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Abstract

Control Techniques for Increased Disturbance Rejection and Tracking Accuracy in

Magnetic Disk Drives

by

Matthew Taylor White

Doctor of Philosophy in Engineering{Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

As the density of data on magnetic disk drives increases, so does the need for more

precise position control of the read/write head, especially in the presence of internal and

external disturbances. This is achieved by two separate algorithms, acceleration feedforward

control and a disturbance observer.

In the �rst algorithm, the acceleration of the drive is measured and fed forward

to the actuator. By matching the electromechanical impedance between the disturbance

and the position error, the feedforward controller can cancel the e�ects of the disturbance.

Two techniques are presented for designing the feedforward controller. The �rst technique

is an in�nite impulse response �lter that is designed o�-line, and the second is a �nite

impulse response �lter that is adapted on-line using the �ltered-x LMS algorithm. Both

feedforward techniques were tested through shake table experiments, resulting in reductions

of the position error signal between 50% and 95% for vibration disturbances in the frequency

range from 10 Hz to 500 Hz. Simulation of the system response to a shock disturbance

resulted in a 89% reduction of the peak error.

The second algorithm does not require an external sensor. This is particularly
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relevant in products such as disk drives where cost is a major concern. The disturbance

observer uses the position error signal and a nominal model of the plant to create an

estimate of the disturbance. This estimate is then used to compensate for the disturbance

e�ects. Vibration simulation indicated that the performance of the disturbance observer was

comparable to the feedforward control in the 50 Hz to 500 Hz range, but o�ered signi�cantly

better results below 50 Hz. Experimental results veri�ed that the disturbance observer was

e�ective below 200 kHz, but noise in the system degraded performance between 200 Hz

and 1 kHz. Simulation of shock testing with the disturbance observer was similar to the

feedforward control results.
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x Input to the feedforward �lter

xg Position of the actuator arm mass center

xh Position of the read/write head

xt Track position

y Vector of y values

y General output value

z General real vector

z Z-transform variable

z�d Total delay for the disturbance observer

z�� Delay due to uncancelable zeros of the nominal plant model

z�� Pure delay in the plant (including computations)

Greek Symbols

�r Coe�cient for adjustment of the pivot bending model


 Diminishing adaptation gain

� Disturbance input for the disturbance observer formulation

�̂ Estimate of the disturbance input from the disturbance observer



" Position error signal

� Damping ratio for the notch �lters

�sm Damping ratio of the shock mounts

� Actuator arm rotation

� Accelerometer rotation (Appendix A.1)

�̂ General adaptive algorithm parameters

��base Base rotational acceleration

�i Eigenvalues of R̂ and Ĵ

�max Maximum eigenvalue of R̂ and Ĵ

� Adaptation gain for the �ltered-x LMS algorithm

� Noise (Chapters 3 and 5)

� Mean-square error (Appendix B)

�min Minimum mean-square error

� Time scale for the ODE technique

�k Time scale for the ODE technique associated with time k

�� Change in the ODE time scale

��� Spectral density of �

� General adaptive algorithm regression vector (Chapter 3)

� Inner product of h and z (Appendix B)

~� Inner product of z and H(q�1)h

� Extended state vector for the ODE technique

! General frequency

!1 Natural frequency for the 2.1 kHz notch �lter

!2 Natural frequency for the 4.1 kHz notch �lter

!s Natural frequency for the 20 kHz notch �lter
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Chapter 1

Introduction

1.1 General Problem Statement: Disturbance E�ects in Disk

Drive Systems

Despite amazing performance improvements in the recent past, the disk drive

industry continues to search for ways to make its products smaller, faster, and able to hold

more data. Commercial software is becoming more sophisticated, and therefore requires

more disk space. Multimedia applications are also storage intensive.

Key elements in the search are increasing radial density, or the number of concen-

tric data tracks stored on the disk surface, and decreasing access time, the time it takes

to move from the current track to the desired track. Among other things, this requires

more accurate positioning of the read/write head, often in the presence of signi�cant dis-

turbances. These disturbances can be in the form of shock or vibration while the drive is

seeking or following a track.

Disk drives are being used in increasingly demanding environments. For example,

laptop and hand-held computers are becoming even more popular. New applications such

as cellular phones, digital video cameras, automobile navigation systems, hand-held medical



devices, and palm-top organizers are being investigated [45, 34]. With the advancement of

automation in industry, even traditional desktop computers are subjected to the rigors of

the manufacturing 
oor. All of these situations elevate the level of external disturbances to

which drives are subjected.

To compound this problem, many of the smaller form factors have abandoned the

use of shock mounts that help to isolate the drives from such disturbances. Those drives

that have retained the shock mounts are more susceptible to wind-up, the internal reaction

force due to actuator motion, which is especially signi�cant during seeks. To decrease seek

time, drive engineers are pushing closer to time-optimal, or bang-bang, control. This type

of control results in large reaction forces and excites modes of the drive dynamics that have

been neglected in the past.

1.2 Previous Work

Pressure from consumers and other branches of the computer industry have fueled

interest in disk drive research. Although the servo control problem is just one of many parts

of the system, it is a critical component for increasing the storage capacity and access speed

of the drives. This has made disk drives a very popular application for feedback control

techniques. One of the major advantages of closed loop control is increased disturbance

rejection, and a wide variety of such methods have been employed on magnetic disk drive

systems. A comprehensive, although slightly out of date, description of the disk drive servo

problem can be found in [18].

1.2.1 Disk Drive Servo Control

Some examples of the techniques employed on magnetic disk drives are fuzzy

logic [8], linear quadratic Gaussian/loop transfer recovery (LQG/LTR), linear program-

ming, and time optimal control [66, 22, 60], and H1 design [24]. An interesting comparison



of Frequency-Shaped Linear Quadratic (FSLQ) control, LQG/LTR, and H1 control ap-

plied to disk drive servo control can be found in [33]. Additional control techniques such as

repetitive and adaptive control will be discussed below.

The typical structure of a disk drive servo controller is actually composed of two

controllers. One is optimized for track seeking, and the second for track following. The

disk drive switches between these two controllers to perform these two tasks. Sometimes

a third controller is implemented for settling, the transition from seeking to following. A

technique that takes the switching nature of the disk drive controller explicitly into account

is the initial value compensation method of Yamaguchi et al. [73].

The control signals are calculated from the position error signal (PES), which

comes from position information recorded on the disks. A discussion of the PES generation

can be found in [74]. In general, the PES is the only signal that the controller is able to

access. This position information can either be recorded on a single disk that holds only

position information (in a technique known as dedicated servo), or included in parts of each

disk (in what is called embedded or sector servo).

From a control standpoint, dedicated servo is preferable because position infor-

mation is available whenever it is desired. However, it is very costly to have a disk that is

dedicated only to position information, and there are some problems that stem from the

fact that the position measurement is not coming from the same disk as the data. Because

of this, many drive manufacturers are adopting the sector servo method. This can create

problems for the control engineer because the PES is not always available when it is needed.

A technique to combat this problem called multi-rate control has been applied to disk drive

systems by Chiang [12] and Phan [50].

A variety of error sources exist in the disk drive system. These are generally

classi�ed into repeatable run-out (RRO) and non-repeatable run-out (NRRO). RRO is syn-

chronized with the rotation of the disks, and is caused by such factors as track eccentricity,



bearing geometry and wear, motor geometry, disk warpage and slippage, and spindle tilt.

NRRO is much more general. It can also be the result of bearing and spindle e�ects, or

it can be due to external disturbance sources and internal sources like 
exble printed cir-

cuits (FPC) and reaction forces. A popular technique for combatting RRO is the repetitive

controller [35, 11, 42, 55].

One �eld that has become very popular in disk drive research is the use of microac-

tuators and microsensors. Although these have not yet made it into production drives, they

appear to be very promising, especially for meeting the requirements that are expected in

the next decade. Currently, disk drive servo systems have a single actuator located at the

base of the arm. It has been suggested that a second, microactuator could be placed at the

tip of the arm to provide �ne adjustments of the read/write head that would complement

the course adjustments of the standard actuator [10, 44, 29]. Microsensors may also be used

to provide more measurements of the drive behavior, similar to what will be shown in later

sections for the acceleration feedforward technique.

1.2.2 Acceleration Feedforward Control

One of the techniques for disturbance rejection to be presented uses accelerometers

to measure the motion of the drive, and then feeds this information forward to the actuator

controller to coordinate the read/write head position with the desired track position.

A number of authors have suggested the use of accelerometers for disturbance

rejection in the past. Aruga et al. [4] employed them on a dual, linear actuator system for a

10.5 inch form factor drive. They were concerned with the e�ects on the track following of

one head as the second head performed a seek. Some dynamics of the drive were included,

and robustness to modeling parameters was considered analytically. An experimental seek

result was shown.

Davies and Sidman [13] developed a constant, single-parameter, acceleration feed-



forward controller with low-pass �ltering on the accelerometer output. Again, an analysis

of the robustness to parameter variations was presented, with experimental results for a

seek test and an external impulse disturbance.

Kempf [33] used an accelerometer on a compact disk player to control the focus

length of the reading lens. He considered the �rst bending mode of the disk with simple

models for the motor and shock mounts. The �ltered-x LMS (least-mean-squares) adapta-

tion algorithm was applied to the controller parameters.

Although drive companies have included low-grade accelerometers as shock sensors

for shutdown, until recently the cost of quality-signal accelerometers has prohibited their

use for control. However, advancements in sensor technology have lowered prices to a

level that makes including these accelerometers in a production drive feasible. Examples

of such sensors were used in the experiments. Furthermore, the �eld of microsensors may

soon provide low-cost accelerometers that, due to their small size, can be used in more

sophisticated schemes.

1.2.3 Adaptive Control

Adaptive control is itself a very large and active area of research. A comprehensive

discussion of this �eld of adaptive control is beyond the scope of this dissertation, but

�Astr�om and Wittenmark [2] and Goodwin and Sin [21] are excellent sources for a more

thorough treatment of the subject. Typically, adaptive control is useful when there are

unknown variations in the system dynamics or the character of the disturbances. However,

in some cases it is more e�cient to add intelligence to the controller in the form of adaptive

control even when the operating conditions are reasonably well known. Adaptive controllers

have been used in disk drive systems to reduce the e�ects of both RRO [11, 59] and NRRO

[28, 27]. Adaptation will be used in conjunction with the acceleration feedforward technique

using the �ltered-x LMS algorithm described in [72].



1.2.4 Disturbance Observers

One of the drawbacks of the acceleration feedforward control system is that it

requires the use of sensors that are not normally included in disk drives. Although the

price of accelerometers is falling, and the sensors that were used in the experiments to be

presented were extremely inexpensive, it is obviously cheaper to employ a method that

does not require additional parts. One such method is called a disturbance observer. As

the name suggests, the disturbance observer creates an estimate of the disturbance and uses

this model to compensate for the e�ects of the disturbance. The disturbance observer was

introduced by Ohnishi [47] and has been successfully applied to a wide range of systems

such as dc servomotors [68], machine tools [36, 32], and robotics [6, 26]. A more complete

description of the disturbance observer can be found in Chapter 5.

1.3 New Contributions

Although both acceleration feedforward control and the disturbance observer tech-

nique have been presented in previous work by other investigators, the results contained in

this dissertation are unique in a variety of ways.

The acceleration feedforward control results presented here are the �rst to use low-

cost accelerometers that employ sensor technology that has only recently been developed.

Previous researchers used very expensive, high-quality sensors that were not feasible for

actual implementation in a disk drive.

The work in this dissertation includes a more thorough model of the transfer func-

tion between the disturbance and the position of the read/write head, which led to increased

performance of the control algorithms. The use of adaptation on the feedforward controller

parameters has not been performed previously on a magnetic disk drive. Concurrent work

in this area has been performed by Abramovitch [3], but an investigation of the controller

parameters and the convergence properties of the adaptation algorithm was neglected.



This is also the �rst application of the disturbance observer to a hard disk drive,

although Smith and Tomizuka [62] have performed concurrent investigations on removeable

disk drives with shock disturbances. Finally, perhaps the most useful contribution of this

research is that it includes a wide array of test results that allow a comparison of the

feedforward control and the disturbance observer performance.

1.4 Summary of Chapters

Chapter 2 begins with a discussion of the disk drive system and introduces some

standard assumptions used to create a model of the drive for use in the simulations. A short

description of the test shaker and the experimental equipment is provided, although many

of the details are reserved for Appendix A. The nominal feedback controller is also given,

and the open loop system is used to verify the plant model structure and parameters.

Chapter 3 contains the development of the acceleration feedforward controllers.

Two versions are presented. The �rst version uses a �xed-parameter, in�nite impulse rep-

sonse (IIR) �lter. The second method is an adaptive, �nite impulse response (FIR) �lter.

Details of the adaptive algorithm, the �ltered-x LMS method, are given.

Chapter 4 presents the results of the two acceleration feedforward techniques for

vibration and shock disturbances. All tests are performed in track-following mode. Results

are given in both the time and frequency domains for simulations and experiments.

Chapter 5 provides an explanation of the disturbance observer method. This

technique is then applied to the disk drive servo problem. Chapter 6 follows with the

results of the disturbance observer simulations and experiments under the same conditions

that were used to analyze the performance of the acceleration feedforward controller.

Chapter 7 gives a review of the major results. A comparison between acceleration

feedforward control and the disturbance observer and the results achieved with these two

methods is made, along with some conclusions.



As mentioned previously, Appendix A provides details on the experimental equip-

ment, including information on the accelerometers used. Appendix B gives a convergence

proof for the �ltered-x LMS algorithm using the ODE (Ordinary Di�erential Equation)

method for a diminishing adaptation gain. A second proof is provided for the case of

constant adaptation gain.
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Chapter 2

Disk Drive System

The disk drive used for experimentation was a 5.25 inch form factor with 2000 tracks

per inch and a disk spindle speed of 3600 rpm. (See Figure 2.1 for a schematic of the drive.)

The drive contained a stack of 8 disks. One disk side was dedicated to servo information to

generate the PES between the read/write head and the desired track. The rotary actuator

was composed of a voice coil motor (VCM) and the bearing-supported actuator arm with

the read/write head and its suspension system. An FPC connected the actuator arm with

the main disk drive electronics board located on the bottom of the drive.

The drive base was attached to a mounting frame with shock mounts. The drive

frame was mounted on a rotary shaker system that provided the external disturbance. The

drive was situated so that it rotated about the actuator axis. This con�guration transmitted

the maximum disturbance to the read/write head. As shown (exaggerated) in Figure 2.2,

the disturbance to the base caused a relative displacement between the data track and the

position of the head. It was this displacement that acceleration feedforward control was

designed to minimize.
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Variable Explanation Value

Fc Actuator force at the coil N

xh Linear displacement of the read/write head m

xg Linear displacement of the mass center m

� Rotation of the actuator rad

lh Head moment arm from rotation center 70� 10�3 m

lc Coil moment arm from rotation center 36� 10�3 m

lgy y-distance from rotation center to mass center 0:096� 10�3 m

J Moment of inertia about the rotation center 0:593� 10�6 kg m2

b� Rotational damping of the pivot 5:9� 10�3 N s m

k� Rotational sti�ness of the pivot 5.29 N m

mh Mass for pivot rotation 0.0121 kg

bh Average damping coe�cient for pivot rotation 1.07 N s/m

kh Average sti�ness coe�cient for pivot rotation 216 N/m

mg Actuator mass 116:3� 10�3 kg

Jg Moment of inertia about mass center 59:194� 10�6 kg m2

�r Experimental �t coe�cient 7.0

br Damping coe�cient for pivot bending 36 N s/m

kr Sti�ness coe�cient for pivot bending 20� 106 N/m

ms Mass for arm bending 25� 10�6 kg

bs Damping coe�cient for arm bending 7:0� 10�3 N s/m

ks Sti�ness coe�cient for arm bending 17� 103 N/m

Table 2.1: Explanation of Disk Drive Model Parameters

2.1 Disk Drive Actuator Model

Modeling information was obtained from the disk drive manufacturer and veri�ed

experimentally. Three modes were considered for the model of the actuator. Table 2.1 lists

the parameter variables, their meanings, and their values for the three actuator modes.

The �rst mode included the damping and sti�ness of the rotational motion of the

actuator pivot bearing and the FPC, as shown in Figure 2.3. A torque balance about the

center of rotation (the pivot bearing) gives

J �� = Fclc � b� _� � k��: (2.1)



Using the small angle approximation sin � � � and substituting for

J = mhl
2

h (2.2)

� = xh=lh (2.3)

b� = bhl
2

h (2.4)

k� = khl
2

h (2.5)

results in

mhlh�xh = Fclc � bhlh _xh � khlhxh: (2.6)

Taking the Laplace transform gives

(mhlhs
2 + bhlhs+ khlh)xh = Fclc (2.7)

and therefore the transfer function from the force at the coil Fc to the displacement of the

head xh is

Gh(s) =
xh

Fc
=

lc=lh

mhs2 + bhs+ kh
: (2.8)

The damping and sti�ness are nonlinear, and are functions of the input magnitude.

Figure 2.4 shows the outputs for a range of inputs. Constant values were used for the linear,

time-invariant model. To determine the range of values, an experimental frequency response

was calculated using a frequency sweep from low frequency to high frequency for a given

input voltage to the VCM. A second sweep was performed from high frequency to low

frequency. This process was repeated for a range of input voltages. For each frequency

response, an e�ective damping coe�cient and sti�ness force were calculated. These results

were used to determine average damping and sti�ness values for all amplitudes of VCM

motion. Results are shown in Figure 2.5 and Figure 2.6 for the damping coe�cents and

sti�ness forces, respectively. The force at the head Fh displayed on the ordinate of Figure 2.6

is given by

Fh = (lc=lh)Fc (2.9)
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Figure 2.3: Schematic of the Actuator Pivot Bearing Rotational Mode

and then the sti�ness kh is calculated using

kh = Fh=xh: (2.10)

The second mode resulted from the bending of the actuator pivot and its support-

ing structure, as shown in Figure 2.7. The natural frequency of this mode was much higher,

at approximately 2.1 kHz. Consider the force balance in the x-direction

mg�xg = Fc � br( _xg + lgy _�)� kr(xg + lgy�) (2.11)

and the torque balance about the mass center

Jg �� = Fc(lc + lgy)� brlgy( _xg + lgy _�)� krlgy(xg + lgy�): (2.12)

Taking the Laplace transform and solving for the linear displacement of the head xh in

terms of the force input at the coil yields

Gr(s) =
xh

Fc
=
f(lh � lgy)(lc + lgy)mg � Jggs

2 + �rbrlhlcs + krlhlc

fmgJgs2 + br(mgl2gy + Jg)s+ kr(mgl2gy + Jg)gs2
(2.13)

where �r is adjusted to match the experimental data.

The third mode occurred at approximately 4.1 kHz, and was due to bending of the

actuator arm. A schematic of this mode appears in Figure 2.8, and the transfer function is
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Figure 2.4: Frequency Response of the Actuator Pivot Bearing Rotational Mode for a Range

of Input Magnitudes
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given by

Gs(s) =
xh

Fc
=

lc=lh

mss2 + bss+ ks
: (2.14)

This can be derived from the force balance in the x-direction at the head

ms�xh =
lc

lh
Fc � bs _xh � ksxh: (2.15)

Combining the e�ects of the these three modes results in the total frequency response of

the actuator from the motor force Fc to the displacement of the head xh

GFh(s) = Gh(s) +Gr(s) +Gs(s): (2.16)
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2.2 Additional Dynamics and Nominal Feedback Controller

The nominal closed loop system consisted of the drive and the feedback controller,

Gc. A block diagram of the nominal closed loop system is shown in Figure 2.9. The symbol

Fdist is the force at the motor coil due to the disturbance at the base. The symbols ADC

and DAC represent analog-to-digital and digital-to-analog converters, repsectively. The

variables Ka, KF , and Kpes represent the gains of the transconductance ampli�er, motor

force constant, and position error signal. A low-pass �lter (LPF) was used to remove high-

frequency signals from the input to the VCM.

The symbols GFb and Gbt represent the transfer functions from the disturbance

to the base acceleration and from the base acceleration to the desired track position xt,

respectively. The dynamics of GFb are primarily determined by the shock mounts between

the base and the frame. Recall that both Fc and Fdist are forces at the VCM coil, and are

related to torques at the actuator pivot by the length lc. The transfer function GFb is given

by

GFb =
lcs

2

Jds2 + bsms+ ksm
(2.17)

where Jd = 10:6 � 10�3 kgm2 is the mass moment of inertia of the drive. The values of



the shock mount damping bsm and sti�ness ksm were determined experimentally to be 500

Nsm and 6720 Nm. This corresponds to a natural frequency of 127 Hz.

The transfer function from the base acceleration to the desired track position

involves the bending modes of the spindle and disks and the bearing dynamics. Equipment

to perform system identi�cation on the spindle and disks was not available, nor was this

information avaialble from the disk drive manufacturer. Most previous research has focused

on the NRRO of the spindle bearings [54, 9, 23], although some work has been done on the

vibration modes of the spindle and disks using experimentation and �nite element modeling

(FEM) [41, 51, 19]. For more mathematical derivations of the spindle and disk dynamics,

see [48, 58, 57].

The spindle on the drive under test was 2.5 inches high and held eight disks with

diameters of 5.25 inches. It was supported at the top and bottom, and rotated at 3600 rpm.

In the course of their investigations of NRRO, Richter and Talke [54] noticed resonances of

the spindle and bearing at 20 Hz, 40 Hz, and 80 Hz for a 5.25 inch form factor drive spinning

at 3600 rpm. A similar result was presented in Harrison and Talke [23], who also note that

NRRO was signi�cantly reduced in the case of top and bottom supports. Matsushita et al.

[41] focused on the frequency region between 100 Hz and 600 Hz, and found as many as six

resonances, with various e�ects on the PES. Frees [19] presents a clear analysis of the pitch

(307 Hz), radial (895 Hz), and axial (913 Hz) modes of a 3.5 inch drive with four disks that

is directed towards the e�ects of external vibrations.

Because an accurate model of the spindle dynamics was not available, and be-

cause both the adaptive acceleration feedforward technique and the disturbance observer

technique provide some robustness to modeling errors, the spindle and disk dynamics were

not considered explicitly for either method. This did not appear to a�ect the performance

or the stability of the algorithms.

Compensation for the actuator bending modes of the pivot at !1 = 2:1 kHz and
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Figure 2.10: Disk Drive Actuator Frequency Response

the arm at !2 = 4:1 kHz was made by analog notch �lters. A third notch �lter had a natural

frequency equal to the sampling frequency, !s = 20 kHz. The total notch �lter transfer

function was given by

Gn(s) =
s2 + !2

1

s2 + 2�!1s+ !2
1

�
s2 + !2

2

s2 + 2�!2s+ !2
2

�
s2 + !2s

s2 + 2�!ss+ !2s
: (2.18)

A damping coe�cient of � = 0:4 was used for all of the notches. The combined actuator

model, from the output of Gc to the PES, is shown in Figure 2.10.

The disk drive was equipped with a factory-installed analog feedback controller.

Before experimentation, the analog controller was switched o� and replaced with a digital

controller. The digital feedback controller was a lead-lag �lter designed in continuous time

with the transfer function

Gc(s) =
(s+ 2�64)(s+ 2�67)

(s+ 2�6:1)(s+ 2�3280)
: (2.19)
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Figure 2.11: Nominal Feedback Controller Frequency Response

This transfer function was converted to discrete-time using the bilinear transformation

s =
2(z � 1)

Ts(z + 1)
(2.20)

where Ts is the sampling time. The frequency response of the nominal controller Gc is

shown in Figure 2.11.

2.3 Experimental Model Veri�cation and Parameter

Identi�cation

The complete plant included the shock mounts, base, and actuator, as well as the

e�ects of some of the disk drive hardware and software. A block diagram of the complete

system and its explanation can be found in Appendix A. It was not possible to measure the



plant frequency response directly, but the plant model was veri�ed through the measurement

of the open loop transfer function. The open loop frequency response was calculated from

the known digital controller and the modeled plant, and compared to the measured open

loop frequency response as shown in Figure 2.12. Frequency response measurements were

obtained with a Hewlett-Packard dynamic signal analyzer (DSA) using a swept-sine noise

input.

Application of the nominal controller to the plant resulted in an open loop gain

crossover frequency of 635 Hz. The gain and phase margins were 5 dB and 25�, respectively.

This is fairly standard for disk drive applications, cf. [64, 73, 74]. The damping and sti�ness

of the actuator bearing had prominent e�ects. Values of bh = 1.205 Ns/m, kh = 1080 N/m,

and �r = 7.0 were assigned based on the measured frequency response. These values of kh

and bh di�er from the averages calculated previously, but are within the expected range. A

time delay of approximately 40 �s, due to the conversions between the analog and digital

signals and the computations, contributed additional phase lag to the system.
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Figure 2.12: Comparison of the Modeled and Measured Open Loop Frequency Responses
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Chapter 3

Acceleration Feedforward

Algorithm

A block diagram of the nominal feedback system with the acceleration feedforward

controller included is shown in Figure 3.1. As shown in Figure 2.1, two linear accelerometers

were mounted on the drive base to measure the tangential components of the acceleration,

and were used to calculate the angular acceleration of the drive base. The accelerometer

signal was sent through a low-pass �lter (LPF) with a -3 dB point of 1 kHz before it was

received by the feedforward compensator Gff . The feedforward controller calculated the

additional control input v̂ that was required due to the disturbance to the base, and this

signal was added to the actuator input calculated by the feedback controller.

It should be noted that this technique was not pure feedforward. Because of

the reaction force of the actuator, there was a feedback component of the output of the

feedforward controller. However, due to the ratio of the masses of the actuator and the base,

the feedforward component dominated, and the feedback component did not signi�cantly

a�ect stability. A frequency response of the open loop transfer function without and with

the acceleration feedforward controller is given in Figure 3.2.
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The feedforward controller was designed to match the electromechanical impedance

between the base acceleration and the PES. By ignoring the reaction force feedback and

VCM LPF e�ects, the block diagram of Figure 3.1 may be rearranged to appear as Fig-

ure 3.3. The reference transfer function Gref represents the dynamics to be canceled by

Gff , and is given by

Gref =
Gbt

KaKFGFh

: (3.1)

The transfer function Gout represents additional dynamics before the PES,

Gout =
KaKFKpesGFh

1�KaKFKpesGFhGc

: (3.2)

From Figure 3.3, it can be seen how the proper choice of Gff can cancel the disturbance

e�ects. Note that v is a mathematical artifact, not a physical signal in the system, and

therefore could not be measured.

3.1 Fixed Parameter IIR Filter

The �rst controller design method tested was a simple �xed-parameter, in�nite

impulse response (IIR) �lter, also known as a recursive �lter or an auto-regressive moving-

average (ARMA) �lter [49]. The expected value of Gff was determined through the use of

the model information. This result was veri�ed through experimental measurements. Recall

that the signal v shown in Figure 3.3 is not measurable. Because of this, the frequency

response of Gff had to be determined indirectly. To begin, Gwo = GrefGout was measured

with the feedforward controller turned o�. Then the frequency response Gw from the base

acceleration ��base to the PES was measured with a nominal feedforward controller Gff;nom

in place. Thus, Gout could be calculated as (Gwo � Gw)=Gff;nom. Finally, the desired

Gff was calculated as Gwo=Gout. The modeled and measured results for Gff are shown in

Figure 3.4. Note that the variations on the magnitude of the measured Gff above 300 Hz

are due to the measurement technique and the mathematical operations performed on the
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DSA in calculating Gff , and are not real features of the system. As with Gc, the transfer

function Gff was designed in continuous time and converted to discrete time using the

bilinear transformation. A third-order model was found to be adequate for Gff . The

results of applying the IIR feedforward controller are presented in Chapter 4.

3.2 Adaptive FIR Filter

Experimentation with the �xed-parameter design showed that performance of the

feedforward controller was heavily dependent upon accurate modeling of the system. In

mass-produced products such as disk drives, variations in system parameters between units

are common. A typical variation is the position of the actuator arm center of mass. Addi-

tionally, the dynamics of a single drive are known to vary with age and use. These changes

can be long-term due to extended wear or short-term due to such factors as thermal ef-

fects, although time scales are typically long enough that the system may be modeled as a

time-invariant. To combat the problems associated with parameter variations, adaptation

on the feedforward controller was applied using a model reference version of the �ltered-x

LMS technique described in [72]. The �ltered-x LMS algorithm has been used extensively

in the �eld of active noise control [20, 14, 53].

To develop the �ltered-x LMS algorithm, begin with the standard recursive form

(using the standard notation)

�̂(k + 1) = �̂(k) +M(k)�(k)e(k+ 1) (3.3)

where �̂(k) is the vector of parameters to be adapted, M(k) is the adaptation gain, �(k) is

the regression vector, and e(k) is the prediction error, all at time k. The least-mean-squares

(LMS) algorithm is a simpli�cation of the projection algorithm [21] with

M(k) = constant (3.4)

e(k + 1) = y(k + 1)� �T (k)�̂(k) (3.5)
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�(k) = [��base(k); ��base(k � 1); :::; ��base(k �N)]T : (3.6)

Note that with an �nite impulse response (FIR) adaptive �lter, the regression vector is

composed only of the inputs ��base(k), without the outputs y(k).

For the disk drive system, the prediction error e(k) is given by the PES "(k) and

the adaptation gain is 2� for the estimated parameters w. The LMS algorithm applied to

the disk drive system may be represented by the block diagram in Figure 3.5. In Figure 3.5,

the signal d corresponds to the output y, and d̂ is the estimated output �T �̂.

Graphically, the �ltered-x LMS algorithm di�ers from the LMS algorithm in that

the adaptive �lter Gff is placed before the plant dynamics Gout, as shown in Figure 3.6.

Ignoring the noise �, these two algorithms are identical when the weight vectors of the two

versions of the adaptive �lter are equal, and Gout and Gff commute. Two transfer functions

can be shown to commute if they are both linear and time-invariant. Although the plant

dynamics may be linear and time-invariant, the adaptive �lter certainly is not. However, if



the parameters of the adaptive �lter are �xed, it is linear and time-invariant. Thus, under

the conditions that the plant dynamics are linear and the parameters are slowly varying,

the LMS and the �ltered-x LMS algorithms are approximately equal. Interestingly, the

�ltered-x LMS algorithm has been shown to perform well even with rapid adaptation [72].

Note that there is a further obstacle before the �ltered-x LMS algorithm can be

implemented. Namely, an estimate of Gout is needed to generate the input signal to the

parameter adaptation algorithm. However, if accurate modeling were available, adaptation

would probably not be necessary. One option is to expand the adaptation to include an

estimation of Gout in parallel with the actual plant dynamics, and then copy the adapted

parameters to the estimate before the adaptation algorithm. This technique is shown in

Figure 3.7. This increases the computation time and was not performed in the results pre-

sented here. Similarly, more complicated methods are available to estimate the expectation,

but were not employed due to the extra computation requirements. Experience has shown

that the estimate Ĝout does not need to be particularly accurate to achieve good behavior

[14, 53, 72]. Given this fact, it is possible to use a rough a priori estimate of the plant

dynamics and dispense with the additional adaptation. Just how rough the estimate can

be is discussed in the convergence proof in Appendix B.

To apply this algorithm to the disk drive system, the signal d that is compared

with d̂ is generated by a reference model Gref in series with the plant dynamics Gout.

The appropriate transfer function for Gref is the electromechanical impedance between

the disturbance and the PES. Thus the system itself provides the reference model and its

output d. This connection of the reference model to the �ltered-x LMS algorithm is shown

in Figure 3.8.

The �ltered-x LMS algorithm was originally designed to reduce the e�ects of plant

noise on the adaptation. In the LMS algorithm shown in Figure 3.5, the input to the

adaptive �lter Gff contains the signal �, which is not correlated to the dynamics that Gff
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is trying to emulate. This signi�cantly a�ects the results of the adaptation algorithm. By

placing Gff before the plant, the noise is no longer a direct input to the adaptive �lter.

Noise e�ects can still be seen in the PES, but this will not e�ect the converged solution of

the adaptive �lter [72]. Conveniently, with the extension of the �ltered-x LMS algorithm to

include a reference model, it is in the correct form for the disk drive feedforward adaptation.

With a few simpli�cations, Figure 3.8 can be reduced to Figure 3.9. Note that the

signals v and v̂ in Figure 3.8 are both inputs to Gout, resulting in the signals d and d̂ that

are compared to �nd the PES. The dynamics represented by Gout actually occur only once

in the physical system, so it is appropriate to represent the di�erence of v and v̂ as the input

to a single Gout block, the output of which is the PES. Since Ĝout is an estimate, it may be

included in the parameter adaptation algorithm (PAA) block. The result, neglecting the

addition of noise, is Figure 3.9.

The adaptive feedforward control algorithm follows the same basic idea as the

�xed-parameter algorithm. The goal is to adjust the feedforward controller Gff so that it

is equal to the transfer function Gref of the physical system. For an FIR �lter, Gff takes

the form

Gff(k; q
�1) = w0(k) + w1(k)q

�1 + :::+ wL(k)q
�L (3.7)

where q�1 represents the one-step delay operator, and the parameters wi, or tap weights,

are adjusted on-line via the �ltered-x LMS algorithm. The tap weights are adjusted in the

direction that minimizes the expectation of the squared error with constant gain �, or

w(k + 1) = w(k)� �
@

@w(k)
(E["2(k)]) (3.8)

where w(k) represents the vector of tap weights at time k, E denotes the expectation, and

"(k) is the PES. Calculating the gradient @
@w

results in

wi(k + 1) = wi(k) + 2�E["(k)fGout(q
�1)��base(k � i)g]: (3.9)

This is the desired update law. However, the expectation is not known, nor is the trans-



fer function Gout(q
�1). Thus, some approximations must be made. The transfer func-

tion Gout(q
�1) is replaced with an a priori estimate Ĝout(q

�1), and the current value of

"(k)fĜout(q
�1)��base(k)g is used in place of the expected value. This results in an actual

update law given by

wi(k + 1) = wi(k) + 2�"(k)fĜout(q
�1)��base(k � i)g: (3.10)

From Equation 3.10 it can be seen that the �ltered-x LMS algorithm is of the standard

recursive adaptation form with "(k) as the prediction error and fĜout(q
�1)��base(k � i)g as

the regressor.

Figure 3.9 shows how the adaptation algorithm may be added to the feedforward

technique shown in Figure 3.3. The �ltered-x LMS algorithm is appealing for this applica-

tion because it is simple and has very few computations. This is mainly due to the fact that

it uses a constant adaptation gain. Disk drive control systems typically have little space or

time to run complicated processes. In addition, the �ltered-x LMS algorithm is designed to

decrease the e�ects of noise. Using an FIR �lter is also helpful in decreasing noise sensitivity

[16], and FIR �lters are always stable. The stability of IIR �lters is dependent upon their

parameters, which often means that the algorithm must include extra calculations to check

the stability of the IIR �lter before it is implemented. This is not necessary with an FIR

�lter.

There are some drawbacks to this algorithm. Because the adaptation gain is

constant, this technique converges more slowly than some more complicated algorithms

and there is no inherent signal normalization. Also, FIR �lters typically require more

parameters than IIR �lters to describe the same frequency response.
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Chapter 4

Simulation and Experimental

Results of Acceleration

Feedforward Tests

4.1 Vibration Testing for Track Following

Vibration disturbances are a signi�cant problem in RAID (Redundant Array of

Independent Disks) applications. A RAID is a system of disk drives working together that

is used for high-end server applications. The seeking motion and spindle vibration of each

drive can cause disturbances in the other drives, typically in the frequency range from

5 Hz to 500 Hz. Vibration disturbances are also common in standard desktop and portable

applications.

To test the e�cacy of the feedforward control technique, comparisons of the posi-

tion error signal with and without the acceleration information were made. For the exper-

imental tests, the drive was put into track-following mode. Various vibration disturbances

were generated by the shaker system, and the position errors were measured. For the



simulation results, the model described in Chapter 2 was used. Computer code for the

simulations was written in C language with the dverk integration routine. Post-processing

and frequency response analyses were performed using MATLAB.

4.1.1 Frequency Response Results

To calculate the frequency response from the base acceleration to the position error,

a swept-sine was sent to the shaker system that created an acceleration of approximately

1 G. This led to position errors on the order of 1 �m for the case with feedback control only,

which is approximately the limit for reading and writing on a disk with 2000 tracks per inch.

For higher density disks, this limit will obviously decrease.

Figure 4.1 shows the frequency response between the acceleration of the drive and

the PES. Between 40 Hz and 400 Hz, the PES was reduced from 50% to 90% using the

�xed-parameter IIR feedforward controller. The response above and below this range was

relatively una�ected. Note that in all cases, the measured PES also contained repeatable

runout components due to eccentricities of the disks that were not induced by the distur-

bance. Also note that the frequency responses contain a number of resonances that do not

appear in the open loop frequency response in Figure 2.12. The disturbance generated by

the shaker is exciting modes such as spindle bending that were not excited by the noise

input used to generate the open loop frequency response.

The same experimental tests were run for the �ltered-x LMS algorithm that were

run for the �xed-parameter design. Figure 4.2 shows the magnitude of the frequency re-

sponse from the disturbance to the PES with the adaptive feedforward compared to the case

without feedforward. The PES is reduced between 55% and 95% over the range of 15 Hz

to 400 Hz. Compare these results to those shown in Figure 4.1. Note that the performance

has improved with the addition of the adaptation, especially in the low frequency region.

Even with adaptation, the improvement with acceleration feedforward control is



Figure 4.1: Magnitude of Experimental Frequency Response from Base Acceleration to PES

without and with Fixed-Parameter IIR Feedforward Control

not as dramatic in the low frequency range. The signal strength of the acceleration measure-

ment is very weak in the low frequency range. This is due to the accelerometers themselves

(see the results of the accelerometer testing in Section A.1) and possibly a reduced distur-

bance amplitude from the shaker.

Although the FIR �ltered-x LMS method is computationally e�cient for an adap-

tation algorithm, it still requires more computations than the �xed-parameter scheme. The

computation time for the adaptive algorithm is dependent upon the number of parameters

included in the FIR �lter. Experimentation showed that the optimal number of tap weights

was approximately 40, so the sampling time for the adaptive case was increased to 100 �s.

This is still quite reasonable for disk drive applications, as most sample in the 5 kHZ to

10 kHz range. Using fewer parameters at 50 �s sampling or more parameters, at sampling

times of 100 �s and greater, did not signi�cantly improve upon the results. Widrow et

al. [71] have shown that increasing the number of parameters does not always improve

performance. Sampling the �xed-parameter controller at 100 �s showed little change from

the results presented previously.

The disk drive manufacturer's speci�cations for vibration disturbance rejection

were 0.25 G during operation and 0.5 G during non-operation. This is somewhat lower

than the levels used for the feedforward control tests. A frequency range was not included



Figure 4.2: Magnitude of Experimental Frequency Response from Base Acceleration to PES

without and with Adaptive FIR Feedforward Control

in the speci�cations, but a conversation with the manufacturer indicated that 5 Hz to 500 Hz

is typical. This is consistent with speci�cations from other disk drive companies. Thus the

frequency range that the feedforward controller was able to improve performance matches

the desired frequency range very well.

4.1.2 Time Response Results: IIR Feedforward Control

Sample time traces are shown in Figures 4.3-4.6 for frequencies of 60 Hz and

200 Hz. At 60 Hz, the PES was 2.3 �m without feedforward control and 1.1 �m with the

�xed-parameter IIR feedforward controller. For 200 Hz, the error amplitudes were 2.8 �m

and 0.8 �m without and with the feedforward controller, respectively. These correspond to

reductions of 52% and 71%, which agree with the transfer function results.

4.1.3 Time Response Results: Convergence of the Adaptive FIR Feed-

forward Controller

PES time responses are shown in Figures 4.7-4.10. Figure 4.7 and Figure 4.9 show

the e�ects of the disturbance without feedforward control to be 1.8 �m at 40 Hz and 2.6 �m

at 100 Hz. Figures 4.8 and 4.10 show the PES values for the same disturbances while the

�ltered-x LMS feedforward controller converges. Initially, the FIR �lter parameters are set



Figure 4.3: Experimental Time Trace without Feedforward Control at 60 Hz

Figure 4.4: Experimental Time Trace with Fixed-Parameter IIR Feedforward Control at

60 Hz



Figure 4.5: Experimental Time Trace without Feedforward Control at 200 Hz

Figure 4.6: Experimental Time Trace with Fixed-Parameter IIR Feedforward Control at

200 Hz



equal to zero and there is no disturbance from the shaker. Note that the PES is nonzero due

to error sources unrelated to the shaker disturbance. After the shaker disturbance begins,

the feedforward parameters are allowed to adapt to their steady-state values. After the

feedforward parameters have converged, the PES is reduced to approximately 0.6 �m at

both 40 Hz and 100 Hz, which is about the level of the PES before the shaker disturbance

was introduced. This is an improvement of 67% for the 40 Hz disturbance and 77% for

the 100 Hz disturbance. The value of the adaptation gain, � = 1:5 � 10�7, used in the

experiments shown was a fairly moderate value. The rate of convergence can be increased

by increasing the value of �, but at the expense of robustness to the magnitude of the

disturbance. Limitations on the magnitude of � for stability of the adaptation algorithm

are discussed in Appendix B. The transient e�ects in Figures 4.8 and 4.10 are due to the

convergence of the parameters. Once the parameters of the feedforward controller have

converged, transients are negligible.

The same sort of results can be generated using a random disturbance. The

ANSI C rand function was used to generate a random integer between 0 and 32,767 with

a uniform distribution. The random integer was converted to 
oating point, normalized,

and o�set to give a random real number between the maximum and minimum acceleration

levels. Figures 4.11 and 4.12 show the simulation results for the convergence of the adaptive

algorithm for a random input, compared to the case without feedforward. The root-mean-

square (RMS) value of the PES without feedforward control is 1.28 �m for an RMS base

acceleration of 0.53 G. Note that the convergence time is somewhat longer for the random

input compared to the single frequency vibration disturbances that were shown previously.



Figure 4.7: Experimental Time Trace without Feedforward Control at 40 Hz

Figure 4.8: Experimental Time Trace with Adaptive FIR Feedforward Control at 40 Hz



Figure 4.9: Experimental Time Trace without Feedforward Control at 100 Hz

Figure 4.10: Experimental Time Trace with Adaptive FIR Feedforward Control at 100 Hz
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Figure 4.11: Simulation Time Trace without Feedforward Control for a Random Base

Acceleration
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Figure 4.12: Simulation Time Trace with Adaptive FIR Feedforward Control for a Random

Disturbance



4.1.4 Time Response Results Using Converged Values for the

Feedforward Controller

The previous section demonstrated the convergence of the adaptive algorithm for

a variety of inputs. Although the convergence of the algorithm was reasonably fast, the

performance requirements of the disk drive will not allow the adaptation to start from a

state of no information. Starting the adaptation with zero initial conditions may also result

in transient peaks that are larger than the PES amplitude without feedforward control in

some cases, e.g. Figure 4.8. In fact, it may be preferable not to run the adaptation algorithm

during normal operation. This will save on computation. In this case, the parameters of

the feedforward should be identi�ed through adaptation when the drive is started up and

then again whenever a change in parameters is expected, e.g. long enough after start-up

for thermal e�ects to appear. Between adaptation sessions, the feedforward controller will

be �xed.

In this section, the parameters were identi�ed using the random input described

above. These values were saved, and then used for each of the cases below without further

adaptation. Figures 4.13 and 4.15 show simulation results without feedforward for the

experimental cases presented in Figures 4.7 and 4.9. The PES amplitudes are 1.93 �m

and 3.18 �m. The simulated values of the PES are slightly higher than the experimental

values, but are still reasonable. Figures 4.14 and 4.16 show results using the converged FIR

feedforward controller for the sinusoidal disturbances investigated previously. The PES is

0.22 �m at 40 Hz and 0.48 �m at 100 Hz. This represents reductions of 89% and 85%. Note

that the reduction of the PES is signi�cant, but does not approach zero as in the cases with

continuous adaptation.

Figure 4.18 shows the time response with the FIR feedforward controller, again

with the adaptation turned o�. The RMS PES is 0.23 �m for an RMS base acceleration

of 0.53 G. This gives a reduction of 82% when compared to the result given in Figure 4.17
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Figure 4.13: Simulation Time Trace without Feedforward Control for a Disturbance of 40 Hz
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Figure 4.14: Simulation Time Trace with Adaptive FIR Feedforward Control for a Distur-

bance of 40 Hz
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Figure 4.15: Simulation Time Trace without Feedforward Control for a Disturbance of

100 Hz

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−4.5

−3.375

−2.25

−1.125

0

1.125

2.25

3.375

4.5

P
os

iti
on

 E
rr

or
 (

um
)

Time (s)

Figure 4.16: Simulation Time Trace with Adaptive FIR Feedforward Control for a Distur-

bance of 100 Hz



without feedforward control. Note the change in the time axes from Figures 4.11 and 4.12.

Figures 4.19 and 4.20 show the power spectral densities (PSD) of the base acceleration and

the PES, respectively.

4.2 Shock Testing for Track Following

As mentioned previously, vibration disturbances are common in RAID systems.

Shock disturbances, on the other hand, are more common in portable applications. Spec-

i�cations for both types of disturbances are typically given for all disk drives, for both

operating and non-operating conditions. The standard industry shock test is a half sine

wave of a given amplitude and duration.

This sort of test was used to determine the shock performance of the disturbance

observer in simulation. The operating shock speci�cation for the disk drive under test

was 2 G, with a non-operating shock speci�cation of 20 G. No duration was given in the

speci�cations, but a conversation with the manufacturer indicated that 10 ms was standard.

This is consistent with speci�cations from other manufacturers.

Given these speci�cations, a shock disturbance of 10 ms duration, or a half sine

wave of 50 Hz, with an amplitude of 2 G was given to the system. Figure 4.21 shows the

simulated PES time trace without feedforward control for the shock disturbance. The peak

error is 4.81 �m. Using the adapted parameters for the FIR feedforward controller results in

a peak error of 0.51 �m, a reduction of 89% when compared to the case without feedforward

control. This result is given in Figure 4.22.
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Figure 4.17: Simulation Time Trace without Adaptive FIR Feedforward Control for a Ran-

dom Base Acceleration
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Figure 4.18: Simulation Time Trace with Adaptive FIR Feedforward Control for a Random

Base Acceleration
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Feedforward Controller
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Figure 4.21: Simulation Time Trace without Feedforward Control for a Shock Disturbance
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Figure 4.22: Simulation Time Trace with FIR Feedforward Control for a Shock Disturbance
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Chapter 5

Disturbance Observer Algorithm

The use of acceleration feedforward control to measure and then compensate for

disturbances was shown to be e�ective in Chapters 3 and 4. However, this technique does

require some additional hardware. There are control methods that are designed speci�cally

to reject disturbances that do not require sensors. For example, the disturbance observer

algorithm uses an estimate of the disturbance instead of a measured value. The trade-o� is

that since the disturbance observer is a feedback technique that relies only on the PES, it

cannot be expected to respond to a disturbance as quickly as the acceleration feedforward

method. The disturbance e�ects must �rst appear in the PES before the disturbance

observer can compensate for them. The acceleration feedforward controller can measure

the disturbance and compensate for it before it appears in the PES.

The disturbance observer algorithm is designed to enforce robust input/output

behavior by canceling the e�ects of disturbances and modeling errors [6]. It was originally

proposed by Ohnishi [47], with signi�cant work by Umeno and Hori following shortly there-

after [67, 68]. In addition to those systems listed in Section 1.2.4, applications have included

wire bonding [15], steel rolling mills [25], and 
oppy disk drives [62]. Bickel and Tomizuka

[6] found the performance of a disturbance observer to be comparable to adaptive feedback



control in a robotic system.

5.1 Algorithm Explanation

Consider the block diagram shown in Figure 5.1. The feedback controller is repre-

sented by the transfer function Gc. The disk drive transfer function from the control input

u to the PES is given by Gp. Assume that all disturbances into the system are lumped into

an equivalent disturbance � at the input to Gp, and that there is additional measurement

noise � on the PES. These elements make up the nominal feedback loop.

The disturbance observer consists of the delay block z�d, the inverted plant es-

timate G�1pn , and the �lter Q. The disturbance observer takes the noisy PES signal and

passes it through G�1pn . The result is an estimate of the sum of the control signal and the

disturbance, plus some noise e�ects. The combination of GpG
�1
pn has some delay. This delay

is matched by the value of the exponent d, and includes computational delay. Thus, the

output of the delay block is subtracted from the signal g to give a noisy estimate of the

disturbance. This estimate of the disturbance is �ltered by Q, and subtracted from the

control input to o�set the addition of the actual disturbance.

To gain a further appreciation of the disturbance observer e�ects, and to motivate

the design of the �lter Q, it is instructive to examine the transfer functions of Figure 5.1.

The transfer function G�" from the disturbance to the PES, the transfer function Gu" from

the control input to the PES, and the transfer function G�" from the noise to the PES are

given by

G�" =
(1� Qz�d)GpGpn

Gpn +Q(Gp �Gpnz�d)
(5.1)

Gu" =
GpGpn

Gpn +Q(Gp �Gpnz�d)
(5.2)

G�" =
�GpQ

Gpn +Q(Gp �Gpnz�d)
: (5.3)

If the Q �lter is set to unity and the delay is small so that f(1� z�d)Gg � 0 for a transfer



function G, then

G�" � 0 (5.4)

Gu" � Gpn (5.5)

G�" � �1: (5.6)

Thus, the disturbance is canceled and the feedback controller sees a transfer function that

behaves like the nominal plant, but the sensor noise is unattenuated. Conversely, if Q = 0,

then

G�" = Gp (5.7)

Gu" = Gp (5.8)

G�" = 0 (5.9)

so both the disturbances and the feedback controller see the true plant transfer function,

but the sensor noise is eliminated. By designing Q to be a low-pass �lter with unity dc

gain, it is possible to take advantage of the best of both of these situations. Sensor noise is

typically high frequency, so it is attenuated where it is strongest and allowed to pass in those

frequencies that it has little power. In the low frequency range where the performance is

typically more critical and disturbances are concentrated, the e�ects of the disturbance and

parameter mismatch are canceled as desired. At the higher frequencies, the disturbances

can still be expected to be canceled somewhat if Gp is low-pass. Since Gu" is also close

to Gp at high frequencies, robustness to parameter variations cannot be expected in this

frequency range. However, since this is typically above the bandwidth of Gc, not much

performance can be expected in this region even with a perfect model.

Murakami and Ohnishi [46] provide a further discussion of the trade-o�s involved

in the choice of the cut-o� frequency of Q. Examination of the transfer functions reveals

that G�" correpsonds to GpS where S is the sensitivity function, and �G�" corresponds

to the complementary sensitivity function T . As T decreases, the stability of the system
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Figure 5.1: Disturbance Observer Block Diagram

increases, and as S decreases, the robustness of the system to disturbances and parameter

variations increases. Thus, it is desirable to make both T and S small. Unfortunately, the

sensitivity and the complementary sensitivity are related by

T + S = 1 (5.10)

so that they cannot both be made small. The choice of Q determines in what frequency

ranges T is small and in what frequency ranges S is small.

5.2 Other Con�gurations

The block diagram shown in Figure 5.1 is just one implementation con�guration.

Designs may also be made in continuous time, and if desired, discretized using the bilinear

transformation. For the continuous time design in Figure 5.2, the delay block does not exist.

Although the transfer functions remain the same, the block diagram must be manipulated

to ensure realizability of the transfer functions as shown in Figure 5.3. In this case, the
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Figure 5.3: Block Diagram of the Implementable Version of the Continuous Time Distur-

bance Observer

Q �lter has the additional function of compensating for the relative order of the inverted

plant. A more thorough discussion of this technique may be found in [6].

It is also possible to include the feedback controller within the transfer function

Gp, i.e. to swap disturbance observer and feedback loops. An example of this technique

is given in [62]. The feedback controller may not be completely omitted, however, as it is

critical to guarantee the performance and stability of the system.
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Figure 5.4: Frequency Response of the Low-Pass Q Filter

5.3 Implementation Issues

The design of the Q �lter has a major in
uence upon the performance of the dis-

turbance observer. As mentioned above, in the continuous time case, the relative degree

of the Q �lter must be set so that the transfer function QG�1pn is realizable. This is not

a problem for the discrete-time version that was used to create the results in Chapter 6.

However, the cut-o� frequency and the rate at which the Q �lter rolls o� determine the fre-

quency where the trade-o�s between the rejection of disturbances and parameter mismatch

and the attenuation of sensor noise occur. A second-order Butterworth �lter with a break

frequency of 5 kHz was chosen for this case, as shown in Figure 5.4.

The disturbance observer requires an inverted model of the plant Gpn. Obviously,
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Figure 5.5: Frequency Response of the Nominal Plant Model

unstable zeros cannot be inverted. It is well-known [1] that discretization of a plant, es-

pecially with fast sampling times such as those used here, can lead to unstable zeros even

when the continuous time plant is minimum-phase. Often, it is undesirable to invert even

lightly-damped stable zeros.

The nominal plant was chosen to to be a double integrator with the actuator

bearing mode, the VCM LPF, and 150 �s of additional delay to match the e�ects of the

high frequency resonances and the notch �lters. The frequency response of Gpn is shown

in Figure 5.5. Compare this to the full model given in Figure 2.10. Note that the high

frequency resonances and the notch �lters were not included in the nominal plant.

The discretized version of the plant model had one unstable zero and no stable non-

invertible zeros (� = 1), and three pure delays (� = 3). To compensate for the noninvertible

zeros, an estimate of the inverted plant model was created using the ideas contained in the



zero phase error tracking (ZPET) controller of Tomizuka [65]. To generate the ZPET-like

inverted plant, de�ne the numerator and denominator of the discretized plant as

Gpn(z
�1) =

z��B(z�1)

A(z�1)
(5.11)

where

B(z�1) = b0 + b1z
�1 + :::+ bmz

�m (5.12)

A(z�1) = 1 + a1z
�1 + :::+ anz

�n (5.13)

and b0 6= 0. The term z�� represents the number of pure delays in the plant. Divide the

numerator B(z�1) into two parts

B(z�1) = B�(z�1)B+(z�1) (5.14)

where B+(z�1) contains the cancellable zeros, and B�(z�1) contains the uncancellable

zeros. The inverted nominal plant is then given as

G�1pn (z
�1) =

z�+�A(z�1)B�(z)

B+(z�1)(B�(1))2
(5.15)

where (B�(1))2 is included to match the dc gain of the true inverted plant, and the expo-

nent � is the number of uncanceled zeros. Note that because of the z�+� term, the transfer

function of Equation 5.15 is unrealizable. In a tracking system with a known desired tra-

jectory, the e�ects of z�+� can be compensated for using preview information. In the case

of the disturbance observer, the disturbance is unknown and no preview is available. Thus,

the signals must be delayed d = � + � samples before the disturbance estimate can be

calculated. From the analysis of the disturbance observer transfer functions above, it was

noted that delays decreased the performance. As the exponent d increases, the transfer

function f(1 � z�d)Gg cannot be approximated as zero, and the approximations given in

Equations 5.4-5.6 are no longer valid. Thus, unstable zeros have a very direct impact upon

the performance of the technique. Figure 5.6 shows a plot of the unstable, inverted plant



10
1

10
2

10
3

−60

−30

0

30

60

G
ai

n 
(d

B
)

10
1

10
2

10
3

0

90

180

270

360

Frequency (Hz)

P
ha

se
 (

de
g)

Inverse
ZPET   

Figure 5.6: Comparison of the Inverted Plant and the ZPET Approximation

model and the ZPET-like approximation that was actually implemented. This approxima-

tion holds very well until about 1 kHz.

5.4 Stability of the Disturbance Observer

Bickel and Tomizuka [7] have shown that for a �rst-order Q �lter, the disturbance

observer is equivalent to the passivity-based control techniques of Sadegh and Horowitz [56]

and Slotine and Li [61]. This is signi�cant in nonlinear systems like robotics for proving sta-

bility. Although there are some nonlinear e�ects in the bearings of the actuator pivot, these

e�ects are relatively small for track following. Thus, the nonlinearities may be considered

disturbances to a linear model. Since the disturbance observer is a linear, time-invariant

feedback technique, standard linear analysis methods may be used to determine the e�ect

of the disturbance observer on the stability of the system.
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Figure 5.7: Block Diagram of the Disturbance Observer Included in the Plant Transfer

Function

Referring to Figure 5.1, there are two ways to consider the disturbance observer.

The �rst is to assume that the disturbance observer is part of a modi�ed plant, such as shown

in the block diagram of Figure 5.7 and the frequency response of Figure 5.8. This approach

is consistent with the analysis presented in Section 5.1, which describes the e�ects that the

disturbance observer has on the disturbance rejection, robustness to model uncertainties,

and sensor noise attenuation. This approach also leads to a simple approach for designing

the nominal feedback controller, since the nominal plant may be used in place of the true

dynamics.

The second approach is to consider the disturbance observer as part of the total

feedback system. See Figure 5.9 for a block diagram of this approach. This outlook may

facilitate the comparison of the disturbance observer with other design techniques such

as PID (Proportional-Integral-Derivative) control, H1 control, and optimal control tech-

niques. Compare the nominal feedback controller in Figure 2.11 with the feedback controller

augmented with the disturbance observer in Figure 5.10.

Either approach will give the same open loop transfer function that can be used

to analyze the stability of the system, as shown in Figure 5.11 along with the open loop

frequency response without the disturbance observer. The gain and phase margins and

crossover frequency are virtually unchanged. However, the high-frequency resonances have

been attenuated since they were neglected in the nominal plant.
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Transfer Function
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Chapter 6

Simulation and Experimental

Results of Disturbance Observer

Tests

The same techniques were used for the disturbance observer tests that were used

for the acceleration feedforward control simulations and experiments. For purposes of com-

parison, the input levels and frequency ranges were maintained as well.

6.1 Vibration Testing for Track Following: Simulations

6.1.1 Frequency Response Results

By running the simulation program for a number of di�erent sinusoidal frequencies,

the magnitude of the PES generated by the base disturbances can be determined. These

data points are shown in Figure 6.1. This �gure should be compared to the results from the

acceleration feedforward control in Figures 4.1 and 4.2. In the higher frequency range, above

500 Hz, there is very little improvement. In the middle frequency range, the disturbance
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observer performs approximately as well as the �xed-parameter feedforward controller, but

not as well as the adaptive feedforward controller. The reductions in the magnitude of the

PES due to the disturbance observer compared to the case with only feedback control are

approximately 25 dB to 7 dB (94% to 55%) between 50 Hz and 500 Hz. In the low-frequency

range, the disturbance observer performs signi�cantly better than either of the feedforward

controller designs. Reductions in the PES are from 40 dB to 25 dB (99% to 94%) between

10 Hz and 50 Hz.

This behavior is to be expected. For low frequencies, the delay involved with the

disturbance observer is less signi�cant, so the approximations in Equations 5.4-5.6 hold

well. At higher frequencies, the delays are more signi�cant, and the e�ects of the low-pass

Q �lter start to appear.

6.1.2 Time Response Results

Time traces of the simulations without and with the disturbance observer are

given in Figures 6.2-6.9 for the same frequencies that were investigated for the feedforward

controllers in Section 4.1. The PES amplitudes for the various disturbance frequencies are

given in Table 6.1. These results are consistent with the trends of the frequency response

results, showing excellent performance in the low-frequency range that diminishes as the



Without Dist Obs With Dist Obs

Frequency (Hz) Figure PES (�m) Figure PES (�m) Reduction (%)

40 6.2 1.93 6.3 0.07 96

60 6.4 2.39 6.5 0.12 95

100 6.6 3.19 6.7 0.28 91

200 6.8 3.63 6.9 0.62 83

Table 6.1: Results of the Disturbance Observer Vibration Simulations

frequency of the disturbance is increased.

A random input was also used to test the performance of the disturbance observer.

The PSD of the base acceleration and the PES without and with the disturbance observer

are shown in Figures 6.10 and 6.11, respectively. Representative time responses of the PES

without and with the disturbance observer for a random disturbance input are shown in

Figures 6.12 and 6.13. The case without the disturbance observer had an RMS value of the

base acceleration of 0.48 G and an RMS value of the PES of 1.16 �m. With the disturbance

observer, the RMS base acceleration was 0.56 G and the RMS PES was 0.19 �m. Normalized

for the corresponding base accelerations, the disturbance observer resulted in a reduction

of the RMS value of the PES of 86%.

6.2 Vibration Testing for Track Following: Experiments

6.2.1 Frequency Response Results

Implementation of the disturbance observer on the experimental system exposed

some of the problems associated with the technique. As mentioned in Chapter 5, the

disturbance observer relies on a clear distinction between the frequency range where the

disturbance is expected and the frequency range where the sensor noise is expected. Unfor-

tunately, the noise on the PES overlapped the frequency range where disturbance rejection

was desired. Because of this, the frequency of the Q �lter had to be decreased signi�cantly,
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Figure 6.2: Simulation Time Trace without the Disturbance Observer at 40 Hz
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Figure 6.3: Simulation Time Trace with the Disturbance Observer at 40 Hz
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Figure 6.4: Simulation Time Trace without the Disturbance Observer at 60 Hz
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Figure 6.5: Simulation Time Trace with the Disturbance Observer at 60 Hz
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Figure 6.6: Simulation Time Trace without the Disturbance Observer at 100 Hz
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Figure 6.7: Simulation Time Trace with the Disturbance Observer at 100 Hz
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Figure 6.8: Simulation Time Trace without the Disturbance Observer at 200 Hz
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Figure 6.9: Simulation Time Trace with the Disturbance Observer at 200 Hz
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Figure 6.10: Power Spectral Densities of the Base Accelerations
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Figure 6.11: Power Spectral Densities of the PES without and with the Disturbance

Observer
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Figure 6.12: Simulation Time Trace without the Disturbance Observer for a Random Base

Acceleration
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Figure 6.13: Simulation Time Trace with the Disturbance Observer for a Random Base

Acceleration
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Figure 6.14: Frequency Response of the Redesigned Q Filter for Use in the Experiments

from the 5 kHz used in the simulations in Section 6.1 to 400 Hz, as shown in Figure 6.14.

This reduced the disturbance rejection properties. Sugiura and Hori ran into similar prob-

lems in their investigation of steel rolling mills [63].

Figure 6.15 shows the experimental frequency response from a disturbance at the

input of Gp (as opposed to a disturbance to the base) to the PES without and with the

disturbance observer for the redesigned Q �lter. The trends of the frequency response are

the same as described for the simulations. The disturbance observer does a good job in

the low frequency range, with reductions in the PES from 22 dB to 8 dB (96% to 60%)

below 100 Hz. Performance in the middle-frequency range is degraded, with the disturbance

observer actually increasing the PES slightly between 200 Hz and 1 kHz. Since the phase



Figure 6.15: Experimental Frequency Response from the Input Disturbance to the PES

without and with the Disturbance Observer

of the Q �lter is decreasing from 0� to �180�, it is actually adding to the input disturbance

instead of subtracting from it. This e�ect disappears as the magnitude of the Q �lter

decreases. Above 1 kHz, there is little di�erence in the disturbance rejection with and

without the disturbance observer.

6.2.2 Time Response Results

Experimental time traces of the PES for disturbances to the base without and

with the disturbance observer are given in Figures 6.16-6.23. These should be compared

to the simulation results in Section 6.1 and the feedforward results in Chapter 4. Note

that Figures 6.16-6.23 are plotted on the longer time axis that was required to show the

convergence of the adaptive algorithm in Figures 4.7-4.10, while the simulation results

of Figures 6.2-6.9 used the shorter time axis of the IIR feedforward controller results in

Figures 4.3-4.6.

At 40 Hz and 60 Hz the disturbance observer is able to decrease the PES signi�-

cantly, by 16 dB and 10 dB respectively. At 100 Hz, the bene�ts of the disturbance observer

are less evident, with a reduction of 8 dB. At 200 Hz, there is virtually no di�erence between

the PES without and with the disturbance observer. The PES amplitudes for the various

disturbance frequencies are given in Table 6.2.



Figure 6.16: Experimental Time Trace without the Disturbance Observer at 40 Hz

Figure 6.17: Experimental Time Trace with the Disturbance Observer at 40 Hz



Figure 6.18: Experimental Time Trace without the Disturbance Observer at 60 Hz

Figure 6.19: Experimental Time Trace with the Disturbance Observer at 60 Hz



Figure 6.20: Experimental Time Trace without the Disturbance Observer at 100 Hz

Figure 6.21: Experimental Time Trace with the Disturbance Observer at 100 Hz



Figure 6.22: Experimental Time Trace without the Disturbance Observer at 200 Hz

Figure 6.23: Experimental Time Trace with the Disturbance Observer at 200 Hz



Without Dist Obs With Dist Obs

Frequency (Hz) Figure PES (�m) Figure PES (�m) Reduction (%)

40 6.16 1.8 6.17 0.3 83

60 6.18 1.9 6.19 0.6 68

100 6.20 2.6 6.21 1.0 61

200 6.22 2.3 6.23 2.2 4

Table 6.2: Results of the Disturbance Observer Vibration Experiments

Implementation of a disturbance observer typically imposes a very light compu-

tational burden. The e�ectiveness of the disturbance observer at low frequencies, coupled

with the good results of the �ltered-x LMS acceleration feedforward technique in the middle-

frequency range, suggest that it may be possible to combine these two techniques to improve

performance over a wider range of frequencies.

6.3 Shock Testing for Track Following

As in the case for the feedforward controller, the e�ectiveness of the disturbance

observer for reducing the position error due to a shock disturbance was examined. Again,

a shock consisting of a half sine wave of 10 ms duration and an amplitude of 2 G was used.

Simulation results of the time responses are shown in Figures 6.24 and 6.25 for the cases

without and with the disturbance observer, respectively. The disturbance observer does an

excellent job of canceling the disturbance. The peak value was reduced from a magnitude

of 4.8 �m to 0.26 �m, a change of 95%.
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Figure 6.24: Simulation Time Trace without the Disturbance Observer for a Shock

Disturbance
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Figure 6.25: Simulation Time Trace with the Disturbance Observer for a Shock Disturbance
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Chapter 7

Conclusions

7.1 Summary of Results

Disk drive servo control is a very active area of research, and some of the previous

techniques that have been employed to reduce tracking errors were presented in the Intro-

duction. The magnetic disk drive system was explained, as well as how disturbances a�ect

disk drive performance. Two control methods to reduce these e�ects were described, ac-

celeration feedforward control and the disturbance observer. Both techniques require some

knowledge of the system model, so a theoretical derivation of the system equations was

presented in Chapter 2. Also included were an experimental veri�cation of the analytical

model and a description of the feedback controller that was used for both control methods.

7.1.1 Acceleration Feedforward Control

The �rst control technique used accelerometers to measure the acceleration of the

drive and a feedforward �lter to send a canceling signal to the drive actuator. Two di�erent

implementations of the feedforward �lter were used. The �rst was a �xed-parameter IIR

�lter. The second was an FIR adaptive �lter using the �ltered-x LMS adaptive algorithm.

These techniques were implemented experimentally using a digital signal processor to cal-



culate the control, and a shake table to provide the disturbance. Results demonstrated that

acceleration feedforward was e�ective in reducing the position error of the drive actuator

due to disturbances. The PES was reduced from 50% to 90% over the frequency range from

40 Hz to 400 Hz with the �xed-parameter �lter and vibration disturbances.

Simulation and experimental results showed that performance of the feedforward

controller was heavily dependent upon the controller parameters. This motivated the use of

an adaptation algorithm to adjust the feedforward controller parameter �lters. Vibration

test results from the adaptive technique showed a reduction of the PES of 55% to 95% over

the frequency range of 15 Hz to 400 Hz. Tests were performed with single sinusoids and

random inputs. A comparison between the two feedforward controllers showed that the

adaptive controller gave better results, and can adapt to variations in the drive parameters,

but at the cost of increased computation.

Shock testing was performed in simulation using an industry-standard half sine

wave input to the base. The feedforward controller was found to be e�ective in rejecting

this type of disturbance as well. With the feedforward controller, the peak error was reduced

by 89%.

7.1.2 Disturbance Observer

Although the acceleration feedforward controllers were extremely e�ective in re-

ducing the e�ects of disturbances, they do require the use of an additional sensor. Despite

the level of technology involved in producing a disk drive, the market price is actually

quite low. Even low-cost sensors such as the ones used in the experiments may be too

expensive for some applications. In this case, it is preferable to employ a technique that

does not require any sensors. The disturbance observer does this by creating an estimate

of the disturbance using the PES, the control input, and a model of the plant. Because

the disturbance observer requires the disturbance e�ects to appear in the PES before they



can be compensated for, it cannot be expected to react as quickly to disturbances as the

feedforward method.

The same tests were conducted for the disturbance observer that were used for

the acceleration feedforward controller. Vibration simulation results using the disturbance

observer were comparable in the frequency range between 50 Hz and 500 Hz, with reductions

in the PES of 55% to 94%. The disturbance observer did a much better job in the low-

frequency range, decreasing the PES by 94% to 99% between 10 Hz and 50 Hz. Neither

technique o�ered much performance improvement above 500 Hz. Because of noise in the

system, the break frequency of the Q �lter had to be set lower in the experimental tests than

the value that was used in the simulations. This decreased its e�ectiveness. It was still able

to perform very well in the low-frequency range, but it was not able to reject disturbances

above 200 Hz. Rejection of shock disturbances using the disturbance observer was similar

to the performance of the feedforward controller. Simulation showed a peak position error

reduction of 95% with the disturbance observer.

7.2 Future Work

Although the disturbance rejection techniques have been shown to be e�ective

in experimentation, there are several remaining practical questions to be addressed. As

discussed previously, there is often very little spare computation time available in disk

drives. The �ltered-x LMS algorithm was chosen to minimize computation time. However,

it would be preferable to run the algorithm only when the drive �rst boots and then again

only when the dynamics of the drive change signi�cantly. These changes in dynamics may

be due to thermal e�ects, or even the position of the actuator arm. If the dynamics of the

drive are found to change quickly or often, the use of multi-rate techniques may be useful to

update the parameters at a slower sampling time than the feedback controller. This would

reduce computations while maintaining the bene�ts of the adaptation at all times.



In conjunction with the decision of when to implement the adaptation algorithm

is the question of input generation for parameter identi�cation. Is it possible to generate

a su�ciently rich signal from arm motion only, or is it necessary to include some sort of

noise generation electronics in the drive? Certainly with the high accuracy required in disk

drives, it would be impractical to introduce noise into the system while the system was

trying to read or write.

The implementations of the algorithms were made on a 32-bit 
oating point digi-

tal signal processor (DSP) with 10-bit analog-to-digital (ADC) and digital-to-analog (DAC)

converters. Typically, disk drives currently use �xed-point DSPs, and may have low preci-

sion on the DSPs and the ADCs and DACs. These e�ects should be investigated further.

The �ltered-x LMS algorithm has been implemented successfully for acceleration feedfor-

ward control on a compact disk player with a 16-bit �xed-point DSP with 10-bit ADCs and

DACs [33].

The simulation and experimental results considered only rotational disturbances

in the plane of the disks. Thus, coupling of the dynamics and disturbances in other co-

ordinates were not considered. Obviously, actual implementations will encounter a variety

of disturbance types. Compensating for this may require additional sensors and/or a more

careful consideration of their placement.

Theoretically, both the acceleration feedforward controller and the disturbance

observer can be employed in conjunction with a track seeking controller. In this case,

however, the dynamics of the drive may become more signi�cant, especially with the settling

phase. This appears to be a very interesting area for research. Ishikawa and Tomizuka [30]

have some preliminary results using a disturbance observer designed with Kalman �lter

theory. The VCM current and measured acceleration of the actuator arm are compared to

compensate for pivot friction in a disk drive.
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Appendix A

Disk Drive Test Equipment

A.1 Accelerometer Testing

The accelerometers used in the experiments were pre-production models (356M02)

from PCB Piezotronics, Inc. They were designed to be extremely low-cost, i.e. on the

order of a few dollars. Since these were test models, no speci�cations were available from

the manufacturer. The consistency of the signals, the o�-axis sensitivity, and the frequency

range of the accelerometers were tested to determine whether they were suitable for the

acceleration feedforward technique.

A diagram of the shaker system for testing of the accelerometers is shown in Figure

A.1. A Br�uel & Kj�r mini-shaker provided translational, oscillatory motion. The shaker

was connected to the centerplate by a thin nylon rod called a stinger. The opposite end of

the centerplate was attached to a rod that slid in a linear rotary bearing, in-line with the

shaker motion. Two accelerometers were soldered to identical copper-clad printed circuit

boards. The printed circuit boards were mounted to the top and bottom of the centerplate.

The printed circuit boards were slotted so that they could be rotated with respect to the

shaker axis. Also mounted on the centerplate was a mirror that allowed an optical sensor

to measure the position of the system. The position information was used in a feedback

loop to control the shaker motion.



Mini-shaker
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Centerplate Accelerometer

Slider Rod

BearingPC Board

Mirror

Optical Sensor

Figure A.1: Accelerometer Test System

A.1.1 Measurement Techniques

A single experimental trial consisted of shaking the two accelerometers at a �xed

frequency. The �rst accelerometer was rotated by an angle � from the shaker axis. The

second accelerometer was kept in-line with the shaker motion. Signals from the accelerome-

ters were sent through two PCB ICP power units to the two input channels of the dynamic

signal analyzer (DSA), which allowed them to be compared. Signals from the y-axes of the

accelerometers were analyzed in both the time and frequency domains.

In the time domain, time traces 1.00 second long were captured by the DSA. These

time traces were nominally sinusoids with amplitudes A1 and A2. Due to the rotation of

the �rst accelerometer, the amplitudes were related by A1 = A2 cos �. The percent error

was therefore de�ned as

percent error =
jA1 � A2 cos �j

A2

� 100; (A.1)

and was calculated using features on the DSA.

In the frequency domain, the transfer function from the second accelerometer to the

�rst accelerometer was calculated by the DSA and displayed as a Bode plot. The expected

result was a constant magnitude of cos � with zero phase. To compare the results from the

two methods, magnitude values at the frequencies used for the time domain analysis were

extracted from the Bode plots and used to calculate the percent error.



A.1.2 Results

The percent errors calculated from the time domain analysis ranged from 1.56 %

to 7.87 % with a mean of 4.25 % and a standard deviation of 1.92 %. Frequency domain

values ranged from 0.10 % to 8.17 % with a mean of 3.37 % and a standard deviation of 2.22

%. The percent error did not appear to be dependent upon the value of �. This suggested

that o�-axis sensitivity was not a signi�cant factor. Measurements made using the x-axes

of the two accelerometers and by rotating the second accelerometer instead of the �rst gave

similar results.

In general, the frequency responses were well-behaved between 20 Hz and 1 kHz,

although poorer responses were obtained for greater � values as the signal level from the

�rst accelerometer decreased. This is approximately the frequency range of interest for the

disk drive experiments. Below 20 Hz, the acceleration levels from the experimental system

were too small to generate recognizable signals. Above 1 kHz, the di�erences in the power

units appeared to be a problem.

A.1.3 Mounting

For the disk drive experiments, the accelerometers were attached to the disk drive

base with double-sided mounting strips. Shake testing of this method (courtesy of Sat

Pannu) found it satisfactory up to approximately 1 kHz. This is similar to the frequency

range where wax mounting is e�ective, although not as good as more permanent methods

such as adhesives or screws.

A.2 Hitachi Test Equipment

Miscellaneous speci�cations for the disk drive used in the experimentation are

given in Table A.2. During testing, the disk drive was connected to a digital control unit

that replaced the analog controller circuitry that was built into the drive. (See Figure A.2

for a diagram of the experimental system.) The digital control unit included a TMS320C30

digital signal processor (DSP) that was used to calculate the feedback, feedforward, and

disturbance observer control inputs for the drive. The TMS320C30 is a 32-bit 
oating

point DSP. Also included in the digital control unit were 10-bit analog-to-digital converters

(ADC) for the accelerometer signal and PES, 10-bit digital-to-analog converters (DAC) for



Speci�cation Value

Form factor 5.25 inch

Formatted capacity 1.321 Gbytes

Capacity per sector 512 bytes

Sectors per track 77

Number of cylinders 2235

Number of disks 8

Number of data heads 15

Number of servo heads 1

Average seek time 14 s

Maximum seek time 30 ms

Minimum seek time 3 ms

Average latency 8.3 ms

Disk speed 3600 rpm

Data transfer rate 2.75 Mbytes/s

Recording density 44,060 bpi

Track density 2000 tpi

Height 82.5 mm

Width 146 mm

Depth 203 mm

Mass 3.5 kg

Shock (operating) 2 G

Shock (nonoperating) 20 G

Vibration (operating) 0.25 G

Vibration (nonoperating) 0.5 G

Table A.1: Miscellaneous Speci�cations of the Experimental Disk Drive

the control inputs to the drive and signals for analysis, and a second-order LPF with a

break frequency of 2.8 kHz for smoothing the VCM command signal.

A personal computer was used to run an interactive system control program that

allowed the user to specify the operating mode of the drive. This included a variety of seeking

exercises with timing capabilities, bias force calculation, and the default track following

mode. A second computer ran the DSP debugger software with an XDS 510 emulator. An

external hardware interrupt signaled the controller sampling period of 50 �s. Programs for

the two personal computers were written in C and assembly languages.

A block diagram of the experimental equipment is shown in Figure A.3. This

shows more explicitly the shaker, drive and digital control unit. The shaker signal was

generated by the DSA through a power ampli�er. The system hardware gains that appear
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Figure A.2: Schematic of the Experimental System

in Figure A.3 and their values are given in Table A.2. Explanations for the transfer functions

are presented in Table A.2. Figures A.4 and A.5 show the disk drive and the rotary shaker

from two di�erent views.
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Variable Explanation Value

Kpes PES gain 0.11 v/�m

K1 Gain adjustment 4.0 v/v

KAD Analog-to-digital converter 1024/10 count/v

ADGAIN Gain compensation for KAD 10/1024 count/count

LOOPGAIN Gain adjustment -3.1060218

KDA Digital-to-analog converter 5/1024 v/count

DAGAIN Gain compensation for KDA 1024/5 count/count

K2 Gain adjustment 0.125 v/v

K3 Gain adjustment 1.0 v/v

Ka Transconductance ampli�er 2.0 A/v

KF Motor force constant 2.8 N/A

KAD2 Second analog-to-digital converter 4096/5 count/v

ADGAIN2 Gain compensation for KAD2 5/4096 count/count

KDA2 Second digital-to-analog converter 5/256 v/count

DAGAIN2 Gain compensation for KDA2 256/5 count/count

Table A.2: Hardware Speci�cations of the Experimental Disk Drive

Symbol Explanation

GFb From force to base position

Gbt From base position to track position

GFh From torque to head position

Gn Notch �lters

ACC LPF Low-pass �lter for accelerometer signal

VCM LPF Low-pass �lter for voice coil motor input

Table A.3: Transfer Functions in Block Diagram
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Appendix B

Convergence Proofs for the

Filtered-x LMS Adaptive

Algorithm

B.1 Algorithm and Notation

Consider the �ltered-x LMS algorithm as shown in Figure B.1. Gff is the adaptive

�lter, Gout represents the plant dynamics, and Ĝout is an a priori estimate of Gout. If Gff

is a �nite impulse response (FIR) �lter, then

Gff(k; q
�1) = w0(k) + w1(k)q

�1 + :::+ wL(k)q
�L (B.1)

where wi(k) are the �lter parameters, or tap weights, at time k and q�1 is the one-step

delay operator. For more compact notation, let x(k) represent the input, which for the

acceleration feedforward controller is the base acceleration ��base(k). Then v̂(k), the output

of Gff for input x(k), may be written as

v̂(k) = wT (k)x(k) = xT (k)w(k) (B.2)

wT (k) = [w0(k); w1(k); :::; wL(k)] (B.3)

xT (k) = [x(k); x(k� 1); :::; x(k� L)] (B.4)
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Figure B.1: Filtered-x LMS Algorithm

and d̂(k), the output of Gout, is

d̂(k) = Gout(q
�1)v̂(k): (B.5)

A key assumption of the �ltered-x LMS algorithm is that Gout(q
�1) and Gff(k; q

�1) com-

mute, at least approximately, which can be justi�ed in the case of small adaptation gain.

This implies that

d̂(k) = Gout(q
�1)

n
xT (k)w(k)

o
=
n
Gout(q

�1)xT (k)
o
w(k): (B.6)

Now de�ne the error "(k) and the mean-square error �(k) as

"(k) = d(k)� d̂(k) (B.7)

�(k) = E["2(k)] (B.8)

where d(k) is the desired value and E denotes the expectation. For the model reference

case discussed in Chapter 3, the desired value is given by

d(k) = Gout(q
�1)Gref (q

�1)x(k): (B.9)

Let "2(k) serve as the estimate of its expectation �(k). Thus the estimate of r(k), the

gradient of �(k), is

r̂(k) =
@"2(k)

@w(k)
(B.10)

= 2"(k)
@"(k)

@w(k)
(B.11)

= 2"(k)
@(d(k)� d̂(k))

@w(k)
(B.12)

= �2"(k)
@d̂(k)

@w(k)
(B.13)



= �2"(k)
@(fGout(q

�1)xT (k)gw(k))

@w(k)
(B.14)

= �2"(k)fGout(q
�1)x(k)g (B.15)

= �2fGout(q
�1)x(k)g"(k): (B.16)

However, the vector Gout(q
�1)x(k) is not available. Instead, use the modeling approxima-

tion Ĝout(q
�1)x(k). This results in

r̂(k) = �2fĜout(q
�1)x(k)g"(k): (B.17)

The update law for the parameters of Gff(k; q
�1) is made in the direction of the negative

gradient

w(k+ 1) = w(k)� �r(k) (B.18)

� w(k) + 2�fGout(q
�1)x(k)g"(k) (B.19)

� w(k) + 2�fĜout(q
�1)x(k)g"(k): (B.20)

B.2 Solution for the Optimal Filter Weights

Before analyzing the convergence of the algorithm, it is useful to determine the

value of the optimal �lter weights. To this end, begin with the error equation

"(k) = d(k)� d̂(k) (B.21)

= d(k)� fGout(q
�1)x(k)gTw(k) (B.22)

where the assumption that Gff(k; q
�1) and Gout(q

�1) commute has been applied. Squaring

Equation B.22 results in

"2(k) = d2(k) +wT (k)fGout(q
�1)x(k)gfGout(q

�1)x(k)gTw(k)

� 2d(k)fGout(q
�1)x(k)gTw(k): (B.23)

Assume that "(k) is stationary and that d(k) and x(k) are jointly stationary. Then taking

the expectation of Equation B.23 leads to

E["2(k)] = E[d2(k)] + E[wT(k)fGout(q
�1)x(k)gfGout(q

�1)x(k)gTw(k)]

� E[2d(k)fGout(q
�1)x(k)gTw(k)]: (B.24)



Now assume that w is constant, then

E["2(k)] = E[d2(k)] +wTE[fGout(q
�1)x(k)gfGout(q

�1)x(k)gT ]w

� 2E[d(k)fGout(q
�1)x(k)gT ]w: (B.25)

De�ne

R = E[fGout(q
�1)x(k)gfGout(q

�1)x(k)gT ] (B.26)

or

R = E

2
6664

fGout(q
�1)x(k)g2 ::: fGout(q

�1)x(k)gfGout(q
�1)x(k � L)g

...
. . .

...

fGout(q
�1)x(k � L)gfGout(q

�1)x(k)g ::: fGout(q
�1)x(k � L)g2

3
7775 (B.27)

and

p = E[d(k)fGout(q
�1)x(k)g] = E[fGout(q

�1)x(k)gd(k)]: (B.28)

Note that by construction, R is real and symmetric. Furthermore, R is positive semi-

de�nite, since for any z 2 RL+1, the set of real (L+ 1) vectors,

zTRz = zTE[fGout(q
�1)x(k)gfGout(q

�1)x(k)gT ]z (B.29)

= E[
�
zTfGout(q

�1)x(k)g
��
fGout(q

�1)x(k)gTz
�
] (B.30)

= E[
�
zTfGout(q

�1)x(k)g
�2
] (B.31)

� 0 if z 6= 0 (B.32)

= 0 if z = 0: (B.33)

The eigenvalues of R are real and non-negative. Typically, R will be positive de�nite, in

which case the eigenvalues are positive. Substituting for R and p, Equation B.25 becomes

� = E["2(k)] (B.34)

= E[d2(k)] +wTRw � 2pTw (B.35)

and the gradient can be calculated as

r =
@�

@w
(B.36)

=
@

@w
(E[d2(k)] +wTRw� 2pTw) (B.37)

= 2Rw � 2p: (B.38)



Note that due to the stationarity assumptions, R, p, �, and r are all constant with respect

to k. Setting r = 0 and solving for the optimal weights w = w� results in

w� = R�1p (B.39)

assuming that R is positive de�nite, and therefore nonsingular. Substituting these values

into Equation B.35 gives the minimum mean-square error

� = E[d2(k)] +w�TRw�
� 2pTw� (B.40)

= E[d2(k)] + (R�1p)TRR�1p � 2pTR�1p (B.41)

= E[d2(k)]� pTR�1p (B.42)

= E[d2(k)]�
�
E[d(k)hT(k)]

��
E[h(k)hT(k)]

��1
(E[d(k)h(k)]) (B.43)

= �min (B.44)

where

h(k) = Gout(q
�1)x(k): (B.45)

B.3 Solution for the Converged Filter Weights

De�ne

R̂ = E[fĜout(q
�1)x(k)gfGout(q

�1)x(k)gT ] (B.46)

or

R̂ = E

2
6664

fĜout(q
�1)x(k)gfGout(q

�1)x(k)g ::: fĜout(q
�1)x(k)gfGout(q

�1)x(k � L)g

...
. . .

...

fĜout(q
�1)x(k� L)gfGout(q

�1)x(k)g ::: fĜout(q
�1)x(k � L)gfGout(q

�1)x(k� L)g

3
7775
(B.47)

and

p̂ = E[d(k)fĜout(q
�1)x(k)g] = E[fĜout(q

�1)x(k)gd(k)]: (B.48)

Assume that

H(q�1) =
Ĝout(q

�1)

Gout(q�1)
(B.49)



is strictly positive real (SPR), i.e.

Re(H(e�j!)) > 0 8! (B.50)

then R̂ is positive semi-de�nite. To see this, begin with Equation B.46

R̂ = E[fĜout(q
�1)x(k)gfGout(q

�1)x(k)gT ] (B.51)

= E[

(
Ĝout(q

�1)

Gout(q�1)
Gout(q

�1)x(k)

)
fGout(q

�1)x(k)gT ] (B.52)

= E[fH(q�1)h(k)ghT (k)]: (B.53)

Consider any z 2 RL+1, then

zT R̂z = zTE[fH(q�1)h(k)ghT(k)]z (B.54)

= E[zTfH(q�1)h(k)ghT(k)z] (B.55)

= E[ ~�(k)�(k)] (B.56)

=
1

2�

Z �

��
H(e�j!)���(!) d! (B.57)

where �(k) = hT (k)z and ~�(k) = zT fH(q�1)h(k)g are scalars, and ���(!) is the spectral

density of �(k). Since ���(!) and E[ ~�(k)�(k)] are real

zT R̂z =
1

2�

Z �

��
Re(H(e�j!))���(!) d! (B.58)

but Re(H(e�j!)) > 0, and ���(!) � 0, therefore

zT R̂z � 0 (B.59)

and R̂ is positive semi-de�nite [31], although R̂ is not necessarily symmetric. The eigen-

values of R̂ are real and non-negative. Typically, R̂ will be positive de�nite, in which case

the eigenvalues are positive and R̂ is nonsingular. Note that due to the stationarity as-

sumptions, R̂ and p̂ are constant with respect to k. Assuming that R̂ is positive de�nite,

de�ne

ŵ = R̂�1p̂: (B.60)

Note that if Ĝout(q
�1) = Gout(q

�1), then R̂ = R, p̂ = p, and ŵ = w�.



B.4 Filtered-x LMS Convergence Proof: Constant

Adaptation Gain

The convergence proof presented in this section follows the proof for the LMS

algorithm given in Widrow and Stearns [72], but has been modi�ed for the �ltered-x LMS

algorithm. The major di�erence between the two techniques is the introduction of the esti-

mated transfer function Ĝout for the �ltered-x LMS algorithm. To analyze the convergence

of w(k), take the expectation of the parameter update equation using the expectation and

modeling approximations, Equation B.20.

E[w(k+ 1)] = E[w(k)]+ 2�E[fĜout(q
�1)x(k)g"(k)] (B.61)

= E[w(k)]+ 2�E[fĜout(q
�1)x(k)gd(k)]

� 2�E[fĜout(q
�1)x(k)gd̂(k)] (B.62)

= E[w(k)]+ 2�E[fĜout(q
�1)x(k)gd(k)]

� 2�E[fĜout(q
�1)x(k)gfGout(q

�1)xT (k)gw(k)] (B.63)

where the commutivity assumption has again been used. Assume as well that the station-

arity conditions remain and that x(k) and w(k) are uncorrelated. A su�cient condition

for x(k) and w(k) to be uncorrelated is that successive input vectors are independent over

time [72]. Although this is a standard assumption, it is not always justi�able. Convergence

can be shown for certain cases with correlated data, but this complicates the analysis con-

siderably. Furthermore, techniques that allow correlated data typically have shortcomings

of their own. See [17, 40] for further discussion on this topic. For the sake of clarity, and

since results predicted using the assumption of uncorrelated data have been shown to match

experimental results with correlated data [71, 70, 69], the assumption that x(k) and w(k)

are uncorrelated will be retained. It follows that

E[fĜout(q
�1)x(k)gfGout(q

�1)x(k)gTw(k)]

= E[fĜout(q
�1)x(k)gfGout(q

�1)x(k)gT ]E[w(k)] (B.64)

= R̂E[w(k)]: (B.65)



Substituting R̂ and p̂ into Equation B.63,

E[w(k+ 1)] = E[w(k)] + 2�
n
p̂ � R̂E[w(k)]

o
(B.66)

= (I� 2�R̂)E[w(k)]+ 2�p̂ (B.67)

= (I� 2�R̂)E[w(k)]+ 2�R̂ŵ (B.68)

where I is the identity matrix. Let Q̂ be the similarity transformation matrix such that

Q̂�1R̂Q̂ = Ĵ (B.69)

where Ĵ is the Jordan form of R̂. Now, transform Equation B.68 to the principal coordinate

system, �rst by the translation w(k) = v(k) + ŵ,

E[v(k+ 1) + ŵ] = (I� 2�R̂)E[v(k)+ ŵ] + 2�R̂ŵ (B.70)

) E[v(k+ 1)] + ŵ = (I� 2�R̂)E[v(k)]+ (I� 2�R̂)ŵ+ 2�R̂ŵ (B.71)

) E[v(k+ 1)] = (I� 2�R̂)E[v(k)] (B.72)

and then by the rotation v(k) = Q̂v0(k),

E[Q̂v0(k + 1)] = (I� 2�R̂)E[Q̂v0(k)] (B.73)

) E[v0(k + 1)] = Q̂�1(I� 2�R̂)Q̂E[v0(k)] (B.74)

) E[v0(k + 1)] = (I� 2�Ĵ)E[v0(k)]: (B.75)

Since the eigenvalues �i of Ĵ are the diagonal elements, the eigenvalues of (I� 2�Ĵ) also lie

on the diagonal. Recall that the eigenvalues of R̂, and therefore Ĵ, are positive. Thus, the

system described by Equation B.75 is stable if

j1� 2��ij < 1 (B.76)

for i = 1; :::; (L+ 1) or

0 < � <
1

�max

(B.77)

where �max is the maximum eigenvalue of Ĵ, which equals the maximum eigenvalue of R̂.

Note that

�max � tr[Ĵ] = tr[R̂] (B.78)



which implies that

1

�max

�
1

tr[Ĵ]
=

1

tr[R̂]
: (B.79)

Thus, convergence of the mean is assured if

0 < � <
1

tr[R̂]
(B.80)

since this implies the following

lim
k!1

E[v0(k)] = 0 (B.81)

lim
k!1

E[Q̂�1v(k)] = 0 (B.82)

lim
k!1

E[v(k)] = 0 (B.83)

lim
k!1

E[w(k)� ŵ] = 0: (B.84)

Since this is a single-input system and x(k) is assumed to be stationary,

E[fĜout(q
�1)x(k)gfGout(q

�1)x(k)g] =

E[fĜout(q
�1)x(k� i)gfGout(q

�1)x(k � i)g] (B.85)

for all i = 0; :::; L. Thus

tr[R̂] =
LX
i=0

E[fĜout(q
�1)x(k� i)gfGout(q

�1)x(k� i)g] (B.86)

= (L+ 1)E[fĜout(q
�1)x(k)gfGout(q

�1)x(k)g] (B.87)

or (L+1) times the �ltered input signal power. This is a convenient, if possibly conservative,

estimate of �max. Since the signal Gout(q
�1)x(k) is not available, use the average value of

ĥ2(k) = fĜout(q
�1)x(k)g2 for the estimate of E[fĜout(q

�1)x(k)gfGout(q
�1)x(k)g]. Widrow

and Stearns [72] suggest a value of � approximately equal to one-tenth of the maximum

value given by Equation B.80. Note that due to the trade-o�s between fast convergence

and sensitivity to noise, the maximum value of � is rarely the optimal value [5, 52].

Using Ĝout(q
�1) in place of Gout(q

�1) for calculating the bound on � limits the

magnitude of the allowable modeling error in Ĝout(q
�1). Considering Equations B.80 and



B.87, it is evident that there is an inverse relationship between the accuracy of the estimate

of the bound on � and the size of the Ĝout(q
�1) magnitude error. To set � close to its

maximum value, an accurate estimate of the magnitude of Gout(q
�1) is required. However,

as stated above, it is typical to use a value of � signi�cantly lower than the maximum. This

relaxes the requirement on the estimate of the magnitude of Gout(q
�1).

The other requirement on the estimate Ĝout(q
�1) is the SPR condition stated

previously. The SPR condition limits the phase error in Ĝout(q
�1), since it is equivalent to

the condition

�90� < 6 (Gout(e
�j!))� 6 (Ĝout(e

�j!)) < 90� 8! (B.88)

where 6 (G(e�j!)) denotes the phase angle of G(e�j!). Thus, there is a requirement for

the magnitude estimate of Gout(q
�1) and a requirement for the phase estimate of Gout(q

�1)

to achieve convergence of the mean. The SPR condition of Equation B.50 is not terribly

restrictive, and if � is chosen to be near one-tenth of its maximum, neither is the requirement

on the Ĝout(q
�1) magnitude error.

B.5 Filtered-x LMS Convergence Proof: Vanishing

Adaptation Gain

B.5.1 Derivation and Motivation of the Associated ODE

Consider the �ltered-x LMS adaptive algorithm

w(k+ 1) = w(k) + 
(k)fĜout(q
�1)x(k)g"(k) (B.89)

"(k) = d(k)�Gout(q
�1)fwT(k)x(k)g (B.90)

which di�ers from the typical �ltered-x LMS in that the constant adaptation gain 2� has

been replaced with 
(k) such that 
(k)! 0 as k !1. Assume as before that

� Gout(q
�1) and Gff(k; q

�1) commute



� "(k) is stationary, and d(k) and x(k) are jointly stationary

� H(q�1) =
Ĝout(q

�1
)

Gout(q�1)
is SPR

� x(k) and w(k) are uncorrelated.

Ljung proposed the ODE method as a general technique for analyzing the conver-

gence of adaptive algorithms. The ODE method determines the asymptotic behavior of the

adaptive algorithm by associating it with an ordinary di�erential equation (ODE), and then

determining the behavior of the ODE [37, 38]. It will be shown that the �ltered-x LMS al-

gorithm with vanishing adaptation gain satis�es the requirements of the ODE method, and

then by applying the ODE method, that the tap weights of the �ltered-x LMS algorithm

converge with probability one.

For the �ltered-x LMS algorithm, the associated ODE is given by

d

d�
wD(�) = �E[fĜout(q

�1)x(n)g"(n;wD(�))] (B.91)

= f(wD(�)) (B.92)

where � is a new time scale and wD(�) is the vector of tap weights as a function of the new

time scale. The derivation of � and wD(�) are explained in the following development. The

expectation �E is de�ned as

�E[fĜout(q
�1)x(n)g"(n;wD(�))]

= lim
N!1

1

N

NX
n=1

E[fĜout(q
�1)x(n)g"(n;wD(�))] (B.93)

where n has replaced � in x(�) and "(�) to emphasize that wD(�) is held constant over the

summation from n = 1 to n = N . To derive the associated ODE and link it heuristically

to the adaptive algorithm, begin by noting that

�w(k + 1) � fĜout(q
�1)x(k)g"(k) (B.94)

where � denotes proportionality. For small values of 
(k), any signi�cant changes in w(k)

can be assumed to occur in the direction of the expectation, i.e.

�w(k + 1) � E[fĜout(q
�1)x(k)g"(k)]: (B.95)



Let w(k0) = �w, a constant, and choose k > k0 so that w(k) and w(k0) are nearly equal.

Therefore,

w(k)�w(k0) =
kX

m=k0


(m)fĜout(q
�1)x(m)g"(m) (B.96)

�

kX
m=k0


(m)fĜout(q
�1)x(m)g"(m; �w) (B.97)

since w(k) � �w. Substituting for the value at time m with the average value f( �w) de�ned

by

f( �w) = �E[fĜout(q
�1)x(n)g"(n; �w)] (B.98)

leads to

w(k)�w(k0) �

kX
m=k0


(m) �E[fĜout(q
�1)x(n)g"(n; �w)] (B.99)

=

0
@ kX
m=k0


(m)

1
A� �E[fĜout(q

�1)x(n)g"(n; �w)]
�

(B.100)

since the average value is independent of m. Substituting the de�nition

�� =
kX

m=k0


(m) (B.101)

results in

w(k)�w(k0) � �� �E[fĜout(q
�1)x(n)g"(n; �w)]: (B.102)

Now de�ne a change of time scale from k to �k by

kX
m=1


(m) $ �k (B.103)

w(k) $ wD(�k): (B.104)

Then Equation B.102 becomes

wD(�k)�wD(�k0) = (�k � �k0)
�E[fĜout(q

�1)x(n)g"(n;wD(�k0))] (B.105)

which is Euler's method for solving Equation B.91, and therefore links the associated ODE

to the adaptation algorithm, assuming that 
(k) is small. A more rigorous justi�cation of

the use of the associated ODE for analyzing the adaptive algorithm can be found in [37].



B.5.2 Stability of the Equilibrium Point ŵ

Once the associated ODE has been derived, its behavior is analyzed to determine

the asymptotic behavior of the adaptation algorithm. For the �ltered-x LMS algorithm, a

Lyapunov analysis is suitable. To �nd the equilibrium point ŵ, set d
d�
wD(�) equal to zero

so that

0 = �E[fĜout(q
�1)x(n)g"(n;wD)] (B.106)

= �E[fĜout(q
�1)x(n)g

�
d(n)� Gout(q

�1)fxT(n)wDg

�
] (B.107)

= �E[fĜout(q
�1)x(n)gd(n)� fĜout(q

�1)x(n)gfGout(q
�1)x(n)gTwD] (B.108)

= p̂� R̂wD: (B.109)

Therefore

wD = R̂�1p̂ = ŵ (B.110)

is an equilibrium point. Choose a Lyapunov function

V =
1

2
(wD � ŵ)T (wD � ŵ): (B.111)

Note that V is positive de�nite and radially unbounded. Determine the derivative of V

along the trajectories of the associated ODE

dV

d�
= (wD � ŵ)T

d

d�
(wD � ŵ) (B.112)

= (wD � ŵ)T
d

d�
wD (B.113)

= (wD � ŵ)T (p̂� R̂wD) (B.114)

= (wD � ŵ)T (R̂R̂�1)(p̂� R̂wD) (B.115)

= (wD � ŵ)T R̂(R̂�1p̂ � R̂�1R̂wD) (B.116)

= (wD � ŵ)T R̂(ŵ �wD) (B.117)

= �(wD � ŵ)T R̂(wD � ŵ) (B.118)

so dV
d�

is negative de�nite. If the set DC is de�ned as DC = fŵg, then the Lyapunov analysis

shows that trajectories of the associated ODE will converge to DC as k ! 1, and ŵ is a

globally asymptotically stable equilibrium point of the associated ODE.



B.5.3 Statement and Satisfaction of the Su�cient Conditions

In [37], several conditions are described that allow the results of the associated

ODE analysis to be applied to the adaptive algorithm. In addition to the update law given

by Equation B.89, Ljung refers to the system

�(k) = A(w(k))�(k� 1) + b(w(k))x(k) (B.119)

in the statement and proof of the ODE Theorem. Its derivation is presented to show that the

structure of the �ltered-x LMS algorithm is suitable for application of the ODE Theorem,

and to show that the conditions of the ODE Theorem are satis�ed.

Recall that

d(k) = Gout(q
�1)Gref (q

�1)x(k) (B.120)

d̂(k) = Gout(q
�1)Gff(k; q

�1)x(k) (B.121)

ĥ(k) = Ĝout(q
�1)x(k) (B.122)

where

Gff(k; q
�1) = w0(k) + w1(k)q

�1 + :::+ wL(k)q
�L: (B.123)

De�ne the following numerator and denominator polynomials

Gout(q
�1) =

Nout(q
�1)

Dout(q�1)
(B.124)

Gref(q
�1) =

Nref(q
�1)

Dref (q�1)
(B.125)

Ĝout(q
�1) =

N̂out(q
�1)

D̂out(q�1)
(B.126)

so that

Dout(q
�1)Dref(q

�1)d(k) = Nout(q
�1)Nref(q

�1)x(k) (B.127)

Dout(q
�1)d̂(k) = Nout(q

�1)Gff(k; q
�1)x(k) (B.128)

D̂out(q
�1)ĥ(k) = N̂out(q

�1)x(k): (B.129)



Assume, without loss of generality, that D̂out(q
�1), Dout(q

�1), and Dref(q
�1) are monic.

Thus, Equations B.127-B.129 are of the form

D(q�1)y(k) = N(q�1)x(k) (B.130)

or

h
1 + d1q

�1 + d2q
�2 + :::+ dnq

�n
i
y(k) =

[n0 + n1q
�1 + n2q

�2 + :::+ nmq
�m]x(k): (B.131)

Therefore

y(k) = �[d1q
�1 + d2q

�2 + :::+ dnq
�n]y(k)

+ [n1q
�1 + n2q

�2 + :::+ nmq
�m]x(k) + n0x(k) (B.132)

which can be put in the state space form2
664 y(k)

xm(k)

3
775 =

2
664 Ay Ny

0m�n Lm�m

3
775
2
664 y(k � 1)

xm(k � 1)

3
775+

2
664 by

em

3
775x(k): (B.133)

The vectors of Equation B.133 are de�ned as

y(k) = [y(k); y(k� 1); :::; y(k� n+ 1)]T (B.134)

xm(k) = [x(k); x(k� 1); :::; x(k�m+ 1)]T (B.135)

by = [n0; 0; :::; 0]
T (B.136)

em = [1; 0; :::; 0]T (B.137)

where by is length n and em is length m. The submatrices of Equation B.133 are de�ned

as

Ay =

2
66666666666666664

�d1 �d2 �d3 � � � �dn�2 �dn�1 �dn

1 0 0 � � � 0 0 0

0 1 0 � � � 0 0 0

...
. . .

. . .
. . .

...
...

...

0 0 0
. . . 0 0 0

0 0 0
. . . 1 0 0

0 0 0 � � � 0 1 0

3
77777777777777775

(B.138)



Ny =

2
66666666666666664

n1 n2 n3 � � � nm�2 nm�1 nm

0 0 0 � � � 0 0 0

0 0 0 � � � 0 0 0

...
...

...
. ..

...
...

...

0 0 0 � � � 0 0 0

0 0 0 � � � 0 0 0

0 0 0 � � � 0 0 0

3
77777777777777775

(B.139)

Lm�m =

2
66666666666666664

0 0 0 � � � 0 0 0

1 0 0 � � � 0 0 0

0 1 0 � � � 0 0 0

...
. . .

. . .
. . .

...
...

...

0 0 0
. . . 0 0 0

0 0 0
. . . 1 0 0

0 0 0 � � � 0 1 0

3
77777777777777775

(B.140)

(B.141)

and 0m�n is a m� n matrix of zeros. In particular,

2
664 d(k)

xmd
(k)

3
775 =

2
664 Ad Nd

0md�nd Lmd�md

3
775
2
664 d(k � 1)

xmd
(k � 1)

3
775+

2
664 bd

emd

3
775x(k) (B.142)

2
664 d̂(k)

xm̂d
(k)

3
775 =

2
664 Âd N̂d

0m̂d�n̂d Lm̂d�m̂d

3
775
2
664 d̂(k � 1)

xm̂d
(k � 1)

3
775+

2
664 b̂d

em̂d

3
775x(k) (B.143)

2
664 ĥ(k)

xm̂h
(k)

3
775 =

2
664 Âh N̂h

0m̂h�n̂h Lm̂h�m̂h

3
775
2
664 ĥ(k � 1)

xm̂h
(k � 1)

3
775+

2
664 b̂h

em̂h

3
775x(k) (B.144)

where

d(k) = [d(k); d(k� 1); :::; d(k� nd + 1)]T (B.145)

d̂(k) = [d̂(k); d̂(k � 1); :::; d̂(k � n̂d + 1)]T (B.146)

ĥ(k) = [ĥ(k); ĥ(k � 1); :::; ĥ(k � n̂h + 1)]T : (B.147)



Equations B.142-B.144 can be combined into the complete system

�(k) = A(w(k))�(k� 1) + b(w(k))x(k) (B.148)

where

�(k) =

2
6666664

d(k)

d̂(k)

ĥ(k)

xmmax
(k)

3
7777775

(B.149)

A(w(k)) =

2
6666664

Ad 0md�m̂d
0md�m̂h

Nd 0md�(mmax�md)

0m̂d�md
Âd 0m̂d�m̂h

N̂d(w(k)) 0m̂d�(mmax�m̂d)

0m̂h�md
0m̂h�m̂d

Âh N̂h 0m̂h�(mmax�m̂h)

0mmax�md
0mmax�m̂d

0mmax�m̂h
Lmmax�mmax

3
7777775

(B.150)

b(w(k)) =

2
6666664

bd

b̂d(w(k))

b̂h

emmax

3
7777775

(B.151)

and the value of mmax is the maximum of md, m̂d, and m̂h. This system de�nition will

be used in the proof that follows. Note that the eigenvalues of A(w(k)) are the eigenval-

ues of Ad, Âd, Âh and L. Furthermore, the eigenvalues of Ad equal the eigenvalues of

Gout(q
�1)Gref(q

�1), the eigenvalues of Âd equal the eigenvalues of Gout(q
�1)Gff(k; q

�1),

and the eigenvalues of Âh equal the eigenvalues of Ĝout(q
�1). Since Gff(k; q

�1) is an FIR

�lter, it does not a�ect the eigenvalues. Therefore, the eigenvalues of Gout(q
�1)Gff(k; q

�1)

are just the eigenvalues of Gout(q
�1), which implies that the eigenvalues of A(w(k)) are

independent of the estimated parameters w(k). The eigenvalues of L are all zero.

Let the set DS be de�ned as DS = fw j A(w) is stableg. Therefore, DS is the

set of all �nite values of w if Ĝout(q
�1), Gout(q

�1), and Gref (q
�1) are stable. The stability

of Ĝout(q
�1), Gout(q

�1), and Gref (q
�1) will be assumed in the following. The set DR is

de�ned to be an open, connected subset of DS such that the Conditions 1 through 9 hold

within DR. Su�cient conditions for applying the ODE Theorem are

1. x(k) is a sequence of independent random variables



2. kx(k)k < � with probability one for all k and for some � > 0

3. The function fĜout(q
�1)x(k)g"(k) is continuously di�erentiable with respect tow and

� for w 2 DR. The derivatives are bounded in k for �xed w and �.

4. The matrix functions A(w) and b(w) are Lipschitz continuous in DR.

5. limk!1E[fĜout(q
�1)x(k)g"(k)] exists for w 2 DR, where the expectation is over x(k)

6.
P1

k=1 
(k) =1

7.
P1

k=1 

p(k) <1 for some p > 0

8. 
(k) is a decreasing sequence

9. limk!1 sup( 1


(k)
� 1


(k�1)
) <1

Condition 1 requires that the input be stochastic. Although Condition 2 is reasonable in

practice, it does exclude Gaussian signals. Recall that Ĝout(q
�1), Gout(q

�1), Gref (q
�1),

and Gff(k; q
�1) represent stable, linear systems, then Condition 3 follows. Since A(w) and

b(w) are linear in w, Condition 4 is met. Condition 5 holds because x(k) is assumed to be

stationary. Conditions 6 through 9 can be satis�ed by choosing 
(k) = �k�� for � > 0 and

0 < � � 1.

Ljung [37] lists a second set of conditions that can be applied if a wider range

of stochastic inputs is desired, including Gaussian. These conditions are similar to those

listed above, but replace Conditions 2 and 3 with four, more-complicated conditions on

fĜout(q
�1)x(k)g"(k) and x(k). A third set of conditions exists for the case where x(k) is

deterministic. A more thorough discussion of these sets of conditions and their applicability

for various adaptation algorithms may be found in [39].

B.5.4 Statement and Application of the ODE Convergence Theorem

Once the associated ODE has been derived and analyzed, and the conditions

satis�ed, the following theorem may be applied to determine the behavior of the adaptive



algorithm.

ODE Theorem Consider the algorithm of Equations B.89 and B.148, subject to Condi-

tions 1 through 9. Assume

A. there is a compact subset �D of DR such that the trajectories of the associated

ODE of Equation B.91 that start in �D remain in a closed subset �DR of DR for

� > 0

B. there is a random variable C such that w(k) 2 �D and k�(k)k < C in�nitely often

with probability one

C. the associated ODE has an invariant set DC with a domain of attractionDA � �D.

Then w(k)! DC with probability one as k !1.

For the proof of this theorem, see [37]. By the Lyapunov analysis, the sets �D and �DR exist

and Condition A is satis�ed. Furthermore, ŵ is an equilibrium point, and therefore an

invariant set, and since it is globally asymptotically stable, its domain of attraction is all

of RL+1. Thus �D � DA, and Condition C holds. Since x(k) is assumed to be bounded by

Condition 2, and Ĝout(q
�1), Gout(q

�1), Gff(k; q
�1), and Gref (q

�1) are stable, Condition B

is satis�ed. Additionally, as discussed in [37], if DR = DA = RL+1, then Condition B may

be met by introducing saturation in the update law. Ljung even suggests that this may be

accomplished automatically by computer over
ow. Furthermore, Metivier and Priouret [43]

have shown that this boundedness condition may be dropped in algorithms that are linear

in the estimated parameters, such as the �ltered-x LMS algorithm.

Both the ODE Theorem and the technique of Widrow and Stearns show conver-

gence of the �ltered-x LMS algorithm tap weights to ŵ. The ODE result is stronger, with

convergence with probability one compared to convergence of the mean for the Widrow and

Stearns technique. However, the ODE method requires, among other conditions, that the

adaptation gain 
(k) ! 0 as k ! 1, which the Widrow and Stearns technique does not.

Although the ODE method is for the case of vanishing adaptation gain, Ljung suggests that



it is reasonable to assume that the behavior of the adaptive algorithm for small, nonzero,

adaptation gains is similar [37]. Recall that the Widrow and Stearns technique places a limit

on the magnitude of the adaptation gain, and that the justi�cation for the commutivity of

Gout(q
�1) and Gff(k; q

�1) is that the controller parameters are slowly varying.

B.6 Analysis of the Mean-Square Error

Since the expected values of the tap weights have been shown to converge to

ŵ = R̂�1p̂, it is of interest to see how this value di�ers from the optimal, and how it e�ects

the mean-square error. The mean-square error with the converged values of the �ltered-x

LMS algorithm is Equation B.35 with

w = ŵ = w� + (ŵ �w�) = w� +�w (B.152)

or

� = E[d2(k)] + (w� +�w)TR(w� +�w)� 2pT (w� +�w) (B.153)

= E[d2(k)] +w�TRw� + 2w�TR�w +�wTR�w

� 2pTw� � 2pT�w (B.154)

= E[d2(k)] +
�
w�TRw�

� 2pTw�
�

+
�
2w�TR�w +�wTR�w � 2pT�w

�
(B.155)

= �min +�wTR�w + 2
�
w�TR� pT

�
�w: (B.156)

As mentioned previously, if Ĝout(q
�1) = Gout(q

�1), then �w = 0 and � = �min. Ren and

Kumar [53] suggest a second situation where � = �min. From Equation B.39, the optimal

parameters w� satisfy

Rw� � p = 0: (B.157)

Let H(q�1) be de�ned as before and let hi be such that

H(q�1) =
1X
i=0

hiq
�i: (B.158)



Then

Rŵ� p =
1X
i=1

hi

h0
E[fGout(q

�1)x(k � i)"(k; ŵ)] (B.159)

since from Equation B.60

R̂ŵ = p̂ (B.160)

E[fĜout(q
�1)x(k)gfGout(q

�1)x(k)gTŵ] = E[fĜout(q
�1)x(k)gd(k)] (B.161)

E[fĜout(q
�1)x(k)g

�
fGout(q

�1)x(k)gTŵ� d(k)
�
] = 0 (B.162)

E[fĜout(q
�1)x(k)g"(k; ŵ)] = 0 (B.163)

H(q�1)E[fGout(q
�1)x(k)g"(k; ŵ)] = 0 (B.164)

1X
i=0

hiq
�iE[fGout(q

�1)x(k)g"(k; ŵ)] = 0 (B.165)

and splitting the summation results in

h0E[fGout(q
�1)x(k)g"(k; ŵ)] = �

1X
i=1

hiq
�iE[fGout(q

�1)x(k)g"(k; ŵ)] (B.166)

h0E[fGout(q
�1)x(k)gfGout(q

�1)x(k)gTŵ � fGout(q
�1)x(k)gd(k)]

=
1X
i=1

hiE[fGout(q
�1)x(k � i)g"(k; ŵ)] (B.167)

E[fGout(q
�1)x(k)gfGout(q

�1)x(k)gT ]ŵ� E[fGout(q
�1)x(k)gd(k)]

=
1X
i=1

hi

h0
E[fGout(q

�1)x(k� i)g"(k; ŵ)] (B.168)

which is the desired result. Note that if Ĝout(q
�1) = Gout(q

�1), then H(q�1) = h0 = 1 and

the right hand side of Equation B.159 is zero. Solving for ŵ results in

ŵ = R�1p = w� (B.169)

as expected. The second condition suggested by Ren and Kumar occurs when w� achieves

complete cancellation of the error component that is correlated with the input x(k). In this

case,

E["(k;w�)x(k0)] = 0 (B.170)

for all k 6= k0. Then

E["(k;w�)x(k � i)] = 0 (B.171)



for all i 6= 0, which implies

E["(k;w�)fGout(q
�1)x(k� i)g] = 0 (B.172)

for all i 6= 0, so w� is a solution of Equation B.159 even if Ĝout(q
�1) 6= Gout(q

�1). Since R

is assumed to be positive de�nite, Equation B.159 has a unique solution, and therefore ŵ

must equal w�.


