cost.  The ability to efficiently design, evaluate,

improve and subsequently fabricate air bearing sliders and suspensions is deemed crucial

for success in keeping up with these demands.  The subject of this dissertation is the

application of global optimization techniques to slider air bearing and suspension design

problems.  This novel application facilitates the design and improvement stages listed

above.  It is demonstrated that through proper application of the guiding principles of

global optimization the slider air bearing and suspension design problems can be solved

in an efficient and systematic fashion for various design objectives.

Slider air bearings have been used in hard disk drives for over three decades.

Over the course of those decades, the fly height of the slider--taken as the spacing

between the slider surface and the spinning magnetic disk beneath it--has decreased

considerably.  The advantage of lower flying sliders is increased data storage per unit
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area.  The following graph (Figure 1.1) demonstrates the change in fly height over the last

decade as reported in relevant literature.
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Figure 1.1:  Plot of fly height vs. year as reported in relevant literature

This graph (Figure 1.1) clearly demonstrates that the nominal fly height of slider air

bearings has steadily decreased and is now at the point where the slider is exceptionally

close to the disk.  While this provides the advantage of increased data storage density, it

creates the problem of a very narrow margin for error in design and fabrication.

The flying characteristics of slider air bearings, both static and dynamic, have

been studied numerically for over three decades. Over the course of that time, significant

improvements have been made in modeling capability and sophistication. Solution of the

Reynolds’ lubrication equation is the basis for these simulations.  Some of the original

work was done by Castelli and Pirvics (1968), Ono (1975) and Gross (1980).  Over time,

as the fly height of the slider reduced to a level that was less than the mean free path of

air, modifications had to be made to the boundary conditions such that Reynolds’
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lubrication equation would still be valid.  The first modification was the first-order slip

correction derived by Burgdorfer (1959) followed by the second-order slip correction

derived by Hsia and Domoto (1983) and higher order correction by Gans (1985).

Subsequently, an approach was taken to derive the modifications to the Reynolds’

equation from the linearized Boltzmann equation.  Fukui and Kaneko (1988a, 1988b)

derived this relationship and verified it experimentally.

Since derivation of modified boundary conditions to the Reynolds’ equation many

studies have been performed to further quantify the characteristics of the so-called head

disk interface.  Ruiz and Bogy (1988) compared the effects of employing different

boundary conditions on the air bearing’s calculated load capacity.  White and Ponnaganti

(1988) derived an expression for the slider’s dynamic behavior including modeling of

contacts between the slider and disk.  Bolasna (1990) examined the effects of various

parameters on the take-off velocity of sliders.  (The take-off velocity of the slider is the

speed at which the air bearing beneath the slider is fully developed.)  Hsia and Chang

(1995) performed a Monte-Carlo statistical analysis of the air bearing’s response to

variation in manufacturing parameters.  Liu and Soh (1996) investigated the effects of

seeking velocity on air bearing performance through comparison of commonly found

designs.  Hu and Bogy (1996) examined the spacing modulation of air bearings as they

make the transition from a designated take-off zone to a designated data read/write zone.

These are only a sampling of an expansive set of studies that have been performed.

In addition to the above general studies, studies of specific slider designs have

been reported.  Yoneoka, et. al. (1987) investigated the performance of a so-called fast

take-off negative pressure slider.  Hardie, et. al. (1994) reported the results of an analysis
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of the Seagate Advance Air Bearing Slider.  Lu, et. al. (1995) not only performed

numerical simulation of a specific slider design but reported results of fabrication and

measurement of the design as well.

Naturally following these studies were basic attempts at optimization of the

performance of air bearings.  Early disk drives moved the slider across the surface of the

disk along a single radius.  This method is called linear actuation.  Later designs moved

the slider across the disk’s surface by rotating an arm about a single pivot point similar to

a phonograph.  This method is called rotary actuation.  White (1986) reported the

performance of a rotary actuated design that achieved uniform flying height.  Henze

(1989) reported the results of an air bearing that minimized the effects of skew.  This

design was a modification of the early standard air bearing--that being a design with two

straight rails and a taper region at the front of either rail.  The modification studied was

simply a transverse cut through these straight rails.  The study investigated the optimal

configuration for various radius and skew combinations.  Cooper (1990) took a different

tack and investigated optimization of air bearing compliance using constraints supplied

by actuator design.  Yoon and Choi (1995, 1996) presented work that attempted to

address the question of optimization more directly but were limited to relatively simple

studies with local optimization techniques.

This thesis will attempt to address the issue of air bearing optimization from a

general framework.  The range of performance objectives considered includes static

characteristics, e.g., fly height attitude of the slider, dynamic characteristics--through

sensitivities and crown minimization--and tribological characteristics through sub-

ambient pressure optimization.  Sensitivity optimization is also a method of increasing
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the stiffness of the air bearing which has the capability of minimizing changes in fly

height during track accessing (Tokuyama, et. al., 1987 and Matsumoto, et. al., 1994),

increasing flying stability (Yoneoka, et. al., 1987) and increasing reliability (Hardie, et.

al., 1994).  In pursuit of these objectives global optimization techniques are employed,

primarily simulated annealing, which are able to find the global minimum of non-linear

objective functions.  Optimal implementation of the simulated annealing algorithm as it

applies to air bearing optimization is also presented.  The issue of suspension

optimization will also be addressed utilizing the same tools that have been developed for

air bearing optimization.

In chapter 2 a description of the governing equation of the physical process--the

Reynolds’ equation--is presented.  This chapter also discusses in detail, the methods

implemented in the numerical solution of this equation.  Chapter 3 gives a survey of

currently used deterministic and stochastic global optimization techniques.  Chapter 4

gives a description of the implementation of the simulated annealing algorithm and the

genetic algorithm used for verification of applicability to the slider air bearing design is

presented.  In this chapter, the algorithms are explained and then applied to an example

problem whose search space has been mapped out completely.  It is this search space

mapping that allows for the algorithms to be checked in a very rigorous, albeit empirical,

fashion.  Chapter 5 explores the parameters used in the simulated annealing algorithm

that allow it to achieve global optima and provides values that are optimal for the slider

air bearing problem.  Several examples throughout this thesis are given in support of this

claim.  Chapter 6 describes usage of the simulated annealing algorithm to create designs

that are insensitive to changes in ambient pressure.  Chapter 7 discusses the use of the
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simulated annealing algorithm for minimizing sub-ambient pressure while maintaining

other desirable flying characteristics for slider air bearings.  The purpose of this work is to

improve tribological performance.  Chapter 8 explores attempts to optimize dynamic

performance of slider air bearings through optimization of static design characteristics,

specifically, bearing sensitivity to load and pitch and, independently, sensitivity to crown.

Chapter 9 explores application of global optimization to suspension design.  Finally,

Chapter 10 concludes and summarizes all the material presented.



7

CHAPTER 2

SOLUTION OF THE REYNOLDS EQUATION

INTRODUCTION

Design of sliders used in modern disk drives depends heavily on numerical

simulation of the pressure field beneath the slider.  This is achieved by numerical solution

of the Reynolds’ lubrication equation.  This type of problem falls generally into the

classification of high speed, low spacing gas-lubricated bearing problems (Gross, 1980).

A large amount of research has been focused in this area over roughly the past thirty years

(Burgdorfer, 1959, Ono, 1975, Gross, 1980, Fukui and Kaneko, 1988a).  This

corresponds to the existence of the modern hard disk drive.  As the demand for storage

capacity has increased over the years, the spacing between the slider and the disk on

which it flies has decreased commensurately.  This has necessitated modification of the

Reynolds’ Equation to account for slider-disk spacings that are actually less than the

mean free path of air at standard temperature and pressure.

The ratio of the mean free path of air to the characteristic spacing in a fluid flow

problem is known as the Knudsen number.  The Reynolds’ equation, when employing a
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continuum model, is generally considered accurate when the Knudsen number is on the

order of 0.1 (Gross, 1980).  The mean free path of air at standard temperature and

pressure is 63.4nm.  This implies that in order for the Reynolds’ Equation to be valid the

slider-disk spacing has to be on the order of 600nm.  The spacing in current disk drives is

on the order of 25nm with some designs actually intended to be in contact with the disk

during operational conditions.  This has led to necessary modifications of the Reynolds’

Equation.  The first type of modification was known as the first order slip correction

(Burgdorfer, 1959).  This attempted to account for the extremely small spacing by

modifying the flow and temperature boundary conditions at the fluid/slider and fluid/disk

interface.  The next major correction that was attempted followed the same logic but

extended the principle to a second order correction (Hsia and Domoto, 1983).  Finally,

higher order slip models were developed as the logical conclusion of the approach (Gans,

1985).  The correction that has yielded the closest correlation with experiment, however,

was not based on a slip correction approach but instead employed a modification based

on the linearized Boltzmann equation (Fukui and Kaneko, 1988) which is the equation

that governs, statistically, the behavior of gases.

Due to the geometry of sliders currently employed, a closed form solution to the

Reynolds’ equation is not feasible (Gross, 1980).  This implies that the only option is to

solve the problem numerically.  To this end, an air bearing solution code has been

developed in the Computer Mechanics Laboratory (Lu and Bogy, 1994).  This code

discretizes the problem through use of control volumes (Patankar, 1980).  The resulting

discretized problem is then solved iteratively.
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Solution of the discretized problem can become expensive if the number of grid

points utilized becomes large.  It has been found that iteration of a problem on a single

computational grid suffers the drawback of not being able to relax all frequencies of the

error at the same rate.  In order to ameliorate this problem the multi-grid computational

method is employed.  The central idea in the multi-grid method is to relax different

frequency components of the error on different computational grids.  Brandt (1977)

showed, through use of Fourier analysis, that iterative methods are only efficient at

smoothing the error components whose frequency is comparable to the wavelength of the

computational grid.  By successively interpolating on grids with different spacing, the

problem can be solved in a considerably more efficient way than iteration on a single grid

would allow. (Shyy and Sun, 1993).

MATHEMATICAL FORMULATION

GENERALIZED REYNOLDS’ EQUATION

The Reynolds’ lubrication equation which governs the pressure distribution

between the slider and disk is a compressible-flow partial differential equation.  It is

written as

[ ] [ ] [ ]∂
∂

∂
∂

∂
∂

∂
∂

µ ∂
∂

µ ∂
∂

µ ∂
∂x

ph
p

x y
ph

p

y
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x
ph V

y
ph

t
ph3 3 6 6 12



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+
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





 = + + (2.1)

where p is pressure, h is the slider disk separation as a function of position, µ is the

viscosity of the gas and U and V are the sliding velocities in the length (x) and transverse

(y) directions of the slider, respectively.  This equation is derived from the Navier-Stokes
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flow equations by assuming negligible inertial and body forces, laminar flow, Newtonian

viscosity, no-slip boundary conditions at the walls and a small film thickness (Gross,

1980, Hamrock, 1991).

As mentioned previously, however, when the film thickness approaches the mean-

free-path of the embodying fluid, air in this case, the no-slip boundary condition no

longer is valid and one of the modifications listed previously needs to be employed.  For

convenience, the following non-dimensional variables will be defined

X
x

L
Y

y

L
H

h

h
P

p

p
T t

m a

= = = = =, , , , ω (2.2)

where L, hm, pa, ωt are the slider’s length, minimum spacing, ambient pressure, and

chosen angular frequency respectively.  With these definitions, all forms of the Reynolds’

equation listed above can be written in a single expression (Ruiz and Bogy, 1990)
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where Λx = 6µUL/pa hm
2 and Λy = 6µVL/pa hm

2 and the squeeze number σ = 12µωL2/

pahm
2.  �Q is the Poiseuille flow factor.  The values substituted for this factor indicate the

type of slip-flow modification implemented:

�Q = 1 Continuum model

�Q a
K

PH
n= +1 6

First order slip model

�Q
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PH

K

PH
n n= + + 





1 6 6
2 Second order slip model

�Q f
K

PH
n= 





Fukui-Kaneko model

where Kn = λ/hm is the Knudsen number, λ is the mean free path of the interface medium,

air in this case, and a = (2-α)/α with α being the accommodation coefficient.  The
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accommodation coefficient represents the reflectivity of the surface with respect to the

incident molecules.  It accounts for surface variations.  In the final equation above, the

functional form of f(Kn / PH) is given by Fukui and Kaneko (1988).  In the current

implementation, the database form of the Fukui-Kaneko model is employed (Fukui and

Kaneko, 1990).

DISCRETIZATION OF THE REYNOLDS’ EQUATION

The Reynolds’ equation solver that was implemented in concert with the

optimization program has gone through many iterations.  Previously, when the equation

was discretized, linearization was employed (Miu and Bogy, 1986 and Cha, 1993).  The

current discretization of the Reynolds’ equation follows Patankar’s (1980) unified control

volume formulation for a general class of convection-diffusion equations of the following

form:

( ) ( ) ( )∂
∂

ρφ ρ φ φ
t

u S+ ∇ ⋅ = ∇ ⋅ +Γ∇ (2.4)

where φ is the dependent variable, Γ is the diffusion coefficient, u is the flow velocity and

S is the source term.  This equation can be written in dimensional form as follows:

( )∂
∂

ρφ ∂
∂

∂
∂t

J

x

J

y
Sx y+ + = (2.5)

where Jx and Jy are the convection and diffusion fluxes defined as:
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y

x

y

≡ −

≡ −

ρ φ ∂φ
∂

ρ φ ∂φ
∂

Γ

Γ

,

(2.6)
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where u and v represent the x and y components of u.

The generalized Reynolds’ equation written above (eq. 2.1) can be cast into this

form using the following definitions, φ = P, ρ = H, u = Λx/σ, v = Λy/σ, and Γ = �QPH3/σ.

The next step in the explanation of the numerical solution of the Reynolds’

equation is the discretization of the above convection-diffusion equation.  An implicit

method is employed for the unsteady term.  Clearly, if a steady state solution is sought,

the unsteady term can be neglected entirely.  The above equation (eq. 2.5), when

integrated over the following control volume (Figure 2.1), yields

JeJw

Jn

Js

N

EW

S

w e

s

n

control volume
x

ydelta y

delta x

(del x)e

Je

Jn

Figure 2.1:  Representative control volume

( ) ( )ρ φ ρ φ
φp p p p

e w n s c p p

x y

t
J J J J S S x y

−
+ − + − = +

0 0 ∆ ∆

∆
∆ ∆ (2.7)
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where the superscript 0 denotes quantities from the previous time step, the source S has

been decomposed into a linearized function of φ and the quantities Je, Jw, Jn and Js

represent total integrated fluxes across the control volume boundaries.

Approximation of the total flux employs values of the dependent variable at

neighboring points.  One method of approximating derivatives that use these neighboring

point values is central differences.  Central differences can, however, lead to numerical

instabilities during the course of iteration.  Utilizing the definition for the flux defined

above (eq. 2.7), the integrated control volume governing equation can be rewritten as

a a a a a bP P E E W W N N S Sφ φ φ φ φ= + + + + (2.8)

with

( ) ( )a D A P FE e e e= + −max ,0

( ) ( )a D A P FW w w w= + max ,0

( ) ( )a D A P FN n n n= + −max ,0

( ) ( )a D A P FS s s s= + max ,0

b S x y
x y

tc
p p= +∆ ∆
∆ ∆

∆
ρ φ0 0

( )a a a a a F F F F
x y

t
S x yP E W N S e w n s

p
p= + + + + − + − + −

ρ ∆ ∆
∆

∆ ∆

where F ≡ ρu, D
x

≡ Γ
δ

, P
u x= ρ δ
Γ

 at the e and w faces, or F v≡ ρ , D
y

≡ Γ
δ

, and

P
v y= ρ δ
Γ

 at the n and s faces.  The values are referred to as the convection coefficient,
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diffusion coefficient and the cell Peclet number, respectively.  The function

( )A P depends on the numerical scheme implemented for the convective term.  They are:

1-0.5|P| for the central difference scheme,

1 for the upwind scheme,

max(0,1-0.5|P|) for the hybrid scheme,

max(0,(1-0.1|P|)5) for the power-law scheme, and

|P|/[exp(|P|)-1] for the exponential scheme.

Each of these schemes has various advantages and disadvantages.  The central difference

scheme suffers from inaccurate prediction of pressure in high gradient areas and even

diverges when the geometry is relatively complex.  Therefore, the central difference

scheme is not useful for practical simulations.  The upwind scheme is stable in the sense

that it converges yet it consistently predicts lower pressure peaks and total bearing forces.

The exponential scheme is rarely used because exponentials are considerably expensive

to calculate.  In practical simulations, the hybrid and power-law schemes are the most

suitable due to the facts that they have comparable orders of accuracy to the other

schemes and possess good convergence characteristics.

The resulting system of equations is solved using an alternating direction line

sweep method (Patankar, 1980) coupled with a multi-grid algorithm.

MULTI-GRID METHOD

As mentioned above, the numerical solution of the Reynolds’ equation employs

the multi-grid method.  The central idea of the multi-grid method is to take advantage of

the maximum relaxation of the error in the solution of a linear system as it relates to the
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grid size.  It is well known that the error in a standard fixed grid problem decreases

rapidly at first and then slows considerably in later iterations (Brandt, 1977).  This is a

function of the fact that frequency components of the error that have wavelengths on the

order of the grid spacing are relaxed effectively while others are not.  The implementation

makes use of successively coarser or smoother grids so that all wavelengths of the error

can be relaxed effectively.

The method currently employed is based on the FMG-FAS (Full Multi-Grid-Full

Approximation Storage) scheme developed by Shyy and Sun (1993).  This technique was

developed to effectively deal with non-linear problems in contrast to the simpler

correction storage scheme.

The converged solution to the linear system discussed in the previous section

satisfies the following equation:

[ ]α ξk k kΨ = (2.9)

where the coefficient matrix [ ]α k  and the source vector ξ k  are based on the final

solution of Ψk  but are estimated in the interim on the various grid levels.

The multi-grid method calculates the solution on the various grid levels

successively.  Calculation is performed on a given grid then this result is interpolated to a

coarser grid, then again until the coarsest grid is reached, then the process is reversed

until the calculation is again made on the finest grid.  This process is known as a V-cycle.

In the current implementation, V-cycles of various depths are made until the solution

converges on the finest grid.  The maximum number of grid levels employed is 5.
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The multi-grid method has been shown to increase the speed of solution of linear

systems considerably.  The improvement for typical air bearing simulations is more than

one order of magnitude (Hu, 1996a).

It should be noted also that the numerical solution of the Reynolds’ equation takes

place on a calculation grid whose size is specified at the outset of the calculation.  This

calculation grid can, however, have variable spacing.  In fact, the spacing of the grid is

controlled by a mapping of the gradient of the equation at the beginning of the calculation

on an evenly spaced grid.  By mapping the gradient and subsequently adjusting the

spacing of the calculation grid points the solver can maximize use of the computational

effort.  This also allows the Reynolds’ equation to be solved with various geometric

boundary conditions without using an inordinate number of grid points (Lu, 1994).
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CHAPTER 3

OPTIMIZATION INTRODUCTION AND

BACKGROUND

INTRODUCTION

Optimization, generally stated, is the problem of trying to minimize (or maximize)

a function subject to conditions on the independent  or dependent variables.  This

function is typically referred to as the objective function.  The conditions set on the

variables are referred to as constraints.  If there are no constraints set on the variables, the

problem is referred to as unconstrained optimization and can be stated as:

maximize or minimize ( ){ }f x x S∈ (3.1)

where S is a set of feasible solutions to the problem known as the search space, x is a

single point within that set and f(x) is a real-valued function of x.  Practical problems

typically have constraints.  A set of constraints reduces the size of the set S by limiting

the number of feasible solutions.  The mathematical formulation remains the same with
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constraints except that the maximization or minimization occurs over a smaller set S,

which typically complicates the problem.

An extensive body of literature exists on how to solve this problem, a general

survey of which will be presented here.

If the objective function and the constraints in a problem are both linear

combinations of the independent variables then the problem is referred to as a linear

programming problem.  Additional restrictions need to be specified on the set of feasible

solutions and the function f.  For example, S is a given compact set and

f S n: ⊂ ℜ → ℜ is a continuous function.  If these conditions are satisfied then the

problem can be solved deterministically with assurance that the optimal solution has been

achieved.  Typical methods employed are the simplex method and interior point methods.

(Dantzig, 1963).

The next level of difficulty involves forms of the objective function that are

quadratic in nature.  The linearity of the constraints must be maintained, however, for the

problem to remain under the heading of quadratic programming, which is a method that

decomposes the problem into a form amenable to solution by the simplex method

mentioned above.  Again, when the optimization problem takes this form, its solution is

readily found.

Beyond these cases, the optimization problem is generally non-linear.  This means

that the objective function has no distinct form and the constraints can take any form as

well.  Posed in this very general way, an optimization problem can quickly become

intractable.  One of the main difficulties in solving a problem posed in this manner is that

of multiple optima.  Even if the search space is a compact set and the objective function is
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a continuous, smooth real-valued function, the optimum found only has the assurance of

being locally optimal.  That is to say, if the following conditions are satisfied

df

d x

d f

d x

*

*2

,=

>

0

0
2

(3.2)

the solution is only guaranteed to be the minimum in some neighborhood δ surrounding

the point x*, i.e.:

( ) ( )f x f x x S* ≤ ∀ ∈ ∩δ (3.3).

This presents a severe difficulty when one attempts to find the globally optimal solution

of a problem, i.e., the absolute minimum or maximum of the objective function over the

given search space.  Outside of this neighborhood δ the value of the objective function

could vary considerably.  Dixon (1978) provided the following argument to demonstrate

that any method designed to solve a global optimization problem needs an unbounded

number of steps.  For any continuously differentiable function f, any point x and any

neighborhood N surrounding x, there exists a function g that is continuously

differentiable that satisfies the following equation

f g f x N+ = ∀ ∉ (3.4)

with the global minimum of f g+ being at x. (f g+ is referred to as an indentation of f).

Therefore, for any point x, it cannot be guaranteed that it is not the global minimum

without at least evaluating one point in every neighborhood N of x.  Since N can be

chosen arbitrarily small, it follows that any method constructed to find the global

optimum of a function numerically would require an unbounded number of steps.
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Global optimization, as stated above, is the search for the absolute minimum or

maximum of the objective function over the given search space.  That is to say, for a real-

valued objective function f n:ℜ → ℜ , the goal is to find a point x n* ∈ℜ  such that

( ) ( )f x f x x n* ≤ ∀ ∈ℜ (3.5)

A review of current methods can be found in Rinnooy Kan and Timmer (1986).

The algorithms employed in global optimization can be divided into two

categories, deterministic and stochastic.  These methods differ in one fundamental way,

the determination of a new point starting from the current point in the search.  For

deterministic methods, the algorithm for choosing search points contains no random

component.  Stochastic methods, as the name suggests, includes a random component in

the selection of search points.  The advantage of deterministic methods is their ability to

find optima when the objective function has a very definite structure.  Stochastic methods

have the advantage of applicability to a wider range of objective function types.

DETERMINISTIC METHODS

A sampling of previously and currently employed deterministic methods will be

presented in this section.

The most well-known of these methods is the branch and bound method (Horst,

1986).  A generalization of this method is the partition and search method.  Both of these

are taken from the field of combinatorial optimization.
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At any point in the procedure there exists a partition of the search space S into

subsets Sa (Sa∈S), a lower bound LB(Sa) on ( )( )min
x S

f x
∈

∀a∈S, and an upper bound

( ) ( )UB S f xa = ~  ( )~x S∈  which represents the smallest feasible solution found so far.

It is evident that subsets Sa for which LB(Sa) ≥ UB cannot contain the global

minimum and can, consequently, be eliminated.  Attempts can then be made to improve

the value of UB.  If after these improvements are made, any subsets Sa remain for which

UB - LB(Sa) > 0, the partition can then be refined.  The typical approach is to divide the

subset which satisfies the relation ( ) ( )( )LB S LB Sa
a S

a=
∈

min into finer partitions and repeat

the process.  Partition and search methods are costly to implement even in the case where

the function can be evaluated analytically because calculation of UB and LB on the

partitions is computationally expensive and the number of partitions can grow rapidly for

a complicated function.  Regarding convergence, the difficulty of finding the lower

bounds for the partition chosen is comparable to finding the global minimum itself.

Therefore, all algorithms of this nature necessitate additional conditions on the objective

function being explored to be feasible to implement, e.g., if the function is convex

determination of UB and LB within a single partition is simplified considerably.

COVERING METHODS

Several methods are derived from the assumption that the objective function is

Lipschitz continuous and that the Lipschitz constant L is available a priori.  These types

of methods make use of the search information (xk, f(xk)), k = 1 to N to determine future

search points from regions that have a high likelihood of containing the global minimum.

These methods fall under the category of methods of covering.  The goal is to construct a
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series of functions that are piece-wise continuous to cover the entire search space.  These

functions are constructed to be convex such that the search within a single region is

simplified considerably.  A description of this type of algorithm can be found in Horst

and Tuy(1987).  An extension of this method to N-dimensional problems was put forth by

Mladineo (1986).  The approach consists of creating gradually closer piece-wise-

differentiable approximations to the objective function.  The method clusters around

relative optima close to the global optima with some theoretical underpinnings to support

this.

TUNNELING METHOD

An algorithmically simple implementation of a global optimization is the

tunneling method.  Levy, et. al. (1985) proposed this algorithm which consists of two

steps: a minimization step and a tunneling step.  These steps are performed repeatedly

until a stopping criterion is satisfied.  The first step is to find a local minimum, x j
∗ ,

starting from the initial point with any suitable local optimization procedure.  The next

step is the tunneling step.  The purpose of the tunneling step is to find new starting points

that will lead to new local minima.  These starting points are determined by finding zeros

of a tunneling function ( )( )T x f xj, ∗ .  A simple form of this function is

( )( ) ( ) ( )T x f x f x f xj j, ∗ ∗= − (3.6).

Zeros of this function are guaranteed to provide regions that have a minimum that is at

least as small or smaller than the previous local minimum.  It is evident from the

algorithmic description that finding zeros of the tunneling function poses a task that is

nearly as difficult as finding the global minimum itself.
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INTERVAL ANALYSIS

Originally proposed by Moore (1966), the method of interval analysis consists

basically of dividing the search region into sub-regions and then disregarding the regions

that do not have the global minimum.  The procedure takes advantage of the field of

interval analysis to reduce the sub-regions as the algorithm progresses.  When the width

of the remaining interval becomes sufficiently small, the algorithm terminates, taking the

final value as the global optimum.

Interval analysis has been extended to multi-dimensional problems but suffers

from some very serious drawbacks.  The most severe of these is that the number of

intervals necessary to properly evaluate a function grows precipitously with the

dimension of the problem.  Second, the interval mathematics becomes quite involved as

the regions become geometrically complicated.  Lastly, the iteration method for reducing

the width of the interval may require several iterations at every step of the algorithm,

which can add significantly to computational cost.

STOCHASTIC METHODS

From the discussion of the deterministic methods above, it is clear that more

robust, computationally less costly methods are desirable.  The trade-off made in the

pursuit of these is the sacrifice of a convergence proof.  Deterministic methods are well

suited for objective functions that can be evaluated analytically.  If the derivatives are

costly to evaluate or the function itself has some stochastic component, stochastic

methods are better suited.
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The simplest stochastic global optimization technique is the random search

method.  Starting at the initial point x Sj
n∈ ∩ ℜ  the next point simply adds a random

vector r n∈ℜ  to determine the next search point.  This random vector is derived from a

probability distribution Pr.  The only restriction on Pr for the method to converge in an

asymptotic sense is that

( )( )1 0− =
=

∞

∏ Pr j
j i

(3.7)

where (Pr)j is the probability of reaching a point in the search space starting from the

current point.  Clearly from the definition if the algorithm is allowed to run indefinitely,

any point in the search space can be reached and subsequently evaluated.  This is known

as asymptotic convergence and is a necessary condition for a random method to have

practical value as a finite-time method.  Each new point in the algorithm represents an

improvement in objective function value over the previous point.  Since it is chosen by

( ) ( ) ( )
x

x r if x r S and f x r f x

x otherwise
j

j j j j

j
+ =

+ + ∈ + ≤




1 (3.8).

Using this algorithm and setting the additional restriction that f be a measurable function

on a measurable set S ⊂ ℜn, one can be show that (Solis, 1981) for ε > 0 and M < 0

( )lim ,
j

j MP x O
→∞

∈ =ε 1, (3.9)

where

( ) ( ){ } ( )
( ){ } ( )O

x S f x f x f x finite

x S f x M f xMε

ε
,

min min

min
=

∈ < +
∈ < = −∞






(3.10).
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Typically r is dependent on the current state of the algorithm, i.e., it is chosen adaptively.

Several variations of this method have been implemented, primarily by using different

schemes through which r is chosen.

Bayesian methods, which will not be discussed at length here, can be viewed as an

extension of random search methods with additional information regarding the

probability distribution of the objective function over subsets of the search space S.  For

example, information such as the probability that the f(x), x ∈ S, belongs to a specific

interval or sub-region Sa ⊂ S can be exploited to create a loss function which, in turn, is

minimized.  Minimization of this loss function is the basis of the Bayesian method.

STOCHASTIC PATH FOLLOWING METHODS

A simple approach to finding the global minimum of a function is to follow the

path of the gradient

( ) ( )( )d x t

dt
f x t= −∇ (3.11).

To create a stochastic equivalent, a diffusive term is added to the right hand side

of the equation

( ) ( )( ) ( )d x t

dt
f x t

d w t

dt
= −∇ + ε 0 (3.12)

where w(t) is an n-dimensional Wiener process.  (A Wiener process is defined as

( ) { }R x x x x1 2
2

1 2, min ,= σ .)  The solution of this diffusive, stochastic differential

equation is a probability density function which is asymptotically proportional to
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( ) ( )
p x

f x
=

−





exp

2

0
2ε

(3.13)

as t → ∞.  Assuming that f(x) > 0, p(x) approaches a Dirac delta function centered at the

global minimum as ε0 → 0, independent of the initial point x0.  This is because the

volume integral of the probability density function ( )( )exp − < ∞∫ 2 0
2f x

S
ε , due to the

fact that the probability is proportional to the probability of the entire space S, which is

clearly equal to one.

The distribution arrived at above is the same distribution of probability that is

employed in the simulated annealing algorithm.  The value 1
2 0

2ε  is the equivalent of the

‘temperature’ in the simulated annealing algorithm and the time, t, represents the

annealing time.  Therefore, at a fixed value of the ‘temperature’ with the value of t

approaching infinity, the probability of finding the global minimum is proportional to the

probability distribution given above.  The simulated annealing algorithm and the method

of genetic algorithms will be discussed in the following section.  In Chapter 5, the

simulated annealing algorithm will be discussed in depth as well as the current

implementation.

CONCLUSIONS

This section has introduced a wide range of optimization methods.  Beginning

with simple, linear methods up to non-linear, global methods.  The basis for the simulated

annealing algorithm--which is used extensively in this treatise--has been laid relative to
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other global optimization techniques.  Further background and exposition will be made

manifest in the next two chapters.
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CHAPTER 4

SIMULATED ANNEALING AND GENETIC

ALGORITHMS

INTRODUCTION

This section describes Genetic Algorithms (GA) and the Simulated Annealing

Algorithm (SAA).  A comparison between the two methods is made to determine

suitability for the air bearing design problem.  An example problem is provided to

demonstrate the ability of the algorithms to find the global optimum of a given cost

function.  From the application of these to examples, a determination is made that the

SAA is better suited for slider air bearing optimization than the GA.

BACKGROUND

AIR BEARING SIMULATOR

Developments in plasma etching and similar fabrication techniques have made

virtually arbitrary air bearing surface geometries feasible.  With this control of geometry,
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reduction of slider fly height variation across the radius of a disk drive as well as other

performance objectives can be satisfied.  This increase in design flexibility brings a new

challenge, namely, finding the optimal configuration of the air bearing surface.  Two

methods are presented here for solving this problem given some basic design constraints.

The methods, genetic algorithms and simulated annealing, are iterative optimization

techniques that do not rely on the (numerical) calculation of gradients to achieve optimal

solutions.  The methods are shown to be highly effective.

Design optimization, or the problem of finding an optimal configuration given

performance objectives and constraints, is of substantial interest.  With the developments

in fabrication technology and the increasingly critical requirements of fly height

uniformity, among other objectives, optimization has become an important goal for slider

design.  The difficulties that are presented include the time for evaluation of the objective

function (solution of Reynolds' equation for a given configuration), noisy numerical data,

which precludes the effective use of traditional gradient-based optimization techniques,

and satisfaction of multiple objectives through control of multiple design parameters.

Briefly, genetic algorithms encode the parameters in a problem as “gene strings”

and then through two operations, crossover and mutation, in addition to objective

function evaluation, achieve a family of optimal strings which are then decoded into the

optimal, or nearly optimal, solutions.  The original “gene strings” represent a random

distribution of the parameters.  Adaptive simulated annealing also starts with a random

configuration.  Its performance is evaluated and then a point in the neighborhood of this
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configuration is chosen and evaluated.  An acceptance criterion is then invoked to

determine whether or not the new point will be kept as the starting point for the next

neighborhood operation.  If not, the original point is retained and a new point in the

neighborhood is found.  Ideally, this allows the global optimum to be found.

As described earlier, the underlying equation for calculation of the fly height of

sliders is the Reynolds' lubrication equation.  It is a simplification of the Navier-Stokes

equations based on certain assumptions regarding the nature of the flow field under the

slider.  The optimization programs presented here implement the Computer Mechanics

Laboratory air bearing design program.  This simulator solves the Reynolds' equation

through use of a multi-grid method as described earlier.  In addition, the simulator

accounts for arbitrary bearing geometry by using a flow averaging method.  These

features allow arbitrary configurations to be evaluated relatively quickly, which is

essential to the optimization procedure.

GENETIC ALGORITHMS

The idea of evolution was presented by Darwin in the classic The Origin of

Species in 1859.  It was not until the early 1970's that this idea was incorporated

effectively into a computer program by Holland (1975).  The basic idea of GAs is to

represent, or “encode,” parameters in a problem as a string of data, typically binary.

These strings are then combined and “mutated” in an attempt to achieve the most fit

strings possible based on some performance measure.  This idea is taken directly from

evolution where human genes combine and mutate to form new genes.  The fittest
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parameter strings in a problem correspond to optimal solutions of the objective function

that is being employed.

GAs are typically employed when other, more standard, methods of optimization

are not feasible or simply would not work.  Examples include exceedingly high

dimensional problems, numerical simulation results, machine learning and noisy data

fields.

An example of a generational genetic algorithm is given below (Figure 4.1).

Figure 4.1:  Outline of generational genetic algorithm

The first step in implementing GAs is the representation of the parameters in the

problem as strings.  Typically binary strings are used for simplicity.  When this is done a

continuous problem is reduced to a discrete one.  The resolution, which determines the

smallest achievable change in a parameter, can be controlled by the user down to a

computer-dependent limit.  The underlying purpose of this is to allow the optimization

algorithm to operate on these strings in a manner similar to the way genes crossover and

mutate in biological entities.  In the study presented here each range of the parameters is

simply divided into equal segments and mapped into binary strings.  The main purpose of

mapping parameters into binary strings is to ease the crossover and mutation processes.

Initialize random population
Evaluate population
While (counter < total
generations)

Increment counter
Perform selection
Perform operations
Evaluate population

Loop
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After the parameters in the problem have been put into a string representation, or

“encoded,” the optimization algorithm can begin.

In order to initialize the population, a random set of parameters is chosen for a

single member of the first generation, and then this process is repeated until the entire

first generation has been populated, i.e., until the pre-determined population size has been

initialized with random configurations.  The generation (population) size and number of

generations evaluated ideally will yield the minimum number of function evaluations

needed to achieve the global minimum.  Since this number cannot be known a priori,

there are some guidelines for choosing their values.  This procedure can be modified if

there is a reason for choosing a specific region of the search space in which to concentrate

the population originally.

Once the initial population has been determined it is then evaluated using a fitness

function.  The fitness function assigns a real value to each member of the population.  If

minimization is being attempted, as in the current investigation, then a fitness function

can be defined as

( ) ( )u x F f x= −max (4.1)

where Fmax is the greatest value of f(x), the cost function, over a certain number of

previous generations.  In the first few generations Fmax is simply drawn from a smaller

pool.  This type of fitness function implicitly employs a technique called “window”

scaling.  That is to say, Fmax is found from a certain number of previous generations called

the “window.”  One disadvantage of window scaling is that if a single member of the

population has an extremely high cost (poor fitness) then it will have the effect of making
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it difficult to distinguish between the remaining members when it comes to selecting

which are the best and how much better they are than the others.  This is an important

disadvantage in the selection process as we will see below.  A way to ameliorate this

problem is to use “sigma scaling.”  In sigma scaling the fitness of a member of the

population is defined as

( ) ( )
u x

s

s
f x=

+ σ
(4.2)

where s is the sigma scaling factor and σf(x) is the cost value measured in standard

deviations.  A typical value for s is 2.  This method has the effect of limiting the severe

disadvantage of window scaling while still allowing useful selection to occur.  The

performance evaluations at the beginning of the algorithm and within the generational

(iterative) loop are the same.

The first task in the generational loop is to select members for the current

generation from the previous generation based on performance.  Given the fitness for a

certain chosen string, a probability that this string will be present in the next generation is

calculated, i.e., strings that are more fit (more optimal) will have a higher probability of

appearing in the next generation than strings that are less fit (less optimal).

The simplest possible method for selecting the new generation is called the “spinning

wheel” method.  A brief outline of this algorithm is (Figure 4.2):
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Figure 4.2:  Outline of “spinning wheel” method of selection for genetic algorithms

The advantage of this method is that it has zero bias, where bias is defined as the

difference between the actual sampling probability of a population member and its

expected value.  Therefore, zero bias is achieved when the probability of a member is

equal to its expected value.  The problem with this technique is that a single member

could fully populate the new generation regardless of its expected value.  This method is

also known as “Stochastic Sampling with Replacement.”  One way to deal with this

problem is to choose the random number and then divide the segment into equal

partitions with the random number as an offset from zero.  This insures that members

with an expected value greater than one partition will have at least one representative in

the new generation, as seen in the diagram below (Figure 4.3); where each arrow

represents a selection of the next generation.

r1
r2 1

Value of generated random number

Figure 4.3:  Depiction of “stochastic universal sampling” method of selection for
genetic algorithms

Sum the fitness' of the current generation
Divide each individual fitness by the sum
Map each of these ratios continuously to the

segment [0,1], i.e., the first ratio r1 would cover
[0,r1], the second (r1, (r1+r2)], etc.

Choose a random number between [0,1]
Select the member that corresponds to that number
Repeat until new generation is fully populated
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The above diagram (Figure 4.3) illustrates a simplified selection procedure.  Once

the random number has been generated, the entire population is selected simultaneously.

Since each arrow represents a member of the next generation, we can see that the member

of the current generation represented by the line segment between r1 and r2 will have two

members in the next generation.  This is the method employed in the current investigation

and it is also known as “Stochastic Universal Sampling.”  Other methods of selection are

available but will not be discussed any further here (Baker, 1987).

In the algorithm sketched above, the most important step is the one entitled

“operations.”  It consists of “crossover” and “mutation.”  Crossover occurs when two

string representations are combined to create two new strings by appending the ending

part of one string to the beginning part of another.  The point at which the first substring

ends and the second begins is constant for our particular implementation of genetic

algorithms.  For example, in the following illustration (Figure 4.4) the strings on the left

are crossed over to obtain the strings on the right.

 

1011;00101 1011;10110

0110;10110 0110;00101

Figure 4.4:  Example of GA crossover procedure

In this illustration, the crossover point is between the fourth and fifth bit positions.

Ideally, crossover allows for optimal sub-blocks, or “schemata,” to be combined into

optimal strings that will represent the optimal solution.  This implies that GAs are based

on the assumption that optimal schemata will lead to optimal strings.  If this is not the

case then the chances of a GA converging to the optimal solution are severely hampered.
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Multi-point crossover schemes and others are discussed in Schraudolph (1994).

SIMULATED ANNEALING

Annealing in material technology is the process of raising the temperature of the

temperature, which is a measure of the mean energy, and then slowly cooling it to allow it

to reach its lowest energy state.  Simulated Annealing (SA) emulates this process in an

attempt to find the global optimum of an objective, or “energy,” function.

In physical annealing the temperature of the process is controlled.  In SA an

analog of the temperature is controlled to allow the simulation to progress.  For

convenience we will call this control parameter “T.”  We will call the measure, i.e., cost

function, of the current state of the parameters C(pk), where pk is the current state.  The

significance of the control parameter T is that it will be used to indirectly decide how

much of an increase in the cost will be accepted from one change of state to another.  So,

we start with a random configuration and measure its cost.

Using a simple equation of the form:

( )p p y B Ak
i

k
i i

i i+ = + −1 (4.3)

where yi is a random variable between -1 and 1, i.e.,

[ ]yi ∈ −11, (4.4)

with a probability density equal to

( )
( )

g y T

y T
T

i i
i

i
i

i

;
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+ +


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




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2 1
1

(4.5)
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where T is the parameter temperature, and Ai and Bi are the lower and upper limit for a

given parameter pi, i.e.,

[ ]p A Bi
i i∈ , (4.6)

we choose the next state of a given parameter (assuming it satisfies the above constraint,

eq. 4.6).

Below (Figure 4.5) is an illustration of the probability density g as a function of y

and T.  For a given value of Ti, the probability distribution of yi is shown.
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Figure 4.5:  Plot of probability distribution for new parameter selection for
simulated annealing algorithm

Clearly, as the parameter temperature is reduced, the chances of finding a configuration in

the neighborhood closer to the current configuration are increased markedly.

After this process is completed for all of the parameters, the cost of the new

current state of the parameters is evaluated, i.e., C(pk+1).  Once the cost is evaluated, it

can be determined if the new state will be the starting point for future states or if the
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previous state will again serve as the starting point.  This determination is made using the

following rules:  if the new cost is less than the previous one then it is kept

unconditionally, if the new cost is more, meaning it is less optimal, then it is kept if it

meets the condition

( ) ( )( )
exp

cos

−
−











>+C p C p

T
U

k k

t

1
(4.7)

where Tcost is the current value of the control parameter, or temperature, T, and U is a

randomly generated number subject to the restriction

)[U ∈ 0 1, (4.8)

So, when the value of the control parameter T is very large then essentially all

configurations are retained as the starting point for calculation of new configurations.

This allows the configurations to map the space initially.  It is analogous to the physical

process of melting where all atoms are heated to allow for nearly random motion.  As the

temperature is reduced, the chances for accepting a configuration with a higher cost

decrease commensurately.  The final point is chosen as the point at which no further

configurations are accepted for a set number of “steps,” i.e., a set number of attempted

calculations of new configurations is attempted without any of them meeting the above

criterion.

COOLING SCHEDULE

Control of the temperature T has the greatest impact on convergence.  Boltzmann

annealing, where the temperature is reduced according to
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( ) ( )T k
T

k
= 0

ln
(4.9)

where k is the current step, is expected, statistically, to achieve a global minimum.  Fast

annealing reduces the temperature according to T(k)=T0/k.  Fast annealing, when coupled

with the proper generating function, can be shown to achieve the global minimum of an

objective function in probability (Ingber, 1994).

EXAMPLE

The algorithms presented above are used to find the optimal configuration of the

air bearing surface on a Transverse Pressure Contour type slider.  The one-dimensional

case has the high pressure air bearing surfaces moving in unison and the two dimensional

case allows them to move independently.

x2

x1

Figure 4.6:  Parameters used in optimization
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In the above diagram (Figure 4.6) for the one-dimensional case the rails (high pressure air

bearing surfaces) are constrained to move in unison, i.e., x1=x2 and in the

two-dimensional case they are allowed to move independently.

The cost of each configuration is defined as the maximum difference in fly height

between three points, located at the inner, center and outer radius of the disk, with

corresponding skews multiplied by a scaling factor, i.e.,

Cost FH= ×109 ∆ (4.10).

For the calculation, the radius of curvature of the head path of travel (suspension arm plus

actuator arm) was taken to be 44.72 mm., the radius points and corresponding skews

were:

Radius (mm) Skew (deg)

20 0.0

24 -5.26

28 -9.87

Table 4.1:  Table of radius and skew values used for example

The other relevant design parameters used, but not varied, are:
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Parameter Value

slider length 2.05 mm

slider width 1.6 mm

rpm 5400

loading force 3.0 g

taper length 0.205 mm

taper height 4.0 microns

rail recess depth 1.5 microns

fully relieved region
recess depth

100 microns

crown, camber, twist 0.0, 0.0, 0.0

Table 4.2:  Table of non-varied parameters used in example

NUMERICAL RESULTS

The one and two dimensional cases were optimized using both genetic algorithms

and simulated annealing.  For the purposes of comparison, the genetic algorithm used was

GAUCSD1.4 (Schraudolph, 1994) and the simulated annealing package used was

Adaptive Simulated Annealing (Ingber, 1994).  In the following chapters, the algorithm

developed during the current investigation is explicated and all subsequent results are

obtained through its use.  Further, in the appendices, a user’s manual and example

problem are provided.

For the one-dimensional case, the genetic algorithm was implemented with the

following control parameters:
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Control Parameter Value

population size 10

total trials 80

crossover rate 0.60

mutation rate 0.052

sigma scaling factor 2.00

Table 4.3:  Table of control parameters used with genetic algorithm for example
problem

The population size is the number of solutions under consideration for any

generation.  The total trials is the upper limit of how many separate configurations will be

evaluated.  The crossover rate is the probability of a solution from the current generation

being combined with another member of the current generation to form two new

configurations as depicted (Figure 4.4) above.  The mutation rate is the expectation of any

bit in any member of the population being flipped.  The sigma scaling factor is the

number used in evaluating the fitness of a given configuration.

In the one-dimensional problem, the binary string employed to represent the

parameter was 8 bits in length.  That implies that there were 28 , or 256, possible discrete

values that it could take.  The parameter can take on values between 0.0 and 0.096585 so,

when it is represented by the 8 bit string, the minimum change in the parameter is 0.773

microns.  This is determined by dividing the entire range by the total number of possible

values then multiplying by a scaling factor (the slider length) to obtain an actual physical

dimension.

The resulting family of optimal solutions, defined as the ten best, is shown below

against a plot of objective function value versus parameter value (Figure 4.7).  This
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clearly shows that even in this very simple case--one that does not take advantage of the

power of genetic algorithms--the optimal solution is still achieved.
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Figure 4.7:  Plot of objective function value versus parameter value including ten
best configurations obtained from genetic algorithm (denoted by o’s)

The 10 best solutions obtained are shown below (Table 4.4):

Parameter 1 Objective function
value (nm)

0.0639847 4.0366

0.0617599 3.9424

0.0608742 3.8359

0.0639125 4.0364

0.0616585 3.9396

0.0639027 4.0352

0.0639576 4.0362

0.0617673 3.9424

0.0617462 4.0003

0.0643863 4.0175

Table 4.4:  Table of results for one-dimensional problem using GA
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These values are the position of the rail, as described in the problem definition

section, normalized by the length of the slider.

For the one-dimensional case, the simulated annealing method uses the following

cooling schedule for each of the parameters:

( ) ( )T k T c ki i i i i
D= −0

1

exp (4.11)

where ki is the current step, D is the number of parameters (dimension) and c is the

normalizing constant calculated from user supplied values.  The cooling schedule for cost

acceptance is similar except that the current step is the number of previously accepted

configurations, i.e., the total number of generated configurations minus the number of

rejected configurations.

The other relevant parameters used in the optimization were (Table 4.5):

Control Parameter Value Brief Description

accepted configuration limit 1000 maximum number of configurations
accepted

generated configuration limit 99999 maximum number of configurations
created

invalid configuration limit 1000 maximum number of invalid
configurations allowed

cost precision 1.0 x 10-5 tolerance for repeated cost values

maximum repeated cost limit 5 maximum number of times
neighbor configurations will be
evaluated before termination

Table 4.5:  Table of control parameters used by GA

The solution obtained is shown against a map of the objective function versus parameter

value (Figure 4.8).
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Figure 4.8:  Plot of objective function value versus parameter value including best
configuration found from simulated annealing algorithm

It is seen that the optimal solution was again obtained.  The value obtained by the

simulated annealing method was 0.06235251 that had an corresponding objective

function value of 3.79.

The two algorithms were also implemented in a similar way to the two-

dimensional case.  For the GA, the resolution of the second parameter was the same as

the first.  The simulated annealing method implemented the same cooling schedule.  Both

algorithms used the same control parameters as in the one dimensional case.

The graph below (Figure 4.9) shows that the genetic algorithm and the simulated

annealing method both achieved solutions in the optimal regions.

The values on the contour lines represent the values of the objective function as a

function of the two parameters.  The solutions for the genetic algorithms (represented by

asterisks) were:
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Parameter 1 Parameter 2 Objective function
value (nm)

0.0435419 0.0750172 3.9863

0.0190679 0.0939901 4.8948

0.0359568 0.0809572 3.9192

0.0212428 0.0936637 4.0895

0.0232145 0.0959719 4.2102

0.0545375 0.068694 4.4822

0.019019 0.0939986 4.8920

0.0545282 0.0638383 4.1667

0.0544756 0.0686282 4.4852

0.0573867 0.0749233 4.8454

Table 4.6:  Table of optimal solutions obtained by GA for two-dimensional problem

The solution obtained from the simulated annealing method (represented by the

circle) was (0.09609084, 0.05069649) which had a corresponding objective function

value of 3.0549.  Similar to the one dimensional case, these values are the positions of the

rail, as described in the problem definition section above, normalized by the length of the

slider.
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Figure 4.9:  Contour plot of objective function versus both parameters employed
including optimal solutions found by genetic algorithm (*) and simulated annealing

(o)

Note that the GA solutions are concentrated in the basins of attraction (regions

where contour lines are closed) and that the simulated annealing solution is on the

minimum contour.  This result is typical of both algorithms.

A more careful evaluation of the results shows that the genetic algorithm solutions

are spread evenly through a nearly optimal region and the simulated annealing algorithm

found the global optimum (Figure 4.9).  In an attempt to improve the quality of the

genetic algorithm solutions, they were allowed to run for 12 and 16 generations, starting

from the same point, for comparison to the original 8 generation case.  In the 12

generation case, the best ten solutions had three members that were better than three

members of the 8 generation case, however, the most optimal solution was not improved.
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Parameter 1 Parameter 2 Objective function
value (nm)

0.0529843 0.0647321 4.2265

0.0304041 0.0897645 4.1879

0.0362133 0.0807856 4.2742

Table 4.7:  Three solutions for the 12 generation genetic algorithm run that
exceeded those of the 8 generation case

In the 16 generation case, the ten best solutions had two members that were better

than two members of the 12 generation case, however, as in the 12 generation case, the

most optimal solution was not improved.

Parameter 1 Parameter 2 Objective function
value (nm)

0.0347563 0.0807346 3.9250

0.034794 0.0896046 4.1642

Table 4.8:  Two solutions for the 16 generation genetic algorithm run that exceeded
those of the 12 generation case

CONCLUSION

Results for the one dimensional and two-dimensional optimization of a

Transverse Pressure Contour slider using genetic algorithms and simulated annealing are

presented. In these problems both algorithms achieved the goal of finding a globally

optimum solution, or nearly globally optimum solutions, based on a comparison with the

graphs of the objective function.

The results of the two dimensional case imply that the simulated annealing

method is more effective at finding global optimums.  We should note, however, that the

resolution of the parameters in the genetic algorithms was roughly 0.00038 in the
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normalized coordinate system (used for plotting the graphs of the objective function)

which may not allow it to capture the very intricate details of the objective function

topology that are ostensibly present in the fine grid graphing.  In comparison, the

simulated annealing technique can take a step of any length, only limited by the

parametric constraints above and the machine precision below.  Given this, it follows that

the simulated annealing algorithm found the global optimum in the solution space,

whereas, the genetic algorithm was confined to a minimum region that appeared as a

global optimum on the length scale that it could resolve.

Due to this inherent constraint on resolution that exists for genetic algorithms,

their combinatoric nature and the fact that the objective function is evaluated by a

numeric solver, the simulated annealing algorithm is better suited to the problem of slider

air bearing optimization.
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CHAPTER 5

SIMULATED ANNNEALING IN DEPTH

INTRODUCTION

In the previous chapter, it was demonstrated that the simulated annealing

algorithm is well suited for global optimization of air bearing slider designs.  In this

chapter a deeper look will be taken at the parameters that affect the optimization

procedure and what values are optimal for the slider air bearing problem.  Several

examples will be tracked in depth in an attempt to elucidate the process that leads to

optimal designs.  Additionally, in the cooling schedule section, heuristic proofs will be

given for three variations of the simulated annealing algorithm.

SIMULATED ANNEALING

As described in the previous chapter, annealing is the process of raising the

temperature, which is a measure of the mean energy, of a material and then slowly

cooling it to allow it to reach its lowest energy state.  Simulated Annealing (SA) emulates
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this process in an attempt to find the global optimum of an objective, or “energy,"

function.  Simulated Annealing was originally introduced by Metropolis, N., et. al. (1953)

to solve high dimensional path integrals that arise in statistical physics problems through

a Monte Carlo technique.  Subsequently, it has been used for a variety of non-convex,

non-linear optimization problems, e.g., determining the optimal layout for circuits on a

computer chip (Kirkpatrick, et. al., 1983).

Initially, the algorithm was used to solve combinatorial optimization problems,

i.e., problems where the parameters have discrete values and the possible combinations of

them, while large, was countable.  In the current implementation, the parameters are

allowed to vary continuously.  This implementation of the algorithm is entitled

Continuous Simulated Annealing.  The essential difference is that the algorithm is

derived from a stochastic descent algorithm, i.e., a differential equation that includes the

gradient direction and random, white decreasing Gaussian noise.  It is this last quantity

that keeps the algorithm from getting stuck in a local minimum.  Gelfand and Mitter

(1991) have provided a convergence proof for this sort of algorithm that states for infinite

time steps (iterations of the algorithm) the method converges to the global minimum in

probability.  There are not, however, conclusions for the finite time behavior of the

algorithm.  The requirement that the algorithm be consistent for infinite time behavior

has, at the minimum, been met.

In physical annealing the temperature of the process is controlled.  In SA an

analog of the temperature is controlled to allow the simulation to progress.  For

convenience we will call this control parameter “T."  We will call the measure, i.e., cost

function, of the current state of the parameters C(pk), where pk is the current state.  The
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significance of the control parameter T is that it will indirectly decide how much of an

increase in the cost will be accepted from one change of state to another and will

determine the probability distribution for the neighborhood function which generates new

states starting from the current state.  In the implementation used here, the control

parameter T has been split into two separate parameters.  There is a T associated with the

cost (and acceptance of new configurations) and a T associated with parameter

generation.  This allows for separate cooling schedules to be implemented for each.  The

functional form of  the cooling schedule is, in fact, the same.  The only difference is its

indexing which is called “annealing time,” or the number of steps taken so far in the

optimization.  For the T associated with the cost (Tcost) the index in annealing time is the

number of configurations “accepted” so far (a concept which will be made clear below)

and the T associated with the current configuration (Tparam) is indexed by the total number

of configurations generated.  So, we start with a random configuration and measure its

cost.

Restating the algorithm as it appeared in the previous chapter, we begin with a

random configuration of the parameters:

( )p = p + y B - A ,k+1
i

k
i i

i i (5.1)

where yi is a random variable between -1 and 1, i.e.,

[ ]y -1,1 ,i ∈ (5.2)

with a probability density equal to

( )
( )

g y ;T =
1

2 y + T ln 1 +
1

T

i i
i

i
i

i









(5.3)



53

where T is the parameter temperature, and Ai and Bi are the lower and upper limits for a

given parameter pi, i.e.

[ ]p A , B ,i
i i∈ (5.4)

the next state of a given parameter is chosen randomly (assuming it satisfies the above

constraint, eq. (5.4)).  The joint probability distribution g given above, also known as the

generating function, is based on the functional form derived for many physical systems

belonging to the class of Gaussian-Markovian systems.  The probability density

corresponds to the state space of the parameters that exist within the problem.

An illustration of the probability density g as a function of y and T is provided in

the previous chapter.  For a given value of Ti, the probability distribution of yi can be

seen.  The significance of the given probability distribution can be seen in an analysis of

the algorithm’s capability of statistically achieving the global optimum.

After this process is completed for all of the parameters, the cost of the new

current state of the parameters is evaluated, C(pk+1).  From this, it can be determined if

the new state will be the starting point for future states or if the previous state will again

serve as the starting point.  This determination is made using the following rules:  if the

new cost is less than the previous one then it is kept unconditionally, if the new cost is

more, meaning it is less optimal, then it is kept if it meets the condition

( ) ( )( )
exp -

C p - C p

T
> U

k+1 k

cost













(5.5)

where Tcost is the current value of the temperature associated with the cost and U is a

randomly generated number with uniform distribution subject to the restriction
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[ )U 0,1 .∈ (5.6)

As mentioned above, this is the concept of acceptance.  The current point is the most

recently accepted point.  It is from here that the algorithm continues.  One difficulty

specific to the slider air bearing problem is that certain configurations of the parameters

in a problem can create designs that do not support the load applied to the back of the

slider, i.e., the slider crashes, or equivalently stated, does not fly.  This difficulty is

handled by keeping track of the worst configuration to date, i.e., the one with the highest

objective function value, and assigning its value to this configuration.  This is one method

of insuring that any configuration that does not fly will not be considered more optimal

than the worst configuration so far that can fly.  This scheme, however, presents

difficulties of its own.  If the parameters in a problem are chosen with ranges that create a

preponderance of configurations that are not capable of flying, the optimization process

will be hindered.  This is caused by the inability of the algorithm to choose new

configurations to accept and subsequently move from.  This in turn leads to a delay in the

annealing time sequence.  This effects the temperature that is associated with the cost but

not the temperature associated with the parameters.  So, eventually, when the new

configurations that are being generated are sufficiently close to the current configuration--

which flies--they, too, should fly.  This is at the expense, however, of being able to

sufficiently explore the search space near the inception of the algorithm.  This effect will

be demonstrated later in the section through use of an example problem.

At the beginning of the calculation when the value of the control parameter T is

very large then essentially all configurations are retained as the starting point for

calculation of new configurations.  In the absence of large number of configurations that
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do not fly, the algorithm is able to map the space initially.  It is in this part of the

optimization procedure that “hill climbing” (acceptance of less optimal configurations as

the new starting point) is most likely to occur.  As the temperature is reduced, the chances

for accepting a configuration with a higher cost decrease concomitantly.  The final point

is chosen as the point at which no further configurations are accepted for a set number of

iterations in annealing time or the temperature reaches some pre-set minimum.  This is a

manifestation of the limitation of global optimization algorithms.  The value or location

of the global optimum is not known a priori and there is not a suitable test to determine if

the current configuration is the global minimum.  Consequently, some other stopping

criterion must be employed.

COOLING SCHEDULE

Control of the temperature T has the most bearing on convergence.  Boltzmann

annealing, where the temperature is reduced as

T(k) =
T

ln(k)
,0 (5.7)

where k is the current point in annealing time, is expected, statistically, to achieve a

global minimum when coupled with the equation defining the appropriate generating

function g.  The significance of coupling the cooling schedule with the generating

function is that they jointly determine the probability of the algorithm reaching any given

point in the search space.  The generating function employed in Boltzmann annealing is

( ) ( )g x T
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D= −
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exp

∆
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where D is the dimension of the problem, and ∆x = x - x0 is the distance of the current

point from the previous configuration or some other reference configuration.

In order to insure that any point in the search space can be reached in the course of

the optimization starting from the current point, k0, it suffices to show that the probability

of not reaching the point in question is zero

( )1 0
0

− =
∞

∏ gk
k

(5.9)

which is equivalent to

gk
k0

∞

∑ = ∞ (5.10).

By putting the expression for T above into this equation, we can see that

( )g k
kk

k k k0 0 0

1∞ ∞ ∞

∑ ∑ ∑≥ − = = ∞exp ln (5.11),

which is a sufficient condition to insure that the algorithm converges to the global

minimum statistically (Szu and Hartley, 1987).

In Boltzmann annealing it is clear that the procedure proceeds prohibitively slowly

because the temperature is lowered such a small amount at each iteration.  The challenge

is to develop a cooling schedule that is efficient for the problem at hand yet still allows

for the global optimum to be found.  A variation known as “fast annealing” employs the

cooling schedule T(k)=T0/k.  The generating function associated with it is

( )
( )( )g x

T

x T
D

=
+

+
∆ 2 2 1 2

(5.12)
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which is simply the Cauchy distribution.  One advantage of the Cauchy distribution is that

it has greater probability of testing points farther from the current configuration than the

Boltzmann distribution.  This is particularly useful in the phase of the optimization

procedure that is attempting to map the search space and find the local minima.  Making

use of the above example, we note that for the generating function and cooling schedule

associated with fast annealing, the convergence criterion is satisfied, i.e.,

g
T

x kk
k

D
k0 0

0
1

1∞

+

∞

∑ ∑≈ = ∞
∆

(5.13).

The cooling schedule associated with fast annealing, T(k) = T0/k, is exponentially faster

than that of Boltzmann annealing and has been tested on a wide range of problems (Szu

and Hartley, 1987).

Although fast annealing is exponentially faster than Boltzmann annealing, it is

still unduly slow for practical problems.  A cooling schedule that is quicker, coupled with

an appropriate generating function, is still sought.  The method of very fast annealing

employs the cooling schedule

( ) ( )T k T c ki i i
D= −0

1exp (5.14)

where Ti in this case refers to the temperature associated with each individual parameter

(indexed by i), k is the annealing time index as before and ci is a constant that can be used

to scale the speed of the cooling schedule.  To complete the specification of the

algorithm, the generating function and acceptance criterion need to be made specific.  The

generating function associated with this cooling schedule is

( ) ( ) ( ) ( )g T y
y T T

g yT i
i ii

D

T
i i

i i

D

,
ln

=
+ +

≡
= =
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2 1 11

(5.15).
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In order for this equation (eq. 5.15) to satisfy the same heuristic proof given

previously it has to satisfy the same conditions.  We must show that the combination of

generating function, acceptance criterion (which is taken to be the same as before) and

cooling schedule, will allow for any point in the search space to be reached, statistically,

at any state of the optimization algorithm subsequent to the current.  Summing the

generating probability from the current state to infinity

g
y c kk i

ii

D

kk

≈



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





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= ∞
=
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∏∑∑ 1

2

1

100

(5.16)

where ci is a scaling coefficient, we can see that the this condition has been met.  The

parameters in the problem are generated from the specification for yi specified above

through the equation

( )x x y A Bk
i

k
i i

i i+ = + −1 (5.17)

where Ai and Bi are the upper and lower constraints on the parameter, respectively.

Clearly, it is possible to generate a value that is outside the parameter constraints using

this equation so it is simply iterated until the constraints are satisfied.  This is for

satisfaction of the linear constraints in the problem which are defined simply as

constraints which have a given range and are not part of another constraint equation to be

satisfied.

NON-LINEAR CONSTRAINTS

As noted above, the algorithm has a simple method of satisfying the linear

constraints in the problem through iteration of the generation routine.  In slider design,
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however, it may be beneficial to define constraints that are overlapping.  That is to say,

the resulting design would have a region that is not simply connected.  Although this does

not present a problem in principle, the Reynolds’ equation solver can not deal with this

geometric configuration.  In order to allow the flexibility of having overlapping

constraints without creating configurations that are not simply connected, a non-linear

constraint checking algorithm had to be implemented.

The outline of the algorithm is check the line segments connecting each adjacent

point that define a slider rail with every other line segment defined between adjacent

points to see if they intersect within the adjacent points being checked.  The difficulty

presented is when the points are used to create equations of lines and the resulting set of

equations is solved, numerical inaccuracy can lead to incorrect results.  The solution is to

parameterize the line segments and then check the value of the parameters to see if an

intersection occurs.  Each line segment is parameterized by a single parameter and its

endpoints, e.g.,

( ) ( )
( ) ( )

x x x

y y y

α α α
α α α

= + −
= + −

1 2

1 2

1

1
(5.18)
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and similarly for the second line segment.  The equations for the two segments are set

equal and the linear system specified in the algorithm description results.

Figure 5.1:  Outline of rail intersection algorithm

This method is coupled with the linear constraint checking to check if the

configuration generated is feasible, i.e., it satisfies all constraints.  Further, it does not

suffer from the inaccuracy that plagues the method of generating equations of lines for the

segments in question.

EXAMPLE

The following example demonstrates some of the principles introduced above.

The optimization of the following slider employed various constraint combinations and

objective functions in the search for the optimal design.  It is important to note that the

objective function defined is the quantity that is optimized.  It may turn out that the

minimum value of the objective function does not possess characteristics deemed

necessary to the design being sought.  In order to remedy this problem, the objective

Loop over all rails (index i)
Loop over all rail points on rail i (index j)

Loop over all rails (index k)
Loop over all points on rail k (index l)

Check to be sure lines are not parallel
Find parameter values by solving the linear system:
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for α and β then check to see if both are
between 0 and 1, i.e.,
if 0< α <1 and 0 < β < 1 then an intersection exists

stop looping



61

function weightings need to be adjusted so that the final optimized design will possess the

necessary physical characteristics.  Proper weighting of the objective function is a

difficulty inherent to multi-goal optimization.  Clearly, a simple rule of thumb would be

to give the most important terms the heaviest weight.  It is possible, however, that if this

rule is followed without care, the problem becomes one of single goal optimization, i.e.,

the remaining goals are neglected.  Scaling schemes have been proposed to avoid this

difficulty (Yoon and Choi, 1995, 1996) but they suffer from selection of proper scaling

parameters--a problem tantamount to that of proper weighting.

The air bearing slider that was used as the subject of this optimization was

originally designed with the intent of minimizing contamination (Zhang, 1996).  The

central idea is to force particles that enter the region under the slider to leave from the

sides.  By doing this, no large contamination particles will be created at the rear pad of

the slider which could potentially cause a problem by breaking off and then re-entering

the slider air bearing region.  In the original design, however, account was not taken of

the sliders fly height profile over the radius of the disk.  This is a relatively simple goal to

achieve through optimization but it is complicated by the slider’s small sub-ambient

pressure cavity.  The objective function that was used for this optimization was

( ) ( )f x fh nmi= × −∑50 35 (5.19)

where the fhi are evaluated at the following positions

radius (mm) skew
(deg.)

15 -7.59
23 0.0
31 7.59

Table 5.1:  Table of radius and skew values used in evaluation of objective function
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The constraints used in the problem are depicted graphically below (Figure 5.2).
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Figure 5.2:  Constraints employed in contamination optimization

The constraints are specified by lines centered on specific vertices.  Theses lines represent

the entire range, in one dimension, that a vertex may move in the course of the

optimization.  If a vertex has two lines centered on it then it may move in two

dimensions.  The solid lines represent constraints that are used in the problem directly,

i.e., they are calculated as described above and their values represent the basis for a new

configuration.  The lines represented by large dashes are constraints that move vertices in

symmetry with other, specified vertices.  The intent in this design is to maintain the

symmetric nature of the air bearing throughout the optimization.  The lines represented by

the short dashes are constraints on vertices that are to move relative to other, specified

vertices.  The purpose of employing these ‘relative constraints’ is to maintain a specific

feature of the air bearing, in this case the geometry of the back section of the main air

bearing pad.  The final type of constraint depicted in the figure--represented by the
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dashed-dotted line--is the ‘relative symmetric constraint’ whose purpose folds the

previous two together, i.e., its purpose is to maintain a specific feature symmetric to the

original, maintained feature.  In addition, the recess depth of the main cavity was allowed

to vary from 2 to 15 microns and the position of the loading force acting on the slider was

allowed to vary from 0.45 to 0.55--in normalized units--along the direction of flow.

The following figure shows how the optimization procedure progresses.  The plot

is of the value of the objective function as a function of configuration number.
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Figure 5.3:  Progression of objective function for contamination slider optimization

From the above figure, it is clear that a number of configurations crashed (as defined

earlier) and have had their objective function value arbitrarily set to the maximum value.

Even near the conclusion of the optimization when the temperature is relatively small,

implying that the configurations are not changing considerably from one iteration to the

next, the number of configurations that crash is high.  Further, for the configurations that

do not crash the change in objective function value is large from one iteration to the next
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which implies that there is a large sensitivity to one or more of the parameters or some

combination of them.  It should also be noted that the optimal configuration is found early

in the optimization procedure then approached asymptotically as the optimization draws

to conclusion.  This is empirical evidence of the search ability of the optimization

procedure.  While mapping the search space in the early stages of the optimization the

algorithm finds what turns out to be what is taken as the optimal configuration.  Later, as

the algorithm concentrates on the global optimum, the objective function value

asymptotically approaches the objective function value associated with the previously

found optimum configuration.  It is possible that the optimal value being approached is

not unique and, in fact, uniqueness is not a necessity of the procedure, i.e., for a defined

objective function the goal is simply to find a single global optimum regardless of the

physical configuration.

The cooling schedule employed is shown in the following plot
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Figure 5.4:  Progression of objective function and parameter temperature
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Note that there are two lines in the above figure.  The lower line represents the

temperature associated with the parameters.  The upper line represents the temperature

associated with the cost, both as described above.  The cost temperature starts at a much

higher value and then does not decrease uniformly as the parameter temperature does.

The reasons for these phenomena are that the cost temperature is scaled initially to the

mean value of the objective function and the non-uniform decrease is due to reductions in

the cost temperature only coming upon acceptance of new configurations versus

reduction in the parameter temperature occurring upon every new instance of a

configuration.  The mean value of the objective function which is used as the initial cost

temperature is determined by sampling random configurations in the search space then

taking their arithmetic average.  The purpose of setting the initial cost temperature equal

to the mean value of the objective function is to allow acceptance of almost any new

configuration at the outset of the optimization.

The functional form of the cooling schedule is

( )( )T
N

=
−

1

exp expα β
(5.20)

where, for the cost temperature, α and β are 1.0 and 2.0, respectively and N is the number

of configurations accepted so far and, for the parameter temperature, α and β are 1.0 and

4.0, respectively and N is the number of configurations generated so far.  Note that this

cooling schedule is independent of the number of parameters.  This particular

combination of parameters was chosen to be generous due to the nature of the problem.

The larger the value of β, the more slowly the temperature decreases.  For the problem of

slider air bearing optimization, employing the cooling schedule given above, it has been
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determined that values of 1.0 and 3.0 for α and β respectively, are optimal.  The value of

4.0 used for beta here was determined not to significantly improve the algorithm’s ability

to converge to the optimal solution.  It is through search space expansion, i.e.,

modification of the constraints, that the quality of the final solution is improved.  This

satisfies one necessary condition of an algorithm that aspires to find global optima,

namely, that the quality of a solution for a search space that encompasses a previous

search space must be as good or better, i.e.:

if ( )min *

x S
f x f

∈
=  and ( )min *

x S
f x f

∈ ′
= ′  where S ⊆ S’ then ′ ≤f f* *  must be true.

Therefore, if an algorithm reaches the global minimum of a function for a given search

space and the search space is subsequently enlarged so as to encompass the original

search space, then the final solution on the larger search space should be as good or better

than the solution on the smaller search space.  This has been shown to be the case in this

problem.  Subsequent chapters will also demonstrate this property of the simulated

annealing algorithm for more complicated examples.

The final design is depicted below (Figure 5.5).



67

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5.5:  Optimized contamination slider

The most distinctive difference between the original and optimal designs is the wide

expansion of the subambient pressure cavity.  Development of subambient pressure is

critical to the bearing’s ability to maintain a constant fly height across the radius of the

disk.  The algorithm develops this feature without guidance towards or away from this

goal save the objective function that has been defined.  This is indicative of the

algorithms ability to effectively search the configuration space provided by the constraint

definitions.  The change in subambient pressure region geometry was coupled with a

change in recess depth from the original value of  3.0 microns to 4.4 microns.

The optimal value of the objective function translates into physical characteristics

of the bearing.  The only term included in this optimization is the fly height of the bearing

over the disk--defined to be the physical space between the transducer point on the slider

(0.001 inch from the back of the slider centered transversely) and the disk.  The initial

and resulting fly height profiles are depicted in the graph below (Figure 5.6).
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Figure 5.6:  Comparison of fly height profiles for original and optimized design

It is clear from this graph that the optimization procedure achieved the goal initially

defined starting from a configuration that considerably less than optimal.  This points to

the utility of the algorithm to transform designs that are created for a specific purpose into

useful designs whilst maintaining the original characteristics, in this case contamination

control.

CONCLUSIONS

In this section, a fuller description of the simulated annealing algorithm has been

presented.  In particular, the implementation specific to this study has been illustrated

fully.  The theoretical basis for the algorithm has been further explicated and its utility

made manifest through an example.
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CHAPTER 6

ALTITUDE INSENSITIVITY

INTRODUCTION

In magnetic hard disk drives the minimum spacing between the air-bearing slider

and disk has been reduced to under 50nm, and some drives now employ so-called

proximity sliders that are designed to operate at some level of interference between the

slider and the peak asperities on the disk.  This ultra-low flying condition brings into play

some new interface phenomena and accentuates some of the well known phenomena as

well.

The performance of proximity sliders with regard to their sensitivity to altitude

changes is investigated.  We include altitude sensitivity as an objective in the design

optimization scheme and demonstrate that it can yield air-bearing designs much less

sensitive to changes in altitude.

Research for future drives targets fly heights that are in the range of 15 to 20nm,

and even less.  Because the fly height of current and future sliders is so small, the loss of

fly height due to reduction in ambient pressure becomes a significant effect.  This
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situation typically occurs in controlled pressure environments such as airplanes or at high

altitude.

It is of interest to find air-bearing surface designs that can minimize the change in

fly height that a hard disk drive air bearing experiences when it is subjected to changes in

ambient pressure.  The basic idea is to balance the change in positive and sub-ambient

pressure that the slider develops.  The method for achieving this is through a systematic

process of optimization.  The optimization technique employed is the simulated annealing

algorithm.  The constraints on the slider are geometric, which constrain the changes in

bearing geometry that the slider undergoes, as well as parametric, which constrain the

parameter changes that affect the slider’s flying attitude.

PROBLEM DESCRIPTION

Several parameters can be varied to optimize specific characteristics of a slider air

bearing.  For example, there is a strong correlation between the applied load and fly

height. However, due to other performance constraints, e.g., tribological, applied load

may not be the best parameter for manipulating the fly height. Other parameters include

the position of the loading force, the length and height of the taper and the recess depth.

In addition, the geometry of the air bearing surface can be modified to optimize the slider

bearing’s performance.  Each vertex (corner) of a slider rail that is varied represents a

parameter in the optimization (two if varied in two directions).  Due to the relatively high

number of parameters that exist in such an optimization problem, the nonlinear nature of

the lubrication equation, and the fact that the objective function is evaluated by

employing a numerical solver, the simulated annealing method is employed as the
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optimization algorithm, because this technique avoids the expense of calculating

derivatives that exists in gradient-based optimization algorithms and handles the high

number of parameters efficiently.  Additionally, it can achieve globally optimal solutions

for multi-term objective functions.

MATHEMATICAL FORMULATION

OBJECTIVE FUNCTION

The cost function defined for this problem, where altitude sensitivity is a primary

concern, is:

( ) ( ) ( )( )

( )( ) ( )
f x fh nm fh nm

P pitch rad fhalt

= × + − +

−∑ + ∑

50 50 14

200

∆

∆µ (6.1)

The first term in the objective function represents the maximum difference in fly height

over the radius of the disk multiplied by a weighting of 50.  The next term represents the

difference in average fly height over the radius of the disk minus the target fly height of

14nm multiplied by a weighting of 50.  If the sum of these two terms is minimized to

zero, the resulting design will fly at all radii of the disk at the targeted fly height of 14nm.

The next term sums the pitch at each of the evaluation points and has the form of a

penalty function, i.e., it does not contribute to the objective function until the pitch at an

evaluation point is greater than 200µrad.  The weighting of this term is 1.  The final term

represents the sum of the maximum changes in fly height due to changes in ambient

pressure, at each of the radial evaluation points specified for the objective function.  The

weighting for this term is also 1.
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When positive pressure sliders experience a decrease in ambient pressure, the fly

height typically also decreases.  However, because sub-ambient pressure bearings balance

positive and sub-ambient pressure to achieve their bearing capacity, this is not necessarily

the case.  In consideration of this, the final term in the objective function calculates the

maximum difference in fly height at a single evaluation point on the disk due to changes

in ambient pressure and then sums over all evaluation points.  For the purposes of this

investigation, two ambient pressure conditions are used, one at standard temperature and

pressure and one corresponding to the ambient pressure and temperature at 2,000 meters

above sea level. The change in environmental conditions is realized in the equation as

changes in the mean free path of the air and the viscosity.

CONSTRAINTS

In the optimization example presented here, 14 parameters were allowed to vary.

Of these 14, 13 were geometric constraints as depicted in Figure 6.1.  Each box represents

two constraints because a vertex is allowed to move in two directions.  The lines

represent one constraint since the vertex in question is allowed to move in only one

direction.

The final variable included in the optimization was the recess depth.  It was

allowed to vary between 1 and 5 microns.  There is also the implicit constraint of

symmetry which does not add degrees of freedom to the problem.  The constraint of

symmetry is not necessary for a slider design.  Symmetry may be a desirable characteristic

of a slider for other drive-related design issues.  The symmetry constraint can be

implemented on a vertex by vertex basis, i.e., it may be desirable to retain symmetry for

some feature of the bearing design but not all.
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RESULTS

Figure 6.1 shows the original design as well as the design created by employing

the simulated annealing algorithm on the above stated objective function, subject to the

defined constraints.
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Figure 6.1:  Original (dashed) and optimal (solid) designs with constraints (all
dimensions in mm)

The most significant change was the reduction of the frontal area of the slider.

The rear of the slider underwent almost no variation from the original design although

parameters were available to allow changes.  The recess depth changed from 3 microns in

the original design to 2.35 microns in the optimized design.  The quantitative

improvements in the objective function are summarized in Table 6.1.
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Item Initial value Final
value

Percent
improvement

Total cost 1.16e+02 9.63e+00 91.7
∆fh 9.20e+01 3.00e+00 96.7
Variation
from
target

1.03e+01 3.33e-01 96.8

Altitude
Sensitivity

1.36e+01 6.300e+00 53.8

Table 6.1:  Objective function term values including weighting

It is seen that the overall objective function experienced considerable

improvement.  Due to the relatively high weighting given to the ∆fh and variation from

target terms, the optimized design had almost no variation from the design fly height

value of 14nm at any evaluation point on the disk when flying in standard temperature

and pressure conditions.  The pitch term was not included in the table because its value

never changed from zero, i.e., the pitch at any of the evaluation points never exceeded

200µrad.

Most importantly, the altitude sensitivity term improved considerably.  Figure 6.2

and Figure 6.3 show the change in fly height profile from standard temperature and

pressure to 2000m for both the original (Figure 6.2) and optimized (Figure 6.3) designs.

These figures demonstrate that the optimized design suffers a much smaller

decrease in fly height due to the increase in altitude.  In fact, the improvement exceeds

what is implied by the improvement in the objective function.  The altitude sensitivity

term is constructed by summing the maximum difference in fly height at each of the

evaluation points for different environmental conditions.  Because the original design did

not meet the design fly height of 14nm exactly, the altitude sensitivity term did not

completely reflect the decrease in fly height due to the increase in altitude.
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Figure 6.2:  Fly height profile of original design at ambient and 2000m equivalent
pressure
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Figure 6.3:  Fly height profile of optimized design at ambient and 2000m equivalent
pressure
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Note that the side rails of the slider expand for a greater bearing area.  The net

result is a design that does not experience any significant change in pitch (Table 6.2) and

has much less of a reduction in fly height due to an altitude change than the original

design.

inner
radius

middle
radius

outer
radius

sea level 95 138 180
2000m
above sea
level

94 141 186

Table 6.2:  Pitch of optimized slider in µrad at ambient and 2000m equivalent
pressure

To further improve the quality of the optimal design, the objective function

coefficients were changed so that the altitude insensitivity goal was weighted more

heavily.  The constraints in the problem were widened as well to provide a larger search

space over which to seek out the global optimum.  The objective function employed in

this search is

( ) ( )( )
( )( ) ( )

f x fh nm

P pitch rad fhalt

= × − +

− + × −
∑

∑ ∑
20 14

200 25 14µ
(6.2)

which represents an increase in the weight associated with the altitude sensitivity term.

Additionally, the first two terms in the objective function used previously have been

collapsed into a single term which sums the distance at each evaluation point from the

target fly height of 14nm.  The same technique is employed in the altitude sensitivity

term.  As described above, in the previous case the maximum difference over all altitudes

(2 in this case) at each evaluation point was summed.  The advantage of measuring the

difference in fly height from the target value is that these two terms (the first and last)
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will not be directly conflicting, i.e., using the previous scheme, the altitude sensitivity

term did not necessarily need to approach the target fly height value to be reduced.  Using

the previous scheme, if the fly height at standard temperature and pressure deviated from

the target value, the altitude sensitivity term could be minimized without ever

approaching the target fly height.  Employing the new scheme, these goals do not

compete directly.  They compete implicitly through the nature of the physics that govern

the problem.

The constraints that were employed in this case are depicted in the following

graph (Figure 6.4)
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Figure 6.4:  Constraints used in second altitude sensitivity optimization

The most significant difference in the constraint configuration between the first and

second optimization is that the sub-ambient pressure region and the trailing edge of the

bearing are given more freedom.
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The resulting optimal configuration is depicted in the following graph (Figure 6.5)
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Figure 6.5:  Optimal configuration of slider air bearing for second iteration of
altitude sensitivity optimization including constraints (recess depth = 2.23 microns)

The most notable difference between the original and optimal configurations is the

reshaping of the sub-ambient pressure cavity.  Sub-ambient pressure is developed under a

slider as a result of the expansion of inlet air through Couette flow due to a steep increase

of film thickness (Peng and Hardie, 1995b).  By giving the constraints that dictate the

geometry of the sub-ambient region greater range, the probability of creating a

configuration that balances the two terms appropriately is enhanced.  It creates a design

that is capable of maintaining the same pitch and fly height independent of ambient

pressure up to the equivalent ambient pressure of 2000m.  Consistent with this, the

trailing part of the air bearing does not change considerably, enlarging only slightly to

generate slightly more pressure at the rear of the slider.
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The resulting fly height profile of the slider is displayed in the following graph

(Figure 6.6)
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Figure 6.6:  Fly height profile of second iteration of optimized design at ambient and
2000m equivalent pressure

From the above graph (Figure 6.6), it is clear that the second iteration of the

optimized design came closer to achieving the goal of ambient pressure insensitivity.

This is an example of the simulated annealing algorithm satisfying the necessary

condition of improving (or at least achieving an equal value of) the optimal value of the

objective function for a search space that encompasses a previous search space.  It should

be noted, however, that the comparison is not direct because the weighting of the

objective function was different.

This result also demonstrates that the simulated annealing algorithm is capable of

optimizing multiple goals simultaneously.  In this specific example, the algorithm found a

configuration that maintained the target fly height at standard temperature and pressure



80

while minimizing the amount of fly height loss due to a change in ambient pressure.  In

fact, the above figure (Figure 6.6) demonstrates that it is possible for the design to

actually gain fly height with a loss in ambient pressure by appropriately balancing the

development of positive and sub-ambient pressure developed under the bearing.  The

following graphs (Figure 6.7, Figure 6.8) depict the pressure profiles under the slider for

both ambient pressure values while the slider is at the outer radius of the disk (31mm).
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Figure 6.7:  Pressure profile for second iteration of altitude insensitive design at
ambient pressure equivalent to sea level; calculated at outer radius of disk (31mm,

negative 17.39 deg. skew)
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Figure 6.8:  Pressure profile for second iteration of altitude insensitive design at
ambient pressure equivalent to 2000m; calculated at outer radius of disk (31mm,

negative 17.39 deg. skew)

The fly heights, positive pressure and sub-ambient pressure generated by these

operating conditions are summarized in the following table (Table 6.3).

operating
condition

mean free
path of air
(nm)

ambient
pressure (pa)

fly height
(nm)

positive
pressure (gf)

sub-ambient
pressure (gf)

sea level 63.5 1.01x105 14.0 3.77 -1.97
2000m 76.4 0.795x105 14.2 3.37 -1.57

Table 6.3:  Table of fly heights and pressure values for second iteration of altitude
insensitive design

Although the difference is not readily seen in the pressure profiles (Figure 6.7 and Figure

6.8) it is evident from the above table (Table 6.3) that positive and sub-ambient pressure

are both lost as the slider undergoes a change in operating conditions from the equivalent

of sea level to 2000m ambient pressure.  They are, however, balanced in such a way that

the fly height can be maintained constant.  This demonstrates the feasibility of  creating a

design that is insensitive to changes in ambient pressure.
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CONCLUSIONS

That a slider can fly at a targeted fly height at sea level and not experience

significant loss in fly height due to a change in altitude is demonstrated.  Although the

ambient pressure and mean free path of air change considerably between sea level and

2000m, the design was able to retain most of its fly height by balancing the positive and

sub-ambient pressure of the slider.  In fact, at the outer radius of the disk, the design

actually increased slightly in fly height.
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CHAPTER 7

SUB-AMBIENT PRESSURE OPTIMIZATION

INTRODUCTION

Optimization of the sub-ambient pressure that a slider develops is an attempt to

address a very practical consideration in the operation of hard disk drives, namely the

pickup of lubricant in the sub-ambient pressure cavity in designs that take advantage of

this feature.  Lubricant pickup in the subambient pressure cavity of air bearing sliders is a

genuine concern.  Because the flying characteristics of the slider change as the bearing’s

geometry changes, it is important to consider this effect.

If the sub-ambient pressure is reduced for a given slider with the external force

remaining fixed, it is clear that less positive pressure is necessary in order to maintain the

force balance.  This will likely force a change in the slider’s attitude.  The point of

concern, however, is at the magnetic read-write element of the slider.  Due to this, sliders

with different attitudes may achieve equal fly heights.  This is, in fact, the intent of the

current optimization.
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The sub-ambient pressure is calculated by taking the pressure output from the

CML air bearing design code and integrating it numerically in two dimensions.  The

integration scheme implemented takes the weighted average of the neighbors for a given

point and then normalizes by the area of the control volume under consideration.

Through cancellation it turns out, however, that the contribution is simply the nodal value

multiplied by the control volume area (Figure 7.1).  This is relevant due to the fact that an

unevenly spaced grid is employed.

delta y

delta x

Figure 7.1:  Example area used for pressure integration

MATHEMATICAL FORMULATION

OBJECTIVE FUNCTION

The objective function used for the sub-ambient pressure optimization is given

below (Eq. 7.1).
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∆ 14

µ
(Eq. 7.1)

The first term in the above objective function represents the maximum change in fly

height over the radius of the disk.  The second term represents the difference between the

average fly height over the radius of the disk and the target fly height of 14nm.  The third

term represents the sum of the roll values over the evaluation points.  The final term

represents the sum of the difference between the sub-ambient pressure and the target

pressure value over all the evaluation points.  If the final term is minimized to zero, the

sub-ambient pressure of the slider will be at the target value at every evaluation point.  In

this optimization, it is important to optimize the value of the roll.  If it is not kept in

check, it is possible that the final configuration would have a roll value that is

unacceptably large because increasing the roll is a simple path to achieving the specified

fly height on a design where the fly height is calculated at the side rail.

The objective function was evaluated at the following points (Table 7.1):

radius (mm) skew (deg.)
15.0 6.27
17.2 0.0
31.0 -17.0

Table 7.1:  Table of radius and skew values used in sub-ambient pressure
optimization

CONSTRAINTS

There were nine constraints used in this optimization.  They are depicted in the

following graph (Figure 7.2).  The constraint of symmetry is also imposed on the design

which is reflected in the final design.
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Figure 7.2:  Original (dashed) and optimized (solid) designs including constraints
for sub-ambient pressure optimization

The load acting on the slider was 3.5gf, located at the geometric center of the back

of the slider.  Neither the load nor the recess depth was varied in the attempt to minimize

the sub-ambient pressure the slider developed.  Typically, the sub-ambient pressure has a

strong dependence on the recess depth of the slider.  The intent in this case, however, is to

minimize the sub-ambient pressure only through manipulation of the bearing geometry.

NUMERICAL RESULTS

The initial and final values of the pressure, both positive and sub-ambient, are

tabulated as follows (Table 7.2):



87

Original design pressure
(g)

Optimized design
pressure (g)

radius
(mm)

skew
(deg.)

positive sub-ambient positive sub-ambient percent
improvement

15.0 6.27 8.49 -4.99 8.26 -4.76 4.61
17.2 0.0 8.94 -5.44 8.71 -5.21 4.23
31.0 -17.0 10.24 -6.74 9.89 -6.39 5.19

Table 7.2:  Table of pressure values for original and sub-ambient pressure
optimized slider designs

The above table (Table 7.2) indicates that the improvements in the sub-ambient

pressure term were slight.  It should be noted, however, that the recess depth was not

varied in this optimization.  The purpose of the study was to determine if sub-ambient

pressure could be effectively manipulated strictly through control of geometry.

The pressure profiles for the original and optimized designs, calculated at the

outer radius are shown below (Figure 7.3 and Figure 7.4).
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Figure 7.3:  Pressure profile of original design at outer radius
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Figure 7.4:  Pressure profile at outer radius of sub-ambient pressure optimized
design

The above figures (Figure 7.3 and Figure 7.4) show that changes in the pressure

profile are, in fact, very subtle.  A more dramatic change in the sub-ambient pressure

value would require much wider ranges for the constraints placed on the problem and

inclusion of the recess depth as a parameter.

CONCLUSIONS

This chapter discusses the use of optimization for the purpose of reducing the sub-

ambient pressure that an air bearing develops without changing its flying characteristics.

It is shown that the even through control of slider geometry alone, it is possible to achieve

a measurable deduction in the amount of sub-ambient pressure the slider develops.

Coupling the ability for improvement based on geometric modification with the

improvements afforded by recess depth variation, the sub-ambient pressure that a slider

develops can be manipulated without changing the flying characteristics.
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The ultimate goal of the optimization is to limit the amount of lubricant that the

slider will pick up while operating.  This facet of the optimization was not verified

experimentally.  It has been demonstrated, however, that sub-ambient pressure

optimization is possible which implies that if a better understanding of the lubricant

pickup process were developed, that model could be built into the optimization

procedure.  For example, if the largest determining factor regarding lubricant pickup was

the maximum sub-ambient pressure under the bearing or the integrated sub-ambient

pressure in the region directly behind the positive pressure rail then either of these

quantities could be minimized in pursuit of a design that had lower lubricant pickup.
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CHAPTER 8

OPTIMIZATION OF AIR BEARING DYNAMIC

PERFORMANCE

INTRODUCTION

Due to the demand for increased storage density for computer hard disk drives,

the minimum fly height for read/write heads and the sliders that house them has

necessarily decreased significantly.  The fly height for sliders in current commercial

drives is in the range of 40 to 50nm and below.  Research for future drives targets fly

heights that are in the range of 15 to 20nm and below.  Since this fly height is on the

order of the roughness of many disks, it is reasonable to expect that the slider will

periodically contact the disk.  Even when direct physical contact does not occur, the

roughness of the disk can contribute to modulation of the fly height of the slider. So, in

addition to achieving the goal of slider fly heights at the 15 to 20nm range, dynamic

stability is also sought.  One approach for achieving lower dynamic fly height modulation

is to increase the vertical stiffness of the bearing, that is, to increase the applied load

necessary to effect a unit change in the fly height.  Because the pitch and vertical modes
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of the slider are coupled, the pitch stiffness should also be maximized.  The stiffness can

be cast as a sensitivity by simply taking its inverse which can be subsequently minimized.

Adding the goal of sensitivity minimization to the more basic goals of low fly height and

fly height uniformity across the disk, among others, typically creates a slider design that

has a lower fly height modulation.  This work shows that this is not always true, however.

The stiffness, and consequently the sensitivity, that is calculated from the static

bearing analysis code does not include the time-varying nature of the Reynolds’ equation.

Because of this, the stiffness that is predicted is typically low and does not take into

account the non-linear stiffening that occurs as a result of transient fly height decrease.

The comparison, however, is consistent in that the method employed for calculating the

stiffness values is uniform.

In the second section of this chapter, a different approach is taken in an attempt to

minimize the dynamic fly height variation.  The approach is to minimize the sliders

sensitivity to crown.  (Crown is defined as the maximum height of a parabola that is

pinned to the front and back edges of the slider.)  The slider’s dynamic response can be

characterized as a response to the changing surface heights that it sees as it travels along

the disk surface.  The conformity of the slider to the disk surface is considered the

effective crown of the slider (Stanley, 1993) and affects the spacing variation directly

(Zhu, 1988).  By minimizing the static sensitivity to crown, the intent is to minimize the

sensitivity to effective crown that the slider sees.  In effect, the procedure hopes to filter

out the frequency in the response of the slider to the disk that corresponds to the slider’s

length.  Although it is a single frequency in a continuous response, it is a frequency that

makes a major contribution to the variation of the fly height.  The results show that if the
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nominal design is not changed considerably then a slight improvement in dynamic fly

height variation can be achieved, however, if the design is changed considerably then the

improvement in performance is not necessarily realized.  The former is essentially finding

the partial derivative with respect to the crown sensitivity which would account for the

slight performance improvement whereas the former

MATHEMATICAL FORMULATION:  SENSITIVITY

OPTIMIZATION

OBJECTIVE FUNCTION

The cost function that is defined for this problem is:

( ) ( ) ( )( ) ( )

( )( ) ( )( )
( )( )

f x fh nm fh nm roll rad

P pitch rad VS nm
g

PS rad
g mm

= × + − + ∑ +

−∑ + × −∑ +

× −∑ −

50 0 50 0 14

200 50 0 10 0

10 0 50 0

. .

. .

. .

∆ µ

µ

µ

(8.1)

The first term in the objective function represents the maximum difference in fly height

over the radius of the disk multiplied by a weighting of 50.  The next term represents the

difference in average fly height over the radius of the disk minus the target fly height of

14nm multiplied by a weighting of 50.  If the sum of these two terms is minimized to

zero, the resulting design will fly flat over the radius of the disk at the targeted fly height

of 14nm.  The next term represents the sum of the absolute value of the roll of the slider

at the three points used to evaluate the objective function (the inner radius, center radius,

and outer radius).  The next term sums the pitch, similar to the roll term, except that it has

the form of a penalty function, i.e., it does not contribute to the objective function until
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the pitch is greater than 200µrad.  The penultimate term represents the sum of the slider

air bearing vertical sensitivity to load at each of the evaluation points minus the target of

10nm/g multiplied by a weighting of 50.  The final term represents the sum of the slider’s

pitch sensitivity at each of the evaluation points minus the target of 50 µrad/g-mm

multiplied by a weighting of 10.  By minimizing all of these terms simultaneously, an air

bearing slider can be obtained that satisfies the basic design criteria, i.e., a flat fly height

profile at the target fly height and roll minimization, and, presumably, a more advanced

criterion, i.e., minimization of the fly height due to changes in the applied loads.  The

weights associated with each term are indicative of their relative importance.

CONSTRAINTS

In the optimization, 14 variables were allowed to vary.  Of these 14, 13 were

geometric constraints which are depicted in Figure 8.1.
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Figure 8.1:  Original design with geometric constraints (all dimensions in mm)
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The final variable included in the optimization was the recess depth.  It was allowed to

vary between 3 and 5 microns.  All vertices that are symmetric to the vertices that are

used as parameters in the optimization are made to vary symmetrically about the center

line of the slider.

NUMERICAL RESULTS

After employing the simulated annealing algorithm on the above stated objective

function subject to the defined constraints, the following improvements were made (Table

8.1):

Item Initial value Final value Percent
improvement

Total cost 1224.0 585.9 52.1

∆fh 101.0 126.1 -19.9

Variation
from target

122.2 158.2 -29.5

Roll 5.23 43.3 -727.4

Vert. sens. 665.1 88.8 86.6

Pitch sens. 330.5 169.6 48.7

Table 8.1:  Table of objective function values at inception and conclusion of
optimization (values include weighting factors)

It is clear from the above table (Table 8.1) that, although the overall objective

function made a considerable improvement, certain terms actually worsened.  This is an

inherent difficulty of multi-objective optimization.  Due to the weightings, however, this

reduction in optimality actually represents a very small physical change.  The weighting

of the ∆fh term is 50.0 which implies that, although the term worsened by nearly 20%, the

increase was only by 0.5nm.  Similarly, for the difference from target term (second in the
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objective function), the actual increase amounts to about 0.5nm. The roll term, however,

due to its relatively small weighting, worsened considerably but its value was not

considered crucial in the optimization procedure because the slider fly height is taken at

the center of the slider.  Its small weighting is indicative of this.  The pitch term was not

included in the table because its value never changed from zero, i.e., the pitch at any of

the evaluation points never climbed above 200µrad.

Due to the small physical change in the first two terms and the relative

unimportance of the roll term, our attention shifts to the sensitivity optimization terms.

The vertical and pitch sensitivity terms both enjoyed a significant increase in optimality.

The weighting of the vertical sensitivity term was 50.0 which implies that the final design

came very close, physically, of satisfying the goal of 10nm/g.  The original and final

vertical stiffness values at the outer radius were 13.1 nm/g and 9.76 nm/g respectively.

The values for the pitch sensitivity were 48.2 µrad/g-mm and 37.2 µrad/g-mm

respectively.

At the conclusion of the optimization, the design had the form shown in Figure

8.2.
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Figure 8.2:  Optimized design (solid) with original design (dashed) and constraints
(all dimensions in mm)

The recess depth of the final design was 3.1 microns, very close to the lower value of the

constraint on the parameter.

At this point in the optimization, the new design shares the same characteristics

with regard to the first two terms in the objective function as the original design, a larger

roll (2.2 µrad originally vs. 28.6 µrad at the outer radius) and a considerably lower

vertical and pitch sensitivity.  One might expect this to lead to a smaller dynamic fly

height modulation when flown over a non-flat surface.  The opposite, however, was

found to be the case.

The CML Air Bearing Dynamic Simulator (Hu, 1995) was employed to simulate

the fly height of both the original and optimized design.  The simulation considered the

slider flying over a non-flat surface.  The disk track data was taken from a measurement

of an actual disk using a Zygo white light interferometer.  The measured data had a

standard deviation of 15.2 nm from its mean plane.  The measured profile after high pass
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filtering is shown in Figure 8.3.  The simulation results for this track are shown in Figure

8.4 and Figure 8.5.  The discrepancy in the mean fly height is accounted for by the fact

that the dynamic fly height simulation was done at the outer radius of the disk (31mm)

where the original design’s static fly height dipped to roughly 10nm.  The standard

deviation of the dynamic fly height modulation was 0.878 nm and 1.16 nm for the

original and optimized designs respectively.  The plots (Figure 8.4 and Figure 8.5) for the

absolute fly height of the slider at the read-write element point (25 microns forward of the

absolute back of the trailing edge) depict graphically that the fly height variation is indeed

greater for the optimized design.

The dynamic simulations covered 16ms of real time with one µs time steps.  The

simulation was done at the outer radius of the disk (31mm) with a rotational speed of

5400rpm.  The plots shown for the dynamic fly height modulation start at the 200th time

step, or, equivalently, at 200µs.
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Figure 8.3:  Measured, filtered surface used in dynamic fly height simulation
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Figure 8.4:  Calculated absolute fly height of original design

The reason for this is that the simulation has an initial fly height for the slider that is far

above its mean dynamic fly height.  In order to compare the deviations in fly height of the



99

two designs meaningfully, the first two hundred steps were omitted in the calculation so

that the true dynamic nature of the bearing would be illustrated.
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Figure 8.5:  Absolute fly height of optimized design

MATHEMATICAL FORMULATION:  CROWN SENSITIVITY

OPTIMIZATION

OBJECTIVE FUNCTION

The cost function is redefined to represent the desire to minimize the crown

sensitivity  The function is written as (Eq. 8.2):

( ) ( )( ) ( )
( )

f x fh nm roll rad

P pitch Scrown

= × − + +

+ × − + ×

10 0 14

10 0 200 20 0

.

. .

µ
(8.2)

As in chapter 6 above, the objective function (Eq. 8.2) has combined the first two terms

from the previous objective function (Eq. 8.1).  The objective function also contains
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terms that minimize the roll and limit the pitch through use of a penalty function.  The

last term in this equation represents the crown sensitivity term.  The intent, as described

above, is to minimize the slider’s sensitivity to crown.  Its weighting is greater than any

other term in the objective function which indicates its relative importance in the

optimization.  None of the terms is summed due to the fact that only a single evaluation

point was used in calculating the objective function.  The evaluation point chosen was at

the outer radius of the disk (31mm radius, -17.39 deg. skew).

The crown sensitivity term is defined as the change in fly height due to changes in

the crown.  Calculation of numerical derivatives can, however, lead to wildly inaccurate

values.  The following graph (Figure 8.6) depicts the fly height of the original design

versus crown.  The nominal crown value is 10nm and the nominal fly height is 12.6nm.

The lighter colored line represents calculation of the fly height calculated by recreating

the computational grid at each evaluation.  The darker line represents the fly height

calculated by creating the computational grid at the nominal crown value and then

retaining that for calculations at all the neighboring points.  As mentioned above, if the

numerical derivative were to be calculated using the former method, it would poorly

predict the actual sensitivity.  Using the latter method, the derivative calculation is much

more accurate (Figure 8.7).  The derivative is a simple, two-point backward difference.

Figure 8.7 depicts the value of the derivative at each point versus the nominal crown

value.  Using the method of grid retention in calculating the fly heights yields a linearly

varying curve (Figure 8.6) which in turn yields a nearly constant sensitivity value.

Through inspection of these graphs, it is clear that when calculating the crown sensitivity,
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the change in crown should be at least 2nm.  This was the value chosen for the

subsequent calculations.
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Figure 8.6:  Fly height versus crown for original design (light colored line:  same
computational grid for all points, dark line:  new computational grid created at each

point)
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Figure 8.7:  Sensitivity calculated from fh vs. crown data (light colored line:  same
computational grid for all points, dark line:  new computational grid created at each

point)

CONSTRAINTS

The constraints employed in this optimization were exactly the same as those used

in the sensitivity optimization (Figure 8.1).  The initial condition was taken to be the

same as well.

NUMERICAL RESULTS

The following figure (Figure 8.8) depicts the initial solution (dark line), the

optimal solution (light line) and the constraints (as described above).  The design has not

changed appreciably.  The most pronounced difference comes at the back of the main rail

where the two “feet” have been extended slightly.  The improvement in the objective

function, however, was marked for the crown sensitivity term.
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Figure 8.8:  Original and optimal design with constraints (normalized coordinates)

The fly height targeted was achieved and the crown sensitivity was reduced from

0.33nm/nm to 0.09nm/nm which led to a reduction in dynamic fly height variation

(simulated over a measured disk) from 8.78e-10m for the original design to 8.45e-10m

for the optimized design (standard deviation from mean fh).  This equates to a 3.8%

improvement.  Although, the improvement is slight, it is in the standard deviation and not

peak to valley.

The progression of the objective function is depicted in the following graph

(Figure 8.9):
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Figure 8.9:  Objective function value vs. iteration number for first crown
optimization

The progression of the crown term is depicted in the following graph (Figure

8.10):
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Figure 8.10:  Crown term value vs. iteration number for first crown optimization
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The progression of the crown term shown in the above graph (Figure 8.10) shows

that an even greater improvement is possible.  Because the optimization procedure

balances all terms that exist in the objective function, the crown term’s minimum value

occurred previous to the optimal configuration.  This implies that if the weighting of the

crown sensitivity were greater, it could be minimized further ideally providing an even

greater improvement in dynamic fly height variation.

Based on this observation, the objective function was rewritten as (Eq. 8.3):

( ) ( )( ) ( )
( )

f x fh nm roll rad

P pitch Scrown

= × − + +

+ × − + ×

10 0 14

10 0 200 100 0

.

. .

µ
(8.3)

The only difference between Eq. 8.2 and Eq. 8.3 is that crown sensitivity term is weighted

with a factor 100.0 in the latter as opposed to only 20.0 in the former.  The design that

resulted from this modification of the objective function is shown below (Figure 8.11).
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Figure 8.11:  Original and optimal designs (including constraints) for second crown
sensitivity optimization
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The original and optimal design vary significantly in this case.  The front of the air

bearing has been moved up and flattened, the sub-ambient pressure cavity has been

widened, the side rails have been thinned and the trailing edge has been moved up.  It is

expected that to achieve a reduction in crown sensitivity, the surface area of the bearing

would be reduced.  It is clear from the above graph (Figure 8.11) that this is, in fact the

case.

Although this design also satisfied the fly height objective and further improved

on the crown sensitivity--from 0.09nm/nm to 0.035 nm/nm--the dynamic fly height

variation worsened--from 8.4967e-10m to 9.5907e-10m (measured in standard deviation

from mean fh).  This represents a 12.9% increase in fly height variation.

CONCLUSIONS

It is shown above that improvement in the vertical and pitch stiffness of an air

bearing does not ensure that the dynamic fly height modulation will decrease.  It is also

show that strict improvement of the crown sensitivity of a slider does not necessarily

improve the dynamic fly height variation.  In all optimizations, the goal was ostensibly

achieved, i.e., the static characteristic pursued was satisfied.  This demonstrates, however,

that optimization of static parameters does not necessarily improve dynamic bearing

characteristics.
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CHAPTER 9

SUSPENSION OPTIMIZATION

INTRODUCTION

In all of the previous examples, the simulated annealing algorithm was applied to

air bearing sliders.  In this chapter, the algorithm is applied to the problem of suspension

design.

In hard disk drives, sliders house the magnetic elements that read and write data to

the spinning magnetic disks.  The slider’s position is controlled to access different

sections on the disk.  In modern disk drives, this position control is achieved through a

rotary voice-coil motor.  Connected to this motor is a relatively rigid actuator arm which

is in turn connected to a suspension-gimbal assembly.  At the end of this assembly is the

slider.  The suspension is designed to have dynamic characteristics that allow the slider to

follow tracks on the spinning magnetic disk as closely as possible.  Disks inside the disk

drive have some amount of distortion due to manufacturing variance and clamping.  This

variance is called runout.  The slider’s ability to follow this runout without varying its

spacing from the disk is called slider following capability (Utsunomiya, et. al., 1996).
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The difficulty that arises in designing suspensions that maximize slider following

capability is that there is a trade-off between stiffness in the seek direction (motion of the

slider in the radial direction) and compliance in the roll and pitch direction which decide

the slider following capability (Tokuyama, et. al., 1987).  Further, the suspension should

preserve frequency response to improve actuator servo design.  If there are large

resonances between 0 and 20kHz, large off-track error can occur (off-track error is

defined as deviance in radial position of the slider from its targeted value).

Yang and Tu (1996a) proposed optimization of suspension assemblies

(suspension and gimbal) that consisted of raising the natural frequencies of the

suspension in order to improve the servo system response.  The design variables

employed controlled the shape of the suspension.  The suspension type optimized,

however, was for a linear actuator system (one that moves the slider across the disk along

a single radius) which is typically found in earlier drive designs.  In the study, the natural

frequencies of the suspension were taken as terms in the objective function and sensitivity

analysis was performed at the conclusion of the optimization.  This optimized design was

then subjected to a control analysis where the performance was quantified (Yang and Tu,

1996b).  Control system performance will not be discussed in this thesis.

The suspension optimization investigated in this thesis will address the issue of

load force sensitivity.  The suspension supplies a force that acts on the top of the slider

that balances the air bearing force that the slider develops.  Of all the parameters that

affect the fly height of a slider, typically, the suspension force has the greatest impact.

The suspension force is created by initially manufacturing the suspension with a bend

angle then subsequently making the suspension flat.  The residual stress that exists in the
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suspension structure creates the downward force mentioned above.  In the course of

manufacturing and handling, however, the bend angle can be inadvertently changed.  The

result of this will be to change the downward force acting on the slider.  The amount of

change, however, is dependent on the sensitivity of the design.  This value, known as the

spring rate is the objective function that will be minimized.

The basic structure that is being optimized is shown below (Figure 9.1, Figure 9.2

and Figure 9.3).

Figure 9.1:  Isometric view of half suspension assembly used in optimization

Figure 9.2:  Plan view of half suspension assembly used in optimization
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Figure 9.3:  Bottom view of half suspension assembly used in optimization

MATHEMATICAL FORMULATION

OBJECTIVE FUNCTION

The objective function to be minimized is simply the spring rate of the

suspension.  The spring rate is defined as the change in force due to a change in deflection

at the cantilevered end of the suspension.  It is calculated using the Ansys finite element

analysis package.  The parameters are generated by the simulated annealing algorithm and

passed to Ansys which then performs the analysis that determines the spring rate.  This

information is then read back into the simulated annealing algorithm and the process is

repeated until one of the stopping criteria defined in chapter 5 is met.  The objective

function is simply written as:

( )f x krate= (9.1)

where x is combination of parameters defined below.

Two combinations of cooling schedule and acceptance criteria are used.

Specifically, using the cooling schedule defined in Chapter 5 (eq. 5.20), the values for α

and β for each combination were (2,2) and (1,2), respectively.  The second of these two
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combinations lowers the temperature more slowly, i.e., it allows for more configurations

to be examined before termination of the algorithm.

CONSTRAINTS

The parameters employed in the optimization control the structure of the base of

the suspension.  As described above, the suspension attaches to the actuator arm through

the suspension base.  It is here that the bend angle is defined.  Through varying the length

of the base and its width, the spring rate can be optimized.  An outline of the structure

that is being optimized is shown below.

slot offset

slot width (from reference)

radius thickness

Figure 9.4:  Frame of suspension base used in optimization

The parameters that control the shape of the base are the so-called slot offset, slot

width and radius thickness.  The slot offset is the distance from the actuator arm to the

beginning of the suspension assembly shown above (Figure 9.1).  The slot width is the

thickness of this region when added to a reference value and the radius thickness is the

thickness of the flange that runs the length of the suspension assembly.  All dimensions
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are given in millimeters.  The following table (Table 9.1) gives the parameter ranges and

initial values.

Parameter lower value upper value initial value
slot offset 0.1 2 0.1
slot width 0.1 0.3 0.3
radius thickness 0.0254 0.0572 0.0381

Table 9.1:  Table of parameter ranges and initial values

NUMERICAL RESULTS

The progression of the parameter and cost temperatures for the first cooling

schedule employed is shown below (Figure 9.5).
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Figure 9.5:  Plot of cost (upper) and parameter (lower) temperatures vs. iteration

Similar to the plots shown in chapter 5, there are two curves on the above graph.  The

upper curve represents the cost temperature which has a non-uniform rate of decrease due

to the linkage of temperature decrease to acceptance criterion as described in chapter 5.
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The lower curve represents the parameter temperature that decreases uniformly due to the

fact that it is only linked to the iteration number.

The objective function progression is shown in the following plot (Figure 9.6).
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Figure 9.6:  Progression of objective function vs. iteration

In the above figure (Figure 9.6), there are three lines.  The line that bounds the

other two from above represents the cost associated with each configuration generated.

The line that bounds the other two from below is the progression of the optimal solution.

The line that sits between these two is the progression of the currently accepted state as

described in chapter 5.  From this graph we can see that the objective function has a high

sensitivity to one or more of the parameters in the problem perhaps even a combination of

them.  The following table (Table 9.2) shows the value of the parameters at the

conclusion of the optimization.
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Parameter Final value
slot offset 0.575
slot width 0.179
radius thickness 0.0268

Table 9.2:  Table of final parameter values

The initial and final values of the objective function corresponding to the

parameter sets given (Table 9.1 and Table 9.2) are 31.85 and 25.21 respectively.  The

units of the spring rate are mN/mm.

Using the second cooling schedule mentioned above (alpha, beta) = (1,2) yielded

the following temperature plot (Figure 9.7).
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Figure 9.7:  Plot of cost (upper) and parameter (lower) temperatures vs. iteration for
second cooling schedule

The above plot (Figure 9.7) shows that this cooling schedule reduced the

temperatures in a much more gradual fashion than previous one (Figure 9.5).  This

allowed a greater number of configurations to be considered before termination of the

algorithm.  Because the cooling schedule lowers the temperature more slowly than the
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previous cooling schedule, the result achieved is expected to be better, i.e., the algorithm

is coming closer to the asymptotic equalities described in chapter 5 that are necessary for

global convergence.  A plot of the objective function value versus iteration (Figure 9.8)

shows that near the outset of the algorithm, the minimum value was found and that as the

algorithm concluded, it was approaching this value asymptotically.  This is an example of

the balance that has to be achieved in a finite-time algorithm--speed versus quality of

solution.  Were the algorithm to continue, it would eventually arrive at the absolute

minimum it achieved earlier in the solution process.
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Figure 9.8:  Progression of objective function vs. iteration for second cooling
schedule

It is evident from the above plots (Figure 9.6 and Figure 9.8) that when the

cooling schedule lowers the temperature more slowly, the final solution is more optimal.

Even the value that is being approached asymptotically by the algorithm when the second

cooling schedule is used is more optimal than the final value achieved when the first
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cooling schedule is used.  This is consistent with the derivation of the algorithm given in

chapter 5.

CONCLUSION

This chapter gives an exposition of the issues related to suspension optimization

and provides an example of one such optimization using two different cooling schedules.

The objective function minimized was the spring rate of the suspension which has a large

impact on the manufacturability of a suspension.  It is shown that structural optimization

is feasible and that, due to the sensitivity of the parameters involved, a cooling schedule

that lowers the temperatures more slowly is necessary.
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CHAPTER 10

CONCLUSIONS AND FUTURE WORK

CONCLUSIONS

It has been demonstrated throughout the course of this dissertation that the

concept of applying global optimization to the problems of air bearing slider and

suspension design is tractable and achievable.  The results of the many example problems

support this claim.

Chapter 1 provided an introduction to the field of hard disk drive research.  The

relationship between slider disk spacing and storage density is explained.  The continuous

reduction of this spacing over the years is shown.  This chapter also provides a basic

introduction to and motivation for optimization as it relates to hard disk drive design.

Some of the reasons that make the problem interesting are discussed.

Chapter 2 discusses the solution of the Reynolds’ lubrication equation.  Starting

with the generalized equation, the process of solution is described step by step.  The

method of control volume discretization is discussed followed by the coupled line-
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sweeping multi-grid method of solution.  Various details of the implementation are

described and their relevance to the optimization procedure is explained.

Chapter 3 provides a thorough introduction to modern day optimization

techniques.  Both deterministic and stochastic methods are discussed in detail.  The

mathematical details are also described at length.  The strengths and weaknesses of the

various methods are described as well as their suitability for various types of problems.

Chapter 4 compares the Simulated Annealing (SA) and Genetic Algorithm (GA)

optimization methods.  Through comparison of these two stochastic methods it is found

that SA is better suited for slider air bearing optimization.  This chapter also demonstrates

that the SA algorithm is, indeed, capable of finding global minima over a complicated

search space.  This verification was achieved by mapping the objective function over the

entire search space, determining exactly where the global minimum was and correlating it

to the result the algorithms obtained.

After determining that SA would be the method of choice, Chapter 5 gives a

thorough development of the algorithm.  The implementation that is specific to this

research is shown through use of an example problem.  The description of the algorithm

given in this chapter is used throughout the remainder of the work.  Chapter 5 also

provides the theoretical basis for SA’s ability to find global optima.

Chapter 6 discusses the application of SA to the problem of slider altitude

sensitivity optimization.  This chapter gives background for the importance of this

problem and formulates it for solution by SA.  The result demonstrates that SA is capable

of optimizing a slider design with complex constraints and multi-goal objective function.
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Further, it demonstrates that SA satisfies the necessary condition that expanded search

spaces yield superior objective function values.

Chapter 7 discusses the application of SA to the problem of sub-ambient pressure

minimization.  This is an attempt to control tribological characteristics of the slider

through characteristics of the air bearing.  This chapter demonstrates, again, that problems

with complex constraints and a multi-goal objective function can be minimized through

the use of SA.

Chapter 8 examines the application of SA to the problem of slider dynamic fly

height variation.  Through modification of static characteristics of the bearing, an attempt

was made to modify the dynamic characteristics of the bearing.  Although the

optimization algorithm optimized the quantities that were included in the objective

function, the resulting designs did not minimize the dynamic fly height variation.  If the

optimization routine could be effectively coupled with dynamic simulation, the problem

could be solved directly.  However, due to the prohibitive cost associated with dynamic

simulation, the approach was not considered feasible.

Chapter 9 probes the application of SA to the problem of suspension optimization.

It demonstrates that the procedure of structural optimization is possible through

application of the SA algorithm using an appropriately generous cooling schedule.

In sum, the problem of slider air bearing optimization has been examined in detail

using both theoretical and practical approaches and the problem of suspension design has

also been explored and has been shown to be feasible.
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FUTURE WORK

The problem of slider air bearing optimization has been presented in a very

general framework with specific examples provided.  The most fruitful direction to

follow would be the application of optimization to the problem of dynamic fly height

variation.  If the controlling characteristics could be determined more exactly, the

optimization procedure could improve more consistently, the dynamic fly height

variation.  The area that has the greatest amount of room for work, however, is

suspension optimization.  Coupling the work done here with that of Chang and Tu

(1996a) to find a suspension design that has both manufacturability and controllability

characteristics would be a significant contribution to the field of hard disk drive research.
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APPENDIX A

The CML Air Bearing Optimization Program Version 1.5
Matthew A. O’Hara and David. B. Bogy

Computer Mechanics Laboratory
Department of Mechanical Engineering

University of California
Berkeley, CA 94720

Abstract

This report presents a detailed description of the air bearing optimization program developed

at the Computer Mechanics Laboratory at the University of California at Berkeley. The code

provides the tools necessary for the optimization of air bearing designs.  Version 1.5 is an

update from the previously released optimization program.

The optimization implemented is a variation of the simulated annealing algorithm.  The tech-

nique does not make use of numerical derivatives in the search for an optimum, rather it

makes use of a neighborhood function.  Further, it will achieve a global optimum in the pres-

ence of multiple local optima.

The program implements the CML Air Bearing Design Program to evaluate the quality of

different designs.  Therefore, it is necessary for the design program (version quick300) to

be available and working in order for this optimization program to be used.

The method is capable of multi–dimensional optimization with multiple goals being simulta-

neously satisfied.
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1.  Introduction

The algorithm implemented to optimize air bearing slider designs is a variation of the Simu-

lated Annealing optimization algorithm.  This algorithm is a stochastic optimization tech-

nique that is modeled after the physical process of annealing.  The algorithm does not make

use of function derivative information, either analytical or numerical.  Instead, it uses a

neighborhood operator to find the global optimum.  The algorithm also achieves global opti-

mums in the presence of multiple local optima.  This has been shown for a specific case of

an air bearing slider[1], for which this technique is particularly well suited.

The optimization problem can be divided into two parts: constraints and cost function.  A

file, entitled “constraint.dat,” enables one to define the geometric and parametric constraints

for a problem and to control the weighting of the terms in the cost function.  To evaluate the

cost function for a given configuration, the optimization program makes use of the CML Air

Bearing Design Program[2].

2. Input and output

i. Input

The file constraint.dat is the only input file to the program (in addition to the files rail.dat,

steady.def, multcase.dat, and tol.dat which are necessary to run the CML Air Bearing Design

Program).  All variables that are not set explicitly in the constraint.dat file are taken from

the rail.dat and steady.def files.  A specific example of such data is the wall profile informa-

tion.  The wall profile is defined in the rail.dat file as described in the CML Air Bearing De-

sign Program manual.  Essentially, a series of linear segments can be connected to approxi-

mate a wall angle and/or edge blend that may result from a manufacturing process.  If such

a profile is defined, it often terminates at a recessed region of the slider.  When the recess

depth is varied in the optimization procedure, the wall profile must be modified.  The modifi-
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cation implemented is a simple scaling of both dimensions with the ratio of the current recess

depth to the original recess depth (Fig. 1.).

nominal wall profile

specified wall profileoriginal recess 
depth

box encompassing
original profile

box encompassing 
modified profile

modified recess 
depth

modified, specified wall profile

Fig. 1. Modification of wall profile 
under recess depth variation.

The first two lines of the constraint.dat file describe the format of the six parametric

constraints and should not be edited.  They are:

Format for non–geometric constraints:
variable name  lower value  upper value  initial value

The following six lines actually define constraints for the problem.  If a particular parameter

listed in these six lines is not desired for optimization, simply set the upper and lower bounds

to be equal. An example of how these lines would be written is:

load 2.5 3.5 3.0
x offset 0.4 0.6 0.5
y offset –0.1 0.1 0.0
taper length 0.8e–1 1.2e–1 1.0e–1
taper height 0.5e–6 1.5e–6 1.0e–6
recess depth 4.0e–6 6.0e–6 5.0e–6

Note that the taper length (but not the taper height) is given in normalized units, i.e., the de-

sired taper length range should be divided by the length of the slider before being entered

in constraint.dat which is consistent with the bearing design code.

The next line is a separator line and should not be edited.
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The following two lines describe how the geometric constraints should be constructed and

should also not be edited.  They are:

Format for original geometric constraints:
rail#   vertex#   dir   low val.   up val.   init val.

Below these lines is where geometric constraints are defined for the problem.  Multiple ver-

tices can be given a range in which to vary.  Each constraint takes up one line.  The upper

limit on the number of geometric constraints is 40.  The rail#  field defines on which rail the

vertex resides as defined in the CML Air Bearing Design program.  Similarly, the vertex#

field defines which vertex is to be varied on this rail and is also used as it is defined in the

CML Air Bearing Design program.  The dir  field defines in which direction a vertex is to

move.  The field should read x (or X) if the vertex is to move parallel to the direction of flow

or y (Y) if the vertex is to move in the direction transverse to the flow.  These conventions

are consistent with the CML Air Bearing Design program[2].  The low val. field gives the

lower value of the geometric constraint.  Note that all geometric constraints are given in

normalized coordinates, i.e., all physical coordinates are divided by the slider length with

the coordinate axes at the inner leading edge.  So, the trailing edge would have an x coordi-

nate value of 1, every point not at the back edge would have x coordinate values less than

1, and the outer edge would typically have a y coordinate that is less than 1 due to the rectan-

gular shape of most sliders.  The next field, up val., gives the upper limit on the value of the

constraint.  The following field, initial val. , gives the values that are used for the starting

point of the optimization.  Note that if a parameter range has lower and upper bounds that

are equal, i.e., this parameter is not to be included in the optimization, then the initial val.

field will be ignored and the value read in from the rail.dat that already exists in the current

directory will be used.

The next two lines describe how the symmetric constraints should be constructed and should

not be edited.  They are:
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Format for symmetric constraints
rail#   vertex#   dir   to be symmetric with:  rail#  vertex#

Below these lines is where symmetric constraints are defined for the problem.  Each line con-

sists of five fields.  The first two fields, rail# and vertex#, indicate which rail and vertex will

be varied symmetrically.  The dir  field defines in which direction the specified vertex should

vary.  The final two fields, (to be symmetric with:) rail#  and vertex#, define the vertex that

the current vertex will vary symmetrically with.

The next two lines describe how the relative constraints should be constructed and should

not be edited.  They are:

Format for relative constraints
rail#   vertex#   to be moved relative to:  rail#   vertex#

Below these lines is where relative constraints are defined for the problem.  A relative

constraint fixes a specified vertex to move with the same relative distance to another speci-

fied vertex throughout the optimization.  Each line consists of four fields.  The first two

fields, rail#  and vertex#, define which vertex will be moving relatively.  The second two

fields, (to be moved relative to:) rail#  and vertex#, define the vertex to move relative to.

The next section defines constraints on recess values for individual rails.  The first three lines

consist of a separator and two description lines and should not be edited.  They are:

*************************************************************
Format for rail height constraints
rail# low val. (m) up val. (m) init val. (m)

The first field, rail# , lists which rail will have its recess value varied in the optimization.

The next three fields, low val., up val. and init val. , define the lower and upper bound on

the constraint and the initial value used to start the optimization, respectively.  Directly fol-

lowing this is the relative rail height section.  The first two lines are description lines and

should not be edited.  They are:

Format for relative rail height constraints
rail# rail# to be moved relative to
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The two fields, rail#  and rail# to be moved relative to, define which rail will be varying

relatively and which rail will be the reference.

Typically, the optimization program evaluates slider fly heights, roll values, etc. at different

places on the disk.  Where, and how many of, these evaluations are made are described in

this section.  Two fields are needed to define exactly where the slider is to be evaluated for

purposes of the cost function.  The first field, radius, determines the radial distance from

the center of the disk and the next field, skew, determines the corresponding skew.  An exam-

ple of how this section might look:

*************************************************************
Format for evaluation points (from inner radius out):
radius(meters) skew(degrees)
0.015 1.22
0.019 –9.1
0.031 –17.39

The next section is the altitude sensitivity section.  The first two lines are a separator and

direction line and should not be edited.  They are:

*************************************************************
Altitudes in meters (one entry per line) (STP is always evaluated)

If no altitude sensitivity is to be performed, do not enter any value.  Only enter an altitude

value if altitude sensitivity is one of the terms to be included in the objective function.  An

evaluation is always made at the values provided in the steady.def file, therefore, this altitude

does not need to be entered.

The remaining section determines the weightings of the objective function.  The first two

lines of this section are a separator line and a description of the section and should not be

edited.

*************************************************************
Weightings for objective function:
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The following line is an informational line and should not be edited.  The following line

is the weighting for the maximum difference term in the objective function.  An example

of these two lines is:

weighting for maximum difference in fly height (nm):
1.0e0

The maximum difference term is defined to be the maximum difference in fly height at the

first fly height of interest for all the points specified in the evaluation points section, given

in nanometers.  The first fly height of interest is defined in the rail.dat file that exists prior

to the beginning of the optimization.  It is defined in the CML Air Bearing Design Program

manual[2], and it is the last two rows of the first column of the rail.dat file.  The penultimate

row is the normalized x value, e.g., 1.0 corresponds to the trailing edge, and the final row

corresponds to the normalized y value.  The next two lines in the constraint.dat file describe

and define the weighting for the difference between average and target fly height, which

is defined as the absolute value of the difference between the average of the first fly heights

of interest at the evaluation points and the target fly height that is described and defined in

the following two lines of the constraint.dat file.  An example of these lines is:

weighting for difference between average and target fly height(nm):
1.0e0
target fly height (nm):
14.0e0

This term is also given in nanometers.  The following two lines describe and define the

weighting for the sum of |roll values| term in the objective function.  An example of these

lines is:

weighting for sum of |roll values (urad)|:
1.0e0

At each evaluation point, the roll value is determined.  This term consists of the sum of the

absolute values of these roll values given in µradians.  The next four lines define the pitch

– pitch cutoff term in the objective function.  This term has the form of a penalty function.
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The term takes on no value until the pitch cutoff, given in µradians, is reached at any evalua-

tion point.  Beyond this, the term gains value for every µradian, multiplied by the weighting.

An example of these lines is:

weighting for sum of (pitch – pitch cutoff) (urad):
1.0e0
pitch cutoff (urad):
175

This is graphically depicted in Fig. 2.
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Fig. 2. Graphical depiction of pitch term in objective function

The next weighting is for the sum of vertical sensitivities term.  An example of the lines

that define this term is:

weighting for sum of vertical sens. sum(|eval. pt. value – tar-
get(nm/g)|):
1.0
vertical sensitivity target (nm/g):
10.0

This term is the sum of the inverse of the vertical stiffness of the air bearing at each of the

evaluation points minus the target value specified.  The next weighting is for the sum of

pitch sensitivities term.  An example of the lines that define this term is:
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weight for sum of pitch sensitivities:
1.0
pitch sensitivity target urad/(g–mm):
10.0

This term is the sum of the inverse of the pitch stiffness of the air bearing at each of the evalu-

ation points minus the target value specified.  The last sensitivity term is the sum of roll sen-

sitivities term.  An example of the lines that define this term is:

weight for sum of roll sensitivities:
1.0
roll sensitivity target urad/(g–mm):
10.0

This term is the sum of the inverse of the roll stiffness of the air bearing at each of the evalua-

tion points minus the target value specified.

An entire stiffness matrix is calculated by the CML Air Bearing Design Program (if desired)

by comparing the load, the x moment (pitch), and the y moment (roll) against the fly height,

pitch and roll of the slider.  The reason the stiffness is used is that the entire problem is a mini-

mization problem and by casting the stiffness as sensitivity, it can be added directly to the

objective function.  If any of the sensitivity weighting is non–zero, the stiffness calculation

will be carried out.  If sensitivity optimization is not desired in an optimization, these terms

should all be set to zero so that the bearing design program will not evaluate the stiffness

matrix.

The next section defines the weighting and target for the sum of sub–ambient pressure

term.

weighting for sum of sub–ambient pressures term sum(|neg. press – tar-
get(g)|):
1.0
sub–ambient pressure target (g) (note: give as absolute value)
3.0

The target for this term specifies, in grams, what value of integrated sub–ambient pressure

is desired at each evaluation point.  The motivation for including this term is the reduction

of cavity contamination buildup.
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The final weighting is for the altitude sensitivity term.  An example of the lines that define

this term are:

Altitude insensitivity term weighting (nm)
1.0

This term represents the sum of maximum difference in fly height at each evaluation point

due to changes in altitude, i.e., if more than two altitudes are specified in the altitude defini-

tion section then the fly heights at all altitudes for a given evaluation point are compared to

find the highest and lowest values.

ii. Output

Six output files are written by the program.  The file that tracks the progress of the optimiza-

tion is entitled opti_res.  This file writes the current annealing temperature, for both the pa-

rameters and the cost, the number of configurations generated so far, the number of configu-

rations accepted and the current optimal value of all the parameters used in the optimization.

Because it is inconvenient to write these values into the appropriate file (either rail.dat and/or

steady.def), the current optimal parameters are written into the files rail.dat.opt and stea-

dy.def.opt every time a new optimum is found.  So, if the program is terminated prematurely,

these files will be available for use in the simulator code.   The remaining three files contain

information about the code that simplify plotting  progress of the optimization.  The cost.dat

file contains information about every feasible configuration that is generated by the opti-

mization program.  The cost.dat file has 13 fields.  The fields are defined as follows:

1.  total cost

2.  difference in fly height term

3.  difference from target term

4.  roll term

5.  pitch term

6.  vertical sensitivity term
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7.  pitch sensitivity term

8.  roll sensitivity term

9.  sub–ambient pressure term

10.  altitude sensitivity term

11.  cost temperature

12.  parameter temperature

13.  number of feasible designs generated

The files nacost.dat and optcost.dat have one additional field:

14.  number of accepted designs

The file nacost.dat keeps a record of all accepted configurations and optcost.dat only keeps

track of optimal configurations, i.e., it is only updated when a configuration is found that

improves on the current best configuration.



139

Section 3. How to run the program

i.  How to compile

Create a new directory that will hold the simulator program.  Copy all the files in the distribu-

tion to this directory.  Usually this will be done by untarring a tar file.  The distribution file

is entitled: optiv1_5.tar.  The command to untar it would be:

tar –xvf optiv1_5.tar

Most UNIX machines come with the “make” utility.  If this is the case on your machine, sim-

ply type “make” at the UNIX prompt.  If not, then you need to enter a command that will

compile all of the files.  The following is an example:

cc –O –o opti anneal.c cost.c cost_status.c config_status.c init_con-
fig.c myrandom.c newconfig.c opti.c readconstraint.c readrails.c read-
steady.c rel_distances.c results.c write_rail.c write_steady.c  –lm

This will create the executable file opti.

ii.  quick300

In order for the optimization program to work properly, the CML Air Bearing Design pro-

gram needs to be running, specifically,  the version quick300.  All the files that are necessary

to run quick300 are necessary for the optimization program as well, specifically, rail.dat,

steady.def, tol.dat, multcase.dat.  The tol.dat and multcase.dat files should be formatted so

that the simulation program will be run only once.

iii.  Setting up a problem and running the program

The simplest way to keep track of different optimizations is to create a different subdirectory

for each case.  Make sure that quick300 and opti are in the search path of the computer so

that they can be run from any directory.  Copy the files necessary to run quick300 into the

newly created directory and copy a skeleton of the constraint.dat file from the directory

where the optimization program was created.  At this point, the easiest way to create the



140

constraints is to print out a copy of the rail design from the static design code and draw the

constraints.  Using this, fill out the constraint.dat file including appropriate values for the

parametric constraint section, the geometric constraint section, the evaluation points section

and the weighting section.  At this point, the program is ready to run.  To run simply type

opti  at the UNIX prompt.

Section 4. Example problem

This section uses an example problem to display all of the main features of the CML Air

Bearing Optimization Program.  To complete the first section of constraint.dat file, a deci-

sion has to be made regarding which parametric constraints to include in the optimization.

The example bearing chosen is a 50% slider, i.e., 2.00mm x 1.6mm, with a fixed load of 3

grams.  This implies that the upper val. and lower val. of the load constraint line will be equal.

The position of the loading force on the slider will also be taken as fixed in the “x” and “y”

direction.  The taper length is fixed but the taper height will be allowed to vary from 2.0 to

3.0 µm, which implies a range of taper angles between 10.0 and 15.0 mrad.  The recess depth

will be allowed to vary from a minimum of 4.0 µm, to a maximum of 8.0 µm.  Based on this

information, the first part of the constraint.dat file is:

Format for non–geometric constraints:
variable name  lower value  upper value  initial value
load(kg)  3.0e–3 3.0e–3 3.0e–3
x offset 0.5 0.5 0.5
y offset 0.0 0.0 0.0
taper length 1.0e–1 1.0e–1 1.0e–1
taper height 2.0e–6 3.0e–6 2.0e–6
recess depth 4.0e–6 8.0e–6 6.0e–6

Now, the geometry of the bearing is considered.  Take the following air bearing as the nomi-

nal design (Fig. 3.).  Note that the air bearing has only symmetric constraints and that it has

two independent constraints applied to the same vertex.   The first constraints to be consid-

ered will be the only two–dimensional original constraint.  The combination of these two

constraints creates a box about the vertex.   The vertices that are directly adjacent to this ver-
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tex and form a rectangle with it will be specified as relative constraints, i.e., they will main-

tain the same relationship throughout the course of the optimization.  The vertex that symet-

rically opposes the first constraint will be specified as a symmetric constraint.  The symmetry

will be maintained in both the x and y direction (corresponding to the direction of flow and

transverse to the direction of flow).  The vertices that surround this vertex (symmetric to the

vertices described above) will be specified as relative constraints.  It is important that these

be specified as relative constraints and not symmetric constraints because the order of updat-

ing for vertices is:

i.  original constraints,

ii.  symmetric constraints,

iii.  relative constraints.

Therefore, if the vertices on the rail with the symmetric constraint were also specified as

symmetric, they would not be updated.  This is because the originally constrained vertex

would be updated first, then the symmetric constraints would be updated which would not
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move these vertices since the relative constraints on the rail with the original constraint have

not yet been updated.

The second section of the constraint.dat file will have the following format based on the

numbering given in Fig. 3. and  Fig. 4.

2

3 4
5 6

78
910

1112

Fig. 4. Rail numbering

1 2
...

1
2

3
4

1

rail 1

rail 2

rail 3

*************************************************************
Format for original geometric constraints:
rail#   vertex#   dir   low val.   up val.   init val.
1       10         x     0.3        0.4       0.35
1       10         y     0.15       0.2       0.175
3       2          x     0.85       0.9       0.9
Format for symmetric constraints
rail#   vertex#   dir   to be symmetric with:  rail#  vertex#
2       3         x                            1      10
2       3         y                            1      10
Format for relative constraints
rail#   vertex#   to be moved relative to:  rail#   vertex#
1       3                                   1       10
1       4                                   1       10
1       9                                   1       10
2       4                                   2       3
2       9                                   2       3
2       10                                  2       3
3       3                                   3       2

Note that all of these values are in normalized coordinates.
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The third section of the constraint.dat file specifies constraints on variation of individual rail

heights.  The following will be used in this example:

*************************************************************
Format for rail height constraints
rail# low val. (m) up val. (m) init val. (m)
Format for relative rail height constraints
rail# rail# to be moved relative to

This means that none of the rails will vary in height during the optimization.

The fourth section of the constraint.dat file is controlled by the radius of curvature of the

suspension and actuator arm and the zero skew point.  For this example, three evaluation

points with the following values will be used:

*************************************************************
Format for evaluation points (from inner radius out):
radius(meters)   skew(degrees)
0.015      1.0
0.019      –8.0
0.031      –15.0

Note that the radii values are given in meters and that the the positive skew values occur when

the slider is at the inner radius.  (This skew definition is currently contrary to the IDEMA

standard.)

The next section of the constraint.dat file deals with the altitude sensitivity term.  This opti-

mization will not include the altitude sensitivity term, therefore, no altitudes will be specified

in the altitude section.

*************************************************************
Altitudes in meters (one entry per line) (STP is always evaluated)

The final section of the constraint.dat file will determine the composition of the objective

function.  Choosing the default of 1.0 for the maximum difference weighting is a good initial

value.  The remaining weights can be normalized to this.  The initial weighting for the differ-

ence from target fly height term should also be 1.0.  The target fly height will be taken to

be 50.0nm.  Note that in the constraint.dat file, the target fly height should be entered in

nanometers.  In this example, the roll minimization term will be included.  A weighting of
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1.0 is a reasonable initial value so that it will not predominate the calculation.  A value of

zero will be used for the pitch term.  This corresponds to the assumption that the pitch does

not have a direct impact on the air bearing’s performance.  Although this may not necessarily

be the case, we will still neglect it in this instance.  The weighting for the stiffness terms will

each be set to 1.0.  Frequently, these terms can predominate a calculation when the fly height

terms (maximum difference and difference from target) approach their minimum values of

zero.  In that instance, the weighting for non–sensitivity terms should be adjusted upwardly

or a higher target value should be used.  The problem lies in the fact that, feasibly, other terms

can go to zero, but clearly the sensitivity can never go to zero.  The sub–ambient pressure

and altitude sensitivity terms will not be employed in this example.

Using the above weightings, the final section would be:
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*************************************************************
Weightings for objective function:
weighting for maximum difference in fly height (nm):
1.0e0
weighting for difference between average and target fly height(nm):
1.0e0
target fly height (nm):
50.0e0
weighting for sum of |roll values (urad)|:
1.0e0
weighting for sum of (pitch – pitch cutoff) (urad):
0.0e0
pitch cutoff (urad):
175
weighting for sum of vertical sens. sum(|eval. pt. value – tar-
get(nm/g)|):
1.0
vertical sensitivity target (nm/g):
10.0
weight for sum of pitch sensitivities:
1.0
pitch sensitivity target urad/(g–mm):
10.0
weight for sum of roll sensitivities:
1.0
roll sensitivity target urad/(g–mm):
10.0
weighting for sum of sub–ambient pressures term sum(|neg. press – tar-
get(g)|):
0.0
sub–ambient pressure target (g) (note: give as absolute value)
3.0
Altitude sensitivity term weighting (nm)
0.0

Section 5. Hints For Successful Optimization

The example problem illustrates one of the subtleties of optimization––choosing the weight-

ing for the terms in the objective function properly.  A general rule is to weight the items of

greatest concern most heavily.  While this may seem obvious, it should be executed with

some care.  For example, if the most important characteristics of a specific design are that

it fly completely flat over the radius of the disk and at the target fly height, then those terms

need to be weighted roughly five times as heavily as the other so that in the course of the

optimization, the other terms, specifically the sensitivity terms, will not be minimized at the
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expense of these terms.  This is a difficulty that is inherent in multi–objective optimization

and cannot be avoided.

Also be aware that certain configurations that are created by the Optimization Program

(within the constraints defined by the user) may not fly.  If it turns out that an inordinate num-

ber of configurations are not flying, then the limits of the constraints should be narrowed.

Typically, this helps to limit the number of configurations that will not fly from being

created.

By summarizing the results of the optimization, we can gain further insight into the simu-

lated annealing process.

Figure 5 shows that the value of the objective function starts to level off near the conclusion

of the optimization.  This figure is a plot of  the value of the objective function versus the

number of feasible designs generated.  There are three lines in this plot.  The line that bounds

the other two from above is the objective function value of each design that is created.  The

abscissa of this plot is the number of feasible configurations generated.  The line that bounds

the other two from below is the current optimum value.  As the optimization procedure prog-

resses, the decrease of the objective function can be tracked via this line.  The final line is

a plot of currently accepted configurations.  This is a feature of the simulated annealing algo-

rithm.  Notice that the accepted configuration plot actually goes up over the course of the

optimization.  This allows the algorithm to overcome locally optimal solutions in the search

for the global optimum.

We can conclude from this two graph that a nearly optimal value is achieved, normally, when

the objective function starts to level off.

Finally, a practical consideration to keep in mind is that when the optimization is performed,

the CML Air Bearing Design Program is run multiple times.  Each time it is run, it creates

a stream of output.  If you run the optimization program as a batch job, be aware that if you
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147redirect the output of the program to a file, the file created may become extremely large.

Two different solutions to this problem are

i. run the job in an xterm or otherwise “detachable” window, or,

ii. run in batch mode but redirect the output to /dev/null.

The first case will allow you to monitor the progress of the optimization more closely, e.g.,

if you are having problems with configurations that are repeatedly crashing, and the second

will dispose of all the output information.  Note that it is not necessary to monitor the prog-

ress of the optimization normally because all useful information will be written into output

files.

The example case that was run for this manual used the command

opti > /dev/null &

where opti  is the name of the optimization program and  “> /dev/null”  is the re-

direction command to dispose of all output.

Fig. 5. Objective function vs. current number of feasi-
ble configurations
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APPENDIX B

Example listing of constraint.dat file

Format for non–geometric constraints:
variable name  lower value  upper value  initial value
load(kg)  3.0e–3 3.0e–3 3.0e–3
x offset 0.5 0.5 0.5
y offset 0.0 0.0 0.0
taper length 1.0e–1 1.0e–1 1.0e–1
taper height 2.0e–6 3.0e–6 2.0e–6
recess depth 4.0e–6 8.0e–6 6.0e–6
*************************************************************
Format for original geometric constraints:
rail#   vertex#   dir   low val.   up val.   init val.
1       10         x     0.3        0.4       0.35
1       10         y     0.15        0.2      0.175
3       2          x     0.85       0.90      0.9
Format for symmetric constraints
rail#   vertex#   dir   to be symmetric with:  rail#  vertex#
2       3         x                            1      10
2       3         y                            1      10
Format for relative constraints
rail#   vertex#   to be moved relative to:  rail#   vertex#
1       3                                   1       10
1       4                                   1       10
1       9                                   1       10
2       4                                   2       3
2       9                                   2       3
2       10                                  2       3
3       3                                   3       2
*************************************************************
Format for rail height constraints
rail# low val. (m) up val. (m)
init val. (m)
Format for relative rail height constraints
rail# rail# to be moved relative to
*************************************************************
Format for evaluation points (from inner radius out):
radius(meters)   skew(degrees)
0.015      1.0
0.019      –8.0
0.031      –15.0
*************************************************************
Altitudes in meters (one entry per line) (STP is always evaluated)
*************************************************************
Weightings for objective function:
weighting for maximum difference in fly height (nm):
1.0e0
weighting for difference between average and target fly height(nm):
1.0e0
target fly height (nm):
50.0e0
weighting for sum of |roll values (urad)|:
1.0e0
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weighting for sum of (pitch – pitch cutoff) (urad):
0.0e0
pitch cutoff (urad):
175
weighting for sum of vertical sens. sum(|eval. pt. value – tar-
get(nm/g)|):
1.0
vertical sensitivity target (nm/g):
10.0
weight for sum of pitch sensitivities:
1.0
pitch sensitivity target urad/(g–mm):
10.0
weight for sum of roll sensitivities:
1.0
roll sensitivity target urad/(g–mm):
10.0
weighting for sum of sub–ambient pressures term sum(|neg. press – tar-
get(g)|):
0.0
sub–ambient pressure target (g) (note: give as absolute value)
3.0
Altitude sensitivity term weighting (nm)
0.0
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APPENDIX C
Example listing of original rail.dat file
    3     1
  12   1   2
  0.0000e+00  0.0000e+00
  2.5000e–01  0.0000e+00
  3.5000e–01  2.5000e–02
  5.0000e–01  2.5000e–02
  6.0000e–01  0.0000e+00
  8.0000e–01  0.0000e+00
  8.0000e–01  2.0000e–01
  6.0000e–01  2.0000e–01
  5.0000e–01  1.7500e–01
  3.5000e–01  1.7500e–01
  2.5000e–01  2.0000e–01
  0.0000e+00  2.0000e–01
  0.0000e+00  3.0000e–03 
  0.0000e+00  6.0000e–06 
  12   1   2
  0.0000e+00  6.0000e–01
  2.5000e–01  6.0000e–01
  3.5000e–01  6.2500e–01
  5.0000e–01  6.2500e–01
  6.0000e–01  6.0000e–01
  8.0000e–01  6.0000e–01
  8.0000e–01  8.0000e–01
  6.0000e–01  8.0000e–01
  5.0000e–01  7.7500e–01
  3.5000e–01  7.7500e–01
  2.5000e–01  8.0000e–01
  0.0000e+00  8.0000e–01
  0.0000e+00  3.0000e–03 
  0.0000e+00  6.0000e–06 
  4   1   2
  1.0000e+00  2.8000e–01
  9.0000e–01  3.2000e–01
  9.0000e–01  4.8000e–01
  1.0000e+00  5.2000e–01
  0.0000e+00  3.0000e–03 
  0.0000e+00  6.0000e–06 
 6.000000e–06  0.000000e+00
1.000000e–01 2.000000e–06
1.000000e–08 0.000000e+00 0.000000e+00
1.000000e+00 9.873000e–01 9.746000e–01 0.000000e+00
4.000000e–01 4.000000e–01 2.000000e–01 0.000000e+00
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APPENDIX D
Example listing of original steady.def file
 ************Problem Definition Menu************
 hm         h0(/hm)      hs           xl           yl(/xl)
   1.0000e–07   2.0000e+01   0.0000e+00   2.0000e–03   8.0000e–01
 disk     ske        ra         rpm      ityact
   1.0000e+10   1.0000e+00   1.5000e–02   5.4000e+03    0
 dact       vact         yact         xact            isolv
   0.0000e+00   0.0000e+00   0.0000e+00   0.0000e+00          1
 f0         xf0          yf0          xfs(g–mm)    yfs(g–mm)
   3.0000e–03   5.0000e–01   0.0000e+00    0.0000e+00    0.0000e+00
 *************Solution Control Menu************
 istiff   akmax      emax         p0          al
   0    1.000000e–07 1.000000e–03 1.013500e+05 6.350000e–08
 **************Grid Control Menu **************
 iadpt  isymmetry ioldgrid   nx   ny   nsx   nsy   nest
       1       0       0    100    100       1       1      4
 xnt(i),i=2,nsx
  0.000000e+00  
 nxt(i),i=2,nsx
  0.000000e+00  
 dxr(i),i=1,nsx
  1.000000e+00  
 ynt(i),i=2,nsy
  0.000000e+00  
 nyt(i),i=2,nsy
  0.000000e+00  
 dyr(i),i=1,nsy
  1.000000e+00  
 ************** Non–Newtonian Menu *****************
 incom   icnst      vis1      vis2      cindex
   0   0   1.8060e–05   0.0000e+00   1.0000e+00
 clambda     gammac     sigma      devol      beta
  1.0000000e–07  9.9999997e–06   138000.0      2.0000000e–02   1000.000
  
 ***************** Expert Menu ******************
 ievl ipress  itnon idisc
    0    0    1    1
  iqpo    difmax      decay      ipmax
    5   40.000   40.000   0
 ***************** End of Input Data************


