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Abstract

Direct and Indirect Adaptive Feedforward Repetitive Control of Servo Systems

by

Behrooz Shahsavari

Doctor of Philosophy in Engineering � Mechanical Engineering

University of California, Berkeley

Professor Roberto Horowitz, Chair

Control methodologies for deterministic disturbance rejection and trajectory tracking have
been of great interest to researchers in the �elds of controls, mechatronics, robotics and
signal processing in the past two decades. The applications of these methods span a wide
range from satellite attitude control requiring an accuracy of a few meters, to positioning
of the read/write head in hard�disk drives with an accuracy of less than one nanometer.
This dissertation addresses the problem of trajectory tracking and deterministic disturbance
rejection in discrete time systems when the trajectory/disturbance is unknown, but can be
realized as an a�ne combination of known basis functions. Despite the prior work on this
problem that assumes known and time�invariant plant dynamics, we consider multi�input
single�output systems with unknown dynamics. Moreover, we investigate the cases where
the disturbance or system dynamics varies slowly or abruptly but infrequently. Within the
broad class of disturbances/trajectories that satisfy the stated criteria, an elaborate study
is conducted on periodic and superposition of multiple sinusoidal sequences.

We propose two novel adaptive control methods for the aforementioned problem. The
�rst scheme can be classi�ed as an indirect adaptive algorithm since it consists of two parts,
namely a system identi�cation mechanism that provides a dynamic model of the closed loop
system, and the adaptive compensator which deploys the aforementioned dynamic model
to synthesize the control law. The second proposed method is a direct adaptive controller,
meaning that the control law is generated directly and the stated separation is not possible.

Besides providing theoretical guarantees, we experimentally evaluate our algorithms on
a challenging control task for nano�scale positioning of the read�write head in a dual�stage
hard disk drive (HDD). Even with the advent of NAND��ash based data storage devices, the
HDD continues to thrive as the most cost e�ective, reliable solution for rewritable, very high
density data storage. It remains a key technology particularly with the tremendously growing
popularity of server�based cloud computing and novel hybrid enterprise storage solutions.
We described that the control methodologies that can address the problem under our study
are crucial for Bit�Patterned Media Recording which is one of the two breakthroughs in
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magnetic recording that have been immensely investigated in the past few years. Extensive
computer simulations and implementation on a digital signal processor unit are performed
to validate the e�ectiveness of our proposed algorithms in full spectrum compensation of the
repeatable runout in dual stage HDDs. This application introduces unique control challenges
since it requires estimating a very large number of parameters that is order(s) of magnitude
greater than prior work and frequency contents span from 120Hz to extremely large values
(above 20KHz) where the plant dynamic uncertainties are large.
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Chapter 1

Introduction

1.1 Introduction

Control methodologies for disturbance rejection or trajectory tracking have been of great
interest to researchers in controls and signal processing communities ever since 1930's. Vi-
bration cancellation in electro�mechanical systems, acoustic noise reduction and trajectory
tracking are relevant problems that have attracted a great deal of attention.

Disturbance compensation techniques can be categorized into �passive� and �active� meth-
ods. The traditional �passive� techniques are applicable to a con�ned class of systems and
disturbances. Large scale mechanical systems such as vehicles � where active compensation
is costly due to the need for powerful actuators � and high�frequency disturbance attenu-
ation � through absorbers and mechanical dampers � are such applications Harris (1991);
Beranek and Ver (1992); Nair and Keane (2001); Herzog (1994); Konstanzer et al. (2008).
These passive methods are not in the scope of this study and will not be discussed. Rather,
we focus on active compensation techniques that are more advanced, �exible and applicable
to a considerably broader class of applications.

Regardless of the target application, all active methods are hinged to a simple and nat-
ural idea based on superposition of signals.That is, a signal correlated to the disturbance
is taken in by the algorithm, transformed and then injected to the environment (i.e. a dy-
namic system) through an apparatus such that the injected signal makes an e�ect similar in
magnitude but opposite in phase to the disturbance e�ect. This idea is inherited from early
work such as Lueng's intuitive method (Lueng (1936)) that is illustrated in Fig. 1.1.

The active compensation and, similarly, trajectory tracking problems can be split into
four categories based on whether the plant dynamics is known or unknown and whether
the disturbance (or equivalently the trajectory) characterization is available or not. We will
brie�y review these four classes and applicable techniques for the case of broad band and
narrow�band disturbance rejection to clearly determine what type of problems will be ad-
dressed in this dissertation and what classes are irrelevant. The related work will be discussed
in detail later throughout the dissertation. Note that a �disturbance� is inherenelty unmea-
surable and the notion of �disturbance characterization� only refers to some information
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Figure 1.1: Schematic of a single frequency sound wave rejection method proposed by Lueng
in 1934 Lueng (1936). The microphone M captures some information about noise S1. The
block V′ through speaker L attempts to reproduce S1 based on information from M and
inject it to the environment with an opposite phase. (The �gure is extracted from the
original patent �led by Lueng.)

about the disturbance spectrum or a transfer function that can represent its power spectral
density. It is also worth noting that tracking problems, especially when the trajectory is
unknown, can be treated as a �rejection� problem by de�ning an appropriate performance
measure that bolds tracking error. Therefore, in the sequel, we use the trajectory tracking
and disturbance rejection interchangeably. The four aforementioned problem categories are
as follows:

1. Problems with known plant dynamics and known disturbance models:
Both feedback and feedforward control algorithms have been applied to the problems
in this framework. The use of feedback control for this type of problems is of funda-
mental importance since an optimal controller can be designed o�ine based on priori
knowledge about the system and disturbance. In broad band disturbance rejection,
a causal linear time invariant (LTI) system that represents the disturbance spectral
density along with a well�modeled plant can be exploited to pose a classical linear
quadratic Gaussian (LQG) problem with weighting �lters to shape the controller ef-
fort in accordance with the disturbance spectrum and performance objectives Gupta
(1980); Moore and Mingori (1987); Connolly et al. (1995); Shahsavari et al. (2013a).

On the other hand, for the case of multiple narrow band disturbances with known
frequencies, a model of the exogenous signal can be embedded in the controller to
produce high�gain feedback at frequencies that comprise the disturbance spectrum.
The resulting internal model controller applies high gain at the disturbance frequencies
to obtain high level of disturbance attenuation Francis and Wonham (1976); Bengtsson
(1977); Tsypkin (1997).

In a feedback control framework, the disturbance rejection at a frequency � by the
classical Bode integral theorem Bode et al. (1945) � causes ampli�cation at other fre-
quencies and full spectrum rejection is impossible. Since feedforward control strategies
do not have this limitation, a great deal of research e�ort has been focused on deriv-
ing feedforward methods that have �zero spillover�. The relationship between these
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two paradigms is investigated in MacMartin (1994); Hong and Bernstein (1998). In
general, the feedforward control is advantageous over the feedback control when the
controller can sense the disturbance, through an appropriately located sensor, before
the disturbance propagates through the system and a�ects the performance signal.

2. Problems with known plant dynamics and unknown/partially known dis-
turbance models:
Adaptive algorithms are crucial in control problems where the plant dynamics or noise
model are not known. In broad band disturbance rejection where the noise statistics
is not known, these methods are usually exploited to estimate the noise statistics or
to design state estimators Odelson et al. (2006); Mehra (1970); Myers et al. (1976);
Nummiaro et al. (2003) that can be exploited in a state feedback control paradig-
m. Adaptive methods that suppress the e�ect of unknown and time�varying narrow
band disturbances have been recently revisited by many researchers Bodson and Dou-
glas (1997); Marino et al. (2003); Landau et al. (2011a). This type of problems is
named �Adaptive Regulation� by Landau and a survey of relevant literature till 2011
was reported Bobtsov et al. (2012). Moreover, a benchmark problem for suppression
of multiple unknown/time�varying narrow�band vibrations and a comparison of mul-
tiple adaptive feedback control systems has been recently carried out Landau et al.
(2013). The term �partially known� on the title refers to the algorithms that bene�t
from knowing that the disturbance includes only narrow�band contents. For instance,
Chen and Tomizuka (Chen and Tomizuka (2012, 2013)) embed parametric models for
narrow�band disturbances in an adaptive Q �lter to form a novel disturbance observer
for selective disturbance cancellation.

3. Problems with unknown plant dynamics and known disturbance models:
Indirect adaptive control deals with this type of problems by converting them to the
�rst type through an online system identi�cation mechanism that attempts to learn a
plant model (chapter 12 in Landau et al. (2011c)). Indirect adaptive methods for pole
placement Giri et al. (1987), generalized predictive control M'Saad et al. (1993) and
linear quadratic control M'saad and Sanchez (1992) are among the most established
techniques for broad band disturbance rejection Zhang et al. (2014b,a); Shahsavari
et al. (2014a); Bagherieh et al. (2015). There are also direct adaptive control schemes
that directly update the parameters of the controller from a signal error (adaptation
error) re�ecting the di�erence between attained and desired performance M'saad et al.
(1985). Pioneer research on direct adaptive schemes for pole placement includes Elliott
(1981); Leal and Landau (1982); Åström (1980). For the case of narrow band and
sinusoidal disturbances acting on unknown plants, adaptive feedforward methods are
developed that generate the control signal based on an online estimation of the plant
frequency response and the disturbance parameters Chandrasekar et al. (2006); Pigg
and Bodson (2006, 2010).

Beside the adaptive control algorithms, numerous methods have been presented by
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the signal processing community with an aim to combine a gradient algorithm (i.e.,
adaptive least mean�squares or LMS algorithm) with an online identi�er of the plant
impulse response. The identi�cation results are then used in an active noise cancellation
method that require a plant model Kuo and Morgan (1995); Zhang et al. (2000, 2001).

4. Problems with unknown plant dynamics and unknown disturbance models:
This is the most general type of regulation/rejection problems that is usually treated
by adaptive control methods mentioned in the second category. Moreover, self�tuning
regulators Åström (1975) are �exible control schemes that can be applied to this type
of problems.

Note that these four categories only include problems related to this dissertation and various
other control methodologies, such as model predictive control Camacho and Alba (2013);
Shahsavari et al. (2015b, 2016) are not considered here.

This work considers the problem of trajectory tracking or equivalently deterministic (but
unknown) disturbance rejection in discrete time systems when the trajectory or the distur-
bance can be realized (exactly or approximately) by the dot product of a known and an
unknown vector. Let dk denote the disturbance or trajectory signal sampled at time step k

dk = θTφk (1.1)

where θ ∈ <n, (n ≥ 1) stands for an unknown vector of parameters. The real value vector
φk ∈ <n is known and can be thought of as a basis function or a kernel for de�ning the
disturbance. In other words, φ represents what we know about the �noise characterization�
and θ is what makes the signal unknown to us. Problems with slowly varying parameter
vector θk are relevant and will be discussed too.

Di�erent type of disturbances can be realized by (1.1). The simplest case is an unknown
DC bias dk = d0 that can be realized by θ = d0 and φk = 1. This idea can be generalized
to periodic signals with known periods. Let dk = dk+n be an n�periodic signal and θT =[
d0, d1, · · · , dn−1

]
. Expression (1.1) can be satis�ed by choosing φk as a sparse vector that

has only one nonzero value which equals 1 and is located at the i-th element where i =
mod(k, n) + 1. Signals that are superposition of multiple sinusoids

dk =
n∑
i=1

γi sin(ωik + δi)

fall in this class of disturbances/trajectories too. One needs to include sin(ωik) and cos(ωik)
in φk ∈ <2n and the pairs γi cos(δi) and γi sin(δi) in θ in order to have a realization like (1.1).
Applications with an extra transducer � such as a microphone or an accelerometer � that
provides measurements that can be transformed to the disturbance (or trajectory) through
a (�nite dimension) FIR �lter can also be treated in this framework. In this case, a �nite
horizon of historical measurements should be included in φk and the tap coe�cients in θ.

As for the plant dynamics, we consider both cases of known and unknown systems.
Therefore, the methods discussed in this dissertation fall in category 2 and 3. We will discuss
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Figure 1.2: Left: Closed loop system augmented by a plug�in adaptive controller. Right:
Succinct representation of the closed loop system.

an indirect adaptive algorithm for the problems that satisfy hypothesis (1.1) and a direct
adaptive algorithm for the disturbances (trajectories) that are periodic or the superposition
of multiple sinusoids with known frequencies.

Within the broad class of disturbances/trajectories that satisfy hypothesis (1.1), an elab-
orate study will be speci�ed to the periodic and superposition of multiple sinusoidal signals.
Although, from a theoretical point of view, these disturbances might seem to be a very
special and constraining case of (1.1), there is a multitude of applications � especially due
to the dominating role of rotary actuators and power generators � that crucially depend
on this type of regulation. A non�exhaustive list of these applications include aircraft inte-
rior noise control Emborg (1998); Wilby (1996), vibration rejection in helicopters Malpica
(2008); Patt et al. (2005); Bittanti and Moiraghi (1994), periodic load compensation in wind
turbines Stol and Balas (2003); Houtzager et al. (2013), gearbox systems Li et al. (2005);
Guan et al. (2004), optical disk drives Moon et al. (1998); Doh et al. (2006), wafer stage
platforms De Roover and Bosgra (2000); Dijkstra (2004), tape drives Panda and Lu (2003);
Pantazi et al. (2012), magnetic bearings Knospe et al. (1997); De Wit and Praly (2000),
steel casting processes Tsao and Bentsman (1996), spacecrafts Lau et al. (2006); Goodzeit
and Phan (1997), laser systems McEver et al. (2004) and milling machines Rober and Shin
(1996); Tsao and Pong (1991). We will elaborate the application of the proposed algorithms
to hard disk drives, especially to an emerging technology called bit patterned media recording.

In the following section, the problem of tracking unknown trajectories, or compensating
unknown deterministic disturbances that was intuitively described above is mathematically
formalized and the system under our study is described.

1.2 Problem Statement

The adaptive controllers proposed in this work are aimed to be implemented in a plug�in
fashion. That is, an adaptive controller is used to augment an existing robustly stable closed
loop system in order to compensate a special type of disturbance that is not well attenuated
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by the existing controller. In this architecture, the original controller can be designed without
consideration of the special disturbances. Moreover, the adaptive controller does not alter
the performance of the original control system. To clarify this notion, we use a common
plant�controller interconnection shown in Fig. 1.2(left) as a running example. The blocks G
and CF in the �gure respectively denote a linear time invariant (LTI) plant and a nominal
LTI feedback compensator that is used to stabilize the plant. This nominal controller can be
continuous or discrete time, and it generally provides disturbance rejection across a broad
frequency spectrum. On the other hand, the plug�in adaptive controller, denoted by CA, is
a non�linear discrete time system that provides compensation for the disturbance rk that
can be decomposed to

rk = θTφk. (1.2)

As mentioned in the introduction, there are numerous classes of signals that can be decom-
posed in this format exactly and many other types can be approximated by incorporating the
coe�cients of an (unknown) FIR �lter in θ and tapped values of a signal correlated to rk in
the regressor φk. Since our design does not depend on whether the plant/nominal controller
are continuous or discrete time, we assume that both G and CA are discrete time systems to
make notations simpler.

We consider a general stochastic environment for the system by appending input distur-
bance w, output disturbance n, and contaminating measurement noise m to our framework.
Generally, the nominal feedback controller is designed to compensate for these input and
output noises. The special disturbance that should be compensated by the adaptive con-
troller is denoted by r, and without loss of generality, we assume that it is applied to the
plant output.

An important point to make here is that our plug�in controller design is not limited
to this particular interconnection, and in general, it does not require any details about the
individual components of the closed loop system and their interconnections. Rather, our
design is based on an abstract LTI dynamics from the adaptive control (uA) injection point
to the error signal (e). We will show by simulation and experiments that the algorithms, in
practice, can be applied to slowly time varying systems and in some special cases to switching
systems when the time interval between switchings is considerably larger than the controller
sampling time.

A succinct representation of this framework is shown in Fig. 1.2(right). Indeed, our
design is only based on the dynamics of R(.) which is the transfer function from uA to e,
and without loss of generality we assumed that it is discrete time. Returning to our running
example, these blocks and signals shown in the abstract form are de�ned by

S (z) : =
1

1 +G (z)CF (z)

R (z) : = G (z)S (z) (1.3)
ξk = R [wk] + S [nk +mk] ·
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Here, the standard discrete�time z variable notation is used for the transfer functions, and
the time functionality of the signals is shown by the step index k. We only focus on multi�
input single�output (MISO) plants throughout this dissertation. The results, however, can
be easily extended to multi�input multi�output (MIMO) systems with minor modi�cations.
For a general ni�input no�output transfer function T (z) ∈ <no×niz and an input sequence
ik ∈ <ni , the bracket notation T [ik] ∈ <no represents the time domain response of the
system. For instance, the response of the transfer function R (z) to the input disturbance
w (k) is represented by R [wk]. When the same transfer function �lters multiple input signals
i1k, i

2
k, · · · , imk , we abuse the notation and use

T



i1k
i2k
...
imk


 =


T [i1k]
T [i2k]
...

T [imk ]

 .
The special disturbance rk in this block diagram can be replaced by an equivalent distur-
bance, d̄, which has the same e�ect as r on the error signal,

R
[
d̄k
]

= S [rk] ·

From a control point of view, this replacement is admissible since the disturbance is bounded,
(cyclo)stationary, and the system is linear; hence, it is possible to consider the disturbance at
any other point, or break it to portions injected at multiple points to the closed loop system.
For instance, for a dual�stage system � i.e. a system with two inputs and one output � we
can split rk into low and high frequency portions based on its spectrum and then transfer
these two signals to the two inputs of plant G(z). We will show that this separation and
transformation is bene�cial when di�erent input�output channels of the plant have di�erent
characteristics. For example, if one channel has a higher gain than the others at certain
frequencies, or it has less dynamics uncertainty in that frequency region, it is bene�cial to
associate the disturbance compensation at that frequency interval to this input channel.

Suppose that R(z) ∈ <1×ni
z is a multi�input single�output system and d̄k ∈ <ni is the

multi�dimensional unknown disturbance/trajectory that is considered on (or transformed
to) the input side. Our objective is to synthesize an adaptive controller that only uses the
scalar�valued error signal ek to generate a vector�valued control uA,k ∈ <ni such that it
compensates the contribution of d̄ in the variance of error signal.

1.3 Contributions per Chapter

The following contributions are presented in the respective chapters of this dissertation:

• Chapter 2: Among various applications that were mentioned for the adaptive control
algorithms proposed in this dissertation, we are particularly interested in nanoposition-
ing in hard disk drives (HDDs). The importance of HDDs compared to other types



1.3. CONTRIBUTIONS PER CHAPTER 8

of data storage technologies such as NAND��ash�based memory devices and Tapes is
explained and their technology road maps are compared brie�y. The recent evidences
show that fast read access of NAND �ash technology, especially for random reads, has
replaced the hard disk drives by �ash storage devices, especially Solid State Drives
(SSD), in majority of personal electronic devices. However, we will show that the in-
creasing need to data storage capacity in data centers and cloud computing has caused
ever increasing demand for HDDs.

We review the fundamental aspects of HDD servo mechanism that is responsible for
nanopositioning of the read�write head. This is followed by introducing Bit�Patterned
Media Recording technology that necessitates precise control algorithms for tracking
unknown but periodic trajectories. The control problem for this application is formal-
ized, the system dynamics for both single and dual stage servo systems are provided
and di�erent types of disturbance/noise that contaminate such a system are described.
Lastly, the experimental setup that we prepared for DSP implementation of the algo-
rithms in order to apply them to a dual�stage hard disk drive servo system is presented.
This setup is used for extensive experiments that will be discussed in detail in two other
chapters.

• Chapter 3: Control methodologies for coping with periodic signals, commonly known
as repetitive controllers, and their applications are brie�y reviewed in this chapter. In
particular, we compare the feedback control and feedforward control methods and show
that for the class of problems under our study the latter methods are superior. We de-
ploy a stochastic gradient descent method, to develop an adaptive feedforward control
algorithm for compensating multitude narrow�band disturbances or trajectory track-
ing. Using the averaging theory, we derive a set of conditions on the adaptation step
size to guarantee the algorithm convergence and perfect compensation. We propose a
novel adaptive step size and integrate it to the adaptive control algorithm to enhance
the convergence rate and decrease the steady state error.

The analysis are initially carried out in a spectral framework where trigonometric
functions are chosen to form an orthogonal basis for the space of real valued square
integrable trajectories (deterministic disturbances) that should be tracked (compen-
sated). Two alternatives to this approach, namely decomposition of the disturbance in
time�domain and in time�frequency�domain, are also discussed. It is shown that time�
domain approaches can be computationally more plausible than frequency�domain
methods. However, the latter methods can be more robust to system dynamics uncer-
tainty.

• Chapter 4: The parameter adaptation algorithm proposed in chapter 3 requires a
model for the system dynamics. In general, an exact dynamics of the system, especially
at high frequencies, is not known in many practical applications. The robustness of the
adaptive feedforward controller to dynamic mismatch between the actual plant and the
model deployed in the algorithm is analyzed in this chapter and it is shown that unlike
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many existing methods, the mismatches are only important at excitation frequencies.

An online system identi�cation architecture is proposed to provide an accurate model
of the system dynamics in case a model is not available or accurate. It is shown that
under a set of assumptions, the proposed scheme is able to obtain a model that satis�es
convergence criterion outlined in the aforementioned robustness analysis. As a result,
the identi�cation and compensation mechanisms together form an �indirect� adaptive
controller for the class of problems under our study.

The proposed identi�cation scheme requires an exogenous excitation signal. In general,
this type of extra excitations are not desired from a practical point of view. We propose
a special excitation that is extremely low power, e�ective in our problem since its energy
is focused around frequencies that are important to us, and easy to generate in DSP
implementation. Besides, we suggest using adaptive band�pass �lters on the inputs
to the identi�cation unit in order to further reduce the required excitation power. A
design method for synthesizing these adaptive �lters through frequency transformation
of a prototype �lter is proposed. It is shown that explicit �parametric� solutions for
the �lter coe�cients can be obtained. The �parameters� of these relations depend on
the pass�band of the �lter and can be evaluated easily in real�time.

• Chapter 5: Besides providing theoretical guarantees, we experimentally evaluated
our algorithm on a challenging control task for nanopositioning of the read�write head
in a dual�stage HDD. It is illustrated how the proposed adaptive control algorithm can
be e�ciently integrated with the servo controller of an HDD for following/compensating
repeatable runout (RRO), a problem that was introduced and formalized earlier in
chapter 2.

We describe our modeling procedure for computer simulations and provide remarks for
e�cient implementation of the algorithms on an embedded processor. Computer sim-
ulation in MATLAB and implementation on a digital signal processor (DSP) unit are
performed to compensate for RRO that has narrow�band contents at the HDD spinning
frequency (120Hz) and its 173 higher harmonics (up to 20'880Hz). This is a challeng-
ing task since it requires estimating a very large number (348) of parameters which
is order(s) of magnitude greater than other results reported in the literature. These
frequencies span from 120Hz to extremely large frequencies (above 20KHz) where the
plant dynamics uncertainties are large and feedback controller ampli�es disturbances.

• Chapter 6: In this chapter we propose a direct adaptive control for the problem of
compensating (tracking) periodic disturbances (trajectories) in systems with unknown
dynamics. We denote this method as a �direct� algorithm since the control parameters
are directly updated by the parameter adaptation algorithm and a �control design�
block that commonly exists in indirect methods is avoided. The analysis is carried
out in a spectral framework which makes the algorithm applicable to non�minimum
phase systems without requiring any assumptions. Moreover, the method is applicable
in situations with slowly time�varying systems and disturbances. Furthermore, unlike
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most of the existing methods in the literature it does not require batches of data to
update its parameters.

It is shown that the number of estimated parameters in our proposed algorithm is
slightly larger than 2n where n is the number of disturbance/trajectory frequency
contents, while other methods require 4n parameters (2n for system dynamics and 2n
for control synthesis). As a result, our method estimates signi�cantly less parameters
when n is large (e.g. as in the HDD problem where n = 174). The convergence of
adaptive algorithm parameters to actual values is rigorously analyzed and a set of
practical remarks are made for reducing the transient error.

We will show that this adaptive controller scheme is �modular�, meaning that it can
be split to �smaller� controllers such that each one estimates a portion of the original
unknown parameter vector. This is a very appreciated property because: (1) identi-
�cation of systems with complex frequency responses is, in general, very di�cult and
may be impossible in noisy systems. On the other hand, breaking the spectrum to
small partitions and learning a model for each one is a signi�cantly easier task. (2)
large amount of computation can be split between nonconcurrent modules.

Partitioning the spectrum among a set of controller modules can be manually or au-
tomatically. We will propose a heuristic algorithm inspired by divisive hierarchical
clustering in conjunction with a monitoring mechanism to perform the partitioning in
an automated fashion.

• Chapter 7: The direct adaptive control algorithm is experimentally evaluated on
the HDD setup described in the previous chapters. In addition to testing the control
tasks presented in chapter 5, the algorithm behavior in the cases of slow and abrupt
changes of the system dynamics and trajectories is studied. Moreover, the frequency
partitioning algorithm proposed in chapter 6 is implemented and it is illustrated how
e�ectively this mechanism is able to split full spectrum compensation among several
small automatically de�ned adaptive control modules.

• Chapter 8: In chapter 8, we make some concluding remarks and mention some areas
of future work.
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Chapter 2

Nano�positioning in Hard Disk Drives

2.1 Introduction

Nanotechnology is the science of understanding and manipulation of matter with at least
one dimension in the range of 1 to 100 nanometers. Nanopositioning is a crucial aspect of
nanotechnology that involves precision control and manipulation of devices and materials
at the above dimension range. Nanopositioners are indeed precision mechatronic systems
designed to move objects with a resolution down to a fraction of an atomic diameter. The
desired attributes of these mechanisms are extremely high resolution, robustness, and fast
response. The key to successful nanopositioning is accurate position sensing and highly
responsive motion control mechanism. Hard disk drives, scanning probe microscopes, lithog-
raphy tools and nano-assembly tools are among the various applications of nanopositioning.
In this section we focus on nanopositioning mechanism in hard disk drives which is controlled
by the HDD servo mechanism.

TAPE, NAND Flash, and hard disk drives (HDD) are the three major device technology
types that are used for storage class memory applications. A measure of the progress of these
technology types has been areal density, i.e. the number of bits stored per unit area. In
recent years, all three technologies have been characterized by annual areal density increases
of approximately 30% Fontana et al. (2012). Fast read access of NAND �ash technology,
especially for random reads, has replaced the hard disk drives by NAND �ash memory-based
storage devices, especially Solid State Drives (SSD), in majority of personal electronic devices
such as laptops and desktops. However, the increasing need to data storage capacity in data
centers and cloud computing has caused ever increasing demand for HDDs since the price
(per data volume) of SSD is several times more expensive than the HDD. Moreover, SSD has
several weak points caused by the nature of NAND �ash memory. The �erase-before-write�
characteristic that causes slow and non-uniform write latency and wear-out problem are
other factors that have limited the use of SSDs in hyper-scale data storage infrastructures.
Recently, Western Digital Corporation � one of the largest computer data storage companies
� reported the statistics shown in Fig. 2.1 for the data capacity demand prediction till 2020
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and claimed that 75% of the total volume will be stored on HDDs in 20201.
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Figure 2.1: Prediction of data capacity demand till 2020.(Courtesy of Western Digital Cor-
poration2.)

Ever increasing aerial density in HDDs that utilize classical perpendicular magnetic
recording (PMR) Khizroev and Litvinov (2006) has arose potential limitations that impede
maintaining the same growth rate in the future. This is mainly due to the fact that as the
magnetic �bit� area shrinks, the data bits become thermally unstable since they approach
thermal energy �uctuation limits associated with the media grains Eisenmenger and Schuller
(2003). In the past 5 years, in order to overcome this limitation, a great deal of research has
been focused in two directions, namely Bit Patterned Media Recording (BPMR) Albrecht
et al. (2015) and Heat Assisted Magnetic Recording (HAMR) Challener et al. (2009). Ad-
vanced Storage Technology Consortium (ASTC) as a hub for collaborative joint R&D e�ort
among university researches and the main computer data storage companies � e.g. Seagate,
Western Digital Co. and Hitachi GST � recently published a technology road�map shown
in Fig. 2.2. BPMR as one of the two breakthroughs in data storage technology emerges
speci�c challenges in terms of nanopositioning and requires a precise control mechanism. We
will describe that precise tracking of unknown but periodic trajectories is a crucial control
requirement in BPMR. Moreover, we will validate the e�ectiveness of our proposed control
algorithms by conducting comprehensive simulations and experiments on such a system.

We begin by reviewing the fundamental aspects of HDD servo mechanism and its control
requirements. This is followed by introducing BPMR technology that necessitates precise
control algorithms for tracking unknown but periodic trajectories. We will formalize this
control problem, provide the system dynamics for both single and dual stage servo systems

1The plot was presented in one of the Advanced Storage Technology Consortium technical meetings. It

is reprinted here by permission from the author.
2Figure reprinted by permission from corresponding author in Western Digital Co.
3Figure is available to the public on http://www.idema.org/wp-content/plugins/download-monitor/

download.php?id=2244

http://www.idema.org/wp-content/plugins/download-monitor/download.php?id=2244
http://www.idema.org/wp-content/plugins/download-monitor/download.php?id=2244
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Figure 2.2: Technology roadmap for data storage technologies reported by Advanced Storage
Technology Consoritium (ASTC) 3. Compound Annual Growth Rate (CAGR) predicted to
be achieved by the emerging technologies is 30%.

and describe di�erent types of disturbance/noise that contaminate such a system.

2.2 Hard Disk Drive Servo Mechanism

The main mechanical parts of a hard disk drive are shown in Fig. 2.3. An HDD stores
data on a set of spinning magnetic disks by using a few electronic read-write heads (shortly
called the heads) that �y above or under the disk surfaces and write data bits along a set
of �tracks�. Figure 2.4 depicts an HDD with 2 disks � 4 magnetic surfaces � and 4 heads.
The head positioning servomechanism moves the magnetic read/write head as quickly as
possible from one track to another when asked by the host system using track-seeking and
track-settling control systems. Once the head reaches the target track, its position relative
to the track's center is controlled by a track-following servo system during the data reading
and writing process. In this process, a voice coil motor driven by the servo controller is
responsible for moving the head over the span of the disk. Such a mechanism that solely
relies on the VCM for actuation is called Single Stage servo. The bandwidth of a single-
stage servo system is limited by the multiple mechanical resonances of the VCM as well as
the control e�ort saturation bounds Miu and Bhat (1991). Many hard drives are equipped
with secondary actuators that have a higher bandwidth and a smaller stroke Horowitz et al.
(2007). This architecture is known as �Dual Stage� servo mechanism and these actuators
are commonly called micro or milli actuators based on their strokes Zheng et al. (2015).
Here, we use �MA� to refer to both cases. There are di�erent possible locations between
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a strain sensor in an instrumented suspension is fed back in
a minor loop configuration, to actively damp the VCM
butterfly mode and the first suspension sway mode. The
efficacy of this scheme is demonstrated using a dual-stage
servo system that utilizes a PZT-actuated suspension.
Section 5 discusses the determination of the optimal sensor
location in an instrumented suspension, as well as the
fabrication and micro-assembly of strain sensors in a steel
suspension. Concluding remarks are presented in Section 6.

2. Dual-stage servo systems

The mechanical components of the servo system in a
HDD include the VCM, the E-block, the suspension and
the slider, as shown in Fig. 1(a). The magnetic read/write
head is fabricated on the edge of the slider. The slider is
supported by the suspension and flies over the surface of
disk on an air-bearing. The VCM actuates the suspension
with the slider about a pivot in the center of the E-block.

The two main tasks of a disk drive servo system are to
move the head to the desired track as quickly as possible
and, once on-track, position the head on the center of the
track as precisely as possible so that data can be read/
written quickly and reliably. The first task is commonly
referred to as track seeking, while the second is commonly
referred to as track following. The most commonly used
performance measure for track-following servo systems is
TMR, which is the variance of the deviation between the
center of the read/write head and the center of the track. It
is generally accepted in the magnetic recording industry
that the 3s value of the TMR should be less than 10% of

read/write head and the center of the track is in turn
referred to as the head position error. The implementation
of track-following servo systems relies on measuring the
head position error signal (PES). The PES is generally
obtained from information that is encoded on the magnetic
disk, in angular servo sectors that radiate out from the
center of the disk (Jorgenson, 1995). Since the servo sectors
are located at discrete locations, the PES is a sampled
digital signal and the disk drive control system is a digital
control system. The sampling frequency is determined by
the disk rotation speed and the number of servo sectors on
a track. For example, a 7200-RPM disk drive with 180
servo sectors has a PES sampling frequency of 21.6 kHz.
Given the disk rotation speed, higher PES sampling
frequency requires more servo sectors and reduces storage
efficiency.
Major TMR sources in the track-following mode include

spindle runout, disk fluttering, bias forces including
actuator pivot friction, external vibration/shock distur-
bances, arm and suspension vibrations due to air turbu-
lence, PES noise, written-in repeatable runout and residual
actuator and suspension vibration due to seek/settling
(Ehrlich & Curran, 1999).
As data densities in HDDs increase and track widths

diminish, single-stage, conventional servo systems become
less able to successfully position the head. Because the
voice coil/E-block/suspension assembly is large and mas-
sive as a unit, the speed at which the head can be controlled
is limited. Furthermore, the assembly tends to have a low
natural frequency, which can accentuate vibration in the
disk drive and cause off-track errors. At track densities
approaching one Terabit per square inch in the future, the
vibration induced by airflow in a disk drive alone is enough
to force the head off-track. Nonlinear friction of the pivot
bearing also limits achievable servo precision. A solution to
these problems is to complement the VCM with a smaller,
second actuator to form a dual-stage servo system. The
VCM continues to provide rough positioning, while the
second actuator does fine positioning and rejects vibration
and other disturbances. The smaller second actuator can
typically be designed to have a much higher natural
frequency and less susceptibility to vibration than the
VCM. Any actuator used in a dual-stage system should be
inexpensive to build, require little power to operate, and
preserve the suspension stiffness properties to maintain an
appropriate slider flying height. A number of different
secondary actuation mechanism and configurations have
been proposed. These can be categorized into three groups:
‘‘actuated suspension’’, ‘‘actuated slider’’ and ‘‘actuated
head’’. The first two approaches will now be discussed in
some detail.

2.1. PZT-actuated suspensions

In this approach, the suspension is re-designed to
accommodate an active component, typically a piezo-
electric material such as PZT. This piezoelectric material
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Figure 2.3: Disk drive con�guration. (Reprinted by permission from Horowitz et al. (2007).)
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Figure 2.4: Actuators and arm assembly in a dual stage HDD with two disks and four heads.
(Reprinted by permission from Horowitz et al. (2007).)

the E-Block and head to mount the MA. Figure 2.4 shows a so called suspension actuated
con�guration. Researchers have also proposed slider-based actuators � i.e. actuators that
moves the slider relative to the suspension � and head-based actuators � actuators that
move the head relative to the slider Hirano et al. (2003). Regardless of the MA type and
its location, all con�gurations are aimed to move the head in a direction parallel to the disk
surface and locally normal to the data tracks. Since the disk diameter is orders of magnitude
larger than the track pitch (distance between the center of two neighboring tracks), the
curvatures in track shapes and actuator movements are negligible.

The position of read-write head is obtained from a set of servo patterns whenever the
read-write head crosses them Abramovitch and Franklin (2002); Al Mamun et al. (2007).
Servo patterns consist of several magnetic sequences, including track number, sector number,
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Figure 2.5: Feedback control of an HDD dual-stage system in track-following mode.

and sub-track position reference pattern (usually called a burst pattern). The servo sectors
are ideally distributed on equidistant points on the perimeter of concentric circles. Suppose
that the disk is spinning at a constant speed S(rev/s) and there are N servo sectors on
circumferential direction. The Position Error Signal (PES) is obtained S × N times per
second which implies that the digital servo controller has a sampling frequency of S ×
N(Hz). For example, a 7200RPM HDD with 348 wedges (distributed circumferentially) has
a sampling frequency of 41.760KHz.

The servo system is subjected to both repeatable (periodic) and non-repeatable (random)
disturbances/noises that are due to the imperfection in fabrication and assembly processes,
internal and external vibrations Sun et al. (2014, 2013); Zheng et al. (2014a,b), and electronic
interferences. Fig. 1.2 (left) can be adopted to abstract the block diagram of a single stage
HDD servo system in track-following mode. The blocks G and CF refer to a voice coil motor
(VCM) and the nominal feedback controller respectively. The signals w, r, n and m in
Fig. 1.2 denote the air�ow disturbance known as windage, repeatable runout (RRO), non-
repeatable runout (NRRO) and measurement noise respectively. The design of the feedback
controller CF is not discussed in this dissertation and it is assumed that this compensator can
robustly stabilize the closed loop system. The interested reader can refer to Shahsavari et al.
(2013c,b, 2012); Keikha et al. (2013); Bagherieh et al. (2014) for further details of designing
the feedback controller for an HDD servo system. The actual position error signal (PES)
and measured PES are respectively referred by y and e in the �gure. In the remaining, the
term �PES� is used for referring to the measured PES signal. NRRO is the random lateral
movement of the disk caused by the mechanical contacts in the spindle bearing, and windage
is the o� track motion at the head caused by the turbulent nature of the air between the disk
and the actuator. The block diagram of a dual stage servo system is shown in Fig. 2.5. In
the �gure, GS represents the �S�econdary actuator (i.e. the MA). As is shown in the �gure,
the position of head relative to the track is due to the contributions from both actuators.
Note that this is the only feedback signal and the controller does not have access to the
position of each actuator individually. The windage a�ects both actuators; but, since this
does not change our analysis, we have considered it only on the VCM.

The performance metric of track-following controller is usually evaluated by the 3σ (3



2.3. APPLICATION TO BIT PATTERNED MEDIA RECORDING 16

Figure 2.6: Comparison of (a) traditional granular media and (b) BPM. On granular media,
an individual bit is recorded on an ensemble of grains (red outline), while on BPM, each
island stores 1 bit. (Reprinted by permission from Albrecht et al. (2015) c© 2015 IEEE.)

times the standard deviation) of the PES, which is usually called the Track Mis-Registration
(TMR) budget. A simple rule of thumb is that the TMR in current HDDs is desired to be
approximately 8% of the track pitch. That means in a HDD with 500'000 tracks per inch,
the 3σ value of the PES should be kept around 4 nanometers (nm).

2.3 Application to Bit Patterned Media Recording

Annual increase in data aerial density (AD) has slowed down to less than 20% in recent
years due to the challenges with thermal stability of granular magnetic material when the
size of recorded bits shrinks. In order to be able to read recorded data from a traditional
granular media it is required to maintain an adequate signal to noise ratio (SNR) by scaling
the grain sizes with the size of recorded bits. This can cause thermal instability as the grain
sizes become smaller. Bit patterned media (BPM) is a breakthrough in data storage since it
can address many of these issues and facilitate thermally stable magnetic recording at higher
than 1Tb/in2 AD Yang et al. (2011); Albrecht et al. (2009); Chou et al. (1994); New et al.
(1994). The key idea of BPM is that each data bit is recorded on a single isolated magnetic
island in a gigantic array of islands patterned by lithography on the magnetic disk.

Figure 2.6 compares one bit recorded on an ensemble of grains on granular media with
another bit recorded on a single island on BPM. The SNR in granular data depends on
the number of grains, whereas in BPMR, it relies on the fabrication tolerances and servo
accuracy to position the head � in both reading and writing � exactly on top of an island.
The resulting small track pitch (TP) in BPMR makes the TMR budget a large fraction of
the TP and makes the servo system a crucial component that can limit the achievable aerial
density. This introduces signi�cant new complexity by requiring a write synchronization
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Figure 2.7: Schematic of servo tracks (dotted lines) and data tracks (solid lines) in conven-
tional and bit-patterned media HDDs.

system and servo technology suitable for following eccentric, prepatterned tracks at track
pitch of 20 nm.

BPMR requires that the data tracks be followed with signi�cantly more accuracy than
what is required in conventional continuous media recording, since the read/write head has
to be accurately positioned over the single-domain magnetic islands to read or write data. In
traditional magnetic recording, data is (ideally) written on concentric circular tracks since
the media is continuous, whereas in BPMR Shahsavari et al. (2014b, 2015a), data should
be written on data tracks with unknown shapes, which are created by lithography on the
disk. Accordingly, the servo control methodologies used for conventional drives Kempf et al.
(1993); Sacks et al. (1995); Wu and Tomizuka (2006); Chen et al. (2006) cannot be applied
to BPMR. A schematic of the ideal trajectory for these two types of magnetic recording is
shown in Fig. 2.7. In the �gure, servo tracks (in circumferential direction) determine the
desired trajectories to be tracked in BPMR. The shape of each individual BPMR servo/data
track is patterned on the disk using electron-beam lithography (EBL) or some form of nano-
lithography process, and its variations relative to a perfect circular track result in written-in
runout which becomes repeatable (RRO) due to the disk spinning. The BPMR written-in
RRO caused by EBL, assembly eccentricity, spindle vibration and disk normal �uctuation,
usually contains high frequency components, and must be accurately tracked by the servo-
system. Challenges in regards to control design for BPMR mainly arise due to the following
RRO speci�cations:

• The RRO pro�le is unknown and its frequency spectrum spreads beyond the bandwidth
of the servo system. Therefore, the tracking error will be ampli�ed by the feedback
controller at high frequencies.
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• The RRO spectrum contains many harmonics � approximately 200 in current HDDs
� of the spindle frequency that should be attenuated. This requires computationally
intensive control methods.

• RRO pro�le varies across the span of the disk and the controller should be able to
quickly adapt to a new track.

• The actuators dynamics vary across the HDDs of the same product line. Even the dy-
namics of di�erent MAs in the same drive can be considerably di�erent. The controller
should be robust to these uncertainties.

• The actuators dynamics, especially the phase response, signi�cantly changes by tem-
perature at high frequencies.

The proposed control methodologies in this dissertation not only come with theoretical
guarantees, but have also enabled us to address all aforementioned issues. All proposed
adaptive control algorithms are implemented on a digital signal processor (DSP) unit and
applied to an actual HDD. We have achieved full spectrum compensation of RRO that
involves 174 frequency contents from 120Hz to over 20KHz. Our design is �modular�, meaning
that in case enough computation power is not available in the embedded processor, the
controller can be split to �smaller� nonconcurrent controllers such that each one compensates
a portion of the spectrum. As for the system dynamics variations, and uncertainties, our
proposed algorithms are able to adapt to the system dynamics when it does not match our
models or when it changes over time.

2.4 Experimental Setup

A block diagram of the experimental setup we use for implementing the proposed algo-
rithms and applying them to a dual�stage hard disk drive is shown in Fig. 2.8. The HDD
under our study is modi�ed by our industry partner such that it provides position error
signal through a serial peripheral interface (SPI) in real�time. The drive has 9 actuators,
namely 1 VCM and 8 MAs that are located on both sides of 4 magnetic disks. Only one of
the MAs is active at a time. The modi�cations in the HDD printed circuit board provide
two gates for plugging our external adaptive controller to the internal closed loop system.
Through these two gates, the plug�in control signals can be added, individually, to the input
of VCM and only one of the MAs that is selected through the �special commands� sent from
the �Host computer for the HDD�. Indeed, this architecture is similar to the block�diagram
that was earlier shown in Fig. 5.1. It is also possible to change the track that we servo on
by sending a special command from the HDD host computer. This is equivalent to changing
the RRO (disturbance r in Fig. 5.1).

We use a LOGIC PD ZoomTM OMAP�L138 EVM Development Kit as the baseboard
for a digital signal processor (DSP) that will execute the algorithms. OMAP�L138 EVM
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Figure 2.8: Block diagram of the experimental setup.

Development Kit is a high�performance application development kit for evaluating the func-
tionality of Texas Instruments' (TI) energy�e�cient OMAP�L138 applications processor,
TMS320C6748 digital signal processor, and Logic PD's System on Module (SOM). The
kit includes two SOMs, namely OMAP�L138 SOM�M1 and C6748 SOM�M1. The TM-
S320C6748 �xed� and �oating�point DSP is a low�power applications processor based on a
C674x DSP core. Our application development is performed on C6748 SOM�M1 and soft-
ware Board Support Package included in the kit. The CPU frequency for this DSP can be
set to 375 or 456MHz and the higher rate is chosen in our setup. The device DSP core uses a
2�level cache�based architecture. The level 1 program cache (L1P) is a 32�KB direct mapped
cache, and the level 1 data cache (L1D) is a 32�KB 2�way, set�associative cache. The level 2
program cache (L2P) which is the target location for our codes consists of a 256�KB memory
space. The algorithms are implemented in C and C++ languages in Code Composer StudioTM

integrated development environment that interfaces with the development board through an
XDS100v2 emulator.

The development kit provides an interface for digital to analog conversion (DAC). Howev-
er, this interface is customized for audio processing applications and can only support special
sampling rates which are not equal to the sampling rate of the PES speci�ed by the HDD.
Accordingly, we use two external DAC evaluation boards (AD5541) from Analog Devices to
actuate the VCM and MA. The AD5541 is a single, 16�bit, serial input, voltage output DAC
with 1µs settling time. It operates from a single 5V± 10% supply and utilizes a versatile
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3�wire interface. Communication between these boards and the DSP is performed through
one serial peripheral interface with individual chip�select commands for each of the DAC
boards. The control signal is passed to the HDD in voltage and the internal proportional
drivers in the HDD convert it to current for the VCM and a scaled voltage for the MA.

We will show in �gures 4.1 and 5.2 that the HDD system dynamics changes by temper-
ature which can degrade the controller performance if not compensated. In order to study
the behavior of our algorithms in such cases, we use an electric hot�plate under the HDD to
vary its temperature. The hot�plate generated heat energy is controlled (in open loop) by a
relay module that can set the duty cycle of its supply power.



21

Chapter 3

Adaptive Feedforward Repetitive Control

for Systems with Known Dynamics

3.1 Introduction

Control methodologies for coping with periodic signals, commonly known as repetitive
controllers, were �rst introduced in 1980's, and since then have been widely used in ap-
plications in which a task should be performed repeatedly, a periodic disturbance must
be attenuated or a periodic trajectory must be tracked Chew and Tomizuka (1989). These
methods have been applied in many robot manipulators applications, thermal cycling, milling
machines and satellite altitude control. For instance, repetitive control has been applied in
hard disk drives to follow periodic trajectories (or reject periodic disturbances), in order
to read/write data on a magnetic disk surface. A more detailed list of applications and
references to prior work in this �eld is provided in chapter 1.

Repetitive controllers are typically categorized into two types, namely feedback methods
that are based on internal model principle (IMP) Francis and Wonham (1976) and feedfor-
ward algorithms that usually use an external model Tomizuka et al. (1990) or a reference
signal correlated to the disturbance. The former class applies the internal model principle
within a model reference or pole�placement control strategy. When the plant dynamics or
disturbance frequency (in narrow�band case) is unknown or slowly time varying, adaptive
versions of these methods are used. Among the various approaches that have been taken
for solving this problem, one can mention: (1) indirect feedback adaptive control/regulation
scheme that estimates in real time a model for the disturbance or plant dynamics and then
recomputes the controller parameters Feng and Palaniswami (1992). (2) direct feedback
adaptive regulation that utilizes the Youla�Kucera parametrization (also known as the Q�
parametrization) of the controller to insert the internal model to the controller and adjust it
by adapting the parameters of the Q�polynomial Landau et al. (2005); Chen and Tomizuka
(2012). The e�ectiveness of these methods in rejecting a moderate number (e.g. less than
10) of narrow�band disturbances has been proved in practice Landau et al. (2013).

However, to the best of our knowledge, the practical viability of these algorithms for
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rejecting multitude disturbances (e.g. 50 narrow band disturbances), especially with high
frequency spectrum (i.e. very close to the Nyquist frequency of the digital system) has not
been reported. Most, if not all, of these methods introduce poles on the stability boundary
which is not desirable and can cause poor numerical properties and instability when imple-
mented on an embedded system with �nite precision arithmetic. Instability can also happen
due to unmodeled dynamics when the poles are on or very close to the stability boundary.
A practical solution to avoid marginally stable poles is to push them inside the unit circle
by utilizing acausal �lters or widening the bandwidth of peak �lters. However, according to
Bode's sensitivity integral theorem Bode et al. (1945), this approach will change the baseline
loop shape considerably when the number of narrow�band disturbances is large. Hence, it
may result in an unsatisfactory performance against other disturbances. Furthermore, per-
fect (deterministic) disturbance rejection is not achieved by applying this consideration. For
disturbances with unknown, but periodic pro�les, these methods are not e�cient since they
generate the control signal in a feedback interconnection. This means that even though the
required controller is deterministic and the controller can learn it quickly, the controller has
to be always kept in the loop to generate the control signal.

In general, the adaptive feedforward algorithms applied to this class of problems do not
have the above limitations since their dependency on the error signal becomes less and less
as their parameters converge. Indeed, when the system is not stochastic or the adaptation
gain is vanishing in a stationary (or cyclostationary) and stochastic system, the control sig-
nal becomes a pure feedforward action that can be stored and then generated without a
need to feeding back the error to the controller. Two general approaches exist for adaptive
feedforward cancellation of periodic disturbances: (1) an approach that uses an additional
sensor located properly in �upstream�. This sensor picks up a signal highly correlated to
the disturbance before the disturbance propagates through the system. The controller then
generates a destructive signal to compensate for the disturbance. The drawback with these
algorithms is possible instability caused by positive feedback when the compensation propa-
gates back to the reference sensor (c.f. chapter 15 in Landau et al. (2011b)). (2) an approach
that generates a �reference� signal by knowing the frequency of narrow�band/sinusoidal dis-
turbances. In most applications the disturbance frequencies are known or can be measured
by a sensor that is not in�uenced by the control �led, e.g. by a tachometer or accelerometer.
When neither of these information types is in hand, the frequencies can be estimated by
an algorithm such as adaptive notch��lter based frequency estimation Bodson and Douglas
(1997) or a phase�locked�loop�like method Wu and Bodson (2003, 2004).

The adaptive feedforward compensation algorithms in the second approach, especially the
algorithms used for Active (acoustic) Noise Cancellation (ANC), are mostly based on Least
Mean Squares (LMS) algorithm. LMS is a gradient descent method that was �rst developed
by Widrow and Ho� WIDROW et al. (1960) in 1960's and began to thrive quickly due to
its simplicity and stable behavior when implemented with �nite�precision arithmetic Diniz
(1997). However, the algorithm may diverge when the gradient of cost function with respect
to the parameters is not accurate. More explicitly, in applications that the control signal
traverses a secondary path, as the one in Fig. 3.1, to a�ect the error signal, the true gradient
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Figure 3.1: LMS-based adaptive controller

of mean squared error (w.r.t the control parameters) is a function of the system dynamics �
a fact that is ignored in the original LMS algorithm. Therefore, when the phase response of
system dynamics increases, the gradient in LMS algorithm becomes less and less informative
and even misleading. More formally, if the secondary path has a phase response above 90
degrees in absolute value, the gradient used in LMS updates the controller coe�cients in a
direction that increases the cost function. The well known Filtered�X Least Mean Squares
(FX�LMS) algorithm and modi�ed versions of it attempt to overcome this issue by aligning
the gradient used in the LMS algorithm with the real gradient through �ltering the reference
signal. This technique will be described in detail later in the section.

Our work in this section is based on the second type of adaptive feedforward algorithms.
We deploy a stochastic gradient descent method, adopted from FX�LMS algorithm, to devel-
op the parameter adaptation algorithm for an adaptive multiple narrow�band disturbance
compensator (trajectory tracker). We �rst introduce the prior work on multiple narrow�
band disturbance rejection inherited from FX�LMS algorithm. It is followed by developing
a Modi�ed FX�LMS (MFX�LMS) algorithm for multiple narrow�band or periodic distur-
bance rejection. Our main contribution in this section can be summarized as

• A novel adaptive controller is developed based on a modi�ed FX�LMS algorithm to
perfectly reject (track) disturbances (trajectories) that are periodic or equivalently
consisted of multiple sinusoids. The controller is a �plug�in� device to an existing
control system. Therefore, the original controller can be designed without consideration
of the periodic disturbances (trajectory). Moreover, the adaptive controller does not
alter the performance of the original control system.

• The stability of the algorithm is analyzed and guaranteed by averaging theory.

• A novel variable adaptation step size is proposed and integrated to the adaptive control
algorithm for convergence rate enhancement and steady state error reduction.

• Four variants of the controller that factorize the disturbance/trajectory in frequency�
domain, time�domain (2 cases), and time�frequency�domain are described and com-
pared. To the best of our knowledge, the basis functions used in two of these variants
have not been reported in related work.
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Figure 3.3: Adaptive feedforward control scheme based on FX�LMS algorithm.

3.2 Preliminaries: Filtered�X LMS Algorithm

The block diagram for the system under our study that was introduced by Fig. 1.2 is
repeated in Fig. 3.2 for convenience. It has been shown that when the secondary�path R(z)
� i.e. the transfer function from the control input to the error signal � is not simply a
static gain, the standard LMS algorithm will generally cause instability Elliott and Nelson
(1985). This is because the error signal is not correctly �aligned� in time with the reference
signal and as a result the update direction of parameters is not aligned with the negative of
the actual gradient of the mean squared error with respect to the parameters.

The key idea of FX�LMS algorithm is to �align� the update direction with (the negative
of) the actual gradient. The block diagram for an adaptive controller based on FX�LMS
algorithm is shown in Fig. 3.3. The adaptive �lter attempts to minimize the instantaneous
square error (e2

k) rather than the expected square error E [e2
k]. Therefore, the cost function

is

Jk = e2
k,

and the parameters of the adaptive digital controller Wk(z) should be adjusted by the LMS
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algorithm such that

Jk =
(
R
[
d̄k −Wk [xk]

]
+ ξk

)2

is minimized. The digital controller Wk(z) is an FIR �lter

Wk(z) = wk,0 + wk,1z
−1 + · · ·+ wk,nwz

−nw

that should ideally converge to Z{d̄k}/Z{xk} to perfectly cancel the e�ect of d̄k. The
response of Wk(z) to the reference signal xk is

uA,k = Wk [xk] =


xk
xk−1
...

xk−nw


︸ ︷︷ ︸

φk

T 
wk,0
wk,1
...

wk,nw


︸ ︷︷ ︸

θ̂k

= φTk θ̂k.

The parameters of the controller, θ̂, are supposed to be updated by the steepest descent
method which moves the parameters in the negative gradient direction

θ̂k+1 = θ̂k −
µ

2
∇θ̂k

Jk.

Here, µ is a scalar step size and ∇θ̂k
Jk is the cost function gradient w.r.t to the parameters

∇θ̂k
Jk = ∇θ̂k

e2
k

= 2ek∇θ̂k

(
R
[
d̄k −Wk [xk]

]
+ ξk

)
= −2ek∇θ̂k

(
R
[
φTk θ̂k

])
and the update rule is

θ̂k+1 = θ̂k + µ∇θ̂k

(
R
[
φTk θ̂k

])
ek. (3.1)

The FX�LMS algorithm adapts this update rule and makes the assumption that the step
size µ is small compared to

‖θ̂k‖

‖∇θ̂k

(
R
[
φTk θ̂k

])
ek‖

for all values of k. Since the step size is small, the parameters are adapting slowly and θ̂k
can be brought out of the brackets in 3.1

R
[
φTk θ̂k

]
≈ R [φk]

T θ̂k.
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Figure 3.4: Adaptive feedforward control scheme based on FX�LMS algorithm (vector rep-
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Note that in the original update rule, the term ∇θ̂k

(
R
[
φTk θ̂k

])
is zero when the transfer

function R(z) has a positive relative degree, meaning that R
[
φTk θ̂k

]
does not depend on θ̂k.

However, as will be explained later, by choosing a small enough step size that is inversely
related to the delay of R(z), we have the following approximation

∇θ̂k

(
R
[
φTk θ̂k

])
≈ ∇θ̂k

(
R [φk]

T θ̂k

)
= R [φk] .

In many practical applications the exact dynamics of R(z) is not known and an approximate
model R̄(z) should be used. Let

ψ̄k := R̄ [φk] =
[
x̄k x̄k−1 · · · x̄k−nw

]T
where x̄k = R̄ [xk] . By the above two approximations, the update rule of FX�LMS algorithm
can be written as

θ̂k+1 = θ̂k + µψ̄kek

which is illustrated in a block diagram in Fig. 3.4.
This algorithm has been applied to narrow band disturbance rejection mostly for acoustic

noise cancellation. When the frequency of disturbance is known, the reference signal xk or
equivalently the regressor φk can be generated without needing an extra sensor. Two types
of reference signal have been considered for this purpose in the literature. The �rst signal
is a periodic train impulse that has a period equal to the inverse of the fundamental fre-
quency of the periodic noise Elliott and Darlington (1985); Chaplin (1980). This approach
cannot be applied when the disturbance frequencies are not multiple integers of a funda-
mental frequency, or when selective frequencies should be compensated except that the least
common multiple of all frequencies is considered as the fundamental frequency. However,
this results slow convergence rate when the least common multiple is very large. The second
type of reference signal is consisted of sinusoidal signals which does not have these limita-
tions. However, its computational complexity is higher. The accuracy of the aforementioned
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approximations depends on the step size and as is shown by Elliott and Nelson (1993) the
maximum step size that can be used is approximately

µmax ≈
1

E [x̄Tk x̄k] (nw + ∆)

where ∆ is the number of samples corresponding to the overall delay in the secondary path.
This limitation originates from the step we took to approximate ek = R[dk] − R[φTk θ̂k] by
R[dk] − R[φk]

T θ̂k. The MFX�LMS algorithm that will be discussed in the next part does
not need this approximation since it directly considers ēk := R[dk] − R[φk]

T θ̂k as the error
signal. Motivated by the fact that MFX-LMS algorithm has bene�t of being robust as FX�
LMS, and fast as LMS algorithm, we pursue this method to synthesis an adaptive repetitive
controller for rejecting periodic disturbances at desired frequencies.

3.3 Adaptive Control Synthesis

Recall that our main objective in the framework outlined in Fig. 3.2 is to synthesize an
adaptive control law for generating uA such that the e�ect of disturbance d̄ on the error signal
e is minimized. This objective can be ideally achieved when the control signal is equal to
the disturbance d̄. As mentioned in the introduction, our analysis revolves around a special
factorization of the disturbance

d̄k = θTφk

where φk forms a basis function and can be generated in di�erent manners for the special
case of periodic and narrow�band disturbances. This factorization implies that perfect com-
pensation can be achieved if the control algorithm learns the unknown parameter vector θ
perfectly. We begin our analysis in a spectral framework, where trigonometric functions can
form an orthogonal basis for the space of real valued square integrable functions. Neverthe-
less, after outlining the algorithm, we revisit the problem for other choices of basis function
and compare them.

In a spectral analysis framework, the disturbance signal can be represented as a summa-
tion of orthogonal pairs of sinusoidal and cosinusoidal functions with zero initial phases

d̄k =
n∑
i=1

[ai (αi sin (ωikT )) + bi (αi cos (ωikT ))] = θTφk (3.2)

where ωi's and n respectively denote the frequencies and the number of components that
are desired to be compensated. The constant T is the sampling time of the discrete time
system. The vector of unknown parameters θ, and the regressor vector φk at time step k are
de�ned as

θT := [a1, · · · , an, b1, · · · , bn] (3.3)

φTk := [α1 sin (ω1kT ) , · · · , αn sin (ωnkT ) , (3.4)
α1 cos (ω1kT ) , · · · , αn cos (ωnkT )] ·
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Here, αi's are a set of positive weighting parameters that should be chosen by the designer.
We will suggest an explicit method for choosing these parameters later in this chapter. Note
that the regressor vector φk is known since the compensation frequencies, ωi's, and weighting
coe�cients, αi's, are known. Based on the factorization in (3.2), we propose an adaptive
algorithm that at any time step k obtains an estimate of the unknown parameter vector, say
θ̂k, and constructs the control signal uA by

uA,k = θ̂Tk φk. (3.5)

This control law can achieve perfect compensation if θ̂k converges to θ. A parameter adap-
tation algorithm for this purpose is given in the following.

3.3.1 Parameter Adaptation Algorithm

We deploy a gradient descent method inspired by the Filtered�X LMS algorithm to
adaptively identify the parameter vector θ based on the information provided by the error
signal. Based on Fig. 3.2, the error signal is

ek = R
[
d̄k − uA,k

]
+ ξk = R

[
φTk θ − uA,k

]
+ ξk

= R [φk]︸ ︷︷ ︸
ψk

T θ −R [uA,k]−R[φk]︸ ︷︷ ︸
ψk

T θ̂k +R[φk]︸ ︷︷ ︸
ψk

T θ̂k + ξk

= ψTk θ − ψTk θ̂k + ξk −R [uA,k] + ψTk θ̂k·

(3.6)

We denote the signal ψk := R[φk] ∈ R2n as the �ltered regressor. Suppose that the transfer
function R(z) is known; then, the �ltered regressor is known as well, and the error signal is
an a�ne function of our estimated parameter vector, θ̂k, if the last term on the right hand
side of (3.6) is omitted. This suggests de�ning an auxiliary error signal

ēk : = ek +R [uA,k]− ψTk θ̂k (3.7)

which is explicitly an a�ne function of our estimated parameter vector

ēk = ψTk θ − ψTk θ̂k + ξk.

The auxiliary error signal is a good measure of the original error signal because they are
equivalent when the parameters converge. Suppose that the estimated parameter vector
converges to θ̂ss. The two signals will be equal because

ēk − ek = R[φk]
T θ̂ss − ψTk θ̂ss

= ψTk θ̂ss − ψTk θ̂ss = 0 .
(3.8)

Accordingly, rather than minimizing the instantaneous square error signal e2
k, we use a

gradient descent algorithm to minimize a cost function J̄k that equals to the square of
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instantaneous auxiliary error signal ēk

J̄k = ē2
k

θ̂k+1 = θ̂k −
µ

2
∇θ̂k

J̄k. (3.9)

Note that this update rule is analogous to the LMS algorithm. Accordingly, one can show
that it has similar good properties such as as low computational complexity, convergence in
stationary environment, and under independence theory assumption � which is satis�ed here
� the parameters converge in the mean to the Wiener solution. Moreover, this algorithm is
suitable for DSP implementation of the speci�c application we discussed in section 2.3 since it
is shown that the LMS algorithm has stable behavior when implemented with �nite�precision
arithmetic. The update rule in 3.9 can be simpli�ed further

θ̂k+1 = θ̂k −
µ

2
∇θ̂k

J̄k

= θ̂k −
µ

2

[
−2ēk∇θ̂k

(
ψTk θ − ψTk θ̂k + ξk

)]
= θ̂k + µψkēk.

(3.10)

Theorem 1
Let ψik be the i

th component of ψk and de�ne ᾱ2
i := (ψik)

2 + (ψi+nk )2 for all values of i from 1
to n. Suppose the parameter adaptation algorithm in (3.10) has a variable step size µk that
is bounded by

0 < µmin < µk < µmax := min
i∈{1,··· ,n}

[
4

ᾱ2
i

]
(3.11)

for all values of k ≥ 0 and some µmin. Then, the estimated parameter vector updated by
(3.10) converge to the real parameter vector θ in mean value with an exponential rate.

Proof

We use the discrete�time averaging theory for mixed time�scale systems Bai et al. (1988).

To follow the same notation as Bai et al. (1988), let x(k) := θ − E
[
θ̂k

]
be a state vector

described by a di�erence equation of the form

x(k + 1) = x(k) + εf (k, x(k), ε) .

The averaging theory relates the solution of this di�erence equation to the solution of the
so�called �averaged� system

xav(k + 1) = xav(k) + εfav (xav(k)) .

where

fav(x) = lim
T→∞

1

T

k0+T∑
k=k0+1

f (k, x, 0) .



3.3. ADAPTIVE CONTROL SYNTHESIS 30

and 0 < ε ≤ ε0 for some small value ε0. Let µk = εµ̃k. Based on the parameter adaptation
algorithm given in (3.10), we have

εf(k, x(k), ε) = x(k + 1)− x(k)

= E
[
θ̂k − θ̂k+1

]
= −E [µkψkēk]

= −µkψkE
[
ψTk

[
θ − θ̂k

]
+ ξk

]
= −µkψkψTk x(k)

where the last equality follows from the fact that ξk is a zero mean random variable and ψk
is a deterministic signal. The function f(k, x, ε) = −2µ̃kψkψ

T
k x satis�es assumptions A1-A2

in Bai et al. (1988). De�ne

Aav = lim
T→∞

1

T

k0+T∑
k=k0+1

µ̃kψkψ
T
k .

One can show that the limit exists and it is bounded. This is because the term µ̃kψkψ
T
k is

bounded, and as a result, the series S(T ) := 1
T

∑k0+T
k=k0+1 µ̃kψkψ

T
k is Cauchy. Therefore, Aav

is the converging point of Cauchy series S(T ) and assumption A3-A4 of the averaging theory
hold true. Moreover, the �averaged dynamics� can be simpli�ed to

xav(k + 1) = (I − εAav)xav(k).

The matrix Aav is Positive Semi�De�nite (PSD) since it is the superposition of a set of PSD
matrices. An upper�bound (in a positive de�niteness framework) can be obtained

εAav = lim
T→∞

1

T

k0+T∑
k=k0+1

µkψkψ
T
k

≺ µmax

[
lim
T→∞

1

T

k0+T∑
k=k0+1

ψkψ
T
k

]

=
µmax

2



ᾱ2
1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · ᾱ2

n 0 · · · 0
0 · · · 0 ᾱ2

1 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · ᾱ2

n


. (3.12)

With the same procedure we can show that if 0 < µmin < µk the matrix I − εAav is positive
de�nite. Therefore, we have 0 ≺ εAav ≺ 2I which in accordance with (3.11) imply that
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I− εAav is a Schur matrix and xav(k) converges to zero exponentially. Since all assumptions

A1-A4 are satis�ed, by Theorem 2.2.1 in Bai et al. (1988) we have lim
k→∞

E
[
θ̂k

]
= θ. Moreover,

the convergence rate is exponential and determined by the eigenvalues of (I − εAav). �

A�Posterior PAA:

The PAA proposed above generates the estimates of step k based on an a�prior auxiliary
error that depends on the current step estimates. We can de�ne an a�posteriori auxiliary
error, say ēk,p, such that ēk,p at time step k depends on the next step values of estimates
θ̂k+1

ēk,p := ψTk θ − ψTk θ̂k+1 + ξk.

By following a similar procedure as the a�priori case we have

∇θ̂k+1
ē2
k,p = 2ψkēk,p

θ̂k+1 = θ̂k + µψkēk,p

However, since this expression is not realizable directly, we have to relate it to the a�priori
auxiliary error

ēk,p = ψTk θ − ψTk θ̂k+1 + ξk

=
(
ψTk θ − ψTk θ̂k + ξk

)
+
(
ψTk θ̂k − ψTk θ̂k+1

)
= ēk − µψTk ψkēk,p

=
1

1 + µψTk ψk
ēk.

Using this last expression the PAA can be written in a causal form

θ̂k+1 = θ̂k +
µ

1 + µψTk ψk
ψkēk. (3.13)

Theorem 2
The adapted parameters in (3.13) converge in mean value to θ for any positive constant or
variable step size µk.

Proof

The proof follows from the analysis in the proof of theorem 1. One needs to use ψTk ψk =∑n
i=1 ᾱ

2
i and

µk
1 + µkψTk ψk

≤ 1

ψTk ψk
=

1
n∑
i=1

ᾱ2
i

≤ min
i∈{1,··· ,n}

[
4

ᾱ2
i

]

to prove the claim. �
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3.3.2 Convergence Rate Based on Weighting Parameters

Since the transfer function R(z) is LTI, the �ltered regressor in a steady state, ψk, can
be simply calculated by knowing the frequency response of R(z)[

ψik
ψi+nk

]
= miαi

[
sin (ωikT + δi)
cos (ωikT + δi)

]
mi := |R

(
ejωiT

)
|

δi := ∠R
(
ejωiT

) (3.14)

for i ∈ {1, · · · , n}. Here, |x| and ∠x denote the magnitude and phase of the complex number
x. It is well known that the convergence rate of the LMS algorithm depends on the eigenvalue
spread of the regressor correlation matrix Ungerboeck (1972). This was also shown in our
proof for theorem 1. This fact suggests that the values of αi's in (3.3) should be chosen such
that the amplitude of all sinusoidal elements in (3.14) are equal � i.e. αi = c

mi
, where c is a

constant scalar. This constant can be chosen to be one because any other value of c can be
incorporated in the step size µk

αi =
1

mi

. (3.15)

3.3.3 Variable Adaptation Step Size

Although the coe�cient vector on average converges to Wiener solution, the instanta-
neous deviation in the parameter vector, caused by the noise ξk, generates an excess mean
squared error (MSE) appearing in the variance of ēk. More important, this parameter oscil-
lation prevents the auxiliary error signal from converging to the error signal, the equality
that was shown in (3.8) under a steady state assumption.

We propose an adaptive law to adjust the step size based on an estimation of the total
mean squared error. The key idea behind this scheme is that, as the estimated parameters
get closer to the real ones, the step size becomes smaller and the parameters will be frozen
in time when a certain desired performance (in terms of the mean squared error) is attained.
This removes the excess error from the output and results in smaller steady state errors.
However, in a practical situation, the system dynamics or disturbance d̄ may be subjected to
variations, and it is required that the step size activates the adaptation whenever the error
becomes �large� due to these variations.

We use a moving average with a window width of h to estimate the auxiliary error power
at time step k

V h
k = V h

k−1 +
1

h

[
(ēk)

2 − (ēk−h)
2
]
. (3.16)
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Figure 3.5: Adaptive variable step size with hysteresis behavior.

For a given desired MSE value, say V d, we de�ne the step size law as

µ̄k = ρ
(
V h
k − V d

)
(3.17)

µk =

{
min(µ̄k, µmax) if (µ̄k > 0 ∧ µk−1 > 0) ∨ (µ̄k > µub)

0 otherwise (3.18)

where the logical conjunction (and) and disjunction (or) are denoted by ∧ and ∨ respectively.
Constant ρ is a positive scalar gain, and the variable µ̄k determines how far the current error
power is from the desired value V d. Initial values of the parameters are not important and
can be set to zero. Since V h

k is not exactly equal to the auxiliary error variance, the system
may show chattering behavior around the switch line (i.e. V h

k = V d) if µ̄k is used directly as
the step size. To avoid this, we add a hysteresis behavior to the step size, which is de�ned
by (3.18). The logic condition represented in (3.18) de�nes a dead�band [V d, V ub] on the
MSE surface, and represents a hysteresis behavior for the step size. That is, the adaptation
is active as long as the estimated error power is above the dead�band (V h

k > V ub), and it is
inactive whenever the error power falls behind the dead�band (V h

k < V d). Moreover, if the
approximated error power enters the dead�band from the above, it stays active until it exits
from the bottom (values smaller than V d), and if the power error enters the dead�band from
the bottom, it stays inactive as long it does not exceed the upper limit V ub. To guarantee
the convergence of the second moment of error, an upper limit µmax is considered on the
step size. It is well known that a su�cient condition for guaranteeing MSE convergence is
to choose µmax ≤ 2/(3ψTk ψk) for all values of k (see Feuer and Weinstein (1985) and note
that the step size in that work is half of the step size used here). A schematic for the step
size hysteresis behavior is shown in Fig. 3.5.

3.3.4 Scheduling Parameters

In the lack of a priori knowledge about the parameter values, the transient error may
be large if many parameters are being updated simultaneously. This is mainly because the
auxiliary error and actual error signals are not close as long as the estimated parameters
variations are not small (c.f. (3.8)). This implies that despite the auxiliary error converges
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to zero rapidly, the actual error is not necessarily small at transient period when there are
multitude parameters being estimated.

To solve this issue, the adaptation of di�erent parameters in transient can be scheduled
in time. Let θ̂ik represent the i-th element of θ̂k. The parameter adaptation rule in (3.10)
can be modi�ed as [

θ̂ik+1

θ̂i+nk+1

]
=

[
θ̂ik
θ̂i+nk

]
+ γikµk

[
ψik
ψi+nk

]
ēk, 1 ≤ i ≤ n (3.19)

where γik is a binary variable. It is one when the parameters corresponding to the ith

frequency should be updated and zero otherwise. Proving that this modi�cation does not
cause instability (i.e. divergence) is straightforward and similar to theorem 1. One needs to
consider γikµk as a time�varying step size and follow the same procedure as in the proof of
theorem 1.

From a practical point of view, the possibility of scheduling the adaptation is very ap-
preciated. That is because in the case of multitude frequency disturbances the embedded
processor may not be able to perform one step update of all parameters in the time interval
between two consecutive samples of error signal. An example for choosing these parameters
is given in section 4.2 (see (4.12)).

3.4 Variants of the Algorithm: Time�Domain and Time�

Frequency�Domain Frameworks

We began our analysis in a spectral framework, where trigonometric functions were cho-
sen to form an orthogonal basis for the space of real valued square integrable functions. The
disturbance d̄k in this space was decomposed to a a vector of unknown parameters θ and a
known vector valued function (the regressor) φk that contained the sinusoidal and cosinu-
soidal functions (3.3). There are two alternatives to this approach, namely decomposition of
the disturbance in time�domain and in time�frequency�domain. As a matter of fact, each
of these three approaches considers a space that contains the disturbance signal and the
basis of that space is represented by the regressor vector. This means that choosing each of
these approaches is equivalent to choosing a special regressor vector to form the decompo-
sition d̄k = θTφk. We consider three regressor vectors in this section and compare them to
the one chosen in the spectral framework (3.3). The �rst two describe the disturbance in
time�domain and the last one is in the form of a wavelet that represents the disturbance in
a time�frequency domain.

3.4.1 Periodic Impulse Train (Time�Domain)

A �periodic impulse train� in discrete time is the summation of in�nite (Kronecker) delta
functions that form a periodic tempered distribution. Suppose the disturbance d̄k is N�
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periodic and letØ(k; t) be the associated periodic impulse train that has lag t

Ø(k; t) :=
∞∑

i=−∞

δ(k − iN − t).

The signal d̄ can be written as a linear combination of periodic impulse trains

d̄k =


d̄1

d̄2
...
d̄N


T 
Ø(k; 1)
Ø(k; 2)

...
Ø(k;N)

 = θTφk.

Note that the regressor vector φk in this framework creates the basis of a space such that the
components on coordinate axes represent the values of signal in di�erent time stamps. We
can interpret this decomposition di�erently by thinking of θ as the coe�cients of an N�tap
FIR �lter that transformsØ(k; 1) to d̄k

d̄k =
(
θ1 + θ2z

−1 + · · ·+ θNz
−N+1

)
[Ø(k; 1)] .

Let T be the sampling frequency of the digital system under our study. The Fourier transfor-
mation (denoted by F (.)) of the periodic impulse train contains all and only the harmonics
of the periodic impulse train frequency

|F [Ø(k, t)] | := 1

N

dN/2e−1∑
i=0

δ(ω − 2π

T

i

N
). (3.20)

For instance, if the digital system is running at 40KHz and the impulse train is 10�periodic,
the spectrum of impulse train has {0, 4, 8, 12, · · · , 16}KHz contents (ignoring the Nyquist
and aliased frequencies).

The sparse structure of periodic impulse train

φ1 =


1
0
0
...
0

 , φ2 =


0
1
0
...
0

 , · · · , φN =


0
0
0
...
1

 , φN + 1 =


1
0
0
...
0

 , . . .

makes it more computationally e�cient than trigonometric regressor (3.3) when it is deployed
in the proposed adaptive repetitive controller. This is because: (A1) unlike the trigonomet-
ric regressor vector, updating this periodic impulse regressor from step k to k + 1 requires
negligible e�ort.
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(A2) the control signal synthesis step in (3.5) which is repeated below

uA,k = θ̂Tk φk

is simply equivalent to choosing the i(k)th component of θ̂k where i(1) = 1 and

i(k + 1) :=

{
i(k) + 1 if i(k) + 1 ≤ N
1 otherwise.

(A3) the �ltered regressor ψk is periodic in steady state. Hence, it can be calculated o�ine
and then be implemented in the adaptive controller as a circular bu�er.

Although this choice of regressor vector is very e�cient in terms of computation, it has
a few fundamental shortcomings that can make it unsuitable in some applications:
(D1) Based on (3.20) the period of the disturbance, N , is a function of the smallest common
multiple of the sampling frequency 1/T and the frequency contents of the disturbance. For
instance, suppose that the disturbance is a simple sinusoid at 19KHz and the sampling
frequency of the system is 40KHz. The period of this disturbance in a discrete time domain
is 40 steps (which is equivalent to 19 periods of the disturbance in continuous time). As
a result, the number of required parameters can be very large when the system sampling
frequency is not devisable by the frequency of disturbance components. Moreover, (3.20)
says that each periodic impulse train can only capture a fundamental frequency 2π/T/N
and its higher harmonics. If there are di�erent frequency contents in the disturbance that
are not harmonics of the same fundamental frequency the problem is even more tedious.
(D2) It is not a suitable approach for multi�input (e.g. dual�stage) systems since it is not
possible to split (e.g. di�erent frequency) contents of the disturbance between di�erent input
channels of the system. For instance, we will show in chapter 5 that using the trigonometric
basis functions for RRO following in an HDD let us compensate the low frequency contents
through the input of VCM and high frequency parts through the MA input channel. This
type of separation cannot be performed when impulse train is used.
(D3) The trigonometric regressor (3.3) de�nes an orthogonal basis for the disturbance space.
Therefore, it is possible to estimate di�erent components of θ separately as in (3.19). The
periodic train impulse regressor does not provide this property, meaning that all components
of θ have to be estimated simultaneously. This may result in high transient error or slow
convergence (depending on the choice of step size) when the period N is large. In other
words, we cannot have the scheduling parameters γik in this framework.
(D4) The last de�ciency is about the divergence of algorithm when the system dynamics is
not known accurately. We will show in the next chapter that the convergence/divergence
behavior of our algorithm only depends on the dynamics mismatches (between the actual
and modeled dynamics) at compensation frequencies. Therefore, in a spectral framework,
a selective frequency can be compensated if some robustness criteria (to be determined
in theorem 3) are satis�ed at that particular frequency. However, in the case of using
periodic impulse train, it is needed to satisfy those criteria not only at the fundamental
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frequency of the period, but also at all its higher harmonics (c.f. (3.20)). Note that in many
practical applications the uncertainties increase by the frequency. Therefore, even if a model
is accurate enough to satisfy the convergence criterion at the fundamental frequency, it may
not satisfy it at higher harmonics. This can cause divergence in the case of using impulse
train.

3.4.2 Periodic Impulse Train for the Filtered�Regressor (Time�
Domain)

In the previous part the disturbance on input side was decomposed in a time�domain
framework, and the computational cost of the algorithm was reduced considerably because of
the sparse structure of regressor vector φk. A similar approach can be taken by decomposing
the e�ect of the disturbance on the output side. That is, instead of decomposing the
disturbance d̄k in time domain, we can take the same approach on ēk and de�ne a sparse
ψk instead of φk. The advantage of this approach compared to the previous part is that the
�ltered regressor ψk appears more than φk in our algorithm. Therefore, the algorithm can
be further simpli�ed in terms of computation.

For a given sparse ψk it may not be possible to �nd φk such that ψk = R[φk]. In particular,
if R(z) is not minimum phase, we will not be able to obtain φk = R−1[ψk]. We propose using
an anti�causal zero�phase inverse of the closed loop system R(z) when the system is not
invertible Tomizuka (1987). Suppose that the closed loop system R(z) is realized by

R(q−1) =
B(q−1)

A(q−1)
=
Bs(q−1)Bu(q−1)

A(q−1)

where q−1 denotes the one step delay operator. The polynomials Bs(p) and Bu(p) respectively
have roots outside and inside (including on) the unit circle. Let ns and nu be the order
of these two polynomials. We can say that znsBs(z−1) and znuBu(z−1) correspond to all
minimum phase and non�minimum phase zeros of R(z) respectively. Since the system has
non�minimum phase zeros, it cannot be inverted perfectly. Nevertheless, an approximate
inverse can be attained through the zero phase inverse technique Tomizuka (1987)

R#(z) :=
A(q−1)Bu(q−1)

Bs(q−1)[Bu(1)]2
.

Note that Bu(q) is an anti�causal operator, meaning that its response at any time depends
on the future values of input signal. This is a feasible operation since the future input to
this system (�ltered regressor) is known to us.

In order to construct a sparse �ltered regressor, ψk, we �rst consider an ideal sparse
function which is indeed a periodic impulse train

ψ1
k,ideal : =Ø(k, 1)
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and then �lter it by R#(.)

φ1
k,ideal : = R#[ψ1

k,ideal].

In steady state, the response is periodic and it determines the regressor vector

φ1
k = lim

i→∞
φ1
k+iN,ideal 1 ≤ k ≤ N

φTk =
[
φ1
k, φ1

k−1, φ1
k−2, · · · , φ1

k−N
]

Now that we have φk, we can obtain ψk = R [φk] which is in principle close to the ideal
�ltered regressor that we considered initially. However, this vector valued function may have
some very small values that make it unsparse. In this case, a threshold can be set and all
components less than that are replaced by zeros to make the regressor sparse. We can think
of this approximation as the e�ect of a small multiplicative uncertainty ∆(z)

ψk = (R(z)∆(z)) [φk].

It will be shown in theorem 3 that the algorithm is very robust to this type of uncertain-
ties. Moreover, the algorithm convergence after applying this approximation can be veri�ed
rigorously by the stability analysis provided in section 4.5.

In conclusion, a sparse �ltered�regressor vector reduces the computational complexity of
the algorithm more than a sparse regressor vector since the former one appears in (3.7) and
(3.10), while the latter only shows up in (3.5). The advantages (A1) and (A3) stated in the
previous approach are common between these two methods. As of the shortcomings, one
can show that this method is subjected to all issues mentioned through disadvantages (D1)
to (D4) in the previous section since both methods are inherently based on time�domain
analysis.

3.4.3 Wavelet (Time�Frequency Domain)

The last approach belongs to a time�frequency domain framework that deploys wavelet�
form regressor vectors. The key idea here is to take advantage of low computational com-
plexity of time domain approaches and possibility of targeting selective frequencies provided
by the spectral analysis. Similar to the spectral analysis at the beginning of this chapter,
compensation at frequencies {ω1, ω2, · · · , ωn} is considered. We propose using a reference
signal that superposes sinusoids at these frequencies:

Γk :=
n∑
i=1

α̃i sin(ωik + δ̃i)

where α̃i are positive and can be chosen by the method given in section 3.3.2 and δ̃i can be
arbitrary or selected such that Γk is equalized in time, meaning that the peak of Γk is kept
small.
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The regressor vector φ is a wavelet generated based on the reference signal and its trans-
lation in time

φk =


Γk

Γk−1
...

Γk−2n+1

 . (3.21)

The following lemma shows that this regressor de�nes a basis for the space of disturbances
that are summation of sinusoids at ωi's.
Lemma 1
For any signal in the form of d̄k =

n∑
i=1

αi sin (ωik + δi) with arbitrary αi's and δi's there exists

a unique θ ∈ <2n that satis�es

d̄k = θTφk

where φk is de�ned in (3.21).

Proof

Let F (z) be an (unknown) FIR �lter de�ned by θ

F (z) = θ1 + θ2z−1 + · · ·+ θ2nz−2n+1.

We need to show that

d̄k = θ1Γk + θ2Γk−1 + · · ·+ θ2nΓk−2n+1

= F [Γk]

=
n∑
i=1

F
[
α̃i sin(ωik + δ̃i)

]
.

(3.22)

This equation in frequency domain implies

αie
jδi = F (ejωi)α̃ie

jδ̃i ⇒
αi
α̃i
ej(δi−δ̃i) = F (ejωi)

= θ1 + θ2e−jωi + θ3e−2jωi + · · ·+ θ2nz−j(2n−1)ωi

for all 1 ≤ i ≤ n. Indeed, this is a system of linear equations

α1

α̃1
cos(δ̃1 − δ1)

α1

α̃1
sin(δ̃1 − δ1)

...
αn
α̃n

cos(δ̃n − δn)
αn
α̃n

sin(δ̃n − δn)

 =


1 cos(ω1) · · · cos ((2n− 1)ω1)
0 sin(ω1) · · · sin ((2n− 1)ω1)
...

...
. . .

...
1 cos(ωn) · · · cos ((2n− 1)ωn)
0 sin(ωn) · · · sin ((2n− 1)ωn)


︸ ︷︷ ︸

A


θ1

θ2

...
θ2n−1

θ2n
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and matrix A is full rank for ωi 6= 0 for all i's and ωi 6= ωj for i 6= j. Therefore, for any
arbitrary values of αi, α̃i > 0, δi and δ̃i a unique θ exists. �

This method requires less time complexity than the spectral method with trigonometric
regressor (3.4) since both φk and ψk do not require any major calculation to be updated
from step k to k + 1. This is because the reference signal Γk is periodic and its pro�le
in one period can be calculated o�ine and stored in a table for the adaptive controller.
Finding φk will then be a simple table�look�up task. Similar idea holds for ψk by calculating
and storing R[Γk]. However, this approach is computationally more expensive than the
two time�domain based methods since no further simpli�cation can be made. On the other
hand, the algorithm does not have the disadvantages (D1) to (D4) that were common among
the previous two time�domain methods. That is, the number of estimated parameters is
twice the number of compensation frequencies and it is possible to apply compensation
only at (any) selective frequencies. In conclusion, this method has good properties of the
frequency�domain approach and its computational complexity is higher than time�domain
approaches and less than frequency�domain method. The time complexity and selective
frequency attenuation capability associated to the four considered learning kernels are given
in Table 3.1.

Table 3.1: Time complexity of one step update and frequency separation capability of pro-
posed methods. N dentoes the number of estimated parameters.

Method Time complexity Selective frequencies
Trigonometric functions �3.3 O(5N) Yes
Periodic impulse train �3.4.1 O(2N) No
Sparse �ltered regressor �3.4.2 O(N) No
Wavelet �3.4.3 O(3N) Yes

3.5 Summary and Conclusion

We brie�y reviewed control methodologies for coping with periodic signals, and compared
the feedback control and feedforward control methods. It was argued that for the class of
problems under our study the latter methods are superior. We deployed a stochastic gradient
descent method, to develop an adaptive feedforward control algorithm for compensating
multitude narrow�band disturbances or trajectory tracking. Algorithm 1 summarizes the
high�level outline of the proposed method. The method is also illustrated as a block diagram
in Fig. 3.6.

Using the averaging theory, we derived a condition on the adaptation step size to guaran-
tee the algorithm convergence and perfect compensation. We also proposed a novel adaptive
step size and integrated it to the adaptive control algorithm to enhance the convergence rate
and decrease the steady state error.
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The analysis were initially carried out in a spectral framework where trigonometric func-
tions form an orthogonal basis for the class of deterministic disturbances/trajectories under
our study. Two alternatives to this approach, namely decomposition of the disturbance in
time�domain and in time�frequency�domain, were also discussed. It was shown that time�
domain approaches can be computationally more plausible than frequency�domain methods.
However, the latter methods can be more robust to system dynamics uncertainty and provide
the ability of targeting selective frequencies.
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Figure 3.6: Adaptive feedforward repetitive controller block diagram.

Our work in this chapter did not include two important aspects: (1) the algorithm
robustness to dynamic uncertainties when an exact model of the actual system is not available
was not analyzed, (2) the algorithm was not evaluated experimentally. The next two chapters
address these two topics.
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Algorithm 1 Adaptive Feedforward Repetitive Control Algorithm

1: procedure AdaptiveFeedForward(n,V d,V ub,ρ,µmax,fγ)
2: Initialize( )
3: while (1) do
4: Apply −uA,k to the system . e.g. update the DAC

5: Read the error ek . e.g. read the ADC bu�er

6: ēk ← ek + ẽk . update auxiliary error

7: µk ← UpdateStepSize(ēk) . update step size

8: for i = 1 : n do . update estimates

9: γik ← fγ(k, i) . fγ(., .) schedules adaptations of estimates

10: θ̂ik+1 ← θ̂ik + γikµkψ
i
kēk

11: θ̂i+nk+1 ← θ̂i+nk + γikµkψ
i+n
k ēk

12: end for
13: uA,k+1 ← φTk+1θ̂k+1 . control for the next step

14: ẽk+1 ← R [uA,k+1]− ψTk+1θ̂k+1

15: k ← k + 1
16: end while
17: end procedure

1: procedure UpdateStepSize(ēk) . update step size based on current aux. error

2: V h
k = V h

k−1 + 1
h
ē2
k − 1

h
ē2
k−h . moving average over squared error

3: µ̄k = ρ
(
V h
k − V d

)
. scaled distance of current variance from desired variance

4: if (µ̄k > 0 && µk−1 > 0) || (V h
k > V ub) then . the adaptation was active in

. the last step and the variance is still unsatisfactory; or, the variance is above the dead�band

5: µk = min([µ̄k, µmax])
6: else
7: µk = 0
8: end if
9: return µk
10: end procedure

1: procedure Initialize( ) . initialize parameters

2: k ← 0, uA,k ← 0, ẽk ← 0
3: for i = −h : −1 do
4: V h

i ← 0, ēi ← 0
5: end for
6: for i = 1 : 2n do
7: θ̂ik ← 0
8: end for
9: end procedure
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Chapter 4

Indirect Adaptive Feedforward

Repetitive Control for Systems with

Unknown Dynamics

4.1 Uncertain System Dynamics

The parameter adaptation algorithm proposed in section 3.3.1 uses the closed loop sys-
tem transfer function, R(z), to construct the auxiliary error based on (3.7). In general, an
exact dynamics of the system is not available in practical applications, especially at high
frequencies. In addition to unmodeled dynamics, uncertainties can be caused by tempera-
ture variations and deterioration over time. For instance, temperature variation in an HDD
causes voltage gain (i.e., output position versus voltage) alteration in the piezoelectric actu-
ator Malang and Hutsell (2005). A classical approach to compensate for system dynamics
alteration at di�erent operation conditions is to consider a nominal model and provide a
set of calibration coe�cients to modify the nominal model accordingly Aphale et al. (2008).
However, this type of o�ine calibration is applicable to correct plant variations only at low
frequencies since dynamic variations at high frequencies are not similar among di�erent in-
stances of a system. In Fig. 4.1 an example of dynamic uncertainties and alterations over
di�erent temperatures and plants in an HDD are shown. The �gure depicts the frequency
response of the closed loop system from the micro�actuator inputs inside one HDD to the
position error signal. The frequency response data is measured at di�erent temperatures
from 34◦C to 48◦C on 8 micro�actuators of a 4�platter hard disk drive. As can be seen from
the �gure, the phase response �uctuation at a high frequency, such as 18KHz, can even reach
180 degrees.

When the actual closed loop dynamics R(z) is not available, the adaptive feedforward
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Figure 4.1: Secondary path responses from inputs of 8 micro�actuators to the position error
signal in one HDD. Data is measured at temperatures varying from 34◦C to 48◦C.

controller proposed in section 3.3 deploys an approximate model denoted by R̄(z)

ψ̄k : = R̄[φk]

ēk : = ek + R̄ [uA,k]− ψ̄Tk θ̂k
θ̂k+1 = θ̂k + γkµkψ̄kēk.

(4.1)

Similarly, the update rule of a�posteriori version of the algorithm given in (3.13) can be
modi�ed by replacing all occurrences of ψk by ψ̄k. The block diagram of the adaptive
feedforward controller when a model is used instead of the actual system is shown in Fig. 4.2.

The robustness of the adaptive feedforward controller to the mismatch between the actual
plant and its model is outlined in the following theorem.

Theorem 3 (Controller's robustness to unmodeled dynamics)
Let m̄i = |R̄

(
ejωiT

)
| and δ̄i = ∠R̄

(
ejωiT

)
be the magnitude and phase response of R̄(z) at

ωi. Note that these variables are analogous to mi and δi de�ned in (3.14) for R(z). Assume
that αi's in φ are chosen according to αi = 1/m̄i. The estimated parameters in the adaptive
feedforward controller that deploys a model of closed loop system, R̄(z), converge to the actual
parameters (in mean value) if

0 < µmin < µmax ≤ min
i∈{1,··· ,n}

4 cos(δi − δ̄i)
m̄i

mi

. (4.2)

for some µmin that satis�es 0 < µmin < µmax.



4.1. UNCERTAIN SYSTEM DYNAMICS 45

e_


R

d

e_



Au

R

d

AC

Au

Reference 
Signal

LMS

 R z

kd

 R z

_
ke

kAu ,

kx

kx

)(zWk

Reference 
Signal 

(vector)

T

k
LMS

 R z

kd

 R z

_
ke

T

k ˆ
k

kAu ,

LMS
reference signal

Secondary 
path

control

Primary 
path

error signal

Disturbance 
source

“Sensor”

Signal 
Generator

PAA

 R z

kd

ˆ
k

ˆ
k

_

_

(copy)

ke

ke

T

k

 R z R z

CA

T

k

Signal 
Generator

PAA

 R z

kd

ˆ
k

ˆ
k

_

_

(copy)

ke

ke

T

k

CA

T

k

 R z R z

Figure 4.2: Adaptive feedforward repetitive controller block diagram for systems with un-
certain dynamics.

Proof

The proof is again based on the results of theorem 2.2.1 in Bai et al. (1988). Let x(k) :=

θ − E[θ̂k] be a state for the parameter adaptation algorithm. We have

x(k + 1)− x(k) = −E
[
θ̂k+1 − θ̂k

]
= −E

[
µkψ̄kēk

]
= −µkψ̄kE

{
R
[
φTk θ − φTk θ̂k

]
+ R̄

[
φTk θ̂k

]
− R̄

[
φTk
]
θ̂k + ξk

}
= −µkψ̄k

{
R
[
φTk x(k)

]
+ R̄

[
φTk x(k)

]
− R̄

[
φTk
]
x(k)

}
(4.3)

For a given ε > 0, de�ne µk := µ̃kε. We have

x(k + 1) = x(k) + εf(k, x(k), ε)

where

f(k, x(k), ε) := −µ̃kψ̄k
{
R
[
φTk x(k)

]
+ R̄

[
φTk x(k)

]
− R̄

[
φTk
]
x(k)

}
.

One can show that this function satis�es all assumptions A1-A4 in Bai et al. (1988). The
average system for this di�erence equation is de�ned as

xav(k + 1) = xav(k) + εfav(x(k))
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where

fav(x) : = lim
T→∞

1

T

k0+T∑
k=k0+1

f(x, k, 0)

= lim
T→∞

1

T

k0+T∑
k=k0+1

−µ̃kψ̄k
{
R
[
φTk x

]
+ R̄

[
φTk x

]
− R̄

[
φTk
]
x
}

=

(
lim
T→∞

1

T

k0+T∑
k=k0+1

−µ̃kψ̄kψTk

)
x

We have

lim
T→∞

1

T

k0+T∑
k=k0+1

[
ψ̄ik
ψ̄i+nk

] [
ψik
ψi+nk

]T

= lim
T→∞

1

T

k0+T∑
k=k0+1

mi

m̄i

[
sin(ωikT + δi) sin(ωikT + δ̄i) sin(ωikT + δi) cos(ωikT + δ̄i)
cos(ωikT + δi) sin(ωikT + δ̄i) cos(ωikT + δi) cos(ωikT + δ̄i)

]T

=
1

2

mi

m̄i

[
cos(δi − δ̄i) sin(δi − δ̄i)
− sin(δi − δ̄i) cos(δi − δ̄i)

]
for all values of i = 1, · · · , n. This matrix has eigenvalues at

1

2

mi

m̄i

(cos(δi − δ̄i)± j sin(δi − δ̄i)).

Hence, the averaged system

xav(k + 1) =

(
I − lim

T→∞

1

T

k0+T∑
k=k0+1

µkψ̄kψ
T
k

)
xav(k)

has eigenvalues at 1 − µavmi
2m̄i

(
cos(δi − δ̄i)± j sin(δi − δ̄i)

)
where µav := lim

T→∞
1
T

∑k0+T
k=k0+1 µk.

The averaged system is exponentially stable if

1 >

(
1− µavmi

2m̄i

(cos(δi − δ̄i)
)2

+

(
µavmi

2m̄i

sin(δi − δ̄i))
)2

= 1 +

(
µavmi

2m̄i

)2

− µavmi

m̄i

(cos(δi − δ̄i))

which is satis�ed when

µmax ≤ min
i∈{1,··· ,n}

4 cos(δi − δ̄i)
m̄i

mi

�
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Figure 4.3: On�line secondary path identi�cation architecture

In many practical applications an upper bound on the magnitude of uncertain systems can
be determined. In such cases, a corollary of the above theorem is that when the phase
mismatch between the actual system and its model is less than 90 degrees

max
i∈{1,··· ,n}

|∠R(ejωi)− ∠R̄(ejωi)| < π

2
, (4.4)

the maximum step size µmax can be chosen small enough such that the convergence criterion
is satis�ed.

4.2 Online Secondary Path Modeling

This section proposes an adaptive secondary path modeling architecture to stabilize the
adaptive repetitive controller in case the phase mismatch between R(z) and R̄(z) does not
satisfy the aforementioned criterion. Unlike the previous section that we ignored the inter-
nal structure of the closed loop dynamics R(z), we use our knowledge about the nominal
feedback controller and the internal interconnections to identify the uncertain plant. This
is an important distinction between this architecture and previous work Eriksson and Allie
(1989); Akhtar et al. (2006), in which, modeling of the closed loop system R (z) is studied.
The order of the closed loop dynamics is equal to the summation of plant and controller
orders when no pole�zero�cancellation occurs. Hence, the number of parameters required to
identify the plant is less than the closed loop system in general.

We �rst consider a simple system identi�cation case that is depicted in Fig. 4.3. An
important note to make here is that the periodic disturbance d̄ is not considered in this
framework. Let G(q−1) be a �nite dimension transfer function of G represented by the one
step delay operator q−1

G
(
q−1
)

=
Bg (q−1)

Ag (q−1)
=
bg0 + bg1q

−1 + · · ·+ bgngq
−ng

1 + ag1q
−1 + · · ·+ agngq−ng

.

In the �gure, Ĝk (z) is the estimated plant model at time step k and PAA denotes the
parameter adaptation algorithm. A great deal of research e�ort has been focused on the
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design of PAA based on the characteristics of input and output noises Regalia (1994);
Ljung and Söderström (1983). The design of a parameter adaptation algorithm for system
identi�cation problem shown in Fig. 4.3 is beyond the scope of this work. Here, we assume
that based on the prior knowledge about noises w, n and m, a proper recursive system
identi�cation algorithm is chosen such that it satis�es the following assumption.

Assumption A.1: The model parameters estimated by the parameter adaptation algo-
rithm in Fig. 4.3 converge asymptotically and the order for the model is large enough such
that there exists a bounded integer P <∞ and a positive real value µ̄max such that the closed
loop system

R̄k (z) =
Ĝk (z)

1 + CF (z) Ĝk (z)
· (4.5)

satis�es

µ̄max < min
i=1,··· ,n

m̄i

mi

cos(δi − δ̄i) ∀k ≥ P. (4.6)

Note that we are only interested in acquiring a system model that �ts to the actual
system at compensation frequencies. This requirement is considerably less stringent than
obtaining a model that describes the system at a broad frequency interval. In section 4.3,
we propose a class of excitation signals that is tailored speci�cally for this purpose and has
a very low computational cost since it takes advantage of calculations common with the
adaptive controller.

Based on assumption A.1 we advance to the problem of secondary path modeling for the
adaptive feedforward controller. Figure 4.4 illustrates the proposed architecture that uses the
same PAA as Fig. 4.3. As shown in the �gure, the secondary path of the adaptive feedfor-
ward controller is now using the estimated model given in (4.5) and its parameter adaptation
algorithm is now denoted by �LMS� to avoid ambiguity with the system identi�cation PAA.

Lemma 2
Condition (4.6) is satis�ed for the system shown in Fig. 4.4 if assumption A.1 holds for the
system shown in Fig. 4.3. In other words, the presence of adaptive feedforward controller
and periodic disturbance d̄ in the loop do not change the steady state behavior of the system
identi�cation mechanism.

Proof

Since the adaptive control is known, we can think of the summation of the feedback control,
adaptive control, and the injected noise, as a single excitation signal that is known to us.
Therefore, if we ignore �lters 1−z−N and signal d̄, the estimated plant parameters in Fig. 4.4
converge if and only if they converge when there is no adaptive repetitive controller in the
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Figure 4.4: Adaptive repetitive controller with secondary path modeling (dashed box).

loop. However, the periodic disturbance d̄k can cause biased parameters convergence, and it
is required to be �ltered out to validate this statement. The error signal in Fig. 4.4 is

ek = θTg φg,k + dg,k + ξg,k

where

θTg :=
[
ag1, · · · , agng , b

g
0, · · · , bgng

]
(4.7)

φTg,k :=
[
ek−1, · · · , ek−ng , ūk, · · · , ūk−ng

]
(4.8)

dg,k := G
[
d̄k
]

(4.9)
ξg,k := G [wk] + nk +mk· (4.10)

Note that dg,k is N�periodic in steady state since d̄k is periodic and G (q−1) is an LTI system.
Since we are interested in the steady state behavior, we ignore the transient state and assume
that dg,k is periodic. This assumption leads us to �lter both ek and φg,k through 1− q−N and
de�ne

f̄k : = (ek − ek−N)− θ̂g,k (φg,k − φg,k−N)

= θ̃Tg,kφ̃g,k + ξ̃g,k
(4.11)

where φ̃g,k = φg,k − φg,k−N , θ̃g,k = θg − θ̂g,k and ξ̃g,k = ξg,k − ξg,k−N . Note that (4.11) is
analogous to the estimation error dynamics in Fig. 4.3

εk = θ̃Tg,kφg,k + ξg,k.

In other words, the two �lters (1− z−N) transform the inputs of PAA such that it does not
see the e�ect of d̄. It is worth noting that this operation causes ξ̃g to have a higher variance
than ξg. This may require a larger excitation signal to achieve the same accuracy level. �
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Based on the separation property shown in the previous lemma and assumption A.1, by
choosing µmax < 4µ̄max the convergence criterion (4.2) for the adaptive repetitive controller
will be satis�ed after a �nite number of steps. On the other hand, the excitation signal
u, is statistically independent of the regressor signal of the adaptive repetitive controller,
and it cannot cause unbiased parameter estimation in the repetitive controller. This can be
formally consolidated by revisiting the proof of theorem 3: 1)equation 4.3 for the current
architecture becomes

x(k + 1)− x(k) = −µkψ̄k
{
R
[
φTk x(k)

]
+ R̄

[
φTk x(k)

]
− R̄

[
φTk
]
x(k)

}
− µkψ̄k

{
−R [uk] + R̄ [uk]

}
2) the second term does not contribute in fav(x) since

lim
T→∞

1

T

k0+T∑
k=k0+1

ψ̄k
(
−R [uk] + R̄ [uk]

)
= 0

when ψ̄ and u are statistically independent. Moreover, for the class of excitation signals
that will be proposed in section 4.3 u is consisted of a set of sinusoidals that di�er from the
contents of ψ̄ in frequency. Therefore, the above equality holds for this type of deterministic
excitation signals too.

An important point to make is that, the adaptive control path does not converge as
long as the updated transfer function R̄ (z) has more than 90 degrees phase error relative
to the actual transfer function R (z). As a result when the initial parameters of Ĝ0 are
not accurate, we expect that the adaptive control parameters diverge quickly. Although
the adaptive controller becomes stable eventually � once the plant parameters get close
enough (in terms of phase error) � this behavior is not desirable in many applications since
the transient error may be very large, and accordingly the adaptive control requires a long
time to recover. We thus suggest using an initialization period prior to the simultaneous
adaptation, in which the adaptive controller is inactive till the secondary path modeling
parameters converge.

On the other hand, in some practical applications the plant dynamics might be fairly
known at a frequency range, say Ω. If such information is available, the frequency components
of disturbance can be categorized into two sets I1 = {i|ωi ∈ Ω} and I2 = {i|ωi /∈ Ω}. The
adaptation of parameters (θ̂i, θ̂i+n), i ∈ I1 and plant parameters can be done simultaneously
since the plant model is exact at that region. This can be done by choosing

γik =

{
0 i ∈ I2 and k < P
1 otherwise (4.12)

where P denotes the length of initialization period required for secondary path modeling.
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4.3 Exogenous Excitation Signal

It is well known that in an adaptive system identi�cation algorithm the convergence
towards zero of the prediction error ε(k) (c.f. Fig. 4.3) does not necessarily imply that the
estimated parameters converge towards the true parameters Landau et al. (2006). In order
to identify the actual parameters, it is necessary to apply a �frequency rich� excitation signal
u. The standard solution in practice is usually provided by the use of pseudo�random binary
sequences that have enough persistence of excitation for identi�cation of any number of
parameters Bitmead (1984). This approach is bene�cial when the identi�cation should be
performed in a wide frequency range.

We propose a novel method that requires less computation and it is more e�ective for
our problem since we need to identify the system dynamics only around the narrow band
disturbances. The fact that the adaptive algorithms can operate with extremely weak ex-
citation signals is a very much appreciated quality in practical situations. Our key idea is
that we focus the excitation signal around the narrow band disturbances so that a low order
identi�ed system dynamics �ts the complex high order system only around the disturbances.
This is done by an e�ective use of sinusoidals that are distributed symmetrically around
compensation frequencies (ωi)

uk =
αuk
2

n∑
i=1

sin ((ωi + δu)kT ) + sin ((ωi − δu)kT ) (4.13)

which implies that the whole excitation energy is focused sharply around where identi�cation
should be performed. Here, δu is a small frequency shift such as a few percent of the smallest
ωi, and αuk is a �xed or variable positive gain that should be de�ned based on the noise level,
desired convergence rate and unwanted transient error. An adaptive version of this gain is
discussed in section 6.3.2.

Surprisingly, although this excitation signal contains many sinusoidals, it can be con-
structed with negligible computation when combined with the proposed adaptive feedfor-
ward controller. This is because the expression in (4.13) can be e�ectively evaluated by
taking advantage of the regressor φk

uk =
αuk
2

n∑
i=1

sin ((ωi + δu)kT ) + sin ((ωi − δu)kT )

=
αuk
2

n∑
i=1

sin(ωikT ) cos(δukT ) + cos(ωikT ) sin(δukT )

+ sin(ωikT ) cos(δukT )− cos(ωikT ) sin(δukT )

= αuk cos(δukT )
n∑
i=1

sin(ωikT ).

Note that all trigonometric functions in front of the sum operator have been already evaluated
for φk. Thus, even though the excitations signal is consisted of n+1 trigonometric functions,
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only one function evaluation is needed and the rest is in hand once the regressor φk is
calculated.

4.4 Band�Pass Filters for SNR Enhancement in System

Identi�cation
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Figure 4.5: Adaptive repetitive controller with secondary path modeling and band�pass
�lters (dashed box)

As was mentioned in section 4.2 our expectation from the system identi�cation PAA is less
stringent than a general identi�cation problem since we only need to satisfy criterion (4.6) at
compensation frequencies. The excitation signal proposed in section 4.3 attempts to facilitate
the identi�cation by focusing energy around the compensation frequencies. Another method
that can further lead to a more accurate identi�cation with a low excitation signal is to use a
pair of band�pass �lters in order to decrease the e�ect of noises (w,n,m) through attenuating
the spectrum of input/output signals at other frequencies. This idea is illustrated in Fig. 4.5
where the two �lters are shown by HQ(z). For instance, if the adaptive compensator in an
HDD is set to compensate harmonics 120 to 150, we would like to minimize the e�ect of all
noises at other frequencies. Therefore, the passband of �lter should be adjusted to [120, 150]
(in terms of harmonic).

The bandpass �lters can be designed o�ine if the set of compensation frequencies are
known a�priori. The binary scheduling parameters, γik's, that were introduced in 3.3.4 pro-
vide a �exible framework for scheduling the adaptation of di�erent frequencies in a practical
application. When these parameters change in time, a mean is needed to adjust the bandpass
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�lters accordingly. An example of such a case was mentioned in section 4.2. Changing the set
of compensation frequencies is also bene�cial when the computational power is limited, or
when the model order is not large enough to satisfy condition (4.6) and the frequency range
should be decreased. We will be returning to this matter at various junctures, especially in
section 6.4.2 where we discuss an automatic mechanism for determining the compensation
frequencies. As a result, we pursue an online �lter design approach.

Typical digital low�pass IIR �lters such as Butterworth, Chebyshev and Elliptic �lters,
or FIR �lters can be designed directly with relatively inexpensive algorithms thanks to the
closed form solutions (as in Oppenheim et al. (1989)) for their pole and zero locations.
However, direct design of digital band�pass or band�stop �lters is more tedious especially
in narrow�band cases as in our application. This makes it impossible to design a band�pass
�lter on a simple embedded system in real time1. Digital Frequency Transformation is an
alternative to direct methods for designing band�pass (also band�stop and high�pass) �lters
that was initially proposed in a simple form for real �lters in Constantinides (1970). This
methodology was later extended to more general cases of real Nowrouzian and Constantinides
(1990), multi�band Feyh et al. (1986) and real/complex multi�band �lters Krukowski et al.
(1995). This type of transformation are often performed using a �xed low�pass prototype
�lter and an all�pass frequency transformation. The drawback of indirect method is that the
resulting �lter may have a larger dimensionality (order) compared to the �lters that can be
designed using direct methods with optimization. However, the extra required computation
caused by only having a few more parameters in the �lter is negligible compared to the
tedious task of designing �lters optimally.

The general idea of the frequency transformation is to take an existing prototype �lter and
produce another �lter from it that retains some of the characteristics of the prototype, in the
frequency domain. Transformation functions achieve this by replacing each delaying element,
z−1, of the prototype �lter with an allpass �lter carefully designed to have a prescribed phase
characteristic for achieving the modi�cations requested by the designer.

The basic form of transformation from a given prototype �lter H0(z) to a desired �lter
HQ(z) is commonly performed by using a mapping z̄ = Q(z) Oppenheim et al. (1989)

HQ(z) = H0 (z̄)

= H0 (Q (z))
(4.14)

where, generally, Q(z) is a �rst or second order all�pass �lter. In our particular application,
we are interested in transforming a low�pass �lter to a band�pass �lter with desired cuto�
edges, say w1 and w2. Therefore, we can think of this mapping as a transformation of
two features, namely the cuto� frequency of low pass �lter ±w0 to w1 and w2. Usually a
second�order mapping in the form of

z̄ = Q(z) = ±
1
α2
z2 + α1

α2
z + 1

z2 + α1

α2
z + 1

α2

·

1Here, we refer to systems with <500MHz processors and real�time applications with <25µs sampling

times.
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is used since the coe�cients α1 and α2 give enough degrees of freedom to migrate any two
frequency domain features of the original transfer function H0(z) to any other (meaningful)
frequency locations while preserving the �lter stability. Negative sign is used when a feature
from zero frequency should be translated, a case that is usually called �DC�mobility�, and
conversely a positive sign is used when a feature at the Nyquist frequency should be relocated.

Theorem 4
Given any asymptotically stable low�pass �lter H0(z) with normalized cut�o� frequency w0,

HQ(z) = H0

(
−

1
α2
z2 + α1

α2
z + 1

z2 + α1

α2
z + 1

α2

)
(4.15)

is an asymptotically stable bandpass �lter with (normalized) passband w1 to w2 if: (1) 0 ≤
w1 < w2 < π and (2) the two parameters of mapping are set by

α1 = 2ab
1−b α2 = 1+b

b−1

a :=
cos(w2+w1

2 )
cos(w2−w1

2 )
b :=

tan(w0
2 )

tan(w2−w1
2 )

(4.16)

Proof

See Nowrouzian and Constantinides (1990) for the proof.

Equation (4.15) along with (4.16) show that the coe�cients of the desired band�pass
�lter HQ(z) are polynomials in a and b which is the most important advantage of using
frequency transformation for implementation. More explicitly, for a given �xed even order
2n, the desired �lter HQ(z) has coe�cients that are polynomials of (at most) order 2n (c.f.
(4.17-4.18)) with coe�cients that are functions of the prototype �lter coe�cients. Therefore,
a �xed prototype lowpass �lter can be designed �rst, and then, for each coe�cient of HQ(z)
an explicit polynomial expression can be obtained. Note that this whole procedure can
be performed o�ine. Once it comes to designing the bandpass �lter for a given passband
(w1, w2) in an online fashion, it is only needed to calculate a and b given in (4.16) and
then evaluate 2n polynomials of 2nth order. An example for this procedure is given in the
following.

Elliptic low pass �lters are well known for their fast transition between passband and
stopband. Since the �lters on input and output signals are identical, the distortion caused by
the phase delay of this pair of �lters does not have any negative e�ect in the identi�cation. In
our experiments, we used a third order Elliptic lowpass prototype �lter. The prototype cuto�
frequency is not important and we set it to harmonic 100 of the HDD spinning frequency
(i.e. 1.82 rad/s)

H0(z) =
0.2184z3 + 0.5891z2 + 0.5891z + 0.2184

z3 + 0.1832z2 + 0.5611z − 0.1291
.

The magnitude frequency response of this �lter is shown in Fig. 4.6.
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Figure 4.6: Frequency response of the Elliptic lowpass �lter used as the prototype �lter in
our implementation.

Using the mapping given in (4.15)-(4.16), the bandpass �lter is of the form

HQ(z) =
b6z

6 + b5z
5 + b4z

4 + b3z
3 + b2z

2 + b1z
1 + b0

z6 + a5z5 + a4z4 + a3z3 + a2z2 + a1z1 + a0

(4.17)

where

b6 = 0.088b2 + 1.1

b5 = −0.35ab2

b4 = 0.35a2b2 + 0.088b2 − 3.2

b3 = 0

b2 = −b4

b1 = −b5

b0 = −b6

a6 = 1.0b3 + 1.2b2 + 2.0b+ 1.1

a5 = −6.0ab3 − 5.0ab2 − 4.0ab

a4 = 12.0a2b3 + 5.0a2b2 + 3.0b3 + 1.2b2 − 2.0b− 3.2

a3 = −8.0a3b3 − 12.0ab3 + 8.0ab

a2 = 12.0a2b3 − 5.0a2b2 + 3.0b3 − 1.2b2 − 2.0b+ 3.2

a1 = −6.0ab3 + 5.0ab2 − 4.0ab

a0 = 1.0b3 − 1.2b2 + 2.0b− 1.1 ·

(4.18)

Suppose this �lter is desired to be transformed to a band�pass �lter with pass�band [120, 140]
in terms of harmonics. The parameters a and b can be easily evaluated for these w1 and w2

(after normalization) based on (4.16) and then all parameters of the band�pass �lter can be
calculated based on (4.18). The magnitude response of the �lter designed by this method is
depicted in Fig. 4.7.

4.5 Linear Periodically Time�Varying Realization of the

Adaptive Controller

In section 4.1 we provided a method of robustness analysis for the case of using trigono-
metric regressors in the adaptive feedforward controller. Similar approaches can be taken to
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Figure 4.7: Frequency response of a bandpass �lter with passband from harmonic 120 to
140. Coe�cient of this �lter are calculated using (4.18).

analyzing the behavior of adaptive controller when any of the three alternatives proposed in
section 3.4 is deployed. In this section we study a fundamentally di�erent methodology for
robustness analysis of the adaptive repetitive controller which is �exact�, in the sense that it
does not rely on any assumptions such as slow adaptation in averaging theory.

Robustness to the mismatches between the actual closed loop system, R (z), and the
model R̄ (z) is analyzed by outlining an exact linear periodically time varying (LPTV) re-
alization of the closed loop system shown in Fig. 3.2. An important note to make is that
our analysis is valid only when the controller can be realized by a periodic dynamics. This
means that since the regressor in all cases is periodic, it is enough to have a constant or
periodic step size to satisfy this condition. As a result, this machinery can be used to �nd
the maximum constant/periodic step size for an arbitrary (but periodic in time) regressor
vector φk without needing to have a regressor with a special structure as the ones in the four
discussed methods.

Suppose that the actual and nominal closed loop transfer functions are related by

R (z) = R̄ (z) + ∆ (z) R̄ (z)

where ∆ (z) denotes the modeling mismatch. Let θ̃k := θ − θ̂k. The auxiliary error in (4.1)
is

ēk = ek + R̄ [uA,k]− ψ̄Tk θ̂k
=
(
R̄ + ∆R̄

) [
φTk θ̃k

]
+ ξk + R̄

[
φTk θ̂k

]
− ψ̄Tk θ̂k

= ψ̄Tk θ̃k + ∆ R̄
[
φTk θ̃k

]
︸ ︷︷ ︸

ỹk

+ξk ·
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Suppose that the state space realization of R̄ (z) is

R̄ ≡
[
Ā B̄
C̄ D̄

]
which implies that R̄(z) = C̄

(
zI − Ā

)−1
B̄ + D̄. The newly de�ned variables ỹk can be

realized by

xk+1 = Āxk + B̄
(
φTk θ̃k

)
ỹk = C̄xk + D̄

(
φTk θ̃k

) (4.19)

Let δỹk := ∆ [ỹk]; then, the update equation for the estimates in (4.1) with the above
equations imply

θ̃k+1 = θ̃k − µkψ̄kēk

=
[
I − µkψ̄kψ̄Tk 0

] [θ̃k
xk

]
+
[
−µkψ̄k −µkψ̄k

] [δỹk
ξk

]
.

(4.20)

and the error signal is described by

ek =
(
R̄ + ∆R̄

) [
φTk θ̃k

]
+ ξk

= ỹk + δỹk + ξk
(4.21)

and the one step evolution equations given by (4.19), (4.20) and (4.21) can be put all together
to form a linear periodically time varying system, say G1 , with state space realization

Xk+1 = ÃkXk + B̃kUk

Yk = C̃kXk + D̃kUk
(4.22)

where the states, input and output are

Xk :=

[
θ̃k
xk

]
, Uk :=

[
δỹk
ξk

]
, Yk :=

[
ỹk
ek

]
(4.23)

and the augmented matrices are

G1 ≡
[
Ãk B̃k

C̃k D̃k

]
=


I − µkψ̄kψ̄Tk 0 −µkψ̄k −µkψ̄k

B̄φTk Ā 0 0
D̄φTk C̄ 0 0
D̄φTk C̄ I I

 ·
Note that the �rst input of the system is δỹk = ∆ [ỹk]. As a result, the system can be closed
by connecting the �rst input to the �rst output through ∆(z) as is shown in Fig. 4.8. When
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Figure 4.8: LFT of the periodic closed loop system and uncertainty

ky
ky

k

ˆ ˆ

ˆ ˆ

k k

k k

A B

C D

 
 
  

kr kq

)(z

ke
k

Figure 4.9: LFT of the periodic closed loop system and uncertainty

the step size µk is constant or periodic, the robustness analysis of the adaptive algorithm can
be conducted by deploying robustness analysis of periodic systems (e.g. discussed rigorously
in Bittanti and Colaneri (2009)) for the linear fractional transofrmation shown in Fig. 4.8.

By employing this formalism we can also optimize the step size rather than just restricting
ourselves to robustness analysis of the adaptive control algorithm. The dynamics of θ̃ �
realized by the �rst row of above state space realization for G1 � inspires the formation of a
(lower) linear fractional transformation of µk and G1. Let G2 be an LPTV system realized
by

G2 ≡
[
Âk B̂k

Ĉk D̂k

]
=


I 0 0 0 ψ̄k

B̄φTk Ā 0 0 0
D̄φTk C̄ 0 0 0
D̄φTk C̄ I I 0
−ψ̄Tk 0 −I −I 0

 · (4.24)

The �rst two inputs and outputs of this system are the same as in (4.23), and the last input
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and output are de�ned such that the LFT shown in Fig. 4.9 is equivalent to Fig. 4.8. That
is, qk = −ēk, and rk = −µkēk. Based on Fig. 4.9, selecting the step size µk can be formalized
as a (robust) control design for the (uncertain) LPTV system shown in the �gure.

It is worth noting that the application of this periodic representation is not limited to
robustness analysis or determining the bounds of a scalar step size. As a matter of fact, this
framework enables us to take advantage of analysis and apparatuses developed for linear
periodically time varying systems Bittanti and Colaneri (2009) to study/design di�erent
variants of our adaptive repetitive controller. For instance, one can go beyond using a static
step size for the lower LFT in Fig. 4.9 and close the loop with a dynamic step size. We
will not investigate these options here and leave it to future work to determine whether it
is possible to synthesize a robust controller by deploying H∞ control design methodologies
for linear periodic systems Voulgaris et al. (1994) , or whether the H2 norm of the system
can be minimized by using H2 optimal control synthesis for LPTV systems Voulgaris et al.
(1994).

4.6 Summary and Conclusion

Our proposed adaptive algorithm requires a model for the system dynamics which may
not be exact, especially at high frequencies, in many practical applications. The robustness
of the adaptive feedforward controller to dynamic mismatch between the actual plant and
the model deployed in the algorithm was analyzed in this chapter and it was shown that
unlike many existing methods, the mismatches are only important at excitation frequencies.

An online system identi�cation architecture was proposed to provide an accurate model
of the system dynamics in case a model is not available or accurate. It was shown that
under a set of assumptions, the proposed scheme is able to obtain a model that satis�es
convergence criterion outlined in the aforementioned robustness analysis. As a result, the
identi�cation and compensation mechanisms together form an �indirect� adaptive controller
for the class of problems under our study.

The proposed identi�cation scheme requires an exogenous excitation signal. In general,
this type of extra excitations are not desired from a practical point of view. We proposed
a special excitation that is extremely low power, e�ective in our problem since its energy
is focused around frequencies that are important to us, and easy to generate in DSP im-
plementation. Besides, we suggested using adaptive band�pass �lters on the inputs to the
identi�cation unit in order to further reduce the required excitation power. A design method
for synthesizing these adaptive �lters through frequency transformation of a prototype �lter
was proposed. It was shown that explicit �parametric� solutions for the �lter coe�cients can
be obtained. The �parameters� of these relations depend on the pass�band of the �lter and
can be evaluated easily in real�time.

We also outlined a fundamentally di�erent methodology for robustness analysis of the
adaptive repetitive controller by representing the closed loop dynamics of the system as a
robust feedback interconnection of an LPTV system with the step size and dynamic un-
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certainty. We showed that this realization is not only useful for robustness analysis and
determining the bounds of a scalar step size, but also, it enables us to take advantage of
analysis and apparatuses developed for LPTV systems to study/design di�erent variants of
our adaptive repetitive controller.
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Chapter 5

Repeatable Runout Following in HDD

Using Indirect Adaptive Control

In this chapter we show how the proposed adaptive control algorithm can be e�ciently in-
tegrated with the servo controller of an HDD for following / compensating repeatable runout,
a problem that was introduced and formalized earlier in chapter 2. Computer simulation
in MATLAB and implementation on a digital signal processor (DSP) unit are performed
to compensate for RRO that has narrow�band contents at the HDD spinning frequency
(7200RPM) and its 173 higher harmonics. In other words, n in (3.2) is 173 and

ωi(rad/s) = i× 120(Hz)× 2π i = 1, · · · , 174.

The sampling frequency of the system is 41.760KHz, which is equal to 120Hz × 348. This
implies that the highest harmonic (at 174 × 120Hz) is equal to the controller Nyquist fre-
quency. Another implication is that the disturbance d̄ has a period of 348�step in discrete
time. More details about this system was earlier provided in chapter 2.

This control task is challenging since it requires estimating a very large number (348)
of parameters which is order(s) of magnitude greater than other results reported in the lit-
erature. These frequencies span from 120Hz to extremely large frequencies (above 20KHz)
where the plant dynamics uncertainties are large and feedback controller ampli�es distur-
bances. Note that, feedback repetitive controllers that compensate a periodic disturbance
with a large period (e.g. N = 348) can be found in the literature. However, to the best of
our knowledge, practical viability of controllers that can compensate a very large number of
narrow�band disturbances with selective frequencies have not bee reported yet.

Our contributions in this chapter can be summarized as:

• The adaptive repetitive controller proposed in the previous chapters was discussed for
a single�input single�output system. We will extend the methodology to multi�input
single�output systems and discuss the bene�ts that can be gained by following this
method to design an adaptive controller for a dual�stage HDD (a system with two
actuator inputs and one position error output signal).
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• A procedure for modeling system dynamics and contaminating noise dynamics in the
dual�stage hard disk drive under our study is described and it is shown how accurately
these models can mimic the behavior of the actual system.

• Comprehensive computer simulation study is performed to illustrate the e�ectiveness
of the proposed methods in following multiple sinusoidal trajectories with selective fre-
quencies in the aforementioned HDD simulator. The results are reported for a conven-
tional and a BPMR�like HDD system (i.e. system dynamics belong to a conventional
HDD and the noise dynamics belong to a BPMR HDD).

• The algorithm is implemented on a digital signal processor (DSP) and di�erent prac-
tical aspects are discussed. Experimental results for RRO compensation on a 3.5"
conventional HDD are reported.

• The number of disturbances (trajectories) that are considered in our simulations and
experiments is between 50 to 100, which is order(s) of magnitude larger than other
results in the literature.

5.1 Adaptive Feedforward Repetitive Control of Dual�

Stage Systems

The adaptive feedforward controller developed in the last two chapters was discussed for
a single�input single�output (SISO) linear time�invariant system. However, as we mentioned
at various junctures throughout the analysis, our method in spectral and wavelet frameworks
is not limited to SISO systems and can be extended to multi�input single�output (MISO)
systems. More explicitly, one can go over the analysis and replace the SISO systems R(z)
and R̄(z) by MISO systems with m input channels

R(z) 7→
[
R1(z) R2(z) · · · Rm(z)

]
R̄(z) 7→

[
R̄1(z) R̄2(z) · · · R̄m(z)

]
and instead of transforming the output disturbance rk to one input disturbance d̄k, transform
it to m disturbances {d̄1

k, · · · , d̄mk } on the m individual input channels

rk = R1
[
d̄1
k

]
+R2

[
d̄2
k

]
+ · · ·+R1

[
d̄mk
]
.

Here, d̄i's contain non�overlapping frequencies and can be decomposed to known and un-
known parts similar to the SISO case

d̄1
k := (θ1)Tφ1

k d̄2
k := (θ2)Tφ2

k · · · d̄mk := (θm)Tφmk .

Using this decomposition, the control objective is estimating each θi to create the corre-
sponding feedforward control uiA that should be injected to input channel i. The parameter
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Figure 5.1: Dual�stage system with two adaptive feedforward controllers.

adaptation algorithm for this purpose will be analogous to (4.1)

ψ̄ik : = R̄i[φik]

ēik : = ek + R̄i
[
uiA,k

]
− (ψ̄ik)

T θ̂ik

θ̂ik+1 = θ̂ik + γikµ
i
kψ̄

i
kē
i
k.

(5.1)

for all channels 1 ≤ i ≤ m. Accordingly, the adaptive control signal for input channel i is

uiA,k = (θ̂ik)
Tφik. (5.2)

Equations (5.1) and (5.2) together de�ne one adaptive controller module that receives the
error signal ek and injects control to one input channel in order to compensate the disturbance
at certain frequencies.

This idea is illustrated for a dual�stage (dual�input single�output) HDD servo system
in Fig. 5.1. The two adaptive controller modules, CA and CA,S compensate for two disjoint
frequency sets of the Repeatable Runout r. Recall from chapter 2 that G and GS denote,
respectively, the voice�coil motor (VCM) and the �S�econdary actuator (e.g. a mili� or
micro�actuator (MA)).

The architecture in Fig. 5.1 may raise the question of why the compensation signal is
not injected to the input of controller CF which will require only one adaptive controller
module. There are two reasons that prevent us from pursuing that approach: (1) The VCM
and MA, and in general di�erent actuators in a MISO system, have di�erent operational
constraints. As for a dual�stage HDD servo, the control e�ort for the two actuators have
di�erent saturation limits. Moreover, the MA stroke is limited. Since the two actuators have
di�erent magnitude responses in frequency domain, the control e�ort required for compen-
sating a sinusoid at a particular frequency by each of them is not equal to the other one.
For instance, the VCM gain drastically drops at high frequencies and there might not exists
enough control e�ort available to the VCM to compensate a high frequency disturbance.
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Figure 5.2: Secondary path responses from inputs of VCM to the position error signal in one
HDD. Data is measured during servoign on 8 di�erent heads and at temperatures varying
from 34◦C to 48◦C .

The architecture in Fig. 5.1 let us satisfy these constraints on each of the actuators by al-
locating di�erent frequency contents to each of them based on their characteristics. This is
not possible when the control is injected to the input of CF because it will be distributed
between the two channels based on the dynamics of CF and we cannot directly determine
the contribution of each actuator. (2) The uncertainty level on the two actuators is not
the same at di�erent frequencies. The MA dynamics has high uncertainty at very low and
high frequencies, whereas the VCM dynamics at low frequency is exact, but after a few Kilo
Hertz it becomes very uncertain. The closed loop system frequency response from the MA
input and VCM input to the position error signal (PES) are shown in Fig. 4.1 and Fig. 5.2
respectively. We can take advantage of our prior knowledge about the actuators and use the
secondary path identi�cation mechanism on each actuator only at frequencies that we are
aware of large uncertainties in that particular actuator.

5.2 Modeling

This section describes our modeling methodology to construct a realistic simulation en-
vironment. The following subsections provide details regarding modeling dynamic systems
involved in Fig. 5.1, noise models and the results of di�erent case studies carried out in this
framework.
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5.2.1 Modeling Dynamic Systems

The system dynamics and disturbances in Fig. 5.1 are modeled based on an accurate
frequency response of the servo system and power spectrum of the error signal e. Frequency
response of the system from the adaptive control injection point to the position error signal
(PES) is obtained by multi�frequency Fourier transformation method and a high order LTI
transfer function is �tted to it. The frequency response from the MA input to the PES

R1(z) :=
G(z)

1 +
[
G(z) GS(z)

]
CF (z)

obtained by this type of measurements is plotted in Fig. 5.3 (blue line). The �gure also shows
the response of an LTI model that is �tted by MATLAB tfest() function to the measured
frequency response data (FRD). The tfest() settings are set such that the transfer function
coe�cients are initialized by arx method and then �ne tuning is performed by a nonlinear
least squares with automatically chosen line search method. The number of poles and zeros
are increased manually till at least 90% �tting accuracy in frequency domain is achieved.
For this particular response, a 17th order model can achieve 93% accuracy. The model's
frequency response is shown by the red line in Fig. 5.3 and the transfer function coe�cients
are given in Table B.1 in the appendix. The same procedure is used to obtain an accurate
dynamic model from the VCM input to the PES, in closed loop

R2(z) :=
GS(z)

1 +
[
G(z) GS(z)

]
CF (z)

·

The actual and model frequency responses are shown in Fig. 5.4. In this case, since the FRD
model is more complicated than the MA case, a 50th order system is required to achieve the
above requirement. Table B.2 in the appendix presents the transfer function coe�cients of
this model.
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Figure 5.3: Frequency response of the closed loop dynamics from the MA injection point to
the PES. The actual response is obtained from multi�frequency swept sine measurements
and a 17th�order LTI �model� is �t to it.
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Figure 5.4: Frequency response of the closed loop dynamics from the VCM injection point to
the PES. The �actual� response is obtained from multi�frequency swept sine measurements
and a 50th�order LTI �model� is �t to it.

5.2.2 Modeling Noise Dynamics

A long�time series of the error signal that contained approximately 100'000 measurements
of the error when no external control is applied is collected from the HDD of our experimental
setup � i.e. e(k) is measured when no adaptive control is injected to the system. Let S(z)
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be the sensitivity function on the output side

S(z) :=
1

1 +
[
G(z) GS(z)

]
CF (z)

·

Based on Fig. 5.1, the error signal is

e(k) = (S [G[wk]] + S[mk + nk])︸ ︷︷ ︸
ξk

+S[rk]︸ ︷︷ ︸
r̄k

where r̄(k) is due to the RRO and ξk is due to all other noises. Figure 5.5a shows the error
spectrum (red line) versus the frequency in terms of harmonic number. Note that the tall
bars located at harmonics correspond to the RRO. As a result, the RRO pro�le, which is in
fact the disturbance r̄(k), can be extracted from the error signal by Fourier transformation
performed at the harmonics, or equivalently by a periodic averaging in time domain which is
the approach taken here. The residue er := e− r̄ is due to the NRRO that has a spectrum as
shown in Fig. 5.5a (blue line). This signal is used in a time domain identi�cation algorithm
to obtain an AR model

er(k) =
C(q−1)

A(q−1)
w̄(k).

For this time domain �tting purpose we used an iterative search algorithm Ljung (1977a)
that minimizes a robusti�ed quadratic prediction error criterion. The cuto� value for the
robusti�cation is based on a threshold estimation option and on the estimated standard
deviation of the residuals from the initial parameter estimate. The output spectrum of this
estimated model when the input is white noise is compared with the original NRRO spectrum
in Fig. 5.5b. Moreover, the DC gain of the model is set such that the H2 norm of the model
matches the NRRO variance.

5.2.3 BPMR HDD Simulator

We use the same dynamic models and broad band noises to simulate a BPMR HDD
system because the mechanical components and environmental noises are common among
conventional and BPMR hard disk drives. However, the RRO is di�erent since it is par-
tially caused by media which is the inherent distinction between the conventional magnetic
recording and BPMR. We use the RRO data from a prototype BPMR hard disk drive that
is provided by our industry partner to create a realistic RRO pro�le for our simulations.

5.2.4 Control Design for Simulation Study

As mentioned above, the RRO pro�le is the summation of 174 sinusoidal disturbances
that are at the spindle frequency and its higher harmonics. We split the compensation of this
large number of narrow�band disturbances between the VCM and MA based on two factors:
(1) the limits of available control (in terms of voltage/current) to the two actuators (2) a
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Figure 5.5: PES spectrum versus frequency in terms of integer multiples (harmonics) of
spinning frequency. (a-red): spectrum of raw PES. (a-blue): spectrum of NRRO that is by
the de�nition the residue of PES after subtracting the RRO. (b-blue): similar to (a-blue).
(b-red): spectrum of the output of a �tted dynamic model when its input is white noise.
(All measurements are performed in closed loop.)

very rough knowledge about the amplitude of harmonics. These two pieces of information
and the frequency response of the two loops shown in Fig. 5.3 and 5.4 imply that the low
frequency contents should be allocated to the VCM and the left over should be compensated
by the MA. In our case, controller CA in Fig. 5.1 compensates the �rst 80 harmonics and the
other controller, CA,S, compensates harmonics 81 to 174. It should be remarked that these
ranges are not unique and can be modi�ed slightly. The two adaptive controllers, CA and
CA,S, are then constructed based on the algorithm given in 5.1 for m = 2 with the regressors

φ1
k :=



α1 sin (ω0kT )
...

αn1 sin (n1ω0kT )
α1 cos (ω0kT )

...
αn1 cos (n1ω0kT )


, φ1

k :=



αn1+1 sin ((n1 + 1)ω0kT )
...

αn2 sin (n2ω0kT )
αn1+1 cos ((n1 + 1)ω0kT )

...
αn2 cos (n2ω0kT )


where ω0 denotes the fundamental frequency, n1 = 80, and n2 = 174.

The minimum achievable 3σ (3 times the standard deviation) error that corresponds to
the case of perfect RRO tracking is 4.69nm in our setup. We choose the desired performance
level that is required in the step size formulation (3.17) according to this number. The value
of V d chosen here corresponds to a 3σ value of 6.22nm. Recall this means that the adaptive
controller's step size is positive as long as the error 3σ is (approximately) above this value.

5.2.5 Simulation Results

The two adaptive controllers CA and CA,S are constructed based on the previous section
and then applied to the dual�stage system shown in Fig. 5.1. The RRO pro�le considered
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at the beginning of our time simulation belongs to a �mid�diameter� track. We change this
pro�le after 100 revolutions of the disk, which is equal to approximately 0.8 seconds. The
second pro�le belongs to an �outer�diameter� track which is slightly di�erent than the �rst
pro�le.

The time�series of position error signal (PES) is shown in Fig. 5.6. The �gure shows that
the maximum amplitude of error converges in less than 0.2 seconds. After we change the RRO
pro�le (after 0.8s), the controller converges in less than 0.05 seconds. The di�erence between
these two convergence times is because of the similarity between the two pro�les. This
means that the adaptive controller requires less number of iterations to learn compensating
the second pro�le when it already knows how to compensate the �rst one. Note that this
�gure only shows the maximum amplitude of error and it is di�cult to analyze the standard
deviation behavior based on it. Instead, we use Fig. 5.7 to illustrate an �approximation� of
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Figure 5.6: Error in tracking repeatable runout (RRO). The RRO pro�le changes after
approximately 0.8 seconds.

the instantaneous 3σ value of error. More explicitly, we ran a moving average on the squared
error and calculated its square root to approximate the instantaneous standard deviation of
error. The value plotted in this �gure is 3 times this quantity. As can be seen in the �gure,
it takes approximately the same time for the 3σ value to converge.

Recall that our proposed step size formulation (3.16, 3.17, 3.18) adjusts the step size
based on an approximation of auxiliary error variance. The variable V h in (3.16) provides
a moving average on the squared auxiliary error and keeps the step size positive as long as
this value is above V d, which was de�ned as the desired variance level. Figures 5.8a and
5.8b show the 3σ values corresponding to V d and V h

k in CA and CA,S respectively. The black
dotted line in each �gure shows the desired performance 3

√
V d (i.e. in terms of 3σ) that

was chosen in the previous section. The other horizontal line (magenta dashed line) in each
�gure corresponds to the upper bound of the dead�band de�ned in (3.18). Note that the two
plots become very similar quickly. This is because the auxiliary errors of both controllers
converge to the actual error, and as a results, the two values represent roughly the same
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Figure 5.7: Approximate 3σ value of tracking error. The horizontal dashed line shows
the minimum achievable 3σ. This value is due to all other noises when RRO is perfectly
compensated.

quantity.

Time (sec.)
0 0.2 0.4 0.6 0.8 1 1.2

3p
V

h
(n

m
)

6

7

8

9

10

11

12

13

14

15

Approximate 3<-value of auxilary error

Desired performance (3<: 6.22 nm)

Dead-band upper limit (3<: 6.99 nm)

(a) Approximate 3σ of aux. error in CA

Time (sec.)
0 0.2 0.4 0.6 0.8 1 1.2

3p
V

h
(n

m
)

6

7

8

9

10

11

12

13

14

15

Approximate 3<-value of auxilary error

Desired performance (3<: 6.22 nm)

Dead-band upper limit (3<: 6.99 nm)

(b) Approximate 3σ of aux. error in CA,S

Figure 5.8: Approximate 3σ value of auxiliary error (i.e. 3
√
V h in (3.16)) that is used for

determining the step size.

Our proposed step size mechanism keeps updating the adaptive controller parameters as
long as the estimated 3σ value of error is above the dead�band. The adaptation continues
when the performance enters the dead�band from above (from an unsatisfactory state) unless
it reaches the desired value (black line). During this process, the step size is adjusted based
on the distance between the current and desired performance. This behavior can be seen
in Fig. 5.9 and 5.10 which respectively show the step size in CA and CA,S. The �gures
show that the step size decreases as the estimates approach the actual parameters. This
is a desirable behavior in a stochastic environment because the contaminating noises make
the estimates �uctuate around the actual parameters. The amplitude of these �uctuations
depends on the adaptive algorithm step size and a small step size provides a better estimate.
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From comparing these two �gures with Fig. 5.7 it can be seen that the large step size in the
beginning brings the estimates close to the actual parameters quickly, and then, the step size
adjusts to this new condition and starts �ne tunning the parameters. Finally, the adaptation
stops, meaning that the step size becomes zero, when the desired performance is achieved.
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Figure 5.9: Variable Step size (µk in (3.18)) in the parameter adaptation algorithm of CA.
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Figure 5.10: Variable step size (µk in (3.18)) in the parameter adaptation algorithm of CA,S.

Since the system is stochastic, the approximate 3σ value of error is not exactly equal to
the desired value even after convergence. This can be seen in Fig. 5.8, where 3

√
V h �uctuates

around 3
√
V d. However, the dead�band we considered in the variable step size scheme adds

a hysteresis behavior that avoids the step size to chatter in this case. Nevertheless, the
algorithm is still self�tunning, meaning that it starts the adaptation again whenever the
disturbance changes. This can be seen in both �gures (5.9) and (5.10) because both step
sizes automatically become positive when we change the RRO pro�le (after 0.8 seconds).
Moreover, it can be observed in the evolution of estimates that is shown in Fig. 5.11 for



5.2. MODELING 72

CA, and in Fig. 5.12 for CA,S. The �gures illustrate that the estimates take o� from zero
initial values and approach the convergence values quickly. However, as they get closer the
adaptation becomes slower to provide more precise estimates.
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Figure 5.11: Evolution of parameters estimated by CA. There are 160 parameters in the
�gure that correspond to the amplitudes of sine and cosine functions at harmonics 1 to 80.

In order to verify whether the convergence values are close to the actual parameters
or not, the error spectrum before and after plugging the adaptive controller is shown in
Fig. 5.13. Very small left over can be observed in the plot. This is because we chose �our
desired� performance, V d, slightly larger than the baseline error variance.
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�gure that correspond to the amplitudes of sine and cosine functions at harmonics 81 to 174.
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5.3 Implementation Results

The proposed control and modeling algorithms are tested on a conventional 3.5′′ HDD
to validate the presented analytical and simulation results. Since the controller sampling
frequency (41.760KHz) is relatively large compared to the clock rate of our digital signal
processor (435MHz), it is not practical to estimate all 348 parameters concurrently. However,
thanks to the modular design of our adaptive control scheme, and the scheduling parameters
γi introduced in 3.3.4, we are able to easily split the computation by constructing multiple
nonconcurrent adaptive controller modules and plugging them to the closed loop system.
We use three modules, denoted by CA, CA,S,1 and CA,S,2, and plug the �rst one to the VCM
input and the other two to the MA input � i.e. CA,S,1 and CA,S,2 are plugged in the same
way as CA,S in Fig. 5.1.

The 174 frequency contents of RRO are split between these three modules as follows. The
�low frequency� contents, which include harmonics 1 to 55, are allocated to CA since, as we
mentioned in the simulation study, the closed loop system from the VCM input to the PES
has a larger gain and smaller uncertainty. Note that the interval we call �low�frequency�
includes contents up to 6.6KHz which is considered as a �high� frequency in related work.
The �mid frequency� harmonics, including harmonics 56 to 115, are designated to CA,S,1 and
the remaining harmonics, namely 116 to 174, are left to CA,S,2. The scheduling parameters in
these modules are set such that compensation starts with CA,S,1 and continues for at most 30
revolutions of the disk (0.25 sec). It is followed by running CA,S,2 for at most 50 revolutions
(0.4167 sec) and, subsequently, CA for another 50 revolutions. These speci�cations are listed
in Table 5.1.

Recall that the proposed adaptive control algorithm requires a dynamic model from the
control injection point to the error signal such that its phase at compensation frequencies
does not deviate more than 90 degrees (in absolute value) from the phase of actual system
(c.f. criterion (4.4)). We use the online secondary path modeling scheme proposed in chapter
4.2 to attain two types of dynamic models, namely from the VCM and from the MA inputs
to the PES. As for the dynamic model from the VCM input to the PES, the exogenous
excitation signal proposed in section 4.3 in accordance with the use of band�pass �lters
suggested in section 4.4 result in an identi�cation process that is focused at harmonics 1
to 55 � i.e. the same range as the compensation. We use a 4th order adaptive IIR transfer

Table 5.1: Adaptive controller modules and frequency partitions considered in DSP imple-
mentation.

Controller
name

Injection
point

Compensation
harmonics

Number of
parameters

Active
time

CA VCM 1 � 55 110 0.67�1.08 sec
CA,S,1 MA 56 � 115 120 0.00�0.25 sec
CA,S,2 MA 116 � 174 118 0.25�0.67 sec
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function with relative degree 1. The model identi�ed after 200 revolutions of the disk (1.67
seconds) is compared to the actual system dynamics � which is measured by an accurate
swept sine method � in Fig. 5.14 (left). The maximum absolute phase mismatch between the
model and actual system during the evolution of model parameters is illustrated in the same
�gure (left). The left plot shows how e�ectively the special excitation signal and band�pass
�lter could focus the identi�cation process in the desired region, and the right plot illustrates
that the convergence criterion (4.4) is satis�ed after approximately 1.1 seconds.
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Figure 5.14: Left: Frequency response of the identi�ed model (red) and the actual closed loop
dynamics (blue) from VCM input to the PES. Excitation energy is focused to the shaded
area (harmonics 1 to 55). Right: Maximum absolute phase mismatch (in degrees) between
the model and actual dynamics only in the identi�cation frequency range (shaded area in
the left plot). Values below the 90-degree horizontal line result in a converging adaptive
controller.

The same secondary path modeling scheme is applied to attain a model from the MA
input to the PES. However, it can be seen from Fig. 5.4 that due to the sharp phase shift
around 14.5KHz, a high order model is required to satisfy the phase matching criterion (4.4).
The modularity of our control design let us use two simple low order models rather than one
high order system. Accordingly, we separate harmonics 120 to 124 � that are located around
the sharp phase change � and designate one identi�cation module to them, and allocate
the remaining harmonics from 56 to 174 to another identi�cation module. It is shown in
Fig. 5.15 and 5.16 that both modules were able to identify the system within a 90�degree
phase mismatch window at target frequency ranges.

The identi�ed models are then integrated with the three adaptive control modules listed
in Table 5.1. The feedforward control pro�le is constructed by superposing the control
sequences generated by these controllers. In particular, we store the periodic control signal
generated by the �rst controller and use it as a feedforward control during executing the
second one. Similarly, the superposition of the �rst and second control sequences are used
as a feedforward control when the third controller is learning to compensate its speci�ed
frequency range. Note that, in principle, the order of applying these controllers should be
unimportant if the system is linear time�invariant. However, our experiments showed that
due to system dynamics non�linearities the best results can be achieved by prioritizing the
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modules according to the aforementioned order.
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Figure 5.15: Left: Frequency response of the identi�ed model (red) and the actual closed loop
dynamics (blue) from MA input to the PES. Identi�cation is performed only at the shaded
area (harmonics 56 to 120, and 124 to 173). Right: Maximum absolute phase mismatch (in
degrees) between the model and actual dynamics only in the identi�cation frequency range
(shaded area in the left plot).
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Figure 5.16: Left: Frequency response of the identi�ed model (red) and the actual closed
loop dynamics (blue) from MA input to the PES. Identi�cation is performed only at the
shaded area (harmonics 120 to 124). Right: Maximum absolute phase mismatch (in degrees)
between the model and actual dynamics only in the identi�cation frequency range (shaded
area in the left plot).

The evolution of estimated parameters is shown in Fig. 5.17. The vertical dashed lines
split the time to three intervals in which (from left to right) the three modules compensate
�mid�, �high� and �low� frequency harmonics according to Table 5.1. As can be seen from the
�gure, all parameters converge in the designated interval. Similar to the simulation study,
we check the closeness of convergence values to the actual parameters by looking at the
spectrum of tracking error which is plotted in Fig. 5.18. It can be seen from comparing this
�gure with the results illustrated in Fig. 5.13 that the experiments and simulations are in
very close agreement.
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Figure 5.17: Evolution of 348 parameters estimated by three adaptive control modules im-
plemented on a DSP and plugged to a 3.5� HDD.
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Figure 5.18: Tracking error spectrum before and after plugging the adaptive controllers to
the dual�stage HDD (DSP implementation).

In this experiment, the 3σ value of position error signal before and after plugging the
adaptive controllers to the system were 6.00 nm and 5.09 nm respectively. This implies that
the adaptive controllers were able to improve the performance in terms of the total 3σ by
18%. Our analysis shows that the portion of 3σ due to non�repeatable runout (broad�band
noises) is 4.89 nm. Therefore, the RRO contribution before and after using the controllers
is 1.11 nm and 0.20 nm, which implies that the controllers were able to reduce the RRO by
82%.
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5.3.1 Regressor Implementation

One of the key challenges in implementing the proposed adaptive controller on an em-
bedded system is evaluating multitude sinusoidal and cosinusoidal functions that are used
in the regressor vectors φk and ψ̄k. For instance, since the RRO pro�le is consisted of 174
sinusoids, it is required to evaluate 696 trigonometric functions which can be a very compu-
tationally intensive task. In this subsection we show when the narrow�band disturbances are
all higher harmonics of one fundamental frequency, which is the case for RRO tracking, the
computation can be e�ectively decreased by a simple method that is proposed below. The
key idea is that a sinusoid at the fundamental frequency is sampled and stored as a reference
table in the memory and then all higher harmonics and cosine values with arbitrary phase
lags are generated from this reference.

Let N be the period of a discrete sequence obtained by sampling (every T seconds) a
sinusoid running at fundamental frequency ω0. In an HDD, N is equal to the number of
samples obtained in each revolution of the disk since the fundamental frequency is equal to
the disk spinning frequency. Suppose x ∈ <N is an array (e.g. a bu�er in the DSP) such
that

x :=
[
x0 x1 · · · xN

]
xj = sin (ω0jT ) .

A sinusoidal at the ith harmonic of fundamental frequency with an initial phase advance
δi can be approximated by

sin(ωikT + δi) ≈ xpi(k)

where

pi(0) = b δi
ω0T
c

pi(k + 1) =

{
pi(k) + i if pi(k) + i < N
pi(k) + i−N otherwise ·

This means that evaluating a higher harmonic with an arbitrary phase shift is equivalent
to evaluating the above simple recursive expressions to �nd the corresponding index that
should be read o� from the reference array x. Hence, a trigonometric function evaluation
becomes a process that requires one �summation� and one �logical� evaluation. A corollary
of this result is that any cosinusoidal can be approximated by cos(ωikT + δi) ≈ xpi(k) where
the initial pi is now pi(0) = b δi+π/2

ω0T
c.

The proof of this results is very straightforward. We have

sin (ωikT + δi) = sin (iω0kT + δi)

= sin

([
ik + b δi

ω0T
c
]
ω0T + εi

)
≈ sin

([
ik + b δi

ω0T
c
]
ω0T

) (5.3)
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where εi = δi − b δi
ω0T
cω0T and the approximation is accurate if εi is small. The expression

for εi implies that 0 ≤ εi ≤ 1
ω0T

. As a result, the accuracy of above approximation depends
on 1/(ω0T ). In our particular case, ω0 is equal to 2π

NT
which implies that 0 ≤ εi ≤ 2π

N
= 1.03◦

since N = 348. This means that the above approximation results in a sinusoid that at most
has 1.03◦ phase mismatch. Note that this error is far below 90 degrees phase mismatch that
our proposed control algorithm can tolerate. Since N is one period of the discrete sequence,
we have

sin

([
ik + b δi

ω0T
c
]
ω0T

)
= sin

(
mod

{[
ik + b δi

ω0T
c
]
, N

}
ω0T

)
where mod(.,.) denotes the modulo operator. One can show that

pi(k) = mod
{[

ik + b δi
ω0T
c
]
, N

}
and accordingly

sin (ωikT + δi) ≈ sin (pi(k)ω0T ) = xpi(k).
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Chapter 6

Direct Adaptive Control for Rejecting

Multiple Sinusoidal Disturbances

6.1 Introduction

In this section we introduce a new direct adaptive control for rejecting multiple sinusoidal
signals with known frequencies. We denote this method as a �direct� algorithm since the
control parameters are directly updated by the parameter adaptation algorithm and a �con-
trol design� block that commonly exists in indirect methods is avoided. The key distinction
between this algorithm and the methods elaborated in the previous sections is that the plant
parameters estimation and control synthesis are not performed by two completely separate
mechanisms. The advantages of this method over the proposed indirect adaptive control are
(1) In the indirect adaptive control, a special monitoring mechanism is required to assure
that the model provided by the system identi�cation mechanism satis�es the convergence
criterion of the adaptive compensator. The direct adaptive control proposed in this section
integrates both parts and, as a result, does not rely on such a mechanism. (2) The proposed
direct method can be applied to slowly time�varying systems because the system dynamics is
identi�ed simultaneously with the adaptive control law. This method uses an adaptive gain
for the excitation signal that makes the algorithm self�tuning when the system dynamics is
changing slowly, or when it has abrupt but infrequent variations. In order to make the indi-
rect adaptive controller applicable to this type of environments, we either need to constantly
excite the system or use a monitoring mechanism that activates the system identi�cation
part whenever the system dynamics varies.

The proposed method is based on inversion of the plant transfer function numerator
frequency response evaluated at compensation frequencies. Since this inversion is carried
out in frequency domain, the method is applicable to both minimum and non�minimum
phase systems. The plant dynamics is considered as a parametric model, which reduces the
number of estimated parameters considerably when the number of frequencies, n, is large.
The key idea in this approach is that when the control injection point and measurement
point are distinct, the error signal � e.g. the PES � contains information about both the
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system dynamics and the disturbances. It can be shown that the error signal is a nonlinear
� in fact bilinear � function of the two sets of parameters. Under some mild assumptions
and proper use of signal �ltering we will show, by theoretical analysis and experiments, how
standard linear adaptive control and identi�cation can be combined to deal with this type
of bilinear system of equations.

The main contributions of our proposed algorithm can be summarized as follows.

• The number of adapted parameters in this method is signi�cantly less than the state-
of-the-art when the number of narrow�band contents is large. For instance, the number
of parameters in Chandrasekar et al. (2006) and Pigg and Bodson (2006), Pigg and
Bodson (2010) is 4n, where n is the number of frequencies. The proposed method
estimates only 2n + 2nA parameters where nA is the order of an IIR model for the
plant. An important note to make is that n ≥ nA always and in many practical
applications n� nA.

• The algorithm does not need collecting and processing batches of data as apposed to
prior work (e.g. Chandrasekar et al. (2006)).

• The broad�band noise model is explicitly considered in the algorithm and its parame-
ters are identi�ed.

• The algorithm is developed completely in discrete time domain and its convergence with
probability one to actual parameters is proven using Ljung's method Ljung (1977a) for
the analysis of recursive algorithms.

• The e�ectiveness of the algorithm is demonstrated by comprehensive simulation and
experiments on an HDD servo system (through DSP implementation of the algorithm)
that is subjected to 173 sinusoidal disturbances. Moreover, the performance in situa-
tions of abrupt and gradual time varying disturbance and plant dynamics is tested.

Notation: In the previous chapters we used the notation xk to represent variable (se-
quence) x at time step k. Since many of the variables that are used in this chapter need
a superscript and subscript index, we present time step k as an argument inside a pair of
parenthesis. For instance, instead of φk and θ̂k we will be using φ(k), θ̂(k), etc.

6.2 Mathematical Preliminaries

In the sequel we use a slightly di�erent realization of the block diagram shown in Fig. 1.2.
Suppose that the closed loop dynamics is realized by R(q−1) = B(q−1)

A(q−1)
and the disturbances

are represented by ξ(k) = C(q−1)
A(q−1)

w̄(k) and r̄(k) = B(q−1)
A(q−1)

d̄(k). Using this new notation, the
error signal in discrete time domain can be represented as a function of the closed loop
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dynamics, input signals and disturbances

e(k) =
B(q−1)

A(q−1)
(u(k) + uA(k)) +

C(q−1)

A(q−1)
w̄(k) + r̄(k) (6.1)

where u(k) is an exogenous excitation signal and w̄(k) is an unmeasurable wide-sense s-
tationary sequence of independent random vectors with �nite moments. We assume that
the nominal feedback controller is able to stabilize the open loop plant, which implies that
A(q−1) is exponentially stable, i.e. A(p) has all roots (strictly) outside the unit circle.

Similarly to the previous chapters, let ωi for i = 1, · · · , n denote the frequency of sinu-
soidal components in r̄, and assume that the disturbance signal can be factorized as

r̄(k) = θTR̄φR(k) (6.2)

where

θTR̄ :=
[
ᾱ1, β̄1, . . . , ᾱn, β̄n

]
φTR(k) :=

[
sin(ω1kT ), cos(ω1kT ), . . . , sin(ωnkT ), cos(ωnkT )

]
(6.3)

The following lemma will be used for steady state analysis.

Lemma 3
Consider r̄(k) as a general periodic signal and L(q−1) as a discrete-time linear system. The
steady state response r̃(k) := L(q−1)[r̄(k)] is periodic. Moreover, when r̄(k) is a linear
combination of sinusoidal signals factorized similarly to (6.2), r̃(k) (in steady state) consists
of sinusoidals with the same frequencies

r̃(k) = L(q−1)
[
θTR̄φR(k)

]
= θTR̄L(q−1) [φR(k)]

= θTR̄φRL(k)

where

φTRL(k) := [mL1 sin(ω1kT + δL1),mL1 cos(ω1kT + δL1), . . .

mLn sin(ωnkT + δLn),mLn cos(ωnkT + δLn)] . (6.4)

Here, mLi and δLi are the magnitude and phase of L(e−jωi). Since[
mLi sin(ωikT + δLi)
mLi cos(ωikT + δLi)

]
=

[
mLi cos(δLi) mLi sin(δLi)
−mLi sin(δLi) mLi cos(δLi)

]
︸ ︷︷ ︸

DLi

[
sin(ωikT )
cos(ωikT )

]
(6.5)
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φR(k) can be transformed to φRL(k) by a linear transformation

φRL(k) =


DL1 0 · · · 0

0 DL2 · · · 0
...

...
. . .

...
0 0 · · · DLn


︸ ︷︷ ︸

DL

φR(k). (6.6)

Moreover, we can apply the transformation to the response coe�cients rather than the sinu-
soid vector

r̃(k) =
(
DT
LθR̄

)T
φR

Proof

Refer to Kamen and Heck (2000) for a general formula for the steady-state sinusoidal re-
sponse of a linear time-invariant system. �

6.3 Proposed Direct Adaptive Control

Although a real dynamic system cannot be exactly described by �nite order polynomials
in (6.7), in most of applications A, B and C can be determined such that they give a �nite
vector di�erence equation that describes the recorded data as well as possible, i.e.

A(q−1) : = 1 + a1q
−1 + a2q

−2 + · · ·+ anAq
−nA

B(q−1) : = b1q
−1 + b2q

−2 + · · ·+ bnBq
−nB

C(q−1) : = 1 + c1q
−1 + c2q

−2 + · · ·+ cnCq
−nC ·

Without loss of generality, we assume that nA = nC and the relative degree of the primary
path transfer function is 1 which implies that nA = nB. Let A∗(q−1) := 1−A(q−1), then the
error is given by

e(k) = A∗(q−1)e(k) +B(q−1) (u(k) + uA(k)) + C(q−1)w̄(k) + A(q−1)r̄(k) (6.7)

This equation can be represented purely in discrete time domain in a vector form

e(k) = θTAφe(k) + θTB (φu(k) + φuA(k)) + θTCφw̄(k) + r̃(k) + w̄(k) (6.8)

where
θTA : =

[
−a1, −a2, · · · , −anA

]
θTB : =

[
b1, b2, · · · , bnA

]
θTC : =

[
c1, c2, · · · , cnA

]
φTe (k) : =

[
e(k − 1), e(k − 2), · · · , e(k − nA)

]
φTu (k) : =

[
u(k − 1), u(k − 2), · · · , u(k − nA)

]
φTuA(k) : =

[
uA(k − 1), uA(k − 2), · · · , uA(k − nA)

]
φTw̄(k) : =

[
w̄(k − 1), w̄(k − 2), · · · , w̄(k − nA)

]
.

(6.9)
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and r̃(k) := A(q−1)r̄(k). Note that two regressors, respectively denoted by φu(k) and φuA(k),
are considered for the excitation signal u(k) and the adaptive control uA(k) separately, in
spite of the fact that they could be combined into a single regressor. The rationale behind
this consideration will be explained later after (6.17). Since disturbance r̄(k) is periodic and
A(q−1) is a stable �lter � i.e. it operates as an FIR �lter � the response r̃(k) is also periodic
by Lemma 3.

r̃(k) = A(q−1)
[
θTR̄φR(k)

]
= θTR̄A(q−1) [φR(k)]

= θTR̄φRA(k)

where

φRA(k) =


DA1 0 · · · 0

0 DA2 · · · 0
...

... . . . ...
0 0 · · · DAn


︸ ︷︷ ︸

DA

φR(k). (6.10)

Accordingly, r̃(k) can be represented using the same regressor vector, φR(k)

r̃(k) = θTR̄φRA(k)

= θTR̄DA︸ ︷︷ ︸
θTR

φR(k)

= θTRφR(k).

Substituting this expression in (6.8) yields

e(k) = θTAφe(k) + θTB (φu(k) + φuA(k)) + θTCφw̄(k) + θTRφR(k) + w̄(k). (6.11)

Equation (6.7) shows that an ideal control signal u∗A(k) should satisfy

B(q−1)u∗A(k) + A(q−1)r̄(k) = 0. (6.12)

Again, since B(q−1) and A(q−1) are both LTI systems and r̄(k) contains only sinusoidal
signals, the ideal control signal u∗A(k) has to have sinusoidal contents at the same frequencies.
This motivates us to decompose the ideal control signal into

u∗A(k) = θTDφR(k).

By this representation of the control signal, our goal will be to estimate θD in an adaptive
manner. We de�ne the actual control signal as

uA(k) = θ̂TD(k)φR(k) (6.13)
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where θ̂D(k) is the vector of estimated parameters that should ideally converge to θD. As a
result, the residual in (6.12) when θD is replaced by θ̂D is

B(q−1)uA(k) + A(q−1)r̄(k) = B(q−1)
(
θ̂TD(k)φR(k)

)
+ θTRφR(k). (6.14)

The following lemma, known as the swapping lemma, can be used to simplify this equation
further.
Lemma 4 (Discrete time swapping lemma)
Let a stable and proper rational transfer function H(z) have a minimal realization H(z) =

CT (zI − A)−1B +D and θ(k) and φ(k) be two vector signals. Then,

H(z)
[
θ(k)Tφ(k)

]
= θT (k) {H(z) [φ(k)]}+ w(k)

where

w(k) :=−HC(z)
[
{HB(z)z [φ(k)]}T {(z − 1) [θ(k)]}

]
HC(z) : = CT (zI − A)−1

HB(z) : = (zI − A)−1B

Proof

Refer to the discrete�time swapping lemma in Tao (2003). �

We de�ne a new parameter vector

θTM(k) := θ̂TD(k)DB + θTR (6.15)

where DB is a matrix similar to DA in (6.6), but its block diagonal terms are formed by the
magnitude and phase of B (e−jωi) rather than A(e−jωi). The vector θM(k) corresponds to
the imperfection in control synthesis. Accordingly, it is called the residual parameters vector
throughout this section. By substituting the result of Lemma 4 in (6.14) we have

B(q−1)uA(k) + A(q−1)r̄(k) = θ̂TD(k)
(
B(q−1)φR(k)

)
+ θTRφR(k) + wt(k)

= θ̂TD(k)DBφR(k) + θTRφR(k) + wt(k)

=
(
θ̂TD(k)DB + θTR

)
φR(k) + wt(k)

= θTM(k)φR(k) + wt(k) (6.16)

where the term θTM(k)φR(k) corresponds to the residual error at the compensation frequen-
cies. The term wt(k) represents the transient excitation caused by the variation of θ̂D(k)
over time and its expression is given by the swapping lemma. As a result, the term

θTBφuA(k) + θTRφR(k)

in (6.11) can be replaced by (6.16)

e(k) = θTAφe(k) + θTBφu(k) + θTCφw̄(k) + θTM(k)φR(k) + wt(k) + w̄(k). (6.17)
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Remark 1
The reason behind choosing two separate regressors for u(k) and uA(k), as remarked earlier,
is that the recent substitution in the above equation is not feasible if the two regressors were
combined into a single regressor.

6.3.1 Parameter Adaptation Algorithm

The error dynamics shows that the information obtained from measurements cannot
be directly used to estimate θ̂D as long as the closed loop system and noise dynamics are
unknown. We propose an adaptive algorithm in this section that accomplishes the estimation
of the closed loop system and noise dynamics in conjunction with the control synthesis.

Let θ̂A, θ̂B, θ̂C and θ̂M be the estimated parameters analogous to (6.17). We denote the
a�priori estimate of the error signal at time k based on the estimates at k − 1 as ŷ◦(k) and
de�ne it as

ŷ◦(k) = θ̂TA(k − 1)φe(k) + θ̂TB(k − 1)φu(k) + θ̂TC(k − 1)φε(k) + θ̂TM(k − 1)φR(k) (6.18)

Similarly, we de�ne the a�posteriori estimate of the error signal at time k based on the
estimates at k

ŷ(k) = θ̂TA(k)φe(k) + θ̂TB(k)φu(k) + θ̂TC(k)φε(k) + θ̂TM(k)φR(k)

and accordingly, the a�priori and a�posteriori estimation errors are de�ned as

ε◦(k) : = e(k)− ŷ◦(k)

ε(k) : = e(k)− ŷ(k)
(6.19)

The regressor vector φε in (6.18) contains the past values of the a�posteriori error

φTε (k) : =
[
ε(k − 1), ε(k − 2), . . . , ε(k − nA)

]
. (6.20)

Assume that the estimates at time k = 0 are initialized by either zero or some �good� values
when prior knowledge about the system dynamics or disturbance is available. We propose
the following adaptation algorithm for updating the estimated parameters

θ̂A(k)

θ̂B(k)

θ̂C(k)

θ̂M(k)

 =


θ̂A(k − 1)

θ̂B(k − 1)

θ̂C(k − 1)

θ̂M(k − 1)

+

[
γ1(k)F−1(k) 0

0 γ2(k)f−1(k)I

]
φe(k)
φu(k)
φε(k)
φR(k)

 ε(k). (6.21)

F (k) is a positive (semi)de�nite matrix with proper dimensions and f(k) is a positive scalar.
These gains, which are usually known as learning factor or step size, can be updated via
either recursive least squares algorithms, least mean squares type methods or a combination
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of them. We use recursive least squares for the plant and noise dynamics parameters since
the number of coe�cients is usually �small�. On the other hand, for large n the recursive
least squares algorithm requires major computations. Therefore, it is of interest to reduce
the computations, possibly at the price of slower convergence, by replacing the recursive least
squares update law by the stochastic gradient method. It is well known that the step size
of adaptive algorithms in stochastic environments should converge to zero or to very small
values to avoid the �excess error� caused by parameter variations due to noises. Therefore,
we consider positive real value decreasing scalar sequences γ1(k) and γ2(k) conjointly with
the step sizes. More explicitly, the update rules for F and f are

F (k) = F (k − 1) + γ1(k)


φe(k)
φu(k)
φε(k)

φe(k)
φu(k)
φε(k)

T − F (k − 1)


f(k) = f(k − 1) + γ2(k)

(
φTR(k)φR(k)− f(k − 1)

)
.

Remark 2
φu(k) should be persistently exciting of order 2nA in order to guarantee that F (k) is non�
singular and (6.21) is not susceptible to numerical problems. A possible choice of excitation
signal that satis�es this condition when n ≥ nA/2 is the exogenous excitation signal proposed
in 4.3. It is clear that f(k) is not susceptible to this issue since φTR(k)φR(k) is always strictly
positive.

Remark 3
The update rule (6.21) is not suitable for implementation since the estimates at time k
depends on ε(k) and on the other hand based on (6.19) ε(k) depends on the estimates at step
k. However, since the update rule is known, the a�posteriori estimation error can be related
to the a�priori error which relies only on the estimates at k − 1. The parameter adaptation
algorithms that follows this causality is given in (6.22).

ε(k) : = e(k)− ŷ(k)

= ε◦(k)− (ŷ(k)− ŷ◦(k))

= ε◦(k)−



φe(k)
φu(k)
φε(k)
φR(k)


T [

γ1(k)F−1(k) 0
0 γ2(k)f−1(k)I

]
φe(k)
φu(k)
φε(k)
φR(k)


 ε(k)⇒

ε(k) =
ε◦(k)

1 +


φe(k)
φu(k)
φε(k)
φR(k)


T [

γ1(k)F−1(k) 0
0 γ2(k)f−1(k)I

]
φe(k)
φu(k)
φε(k)
φR(k)



(6.22)
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Suppose that the parameter vector θM(k) and response matrix DB are known at time
step k. Then, a possible update rule that satis�es (6.12) would be

0 = θ̂TD(k + 1)DB + θTR

= θ̂TD(k + 1)DB + θTM(k)− θ̂TD(k)DB ⇒
θ̂TD(k + 1) = θ̂TD(k)− θTM(k)D−1

B .

(6.23)

Here, we have used the fact that DB is a block diagonal combination of scaled rotation
matrices, which implies that it is full rank and invertible. This is an infeasible update
rule since neither θM(k), nor DB is known. We replace these variables by their respective
estimated values and use a small step size α in order to avoid large transient and excess error

θ̂TD(k + 1) = θ̂TD(k)− αθ̂TM(k)D̂−1
B (k).

Note that this update rule works as a �rst order system that has a pole at 1. In order to
robustify this di�erence equation we alternatively propose using a Ridge solution for (6.23).
More formally, we are interested in minimizing the instantaneous cost function

Jc(k) :=
1

2
‖θ̂TD(k) + θTRD

−1
B ‖

2
2 +

1

2
λ‖θ̂TD(k)‖2

2

where λ is a (positive) weight for the penalization term. We use a gradient descent algorithm
to recursively update θ̂D. Let β = 1 − αλ and the gradient of Jc(k) with respect to θ̂TD(k)
be denoted by

∂Jc(k)

∂θ̂TD(k)
=
(
θ̂TD(k) + θTM(k)D−1

B − θ̂
T
D(k)

)
+ λθ̂TD(k).

Since the actual values of θM and DB are unknown, we use the estimates and de�ne the
gradient descent update rule for θ̂D as

θ̂TD(k + 1) = θ̂TD(k)− α ∂Jc(k)

∂θ̂TD(k)

= βθ̂TD(k)− αθ̂TM(k)D̂−1
B (k). (6.24)

This expression yields that a positive value of β that is less than 1 results in a bounded value
of θ̂D in steady state as long as θ̂TMD̂

−1
B stays bounded. Moreover, assuming that θ̂M and D̂B

converge to the actual θM and DB � which will be proved later � the steady state residue is

lim
k→∞

θM(k) = DT
B lim
k→∞

θ̂D(k) + θR

=
−α

1− β
lim
k→∞

θM(k) + θR

=
1− β

1− β + α
θR.
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This expression shows that there is a compromise between the steady state attenuation level
and robustness, and in order to achieve both, the two gains should be chosen such that

0 < α� β < 1.

Now that we have an update law for θ̂D(k), we have a complete algorithm for synthesizing
the control signal (repeated from (6.13))

uA(k) = θ̂TD(k)φR(k).

Theorem 5
The residual error θM converges to 1−β

1−β+α
θR with probability 1, the only equilibrium point

of the closed loop system is stable in the sense of Lyapunov and it corresponds to θ̂A = θA,
θ̂B = θB, θ̂C = θC and θ̂M = 1−β

1−β+α
θR if the following conditions are satis�ed:

1. u(k) is persistently exciting of at least order 2nA.

2.
∞∑
k=1

γ(k) =∞ and γ(k)→ 0 as k →∞.

3. The estimated θ̂A(k) belongs to

DA :=

{
θ̂A : 1 + â1q + · · ·+ ânAq

nA = 0⇒ |q| > 1

}
.

in�nitely often with probability one.

4. The estimated θ̂B(k) always belongs to

DB : =

{
θ̂B : 0 < |b̂1e

−jωh + · · ·+ b̂nAe
−jnAωh| < α

1− β
|b1e

−jωh + · · ·+ bnAe
−jnAωh |

}
for all h ∈ {1, . . . , n}.

5. 1
C(q−1)

is strictly positive real (SPR).

6. Real
(
B(e−jωh )/B̂k(e−jωh )

C(e−jωh )

)
> 0 for all h ∈ {1, . . . , n} in�nitely often with probability one.

Proof

Only the sketch of proof is provided here and the details are left to the appendix. We use the
method of analysis of stochastic recursive algorithms developed by Ljung (1977a) to study
the convergence and asymptotic behavior of the proposed adaptive algorithm with update and
control rules given in (6.21), (6.24) and (6.13). First, the parameter adaptation is outlined
as an expression of the from

Θ̂(k) = Θ̂(k − 1) + γ(k)Q(k; Θ̂(k − 1),Φ(k))
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where Θ̂(k) is a sequence of column vectors that represents all adaptive parameters, and Φ(k)
is a column vector that contains the known and unknown regressors. Then, the dynamics of
regressor is formalized as a time�varying linear system

Φ(k) = AΦ(Θ̂k−1)Φ(k − 1) +BΦ(Θ̂k−1)U(k).

These two sets of equations present the closed loop dynamics. The key idea is that a di�er-
ential equation counterpart for this closed loop system can be de�ned under some regularity
conditions. Three sets of regularity conditions are proposed in Ljung (1977a) that target the
analysis of deterministic and stationary stochastic processes. The problem under our study
cannot be exactly outlined in these frameworks since the input signal consists of stochastic
and deterministic parts and as a matter of fact it is a cyclostationary stochastic process.
However, �Assumptions C� in Ljung (1977a) are adopted and generalized to this case with
very minor modi�cations. In the appendix we show that these regularity conditions are sat-
is�ed when the assumptions of theorem 5 hold true. This implies that the only convergence
point of the system is the stable equilibrium of the di�erential equation counterpart. This
equilibrium point corresponds to the actual values of plant and noise parameters. It will be
shown that the estimated parameters will converge with probability one to this equilibrium
point which results in θM = 1−β

1−β+α
θR. �

Remark 4
Assumption 2 can be satis�ed by a broad range of gain sequences γ(k). For instance, both

regularity conditions hold for γ(k) = C
kα

when 0 < C <∞ and 0 < α ≤ 1.

Remark 5
Assumption 3 requires monitoring the poles of Â(q−1) polynomial. This is a common issue
in adaptive control and several methods have been proposed. For instance, the estimates
can be projected to the interior of DA whenever the poles fall out of (or on) the unit circle.
Assumption 4 requires monitoring the magnitude of polynomial B(e−jωh) for all compensation
frequencies. The left inequality guarantees that D̂B is always invertible. The right inequality
requires some very rough knowledge about the plant magnitude because the term α/(1 − β)
is large. Both inequalities can be satis�ed by projecting the estimates into the interior of DB

whenever they do not belong to DB.

Assumption 5 depends on the noise dynamics and may not hold true in some applications.
In this case, the update rule (6.21) can be modi�ed by using an estimate of C(q−1), say
C̄(q−1). De�ne a new sequence εc as

εc(k) = C̄(q−1) [ε(k)] .

The new update rule is
θ̂A(k)

θ̂B(k)

θ̂C(k)

θ̂M(k)

 =


θ̂A(k − 1)

θ̂B(k − 1)

θ̂C(k − 1)

θ̂M(k − 1)


[
γ1(k)F−1(k) 0

0 γ2(k)f−1(k)I

]
φe(k)
φu(k)
φε(k)
φR(k)

 εc(k). (6.25)
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Theorem 6
The results of theorem 5 hold true when (6.21) is replaced with (6.25) and assumptions 5
and 6 are substituted by the following two assumptions

7. C̄(q−1)
C(q−1)

is strictly positive real.

8. Real
(
Bi(e−jωh )/B̂ik(e−jωh )

C(e−jωh )/C̄(e−jωh )

)
> 0 for all i ∈ {1, . . . , ni} and h ∈ {1, . . . , n} in�nitely often

with probability one.

Proof

Refer to the appendix. �

Assumption 6 (or assumption 8 when (6.25) is used) is in general di�cult to verify since
the B(.) polynomial is unknown. However, based on theorem 5 the equilibrium point of the
closed loop system satis�es this assumption when assumption 6 (assumption 8) is satis�ed.
It is shown in the proof that one of the parameters that determine the domain of attraction
of the equilibrium point is the excitation sequence u(k) intensity. In the sequel we propose a
practical consideration to enlarge the domain of attraction by a frequency�shaped excitation
sequence with an adaptive gain.

6.3.2 Excitation Signal Gain

Earlier, in section 4.3, we proposed a special exogenous excitation signal that is specif-
ically tailored for the problem under our study. We propose a variable gain αu(k) for this
excitation (see (4.13) for its de�nition) that adjusts itself based on the error residual. More
explicitly, this gain is based on the norm of θ̂M(k) because this vector is an estimate of the
residual error. The residuals are large at the beginning and more excitation is bene�cial to
decrease model inaccuracy quickly. On the other hand, as the algorithm converges, θ̂M con-
verges towards zero and the portion of error caused by the excitation signal is desired to be
as small as possible. We propose a variable excitation gain based on exponential smoothing
of the residual norm

αu(k) = (1− βu)αu(k − 1) + αdcβu‖θ̂M(k)‖2. (6.26)

Here, 0 < βu ≤ 1 and αdc are design parameters that determine the bandwidth and DC gain
of the above �rst order system.

Theorem 7
Suppose that (6.24), (6.25) and (6.13) are used to de�ne the adaptive controller, and (4.13)
and (6.26) are deployed to structure the excitation signal. By choosing αdc > 0 large enough,
θM converges to 1−β

1−β+α
θR with probability 1 if the following conditions are satis�ed.

9. Assumptions 1, 2, 3, 4 and 7 hold true.

10. ‖θ̂M(k)‖2 ≤ γmax for some positive and bounded γmax.
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Moreover, the only equilibrium point of the closed loop system is stable in the sense of Lya-
punov and it corresponds to θ̂A = θA, θ̂B = θB, θ̂C = θC and θ̂M = 1−β

1−β+α
θR.

Proof

Refer to the appendix. �

The intuition behind theorem 7 is that by keeping θ̂M bounded and increasing the exci-
tation power the domain of attraction of the equilibrium point de�ned in theorem 5 enlarges
and by choosing αdc large enough, assumption 8 becomes true.

6.4 Practical Aspects

6.4.1 D̂B Inversion

Matrix D̂B is an estimate of DB that can be de�ned analogously to DA in (6.6) based
on the magnitude and phase of B̂(e−jωi). Its inverse matrix that is used in (6.24) can be
calculated easily by inverting the block diagonal terms which are scaled rotation matrices
similar to DAi in (6.5). This operation involves inverting the estimated magnitudes that
might be very small during the transient interval, especially when θ̂B is initialized by zeros.
In that case, any small �uctuation of θ̂B can cause large transient error. One possible solution
is to use small and slowly decreasing step sizes in the parameter adaptation algorithm, which
is not desirable since its side e�ect is decreasing the convergence rate. We take an alternative
approach, which is to use exponential smoothing to relax the transient errors. Let m̄Bi(k)
and δ̄Bi(k) be the magnitude and phase of B̂(e−jωi) at step k. The smoothed values that
form the scaled rotation matrices as in (6.5) are de�ned as

m̂Bi(k) = (1− αB)m̂Bi(k − 1) + αBm̄Bi(k)

δ̂Bi(k) = (1− αB)δ̂Bi(k − 1) + αB δ̄Bi(k)
(6.27)

where αB is a positive scalar less than 1.

6.4.2 Spectrum Partitioning

Let Ω be the set of all compensation frequencies

Ω := {ωi|1 ≤ i ≤ n}.

As mentioned earlier, there are two main constraints that prevent us from compensating all
of these frequencies by a single controller module when n is large, ωi's are spread and the
system frequency response is complicated: (1) the embedded processor may not have enough
computation power to perform one step update of all parameters in one sampling interval
(2) a high order model (i.e. large nA) may be needed to capture the dynamics of system at
a broad frequency range.
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Our objective is to divide Ω to a collection of subsets, run the adaptive controller on these
regions subsequently and superpose the feed�forward control signal learned in each region in
order to synthesize a general control signal that attenuates all narrow�band disturbances at
frequencies contained in Ω. More explicitly, we look for

• a collection, say C : {Ωj|1 ≤ j ≤ m}, of mutually disjoint non�empty sets whose union
is Ω.

• each subset contains consecutive elements

• a low order model can be �t to the actual system dynamics in each region

• the number of subsets, m, is kept as small as possible

• the running time needed to perform the algorithm does not exceed the sampling time
of the system, which means that, the size of subsets should be bounded by a particular
number that depends on the available computational power.

An admissible partition depends on the complexity of system dynamics and the controller
processing unit. We propose a heuristic algorithm inspired by divisive hierarchical clustering
Rokach and Maimon (2005) in conjunction with a monitoring mechanism to perform the
partitioning in an online fashion. Let

C(t) := {Ωj(t)|1 ≤ j ≤ m(t)}

be the collection at iteration t and assume that subsets Ωj(t) are ordered such that the
largest frequency in Ωj1(t) is strictly less than the smallest frequency in Ωj2(t) if and only
if j1 < j2. We use Ωj1(t) < Ωj2(t) notation for this type of set ordering. The collection is
initialized with only one cluster

Ω0(0) = Ω.

Let Mi(k) := ‖θ̂M,2i−1(k) + jθ̂M,2i(k)‖, where θ̂M,i(k) denotes the i-th element of θ̂M(k) and
j is the imaginary unit only in this particular expression. Indeed, Mi(k) is the magnitude of
residue corresponding to ωi at time step k. At iteration t the adaptive algorithm is applied
on region Ωc(t) for N steps and the L∞ norm ofMT (k) := [M1(k), · · · ,Mn(k)] is monitored.
Two cases are considered:

I. ‖M(k)‖∞ is increased for a particular number of consequent steps, say nfail, before
reaching step N : it indicates divergence of residues and the adaptive algorithm will be
terminated. In this case of early termination, the current region Ωc(t) will be divided
to two regions Ω1 < Ω2. Ω1 which is the �rst half of Ωc(t) will be the region under
veri�cation in the next iteration and Ω2 will be merged to the next region. That is

Ωc+1(t)← Ωc+1(t) ∪ Ω2

C(t+ 1)← (C(t)− {Ωc(t)}) ∪ {Ω1}.
(6.28)

Note that in this case c is not updated. Therefore, Ωc(t+ 1) = Ω1.
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II. Otherwise: in this case no divergence is indicated. Therefore, Ωc(t) is an admissible
region and we need to check the next region in the next iteration

c← c+ 1.

The pseudo�code for this algorithm is given in Algorithm 2. AdaptiveControl(Ωc(t)) refers
to applying the proposed adaptive control algorithm to region Ωc(t). Function Divide(.)

in the algorithm splits Ωc(t) to Ω1 and Ω2 such that Ω1 6= ∅, Ω2 6= ∅, Ω1 < Ω2, Ω1 ∩ Ω2 = ∅
and Ω1∪Ω2 = Ωc(t). A natural solution can be obtained by simply halving Ωc(t) into almost
equal segments.

Algorithm 2 Spectrum Partitioning
1: procedure spectrumPartitioning
2: Initialize: t← 0, c← 0, Ω0(0) = Ω, C(0) = {Ω0(0)}
3: while c < length(C(t)) do . last region not veri�ed yet

4: [Divergenc, un]← AdaptiveControl(Ωc(t), uA) . verify Ωc(t)

5: if Divergence = True then . Ωc(t) is too wide

6: [Ω1,Ω2]← Divide(Ωc(t)) . e.g. halve it

7: Ωc+1(t)← Ωc+1(t) ∪ Ω2 . merge Ω2 to the next region

8: C(t+ 1)← (C(t)− {Ωc(t)}) ∪ {Ω1} . replace Ωc(t) with a smaller one

9: C(t+ 1)← Sort(C(t+ 1)) . Ωi(t+ 1) < Ωj(t+ 1)⇔ i < j

10: else . Ωc(t) is OK

11: uA ← un . update the feedforward control

12: c← c+ 1 . let's check the next region

13: end if
14: t← t+ 1 . next iteration

15: end while
16: end procedure

6.5 Comparison with Related Work

The harmonic steady�state (HSS) control algorithm is one of the simplest and most
natural methods for rejection of sinusoidal disturbances. The method uses measurements
of the steady�state response amplitude and phase to determine the required amplitude and
phase of the control signal. This technique was developed independently within two research
�elds, namely higher harmonic control commonly used for helicopter vibration attenuation,
and convergent control for active rotor balancing Lovera et al. (2003); Knospe et al. (1996);
Friedmann and Millott (1995); Pearson and Goodall (1994).
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HSS with Known Plant Frequency Response:

The simple form of HSS assumes that the plant frequency response is known and uses

u(k) = 0

uA(k) = θ̂TD(k)φR(k)

where θ̂D(k) is a vector of parameters that should be determined by the algorithm. The
output signal when this control is applied is

e(k) =
B(q−1)

A(q−1)

(
θ̂TD(k)φR(k)

)
+
C(q−1)

A(q−1)
w̄(k) + θTR̄φR(k). (6.29)

The HSS control algorithm applies a �xed�rule control, i.e. �xed θ̂D over time batches and
waits until the output approximately reaches steady state. Let j denote the j-th batch and
any variable indexed by j be the corresponding value during that time interval. For instance,

ess,j(k) =
[
DT
Rθ̂D,j + θR̄

]T
φR(k) +

C(q−1)

A(q−1)
w̄(k) (6.30)

refers to the steady state error in the j-th batch. The de�nition of DR should be clear from
(6.5) and (6.6). The term θ̂TD,jDR + θT

R̄
is then extracted using a Fourier�like averaging

ea(j) := DT
Rθ̂D,j + θR̄ = AVG

batch j
[2φR(k)ess,j(k)] . (6.31)

Note that the averaging operation transforms the original problem to a very simple linear
system that is de�ned in the iteration (batch) space � i.e. indexed by j rather than k.
Therefore, we can think of the variable ea(j) as the state and θ̂D,j as the input of this
system. The minimization of ea in HSS control is then formulated as a simple quadratic
regulation problem with the following cost function

J(ea(j), θ̂D,j) := eTa (j)Qea(j) + 2eTa (j)Sθ̂D,j + θ̂TD,jMθ̂D,j (6.32)

where
[
Q S
ST M

]
is positive de�nite.

This algorithm is easy to understand, implement and apply to systems with known fre-
quency responses. However, it su�ers from slow convergence since it relies on averaging over
batches of data. The next section presents a more involved version that does not require prior
information about the plant frequency response since it can identify the response recursively.

Adaptive HSS Control:

The adaptive HSS control attempts to �nd the optimal control law for (6.32) when the
system frequency response, i.e. DR, is unknown. The disturbance parameters θR̄ can be
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omitted from (6.31) by numerical di�erentiation

ẽ(j) : = ea(j)− ea(j − 1)

= DT
R

(
θ̂D,j − θ̂D,j−1

)
= DT

Rθ̃(j).

(6.33)

Since both ẽ(j) and θ̃(j) are known, a recursive least squares algorithm � or in general any
algorithm that can solve the above linear regression problem � can be used to obtain an
estimate of DR Chandrasekar et al. (2006).

Similar to the simple HSS algorithm, this method su�ers from slow convergence since it
uses averaging over batches of data. Moreover, as will be discussed in the following section,
a further consideration is required to guarantee that the estimates converge to �good� values.

Adaptive HSS Control with Persistent Excitation:

Since θ̃(j) in (6.33) is generated by the adaptive controller, it may not be persistently
exciting. Therefore, the estimated values do not necessarily converge to the real value of DR

and there is no guarantee that the adaptive control performs any disturbance attenuation.
Chandrasekar et al. (2006) proposes adding an exogenous excitation to the adaptive control
to guarantee enough persistence of excitation

θ̂D,j+1 = −G(j)
(
ea(j)− D̂T

R(j)θ̂D,j

)
+ δ̃(j). (6.34)

The vector δ̃(j) is 2n-periodic and at each iteration j contains only one non�zero value
(similar to the impulse train).

Unlike the previous methods, this algorithm does not su�er from system uncertainties.
However, the slow convergence is still a drawback.

Modi�ed Adaptive HSS � Scheme 1:

In Pigg and Bodson (2006) an algorithm that enables simultaneous estimation of the
plant frequency response and the control signal is proposed. The algorithm is sketched for
continuous time systems, but one can show that an analogous method can be derived for
discrete time systems. The key idea in this algorithm is that (6.31) can be restructured such
that the unknown plant and disturbance parameters are included in one unknown vector.
We abuse the notation and denote ea(t) as the output of the averaging mechanism at time t
� previously ea(j) was used for the mean value over batch j. The �rst two elements of ea(t)
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are [
ea,1(t)
ea,2(t)

]
≈
[
DR1,11 −DR1,12

DR1,12 DR1,11

] [
θ̂D,t,1
θ̂D,t,2

]
+

[
θR̄,1
θR̄,2

]

=

[
θ̂D,t,1 −θ̂D,t,2 1 0

θ̂D,t,2 θ̂D,t,1 0 1

]
︸ ︷︷ ︸

wT1 (t)


DR1,11

DR1,12

θR̄,1
θR̄,2


︸ ︷︷ ︸

x1

where ea,i and θR̄,i and θ̂D,t,i denote the i-th element of ea and θR̄ and θ̂D,t respectively.
Similarly, DR1,mk refers to element (m, k) in DR1 (c.f. (6.6) for the de�nition of DR1). The
same decomposition can be performed for other pairs of ea elements that jointly characterize
one of the frequency contents

ea(t) ≈


wT1 (t) 0 · · · 0

0 wT2 (t) · · · 0
...

... . . . ...
0 0 · · · wTn (t)


︸ ︷︷ ︸

WT (t)


x1

x2

· · ·
xn


︸ ︷︷ ︸

X

= W T (t)X.

(6.35)

Note that this expression is similar to a linear system of equations with the known regressor
W (t) and the unknown vector of parameters X. A continuous time least squares algorithm
with forgetting factor is proposed in Pigg and Bodson (2006) to obtain the least�squares�
error estimates, say X̂(t), in an online fashion. Based on (6.31), perfect rejection is achieved
when θ̂D(t) = −D−TR θR̄. Once the vector X is estimated, an estimate for DR and θR̄ can be
extracted from X̂(t). The control signal is then generated by replacing the unknown values
by the estimates

θ̂D(t) = −D̂−TR (t)θ̂R(t). (6.36)

Slow adaptation is a crucial requirement for this algorithm to justify the steady�state
approximations. An averaging mechanism, in general, can reduce the e�ect of noises. How-
ever, since the parameters are constantly updated, the e�ect of noises on the performance
and convergence requires further study. Moreover, even under gradual adaptation and no
noise in the system, the convergence of estimates to real values is not guaranteed since the
regressor matrix W (t) is not necessarily persistently exciting of order 4n.

Modi�ed Adaptive HSS � Scheme 2:

Another continuous time adaptive algorithm that obtains online estimates of the plant
frequency response and of the disturbance parameters is proposed by Pigg and Bodson Pigg
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and Bodson (2010). The most important aspect that distinguishes this algorithm from the
previous methods is that it does not rely on an averaging mechanism like (6.31) that extracts
the term θ̂TD,jDR + θT

R̄
from (6.30). Instead, it uses the raw output, as in (6.30), directly to

identify the parameter vector X in (6.35). The crucial approximation is that e(k) in (6.29)
is approximately equal to the steady state error in (6.30) and the noises are negligible

e(k) ≈ ess(k) ≈
[
θ̂TD,jDR + θTR̄

]
φR(k).

We abuse the notation by using the same symbols for continuous time and discrete time
signals. The former ones are indexed by t that refers to time while the latter ones are
indexed by k that stands for the time step. Similar to other methods, the error term can be
split into known and unknown parts. From (6.35) and (6.29) we have

e(t) ≈ φTR(t)
[
DRθ̂D,j + θR̄

]
(6.37)

= φTR
[
W T (t)X

]
(6.38)

=
[
φTRW

T (t)
]
X. (6.39)

The �rst term on the right hand side

W (t)φR =



sin(ω1t)θ̂D,t,1 + cos(ω1t)θ̂D,t,2
− sin(ω1t)θ̂D,t,2 + cos(ω1t)θ̂D,t,1

sin(ω1t)
cos(ω1t)

...
sin(ωnt)θ̂D,t,n−1 + cos(ωnt)θ̂D,t,n
− sin(ωnt)θ̂D,t,n + cos(ωnt)θ̂D,t,n−1

sin(ωnt)
cos(ωnt)


∈ <4n

is the regressor (known) matrix. Having the error e(t) and the regressor W (t)φR, the pa-
rameter vector X ∈ <4n can be estimated by a recursive algorithm, such as recursive least
squares. The estimate of X at each step is then used to extract D̂R and θ̂R and the control
update is generated by (6.36).

Unlike all previous methods, ea was not involved in this method. Therefore, no averaging
mechanism as in (6.31) is needed and the algorithm convergence � as reported in Pigg and
Bodson (2010) � is considerably faster than aforementioned HSS algorithms.

The dynamic behavior of the algorithm is analyzed in Pigg and Bodson (2010) using aver-
aging theory and it is shown that the 4n-dimensional averaged system has a 2n-dimensional
equilibrium surface, which can be divided into stable and unstable subsets. Trajectories
generally converge to a stable point of the equilibrium surface, implying that the distur-
bance is asymptotically canceled even if the true parameters of the system are not exactly
determined.
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6.5.1 Distinctions Between the Algorithm Presented in this Disser-
tation and Other Methods

The method proposed in this dissertation is applicable in applications that include time�
varying system parameters and disturbances, a property that does not apply to simple HSSs
and the algorithm proposed by Wu and Bodson (2004). Moreover, the proposed method does
not require batches of data as in Chandrasekar et al. (2006) since the control parameters
are updated continuously in the discrete time domain. The number of parameters in Chan-
drasekar et al. (2006) and Pigg and Bodson (2006), Pigg and Bodson (2010) is 4n, where n
is the number of frequencies. Under the same situation (i.e. ignoring the other noises), the
proposed method estimates only 2n+ 2nA parameters where nA is the order of an IIR model
for the plant. An important note to make is that n ≥ nA always and in many practical
applications n� nA. In the latter case, the number of parameters in our proposed method
is considerably less than the other methods. Roughly speaking, this usually happens when
n is larger than 10 since in most of practical applications, especially mechatronic systems,
a 10th order IIR can �t very complicated dynamics. In our HDD nanopositioning example
n is 173. We will show by experiments and simulation that the total number of parameters
for this case is approximately 400 whereas other methods would require 692 parameters. In
Pigg and Bodson (2006) and Pigg and Bodson (2010) the algorithm is derived in continu-
ous time and then applied to a discrete time system via discretization. The new adaptive
controller proposed in this work is completely developed in discrete time domain. The ap-
proach taken in Pigg and Bodson (2010) attempts to estimate the disturbance parameters
and then compensate them, whereas our method generates the control signal directly based
on the residual error. It is shown in Pigg and Bodson (2010) that the plant and disturbance
parameters converge to an equilibrium surface of 2n-dimensional and the estimates do not
necessarily converge to the actual values. Therefore, in case of time�varying disturbances
all 4n values need to be adapted continuously whereas in the proposed algorithm only the
2n parameters of residual error will be adjusted. Similarly, in case of time varying systems
the only parameters that will be adapted in our method are the ones corresponding to the
plant model while in the other method still 4n parameters need to be estimated. The e�ect
of other noises that contaminate the system is not studied in the prior cited articles.
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Chapter 7

Direct Adaptive Control for Repeatable

Runout Following in HDD

In this chapter we evaluate the e�ectiveness of the proposed direct adaptive control algo-
rithm in following repeatable runout in a hard disk drive. The simulation and experimental
arrangements are similar to the ones described in detail in chapter 5. We evaluate the algo-
rithm with the same procedure as the indirect adaptive control algorithm in order to make
the comparison between these two methods easy.

7.1 Computer Simulation Results

The closed loop dynamics from the VCM input to the PES, which was shown earlier
in Fig. 5.4, has high magnitude response at frequencies less than 7KHz. Accordingly, we
allocated the compensation of narrow�band disturbances at harmonics 1 to 58 to adaptive
control modules that inject the control signal to the input of VCM. These modules are
plugged similarly to CA in Fig. 5.1. The remaining 115 disturbance components are left for
the controller(s) that are plugged to the input of MA, which is similar to CA,S in Fig. 5.1.

The divisive hierarchical clustering method presented in Algorithm 2 is used for both
actuators, starting from the VCM. The design parameters of the adaptive control algorithm,
which are listed in Table 7.1, are common among all controllers applied to di�erent frequency
regions. The frequency allocation evolution by algorithm 2 is illustrated in Fig.7.1. As is
shown in the �gure, 32 iterations (shown on the vertical axis) were needed to partition the
full spectrum to 11 regions. Each row in the �gure indicates one iteration and the �current�
region in that iteration, which was denoted by Ωc(t) in the previous chapter, is shaded.
Recall that the �current� region Ωc(t) includes the harmonics that are being compensated at
iteration t. For instance, based on the �gure, in the �rst iteration the partitioner attempts
to compensate the �rst 58 harmonics by the adaptive control module that is plugged to
the input of VCM. As another example, at iterations 5, 6 and 7 the 3rd region is being
adjusted and then the algorithm checks region 4 at iteration 8. Based on the �gure, the �rst
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Table 7.1: Hyper Parameters of the adaptive control algorithm for both simulation and
experiment.

nA(6.9) α(6.24) β(6.24) nfail (6.28)

3 4e-5 1-(2e-7) 7

αdc(6.26) βu(6.26) αβ(6.27) δu (4.13)

10 1e-3 1e-3 40Hz

Table 7.2: Final frequency partitions generated by algorithm 2 in our simulation study.

VCM MA

Region Length Harmonics Region Length Harmonics

1 29 1− 29 5 15 59− 73

2 14 30− 43 6 24 74− 97

3 4 44− 47 7 19 98− 116

4 11 48− 58 8 4 117− 120

9 2 121− 122

10 23 123− 145

11 28 146− 173

8 iterations were used for partitioning the �rst 58 harmonics to 4 regions for the VCM loop.
The following 24 iterations split the remaining 115 harmonics to 7 regions for the MA loop.

The �nal frequency segments are listed in Table 7.2. Comparing this table with the
frequency responses of VCM and MA loops that are shown in Fig. 5.3 and 5.4 illustrates how
e�ective the algorithm was to �nd the sharp and complex parts of the frequency responses and
determine the region widths accordingly. For instance, Fig. 5.3 shows a very sharp phase shift
around harmonic 120 which is at 14.4KHz, and Table 7.2 indicates a narrow region exactly
at the same position that contains only 2 harmonics. It is an interesting result because the
partitioning was completely automatic and no manual e�ort was required. The algorithm
had no knowledge about the system dynamics but was able to iteratively partition the full
spectrum between a set of �small� control modules that can compensate the disturbance at
the allocated frequencies.

The estimated coe�cients for A(q−1) and B(q−1) that construct θ̂A and θ̂B in region 1
are shown in Fig. 7.2. The �gure shows that the estimated parameters converge to �some�
values quickly. In order to evaluate the convergence point, we generated the transfer function
B̂(q−1)

Â(q−1)
that corresponds to these values. The frequency response of this transfer function is

compared to the actual transfer function of the VCM loop � which is measured by an accurate
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Figure 7.1: Frequency partitions generated in algorithm 2 iterations. The �current� region
in each iteration t, which was denoted by Ωc(t), is shaded. Harmonics �1 to 58� and �59 to
173� are partitioned for the VCM and MA loop respectively.

swept sine method � in Fig. 7.3. The shaded strip indicates region 1 where the adaptive
controller was active. Recall that our objective is that each control module uses a fairly
small number of parameters to �nd the system dynamics locally, and to this end, we use a
special exogenous excitation signal with a pair of adaptive band�pass �lters. As can be seen
from the �gure, these considerations were very e�ective and the estimated transfer function
matches the actual dynamics at the compensation region very well. To consolidate this, the
response mismatch between the two transfer functions is shown in Fig. 7.4. As can be seen
in the �gure, the phase mismatch between the two dynamics is within a 90-degree window
in the compensation area.

The estimated residue parameters, θ̂M , are depicted in Fig. 7.5. The plot shows that the
residual disturbance in region 1 converges towards zero as the algorithm evolves. This is
more clear in Fig. 7.6 that illustrates the convergence of αu(k) in (6.26). Recall that αu(k)
is a smoothed version of ‖θ̂M(k)‖2 that is used as the gain of excitation signal. Figure. 7.6
shows that the norm of residue vector (almost) exponentially converges to zero.

The previous results showed implicitly that the residual error is attenuated by the adap-
tive controller. This can be veri�ed in frequency domain based on the spectrum of error too.
The amplitude spectrum of the error before and after plugging the adaptive controller to the
closed loop servo system are depicted in Fig. 7.7. For clearness, the �gure only shows the
amplitude of the error Fourier transformation at compensation frequencies. Comparing this
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Figure 7.2: −θ̂A and θ̂B parameters in region 1 (harmonics 1 to 29 in simulation).

20 40 60 80 100 120 140 160 180

M
ag

ni
tu

de
 (

dB
)

-50

0

Harmonic
20 40 60 80 100 120 140 160 180

P
ha

se
 (

de
g)

-180

-90

0

90

180

Figure 7.3: Frequency response comparison of the identi�ed model and the actual VCM loop
in region 1 which is indicated by a shaded strip (simulation study).
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Figure 7.4: Frequency response mismatch between the identi�ed model and the actual VCM
loop in region 1 which is indicated by a shaded strip (simulation study).

�gure with Fig. 5.5b that illustrates the non�repeatable runout spectrum veri�es that the
RRO is almost completely removed from this portion of spectrum.
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Figure 7.5: Estimated residue parameters, θ̂M , in region 1 (simulation study).
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Figure 7.6: Excitation signal gain, αu(k), in regions 1 (simulation study). Recall that αu(k)
is a smoothed version of ‖θ̂M(k)‖2 as in (6.26) (simulation study).
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Figure 7.7: Comparison of the position error spectrum before and after plugging the adaptive
controller to region 1. This �gure shows the amplitude of Fourier transformation only at
harmonics � i.e. other frequencies are removed (simulation study).

Note that all the results provided to this point belong to the �rst adaptive control �mod-
ule� that is plugged to the input of VCM to compensate the �rst 15 harmonics. The control
signal uA learned by this controller is plotted in Fig. 7.8. This pro�le should be saved as
one period of a periodic feedforward control sequence that can compensate the �rst 15 har-
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monics. Analogous to this controller module, there are 10 other modules responsible for the
remaining frequency partitions that are listed in Table 7.2. The controllers corresponding to
these partitions can be run simultaneously or non-concurrently depending on the available
computational power.
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Figure 7.8: Feedforward control signal, uA(k), learned in region 1 (simulation study).

We obtained the same type of results for the other 10 adaptive controllers. Since the
convergence behavior of all cases were similar and due to space limitation we only present
the results for the last region (region 11). Figures 7.9 to 7.11 show the estimated parameters
and the corresponding transfer function for the closed loop dynamics from the MA input to
the PES. As can be seen from the �gures, the mismatch in this case is even smaller than the
previous results. Figures. 7.12 and 7.13 verify that the residual error in all compensation
frequencies converge towards zero. Finally, Fig. 7.15 depicts the learned control signal that
should be saved as one period of a periodic feedforward sequence for compensating the last
28 frequencies.
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Figure 7.9: −θ̂A and θ̂B parameters in region 11 (harmonics 146 to 173 in simulation).

After learning the adaptive control signal in each region, we superpose it to a feedforward
control table. Since the system has two inputs, two individual feedforward tables are con-
sidered for the input of MA and the VCM. Once the control sequences for all frequencies are
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Figure 7.10: Frequency response comparison of the identi�ed model and the actual MA loop
in region 11 which is indicated by a shaded strip.
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Figure 7.11: Frequency response mismatch between the identi�ed model and the actual MA
loop in region 11 which is indicated by a shaded strip (simulation study).

Step #104
1 2 3 4 5 6 7 8 9 10

3̂ M
co

e/
ci
en

ts

#10-3

-6

-4

-2

0

2

4

6

Figure 7.12: Estimated residue parameters, θ̂M , in region 11 (simulation study).

learned, it is expected that full spectrum compensation can be achieved by injecting these
two feedforward sequences to the dual�stage system. Figure 7.15 shows the amplitude of the
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Figure 7.13: Excitation signal gain, αu(k), in regions 11. Recall that αu(k) is a smoothed
version of ‖θ̂M(k)‖2 as in (6.26) (simulation study).
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Figure 7.14: Feedforward control sequence, uA(k), learned in regions 11 (simulation study).

error Fourier transformation after applying these feedforward controls. As can be seen from
the �gure, all control modules were successful in attenuating the narrow�band disturbances.
We will validate these results with experiments on an actual hard disk drive in the next
section.
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Figure 7.15: Position error amplitude spectrum. Green: uncompensated position error sig-
nal. Red: full spectrum narrow�band disturbance rejection after learning the feedforward
control in all 11 regions (simulation study).
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7.2 Experimental Results

7.2.1 Time�Invariant System Dynamics and Disturbance Pro�le

The direct adaptive control algorithm was implemented on a Digital Signal Processor,
and the same set of parameters as the simulation (Table. 7.1) were used. In this section we
report the results for the case that the system dynamics and disturbance are time�invariant.
That is, the HDD dynamics and RRO pro�le do not change because we only track�follow on
head 0 and track 3000 of the disk. The next section studies to the cases that the head and
track changes cause abrupt variations in the closed loop dynamics and disturbance pro�le.

The frequency partitions obtained by the proposed divisive hierarchical clustering method
are listed in Table 7.3. The intervals are slightly di�erent than the simulation results that
are listed in Table 7.2. This can be due to the noise model mismatch because whether a low
order model �ts properly to the actual dynamics or not depends on broad�band noises that
cause biased estimation. However, the number of regions is the same in both simulation and
experiment, showing that the same numbers of parameters have been estimated.

The Fourier transform amplitudes of error after the �rst and last region compensation
are shown in Fig. 7.16. Again, our approach is to learn the control signal by running the
adaptive control algorithm on each region when the control learned from previous regions is
superposed and injected to the system as a feedforward control. Therefore, after learning the
last region, which is 11 here, the control signal will contain contributions from all regions.
As the �gure shows, all harmonics are attenuated to signi�cantly small amplitudes. The left
over is slightly larger than the simulation results, which can be caused by non-stationarity
of broad band noises in the real environment.

The convergence of error towards zero can also be veri�ed through the estimates of
residual. The parameter vector θ̂M estimated at regions 1 and 11 is shown in Fig. 7.17. The
attenuation can also be evaluated by the gain of the excitation signal (6.26) which is related

Table 7.3: Final frequency partitions generated by algorithm 2 (DSP implementation).

VCM MA

Region Length Harmonics Region Length Harmonics

1 15 1− 15 5 20 59− 78

2 18 16− 33 6 21 79− 99

3 15 34− 48 7 21 100− 120

4 10 49− 58 8 2 121− 122

9 16 123− 138

10 20 139− 158

11 15 159− 173
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(a) Compensation of region 1 (1-15)
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(b) Compensation of region 11 (159-173)

Figure 7.16: Comparison of the position error spectrum before and after plugging the adap-
tive controller (DSP implementation). Only harmonics are shown and the broad band dis-
turbance is removed.
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Figure 7.17: Estimated parameters for the residual error, θ̂M , at regions 1 and 11.

to the norm of residual. Similar to the simulation results, this gain converges toward zero
almost exponentially as illustrated in Fig. 7.18. These parameters represent the convergence
of residual error toward zero in time domain.

The plant parameters, −θ̂A and θ̂B for the same two regions are illustrated in Fig. 7.19.
Since these two regions are di�erent than the corresponding ones in the simulation, the plots
di�er from Fig. 7.2 and 7.9. The transfer functions associated with these set of parameters
are compared to the actual system dynamics in frequency domain in Fig. 7.20. As the
plots show, the local excitation signal has driven the estimates toward values that �t the
actual dynamics locally around the compensation frequencies (shaded areas in the �gure).
The mismatches of these models are depicted in Fig. 7.21 which illustrates that the phase
di�erence was in a ±90-degree window at all compensation frequencies.

The total injection signal which contains both the excitation signal and control e�ort
for the same two regions is shown in Fig. 7.22. The total injection signal is larger at the
beginning since the residual error is large. As the control parameters converge to optimal
values and the residual error gets smaller, the excitation signal decreases. This implies that
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(a) Region 1
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(b) Region 11

Figure 7.18: Excitation signal gain, αu(k), in experiments by DSP implementation. Recall
that αu(k) is a smoothed version of ‖θ̂M(k)‖2 as in (6.26).
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(a) Plant parameters in region 1
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(b) Plant parameters in region 11

Figure 7.19: −θ̂A and θ̂B parameters estimated in DSP implementation.

20 40 60 80 100 120 140 160 180

M
ag

ni
tu

de
 (

dB
)

-50

0

Harmonic
20 40 60 80 100 120 140 160 180

P
ha

se
 (

de
g)

-180

-90

0

90

180

(a) Local model learned in region 1
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(b) Local model learned in region 11

Figure 7.20: Frequency responses of the actual and estimated systems (DSP implementation).
The shaded area shows the region of compensation.

the excess error caused by the excitation signal vanishes in steady state. Figure 7.23 shows
the �nal feedforward control signals for the two actuators after running the algorithm on all
regions.
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(a) Frequency response mismatch in region 1
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(b) Frequency response mismatch in region 11

Figure 7.21: Frequency response mismatches for the plant models shown in Fig.7.20. The
shaded area shows the region of compensation.
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(a) Injection signal in region 1
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(b) Injection signals in region 11

Figure 7.22: The control signal (blue) and total injection signal that contains both the
excitation and control signals. The excitation signal amplitude is determined adaptively and
it fades quickly as the residual error converges toward zero.
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(a) Feedforward control for the VCM
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(b) Feedforward control for the MA

Figure 7.23: Feedforward control signals injected to the input of VCM and MA. The control
pro�le at each injection point (i.e. VCM or MA) is generated by superposing the control
signals obtained from regions allocated to that particular point.
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7.2.2 Time�Varying System Dynamics and Abrupt Changes in Dis-
turbance Pro�le

In this subsection we study the behavior of the proposed control algorithm in situations
that the system dynamics or the disturbance pro�le changes. These cases occur when dif-
ferent magnetic heads are used for servoing. Imagine the case when head−0 reads the PES
from disk surface−0 and feeds it back to the controllers. In this case, MA−0 actuates the
suspension assembly that holds head−0. By changing the servoing head to head−1 the closed
loop dynamics varies because: (1) The heads dynamics are di�erent. (2) The mechanical
assemblies that hold the heads are di�erent. As a result, the transfer functions from both
the VCM and the MA to the PES change. (3) The two heads read the PES from two sides
of one disk which implies that the sign of PES is reversed. The third factor can be easily
�xed by multiplying the PES of even heads by −1. However, we do not do this here because
from a control point of view, this sign di�erence is equivalent to 180 degrees phase error and
we would like to know whether our controller can cope with such a case.

In the following, we show the controller behavior in frequency regions 8 and 11 (see Table
7.3) and for the cases that we change the head from 0 to 1 and 2. Region 8 contains the
frequencies where the MA dynamics has a very sharp phase change and it varies signi�cantly
from head to head and by temperature. On the other hand, the system dynamics in fre-
quency interval 11 is very similar among di�erent heads. However, note that we still have
approximately 180 degrees phase mismatch between head−0 and head−1. Therefore, only
changing the head from 0 to 2 at region 11 causes �small� variations in system dynamics.
These 4 cases are summarized in the following.

• Case 1: Changing from head−0 to head−1 in region 8. This causes large dynamics
and large disturbance variations.

• Case 2: Changing from head−0 to head−2 in region 8. This causes large dynamics
and small disturbance variations.

• Case 3: Changing from head−0 to head−1 in region 11. This causes large dynamics
and large disturbance variations.

• Case 4: Changing from head−0 to head−2 in region 11. This causes small dynamics
and small disturbance variations.

The estimated parameters in θ̂A and θ̂B that correspond to the system dynamics are
shown in Fig. 7.24 for the above four cases. In all cases, we changed the servoing head after
approximately 1.6× 104 steps. As can be seen from the plots, in all situations the algorithm
is able to learn the parameters for the new dynamics and no divergence behavior can be
observed. The question of whether these new parameters are �meaningful� or not can be
answered by looking at the error residues.

Recall that parameter vector θ̂M(k) is an approximator of the error in frequency domain.
The evolution of this vector of parameters for the above four cases is shown in Fig. 7.25.
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(a) Case 1: from head�0 to head�1 in region 8.
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(c) Case 3: from head�0 to head�1 in region 11.
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(d) Case 4: from head�0 to head�2 in region 11.

Figure 7.24: Estimated−θ̂A and θ̂B parameters under abrupt variation of the plant dynamics.

These plots clearly illustrate that after changing the head, the new sets of estimated plant
parameters made the adaptive algorithm converge in a direction that the error spectrum at
all compensation frequencies converges towards zero.

We can also use the excitation signal gain αu(k) to verify the overall error attenuation.
Based on (6.26) this parameters approximate the 2�norm of residual error ‖θ̂M(k)||2. This
parameter for all four cases is depicted in Fig. 7.26. The �gure shows that in all situations the
adaptive control algorithm was able to adapt to the new system dynamics and disturbance
very quickly and the same, or even better, attenuation level was achieved.

7.2.3 Tracking Repeatable Runout of a BPMR HDD

BPMR technology is still in research stage and BPMR HDDs have not been mass�
produced yet. However, our industry partners that are pioneers in developing this technology
were able to provide us with the noise characteristics of prototype BPMR hard disk drives.
It is expected that the hardware of conventional and BPMR HDDs only di�er in the media.
This implies that using the noise models of a BPMR HDD with the plant dynamics of a con-
ventional HDD can potentially mimic a BPMR HDD characteristics. We extracted the RRO
pro�le at di�erent tracks from the dataset provided by our industry partners. This pro�le
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(c) Case 3: from head�0 to head�1 in region 11.
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Figure 7.25: Estimated parameters for the residual error θ̂M under abrupt variations of
system dynamics and disturbance pro�le (DSP implementation).

was then arti�cially added to the PES measurements of the 3.5� HDD in our experimental
setup.

We used the same DSP implementation as the previous section. All parameters and other
settings are exactly the same as what was explained earlier. The controller behavior in this
case was very similar to tracking the RRO of a conventional HDD. Hence, we only present
the error spectrum before and after plugging the controller. Figure. 7.27 illustrates these
results. As can be seen from the �gure, the RRO spectrum at low frequency is considerably
larger than a conventional HDD. This is probably because of the relatively large eccentricity
in electron-beam lithography. However, as the plots illustrate, the adaptive control algorithm
was able to attenuate the tracking error to signi�cantly small values at all harmonics.
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Figure 7.26: Excitation signal gain, αu(k), in regions 11. Recall that αu(k) is a smoothed
version of ‖θ̂M(k)‖2 as in (6.26) (DSP implementation).
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Figure 7.27: Comparison of the position error spectrum before and after plugging the adap-
tive controller when the RRO pro�le of a BPMR HDD is arti�cally added to a conventional
HDD (DSP implementation).
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Chapter 8

Conclusion and Future Work

In this dissertation, we considered the problem of unknown trajectory tracking or equiv-
alently deterministic (but unknown) disturbance rejection in discrete time systems when the
trajectory or the disturbance can be realized (exactly or approximately) by an a�ne com-
bination of known basis functions. Among various applications of this control task, we were
particularly interested in nanopositioning in hard disk drives (HDDs).

We deployed a stochastic gradient descent method to develop an adaptive feedforward
control algorithm for compensating multitude narrow�band disturbances or trajectory track-
ing. A set of conditions on the adaptation step size was derived to guarantee the algorithm
convergence and perfect compensation. We proposed a novel adaptive step size to enhance
the convergence rate and decrease the steady state error. This analysis was initially carried
out in a spectral framework where trigonometric functions were chosen to form an orthog-
onal basis for the space of real valued square integrable trajectories. Two alternatives in
time�domain and in time�frequency�domain were also investigated. It was shown that time�
domain approaches can be computationally more plausible than frequency�domain methods.
However, the latter type can be more robust to system dynamics uncertainty.

We analyzed the robustness of our proposed adaptive feedforward controller to dynamic
mismatches between the actual plant and the model deployed in the algorithm and showed
that, unlike many existing methods, the mismatches are only important at excitation fre-
quencies. Moreover, an online system identi�cation architecture was proposed to provide an
accurate model of the system dynamics in case a model is not available or accurate. It was
shown that under a set of assumptions, the proposed scheme is able to obtain a model that
provides necessary conditions for the adaptive controller to achieve perfect compensation.
As a result, the identi�cation and compensation mechanisms together formed an �indirect�
adaptive controller for the class of problems under our study.

We proposed a special �low�power� excitation signal that was tailored for the HDD ap-
plication. Besides, we suggested using adaptive band�pass �lters on the inputs to the iden-
ti�cation unit in order to further reduce the required excitation power. An online method
for synthesizing these adaptive �lters through frequency transformation of a prototype �lter
was proposed.
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In addition to the indirect adaptive control scheme, we proposed a direct adaptive algo-
rithm for the problem of compensating (tracking) periodic disturbances (trajectories) in sys-
tems with unknown dynamics. We showed that the algorithm is applicable to non�minimum
phase systems without requiring any assumptions. Moreover, the method is applicable in
situations with slowly time�varying systems and disturbances. Also, it can be used in appli-
cations that the system dynamics or disturbance pro�le has infrequent abrupt changes. The
number of estimated parameters in our proposed algorithm is slightly larger than 2n where n
is the number of disturbance/trajectory frequency contents, while other methods require 4n
parameters (2n for system dynamics and 2n for control synthesis). As a result, our method
estimates signi�cantly less parameters when n is large (e.g. as in the HDD problem where
n = 174). The convergence of adaptive algorithm parameters to actual values was rigorously
analyzed and a set of practical remarks were made for reducing the transient error.

We showed that both of the proposed adaptive control algorithms are �modular�, meaning
that a controller with a large number of parameters can be split to �smaller� controllers such
that each one estimates a portion of the original unknown parameter vector. This is a very
appreciated property because a di�cult problem can be break into a set of easier control
problems without increasing the computational e�ort. We also proposed a heuristic algorith-
m inspired by divisive hierarchical clustering in conjunction with a monitoring mechanism
to determine the required controller �modules� automatically.

Besides providing theoretical guarantees, we experimentally evaluated our algorithms on
a challenging control task for nanopositioning of the read�write head in a dual�stage HDD.
The importance of HDDs compared to other types of data storage technologies such as
NAND��ash�based memory devices and Tapes was explained. Moreover, it was described
that the control methodologies that can address the problem under our study are crucial
for an emerging breakthrough in magnetic recording that is called Bit�Patterned Media
Recording.

Computer simulation in MATLAB and implementation on a digital signal processor (D-
SP) unit were performed to compensate for RRO that has narrow�band contents at the
HDD spinning frequency (120Hz) and its 173 higher harmonics (up to 20'880Hz). This is a
challenging task since it requires estimating a very large number (348) of parameters which is
order(s) of magnitude greater than other results reported in the literature. These frequencies
span from 120Hz to extremely large frequencies (above 20KHz) where the plant dynamics
uncertainties are large and feedback controller ampli�es disturbances. We proved by simula-
tions and experiments that both proposed algorithms can be applied to such a mechatronic
device and full spectrum compensation can be achieved.

While we have considered disturbances/trajectories that can be realized as an a�ne
combination of a set of known basis functions, these functions may not be available in many
real-world scenarios. For instance, in the case of sinusoidal disturbances, the frequencies may
drift over time. As such, future work will combine the adaptive algorithm presented here
with basis functions estimation techniques. As in the sinusoidal disturbance case, frequency
estimation methods such as Wu and Bodson (2003, 2004) can be deployed for applications
with time-varying frequency acting on unknown and time-varying systems.
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Appendix A

Proofs of Theorems in Chapter 6

We use the method of analysis of stochastic recursive algorithms discussed in Ljung
(1977a) to study the convergence and asymptotic behavior of the proposed adaptive algo-
rithm with the update rule given in (6.21). The key idea is that a di�erential equation
counterpart for (6.21) is derived and it is shown that the only convergence point of (6.21) is
the stable equilibrium of this di�erential equation. Moreover, it is shown that the estimated
parameters converge with probability one to this equilibrium under some mild assumptions
on the excitation signal power or initial values of parameters.

A.1 Preliminaries

A general recursive algorithm can be formalized as

Θ̂(k) = Θ̂(k − 1) + γ(k)Q(k; Θ̂(k − 1),Φ(k)) (A.1)

where Θ̂(k) ∈ <n is a sequence of n-dimensional column vectors referred as �the estimates�.
In our particular recursive algorithm, they stand for the parameters of system dynamics in
conjunction with the parameters that determine the adaptive control law. γ(k) is assumed to
be a sequence of positive scalars. The m-dimensional vector Φ(k) is an observation obtained
at time k which is usually called the �regressor�. The information contained in Φ(k) ∈ <m
sequence cause Θ̂(k − 1) to be updated. The map Q(.; ., .) from R × Rn × Rm into Rn is
a deterministic function with some regularity conditions that guarantee the convergence of
the adaptive algorithm to some �desired� points that will be discussed later. From the above
equation it can be inferred that Q(.; ., .) together with the choice of the �gain� sequence γ(.)
determine entirely the algorithm.

The regressor vector Φ(k) is, in general, a function of the previous measurements (when
the system has memory), the previous estimates (when the estimates de�ne an adaptive
control law), and the inputs to the system (all other control signals and noises). A very
broad class of update rules, as of ours, can be realized by a time varying linear system

Φ(k) = AΦ(Θ̂k−1)Φ(k − 1) +BΦ(Θ̂k−1)U(k)
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where AΦ and BΦ are m×m and m×r matrix functions and U(k) ∈ <r stands for all control
signals and noises entering the system.

In a stochastic framework, Q(k; Θ̂(k − 1),Φ(k)) is a random variable. This implies that
convergence can take place only if the noise is rejected by paying less attention to the
observations as time passes, i.e. by letting

γ(k)→ 0 as k →∞.

However, this is not feasible when the actual (system) parameters are time-varying, as in
tracking problems. For such problems, γ(k) can tend to very small, but still positive, values
and the analysis carried out in this section will give some insights regarding the algorithm
behavior.

The estimated parameters and the regressor in our adaptive algorithm are

Θ̂(k) :=



θ̂A(k)

θ̂B(k)

θ̂C(k)

θ̂M(k)
col [F (k)]
f(k)


Φ(k) :=



φe(k)
u(k)
φu(k)
w̄(k)
φw̄(k)
φε(k)
φR(k)
φuA(k)


.

The AΦ and BΦ matrix functions can be written as

AΦ(Θ̂k−1) :=



θTA

[
0 θTB

] [
0 θTC

]
0nA

θTR θTB[
InA−1 0

]
0 0 0 0 0

0

[
0 0

InA
0

]
0 0 0 0

0 0

[
0 0

InA
0

]
0 0 0

θ̂TA(k − 1)
[
0 θ̂TB(k − 1)

]
0 θ̂TC(k − 1) θ̂TM (k − 1) 0

0 0 0
[
InA−1 0

]
0 0

0 0 0 0 0 0

0 0 0 0 θ̂TD(k − 1) 0

0 0 0 0 0
[
InA−1 0

]


(A.2)

BΦ(Θ̂k−1) :=



0 0 0[
I
0

]
0 0

0

[
I
0

]
0

0 0 0

0 0

[
I
0

]
0 0 0


(A.3)
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and the input vector is

U(k) :=

 u(k)
w̄(k)
φR(k)

 . (A.4)

The next part provides certain regularity conditions on functions Q, AΦ and BΦ as well as
driving �input� term U to analyze the behavior of (A.1).

Before that, we provide two Lemmas about Lipschitz continuity (LC) properties of real
valued functions since these results will be used in the sequel. The proofs of both lemmas
can be found in Eriksson et al. (2013).

Lemma 5 (Lipschitz continuity of product of functions)
f(x) = f1(x)f2(x) is Lipschitz continuous on a bounded set I if f1(.) and f2(.) are individually
Lipschitz continuous on the same set.

Lemma 6 (Lipschitz continuity of quotient of functions)
f(x) = f1(x)

f2(x)
is Lipschitz continuous on a bounded set I if f1(.) and f2(.) are individually

Lipschitz continuous on the same set and there is a positive constant m such that for any
x ∈ I, f2(x) ≥ m.

A.2 Regularity Conditions

Three sets of regularity conditions are proposed in Ljung (1977a) to analyze a recursive
algorithm in the form of (A.1). The �rst two sets, referred as �Assumptions A� and �As-
sumptions B�, consider U(k) as a sequence of random variables and treat the algorithm in a
stochastic framework. In our method, the input signal U(k) (A.4) is consisted of stochastic
and deterministic parts, e.g. ΦR(k) is a known vector whereas w̄(k) is a random sequence.
The third set of assumptions referred as �Assumptions C� is more general and will be used
here. Let DS(x) be the set of all AΦ(x) that have all eigenvalues strictly inside the unit circle
and let DR be an open connected subset of DS(x). �Assumptions C� in Ljung (1977a) are
given in the following.

Assumptions C

C.1 The functionQ (k, x, φ) is Lipschitz continuous in x and φ. In other words, |Q (k, x1, φ1)−
Q (k, x2, φ2) | < K (x, φ, ρ, ν) {|x1 − x2|+ |φ1 − φ2|} for any x1 and x2 in B(x, ρ(x))
(B(x, ρ) denotes a ρ-neighborhood of x) for some ρ(x) > 0 where x ∈ DR. Moreover,
φ1 and φ2 should be in B (φ, ν) for some ν ≥ 0.

C.2 The matrix functions AΦ(x) and BΦ(x) are Lipschitz continuous in x.

C.3 z(k, x̄) as de�ned by z(0, x̄) = 0 and

z(k, x̄) = z(k − 1, x̄) + γ(k)
[
Q(k, x̄, φ̄(k, x̄))− z(k − 1, x̄)

]
, z(0, x̄) = 0 (A.5)
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converges for all x̄ ∈ DR as k →∞. Denote the limit by F (x̄).

C.4 kv(k, x̄, λ, c) de�ned by kv(0, x̄, λ, c) = 0 and

kv(k, x̄, λ, c) = kv(k − 1, x̄, λ, c) + γ(k)
[
K
(
x̄, φ̄(k, x̄), ρ(x̄), ν(k, λ, c)

)
· (1 + ν(k, λ, c))− kν(k − 1, x̄, λ, c)] kv(0, x̄, λ, c) = 0

(A.6)

converges to a �nite limit as k →∞ for all x̄ ∈ DR, λ < 1 and c <∞.

C.5
∞∑
k=1

γ(k) =∞.

C.6 γ(k)→ 0 as k →∞.

Assumption C.1: The function Q(k; Θ̂(k − 1),Φ(k)) in (A.1) in our algorithm is time
invariant. We abuse the notation and use Q(Θ̂(k − 1),Φ(k)) in the sequel. This function
can be written as

Q
(

Θ̂(k − 1),Φ(k)
)

: =

Q1(Θ̂(k − 1),Φ(k))

Q2(Θ̂(k − 1),Φ(k))

Q3(Θ̂(k − 1),Φ(k))

 (A.7)

where

Q1(Θ̂(k − 1),Φ(k)) : =

[
F−1(k − 1) 0

0 f−1(k − 1)I

]
M1Φ(k) (A.8)

·
(
MT

3 Φ(k)−M2Θ̂T (k − 1)M1Φ(k)
)

Q2(Θ̂(k − 1),Φ(k)) : = Col
{
M4Φ(k)ΦT (k)MT

4 − F (k − 1)
}

(A.9)

Q3(Θ̂(k − 1),Φ(k)) : = Φ(k)TMT
5 M5Φ(k)− f(k − 1) (A.10)
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and the matrices M1, M2, M3, M4 and M5 are de�ned as follows

φ(k) : =


φe(k)
φu(k)
φε(k)
φR(k)

 =
[
diag

{
I
[
0 I

] [
0 I

]
I
}

0
]︸ ︷︷ ︸

M1

Φ(k)

θ̂(k) : =


θ̂A(k)

θ̂B(k)

θ̂C(k)

θ̂M(k)

 =
[
I 0

]︸ ︷︷ ︸
M2

Θ̂(k)

e(k) =
[
θTA

[
0 θTB

] [
0 θTC

]
0 θTR θTB

]︸ ︷︷ ︸
MT

3

Φ(k)

φe(k)
φu(k)
φε(k)

 =
[
diag

{
I
[
0 I

] [
0 I

] }
0
]︸ ︷︷ ︸

M4

Φ(k)

φR(k) =
[

0 I 0
]︸ ︷︷ ︸

M5

Φ(k).

The dimensions of identity and all zero matrices are omitted since they can be determined
from the regressor and estimated parameters dimensions. Equation (A.7) shows that Q(x, φ)
is Lipschitz continuous if Q1(x, φ), Q2(x, φ) and Q3(x, φ) are all Lipschitz continuous. This
can be shown by �triangle inequality�

|Q(x, φ)| ≤ |Q1(x, φ)|+ |Q2(x, φ)|+ |Q2(x, φ)|

which implies that

|Q(x1, φ1)−Q(x2, φ2)| ≤ (K1 + K2 + K3) {|x1 − x2|+ |φ2 − φ2|}

where K1, K2 and K3 are the Lipschitz constants of Q1(., .), Q2(., .) and Q3(., .) in a bounded
region of interest. With the same argument, we can claim that each Qi � as a vector valued
function � is Lipschitz continuous if each of its individual components is Lipschitz continuous.
Equations (A.9) and (A.10) show that Q2(., .) and Q3(., .) are always Lipschitz continuous
by Lemma 5. Moreover, Q1(., .) is Lipschitz continuous as long as F is non singular and
f is non zero. This can be shown by Lemma 5 and 6, and the fact that matrix inversion
incorporates determinants of sub-regions of the original matrix (i.e. cofactors) and inverse
of the matrix determinant. It is clear that the cofactor elements are simply polynomials and
thus Lipschitz continuous, and the inverse of the matrix determinant is Lipschitz continuous
by Lemma 6 as long as it is always nonsingular in B(x, ρ)×B(φ, ν).

Assumption C.2: It is clear that AΦ(Θ̂) and BΦ(Θ̂) given by (A.2) and (A.3) are both
(Lipschitz) continuous in Θ̂.
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Assumption C.3: By following the same approach as in the proof of Lemma 2 in Ljung
(1977a), we can show that when the following conditions are satis�ed

1. Assumption C.1 holds

2. K in C.1 is Lipschitz continuous in φ and ν

|K (x, φ1, ρ, ν1)−K (x, φ2, ρ, ν2) | ≤H (x, φ, ρ, ν, w) {|φ1 − φ2|+ |ν1 − ν2|}

for φ1, φ2 ∈ B(φ,w) and ν1, ν2 ∈ B(ν, w)

3. For all x ∈ DR, the functions Q, K and H have bounded p-moments for all p > 1,
λ < 1 and c <∞.

we have

1

t

t∑
k=1

Q
(
x̄, φ̄(k, x̄)

)
→ 1

t

t∑
k=1

E
[
Q
(
x̄, φ̄(k, x̄)

)]
(A.11)

with probability one as t → ∞. We have already shown that C.1 holds and a Lipschitz
continuous function K can be de�ned. The last condition holds as long as |F (k)| and
|f(k)| are non-zero. This expression (A.11) with (A.5) when γ(k) = 1/k imply

z(t, x̄)→ 1

t

t∑
k=1

E
[
Q
(
x̄, φ̄(k, x̄)

)]
. (A.12)

with probability one as t→∞. Therefore, in order to show that regularity condition (C.3)
is satis�ed, it is enough to prove that the limit

F (x̄) = lim
t→∞

1

t

t∑
k=1

E
[
Q
(
x̄, φ̄(k, x̄)

)]
exists.

As we will show in the following part, the stochastic process Q
(
x̄, φ̄(k, x̄)

)
is cyclosta-

tionary and the limit is well de�ned. Here, we assume that the excitation signal is also
periodic with contents focused at frequencies di�erent than the periodic disturbance. We
take Θ̄ ∈ DR which implies that AΦ(Θ̄) is stable (i.e. has all eigenvalues strictly inside the
unit circle). Since AΦ(Θ̄) and BΦ(Θ̄) are time invariant, we can use superposition principle
for this linear time invariant system and decompose the response Φ(k) = Φs(k) + Φd(k) into
stochastic, Φs(k), and deterministic, Φd(k), parts

Φs(k) = AΦ(Θ̄)Φs(k − 1) +BΦs(Θ̄)w̄(k) (A.13)

Φd(k) = AΦ(Θ̄)Φd(k − 1) +BΦd(Θ̄)

[
u(k)
φR(k)

]
(A.14)
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where BΦs and BΦd can be clearly found from (A.3). Note that when u(k) is not periodic
and rather it is wide-sense stationary the only required modi�cation is to remove u(k) from
the input signal in (A.13) and instead append the input in (A.14) with u(k). The rest of
analysis will be very similar in this case.

Since AΦ(Θ̄) is stable, Φs(k) will converge to a zero mean stationary random vec-
tor, denoted by Φ̄s(k, Θ̄), with bounded covariance and Φd(k) will converge to Φ̄d(k, Θ̄)
which is a periodic vector that contains sinusoids with the same frequencies as φR(k) and
amplitudes/phase-lags that are related to the magnitude and phase of(

ejwiI − AΦ(Θ̄)
)−1

BΦd(Θ̄)ejwi .

Again, since AΦ(Θ̄) is stable, Φ̄d(k, Θ̄) is bounded and it implies that Φ(k) will converge to
Φ̄(k, Θ̄) = Φ̄s(k, Θ̄) + Φ̄d(k, Θ̄). We can now return to (A.12) and show that

lim
t→∞

z(t, x̄) = lim
t→∞

1

t

t∑
k=1

E
[
Q
(
Θ̄, Φ̄(k, Θ̄)

)]
= h

(
Θ̄
)

(A.15)

where h
(
Θ̄
)
is a bounded and well de�ned function. Note that

E
[
Q
(
Θ̄, Φ̄(k, Θ̄)

)]
=


[
F̄−1 0

0 f̄−1

]
E
{
φ̄(k, Θ̄)

(
ȳ(k, Θ̄)− θ̄T φ̄(k, Θ̄)

)}
Col

{
E
[
φ̄1(k, Θ̄)φ̄T1 (k, Θ̄)

]
− F̄

}
E
[
Φ̄(k, Θ̄)TMT

5 M5Φ(k)− f̄
]

 (A.16)

and we can show that the limit given in A.15 is well de�ned for all the three terms on the
right hand side. For instance, for the �rst term we have

E
{
φ̄(k, Θ̄)

(
ȳ(k, Θ̄)− θ̄T φ̄(k, Θ̄)

)}
= E

{[
φ̄1(k, Θ̄)
φR(k)

] (
ȳ(k, Θ̄)− θ̄T φ̄(k, Θ̄)

)}
=

[
E
[
φ̄1s(k, Θ̄)ȳs(k, Θ̄)

]
+ φ̄1d(k, Θ̄)ȳTd (k, Θ̄)

φR(k)ȳd(k, Θ̄)

]
−
[
θ̄1
T
E
[
φ̄1s(k, Θ̄)φ̄1s(k, Θ̄)

]
+ θ̄1

T
φ̄1d(k, Θ̄)φ̄T1d(k, Θ̄) + θ̄TMφR(k)φ̄1,d(k, Θ̄)

φR(k)Φ̄T
d (k, Θ̄)θ̄

] (A.17)

where φ̄1s(., .) := M4Φ̄s(., .), φ̄1d(., .) := M4Φ̄d(., .) and θ̄T1 :=
[
θ̄TA θ̄TB θ̄TC

]
. Similarly, ȳd(., .)

and ȳs(., .) are the values corresponding to y respectively in Φ̄d(., .) and Φ̄s(., .). Note that
all the stochastic terms will be stationary when t→∞ and all deterministic terms become
periodic in steady state. Therefore, all the terms in (A.17) when plugged to (A.15) produces
well de�ned limits. Following the same type of analysis, it is easy to show that the second
and third terms of (A.16) generate bounded limits when plugged to (A.15).
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Assumptions C.4: The following analogies between (A.5) and (A.6) can be exploited to
take the same path as the previous part to show that assumption C.4 holds.

z(k, x̄)↔ kv(k, x̄, λ, c)

Q(k, x̄, φ̄(k, x̄))↔ K
(
x̄, φ̄(k, x̄), ρ(x̄), ν(k, λ, c)

)
K
(
x̄, φ̄(k, x̄), ρ(x̄), ν(k, λ, c)

)
↔H

(
x̄, φ̄(k, x̄), ρ(x̄), ν(k, λ, c), w

)
Assumptions C.5 and C.6: These assumptions are the same as assumption 2 in theorem
5.

A.3 Convergence Analysis

Under the regularity conditions mentioned above, the parameter adaptation algorithm
(6.21) can be associated with a di�erential equation that will be derived in this sections.
Suppose the estimate sequence of θ̂(k) is �xed to a constant value θ̂. Denote ē(t, θ̂), ¯̂y(t, θ̂)
and θ̄M(t, θ̂) as the (cyclo) stationary processes de�ned by (6.17), (6.18) and (6.15). Note that
the stationarity of these processes is admissible only when the closed loop system determined
by θ̂ is stable. Suppose Ds is the set of all values of θ̂ that the stability is attained. The
stationary θ̂D, by (6.24), is

¯̂
θD(θ̂) =

−α
1− β

D̂−TB (θ̂)θ̂M

where D̂B(θ̂) denotes the value of D̂B(k) when θ̂(k) = θ̂. Accordingly the control signal
associated with θ̂ is

ūA(k) =
−α

1− β
θ̂TMD̂

−1
B (θ̂)φR(k).

Therefore, for any �xed θ̂, the adaptive control algorithm operates in open loop mode and
generates a pure feedforward signal. This implies that the closed loop system is stable as
long as θ̂A corresponds to an Â(q−1) polynomial that has all roots strictly inside the unit
circle

Ds :=
{
θ̂ : − θ̂TA = [â1, · · · , ânA ], 1 + â1q + · · ·+ ânAq

nA = 0⇒ |q| > 1
}
.

This condition is equivalent to assumption 3 in theorem 5. The control signal is bounded
as long as θ̂M and D̂−1

B (θ̂)φR(k) are bounded. The second criterion is equivalent to the
condition that B̂(q−1) associated with θ̂B has non-zero magnitude at ωi's which is true as
long as assumption 4 of theorem 5 holds. We have

ē(t, θ̂) = θAφe(t, θ̂) + θTBφu(t) + θTCφw̄(t) + θ̄TM(t, θ̂)φR(t) + w̄(t)

¯̂y(t, θ̂) = θ̂TAφe(t, θ̂) + θ̂TBφu(t) + θ̂TCφε(t, θ̂) + θ̂TMφR(t, θ̂)
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In the �rst expression, we have used wt(t, θ̂) = 0 since the term (z − 1) [θ(k)] in lemma 4 is
zero once θ̂(k) is frozen. The stationary estimation error de�ned in (6.19) is

ε̄(t, θ̂) = ē(t, θ̂)− ¯̂y(t, θ̂)

=
(
θTA − θ̂TA

)
φe(t, θ̂) +

(
θTB − θ̂TB

)
φu(t) +

(
θTC − θ̂TC

)
φε(t, θ̂)− θCφε(t, θ̂)

+ θTCφw̄(t) + θ̄TM(t, θ̂)φR(t)− θ̂TMφR(t, θ̂) + w̄(t).

By using θTCφw̄(t) + w̄(t) = C(q−1)w̄(t) and θTCφε(t, θ̂) + ε̄(t, θ̂) = C(q−1)ε̄(t, θ̂) we have

ε̄(t, θ̂) =
1

C(q−1)

[(
θTA − θ̂TA

)
φe(t, θ̂) +

(
θTB − θ̂TB

)
φu(t) +

(
θTC − θ̂TC

)
φε(t, θ̂)

+θ̄TM(t, θ̂)φR(t)− θ̂TMφR(t, θ̂)
]

+ w̄(t)

=
1

C(q−1)


φe(t, θ̂)
φu(t)

φε(t, θ̂)
φR(t)


T


θA − θ̂A
θB − θ̂B
θC − θ̂C

θ̄M(t, θ̂)− θ̂M


(A.18)

The stationary process θ̄M(t, θ̂) can be derived from (6.15) and (6.24)

θM(k + 1) = DT
B θ̂D(k + 1) + θR

= βDT
B θ̂D(k)− αDT

BD̂
−T
B (k)θ̂M(k) + θR

= β
(
DT
B(k)θ̂D(k) + θR

)
− αDT

BD̂
−T
B (k)θ̂M(k) + (1− β) θR

= βθM(k)− α∆T (θ̂)θ̂M(k) + (1− β) θR

where ∆(θ̂) is the stationary matrix for ∆(k) and

∆(k) : = D̂−1
B (k)DB

=


D̂−1
B1(k) 0 · · · 0

0 D̂−1
B2(k) · · · 0

...
... . . . ...

0 0 · · · D̂−1
Bn(k)



DB1 0 · · · 0

0 DB2 · · · 0
...

... . . . ...
0 0 · · · DBn



=


D̂−1
B1(k)DB1 0 · · · 0

0 D̂−1
B2(k)DB2 · · · 0

...
... . . . ...

0 0 · · · D̂−1
Bn(k)DBn


D̂−1
Bi (k)DBi =

(
1

m̂Bi

R
(
−δ̂Bi(k)

))
(mBiR (δBi))

=
mBi

m̂Bi(k)
R(δBi − δ̂Bi(k))
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Therefore,

θ̄M(t, θ̂) = βθ̄M(t, θ̂)− α∆T (θ̂)θ̂M + (1− β) θR

= θR −
α

1− β
∆T (θ̂)θ̂M .

Using this de�nition and the expression for θ̄M we have

θ̄TM(t, θ̂)φR(t)− θ̂TMφR(t, θ̂) = φTR(t, θ̂)

(
I +

α

1− β
∆T (θ̂)

)[
θ∗M − θ̂M

]
where

θ∗M =

(
I +

α

1− β
∆(θ̂)

)−T
θR. (A.19)

The expression I + α
1−β∆(θ̂) has a singularity point at

δ̂Bi = δBi − π

m̂Bi =
α

1− β
mBi .

(A.20)

By choosing appropriate α and β and limiting m̂Bi from above, the singularity point can
be avoided. This condition is guaranteed by assumption 4 in theorem 5. However, as we
will see in the sequel, the algorithm avoids such a large phase di�erence δBi − δ̂Bi = π with
probability one even when no upper bound is applied to m̂Bi .

Returning to (A.18), we have

ε̄(t, θ̂) =
1

C(q−1)


φe(t, θ̂)
φu(t)

φε(t, θ̂)
φR(t)


T [

I 0

0 I + α
1−β∆T (θ̂)

]
θA − θ̂A
θB − θ̂B
θC − θ̂C
θ∗M − θ̂M

 (A.21)

When ∆ is bounded, by choosing β close enough to 1 and α� 1− β the inverse term is not
subjected to numerical issues and θ∗M � θR.

Introduce

G̃(θ̂) : =
1

t

t∑
k=1



φe(k, θ̂)
φu(k)

φε(k, θ̂)
φR(k)


[

1
C(q−1)

0

0 1+H(q−1;θ̂)
C(q−1)

]
φe(k, θ̂)
φu(k)

φε(k, θ̂)
φR(k)


T
 (A.22a)

G(θ̂) : =
1

t

t∑
k=1

 φe(k, θ̂)
φu(k)

φε(k, θ̂)

 (A.22b)

g(θ̂) : =
1

t

t∑
k=1

φTR(k)φR(k) (A.22c)
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and decompose φe(k) to a stochastic and deterministic part as φe(k) = φed(k) + φes(k). The
fact that all stochastic processes are zero mean along with (A.11) imply

G̃(θ̂)→ G̃s(θ̂) + G̃d(θ̂) w.p. 1 as t→∞ (A.23)

G̃s(θ̂) := E



φes(k, θ̂)

0

φε(k, θ̂)
0

 1

C(q−1)


φes(k, θ̂)

0

φε(k, θ̂)
0


T
 (A.24)

G̃d(θ̂) :=
1

t

t∑
k=1



φed(k, θ̂)
φu(k)

0
φR(k)


[

1
C(q−1)

0

0 1+H(q−1;θ̂)
C(q−1)

]
φed(k, θ̂)
φu(k)

0
φR(k)


T
 (A.25)

Here, H(q−1, θ̂) is a stable and causal transfer function, e.g. an FIR LTI system, that at
ωi's has magnitude and phase responses equal to the corresponding magnitudes and phases
in α

1−β∆T (θ̂). It is trivial that such an LTI transfer function can be found for any ∆T (θ̂) by
considering at most 2n coe�cients.

Under the regularity conditions and conditions on the stochastic processes w̄(k) and u(k)
that were mentioned above the parameter adaptation algorithm in (6.21) can be associated
with the di�erential equation Ljung (1977a)

d

dt
θ̂(t) =

[
F−1(t) 0

0 f−1(t)I

]
G̃(θ̂(t))


θA − θ̂A
θB − θ̂B
θC − θ̂C
θ∗M − θ̂M

 (A.26a)

d

dt
F (t) = G(θ̂(t))− F (t) (A.26b)

d

dt
f(t) = g(θ̂(t))− f(t). (A.26c)

Moreover, the convergence point(s) of parameter adaptation algorithm (6.21) can be related
to the set of stationary points, say Dc, of the di�erential equations (A.26) through corollary
1 in Ljung (1977a). The following conditions, that are already shown to be satis�ed partially,
are required to use the corollary results

• Regularity conditions mentioned above should be satis�ed.

• θ̂(k) ∈ Ds in�nitely often with probability one.

• ‖φ(k)‖ is bounded in�nitely often whenever θ̂(k) belongs to Ds
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• There is a Lyapunov function V
(
θ̂(t), F (t), f(t)

)
such that

d

dt
V
(
θ̂(t), F (t), f(t)

)
≤ 0 for θ̂(t) ∈ Ds, F (t) > 0, f(t) > 0

d

dt
V
(
θ̂(t), F (t), f(t)

)
= 0 for θ̂(t) ∈ Dc

We have already shown that the �rst condition is satis�ed when a projection scheme is
considered. The third condition can be satis�ed by restricting θ̂B(k) to

DB :=

{
θ̂B : |b1e

−jωm + · · ·+ bnAe
−jnAωm | > 0

∀m ∈ {1, . . . , n}
}
.

This means that the magnitude of B̂(q−1; k) at excitation frequencies should be bounded
from below by a small positive value. This is equivalent to assumption 4 in theorem 5. In
case θ̂B(k) does not belong to DB, the parameters can be projected to DB by scaling θ̂B(k).
An implication of this restriction is that ∆(θ̂(k)) is also always bounded.

Analogous to Ljung (1977b) an admissible Lyapunov function can be de�ned when G̃(θ̂)+

G̃T (θ̂) is positive de�nite. This is possible when both 1
C(q−1)

and H(q−1,θ̂)
C(q−1)

are strictly positive

real. The second condition can be relaxed further since the response of H(q−1; θ̂) is only
important at ωi's. Therefore, G̃(θ̂) + G̃T (θ̂) is positive de�nite if

1. φu is persistently exciting of order 2n.

2. 1
C(q−1)

is strictly positive real (SPR).

3. Absolute phase of H(e−jωi ;θ̂)
C(e−jωi )

is less than 90 degrees.

The third condition can be justi�ed by comparing (A.22a) with[
φ1

φ2

] [
1
C

0
0 1+H

C

] [
φ1

φ2

]T
=

[
φ1

φ2

]
1

C

[
φ1

φ2

]T
+

[
0 0
0 φ2

H
C
φT2

]
.

If 1/C(q−1) is strictly positive real, the �rst term on the left will make a positive de�nite
matrix when it is summed with its transpose. Similarly, when H(q−1)/C(q−1) is SPR,
summation of the second term with its transpose results in a positive semi-de�nite matrix.
This implies that the summation of the two transfer functions results in a positive de�nite
matrix when condition 2 and 3 hold. Note that these conditions are equivalent to assumptions
1,5 and 6 of theorem 5 respectively.
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Proof (Theorem 5)
Theorem 2 in Ljung (1977a) implies that the convergence point(s) of the parameter adaptation
algorithm (6.21) are among the stable stationary points of (A.26). For an SPR 1/C(q−1),
the cross covariance matrix

1

t

t∑
k=1



φe(k, θ̂)
φu(k)

φε(k, θ̂)
φR(k)

 1

C(q−1)


φe(k, θ̂)
φu(k)

φε(k, θ̂)
φR(k)


T


added to its transpose makes a positive de�nite matrix. Therefore, from (A.21), the only
stationary point of (A.26a) is given by

[
I 0

0 I + α
1−β∆T (θ̂)

]
θA − θ̂A
θB − θ̂B
θC − θ̂C
θ∗M − θ̂M

 = 0.

The left matrix singularity points are described in (A.20). It is trivial that the parameter θ̂B
corresponding to such a singularity point does not fall in the null space of the left matrix.
Hence, the only stationary point of (A.26) is

θ∗ =


θ̂A
θ̂B
θ̂C
θ̂M

 =


θA
θB
θC

1−β
1−β+α

θR


where the last term comes from (A.19) when θ̂B = θB. Moreover, it can be shown that this
is a locally stable stationary point. Suppose B(θB, ρ(θB)) be a neighborhood of θB in which
|δBi − δ̂Bi | < 90. The quadratic function

V (θ̂) := θ̂T
(
G̃(θ̂) + G̃T (θ̂)

)
θ̂.

is positive de�nite and has negative de�nite Lie derivative along (A.26) trajectories as long
as θ̂ ∈ B(θ∗, ρ(θB)). This is because ‖θB− θ̂B‖ ≤ ‖θ∗− θ̂‖ implies that starting the trajectory
from θ̂(0) ∈ B(θ∗, ρ(θB)), the estimated θ̂B always stays in a neighborhood with a smaller
radius around θB. Therefore, decreasing ‖θ∗− θ̂‖ results in keeping θ̂B in B(θ∗, ρ(θ̂B)) which
itself implies more reduction in ‖θ∗ − θ̂‖. Accordingly, V (θ̂) is a Lyapunov function for
(A.26) and the equilibrium state θ∗ is stable in the sense of Lyapunov.

Proof (Theorem 6)
The proof of theorem 6 is similar to the proof of theorem 5 up to equation (A.21). Starting
from (A.22), one needs to substitute all instances of C(q−1) by C(q−1)/C̄(q−1) to show the
results.
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Proof (Theorem 7)
The proof is based on to the proof of theorem 5. When there is no prior knowledge regarding
B(q−1) in hand, it may not be possible to set the initial conditions of (6.21) and accord-
ingly (A.26) to guarantee SPR condition on H(q−1; θ̂)/C(q−1) term. However, the region
of attraction for di�erential equation (A.26) can be enlarged in practice by increasing the
excitation energy. Consider the upper states of (A.26a)

d

dt

θ̂Aθ̂B
θ̂C

 = F−1(t)
1

t

t∑
k=1


 φe(k, θ̂)

φu(k)

φε(k, θ̂)

 1

C(q−1)

 φe(k, θ̂)
φu(k)

φε(k, θ̂)

T

θA − θ̂AθB − θ̂B
θC − θ̂C



+ F−1(t)
1

t

t∑
k=1

 φe(k, θ̂)
1+H(q−1;θ̂)
C(q−1)

φTR(k)

0
0

 θ∗M − θ̂M
(A.27)

when 1/C(q−1) is SPR, the �rst term on the right attracts the states to
[
θTA θTB θTC

]T
.

However, the second term might be repulsive when H(q−1; θ̂)/C(q−1) is not SPR. In (A.27),
the second term on the right hand side is bounded when assumption 10 in theorem 7 holds
true. As a result, by increasing αdc the attraction of the �rst term increases which can lead to
bringing θ̂B into DB when αdc is chosen large enough. This means that by choosing enough
excitation in such a case, the convergence rate of the �rst term can be increased such that
the �rst term brings θ̂B into a vicinity of θB in which the second term is also attractive.
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Appendix B

Model Parameters

The transfer function coe�cients for a set of models mentioned in the previous sections
are given in this appendix. All transfer functions are in the form of

G(z) =
b1z

n + b2z
n−1 + b3z

n−2 + · · ·+ bnz + bn+1

a1zn + a2zn−1 + a3zn−2 + · · ·+ anz + bn+1

and in most (if not all) of the cases the denumerator leading coe�cient is a1 = 1.
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Table B.1: Transfer function coe�cients for closed loop model from the MA input to the
PES

a1 a2 a3 a4 a5

1.000e+ 00 7.243e− 01 −3.290e− 01 −6.334e− 01 7.694e− 01

a6 a7 a8 a9 a10

1.276e+ 00 9.027e− 01 −2.364e− 01 −3.912e− 01 1.266e− 01

a11 a12 a13 a14 a15

1.091e+ 00 6.582e− 01 −1.468e− 01 −2.107e− 01 2.325e− 01

a16 a17 a18

1.226e− 01 1.200e− 01 1.620e− 01

b1 b2 b3 b4 b5

0.000e+ 00 −3.164e− 02 8.523e− 03 2.950e− 03 2.652e− 02

b6 b7 b8 b9 b10

−2.923e− 02 −4.232e− 03 −1.080e− 02 2.798e− 02 9.970e− 03

b11 b12 b13 b14 b15

4.318e− 03 −1.362e− 02 4.054e− 03 1.650e− 02 2.123e− 03

b16 b17 b18

4.095e− 03 6.023e− 04 4.392e− 03
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Table B.2: Transfer function coe�cients for closed loop model from the MA input to the
PES

a1 a2 a3 a4 a5

1.000e+ 00 −4.249e+ 00 9.056e+ 00 −1.227e+ 01 1.155e+ 01

a6 a7 a8 a9 a10

−8.484e+ 00 6.469e+ 00 −6.604e+ 00 6.817e+ 00 −5.507e+ 00

a11 a12 a13 a14 a15

3.391e+ 00 −2.030e+ 00 2.176e+ 00 −3.511e+ 00 5.012e+ 00

a16 a17 a18 a19 a20

−4.943e+ 00 2.567e+ 00 2.486e− 01 −4.136e− 01 −2.320e+ 00

a21 a22 a23 a24 a25

4.593e+ 00 −3.730e+ 00 1.210e+ 00 −4.791e− 01 2.409e+ 00

a26 a27 a28 a29 a30

−4.765e+ 00 5.322e+ 00 −4.095e+ 00 2.397e+ 00 −1.184e+ 00

a31 a32 a33 a34 a35

7.326e− 01 −9.286e− 01 1.178e+ 00 −7.553e− 01 −2.222e− 01

a36 a37 a38 a39 a40

8.061e− 01 −5.051e− 01 −9.935e− 03 −1.781e− 01 9.067e− 01

a41 a42 a43 a44 a45

−1.128e+ 00 2.591e− 01 1.225e+ 00 −2.437e+ 00 2.866e+ 00

a46 a47 a48 a49 a50

−2.558e+ 00 1.841e+ 00 −1.035e+ 00 4.007e− 01 −7.961e− 02

a51

7.253e− 04

b1 b2 b3 b4 b5

0.000e+ 00 5.728e− 04 −3.502e− 03 2.181e− 02 −2.307e− 02

b6 b7 b8 b9 b10

1.184e− 02 2.428e− 03 3.693e− 02 −1.017e− 01 1.165e− 01

b11 b12 b13 b14 b15

−6.439e− 02 −9.396e− 03 2.662e− 02 −2.232e− 02 1.158e− 02

b16 b17 b18 b19 b20

−9.251e− 03 8.612e− 04 −2.658e− 03 1.715e− 02 2.690e− 03

b21 b22 b23 b24 b25

−5.162e− 02 8.742e− 02 −4.887e− 02 −1.704e− 02 4.850e− 02

b26 b27 b28 b29 b30

−2.695e− 02 4.293e− 03 −1.252e− 02 2.813e− 02 −3.110e− 02

b31 b32 b33 b34 b35

1.957e− 02 −1.902e− 02 1.667e− 02 −1.080e− 02 1.109e− 02

b36 b37 b38 b39 b40

−3.447e− 02 6.441e− 02 −6.432e− 02 3.449e− 02 −5.880e− 03

b41 b42 b43 b44 b45

−1.515e− 03 2.801e− 03 −1.587e− 02 2.739e− 02 −2.851e− 02

b46 b47 b48 b49 b50

2.176e− 02 −2.220e− 02 2.373e− 02 −1.916e− 02 9.094e− 03

b51

−1.900e− 03



135

Bibliography

Åström, K. (1980). Direct methods for nonminimum phase systems. In 1980 19th IEEE Con-
ference on Decision and Control including the Symposium on Adaptive Processes, num-
ber 19, pages 611�615.

Abramovitch, D. and Franklin, G. (2002). A brief history of disk drive control. IEEE Control
Systems Magazine, 22(3):28�42.

Akhtar, M. T., Abe, M., and Kawamata, M. (2006). A new variable step size lms algorithm-
based method for improved online secondary path modeling in active noise control systems.
Audio, Speech, and Language Processing, IEEE Transactions on, 14(2):720�726.

Al Mamun, A., Guo, G., and Bi, C. (2007). Hard disk drive: mechatronics and control,
volume 23. CRC PressI Llc.

Albrecht, T., Arora, H., Ayanoor-Vitikkate, V., Beaujour, J.-M., Bedau, D., Berman, D.,
Bogdanov, A., Chapuis, Y.-A., Cushen, J., Dobisz, E., et al. (2015). Bit patterned mag-
netic recording: Theory, media fabrication, and recording performance.

Albrecht, T. R., Hellwing, O., Ruiz, R., Schabes, M. E., Terris, B. D., and Wu, X. Z.
(2009). Bit-patterned magnetic recording: Nanoscale magnetic islands for data storage.
In Nanoscale Magnetic Materials and Applications, pages 237�274. Springer.

Aphale, S. S., Devasia, S., and Moheimani, S. R. (2008). High-bandwidth control of a
piezoelectric nanopositioning stage in the presence of plant uncertainties. Nanotechnology,
19(12):125503.

Åström, K. J. (1975). Theory and applications of self-tuning regulators. In Control Theory,
Numerical Methods and Computer Systems Modelling, pages 669�680. Springer.

Bagherieh, O., Shahsavari, B., and Horowitz, R. (2015). Online identi�cation of system un-
certainties using coprime factorization with application to hard disk drives. In ASME 2015
Dynamic Systems and Control Conference. American Society of Mechanical Engineers.

Bagherieh, O., Shahsavari, B., Keikha, E., and Horowitz, R. (2014). Observer design for non-
uniform sampled systems using gain-scheduling. In ASME 2014 Conference on Information
Storage and Processing Systems, pages V001T03A004�V001T03A004. American Society
of Mechanical Engineers.

Bai, E.-W., Fu, L.-C., and Sastry, S. S. (1988). Averaging analysis for discrete time and
sampled data adaptive systems. Circuits and Systems, IEEE Transactions on, 35(2):137�
148.

Bengtsson, G. (1977). Output regulation and internal modelsâ��a frequency domain ap-



BIBLIOGRAPHY 136

proach. Automatica, 13(4):333�345.
Beranek, L. L. and Ver, I. L. (1992). Noise and vibration control engineering-principles and
applications. Noise and vibration control engineering-Principles and applications John
Wiley & Sons, Inc., 814 p., 1.

Bitmead, R. R. (1984). Persistence of excitation conditions and the convergence of adaptive
schemes. Information Theory, IEEE Transactions on, 30(2):183�191.

Bittanti, S. and Colaneri, P. (2009). Periodic Systems: Filtering and Control. Communica-
tions and Control Engineering. Springer-Verlag, London.

Bittanti, S. and Moiraghi, L. (1994). Active control of vibrations in helicopters via pole
assignment techniques. Control Systems Technology, IEEE Transactions on, 2(4):343�
351.

Bobtsov, A. A., Kolyubin, S., Kremlev, A. S., and Pyrkin, A. (2012). An iterative al-
gorithm of adaptive output control with complete compensation for unknown sinusoidal
disturbance. Automation and Remote Control, 73(8):1327�1336.

Bode, H. W. et al. (1945). Network analysis and feedback ampli�er design.
Bodson, M. and Douglas, S. C. (1997). Adaptive algorithms for the rejection of sinusoidal
disturbances with unknown frequency. Automatica, 33(12):2213�2221.

Camacho, E. F. and Alba, C. B. (2013). Model predictive control. Springer Science & Business
Media.

Challener, W., Peng, C., Itagi, A., Karns, D., Peng, W., Peng, Y., Yang, X., Zhu, X.,
Gokemeijer, N., Hsia, Y.-T., et al. (2009). Heat-assisted magnetic recording by a near-
�eld transducer with e�cient optical energy transfer. Nature photonics, 3(4):220�224.

Chandrasekar, J., Liu, L., Patt, D., Friedmann, P. P., and Bernstein, D. S. (2006). Adaptive
harmonic steady-state control for disturbance rejection. Control Systems Technology, IEEE
Transactions on, 14(6):993�1007.

Chaplin, B. (1980). The cancellation of repetitive noise and vibration. In INTER-NOISE and
NOISE-CON Congress and Conference Proceedings, volume 1980, pages 699�702. Institute
of Noise Control Engineering.

Chen, X. and Tomizuka, M. (2012). A minimum parameter adaptive approach for rejecting
multiple narrow-band disturbances with application to hard disk drives. Control Systems
Technology, IEEE Transactions on, 20(2):408�415.

Chen, X. and Tomizuka, M. (2013). Selective model inversion and adaptive disturbance
observer for time-varying vibration rejection on an active-suspension benchmark. European
Journal of Control, 19(4):300�312.

Chen, Y. Q., Moore, K. L., Yu, J., and Zhang, T. (2006). Iterative learning control and
repetitive control in hard disk drive industry-a tutorial. In Decision and Control, 2006
45th IEEE Conference on, pages 2338�2351. IEEE.

Chew, K.-K. and Tomizuka, M. (1989). Digital control of repetitive errors in disk drive
systems. In American Control Conference, 1989, pages 540�548. IEEE.

Chou, S. Y., Wei, M. S., Krauss, P. R., and Fischer, P. B. (1994). Single-domain magnetic
pillar array of 35 nm diameter and 65 gbits/in. 2 density for ultrahigh density quantum
magnetic storage. Journal of Applied Physics, 76(10):6673�6675.



BIBLIOGRAPHY 137

Connolly, A. J., Green, M., Chicharo, J. F., and Bitmead, R. R. (1995). The design of
lqg and h∞ controllers for use in active vibration control and narrow band disturbance
rejection. In Decision and Control, 1995., Proceedings of the 34th IEEE Conference on,
volume 3, pages 2982�2987. IEEE.

Constantinides, A. G. (1970). Spectral transformations for digital �lters. In Proceedings of
the Institution of Electrical Engineers, volume 117, pages 1585�1590. IET.

De Roover, D. and Bosgra, O. H. (2000). Synthesis of robust multivariable iterative learning
controllers with application to a wafer stage motion system. International Journal of
Control, 73(10):968�979.

De Wit, C. C. and Praly, L. (2000). Adaptive eccentricity compensation. Control Systems
Technology, IEEE Transactions on, 8(5):757�766.

Dijkstra, B. G. (2004). Iterative learning control, with applications to a wafer-stage. TU
Delft, Delft University of Technology.

Diniz, P. S. (1997). Adaptive �ltering. Springer.
Doh, T.-Y., Ryoo, J., and Chung, M. (2006). Design of a repetitive controller: an application
to the track-following servo system of optical disk drives. IEE Proceedings-Control Theory
and Applications, 153(3):323�330.

Eisenmenger, J. and Schuller, I. K. (2003). Magnetic nanostructures: overcoming thermal
�uctuations. Nature materials, 2(7):437�438.

Elliott, H. (1981). Direct adaptive pole placement with application to nonminimum phase
systems. In Decision and Control including the Symposium on Adaptive Processes, 1981
20th IEEE Conference on, pages 531�536. IEEE.

Elliott, S. and Nelson, P. (1985). The application of adaptive �ltering to the active control
of sound and vibration. NASA STI/Recon Technical Report N, 86:32628.

Elliott, S. J. and Darlington, P. (1985). Adaptive cancellation of periodic, synchronously
sampled interference. Acoustics, Speech and Signal Processing, IEEE Transactions on,
33(3):715�717.

Elliott, S. J. and Nelson, P. A. (1993). Active noise control. Signal Processing Magazine,
IEEE, 10(4):12�35.

Emborg, U. (1998). Cabin noise control in the saab 2000 high-speed turboprop aircraft.
In PROCEEDINGS OF THE INTERNATIONAL SEMINAR ON MODAL ANALYSIS,
volume 1, pages 13�26. KATHOLIEKE UNIVERSITEIT LEUVEN.

Eriksson, K., Estep, D., and Johnson, C. (2013). Applied Mathematics: Body and Soul:
Calculus in Several Dimensions. Springer Science & Business Media.

Eriksson, L. and Allie, M. (1989). Use of random noise for on-line transducer modeling in
an adaptive active attenuation system. The Journal of the Acoustical Society of America,
85(2):797�802.

Feng, G. and Palaniswami, M. (1992). A stable adaptive implementation of the internal
model principle. Automatic Control, IEEE Transactions on, 37(8):1220�1225.

Feuer, A. and Weinstein, E. (1985). Convergence analysis of lms �lters with uncorrelated
gaussian data. Acoustics, Speech and Signal Processing, IEEE Transactions on, 33(1):222�
230.



BIBLIOGRAPHY 138

Feyh, G., Franchitti, J.-C., and Mullis, C. T. (1986). All-pass �lter interpolation and fre-
quency transformation problem. In Proc./20th Asilomar Conf. on Signals, Systems and
Computers, Paci�c Grove, pages 164�168.

Fontana, R. E., Hetzler, S. R., and Decad, G. (2012). Technology roadmap comparisons for
tape, hdd, and nand �ash: Implications for data storage applications. Magnetics, IEEE
Transactions on, 48(5):1692�1696.

Francis, B. A. and Wonham, W. M. (1976). The internal model principle of control theory.
Automatica, 12(5):457�465.

Friedmann, P. P. and Millott, T. A. (1995). Vibration reduction in rotorcraft using active
control-a comparison of various approaches. Journal of Guidance, Control, and Dynamics,
18(4):664�673.

Giri, F., Dion, J., M'Saad, M., and Dugard, L. (1987). A globally convergent pole placement
indirect adaptive controller. In Decision and Control, 1987. 26th IEEE Conference on,
volume 26, pages 1�6. IEEE.

Goodzeit, N. E. and Phan, M. Q. (1997). System and periodic disturbance identi�cation for
feedforward-feedback control of �exible spacecraft. In Proceedings of the 35th Aerospace
Sciences Meeting and Exhibit.

Guan, Y. H., Shepard Jr, W. S., Lim, T. C., and Li, M. (2004). Experimental analysis of an
active vibration control system for gearboxes. Smart materials and structures, 13(5):1230.

Gupta, N. K. (1980). Frequency-shaped cost functionals-extension of linear-quadratic-
gaussian design methods. Journal of Guidance, Control, and dynamics, 3(6):529�535.

Harris, C. M. (1991). Handbook of acoustical measurements and noise control. McGraw-Hill
New York.

Herzog, R. (1994). Active versus passive vibration absorbers. Journal of dynamic systems,
measurement, and control, 116(3):367�371.

Hirano, T., Yang, H., Pattanaik, S., White, M., and Arya, S. (2003). A microactuator for
tracking servo. In STLE/ASME 2003 International Joint Tribology Conference, pages
21�25. American Society of Mechanical Engineers.

Hong, J. and Bernstein, D. S. (1998). Bode integral constraints, collocation, and spillover in
active noise and vibration control. Control Systems Technology, IEEE Transactions on,
6(1):111�120.

Horowitz, R., Li, Y., Oldham, K., Kon, S., and Huang, X. (2007). Dual-stage servo systems
and vibration compensation in computer hard disk drives. Control Engineering Practice,
15(3):291�305.

Houtzager, I., van Wingerden, J.-W., and Verhaegen, M. (2013). Rejection of periodic wind
disturbances on a smart rotor test section using lifted repetitive control. Control Systems
Technology, IEEE Transactions on, 21(2):347�359.

Kamen, E. W. and Heck, B. S. (2000). Fundamentals of signals and systems: using the Web
and MATLAB. Prentice Hall.

Keikha, E., Shahsavari, B., Al-Mamun, A., and Horowitz, R. (2013). A probabilistic ap-
proach to robust controller design for a servo system with irregular sampling. In Control
and Automation (ICCA), 2013 10th IEEE International Conference on, pages 1790�1795.



BIBLIOGRAPHY 139

IEEE.
Kempf, C., Messner, W., Tomizuka, M., and Horowitz, R. (1993). Comparison of four
discrete-time repetitive control algorithms. IEEE Control Systems Magazine, 13(6):48�54.

Khizroev, S. and Litvinov, D. (2006). Perpendicular magnetic recording. Springer Science &
Business Media.

Knospe, C., Hope, R., Tamer, S., and Fedigan, S. (1996). Robustness of adaptive unbalance
control of rotors with magnetic bearings. Journal of Vibration and Control, 2(1):33�52.

Knospe, C. R., Fedigan, S. J., Hope, R. W., and Williams, R. D. (1997). A multitasking dsp
implementation of adaptive magnetic bearing control. Control Systems Technology, IEEE
Transactions on, 5(2):230�238.

Konstanzer, P., Enenkl, B., Aubourg, P., and Cranga, P. (2008). Recent advances in euro-
copter's passive and active vibration control. In ANNUAL FORUM PROCEEDINGS-
AMERICAN HELICOPTER SOCIETY, volume 64, page 854. AMERICAN HELI-
COPTER SOCIETY, INC.

Krukowski, A., Cain, G. D., and Kale, I. (1995). Custom designed high-order frequency
transformations for iir �lters. In Circuits and Systems, 1995., Proceedings., Proceedings of
the 38th Midwest Symposium on, volume 1, pages 588�591. IEEE.

Kuo, S. M. and Morgan, D. (1995). Active noise control systems: algorithms and DSP
implementations. John Wiley & Sons, Inc.

Landau, I. D., Alma, M., Constantinescu, A., Martinez, J. J., and Noë, M. (2011a). Adap-
tive regulationâ��rejection of unknown multiple narrow band disturbances (a review on
algorithms and applications). Control Engineering Practice, 19(10):1168�1181.

Landau, I. D., Constantinescu, A., and Rey, D. (2005). Adaptive narrow band disturbance
rejection applied to an active suspensionâ��an internal model principle approach. Auto-
matica, 41(4):563�574.

Landau, I. D., Landau, Y. D., and Zito, G. (2006). Digital control systems: design, identi�-
cation and implementation. Springer Science & Business Media.

Landau, I. D., Lozano, R., M'Saad, M., and Karimi, A. (2011b). Adaptive control: algo-
rithms, analysis and applications. Springer Science & Business Media.

Landau, I. D., Lozano, R., Mâ��Saad, M., and Karimi, A. (2011c). Indirect adaptive control.
In Adaptive Control, pages 409�456. Springer.

Landau, I. D., Silva, A. C., Airimitoaie, T.-B., Buche, G., and Noe, M. (2013). Bench-
mark on adaptive regulationâ��rejection of unknown/time-varying multiple narrow band
disturbances. European Journal of control, 19(4):237�252.

Lau, J., Joshi, S. S., Agrawal, B. N., and Kim, J.-W. (2006). Investigation of periodic-
disturbance identi�cation and rejection in spacecraft. Journal of guidance, control, and
dynamics, 29(4):792�798.

Leal, R. L. and Landau, I. (1982). Quasi-direct adaptive control for nonminimum phase
systems. Journal of Dynamic Systems, Measurement, and Control, 104(4):311�316.

Li, M., Lim, T. C., Shepard Jr, W. S., and Guan, Y. (2005). Experimental active vibration
control of gear mesh harmonics in a power recirculation gearbox system using a piezoelec-
tric stack actuator. Smart materials and structures, 14(5):917.



BIBLIOGRAPHY 140

Ljung, L. (1977a). Analysis of recursive stochastic algorithms. Automatic Control, IEEE
Transactions on, 22(4):551�575.

Ljung, L. (1977b). On positive real transfer functions and the convergence of some recursive
schemes. Automatic Control, IEEE Transactions on, 22(4):539�551.

Ljung, L. and Söderström, T. (1983). Theory and practice of recursive identi�cation.
Lovera, M., Colaneri, P., Malpica, C., and Celi, R. (2003). Closed-loop aeromechanical
stability analysis of hhc and ibc, with application to a hingeless rotor helicopter. In 29 th
European Rotorcraft Forum.

Lueng, P. (1936). Process of silencing sound oscillations. US Patent 2,043,416.
MacMartin, D. G. (1994). A feedback perspective on the lms disturbance feedforward algo-
rithm. In American Control Conference, 1994, volume 2, pages 1632�1636. IEEE.

Malang, K. and Hutsell, L. (2005). Method and apparatus for calibrating piezoelectric driver
in dual actuator disk drive. US Patent 6,975,123.

Malpica, C. A. (2008). Contributions to the dynamics of helicopters with active rotor controls.
ProQuest.

Marino, R., Santosuosso, G. L., and Tomei, P. (2003). Robust adaptive compensation of
biased sinusoidal disturbances with unknown frequency. Automatica, 39(10):1755�1761.

McEver, M. A., Cole, D. G., and Clark, R. L. (2004). Adaptive feedback control of optical
jitter using q-parameterization. Optical Engineering, 43(4):904�910.

Mehra, R. K. (1970). On the identi�cation of variances and adaptive kalman �ltering.
Automatic Control, IEEE Transactions on, 15(2):175�184.

Miu, D. K. and Bhat, S. P. (1991). Minimum power and minimum jerk position control and
its applications in computer disk drives. Magnetics, IEEE Transactions on, 27(6):4471�
4475.

Moon, J.-H., Lee, M.-N., and Chung, M. J. (1998). Repetitive control for the track-following
servo system of an optical disk drive. Control Systems Technology, IEEE Transactions on,
6(5):663�670.

Moore, J. B. and Mingori, D. L. (1987). Robust frequency-shaped lq control. Automatica,
23(5):641�646.

M'Saad, M., Dugard, L., and Hammad, S. (1993). A suitable generalized predictive adaptive
controller case study: control of a �exible arm. Automatica, 29(3):589�608.

M'saad, M., Ortega, R., and Landau, I. (1985). Adaptive controllers for discrete-time systems
with arbitrary zeros: an overview. Automatica, 21(4):413�423.

M'saad, M. and Sanchez, G. (1992). Partial state reference model adaptive control of mul-
tivariable systems. Automatica, 28(6):1189�1197.

Myers, K., Tapley, B. D., et al. (1976). Adaptive sequential estimation with unknown noise
statistics. Automatic Control, IEEE Transactions on, 21(4):520�523.

Nair, P. B. and Keane, A. J. (2001). Passive vibration suppression of �exible space structures
via optimal geometric redesign. AIAA journal, 39(7):1338�1346.

New, R., Pease, R., and White, R. (1994). Submicron patterning of thin cobalt �lms for
magnetic storage. Journal of Vacuum Science & Technology B, 12(6):3196�3201.

Nowrouzian, B. and Constantinides, A. (1990). Prototype reference transfer function pa-



BIBLIOGRAPHY 141

rameters in the discrete-time frequency transformations. In Circuits and Systems, 1990.,
Proceedings of the 33rd Midwest Symposium on, pages 1078�1082. IEEE.

Nummiaro, K., Koller-Meier, E., and Van Gool, L. (2003). An adaptive color-based particle
�lter. Image and vision computing, 21(1):99�110.

Odelson, B. J., Rajamani, M. R., and Rawlings, J. B. (2006). A new autocovariance least-
squares method for estimating noise covariances. Automatica, 42(2):303�308.

Oppenheim, A. V., Schafer, R. W., Buck, J. R., et al. (1989). Discrete-time signal processing,
volume 2. Prentice-hall Englewood Cli�s.

Panda, S. P. and Lu, Y. (2003). Tutorial on control systems design in tape drives. In
American Control Conference, 2003. Proceedings of the 2003, volume 1, pages 1�17. IEEE.

Pantazi, A., Jelitto, J., Bui, N., and Eleftheriou, E. (2012). Track-following in tape storage:
Lateral tape motion and control. Mechatronics, 22(3):361�367.

Patt, D., Liu, L., Chandrasekar, J., Bernstein, D. S., and Friedmann, P. P. (2005). Higher-
harmonic-control algorithm for helicopter vibration reduction revisited. Journal of guid-
ance, control, and dynamics, 28(5):918�930.

Pearson, J. T. and Goodall, R. M. (1994). Adaptive schemes for the active control of heli-
copter structural response. Control Systems Technology, IEEE Transactions on, 2(2):61�
72.

Pigg, S. and Bodson, M. (2006). Adaptive rejection of sinusoidal disturbances of known
frequency acting on unknown systems. In American Control Conference, 2006, pages
5�pp. IEEE.

Pigg, S. and Bodson, M. (2010). Adaptive algorithms for the rejection of sinusoidal distur-
bances acting on unknown plants. Control Systems Technology, IEEE Transactions on,
18(4):822�836.

Regalia, P. (1994). Adaptive IIR �ltering in signal processing and control, volume 90. CRC
Press.

Rober, S. and Shin, Y. (1996). Control of cutting force for end milling processes using an
extended model reference adaptive control scheme. Journal of Manufacturing Science and
Engineering, 118(3):339�347.

Rokach, L. and Maimon, O. (2005). Clustering methods. In Data mining and knowledge
discovery handbook, pages 321�352. Springer.

Sacks, A. H., Bodson, M., and Messner, W. (1995). Advanced methods for repeatable runout
compensation [disc drives]. Magnetics, IEEE Transactions on, 31(2):1031�1036.

Shahsavari, B., Bagherieh, O., Mehr, N., Tomlin, C., and Horowitz, R. (2016). Optimal
mode�switching and control synthesis for �oating o�shore wind turbines.

Shahsavari, B., Conway, R., Keikha, E., and Horowitz, R. (2012). Robust control design for
hard disk drives with irregular sampling. In APMRC, 2012 Digest, pages 1�2. IEEE.

Shahsavari, B., Conway, R., Keikha, E., and Horowitz, R. (2013a). Limits of performance
in systems with periodic irregular sampling and actuation rates. In Proc. of 6th IFAC
Symposium on Mechatronic Systems, Hangzhou, China.

Shahsavari, B., Conway, R., Keikha, E., Zhang, F., and Horowitz, R. (2013b). h∞ control
design for systems with periodic irregular sampling using optimal h2 reference controller-



BIBLIOGRAPHY 142

s. In ASME 2013 Conference on Information Storage and Processing Systems, pages
V001T03A008�V001T03A008. American Society of Mechanical Engineers.

Shahsavari, B., Conway, R., Keikha, E., Zhang, F., and Horowitz, R. (2013c). Robust track-
following controller design for hard disk drives with irregular sampling. IEEE TRANS-
ACTIONS ON MAGNETICS, 49(6).

Shahsavari, B., Keikha, E., Zhang, F., and Horowitz, R. (2014a). Adaptive repetitive control
using a modi�ed �ltered-x lms algorithm. In ASME 2014 Dynamic Systems and Control
Conference, pages V001T13A006�V001T13A006. American Society of Mechanical Engi-
neers.

Shahsavari, B., Keikha, E., Zhang, F., and Horowitz, R. (2014b). Repeatable runout follow-
ing in bit patterned media recording. In ASME 2014 Conference on Information Storage
and Processing Systems, pages V001T03A001�V001T03A001. American Society of Me-
chanical Engineers.

Shahsavari, B., Keikha, E., Zhang, F., and Horowitz, R. (2015a). Adaptive repetitive con-
trol design with online secondary path modeling and application to bit-patterned media
recording. Magnetics, IEEE Transactions on, 51(4):1�8.

Shahsavari, B., Maasoumy, M., Sangiovanni-Vincentelli, A., and Horowitz, R. (2015b). S-
tochastic model predictive control design for load management system of aircraft electrical
power distribution.

Stol, K. A. and Balas, M. J. (2003). Periodic disturbance accommodating control for blade
load mitigation in wind turbines. Journal of solar energy engineering, 125(4):379�385.

Sun, L., Chen, X., and Tomizuka, M. (2013). Neural-network based automatic pid gain tun-
ing in the presence of time-varying disturbances in hard disk drives. In ASME 2013 Confer-
ence on Information Storage and Processing Systems, pages V001T03A007�V001T03A007.
American Society of Mechanical Engineers.

Sun, L., Chen, X., and Tomizuka, M. (2014). Adaptive suppression of high-frequency wide-
spectrum vibrations with application to disk drive systems. In ASME 2014 Dynamic
Systems and Control Conference, pages V003T52A003�V003T52A003. American Society
of Mechanical Engineers.

Tao, G. (2003). Adaptive control design and analysis, volume 37. John Wiley & Sons.
Tomizuka, M. (1987). Zero phase error tracking algorithm for digital control. Journal of
Dynamic Systems, Measurement, and Control, 109(1):65�68.

Tomizuka, M., Chew, K.-K., and Yang, W.-C. (1990). Disturbance rejection through an
external model. Journal of dynamic systems, measurement, and control, 112(4):559�564.

Tsao, T. and Pong, K. (1991). Control of radial runout in multi-tooth face milling. Trans-
actions of the North American Manufacturing Research Institute of SME, pages 183�190.

Tsao, T.-C. and Bentsman, J. (1996). Rejection of unknown periodic load disturbances
in continuous steel casting process using learning repetitive control approach. Control
Systems Technology, IEEE Transactions on, 4(3):259�265.

Tsypkin, Y. Z. (1997). Stochastic discrete systems with internal models. Journal of Automa-
tion and Information Sciences, 29(4-5).

Ungerboeck, G. (1972). Theory on the speed of convergence in adaptive equalizers for digital



BIBLIOGRAPHY 143

communication. IBM Journal of Research and Development, 16(6):546�555.
Voulgaris, P. G., Dahleh, M. A., and Valavani, L. S. (1994). Hâ�� and h2 optimal controllers
for periodic and multirate systems. Automatica, 30(2):251�263.

WIDROW, B., HOFF, M. E., et al. (1960). Adaptive switching circuits.
Wilby, J. (1996). Aircraft interior noise. Journal of Sound and Vibration, 190(3):545�564.
Wu, B. and Bodson, M. (2003). A magnitude/phase-locked loop approach to parameter
estimation of periodic signals. Automatic Control, IEEE Transactions on, 48(4):612�618.

Wu, B. and Bodson, M. (2004). Multi-channel active noise control for periodic sources -
indirect approach. Automatica, 40(2):203�212.

Wu, S.-C. and Tomizuka, M. (2006). Repeatable runout compensation for hard disk drives
using adaptive feedforward cancellation. In American Control Conference, 2006, pages
382�387.

Yang, J. K., Chen, Y., Huang, T., Duan, H., Thiyagarajah, N., Hui, H. K., Leong, S. H.,
and Ng, V. (2011). Fabrication and characterization of bit-patterned media beyond 1.5
tbit/in2. Nanotechnology, 22(38):385301.

Zhang, F., Keikha, E., Shahsavari, B., and Horowitz, R. (2014a). Adaptive mis-
match compensation for rate integrating vibratory gyroscopes with improved convergence
rate. In ASME 2014 Dynamic Systems and Control Conference, pages V003T45A003�
V003T45A003. American Society of Mechanical Engineers.

Zhang, F., Keikha, E., Shahsavari, B., and Horowitz, R. (2014b). Adaptive mismatch com-
pensation for vibratory gyroscopes. In Inertial Sensors and Systems (ISISS), 2014 Inter-
national Symposium on, pages 1�4. IEEE.

Zhang, M., Lan, H., and Ser, W. (2000). An improved secondary path modeling method for
active noise control systems. IEEE Signal Processing Letters, 7(4):73�75.

Zhang, M., Lan, H., and Ser, W. (2001). Cross-updated active noise control system with
online secondary path modeling. Speech and Audio Processing, IEEE Transactions on,
9(5):598�602.

Zheng, M., Chen, X., and Tomizuka, M. (2014a). Discrete-time frequency-shaped sliding
mode control for audio-vibration rejection in hard disk drivesâ��.Mechanical Engineering.

Zheng, M., Chen, X., and Tomizuka, M. (2014b). A nonlinear feedback control scheme for
transient performance enhancement in hard disk drives. In ASME 2014 Conference on In-
formation Storage and Processing Systems, pages V001T03A003�V001T03A003. American
Society of Mechanical Engineers.

Zheng, M., Chen, X., Wang, H., Kim, Y.-H., Xi, W., and Tu, K.-Y. (2015). Data stor-
age device comprising slew rate anti-windup compensation for microactuator. US Patent
9,007,714.


	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Introduction
	Problem Statement
	Contributions per Chapter

	Nano–positioning in Hard Disk Drives
	Introduction
	Hard Disk Drive Servo Mechanism
	Application to Bit Patterned Media Recording
	Experimental Setup

	Adaptive Feedforward Repetitive Control for Systems with Known Dynamics
	Introduction
	Preliminaries: Filtered–X LMS Algorithm
	Adaptive Control Synthesis
	Parameter Adaptation Algorithm
	Convergence Rate Based on Weighting Parameters
	Variable Adaptation Step Size
	Scheduling Parameters

	Variants of the Algorithm: Time–Domain and Time–Frequency–Domain Frameworks
	Periodic Impulse Train (Time–Domain)
	Periodic Impulse Train for the Filtered–Regressor (Time–Domain)
	Wavelet (Time–Frequency Domain)

	Summary and Conclusion

	Indirect Adaptive Feedforward Repetitive Control for Systems with Unknown Dynamics
	Uncertain System Dynamics
	Online Secondary Path Modeling
	Exogenous Excitation Signal
	Band–Pass Filters for SNR Enhancement in System Identification
	Linear Periodically Time–Varying Realization of the Adaptive Controller
	Summary and Conclusion

	Repeatable Runout Following in HDD Using Indirect Adaptive Control
	Adaptive Feedforward Repetitive Control of Dual–Stage Systems
	Modeling
	Modeling Dynamic Systems
	Modeling Noise Dynamics
	BPMR HDD Simulator
	Control Design for Simulation Study
	Simulation Results

	Implementation Results
	Regressor Implementation


	Direct Adaptive Control for Rejecting Multiple Sinusoidal Disturbances
	Introduction
	Mathematical Preliminaries
	Proposed Direct Adaptive Control
	Parameter Adaptation Algorithm
	Excitation Signal Gain

	Practical Aspects
	B Inversion
	Spectrum Partitioning

	Comparison with Related Work
	Distinctions Between the Algorithm Presented in this Dissertation and Other Methods


	Direct Adaptive Control for Repeatable Runout Following in HDD
	Computer Simulation Results
	Experimental Results
	Time–Invariant System Dynamics and Disturbance Profile
	Time–Varying System Dynamics and Abrupt Changes in Disturbance Profile
	Tracking Repeatable Runout of a BPMR HDD


	Conclusion and Future Work
	Proofs of Theorems in Chapter 6
	Preliminaries
	Regularity Conditions
	Convergence Analysis

	Model Parameters
	Bibliography

