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Abstract

Control Design and Implementation of Hard Disk Drive Servos

by

Jianbin Nie

Doctor of Philosophy in Engineering-Mechanical Engineering

University of California, Berkeley

Professor Roberto Horowitz, Chair

In this dissertation, the design of servo control algorithms is investigated to produce
high-density and cost-effective hard disk drives (HDDs). In order to sustain the
continuing increase of HDD data storage density, dual-stage actuator servo systems
using a secondary micro-actuator have been developed to improve the precision of
read/write head positioning control by increasing their servo bandwidth. In this
dissertation, the modeling and control design of dual-stage track-following servos are
considered. Specifically, two track-following control algorithms for dual-stage HDDs
are developed. The designed controllers were implemented and evaluated on a disk
drive with a PZT-actuated suspension-based dual-stage servo system.

Usually, the feedback position error signal (PES) in HDDs is sampled on some spec-
ified servo sectors with an equidistant sampling interval, which implies that HDD
servo systems with a regular sampling rate can be modeled as linear time-invariant
(LTI) systems. However, sampling intervals for HDD servo systems are not always
equidistant and, sometimes, an irregular sampling rate due to missing PES sampling
data is unavoidable. With the natural periodicity of HDDs, which is related to the
disk rotation, those HDD servo systems with missing PES samples can be modeled
as linear periodically time-varying (LPTV) systems.

An explicit optimal H∞ control synthesis algorithm for general LPTV systems is
first obtained by solving discrete Riccati equations. Then, based on this result, the
optimal H∞ track-following control for irregular-sampling-rate servos is synthesized.
Simulation and experiment studies, which have been carried out on a set of actual
single-stage hard disk drives, demonstrate that the proposed control synthesis tech-
nique is able to handle irregular sampling rates and can be used to conveniently
design a track-following servo that achieves the robust performance of a desired error
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rejection function for disturbance attenuation. Moreover, experiment results show
that compared to the currently-used methodology for irregular sampling rates, the
proposed control algorithm has significantly improved servo performance.

The feedback signal in HDD servos is generated from servo patterns that must be pre-
recorded using servo track writing process before the HDD can be used. Thus, the
quality of the servo track writing process is also crucial to the accuracy of positioning
read/write head. Recently, self-servo track writing has been developed in order to
improve the quality of the written servo patterns and reduce the cost of servo track
writing process. This dissertation considers two novel controller synthesis method-
ologies employing a feedforward control structure for performing concentric self-servo
track writing in hard disk drives. Simulation results confirm that the two proposed
control synthesis methodologies prevent error propagation from the previously written
tracks and significantly improve servo track writing performance.
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Chapter 1

Introduction

1.1 Hard Disk Drive Servo Systems

Since the first magnetic drive was invented in the 1950s by IBM, hard disk drives
(HDDs) have been playing an increasingly important role in our life. Originally, they
were developed for use with general purpose computers such as desktops, laptops
and servers. During the 1990s, HDDs were introduced to embedded systems such
as network attached storage (NAS) systems, redundant array of independent disks
(RAID) systems, and storage area network (SAN) systems that are able to provide
efficient and reliable access to large volumes of data. In the new century, the usage
of HDDs has also been expanded into consumer applications such as digital video
players, digital video recorders, video game consoles, and so on. In order to meet
all of these increasing demands for hard disk drives, HDD companies are facing the
following two critical questions: how to increase the areal density of HDDs and how
to reduce the cost of HDDs. With higher areal densities, more data can be stored
per square inch on the disk and then smaller dimension disk drives become feasible,
which results in less materials required to produce a hard disk drive and thus the
lower cost of HDDs.

Higher areal density requires more precise positioning of the read/write magnetic head
in the presence of various disturbances that will be illustrated in detail in Chapter
2. The head positioning is accomplished by HDD servo systems. This dissertation
focuses on the control design and implementation of HDD servo systems with the
objective of increasing the areal density of hard disk drives.
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1.1.1 Disk Drive Components

As shown in Fig. 1.1, a typical modern hard disk drive mainly consists of one or more
disk platters, a spindle motor, an E-block, suspensions, sliders, magnetic read/write
(R/W) heads, a voice coil motor (VCM), and a pivot. Data is recorded on the spinning
disks, which are made of aluminum or glass with a thin layer of magnetic materials
coated on their both sides. The spinning disks are driven by the spindle motor and
the spinning speed could be distinct for HDDs within different product lines. When
the disk is spinning, the sliders fly on a formed air-bearing surface (ABS) [31]. The
magnetic heads are fabricated on the trailing edge of the slider [28]. The suspension,
a thin flexible structure, carries the slider and read/write head and is also used to
balance the uplifting aerodynamic force due to the spinning disk. In addition, the
suspension is assembled onto the arms of the E-block that lies between the VCM and
the suspension and contains the pivot point. The VCM, which is a rotary actuator,
positions read/write heads on the disks by rotating the E-block about the pivot. Data

Figure 1.1: Schematic of a hard disk drive servo system

bits are stored in concentric circles called tracks on the disk surfaces. They can be
read and written by read and write heads respectively as the heads move over them.
Thus, by controlling the VCM to position the read/write heads, we can access desired
data on different tracks.

1.1.2 Position Error Signal

In order to perform closed-loop feedback control for HDDs, the head position relative
to the track must be provided to servo systems. Such a head position feedback signal
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is referred as a position error signal. Modern hard disk drives utilize an embedded
servo sector strategy [31] to generate the signal when read heads pass over special
magnetic patterns called servo patterns. As shown in Fig. 1.2, servo patterns are
written in designated areas on the disk surface known as servo sectors. Additionally,
servo sectors are placed on all tracks interleaved with data sectors and patterned as
radial spokes.

Servo sector

Data sector

AGC STM Grey coded 

track ID

Servo

burstG
ap

G
ap

Figure 1.2: Embedded servo sectors and different fields in a servo sector

Different fields in a servo sector are also shown in Fig. 1.2 and each of them contains
a specific pattern of magnetization. Usually, these fields [31] are DC-gap field, au-
tomatic gain control (AGC) field, servo timing mark (STM) field, grey coded track
ID field and PES burst pattern field. Among these fields, only the grey coded track
ID field and PES burst pattern field are directly utilized to generate PES. The grey
coded track ID field contains the information about the track number, while the PES
burst pattern is decoded to measure the off-track displacement of the read head from
the track center, i.e, the fraction of track-pitch.

Here, a simple example for servo burst patterns is considered. A setting using A/B
burst patterns [25] is illustrated in Fig. 1.3. When the read head passes over the
bursts, a readback signal will be generated. The generated signal is proportional
to the length of the part of the burst that is covered by the head as it flies over.
Then, the fractional off-track error is generated from the difference between the signal
amplitudes coming from A and B bursts. Modern disk drives utilize other more
complicated burst patterns such as A/B/C/D four-burst patterns, null patterns, and
phase patterns [63] to eliminate dead spots and increase resolution.
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A

B

B

Head

Track center i

Track center i-1

Figure 1.3: Servo patterns with A/B burst to generate fractional off-track error

Since the position feedback signal can only be obtained on the servo sectors that
are located at discrete locations, the disk drive control system is a sampled digital
control system. The sampling frequency is determined by the disk rotation speed
and the number of servo sectors on a disk. For example, a disk drive with 7200
RPM and 220 servo sectors has a sampling frequency of 26.4 KHz (= 7200×220/60).
Although increasing the sampling frequency by increasing the number of servo sectors
can improve servo positioning control, more servo sectors require more space to store
servo patterns and thus reduce data storage efficiency.

The servo patterns used to generate position feedback signals must be pre-recorded
before the HDD can be used. The process of writing servo patterns onto the disk
surface at specific locations of servo sectors is known as servo track writing (STW).
The accuracy and precision of the servo track writing process plays a crucial role in
dictating the ultimate track density and areal storage density of HDDs. There are
two critical control problems [31] associated with the STW process:

• The patterns used to define the tracks and sectors must be placed in a concentric
fashion. Any radial misalignments and eccentricities that occur during the STW
process will later appear as written-in repeatable runout, which degrades servo
performance.

• The servo sectors in a given track must be precisely aligned with those of adja-
cent tracks. Misalignments along the tangential direction (i.e. along the disk’s
circumference) result in non-uniform PES sampling intervals.

In order to carry out a servo track writing process, a position reference signal must
be provided by a servo system when the servo patterns of each concentric track are
being recorded. There are several mechanisms for generating such a position reference
signal, including conventional servo track writing [54], concentric based self-servo
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track writing [59], and spiral self-servo track writing [4].

1.1.3 Track Mis-Registration

The main task of HDD servo systems is to precisely position the read/write head
on the desired track. Tracking performance is typically characterized by track mis-
registration (TMR). TMR is defined as the error from a nominal distance [58], as
shown in Fig. 1.4. Two kinds of TMR concepts, write-to-read TMR and write-to-
write TMR, are popularly considered in HDD servos. Write-to-read TMR is defined as
the difference between the actual read track and the written servo track, while write-
to-write TMR is defined as the difference between the nominal track pitch and the
actual spacing between two adjacent written tracks. Write-to-read TMR, also referred
as servo TMR, is characterized by the statistical distribution of the deviation of the
head from the written servo track, which is measured by PES. Moreover, the PES is
assumed to have a Gaussian distribution and its three-times the standard deviation
3σPES is often used to evaluate TMR.

Track i

Track i+1

Ideal track centerTrack squeeze

Actual head pass

Written servo trackWritten-in TMR
Servo TMR

Figure 1.4: Illustration of track mis-registration

As discussed in the previous section, servo tracks are pre-written in a STW process
during which an error called written-in TMR between the written servo track and
ideal circle track may be introduced. Written-in TMR affects write-to-write TMR by
squeezing adjacent tracks.

TMR can be broken down into a component due to repeatable runout (RRO) and a
component due to non-repeatable runout (NRRO). RRO mainly results from disk ec-
centricity, non-ideal servo track writing (i.e. written-in TMR) [52], and spindle motor
vibration and is hence synchronous with the disk rotation speed. All other runout
other than RRO is referred to as NRRO. Furthermore, non-repeatable runout can
be in turn categorized into torque disturbance, windage, non-repeatable disk motions
and measurement noises. The torque disturbance—which is mainly caused by the
bias force of the flexible cable, the pivot friction and the air-turbulence impinging
on the voice coil motor—is typically a low frequency disturbance. Windage, which
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is mainly due to air-turbulence directly exciting suspension resonance modes, is pri-
marily a high frequency disturbance. Non-repeatable disk motions, which directly
affect the position of R/W head relative to the servo track, result in additional track
runout. Measurement noise, representing the effects of PES demodulation noise, in-
cludes electrical noise and A/D quantization noise.

1.2 Servo Control Architecture

HDD servo control systems [6] mainly involve three kinds of control tasks [1]: track-
seeking control, settling control and track-following control. The head positioning
servomechanism moves the read/write head as fast as possible from one track to an-
other when commanded by the host system (track-seeking control). As the head ap-
proaches the desired track, a transitioning control servomechanism allows the smooth
settling of the head within a small distance from the track while minimizing the
excitation of mechanical vibration (settling control). Once the head is within a suffi-
ciently small distance from the desired data track, its motion is regulated so that it
can follow the center of the data track as precisely as possible during the operation
of reading or writing data (track-following control). This dissertation will focus on
the track-following control synthesis.

- Cfb
PES

d
r

rff

yh
P

Cff

Figure 1.5: Hard disk drive servo control architecture

A typical hard disk drive servo control system can be represented by the block diagram
shown in Fig 1.5. P is the disk drive actuator plant; Cfb and Cff are the feedback
and feedforward controllers respectively; r denotes the reference input, which is zero
in a track-following control mode and a desired position trajectory in a track-seeking
control mode; d represents all of disturbances including RRO and NRRO contributing
to PES; rff is a reference input to the feedforward controller; yh is the absolute
position of the R/W head.

For a track-following control mode, the PES can be written as

PES(k) = S(q−1)d(k)− S(q−1)P (q−1)Cff (q
−1)rff (k) (1.1)
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where S(q−1) is the sensitivity transfer function defined as

S(q−1) =
1

1 + P (q−1)Cfb(q−1)
. (1.2)

As illustrated by (1.1), the head position errors due to disturbances are character-
ized by the transfer sensitivity function S(z) which is often called the error rejection
function. Therefore, the sensitivity transfer function is a crucial index used to spec-
ify and evaluate the performance of HDD servo control systems. Since the major
TMR sources are located in the low-frequency range, the most intuitive way to min-
imize the PES and increase the tracking accuracy is to increase the servo control
bandwidth. However, traditional hard disk drives utilizing a single actuator VCM to
move the head have two major limitations for their bandwidth increase: the VCM/E-
block/suspension actuator assembly is large and massive; multiple mechanical reso-
nance modes in the E-block arms and suspensions lie between the VCM and the heads.
In order to overcome these two limitations, a smaller secondary micro-actuator (MA)
is added to a traditional disk drive to form a dual-stage actuator servo system. Such a
dual-stage assembly is able to increase the servo bandwidth by reducing the load to be
moved by the secondary actuator and avoiding the excitation of some low-frequency
resonance modes of the arm and the suspension.

As illustrated previously, a feedback PES sample is generated when the read head
flies over each servo sector. Since the servo sectors are equally distributed on the
disk, HDD servo systems possess a regular sampling rate whose sampling intervals
are equidistant. Then, those servo systems can be modeled as linear time-invariant
(LTI) systems. However, irregular sampling rates caused by non-equidistant sampling
intervals may also occur in hard disk drives [39], for example in HDD servos with false
PES demodulation and in some self-servo track writing (SSTW) servos with missing
PES sampling data. Thus, the design of these servo systems with irregular sampling
rates should also be considered.

In addition, since any written-in TMR introduced in servo track-writing process will
later appear as written-in repeatable runout, the issue of improving the performance
of servo track-writing process should also be addressed in order to further reduce the
PES.

1.2.1 Dual-Stage Actuation Servo Systems

Dual-stage actuation (DSA), which combines the traditional VCM with an additional
micro-actuator, has been proposed as a means of enhancing servo tracking perfor-
mance by increasing the servo bandwidth. The configurations of dual-stage actuators
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can be categorized into three groups according to the location of the secondary ac-
tuator: actuated suspension, actuated slider and actuated head. In this dissertation,
we will focus on the control design of DSA servo systems with actuated suspensions.

Piezoelectric (PZT) 

Actuator as Micro-actuator

Figure 1.6: A picture of a PZT-actuated suspension (provided by Hutchinson Tech-
nology, Inc..)

Figure 1.6 shows the picture of a PZT-actuated suspension provided by Hutchinson
Technology, Inc. (HTI). Two yellow PZT actuators are placed near the root of the
suspension. They generate a push-pull action when driven by differential voltages.
Meanwhile, a leverage mechanism is utilized to convert and amplify this small actu-
ation displacements into large head motion.

Since dual-stage HDDs have two actuators, a DSA servo system can be represented
by a dual-input-single-output (DISO) system as shown in Fig. 1.7 a). Since the
PZT actuators may also excite some suspension resonances modes, the dual-stage
actuators can be further represented as a DISO system with common suspension
resonance modes as shown in Fig. 1.7 b).

GV

um GM
yh

Gpuv
yh

um

uv

a) The dual-stage actuator

ym

yv

b) Modeling with common resonance modes

Figure 1.7: The block diagram of the dual-stage actuators

For the DSA servo control design, we have to substitute the DISO plant Gp shown
in Fig. 1.7 b) into the plant P in Fig. 1.5. As a result, the feedback controller in the
servo architecture turns out to be a single-input-dual-output (SIDO) system.
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1.2.2 Servo Systems with Irregular Sampling Rates

Although maintaining a regular sampling rate is quite attractive for HDD servos,
sampling intervals for HDD servo systems are not always equidistant and sometimes,
an irregular sampling rate due to missing PES sampling data is unavoidable. For
example, false PES demodulation, due to incorrect servo address mark (SAM) de-
tection [17] or damaged servo patterns in several servo sectors, makes the feedback
PES unavailable in those servo sectors, resulting in an irregular sampling rate. In
this dissertation, the unavailability of feedback signals at a given sampling instance
is referred to as a “missing sample”. In addition, irregular sampling rates also fre-
quently occur during self-servo track writing process [4]. For example, during some
SSTW processes, the time of writing final concentric servo patterns may coincide with
the time of reading the feedback position error signal from previously written servo
patterns. This conflict, caused by the fact that an HDD servo system can not read
and write at the same time, is referred to as a “collision” of reading the PES with
writing the final servo pattern. Such a collision makes the feedback signal unavailable
resulting in an irregular sampling rate.

For the servo design of disk drives with these irregular sampling rates, we consider
the block diagram of the actuator plant shown in Fig. 1.8. In the figure, y(k) is a new
feedback signal fed into the feedback controller Cfb in the servo control architecture
illustrated in Fig. 1.5. Moreover, y is switched to PES when the PES is available,
while y is switched to zero when the PES is unavailable [34].

P
u(k)

y(k)

PES(k)

0

yh(k)

d(k)

Figure 1.8: The block diagram of HDD servos with irregular sampling rates

Generally speaking, the location of damaged servo sectors and the collision in the self-
servo track writing process is consistent on each single servo track. In other words,
the unavailability of PES for HDD servo systems takes place at some fixed and pre-
determined positions for a given track. Furthermore, by considering that the natural
periodicity of HDDs is related to the disk rotation, the servo system from the input
u(k) to the output y(k) shown in Fig. 1.8 can be represented by a linear periodically
time-varying system with period equal to the number of servo sectors.
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1.2.3 Concentric Self-Servo Track Writing Servos

Self-servo track writing is an alternative method of writing servo patterns using the
HDD’s own reading and writing heads and servo system in order to decrease manufac-
turing cost and improve productivity as well as improve servowriting quality. The two
most popular methodologies currently used by the HDD industry are the so-called
concentric and spiral SSTWs. However, we will only focus on the servo design of
concentric self-servo track writing in this dissertation.

In the concentric SSTW process, the timing and radial position reference information,
which is used by the servo system to write the servo patterns for the current track
using the write head, is read from the servo patterns that were written for the previous
track using the read head. Because both timing information and radial position
information are read by the read head from the previously written track, two separate
feedback loops [31] are utilized in an SSTW control system. The radial position
control loop controls the radial position of the write head relative to the radial position
of the previous track, in order to record servo pattern tracks in a concentric fashion.
Simultaneously, timing information is collected by the read head reading the servo
patterns on the previous track for the timing control loop. With the aid of a phase
lock loop (PLL), the timing control loop determines when to start recording the servo
information of the current track so as to maintain a precise alignment of the servo
sector information along the disk’s circumference. Since the control design of these
two control loops is similar, this dissertation will only focus on the servo control of
the concentric SSTW radial position control loop.

-
Cfb

PESi(k)

di(k)

yi-1(k) ei(k)

ei-1(k)

yi(k)
P

F

Figure 1.9: The control structure of SSTW servos with feedforward control

Figure 1.9 shows the block diagram of the concentric SSTW servo system. The system
includes a feedback loop with the actuator plant P and the feedback controller Cfb.
In the figure, i and k denote the track index and servo sector index respectively,
while △yi(k) and di(k) respectively denote the track error and overall disturbances
contributing to PES at the track position i and servo sector k. Since concentric
self-servo track writing systems track-follow a previously written track using the read
head, while writing the servo patterns for the current track using the write head, the



11

reference input becomes △yi−1(k). As a result, track errors, which came into being
when the previous track was written, can propagate into the currently written track.

As illustrated in Section 1.1.2, servo sectors on the current track must be aligned
with the corresponding servo sectors on the previously written tracks. Therefore, by
introducing a gap delay [50] between the read head and the write head, the “collision”
of reading PES and writing servo patterns does not occur in concentric self-servo
track writing process. Consequently, concentric SSTW servo systems can be treated
as linear time-invariant systems [38].

An efficient and frequently used technique to prevent radial positioning error propa-
gation in concentric SSTW servo systems is to incorporate a feedforward controller F ,
as depicted in Fig. 1.9. In this case, the control architecture includes a feedback com-
pensator Cfb to attenuate disturbances and a feedforward compensator F to contain
the error propagation from the previously written tracks. The feedforward control F
generates an additional control action that is added to PESi(k) in order to generate
the error signal ei(k) that is fed to the feedback compensator, by using the error
signal, ei−1(k) that was generated when the previous track was written, as its input
signal.

1.3 Research Objectives

This dissertation addresses the issue of disturbance attenuation to improve servo con-
trol performance in hard disk drives. The ultimate research objective is to develop
control strategies in order to increase the storage density and reduce the manufac-
turing cost in HDDs. Recently, hard disk drives with the dual-stage actuator con-
figuration have been deployed so as to increase their servo bandwidth. Accordingly,
many dual-stage control design methodologies have been developed, including those
based on single-input-single-output (SISO) design methods (such as sensitivity de-
coupling method [29], PQ method [43] and parallel design method [44]) and those
based on modern optimal control design methods (such as LQG [10], H∞ control [48],
µ-synthesis [23], mixed H2/H∞ control [46], etc). In order to further improve HDDs’
servo performance, the first objective of this dissertation is to develop new track-
following controller design methodologies for dual-stage HDDs and evaluate them
through experiment studies.

Since the control theory for linear time-invariant (LTI) systems has been well studied,
most of HDD servos are designed based on a regular sampling rate, i.e. equidistant
sampling intervals. However, sometime an irregular sampling rate caused by missing
PES sampling data is unavoidable, for example, HDD servos with false PES demod-
ulation and some self-servo track writing servos with missing PES sampling data. So
far, not much attention has been paid to these irregular sampling rates in previous
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work. The second objective of this dissertation is to develop control design method-
ologies to handle irregular sampling rates and thus to improve the servo performance
for hard disk drives with missing PES sampling data.

As discussed in Section 1.1.2, position feedback signals for HDD servos are generated
from the pre-written servo patterns on the disks and any written-in TMR introduced
in servo track-writing process will later appear as written-in repeatable runout. Re-
cently, concentric self-servo track writing techniques have been proposed to improve
the servo track-writing quality and reduce its cost. The third objective of this disser-
tation is to investigate the novel control schemes of concentric SSTW servos in order
to improve their servo track-writing performance.

1.4 Outline of the Dissertation

The dissertation is organized as follows. Chapter 2 discusses the design and implemen-
tation of track-following dual-stage servo systems. In this chapter, the experimental
setup is described, an dual-stage servo system with an actuated-suspension assembly
is modeled, and dual-stage track-following controllers are designed and implemented
based on two proposed control design methodologies.

Chapters 3 and 4 present the optimal H∞ control synthesis for HDDs with irregu-
lar sampling rates. In Chapter 3, optimal H∞ control is extended to general linear
periodically time-varying systems. Subsequently, a simulation study is conducted
to evaluate the effectiveness of the H∞ control design algorithm for LPTV systems
derived in Chapter 3 on single-stage HDDs with both single-rate and multi-rate sam-
pling and actuation. Finally, in Chapter 4, experimental studies are conducted on a
set of single-stage HDDs with irregular sampling rates, which corroborates theoretical
simulation results.

Chapter 5 discusses the servo design of concentric self-servo track writing. In this
chapter, two novel control design methodologies are developed based on a feedforward
control structure. In addition, a simulation study is provided to evaluate the proposed
methodologies.

Chapter 6 concludes the dissertation by summarizing the results and major achieve-
ments. Future work is also discussed.



13

Chapter 2

Track-Following Control Design
and Implementation of Dual-Stage
HDDs

The continuously increasing storage capacity of hard disk drives poses a great chal-
lenge to precisely position the read/write head on the desired track. Typically, track-
ing performance is measured by track mis-registration (TMR). As discussed in the pre-
vious chapter, TMR can be broken down into a component due to repeatable runout
(RRO) and a component due to non-repeatable runout (NRRO). RRO mainly results
from disk eccentricity, non-ideal servo track writing [52], and spindle motor vibration
and is hence synchronous with the disk rotation speed. NRRO can be categorized into
torque disturbance, windage, non-repeatable disk motions and measurement noises.
The torque disturbance, which is mainly caused by the bias force of the flexible ca-
ble, the pivot friction and the air-turbulence impinging on the VCM, is typically a
low frequency disturbance. Windage, which is mainly due to air-turbulence directly
exciting suspension resonance modes, is primarily a high frequency disturbance. Non-
repeatable disk motions, which directly affect the position of R/W head relative to
the servo track, result in additional track runout. Measurement noise, representing
the effects of PES demodulation noise, includes electrical noise and A/D quantiza-
tion noise. The goal of HDD servo systems is to reduce TMR as much as possible. A
great deal of research effort has been focused on the development of disturbance rejec-
tion algorithms for canceling RRO, such as adaptive feedforward cancelation (AFC)
[42, 62] and this topic will not be pursued in this dissertation.

In this chapter, we present two track-following control designs for dual-stage servo
systems. The first controller was designed by combining an outer loop sensitivity-
decoupling controller with an inner loop disturbance observer [55]. Two different Q
filters were utilized in the inner-loop disturbance observer (DOB) to achieve both
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good disturbance rejection and robust stability, by considering that the plant uncer-
tainties for the VCM and the microactuator are quite different. The second track-
following design technique is based on the idea of minimizing the H2 norm of the
nominal closed-loop system for a good performance as well as satisfying an H∞ norm
constraint for the robust stability. This idea turns out to be a mixed H2/H∞ con-
trol problem [37] that is usually transformed into a convex optimization with linear
matrix inequalities (LMIs). However, the mixed H2/H∞ control synthesis through
a convex optimization using LMIs may result in significant conservatism. A third
controller design technique is discussed in this chapter, which consists in tuning a
nominal H2 controller by adjusting control input frequency shaped weightings. It is
shown that such a design achieves better robust performance than the mixed H2/H∞
control synthesis technique. In addition, an add-on integral action is incorporated
so as to suppress constant and low-frequency disturbances. The designed controllers
are implemented on a PZT-actuated suspension dual-stage servo system, which uti-
lizes the micro-actuator to bend the suspension in order to generate a controlled fine
radial head motion. The servo system’s PES is obtained from the output of a laser
Doppler vibrometer (LDV), which measures the absolute radial slider displacement.
Since such a setup does not have track runout, a computer generated runout signal
is injected into the control system to simulate track motion.

2.1 Test Setup and Modeling of the Dual-Stage

Servo System

2.1.1 Experimental Setup

Figure 2.1 shows a picture of the experimental setup used in this research. A PZT-
actuated suspension was assembled to an arm of the E-block of a commercial 3.5” 7200
RPM disk drive. A LDV was utilized to measure the absolute radial displacement of
the slider. The resolution of the LDV is 2 nm for the measurement gain of 0.5 µ/V.
The control circuits include a Texas Instrument TMS320C6713 DSP board and an
in-house made analog board with a 12-bit ADC, a 12-bit DAC, a voltage amplifier
to drive the MA, and a current amplifier to drive the voice coil motor (VCM). The
DSP sampling frequency is 71.4 KHz in this chapter. And the input delay including
ADC and DAC conversion delay and DSP computation delay is 6 µs. A hole was cut
through the case of the drive to make laser shine into the drive. It should be noted
that these modifications affected the response of the drive and may have detrimentally
affected the attainable performance of the servo system, as will be discussed in Section
2.3.
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Amplifier

LDV

DSP

PZT-actuated

suspension

Figure 2.1: DSA experimental setup

2.1.2 Dual-Stage Actuator Modeling

The frequency response of the VCM shown in Fig. 2.2, was measured from the input
of its current amplifier to the slider motion, while the frequency response of the
microactuaor shown in Fig. 2.3, was measured from the input of its voltage amplifier
to the slider motion. The experimentally-obtained frequency responses show that the
flexi-cable mode is around 160 Hz and the microactuator resonance mode is around 18
KHz. Then, we did frequency response fitting for the experiment frequency responses
by using Weighted Least Square (WLS) techniques. Consequently, the fitted VCM
and micro-actuator transfer functions have 12 states and 10 states respectively.

10
2

10
3

10
4

−100

−50

0

M
ag

ni
tu

de
 (

dB
)

 

 

10
2

10
3

10
4

−600

−400

−200

0

Frequency (Hz)

P
ha

se
 (

de
g)

 

 

Experiment data
Identified model

Figure 2.2: VCM frequency response

The experiment frequency responses show that the VCM and the micro-actuator have
some common suspension resonance modes. In order to reduce the system order, all
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Figure 2.3: PZT micro-actuator frequency response

of the five suspension modes are treated as common modes. Then, the dual-stage
actuator system was modeled as a double-input-single-output system with 12 states
after the common mode identification. The simulated frequency responses for the
identified VCM and MA models are shown in Fig. 2.2 and Fig. 2.3 respectively. With
the identified disturbances presented in the following section, the complete dual-stage
servo system is modeled as the block diagram illustrated in Fig. 2.4.
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Figure 2.4: Modeling of complete DSA servo

2.1.3 Disturbance Identification

Measurement noise dn

As the LDV integrates velocity signals to calculate displacement signals, its displace-
ment measurement has a low frequency drift, which can be seen from the LDV mea-
surement noise power spectrum density (PSD) shown in Fig. 2.5. The low frequency
measurement noise can be considered as runout and is captured by a second order
low-pass filter shown in Fig. 2.5. At high frequency, the LDV measurement noise was
modeled as a white noise with σn = 1.3 nm.
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Figure 2.5: LDV measurement noise power spectrum density

Windage torque disturbance identification dw

The windage torque disturbance—which is caused by the air-turbulence impinging
on the VCM and directly exciting the suspension modes and is known to be a broad
band excitation—is assumed to a white noise and denoted by the input signal dw to
VCM in Fig. 2.4. The amplitude σw was estimated by matching the power spectrum
density of the absolute open-loop slider motion with the VCM plant.

Runout identification dw

Although there is no track runout for our experimental setup, a runout model, char-
acterized from the track runout data of a real drive, was included to make our control
design more realistic. The real track runout caused by disk vibrations has several disk
modes between 1 KHz and 3 KHz. In order to make the control synthesis simple, the
disk mode peaks were characterized by a second order envelop shown in Fig. 2.6. Note
that the LDV low frequency measurement noise was also treated as runout and the
measurement noise is much higher than the real track runout at low frequency. Then,
the LDV low frequency measurement noise and the second-order envelop for the disk
modes were combined to construct the complete runout model shown in Fig. 2.6. The
root-mean-square (RMS) value of this runout model is 118.12 nm.
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Figure 2.6: Complete runout model

Low frequency torque disturbance dt

The torque disturbances due to the bias force of the flexible cable and the pivot friction
have nonlinearities, which makes it difficult to model these disturbances. However,
these torque disturbances are mainly at low frequency. Thus, to reject these torque
disturbances, we just incorporated an integral action into the controllers instead of
modeling these torque disturbances.

2.2 DSA Track-Following Control Design

2.2.1 Disturbance Observer Design

Design methodology

Disturbance observer control has been broadly used in mechatronic systems to do
disturbance rejection with a properQ filter selection [27]. In this chapter, we extended
this technique to dual-stage actuation servo systems. By considering that the VCM
and the micro-actuator have different plant uncertainties, two different Q filters were
designed to achieve both good performance and robust stability. The sensitivity-
decoupling dual-stage servo technique [29] was used to design the servo system’s
outer loop control. Figure 2.7 shows the block diagram of the disturbance observer,
where Gn

V , G
n
M and dtot represent the nominal VCM plant, the nominal MA plant and
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the overall effect of all disturbances respectively. Note that here the nominal plants
Gn

V and Gn
M are required to be minimum phase [51]. Their magnitude bode plots are

shown in Fig. 2.8.
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Figure 2.7: Dual-stage disturbance observer control design
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Figure 2.8: Nominal plants for VCM and MA

Then the PES can be written as:

PES(s) =

1−Q2(s)
1−Q1(s)

GV (s)V1(s) +GM(s)V2(s) + (1−Q2(s))dtot(s)

1
2

(
1 +Q2(s)△2(s) +

1−Q2

1−Q1
(1 +Q1(s)△1(s))

) (2.1)

where△1 and△2 are respectively the VCM and MA model uncertainties, i.e. GV (s) =
Gn

V (s)(1 +△1(s)) and GM(s) = Gn
M(s)(1 +△2(s)). For the robust stability, the Q1



20

and Q2 must satisfy the following constraint∥∥∥∥(1−Q1)Q2△2 + (1−Q2)Q1△1

1−Q1 + 1−Q2

(s)

∥∥∥∥
∞

< 1 . (2.2)

By considering the arbitrariness of △1 and △2, the robust stability constraint is
transformed to the following constraint

|(1−Q1)Q2△2(jω)|+ |(1−Q2)Q1△1(jω)|
|(1−Q1 + 1−Q2)(jω)|

< 1, for ∀ω . (2.3)

Selection of Q filters

Equation (2.1) shows that the disturbance error rejection transfer function of the
servo system can be shaped by changing Q1(s) and Q2(s). In addition, the Q filters
must be designed to satisfy the robust stability requirement in (2.3). Since many
of the largest disturbances are at low frequency, the selection of high-pass filters of
1−Qi (i = 1, 2) facilitates the low frequency disturbance rejection. Such a selection
makes Qi (i = 1, 2) be low-pass filters and thus facilitates the attainment of the robust
stability as well, since plant uncertainties are significant at high frequency. Moreover,
in order to follow the track runout due to disk motions, Q2 was designed to achieve
good attenuation at the 1 KHz to 2 KHz frequency range for the overall sensitivity
function from dtot to PES shown in Fig. 2.7. In addition, by considering that the
micro-actuator has less uncertainty than the VCM at high frequency, we designed
the Q filters in such way that the DC gain of Q2 for the MA is higher than that
of Q1 for the VCM and the corner frequency of Q2 is also higher than that of Q1.
In order to minimize the order of the synthesized controller, the filters were chosen
as first-order systems. Figure 2.9 shows the final selection of the Q filters. In order
to verify the attainment of the robust stability constraint in (2.3), the magnitude of
its left term, shown in Fig. 2.10, was calculated by replacing △1 and △2 with the
differences between the nominal plants and the experiment frequency responses.

Outer loop control design

The outer loop controller was designed using the standard sensitivity-decoupling syn-
thesis technique [29]. The VCM loop controller was designed to have a PI controller
with a lead compensator and a notch filter to attenuate the biggest resonance peak
at 9.06 KHz. The resulting gain crossover frequency for the VCM loop sensitivity
function is 587 Hz. Since the microactuator has higher bandwidth than the VCM,
the MA loop achieves a higher gain crossover frequency at 1.64 KHz, by designing
the MA loop controller as a lag compensator with three notch filters to attenuate the
three resonance peaks at 14.70 KHz, 17.71 KHz and 29.34 KHz. The corresponding
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design results are shown in Fig. 2.11. The resulting gain margin, phase margin and
gain crossover frequency for the overall outer loop are 6.72 dB, 28.8◦ and 1.34 KHz
respectively.
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Figure 2.11: Sensitivity functions for DOB control design

As shown in Fig. 2.11, by using the disturbance observer outlined in this section, the
overall gain margin, phase margin and gain crossover frequency can be improved to
be 6.83 dB, 30.7◦ and 2.08 KHz respectively.

2.2.2 Mixed H2/H∞ Control Problem with Add-on Integral
Action

Design methodology

In this section the dual-stage track-following servo synthesis problem is formulated by
minimizing the variance of the PES while maintaining robust stability in the presence
of plant input multiplicative unstructured uncertainties described as

P (s) = Pn(s)

(
I2 +

[
W△V (s) 0

0 W△M(s)

])
, ∥△(s)∥∞ < 1 . (2.4)
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W△V and W△M are respectively the VCM and MA uncertainty weighting functions,
which must be selected by the designer. Based on the plant identification presented in
Section 2.1, W△V and W△M were designed as first-order systems shown in Fig. 2.12.
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Figure 2.12: Uncertainty weighting functions

The linear fractional transformation (LFT) for the mixed H2/H∞ control design is
shown in Fig. 2.13, in which the transfer function from d∞ to z∞ is used to measure
the robust stability and Wu is a control input weight tuning value. In addition, the
two tuning parameters γ1 and γ2 were introduced to analyze the conservatism in the
control synthesis, which will be presented later. Then the optimal control synthesis
can be written as the optimization problem in

min
K

∥Td2←z2∥2

s.t. ∥Td∞←z∞∥∞ < 1 (2.5)

where “TB←A” means the closed-loop transfer function from input “A” to output “B”
and “∥T∥2” is the H2 norm of the transfer function “T”.

Mixed H2/H∞ control synthesis

To make the designed controller more implementable, mixed H2/H∞ controllers were
synthesized in discrete-time domain. There are several control synthesis methods [7]
to solve (2.5). In this chapter, a convex optimization approach via linear matrix
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Figure 2.13: LFT for mixed H2/H∞ control synthesis

inequalities [22] was utilized for the control synthesis. The closed loop system with

the output
[
zT∞ zT2

]T
from the input

[
dT∞ dT2

]T
can be written as:

Gcl =

 Acl Bcl∞ Bcl2

Ccl∞ Dcl∞∞ Dcl∞2

Ccl2 Dcl2∞ Dcl22

 . (2.6)

Then, by using the ideas of the congruent transformation, the optimization in (2.5)
can be formulated as:

min
K,W,P2,P∞

trace(W )

s.t.

W C̄cl2P2 D̄cl2

∗ P2 0
∗ ∗ I

 ≻ 0

P2 ĀclP2 B̄cl2

∗ P2 0
∗ ∗ I

 ≻ 0


P∞ AclP∞ Bcl∞ 0
∗ P∞ 0 P∞C

T
cl∞

∗ ∗ I DT
cl∞

∗ ∗ ∗ I

 ≻ 0 (2.7)

where the symbol “*” denotes the transpose of the corresponding element at its
transposed position. The equivalence between the two optimizations does not require
P2 = P∞. However, it is necessary to impose the constraint

P2 = P∞ = P (2.8)

to recover the convexity of the mixed H2/H∞ optimization [22]. The price of this
restriction is that, as will be shown in the results that will be subsequently presented,
a significant conservatism is thus brought into the design.

As the parameters γ1 and γ2 are reduced to 0, the solution of the mixed optimization
H2/H∞ optimization given by (2.7) and (2.8) converges to the nominal H2 design.
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However, with γ1 = γ2 = 1 the solution of the mixed H2/H∞ optimization given
by (2.7) and the imposition of the constraint by (2.8) results in a very conservative
control design. As illustrated in Fig. 2.14, the mixedH2/H∞ control synthesis through
the convex optimization approach attains a significantly worse performance than that
attained by the nominal H2 design which will be discussed in next section. Moreover,
reducing the control input weighting function Wu to zero (“cheap” control), did not
significantly alter the closed-loop sensitivity function from runout to PES of the mixed
H2/H∞ design, as shown in Fig. 2.14.

Nominal H2 control with robust stability

Since the mixed H2/H∞ control synthesis by using LMI optimization with (2.7) and
(2.8) is too conservative to produce a good servo performance, another approach
using the idea of the mixed H2/H∞ control problem is considered. Specifically, a
controller was synthesized by the nominal H2 control synthesis technique in which
the input weighting value Wu was tuned to guarantee that the H∞ norm constraint
in (2.5) can be satisfied. In addition, the control actuation, by the designed nominal
H2 controller which resulted from the tuned control input weighting value, must be
appropriate under the HDD hardware constraints such as the range limit for control
actuation signals.

With the choice of Wu = 0.1 ∗ I2, the designed controller achieves the robust stability
with ∥Tz∞←d∞∥∞ = 0.941 < 1. The resulting sensitivity function from runout to PES
for the nominal H2 control is shown in Fig. 2.14. Obviously, the servo performance of
the nominal H2 control is much better than that of the mixed H2/H∞ control using
the LMI optimization. As a result, we decided to implement the designed nominal
H2 controller so as to evaluate its performance on an actual hard disk drive.

In order to investigate the benefit of the micro-actuator, the sensitivity function
from runout to PES was decomposed into a product of a VCM sensitivity function
and a MA sensitivity function, following the procedure in the sensitivity-decoupling
design technique [29]. As shown in Fig. 2.15, the gain crossover frequency of the
MA sensitivity transfer function is 5.48 KHz, which means the microactuator has a
significant impact in high frequency disturbance rejection.

Add-on integral action

An integral action was added onto the designed nominal H2 controller to attenuate
low frequency disturbances such as torque disturbances. Because of the small moving
range of the PZT actuator, the integral action was only added onto the VCM controller
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like

K̃(z) =

[
g z−z0

z−1 0

0 1

]
∗K(z) . (2.9)

In order to avoid degrading the performance of the original control, the parameters
were chosen as g = 1, z0 = 0.9972. With the add-on integral action, the constraint
for the nominal H2 control changes to ∥Td∞→z∞∥∞ = 0.939 < 1.

2.3 Implementation Results

2.3.1 Simulated Track Runout

In order to obtain a realistic evaluation of the dual-stage servo system performance, we
used a computer generated runout signal to simulate track motions. The simulated
track runout whose 3σ value is 11.4 nm, was generated from the power spectrum
density of the real track runout data.

2.3.2 Experimental Results

In order to validate our system identification and control designs, the closed-loop sen-
sitivity functions were first measured by using the sinusoidal sweeping signal. Because
of the conservatism of the mixed H2/H∞ control, only the nominal H2 control, which
exhibited the better performance and the robust stability was implemented. The ex-
perimental results for the DOB baseline control (sensitivity-decoupling control) are
shown in Fig. 2.16; the experimental results for the disturbance observer control with
the base line control are shown in Fig. 2.17; the experimental results for the nominal
H2 control are shown in Fig. 2.18.

To analyze the closed-loop time-domain PES, 2048-point PES was recorded by the
DSP. To highlight the advantage of the disturbance observer, the outer-loop sensitivity-
decoupling controller was also implemented. The fast Fourier Transform (FFT) of
the closed-loop PES without repeatable runout for the designed controllers is shown
in Fig. 2.19.

The designed controllers in this chapter aim at rejecting non-repeatable runout, since
repeatable runout can be canceled very well by using some specific compensators, such
as adaptive feedforward cancelation [42, 62]. Therefore, it is helpful to take repeatable
runout components out from the closed-loop PES to evaluate the designed controllers.
Table 2.1 shows 3σ PES values for the designed controllers without repeatable runout
components respectively.
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Table 2.1: Dual-stage track-following control implementation results

3σ PES w/o RRO (nm)
SD control 17.0

Disturbance observer 13.1
Nominal H2 control 9.4

2.3.3 Experimental Result Discussion

For the areal density of 1 Tb/in2, the track pitch is approximately 50 nm, which
requires that the 3σ TMR budget should be approximately 5 nm. In our experiments,
the PZT-actuated suspension based dual-stage servo system achieved the best 3σ PES
of 9.4 nm without repeatable runout. However, there are several factors that may
detrimentally affect the servo performance in our experimental setup, making our
results too pessimistic.

First, the LDV resolution is 2 nm, while the real PES resolution (8-bit PES) for the
track pitch of 50 nm is around 0.2 nm. In addition, the LDV measurement noise
at low frequency caused by the low frequency drift is quite high and the RMS value
of the measurement noise is of the order of magnitude of 100 nm. Second, in our
experiment one arm of the E-block was cut out, which may affect the original opti-
mal structural dynamics of the E-block. Furthermore, we mounted the PZT-actuated
suspension on the E-block by using a screw and E-POXY, which may introduce addi-
tional vibrations. Also, the disk drive we used in the experiment was modified from
an off-the-shelf single stage commercial drive. Thus, the PZT-actuated suspension
may not match the E-block very well and the slider flying height may not be set to
its optimal value during the experiment.

2.4 Conclusion

In this chapter, two dual-stage track-following control design methodologies, the dual-
stage disturbance observer with the sensitivity-decoupling control and the control
using the idea of the mixed H2/H∞ problem, were developed. With the proposed
dual-stage DOB technique, it is very convenient to make use of the loop-shaping
scheme to design HDD servos by choosing two appropriate Q filters for VCM and MA
respectively. Because of the conservatism of mixed H2/H∞ control synthesis using
LMIs, a controller was alternatively designed using nominal H2 control in which the
control input weighting value was tuned to achieve robust stability. Consequently,
the designed nominal H2 control achieves not only good performances but also the
robust stability. In addition, an integral action was incorporated into the designed
nominal H2 control in order to attenuate low frequency disturbances. The designs
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were experimentally validated using a dual-stage servo system with a PZT-actuated
suspension. The sensitivity-function crossover frequency of the disturbance observer
design is 2.08 KHz and that of the H2 design is 3.67 KHz. The 3σ PES without
repeatable runout for the disturbance observer design is 13.1 nm, while the 3σ PES
without repeatable runout for the H2 design is 9.4 nm.
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Chapter 3

Optimal H∞ Control of Linear
Periodically Time-Varying HDD
Servos

As discussed in Chapter 1, an irregular sampling rate caused by missing PES sam-
pling data sometime is unavoidable, and HDD servos with missing PES samples can
be modeled as linear periodically time-varying (LPTV) systems. In fact, this class of
systems is frequently encountered in mechatronic systems including hard disk drives
in which the rotation of the disks induces periodic dynamic phenomena [42, 23, 39].
Moreover, as illustrated in this chapter, HDD servo systems with multi-rate sampling
and actuation [12] can be easily represented as linear periodically time-varying sys-
tems for control synthesis purposes. Therefore, the control design of general linear
periodically time-varying systems will be first considered.

H∞ control is a popular control design methodology for synthesizing control systems
that achieve robust stability or even robust performance. In addition, through the
use of classical loop-shaping techniques, it is possible to design H∞ controllers that
that attain robust performance across an entire span of HDD units in a product
line, by guaranteeing that each unit satisfy a minimum level of error rejection loop
shaping. These techniques are potentially attractive in the design of mass-market
mechatronic devices, such as HDDs, where consistent performance must be attained
among tens of thousands of units in a given product line [21]. Furthermore, it is
useful to extend these optimal H∞ control design techniques to HDD servos with
multi-rate sampling and actuation and missing PES sampling data. Since these servos
are naturally modeled as linear periodically time-varying systems, the optimal H∞
control synthesis for general LPTV systems will be addressed in this chapter.

Since the pioneering work of Zames in [61], significant progress has been made in the
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design of optimal H∞ control. In [15], a state-space solution to standard H∞ control
problems was given for continuous-time linear time-invariant (LTI) systems. As stated
in [24], even though H∞ control problems for discrete-time LTI systems can be solved
by using the well-known bilinear transformation, it is more beneficial to solve the
problems directly in the discrete-time domain. Peters and Iglesias [41] considered H∞
control synthesis techniques for discrete-time linear time-varying (LTV) systems via
the minimum-entropy control paradigm. The authors provided a procedure for solving
output feedback H∞ control synthesis problems for discrete-time LTV systems, by
breaking the overall problem into a series of simpler control problems. The results and
ideas presented in [41] are utilized here to derive explicit and implementable solutions
for the minimum entropy H∞ control of LPTV systems, using Riccati equations.
Although it is possible to solve these types of problems as semi-definite programs
(SDP) involving linear matrix inequality (LMI) constraints [8], we have found that the
solutions via Riccati equations are often more computationally efficient and accurate
than their corresponding SDP solutions [11].

The optimal H∞ control synthesis techniques developed for LPTV systems in this
chapter are used to design optimal H∞ track-following controllers for single-stage
HDD servo systems with both single-rate and multi-rate sampling and actuation
[37], in order to evaluate their effectiveness. In next chapter, the control synthesis
techniques will be applied to design HDD servos with missing position error signal
samples.

3.1 Preliminaries

Here, we will consider general discrete-time linear periodically time-varying systems
that admit a state-space realization with periodically time-varying entries like

G ∼

x(k + 1)
z(k)
y(k)

 =

 A(k) B1(k) B2(k)
C1(k) D11(k) D12(k)
C2(k) D21(k) 0

x(k)w(k)
u(k)

 (3.1)

where w(k) and u(k) are respectively the disturbance and control inputs; y(k) is the
measurable output which is accessible to the control system; z(k) is “performance
monitoring” output, used in our optimization cost function. All time-varying matrix
entries in G are assumed to be periodic with period N , for example, A(k) = A(k+N).

Throughout this chapter, we will use the following notations, B(k) =
[
B1(k) B2(k)

]
,

D1•(k) =
[
D11(k) D12(k)

]
, C(k) =

[
C1(k)
C2(k)

]
, D•1(k) =

[
D11(k)
D21(k)

]
, and D(k) =[

D11(k) D12(k)
D21(k) 0

]
.
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Before providing our developed control algorithm for the LPTV system in (3.1), we
have the following notations and assumptions similar to the counterpart in [41]. The
input disturbance w(k) is assumed to belong to L2, the set of all square summable
sequences. A bold operator will denote a linear operator corresponding to a time-
varying system. Assume that every linear operator considered in this dissertation has
a state-space realization and even a matrix representation under the usual basis. For
example, let GGG be the linear operator of the time-varying system in (3.1) and GGG has
a matrix representation (GGG)i,j = Gi,j:

GGG =


. . .

...
... . . .

· · · G0,0 G0,1 · · ·
· · · G1,0 G1,1 · · ·
. . .

...
...

. . .

 .

Moreover, the system G could be denoted by the following state-space representation

G ∼


ZxZxZx = AxAxAx+BBB

[
www
uuu

]
[
zzz
yyy

]
= CxCxCx+DDD

[
www
uuu

] ∼
[
AAA BBB
CCC DDD

]

where AAA = diag{A(k)}∞k=0, BBB = diag{B(k)}∞k=0, CCC = diag{C(k)}∞k=0, and DDD =
diag{D(k)}∞k=0 denote the operators for matrices. Notice that ZZZ represents the for-
ward shift operator and the operator diag{∗(k)}∞k=0 represents the block diagram
matrix for the time varying matrix ”*” from k = 0 to k = ∞, e.g.:

diag{A(k)}∞k=0 =

 . . . ...
...

· · · A(1) 0
· · · 0 A(0)

 .

The bold symbols xxx, www, uuu, zzz and yyy denote the stacked representation for the corre-

sponding signal, e.g. xxx =
[
· · · xT (1) xT (0)

]T
.

The operator AAA is uniformly exponentially stable (UES) if there exist constants c > 0
and β ∈ [0, 1) such that for all nonnegative integers l, k ∈ Z+(the set of non-negative
integers), we have

∥A(k + l − 1)A(k + l − 2) · · ·A(k)∥ 6 cβl .

The pair (AAA,BBB) is uniformly stabilizable, if there exists a bounded memoryless oper-
ator FFF such that A+BFA+BFA+BF is UES. Likewise, the pair (CCC,AAA) is uniformly detectable,
if there exists a bounded memoryless operator LLL such that A+ LCA+ LCA+ LC is UES.
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In addition, the H∞ norm of linear time-invariant systems is generalized as the ℓ2
induced norm for discrete-time linear time-varying systems. For an LTV system H
with input w and output z, its ℓ2 induced norm is defined as

∥H∥2←2 =

(
sup

www∈L2\{0}

∑∞
k=0 z

T (k)z(k)∑∞
k=0 w

T (k)w(k)

)1/2

.

Moreover, the concept of entropy [41] is also required to be extended to linear time-
varying systems. Suppose, the LTV system H (represented by the linear operator
HHH) has a matrix representation (HHH)i,j = Hi,j. Here, the LTV system H is assumed
to have the ℓ2 induced norm less than γ, i.e. ∥H∥2←2 < γ. Thus, the self-adjoint
operator III − γ−2HHH∗HHH has the following spectral factorization:

III − γ−2HHH∗HHH =MMM∗MMM

where MMM is a memoryless operator.

Then, the entropy of the LTV system H is defined as

EEE(HHH, γ) := −γ2diag
{
ln det(MT

k,kMk,k)
}∞
k=0

. (3.2)

Given the LPTV system defined in (3.1), the optimal H∞ control objective is to find
a minimum γ > 0 and an optimal linear time-varying compensator K with input
y(k) and output u(k) so that the ℓ2 induced norm of the closed-loop system Fℓ(G,K)
that represents the system with the input w(k) and the output z(k) as depicted in
Fig. 3.1, is less than γ, i.e.

min
K,γ

γ

s.t. ∥Fℓ(G,K)∥2←2 < γ . (3.3)

G

K
y(k) u(k)

z(k) w(k)

Figure 3.1: Block diagram of general LPTV control systems

In addition, we will use the following standard assumptions from [41], regarding the
H∞ control design of the time-varying system in (3.1):

A1. DT
12(k)D12(k) ≻ 0 and D21(k)D

T
21(k) ≻ 0 for all k.
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A2. the pair (AAA, B2B2B2) is uniformly stabilizable and the pair (C2C2C2, AAA) is uniformly de-
tectable.

A3. the pair
(
A−B1D

†
21C2A−B1D
†
21C2A−B1D
†
21C2, B1

(
I −D†21D21

)
B1

(
I −D†21D21

)
B1

(
I −D†21D21

))
is uniformly stabilizable with DDD†21 =

DT
21

(
D21D

T
21

)−1
DT

21

(
D21D

T
21

)−1
DT

21

(
D21D

T
21

)−1
.

A4. the pair
((

I −D12D
†
12

)
C1

(
I −D12D

†
12

)
C1

(
I −D12D

†
12

)
C1, A−B2D

†
12C1A−B2D
†
12C1A−B2D
†
12C1

)
is uniformly stabilizable with D†12D†12D†12 =(

D12D
T
12

)−1
DT

12

(
D12D

T
12

)−1
DT

12

(
D12D

T
12

)−1
DT

12.

3.2 H∞ Control Synthesis for Discrete-Time LPTV

Systems

As mentioned in [41], there may exist many controllers that satisfy the inequality in
(3.3) for a given γ. Similar to [36], we would like to obtain the minimum entropy con-
troller [41] among all these controllers. The minimum entropy controller is intended
to achieve the minimum entropy for the closed-loop time-varying system Fℓ(G,K).
Note that the entropy for a time-varying system in (3.2) is defined as a memoryless
operator. Unlike the minimum entropy for an LTI system, the minimum entropy for
an LTV system means that its average entropy is minimum.

In order to synthesize the optimal H∞ controller, we first need to obtain the unique
minimum entropy controller satisfying the ℓ2 induced norm constraint in (3.3) with
a fixed γ, and then utilize a bi-section search method to find the minimum γ and the
corresponding optimal controller. In the minimum entropy control synthesis method-
ology that follows, for simplicity and without loss of generality, we will assume that
γ = 1.

3.2.1 Minimum Entropy Control for General Discrete-Time
LTV Systems

In this section, we will temporarily ignore the periodicity of the LPTV system in
(3.1) and utilize the similar techniques presented in [41] to develop the minimum
entropy output-feedback control for general linear time-varying systems. In [41], the
solution to the output feedback control problem can be obtained by transforming the
output feedback control problem to an output estimation control problem, and then
the solution to the output estimation control problem can be obtained as the dual
of the disturbance feedforward control problem whose solution is obtained by solving
the full information control problem. However, no explicit formulae are presented



37

in [41] for controllers synthesized using these steps. Alternatively, this dissertation
synthesizes the output feedback minimum entropy control for general discrete-time
LTV systems in the following three steps:

(I) the output feedback control problem is transformed to an output estimation
control problem;

(II) the output estimation control problem is reduced to a full control problem;

(III) the solution to the full control problem is obtained as the dual of the full
information control problem, whose solution is well known and provided in
[41].

The details of the proposed techniques for the output feedback control problem re-
duction is discussed in Appendix A. Utilizing our proposed procedure yields the
following unique stabilizing minimum entropy time-varying controller K which satis-
fies the constraint in (3.3) and is given by the following state space realization:{

x̂(k + 1) = Ā(k)x̂(k) +B2(k)u(k) + Ft(k)
(
C̄2(k)x̂(k)− y(k)

)
u(k) = −T−122 (k)C̄12(k)x̂(k) + Lt(k)

(
C̄2(k)x̂(k)− y(k)

) . (3.4)

The parameters used to construct the controller in (3.4) are updated in the following
steps:

1) Solve backwards in time the state feedback Riccati equation for all j:

X(j) = AT (j)X(j + 1)A(j) + CT
1 (j)C1(j)−M(j)×(

R(j) +BT (j)X(j + 1)B(j)
)−1

MT (j) (3.5)

where M(j) = AT (j)X(j)B(j)+CT
1 (j)D1•(j) and R(j) = DT

1•(j)D1•(j)−
[
I 0
0 0

]
,

so that the solution X(j)(≽ 0) is bounded for all j.

After obtaining the solution X(j) for all j = 0, 1, 2, · · · , we continue to calculate
the other parameters.

2) Define T (k) =

[
T11(k) 0
T21(k) T22(k)

]
with T11(k) ≻ 0 and T22(k) ≻ 0, and then compute

T (k) using:
R(k) +BT (k)X(k + 1)B(k) = T T (k)JT (k) (3.6)

where R(k) = DT
1•(k)D1•(k)−

[
I 0
0 0

]
, J =

[
−I 0
0 I

]
.
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3) Get

[
F1(k)
F2(k)

]
=
(
R(k) +BT (k)X(k + 1)B(k)

)−1
MT (k).

4) Calculate the following matrices for the filtering Riccati equation: Ā(k) = A(k) +
B1(k)F1(k), C̄2(k) = C2(k)+D21(k)F1(k), and C̄12(k) = −T22(k)F2(k). Let D⊥(k)
be an orthogonal matrix to D12(k). In addition, define a matrix W such that
W T (k)W (k) = I−T T

11(k)T11(k) and W (k) has appropriate dimensions so that the
following matrix multiplication is well defined:[

D̄111(k)
D̄112(k)

]
= D⊥(k)W (k) +D12(k)T21(k)

5) Update forwards in time the filtering Riccati equation solution with zero initial
condition:

Y (k) = Ā(k)Y (k − 1)ĀT (k) +B1(k)B
T
1 (k)− M̃(k)×(

R̃(k) +

[
C̄12(k)
C̄2(k)

]
Y (k − 1)

[
C̄12(k)
C̄2(k)

]T)−1
M̃T (k) (3.7)

where Y (k) ≽ 0 and

M̃(k) = Ā(k)Y (k − 1)

[
C̄12(k)
C̄2(k)

]T
+B1(k)

[
D̄112(k)
D21(k)

]T
R̃(k) =

[
D̄112(k)
D21(k)

] [
D̄112(k)
D21(k)

]T
−
[
I 0
0 0

]
.

6) Define T̃ (k) =

[
T̃11(k) T̃12(k)

0 T̃22(k)

]
, with T̃11(k) ≻ 0 and T̃22(k) ≻ 0, and compute

T̃ (k) using

R̃(k) +

[
C̄12(k)
C̄2(k)

]
Y (k − 1)

[
C̄12(k)
C̄2(k)

]T
= T̃ (k)J̃ T̃ T (k) (3.8)

where J̃ =

[
−I 0
0 I

]
.

7) Obtain [
F̃1(k)

F̃2(k)

]
=

(
R̃(k) +

[
C̄12(k)
C̄2(k)

]
Y (k − 1)

[
C̄12(k)
C̄2(k)

]T)−1
M̃T (k) .

8) Calculate the filter gains:

Lt(k) = T−122 (k)T̃12(k)T̃
−1
22 (k) and Ft(k) = F̃ T

1 (k)T̃12(k)T̃
−1
22 (k) + F̃ T

2 (k) .
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3.2.2 The H∞ Control Synthesis Applied to LPTV Systems

It should be noted that, because we are solving an infinite horizon problem and the
state feedback Riccati equation given in Step 1) must be solved backwards in time,
its exact solution does not currently exist [41]. Thus, the controller in (3.4) is not
implementable for general time-varying systems. However, it is well known that the
stabilizing solutions to the Riccati equations in Step 1) and Step 5) are unique [41].
Moreover, as shown in Lemma 1, these solutions for LPTV systems are also periodic.
As a result, the solutions to two Riccati equations converge to the corresponding
stabilizing solutions, which can be solved in a straightforward manner by iteration,
starting respectively from zero final and initial conditions.

Lemma 1. For LPTV systems with period N , the solutions to the Riccati equations in
both Step 1) and Step 5) are periodic with period N . Furthermore, the H∞ controller
given by (3.4) is also periodic with period N .

The proof of Lemma 1 is presented in Appendix B. The periodicity of H∞ controllers
for LPTV systems provides a significant advantage, since the Riccati equations in
Step 1) and Step 5) for constructing the minimum entropy controller can be solved
backward and forward respectively with zero initial conditions by iteration and their
solutions will converge to the corresponding periodic solutions.

With Lemma 1, the optimal H∞ control synthesis algorithm for LPTV systems is
developed as follows.
Algorithm 1. The following algorithm synthesizes optimal H∞ control for general
LPTV systems.

S1. Choose a large initial interval and a large initial value γ.

S2. For a given value γ, calculate the minimum entropy controller:

• Solve the state feedback Riccati equation (3.5) in Step 1) for constructing a
minimum entropy controller with zero final conditions by iteration to obtain
X(j) (j = 0, . . . , N − 1).

• If X(j) ≽ 0 and the factorization in (3.6) exists for ∀j = 0, . . . , N − 1,
continue to solve the filtering Riccati equation in (3.7) with zero initial con-
ditions by iteration to obtain Y (k) (k = 0, . . . , N − 1). Otherwise, stop.

• If Y (k) ≽ 0 and the factorization in (3.8) exists for ∀k = 0, . . . , N − 1, con-
tinue to calculate the control parameters for the minimum entropy controller.
Otherwise, stop.

S3. If the interval is small enough, stop. Otherwise, update the interval and γ and
then go back to S2.
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S4. Return the optimal H∞ controller.

3.3 Design Examples for HDD Servo Systems

In HDDs, the dynamics from the VCM control to the head displacement have multi-
ple structural resonance modes, which are subjected to unit-to-unit varying natural
frequencies and damping ratios, due to manufacturing tolerances in mass produc-
tion and changing operating conditions. Therefore, the control design of HDD servo
systems must take performance robustness into account. As will be illustrated sub-
sequently, optimal H∞ control is quite suitable for HDD servo systems, since it is a
convenient methodology for performing loop-shaping design and achieving a desired
error rejection transfer function for a set of HDDs with plant variations.

In order to evaluate our proposed optimal H∞ control design methodology in this
chapter, the algorithm will be tested via a simulation study that utilizes a single-stage
HDD benchmark model developed by the IEEJapan technical committee on Nano-
Scale Servo (NSS) systems [49]. The nominal VCM model is indicated in Fig. 3.2. In
the simulations, we will assume that the position error signal sampling frequency is
fs = 26400 Hz.
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3.3.1 Optimal H∞ Track-Following Control for Single-Rate
HDD Servos

We consider the block diagram shown in Fig. 3.3 for the optimal H∞ control design,
where Gn

v , Wp, Wu, and W△ are respectively the nominal VCM plant, loop-shaping
performance weighting function, control input weighting value, and plant uncertainty
weighting function. In this example, we consider the case when the control actuation
is performed at the same rate as the PES sampling rate. Thus, it is well known

z1(k)

u(k)

w1(k)

Gv
n(z)

K(z)
y(k)

WWu

z3(k)

Wp

z2(k)

Figure 3.3: Control design formulation for single-rate HDDs

that the single-rate servo system is an LTI system that turns out to be an LPTV
system with period N = 1. As a result, the corresponding control problem can be
equivalently stated as:

min
K,γ

γ

s.t. ∥Tz←w1∥∞ < γ . (3.9)

Tz←w1 represents the transfer function matrix from w1 to z =
[
z1 z2 z3

]T
as shown

in Fig. 3.3.

Notice that with N = 1, all of entries in the state-space realization of (3.1) are con-
stant, and thus the Riccati equation solutions in (3.5) and (3.7) for constructing a
minimum entropy controller converge to steady state solutions that can be computed
via their corresponding discrete algebraic Riccati equations (DAREs). Consequen-
tially, the synthesized optimal H∞ controllers for LTI systems are also time-invariant.

In order to investigate the accuracy of the control synthesis algorithm presented in this
chapter, we will compare a controller that is synthesized by our proposed methodology
to the one that is synthesized by the Matlab function of “hinfsyn” in the Robust Con-
trol Toolbox using identical plant parameters and weighting functions. Notice that
“hinfsyn” function in the Matlab version of R2007b performs H∞ control synthesis
for discrete-time systems by first mapping the discrete-time plant to a continuous-
time plant using the bilinear transformation, performing H∞ control synthesis in
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continuous-time domain and then mapping the resulting H∞ continuous-time control
back to discrete-time domain using the bilinear transformation.

For the comparison, the weighting functions Wp and W△ and the weighting value Wu

are selected so that the developed H∞ control synthesis technique yields a solution
to the minimization problem in (3.9) with γ ≤ 1. Then, the magnitude Bode plot of
the performance weighting function inverse for the single-rate design is illustrated in
Fig. 3.4. With γ ≤ 1, the designed servo is able to achieve the robust performance that
the magnitude Bode plot of the designed error rejection transfer function will be below
that of |Wp(ω)|−1 for all uncertainties characterized by the uncertainty weighting
function W△. The magnitude Bode plot of W△ considered in this control design
example is shown in Fig. 3.5, which indicates that the plant could have unstructured
output uncertainty variation as high as ±8% at low frequency and ±12% at high
frequency. In this chapter, Wu = 2 × 10−5 was selected so that the achieved γ is
less than or equal to 1 and simultaneously the control actuation generated by the
resulting controller is appropriate under the hardware constraints of real HDD servo
systems.
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Figure 3.4: Magnitude Bode plots of performance weighting functions

The design results are illustrated in Fig. 3.6, which shows the magnitude Bode plot
of the closed-loop error rejection transfer functions when the H∞ controller is synthe-
sized using the methodology proposed in this chapter and when it is synthesized using
the Matlab function “hinfsyn”. As shown in the figure, the Matlab function “hinfsyn”
failed to synthesize a controller that could achieve the specified robust performance,
while the synthesis technique proposed in this chapter produced an optimal H∞ con-
troller that satisfied all constraints with a minimum γ∗ = 0.99. As stated in [24], the
successive uses of the bilinear transformation (discrete time to continuous time and
then back to discrete time) in the Matlab function “hinfsyn” may have introduced
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numeric accuracy problems, particularly when the systems are ill-conditioned. We
have found in our simulation study that when the H∞ constraints are relaxed, for
example by selecting “less aggressive” performance weighting function Wp, the H∞
controllers produced by the two synthesis techniques are almost identical.
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3.3.2 Optimal H∞ Track-Following Control for Multi-Rate
HDD Servos

In this section, the effectiveness of the developed control synthesis algorithm will
be further evaluated by designing optimal H∞ track-following controllers for multi-
rate HDD servos. As discussed in [23], increasing the control actuation rate can
improve both track-following control performance and robustness. In this subsection,
we validate this idea by comparing the single-rate H∞ controller that was designed
in the previous section to a multi-rate H∞ controller, where the actuation rate fa is
three times higher than the PES sampling rate fs. In addition, since the higher rate
actuation can be exploited to improve the control performance, a little more aggressive
performance weighting function shown in Fig. 3.4 has been utilized for the multi-rate
control design. Because of the higher actuation rate, it is necessary to discretize the
plant model and the weighting functions indicated in the block diagram in Fig. 3.3 at
the higher actuation rate fa and to assume that PES measurements are only available
at the instances k ∈ {0, N, 2N, · · · } where N = 3. Thus, HDD servo control systems
with multi-rate sampling and actuation can be modeled by the block diagram shown
in Fig. 3.7. Here, d is the overall contribution of all disturbances [37] including torque

G
v
n

y(k)
K

PES(k)

0

yh(k)

d(k)

u(k)

G
1

Figure 3.7: The HDD servo system with the nominal VCM plant

disturbance, windage, non-repeatable disk motions and measurement noise to PES.
Then, the open loop plant for this servo system, indicated by the dashed box in
Fig. 4.2, can be represented by following LPTV system with period N = 3:

G1 ∼
[
x(k + 1)
y(k)

]
=

[
Ao Bo

1 Bo
2

Co
2(k) Do

21(k) 0

]x(k)d(k)
u(k)

 . (3.10)

Notice that all of matrices in (3.10) are constant except for Co
2(k) and Do

21(k), where[
Co

2(k) Do
21(k)

]
=

{ [
Co

2m Do
21m

]
k ∈ {0, N, 2N, · · · }[

0 0
]

otherwise
.

From the standard assumption A1 listed in the preliminaries, the derived controller
requires a condition D21(k)D

T
21(k) ≻ 0 for all k. Unfortunately, the typical approach
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to enforce multi-rate sampling and actuation [34] will not work here because this
would result in D21(k)D

T
21(k) being singular. In this chapter, we consider the block

diagram shown in Fig. 3.8 for the multi-rate optimal H∞ control synthesis. Here, we
introduce a fictitious disturbance input w2 which will be injected into the feedback
signal y when the PES is not available so that the non-singularity assumption of
D21(k)D

T
21(k) can be attained. Notice that if the gain of the resulting time varying

controller K is zero when the PES measurement is unavailable at the time of k, then
this fictitious noise will not affect the minimum closed-loop induced norm and the
resulting optimal H∞ controller. This expectation is achieved when the minimum
entropy H∞ control synthesis technique proposed in this paper is used, as will be
discussed in detail later.

Unlike the standard H∞ control problem formulation [47], here the performance
weighting function is moved to the disturbance input side. By doing so, the feed-
back signal y is affected by a “colored” disturbance (Wpw1) more directly when the
sampling rate is lower than the actuation rate. In order to maintain the same H∞
constraints as those that were used in Section 3.3.1, it is necessary to use the con-
trol synthesis architecture represented in Fig. 3.8 with the fictitious disturbance w2,
where the weighting functions Wp and W△ are the same as the weighting functions
in Section 3.3.1.

u(k)
Gv

n

K
y(k)

p

W

W Wp

G
2

Wu

z1(k)

w1(k)z3(k) z2(k)

w2(k)

Figure 3.8: Control design formulation for HDDs with multi-rate sampling and actu-
ation

As a result, we can formulate the optimal H∞ control design problem as shown in
(3.3) by replacing the system G by G2, where G2 is indicated by the dashed box

in Fig. 3.8. Thus, G2 is the open-loop map from
[
w1 w2 u

]T
to
[
z1 z2 z3 y

]T
,

which can be represented by the following LPTV system with period N = 3

G2 ∼

x(k + 1)
z(k)
y(k)

 =

 A B1 B2

C1 D11 D12

C2(k) D21(k) 0

x(k)w(k)
u(k)

 (3.11)
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where[
C2(k) D21(k)

]
=

{ [
C2m

[
D21m 0

]]
k ∈ {k : PES(k) is available}[

0
[
0 1

]]
otherwise

.

Notice that all the matrices (3.11) are constants except C2(k) and D21(k). Since
all the matrices involved in the computation of the state feedback Riccati equation
solution (3.5) in Step 1) are constant, the solution X(k) will converge to a constant
matrix which can be computed via its corresponding discrete algebraic Riccati equa-
tion (DARE). Moreover, the parameters X, T and F that are computed in Step 1-3)
for constructing a minimum entropy controller are constant, which implies the param-
eters Ā(k) and T−122 (k)C̄12(k) in the proposed controller (3.4) will also be constant.
Additionally, the filtering Riccati equation solution Y (k), which is computed forwards
in time using (3.7) and a zero initial condition, will converge to a steady-state pe-
riodic solution with period N , as demonstrated by Lemma 1. It turns out that the
filter gains Ft(k) and Lt(k) will also be periodic with period N . Furthermore, it is
straightforward to show that both T̃12(k) and F̃2(k) are equal to zero at the instance
k when the PES is not available, which is validated by Lemma 2 in Chapter 4. Thus,
both Ft(k) and Lt(k) are also equal to zero at these instances, justifying the use of
the fictitious disturbance w2 in the control synthesis methodology. As a result, the
minimum closed-loop ℓ2 induced norm and the optimal H∞ controller are unaffected
by the use of the fictitious disturbance w2 in the control synthesis methodology. With
the zero gains of Ft(k) and Lt(k) at the instance when the PES is unavailable, the
time varying control parameter C̄2(k) = C2(k) + D21(k)F1 in (3.4) can be simply
substituted by a constant parameter C̄2m = C2m+

[
D21m 0

]
F1 without affecting the

controller effect. As a result, for the HDD servo systems with multi-rate sampling
and actuation, all of the control parameters of the minimum entropy H∞ controller
shown in (3.4) except Ft(k) and Lt(k) are constant.

Performing a multi-rate optimal H∞ control synthesis described above, produces a
multi-rate H∞ controller that returns the minimum ℓ2 induced norm of γ∗ = 1.0.
As an illustration, the values of the computed periodically time-varying observer
residual gain Lt(k) of the controller given by (3.4) are shown in Fig. 3.9, indicating
that Lt(k) = 0 in the instances when the PES is not available. Similar results were
obtained for periodically time-varying vector Ft(k).

With the more aggressive performance weighting function, the obtained optimal ℓ2
induced norm of γ∗ = 1.0 implies that the multi-rate strategy has the ability to
improve the control performance. In order to further highlight the performance and
robustness improvement that can be attained by introducing a higher actuation rate,
a time domain simulation study was performed using both the single-rate optimal
H∞ control designed in Section 3.3.1 and the multi-rate optimal H∞ control designed
in this section. To evaluate the robust performance of the two control designs, each
controller was tested on 50 different plants, which were randomly generated from
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Figure 3.9: Designed periodic gain Lt for the multi-rate HDD servo

Table 3.1: Simulation results for HDD servos with single and multi rate sampling and
actuation

3σ PES (% of track)
Nominal Worst

Single-rate control design 10.7 11.4
Multi-rate control design with N = 3 9.2 9.6

Gv = Gn
v (1 +W△△) (∥△∥∞ < 1) with the uncertainty weighting function indicated

in Fig. 3.5 by using Matlab function “usample”. Note that the disturbance models
for our time domain simulation are provided in [49].

Table 3.1 contains the root mean square (RMS) 3σ values of the PES for the nominal
plant and the worst-case results for each controller. These results indicate that a
controller with a higher actuation rate is able to not only reduce the 3σ PES by
14.0% for the nominal plant, but also improve the servo performance for the worst-
case situation by 15.8%.

3.4 Conclusion

The optimal H∞ control synthesis via discrete Riccati equations for general discrete-
time linear periodically time-varying systems was studied in this chapter. Using the
results in [41], we first developed the optimal H∞ control synthesis algorithm for gen-
eral discrete-time linear time-varying systems. The control synthesis algorithm was
subsequently applied to LPTV systems, and it was verified that the resulting con-
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trollers are also periodically time-varying. The presented control synthesis technique
was tested by designing both single-rate and multi-rate optimal H∞ track-following
controllers for HDD servo systems. In the case of single-rate control, the optimal
H∞ controller designed using the synthesis technique presented in this chapter was
compared to the one designed using the Matlab function ‘hinfsyn”. Simulation results
showed that the former synthesis technique is more numerically robust in calculating
optimal discrete-time H∞ controllers for discrete-time linear time-invariant systems
than the latter. Moreover, the presented control synthesis algorithm is also applicable
to HDD servos with multi-rate sampling and actuation, while the “hinfsyn” function
in Matlab is only applicable for LTI plants. Simulation results demonstrated that
multi-rate H∞ controllers synthesized using the technique presented in this chapter
consistently outperforms their single-rate counterparts and offers improved robust
performance.
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Chapter 4

Control Design and
Implementation of Hard Disk
Drives with Irregular Sampling
Rates

Similar to the data packet dropout in networked control systems [30], the undesired
inaccessibility of feedback signals may occur in hard disk drive servo systems. Con-
sequently, sampling intervals for such hard disk drive servo systems may not remain
equidistant. As discussed in Chapter 1, irregular sampling rates caused by missing
PES samples also occur in HDD servos due to false PES demodulation that results
from incorrect SAM detection or damaged servo patterns and in HDD self-servo track
writing servos due to the collision of reading the PES with writing the final servo pat-
terns. Thus, it is important to address the issue of designing servo systems for HDDs
under missing PES samples.

Unlike the randomness of data packet dropout [57], the location of damaged servo
sectors and the collision in the self-servo track writing process is consistent on each
single servo track. In other words, the unavailability of position error signals for HDD
servo systems takes place at some fixed locations for a given track. Furthermore,
by considering that the natural periodicity of HDDs is related to the disk rotation,
the servo systems can be represented as linear periodically time-varying systems with
period equal to the number of servo sectors. In addition, by using a “lifting” procedure
[35], an LPTV system can be transformed to the corresponding lifted LTI system [3].
However, the dimension of the resulting stacked LTI system turns out to be “huge” by
considering the fact that modern hard disk drives have the order of 100 servo sectors
[31]. Therefore, it is computationally intractable to design appropriate HDD servos
using these stacked LTI systems whose order is significantly high. On the contrary,



50

the modeling of HDD servos with irregular sampling rates as LPTV systems will be
utilized for their control design in this chapter.

Furthermore, since there tend to be large variations in HDD dynamics due to the
variations in manufacturing and assembly, it is not sufficient to achieve adequate servo
performance for a single plant. Therefore, the designed controllers must guarantee
a pre-specified level of performance for a large set of HDDs. By utilizing classical
loop-shaping ideas which are familiar to most practicing engineers, the H∞ loop-
shaping control design [47] is well-suited to deal with the robust performance of the
desired loop shape. Using such control, a set of HDDs with plant variations and a
regular sampling rate is able to yield a desired error rejection function for disturbance
attenuation [21]. Thus, optimal H∞ control is quite attractive for HDD servo systems.
The purpose of this chapter is to extend these results to HDDs with missing PES
samples.

In this chapter, we consider the optimal H∞ track-following control design for single-
stage HDD servo systems with missing PES samples. First, these servo systems
with missing samples are modeled as LPTV systems, by considering that the natu-
ral periodicity is related to the disk rotation. Then, an optimal H∞ track-following
controller is synthesized using the control synthesis methodology for general LPTV
systems developed in the Chapter 3. The resulting optimal H∞ controller can be di-
rectly obtained by solving discrete Riccati equations. As a consequence, the designed
HDD servos—even with missing PES samples—are still able to robustly achieve the
error rejection function chosen in the loop-shaping design process for disturbance
suppressions.

However, because the resulting controller is also periodically time-varying with period
equal to the number of servo sectors, which is a large number for modern HDDs, a
significant amount of memory is required to store all of the control parameters for
the synthesized controller. Thus, in order to reduce the memory storage require-
ments, a simplified controller implementation is developed in this chapter, which
utilizes a reduced number of periodic control parameters. In order to demonstrate
the effectiveness of the developed control design algorithm, the resulting optimal H∞
track-following control has been evaluated through both simulation and implementa-
tion study on a set of actual hard disk drives. The simulation study presented in this
chapter validates the effectiveness of the proposed control and the feasibility of the
control parameter simplification. Moreover, implementation results on the ten tested
hard disk drives validate the obtained robust performance and furthermore illustrate
that the proposed control is implementable in a set of real HDDs.
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4.1 Modeling of HDD Servo Systems with Irregu-

lar Sampling Rates

As mentioned in Chapter 1, an irregular sampling rate can be caused by missing a
sample when the PES is unavailable. Similar to [2], single-stage HDD servo control
systems with missing PES samples can be modeled by the block diagram shown in
Fig. 4.1. Here, we consider the output multiplicative uncertainty with the nominal
plant of the voice coil motor Gn

v and the plant uncertainty weighting function W△ as

Gv = (1 +W△△)Gn
v , ∥△∥∞ ≤ 1 (4.1)

In Fig. 4.1, d is the overall contribution of all disturbances [37, 18] including torque
disturbance, windage, non-repeatable disk motions and measurement noise to PES.
In addition, K is the controller to be designed by using the feedback signal y(k) in
the case of irregular sample rates. Moreover, y is switched to PES when PES is
available, while y is switched to 0 when PES is unavailable [34]. Then, the servo
system with missing PES samples has the following state-space realization:

Go ∼
[
x(k + 1)
y(k)

]
=

[
Ao Bo

1 Bo
2

Co
2(k) Do

21(k) 0

]x(k)d(k)
u(k)

 . (4.2)

Here, all of matrices except Co
2(k) and Do

21(k) in the above state-space realization are
constant and[

Co
2(k) Do

21(k)
]
=

{ [
Co

2m Do
21m

]
k ∈ {k : PES(k) is available}[

0 0
]

otherwise
.

G
v
n

y(k)

W

K

PES(k)

0

d(k)

u(k)

Figure 4.1: Modeling of HDD servo systems with missing PES sampling data

Since the location of damaged servo sectors and the collision in the self-servo track
writing process is fixed for each servo track, the unavailability of PES for HDD servo
systems takes place at some fixed and pre-determined locations [4] on the disk for
each track. Throughout this chapter, the set of servo sectors for which the PES is
unaccessible is defined as Mmiss = {i : PES is unaccessible on servo sector i}.
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Furthermore, by considering that the natural periodicity of HDDs is related to the disk
rotation, the servo systems can be represented by LPTV systems with the state-space
realization in (4.2) whose elements are periodic, in particular,

[
Co

2(k) Do
21(k)

]
=[

Co
2(k +N) Do

21(k +N)
]
. Here, N represents the number of servo sectors.

4.2 Optimal H∞ Control for HDD Servo Systems

with Irregular Sampling Rates

4.2.1 Optimal H∞ Control Formulation

In order to deal with the HDD plant variations and missing PES samples, we will ex-
tend well-known error rejection loop-shaping design techniques for HDDs with regular
sampling rates to HDDs with irregular sampling rates.

G
v
n

y(k)
K

PES(k)

0

yh(k)

d(k)

u(k)

Figure 4.2: The HDD servo system with the nominal VCM plant

For the optimal H∞ control of single-stage HDD servo systems illustrated by the
block diagram in Fig. 4.1, we need to design a controller K satisfying the following
conditions for the nominal VCM plant Gn

v :∥∥[Ts ·Wp Tc ·W△
]∥∥

2←2
< 1 (4.3)

where Ts is the sensitivity function (i.e. error rejection transfer function) from d to
PES, as shown in Fig. 4.2, while Tc is the complementary sensitivity function from
d to the plant output yh. The Wp and W△ in (4.3) are the loop-shaping performance
weighting function and the plant uncertainty weighting function respectively. It is
known that Equation (4.3) guarantees the robust performance that the magnitude of
the obtained error rejection function (for single-input-single-output (SISO) systems)

is always smaller than |Wp(e
jω)|−1 for the uncertain plant characterized in (4.1).

Similar to the optimal H∞ control of single-stage HDD servo systems with multi-rate
sampling and actuation in Chapter 3, we consider the block diagram shown in Fig. 4.3
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Figure 4.3: Control design formulation for HDDs with irregular sampling rates

for the control design of the servo systems with an irregular sampling rate. In the
figure, Wu is the control input weighting value to be tuned so that the inequality in
(4.3) holds. As illustrated in Chapter 3, this control design formulation is different
from the standard H∞ control problem formulation [47] due to the introduction of
the fictitious disturbance w2 and the fact that the performance weighting function
was moved to the disturbance input side. As a result, the assumption in Chapter 3.1
that D21(k)D

T
21(k) ≻ 0 for all k is satisfied for this plant. In addition, it is known

that the introduction of w2 does not affect the optimal H∞ controller and the optimal
closed-loop ℓ2 induced norm, which will also be shown later in this chapter. Moreover,
by changing the position of the performance weighting function, the feedback signal y
is affected by the “colored” disturbance (Wpw1) more directly when missing samples
occur.

With these changes and utilizing the block diagram in Fig. 4.3, the optimal H∞
control problem for HDD servos with an irregular sampling rate is to find an optimal
linear time-varying controller K and a minimum γ with the closed loop ℓ2 induced
norm less than γ, i.e.

min
K,γ

γ

s.t. ∥Tz←w∥2←2 < γ (4.4)

where Tz←w represents the transfer function matrix from w =
[
w1 w2

]T
to z =[

z1 z2 z3
]T
. Suppose the LPTV system G4 (with input

[
w1 w2 u

]T
and output[

z1 z2 z3 y
]T
) shown in Fig. 4.3 can be represented as the following state-space

realization:

G4 ∼

x(k + 1)
z(k)
y(k)

 =

 A B1 B2

C1 D11 D12

C2(k) D21(k) 0

x(k)w(k)
u(k)

 (4.5)
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with[
C2(k) D21(k)

]
=

{ [
C2m

[
D21m 0

]]
k ∈ {k : PES is available}[

0
[
0 1

]]
otherwise

. (4.6)

In (4.5), all of the matrix entries are constant except C2(k) and D21(k) which are
periodic with period N .

The corresponding matrices for the LPTV systems in (3.1) are B =
[
B1 B2

]
, D1• =[

D11 D12

]
, C(k) =

[
C1

C2(k)

]
, and D•1(k) =

[
D11

D21(k)

]
.

4.2.2 Optimal H∞ Track-Following Control

The optimal H∞ control synthesis algorithm developed in Chapter 3 will be applied
to synthesize the optimal H∞ track-following control for single-stage HDD servos
with an irregular sampling rate. In the algorithm, we first need to obtain the unique
minimum entropy controller satisfying the ℓ2 induced norm constraint in (4.4) with
a fixed γ, and then utilize a bi-section search method to find the minimum γ and the
corresponding optimal controller.

Utilizing the control design methodology presented in the Chapter 3, we obtain the
following unique stabilizing minimum entropy time-varying controller K, which sat-
isfies the constraint in (4.4) and is given by the following state space realization:{

x̂(k + 1) = Āx̂(k) +B2u(k) + Ft(k)
(
C̄2mx̂(k)− y(k)

)
u(k) = −T−122 C̄12x̂(k) + Lt(k)

(
C̄2mx̂(k)− y(k)

) . (4.7)

Notice that for the irregular-sampling-rate HDD servo system shown in (4.5), all
matrix entries in the state-space realization (4.5) are constant except C2(k) and
D21(k). Consequentially, the algorithm for constructing a minimum entropy con-
troller in Chapter 3 can be further simplified as follows.

1. Solve the state feedback algebraic Riccati equation:

X = ATXA+ CT
1 C1 −M

(
R +BTXB

)−1
MT (4.8)

where M = ATXB + CT
1 D1•.

2. Define T =

[
T11 0
T21 T22

]
with T11 ≻ 0 and T22 ≻ 0, and compute T using:

R +BTXB = T TJT (4.9)

where R = DT
1•D1• −

[
I 0
0 0

]
, J =

[
−I 0
0 I

]
.
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3. Get

[
F1

F2

]
=
(
R +BTXB

)−1
MT .

4. Calculate the following matrices for the filtering Riccati equation: Ā = A +
B1F1, C̄2(k) = C2(k) +D21(k)F1, and C̄12 = −T22F2. Let D⊥ be an orthogonal
matrix to D12. In addition, define a matrix W such that W TW = I − T T

11T11

and W has appropriate dimensions so that the following matrix multiplication
is well defined: [

D̄111

D̄112

]
= D⊥W +D12T21 .

5. Update forwards in time the filtering Riccati equation solution with zero initial
condition:

Y (k) = ĀY (k − 1)ĀT +B1B
T
1 − M̃(k)×(

R̃(k) +

[
C̄12

C̄2(k)

]
Y (k − 1)

[
C̄12

C̄2(k)

]T)−1
M̃T (k) (4.10)

where Y (k) ≽ 0 and

M̃(k) = ĀY (k − 1)

[
C̄12

C̄2(k)

]T
+B1

[
D̄112

D21(k)

]T
R̃(k) =

[
D̄112

D21(k)

] [
D̄112

D21(k)

]T
−
[
I 0
0 0

]
.

6. Define T̃ (k) =

[
T̃11(k) T̃12(k)

0 T̃22(k)

]
, with T̃11 ≻ 0 and T̃22 ≻ 0, and compute T̃ (k)

using

R̃(k) +

[
C̄12

C̄2(k)

]
Y (k − 1)

[
C̄12

C̄2(k)

]T
= T̃ (k)J̃ T̃ T (k) (4.11)

where J̃ =

[
−I 0
0 I

]
.

7. Obtain[
F̃1(k)

F̃2(k)

]
=

(
R̃(k) +

[
C̄12

C̄2(k)

]
Y (k − 1)

[
C̄12

C̄2(k)

]T)−1
M̃T (k) . (4.12)

8. Calculate the filter gains

Lt(k) = T−122 T̃12(k)T̃
−1
22 (k) and Ft(k) = F̃ T

1 (k)T̃12(k)T̃
−1
22 (k) + F̃ T

2 (k) .
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Since, as proved in Appendix B, the Riccati equation solution Y (k) in (4.10) of
constructing a minimum entropy control is unique and periodic, Y (k) computed “for-
wards” in time with a zero initial condition converges to a steady-state periodic
solution with period N . It turns out that the filter gains Ft(k) and Lt(k) are also
periodic with period N . As illustrated in Lemma 2, both T̃12(k) and F̃2(k) are equal
to zero at the instance k when the PES is unavailable.

Lemma 2. Both T̃12(k) and F̃2(k) in the above algorithm are equal to zero at the
instance k when PES(k) is unavailable.

The proof of Lemma 2 is provided in Appendix C. Thus, both Ft(k) and Lt(k) are
also equal to zero at whenever PES(k) is unavailable, which verifies the claim that
the fictitious disturbance w2 does not affect the optimal H∞ controller. With the
zero gains of Ft(k) and Lt(k) at the instance when a missing PES sample occurs,
the time varying control parameter C̄2(k) = C2(k) +D21(k)F1 in (4.7) can be simply
substituted by a constant parameter C̄2m = C2m+

[
D21m 0

]
F1 without affecting the

controller effect. As a result, for the HDD servo systems with missing PES samples,
all of the control parameters of the minimum entropy H∞ controller shown in (4.7)
except Ft(k) and Lt(k) are constant.

4.3 Control Synthesis Evaluation on Real HDDs

In this section, we apply our developed optimalH∞ control design methodology to the
track-following control of multiple hard disk drives with missing PES samples. The
algorithm was evaluated through both simulation study and experimental study. The
ten single-stage hard disk drives considered here were provided by Western Digital
Technologies. For these 2.5” disk drives, the number of servo sectors is N = 274 and
the spindle rotation speed is 9000 RPM. For one of these disk drives, servo patterns
on some servo sectors at the inside diameter (ID) have been damaged and thus the
PES on these servo sectors is not available for the servo system. Specifically, we
found that for this particular drive, the PES is unaccessible on the following 57 servo
sectors:

Mmiss = {2, 6, 10, 14, 18, 27, 31, 35, 39, 43, 47, 52, 56, 60, 64, 68, 72, 81, 85, 89, 93, 97,
101, 110, 114, 118, 122, 126, 135, 139, 143, 147, 151, 155, 164, 168, 172, 176,

180, 184, 193, 197, 201, 205, 209, 218, 222, 226, 230, 234, 238, 247, 251, 255,

259, 263, 272} .

Such a missing sample sequence will be utilized to synthesize the optimal H∞ track-
following controller in this section. For the other nine disk drives, there are no
damaged servo sectors. However, in order to test the synthesized controller’s ability



57

of achieving robust performance and handling missing PES samples, the feedback
PES has also been dropped at the specific servo sectors described by Mmiss for the
nine undamaged disk drives.

4.3.1 Nominal Plant Identification and Weighting Function
Selection

For convenience in the control synthesis step, notch filters [45] are incorporated into
the VCM plant Gv. In order to obtain the nominal VCM plant, the actual VCM plant
frequency response for one single drive was measured in the disk area where there
are no missing PES samples. Then, the nominal VCM model Gn

v (s) was identified to
match the experiment frequency response, as described in [37]. Note that in order to
reduce the controller order, the nominal VCM plant is just identified as a 7th order
model.

The uncertainty weighting function W△ considered in the control design is shown in
Fig. 4.4. The selected uncertainty weighting function demonstrates that the real plant
could have an unstructured uncertainty of a ±26% gain variation at low frequency
and a ±112% gain variation at high frequency from the nominal plant Gn

v .
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Figure 4.4: Plant uncertainty weighting function W△

In order to attenuate disturbances, the performance weighting functionWp is designed
as a low-pass filter and thus W−1

p is a high-pass filter. The inverse of the frequency
response for the designed performance weighting function is shown in Fig. 4.5. Then,
with the proposed control synthesis technique, all of the disk drives are expected to
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possess better disturbance attenuation than the one described by the inverse of the
performance weighting function.
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Figure 4.5: The frequency response of the performance weighting function inverse

4.3.2 Control Design and Simplification

It is well know that if the optimal H∞ controller yields a minimum γ∗ ≤ 1, then the
controller is able to achieve the robust performance by satisfying the corresponding
conditions illustrated in (4.3). In other words, the designed controller achieves better
disturbance attenuation than the inverse of performance weighting function shown in
Fig. 4.5 for all the plant variations with the multiplicative plant uncertainty weighting
function in Fig. 4.4. With the determined performance weighting function and plant
uncertainty weighting function, the weighting value Wu is to be tuned so that the
achieved γ is less than or equal to 1 and simultaneously the control actuation gener-
ated by the resulting controller K is appropriate under the hardware constraints of
real HDD servo systems.

For the real hard disk drives described in the previous section, a weighting value of
Wu = 40 was selected and thus the resulting optimal H∞ control is able to achieve
the optimal ℓ2 induced norm γ∗ = 0.88. Moreover, the resulting gains Ft(k) and
Lt(k) in (4.7) are zero when the feedback PES is unavailable at the instance k, which
verifies our prediction about the time-varying control parameters in Section 4.2. The
designed gain Lt(k) for one HDD revolution is shown in Fig. 4.6.

Since the control parameters Ft(k) and Lt(k) are time-varying, we have to save all 217
(= 274− 57) sets of non-zero time-varying control parameters, requiring a significant
amount of memory. Unfortunately, it is almost impossible to reserve so much memory
for storing these control parameters in real HDDs. Fortunately, we found that the
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Figure 4.6: The designed Lt(k) for the HDD servo with an irregular sampling rate

non-zero time-varying parameters Ft(k) and Lt(k) have very small variations, which
motivates us to treat all non-zero time-varying control parameter values as constants.
Specifically, the constant values Fs and Ls for Ft(k) and Lt(k) are obtained by taking
the average of all non-zero Ft(k) and Lt(k) respectively. Then, the approximate con-
trol parameters Fs and Ls will be applied when the PES is available. Consequentially,
just one set of control parameters Fs and Ls has to be stored in memory. The approx-
imate values for Lt(k) with Ls are also shown in Fig. 4.6. The simulation study, which
will be presented in next section, shows that such control parameter approximation
has a tolerable negative affect on the control performance.

4.3.3 Simulation Study

In order to evaluate the robust performance of the designed controller, a total of
50 different VCM plants were collected. These various VCM plants were randomly
generated based on the VCM plant model in (4.1) with the identified nominal plant
Gn

v and the uncertainty weighting function W△ shown in Fig. 4.4 by using Matlab
function “usample”.

The simulation results of the Root Mean Square (RMS) 3σ values of PES for the
nominal plant and the worst-case plant are illustrated in Table 4.1. Based on these
time-domain simulation results, we are confident that the proposed optimal H∞ con-
trol indeed attains its predicted robust performance. Moreover, Table 4.1 also shows
the simulation results by using the approximate control parameters. The results im-
ply that the performance degradation caused by the control parameter approximation
is so small that the control simplification presented in the previous section is viable.



60

Table 4.1: Time-domain simulation results for the control parameter approximation

3σ PES (% track)
Nominal Worst

With the original control
parameters Ft(k) and Lt(k)

4.24 5.50

With the approximate control
parameters using Fs and Ls

4.30 5.58

4.3.4 Experimental Study

The simulation results presented in the previous section illustrate that the optimalH∞
controller synthesized using the developed control algorithm in Chapter 3 is able to
handle an irregular sampling rate and achieve robust performance. In this section, we
discuss its implementation on a set of actual single-stage hard disk drives with missing
PES samples. The designed controller was coded on the disk drives’ own processor
by changing their firmware code. For the disk drive with damaged servo sectors, the
designed H∞ control was tested and evaluated in the disk area where the missing
samples occur with the missing sample sequence of Mmiss as defined in the previous
section. As a result, for the servo sectors i ∈ Mmiss, the PES is unavailable. For the
other nine undamaged disk drives, the feedback PES was also manually dropped on
the servo sectors described by Mmiss during the experimental study, so as to evaluate
the designed controller.

Unlike linear time-invariant systems, a linear time-varying system with irregular sam-
pling rates has no well-defined error rejection transfer function. However, in order
to evaluate the implemented controller for the considered disk drives, we define the
following disturbance-PES relationship called approximate error rejection transfer
function. A sweep sinusoid excitation is injected into the position of the disturbance
d shown in Fig. 4.1, which is the same as the way that the excitation is injected for
measuring the error rejection transfer function for disk drives with a regular sampling
rate. Then, the PES response caused by the excitation is collected. Since the PES
is unaccessible at the time when missing samples are encountered, we approximately
treat the previous available PES as the current unavailable PES. Afterwards, the dis-
crete Fourier transform (DFT) is computed for the collected PES data and then the
DFT component at the frequency of the sinusoid excitation is identified. As a result,
the approximate frequency response from the disturbance d to PES is calculated by
dividing the identified PES DFT component by the corresponding excitation DFT
component. Finally, the approximate error rejection transfer functions were measured
on the ten considered disk drives and are shown as the black lines in Fig. 4.7.

Figure 4.7 also shows the inverse of the performance weighting function, which is
indicated by the red line. The experiment results in Fig. 4.7 illustrate that all of the
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measured approximate error rejection transfer functions are below the inverse of the
performance weighting function at every frequency. Thus, the obtained experiment
results on multiple real disk drives demonstrate that the optimal H∞ track-following
control synthesized by our proposed control algorithm achieves the robust perfor-
mance of the desired disturbance attenuation.

Figure 4.8 shows the 3σ values for the closed-loop NRRO PES with the implemented
controller on the tested disk drives. Note that these experiment results for the closed-
loop PES are similar to the simulation results listed in Table 4.1. Moreover, the con-
troller designed using our proposed optimal H∞ control synthesis algorithm improves
3σ PES by around 20% in the experimental study, compared to an intuitionistic
methodology in which an unavailable PES is substituted by the previous available
one when a missing sample occurs.

4.4 Conclusion

In hard disk drive servo systems, sometimes an irregular sampling rate is unavoidable,
for example, when false PES demodulation is caused by damaged servo sectors and
when the unavailability of feedback signals is due to the collision in the self-servo
track writing process. By considering the positions of the unavailable feedback signal
to be fixed and taking into account the natural periodicity of HDDs due to the disk
rotation, the servo systems with missing PES samples were represented as linear pe-
riodically time-varying systems. In addition, since there tend to be large variations
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in HDD dynamics due to variations in manufacturing and assembly, the designed
controllers must guarantee a pre-specified level of performance for a large set of hard
disk drives. Based on the optimal H∞ control synthesis methodologies presented in
Chapter 3 for general LPTV systems, an optimal H∞ track-following controller was
synthesized in this chapter for HDD servos with missing PES samples. The simulation
and implementation study on multiple hard disk drives demonstrates the synthesized
controller’s effectiveness in handling irregular sampling rates and achieving the ro-
bust control performance of a desired error rejection transfer function for disturbance
attenuation. Moreover, the simulation results were validated by the implementation
results on the ten actual 2.5” single-stage hard disk drives. In the experimental
study, around 20% improvement of the 3σ PES was obtained by the proposed control
algorithm over the intuitionistic methodology for the ten tested disk drives.
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Chapter 5

Control Design of Concentric
Self-servo Track Writing

In modern hard disk drive servo systems, the feedback PES is decoded from servo
patterns in so-called servo sectors. These servo patterns must be pre-recorded onto
the disk surfaces by using servo track writing process before HDD servo systems can
be used to position read/write magnetic heads. In addition, as mentioned in Chapter
1, any track errors introduced in servo track-writing process will later appear as
written-in repeatable runout which degrades servo control performance. Therefore,
the accuracy and precision of the servo track writing process plays a crucial role in
dictating the ultimate track density and areal storage density of HDDs. In order
to reduce track misregistration [9] and increase track density [60], it is necessary to
improve the quality of the servo pattern writing process.

Conventionally, servo patterns are written by costly dedicated servowriting equipment
[31] external to disk drives. Self-servo track writing (SSTW) [5, 26] is an alternative
method of writing servo patterns using HDDs’ own read and write heads and servo
systems, in order to save the process cost and improve the servowriting quality. During
SSTW, the timing and radial information are obtained from the previously-written
track using the read head, while timing and radial positioning servo patterns for the
current track are being written using the write head. As a consequence, the external
equipment is no longer needed in the servo-pattern writing and thus the servo track
writing does not have to be carried out in any clean room environment. As mentioned
in Chapter 1, there are two popular SSTW methodologies, spiral-based SSTW and
concentric-based SSTW. In this chapter, we just focus on the compensation scheme
for concentric self-servo track writing. Specifically, the process of the concentric self-
servo track writing is depicted in Fig. 5.1 and it generally involves the following steps
[59]:
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1. Write one or more concentric servo sector tracks using conventional servowriting
methodologies. These tracks are used as the initial seed tracks, from which
reference timing and radial position information is measured to write the next
(adjacent) track in a bootstrap manner, and can be pre-written on the disks
before the disks are assembled in the HDD.

2. Assume that the read-head to write-head position offset is equal to one track
width [14]. Using the read head, collect timing and radial information from the
previously written seed track and use this information to generate the position
error signals to track follow the seed track, while the write head writes actual
servo patterns for the current track.

3. Use the track written in Step 2 as the new seed track and go back to Step 2
until all concentric tracks are written.

Sector k k+1 k+2 …

Track i

Track i+1
Write

head

Read

head

Servo patterns

Track i-1

…

Ideal track

Real track

yi-1(k)

yi(k)

yi(k): track error

Figure 5.1: Modeling of concentric SSTW servo systems

However, several challenges arise with the SSTW process such as the fact that ra-
dial position errors from the previous track can propagate into the currently-written
track. This radial positioning error propagation will result in instability unless it
is contained by guaranteeing that the magnitude for the error propagation term is
sufficiently attenuated. In order to contain the error propagation, iterative learning
control (ILC) and 2-Dimensional H2 control have been studied in [56] and [16] re-
spectively. In [56], a feedforward based iterative learning control is designed in the
lifted domain assuming zero initial conditions at the beginning of each track writ-
ing stage and the existence of finite impulse-response (FIR) representations for the
servo’s sensitivity and complimentary sensitivity functions. However, we note that
these assumptions are not strictly true for real HDDs. In [16], a novel 2-Dimensional
H2 control synthesis technique for SSTW is formulated to satisfy a sufficient rather
than a necessary condition by making some matrices be block diagonal in order to
transfer the optimization to the form of linear matrix inequalities (LMI).

In this chapter, we present two novel control synthesis methodologies for perform-
ing concentric self-servo track writing in hard disk drives using a feedforward control
structure [56]. In the first methodology, a non-causal feedforward controller, which
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utilizes the stored error signal [56] from writing the previous track, is designed given
a pre-defined causal track-following controller. Standard H∞ control synthesis tech-
niques are used to avoid the propagation of track errors from the previous tracks,
while achieving sufficient disturbance attenuation. In the second methodology, an
analytic expression for the power spectrum density of track errors is derived and
approximated. The approximate expression is subsequently used to formulate the
simultaneous design of both feedback and feedforward controllers, using a mixed
H2/H∞ control scheme, which ensures the containment of the error propagation and
the achievement of good disturbance attenuation and is solved via the solution of a
set of LMIs with a controller parameterization. Neither of these techniques utilizes
the simplifying assumptions in [56]. Simulation results using the single-stage HDD
benchmark problem developed in [49] show that the controllers synthesized by the
proposed schemes outperform the controllers synthesized by the techniques in [56],
and offer levels of performance that are comparable to the 2-Dimensional H2 control
technique in [16] while having a much simpler control structure.

5.1 Non-Causal Feedforward Control Design via

H∞ Control

5.1.1 Feedforward-Control Structure Based SSTW System

Figure 5.2 illustrates the block diagram of the self-servo track writing system with
a feedforward control structure [16]. The system includes a feedforward controller
F (z) and a standard track-following servo loop with the VCM plant P (z) and the
feedback controller C(z). In Fig. 5.2, i and k denote the track index and servo
sector index respectively, while △yi(k), wi(k), ri(k) and ni(k) denote the track error,
windage, track runout due to disk vibrations, and measurement noise, respectively, at
the position of track i and servo sector k. Moreover, since the feedforward controller
F (z) utilizes the error signal ei−1(k), which can be stored when writing the previous
track, and hence the entire ei−1(k) sequence in (k) is available when writing the
current track. Thus, a non-causal feedforward controller F (z) is feasible for the
control structure in Fig. 5.2. Here, windage and measurement noise are modeled as
white noises with the variance σ2

w and σ2
n respectively, while the track runout caused

by disk vibrations is modeled as a color noise generated by feeding a white noise dr
input to the filter Gr(z).

Based on the block diagram in Fig. 5.2, we can get the following recursive expression
for track errors:

△yi(k) = G1(q)△yi−1(k) + T (q)ni(k) + S(q)di(k)− S(q)F (q)di−1(k) (5.1)
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Figure 5.2: Feedforward control structure based SSTW system

where T (z) = C(z)P (z)
1+C(z)P (z)

, S(z) = 1
1+C(z)P (z)

, di(k) = P (z)wi(k) + ri(k), and G1(z) =
C(z)P (z)+F (z)
1+C(z)P (z)

.

Notice that G1(z) becomes the key transfer function relating the previous and the
current track errors.

5.1.2 Non-causal Feedforward Control Design

Like the iterative learning control in [56, 32], a feedback controller C(z) for track
following is first designed to achieve good disturbance attenuation. Here, C(z) is
designed as an optimal H2 controller [37]. In order to contain the error propagation,
the designed controllers must satisfy ∥G1(e

jω)∥∞ < 1. Furthermore, in order to make
the error propagation converge as quickly as possible, we want ∥G1(e

jω)∥∞ to be
sufficiently small. From (5.1), we learn that the current track error is also affected
by the disturbances from the previous track. In order not to degrade the disturbance
attenuation performance of the track-following controller C(z), the magnitude of the
filter F (z) also needs to be sufficiently small. In all, the feedforward control F (z)
must be designed to achieve the following target:{

∥G1(z)∥∞ : sufficiently small and less than 1
∥F (z)∥∞ : sufficiently small

. (5.2)

As a consequence, we consider the following optimization:

min
F (z)

∥∥[G1(z) wt1F (z)
]∥∥
∞

(5.3)

where wt1 is a weighting value to be tuned to achieve the target in (5.2). The opti-
mization in (5.3) is a standard H∞ control problem, which can be easily solved, as
shown later in this section. However, the solution to (5.3) can only produce a causal
compensator F (z) [15]. Obviously, a smaller objective value may be achieved if F (z)
is allowed to be non-causal. In order to design a non-causal filter F (z), we consider
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the following facts:∥∥[G1(z) wt1F (z)
]∥∥
∞
=

∥∥[z−ndG1(z) wt1z
−ndF (z)

]∥∥
∞

=
∥∥∥[ z−ndP (z)C(z)+F̃ (z)

1+P (z)C(z)
wt1F̃ (z)

]∥∥∥
∞

(5.4)

where F (z) = zndF̃ (z) and nd is a positive integer. Thus, the optimization in (5.3)
can be transformed into the following optimization:

min
F̃ (z)

∥∥∥[ z−ndP (z)C(z)+F̃ (z)
1+P (z)C(z)

wt1F̃ (z)
]∥∥∥
∞

. (5.5)

P(z)C(z)
-

F(z)

z

d2 wt1
uy

d1 d-nz

Figure 5.3: Block diagram for the non-causal feedfoward control design using H∞
control

By considering the block diagram in Fig. 5.3, we have

Tz∞←d∞ =
[
z−ndP (z)C(z)+F̃ (z)

1+P (z)C(z)
wt1F̃ (z)

]
where d∞ =

[
d1 d2

]T
. Note that the symbol TA←B represents the transfer function

from signal B to signal A. Thus, the optimization in (5.5) can be interpreted as
the H∞ control problem for the linear fractional transformation (LFT) in Fig. 5.4 to

minimize ∥Tz∞←d∞∥∞ . Here, G(z) is the transfer function matrix from
[
dT∞ u

]T
to[

zT∞ y
]T

as shown in Fig. 5.3.

G(z)

F(z)
y u

[ ]
1 2

T

d d d=z

Figure 5.4: LFT representation for the non-causal feedfoward control design using
H∞ control

Then, the standard H∞ control synthesis technique can be applied to the control
problem as shown in Fig. 5.4 to generate the controller F̃ (z). Once a causal F̃ (z)
is designed, a non-causal feedforward controller can be constructed with F (z) =
zndF̃ (z).
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5.2 Track Error Analysis for the Feedforward Con-

trol Based SSTW

5.2.1 Power Spectrum Density of Track Errors

In order to investigate the relationship between the current track error and distur-
bances from the previously-written tracks, we assume that the servo patterns on each
track are written after the system reaches its steady state. Then, based on the re-
cursive form of track errors in (5.1), we have the complete expression for track errors
described as:

△yi(k) = Gi
1△y0(k) +

i∑
l=1

Gi−l
1 Tnl(k) +

i∑
l=1

Gi−l
1 Sdl(k)−

i−1∑
l=1

Gi−1−l
1 SFdl(k)

=
i−1∑
l=1

Gi−1−l
1 T [(T + SF )nl(k)− S(1− F )dl(k)] +Gi

1△y0(k)

+Tni(k) + Sdi(k)

=
i−1∑
l=1

Gi−1−l
1 T [G1nl(k)− S(1− F )dl(k)] +Gi

1△y0(k) + Tni(k) + Sdi(k) .

(5.6)

Furthermore, we assume that the seed track error △y0, measurement noises and
disturbances are uncorrelated with each other and the track error on the seed track
has a power spectrum density Φ△y0△y0

. Moreover, measurement noises on different

tracks are uncorrelated and have the same variance σ2
n, while disturbances on different

tracks are also uncorrelated and have the same power spectrum density Φdd(e
jω).

With these assumptions, we can get the following power spectrum density for the
track error on track i:

Φ△yi△yi
(ejω) =

i−1∑
l=1

|G1|2(i−l−1)|T |2
(
|G1|2σ2

n + |S|2|1− F |2×

Φdd) + |G1|2iΦ△y0△y0
+ |T |2σ2

n + |S|2Φdd . (5.7)

When the track index i is quite large, |G1(e
jω)|2i will be closed to zero, since |G1(e

jω)|<
1. Then, for the large track index i, we have:

Φ△yi△yi
(ejω) =

|T |2

1− |G1|2
[
σ2
n + |F̂ |2Φdd(e

jω)
]
+ |S|2Φdd(e

jω) . (5.8)

In order to conveniently make use of the mixed H2/H∞ scheme, which will be dis-
cussed in Section 5.3, we utilize the parameterization G1(z) = 1 + F̂ (z) and F̂ (z) =
S(z) (F (z)− 1).
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5.2.2 Discussion

From (5.8), we note that, in order to reduce track errors, not only a good track-

following feedback controller is necessary, but also both |G1(e
jω)| and

∣∣∣F̂ (ejω)
∣∣∣ should

be sufficiently small. However, |G1(e
jω)| and

∣∣∣F̂ (ejω)
∣∣∣ can not be small simultane-

ously, since G1(z) = 1 + F̂ (z). Intuitively, in order to accomplish a good tracking
performance, the H2 norm of the transfer functions from disturbances to track errors
must be minimized and simultaneously an appropriately small ∥G1(z)∥∞ must be
guaranteed. This idea turns out to be a mixed H2/H∞ control problem, which will
be discussed in next section.

5.3 The Design of Feedback and Feedforward Con-

trol by Using Mixed H2/H∞ Synthesis

5.3.1 Problem Formulation

As discussed in Section 5.2, (5.8) educes the idea of a mixed H2/H∞ control design
in order to achieve a good tracking performance. Let’s rewrite (5.8) as:

Φ△yi△yi
(ejω) = |T |2

(
σ2
n

1− |G1|2

)
+ |F̂ |2

(
|T |2

1− |G1|2
Φdd(e

jω)

)
+ |S|2Φdd(e

jω) . (5.9)

Clearly, (5.9) shows that the track error can be considered as the output of the system

Ḡ2(z) =
[
T (z) F̂ (z) S(z)

]
with the input of

[
ni

(1−|G1|2)1/2
T

(1−|G1|2)1/2
d̃i di

]T
. Here,

d̃i’s are artificial disturbances, which are uncorrelated with ni and di and have the
same power spectrum density as di. Since the weighting functions 1

(1−|G1|2)1/2
and

T

(1−|G1|2)1/2
for ni and d̃i are not affine in G1(z) and T (z), the two weighting functions

are replaced by two weighting values wt2 and wt3 respectively, in order to conveniently
construct a linear system to represent the transfer function matrix from the input[
ni d̃i di

]T
to △yi. Such substitution is further validated by the fact that the

magnitude frequency responses of both G1 and T are expected to be flat at low and
middle frequencies [56].

By considering the system denoted in Fig. 5.5 where dw, dr, dn, d̃w, and d̃r are
assumed to be uncorrelated white noises, we obtain the following expression for the
power spectrum density of z2:

Φz2z2
(ejω) = |T |2w2

t2σ
2
n + |F̂ |2w2

t3Φdd(e
jω) + |S|2Φdd(e

jω) . (5.10)
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Obviously, the power spectrum density of z2 is similar to that of △yi except the re-
placement of the weighting functions in (5.9) with the corresponding weighting values
in (5.10). Thus, with appropriate weighting values wt2 and wt3, Φ△yi△yi

(ejω) can be

approximated by Φz2z2
(ejω). Let G2(z) =

[
T
z2←

[
dw dr dn

]T wt3F̂ ∗ T
d̃←

[
d̃w d̃r

]T ]
denote the transfer function matrix from

[
dw dr dn d̃w d̃r

]T
to z2, as shown in

Fig. 5.5. Therefore, in order to accomplish good tracking error performance, we

PC
z
2

G
r

d
n

d
w

d
r

P

G
r

d
r

d
w

-

Figure 5.5: Block diagram for the interpretation of G2(z) by using mixed H2/H∞
control

consider the mixed H2/H∞ optimization problem

min
C(z),F (z)

∥G2(z)∥2

s.t. ∥G1(z)∥∞ < γ0 < 1 (5.11)

to design C(z) and F (z) simultaneously. Here, γ0 is a given constant to guarantee
good convergence for the track error propagation and a good attenuation for the
disturbances from the previously-written tracks.

5.3.2 Mixed H2/H∞ Synthesis via LMIs

A number of techniques [7] have been developed to formulate the mixed H2/H∞
control problems such as (5.11), and the problems are frequently solved as solutions
of linear matrix inequalities. However, in order to recover the convexity of the op-
timization, the solution approach through LMIs has to impose a constraint which
brings significant conservatism to the control synthesis, as discussed in Chapter 2.
Moreover, the mixed H2/H∞ optimization in (5.11) is quite difficult to be solved,
because both G1(z) and G2(z) not only include the feedback controller C(z) but
also the feedforward controller F (z). In order to simplify the synthesis and reduce
the conservatism, we utilize the parameterization of G1(z) = 1 + F̂ (z). Then, with
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F̂ (z) = S(z) (F (z)− 1), the optimization in (5.11) can be reformulated as:

min
C(z),F̂ (z)

∥G2(z)∥2

s.t. ∥1 + F̂ (z)∥∞ < γ0 < 1 . (5.12)

The advantage of the formulation in (5.12) over the formulation in (5.11) is that the
H∞ norm constraint is independent of the feedback controller C(z). Moreover, the
mixed H2/H∞ control synthesis is free from the conservative constraint in (2.8), which
will be seen from the subsequent control formulation using LMIs.

Obviously, G2(z) can be rewritten as

G2(z) =
[
T
z2←

[
dw dr dn

]T 0 0
]
+ F̂ ×

[
0 0 0 T

d̃←
[
d̃w d̃r

]T ] .

Suppose we have the following state space realizations:

C(z) ∼
[
Ac Bc

Cc Dc

]
(5.13)[

T
z2←

[
dw dr dn

]T 0 0
]

∼
[
Acl2 Bcl2

Ccl2 Dcl2

]
(5.14)[

0 0 0 T
d̃←

[
d̃w d̃r

]T ] ∼
[
Ad Bd

Cd Dd

]
(5.15)

F̂ ∼
[
AF̂ BF̂

CF̂ DF̂

]
, G1 = 1 + F̂ ∼

[
AF̂ BF̂

CF̂ 1 +DF̂

]
(5.16)

F̂
[
0 0 0 T

z2←
[
d̃w d̃r

]T ] ∼ [ Āf B̄f

C̄f D̄f

]
=

 Ād 0 Bd

BF̂Cd AF̂ BF̂Dd

DF̂Cd CF̂ DF̂Dd

 (5.17)

G2 ∼
[
Ācl2 B̄cl2

C̄cl2 D̄cl2

]
=

 Ācl2 0 Bcl2

0 Āf B̄f

Ccl2 C̄f Dcl2 + D̄f

 .(5.18)



72

Then the optimization in (5.12) can be synthesized as the following optimization [7]:

min
Ac,Bc,Cc,Dc,CF̂

,D
F̂
trace(W )

s.t.

W C̄cl2 D̄cl2

∗ X2 0
∗ ∗ I

 ≻ 0 (5.19)

X2 X2Ācl2 P2B̄cl2

∗ X2 0
∗ ∗ I

 ≻ 0 (5.20)


X1 X1AF̂ X1BF̂ 0
∗ X1 0 CT

F̂

∗ ∗ I 1 +DT
F̂

∗ ∗ ∗ γ2
0I

 ≻ 0 (5.21)

where the symbol ”∗” denotes the transpose of the corresponding element at its
transposed position. Since both X1 and X2 are coupled with AF̂ and BF̂ in (5.21)

and (5.20) respectively, the filter F̂ (z) is chosen as an FIR filter, which means that AF̂

and BF̂ are known and thus (5.21) becomes an LMI. Moreover, in order to recover
the convexity of (5.19) and (5.20) by a suitable nonlinear transformation [40], the
matrix X2 is chosen as X2 = diag {X22, Xff}. As a result, the optimization involving
(5.19), (5.20) and (5.21) is a convex optimization, which can be easily solved. After
synthesizing F̂ (z), we can reconstruct the feedforward control by

F (z) = 1 + S−1(z)F̂ (z) = 1 + (1 + P (z)C(z))F̂ (z) .

5.4 Simulation Study

In order to evaluate the concentric SSTW design methodologies presented in this
chapter, they will be tested via a simulation study that utilizes the benchmark model
developed by the IEEJapan technical committee on Nano-Scale Servo (NSS) system
[49] for single-stage HDDs. This model was also utilized to test the concentric SSTW
design scheme presented in [56]. This benchmark model was originally developed to
test track-following servos and must be modified to test servo systems for self-servo
track writing control. For the simulated hard disk drive, the servo sector number N
is equal to 220 and the disk speed is 7200 RPM. Thus, the sampling frequency for
this drive is fs = 220× 7200/60 = 26400 Hz.
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5.4.1 Weighting Value Determination

Before using the presented two control synthesis methodologies, we have to determine
the corresponding weighting values wt1, wt2, and wt3. For the technique presented
in Section 5.1, since the track error propagation term G1 may result in instability
(if ∥G1(z)∥∞ > 1), it is reasonable to choose a relatively small wt1. Intuitively, the
selection of wt1 < 1 is desirable to emphasize G1.

For the technique presented in Section 5.3, γ0 must be less than 1 and is required
to be closed to 1 so that the obtained H2 norm cost for track errors in (5.11) is
not too conservative according to the H∞ norm constraint. In addition, wt2 and wt3

are utilized to approximate 1

(1−|G1|2)1/2
and T

(1−|G1|2)1/2
respectively. As mentioned in

Section 5.3, the magnitude of T and G1 are flat at the low and middle frequencies
and thus it is desirable to determine wt2 and wt3 using the DC gains of T and G1.
It is well known that in order to attenuate low-frequency disturbances, T = PC

1+PC
is

usually designed to have a unit DC gain. Thus, wt2 and wt3 can be roughly selected
by

wt2 = wt3 =
1(

1− (Expected DC Gain of G1)
2)1/2 .

5.4.2 Control Design Results

An optimal H2 track following compensator C(z) was first synthesized and then a
non-causal feedforward compensator F (z) was designed using the H∞ control de-
sign methodology presented in Section 5.1, with the weighting value wt1 = 0.16
and nd = 7. The designed control system achieves ∥G1(z)∥∞ = 0.9781 < 1 and
∥F (z)∥∞ = 1.3633. The corresponding frequency response plots for the designed

F (z), P (z)C(z)+F (z)
1+P (z)C(z)

, 1
1+P (z)C(z)

, and F (z)
1+P (z)C(z)

are shown in Fig. 5.6.

Subsequently, a feedforward compensator F (z) constructed from the FIR filter F̂ (z)
and a feedback compensator C(z) were simultaneously designed using the mixed
H2/H∞ control synthesis methodology in Section 5.3. The designed control system
achieves ∥G1(z)∥∞ = 0.9737 with the tuning parameters wt2 = 4, wt3 = 4 and
γ0 = 0.98. The frequency response plots for the resulting controllers are shown in
Fig. 5.7.

5.4.3 Time-Domain Simulation Results

For the benchmark problem in [49], the modeled sensor noise has a sigma value of
1.5% of track pitch; that of the track runout due to disk vibrations is 1.7% of track
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Figure 5.6: Frequency responses for the non-causal feedforward control design via H∞
control
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Figure 5.7: Frequency responses for the feedback and feedforward control designs
using the mixed H2/H∞ synthesis methodology
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pitch; the contribution of the windage to PES has a sigma value of 12.2% track
width. The track error for the seed track is assumed to be a sigma value of 14% track
width. In the simulation, a total of 5000 servo tracks data was collected. In order
to interpret the simulated results better, we also provide the time-domain simulation
results for the 2-Dimensional H2 SSTW synthesis technique presented in [16]. The
sigma values of the first 5000 self-servo written tracks for the proposed two methods
in this chapter and for the 2-D H2 system are depicted in Fig. 5.8. Obviously, the
track error propagation is well contained for the three design methodologies.
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Figure 5.8: Time domain simulation results for track errors. Since the performance
of the control design via H2/H∞ is closed to that of 2-D H2 control, the green dashed
line is almost covered by the red dotted line.

Meanwhile, by considering the relatively large variance of the seed track, we are
also interested in checking how fast the transition response caused by the seed track
converges. The zoomed in figure for the transition response is illustrated in Fig. 5.9.
The results demonstrate that the effect of the bad seed track on the subsequently
written tracks by the proposed controllers disappears very quickly. Specifically, the
simulation results show that the transition responses disappear after about 15 tracks.

We now consider another common performance index called AC squeeze in order to
quantify the quality of written tracks. The AC squeeze for track i is defined as:

ACsqueezei = min
k∈[0,N−1]

{1 +△yi(k)−△yi−1(k)} (5.22)

where track errors △yi(k) and △yi−1(k) are normalized by the track width. When the
AC squeeze is too small, two adjacent tracks with narrow track spacing may interfere
with each other and cause data corruption. The ideal value of AC squeeze is 1 track
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Figure 5.9: Zoomed in Fig. 5.8 to check the transition response caused by the seed
track.

width, which means the adjacent tracks are perfectly parallel to each other. The
AC squeeze values for the simulated self-servo written tracks are shown in Fig. 5.10.
Moreover, the resulting average values of σ (△yi−1(k)) and ACsqueezei are presented
in Table 5.1. Note that the non-causal feedforward control design through standard
H∞ control achieves the best performance for track errors, while the feedback and
feedforward control designs by using the mixed H2/H∞ control accomplish the best
AC squeeze.

In order to provide the better comparison for our proposed control synthesis tech-
niques, the simulation results reported in [56] by using the iterative learning control
in lifted domain are also listed in Table 5.1. Obviously, the two proposed control de-
sign methodologies are able to improve both track errors and AC squeeze compared
to the ILC technique. Meanwhile, the two proposed control design techniques offer
the comparable performances to the 2-Dimensional H2 control technique in [16] while
having a much simpler control structure.

5.5 Conclusion

This chapter discussed two novel controller synthesis methodologies using a feedfor-
ward control structure for performing concentric self-servo track writing in disk drives.
In the first methodology, it is assumed that a conventional causal track-following con-
troller has been designed and then a non-causal feedforward controller—which utilizes
the stored error signal from writing the previous track—is designed based on standard
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Figure 5.10: Time domain simulation results for AC Squeeze. Since the performance
of the control design via H2/H∞ is closed to that of 2-D H2 control, the green dashed
line is almost covered by the red dotted line.

Table 5.1: Time-domain simulation results for SSTW controllers

Non-causal
feedforward

control
using

H∞ control

Control
designs

using mixed
H2/H∞
control

2-D H2

control

ILC in
lifted
domain
[21]

Average of 1σ
track error (% track)

2.11 2.50 2.27 2.88

Average of AC
squeeze (% track)

94.0 96.0 95.8 88
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H∞ control synthesis techniques. The designed controllers were used to prevent the
track errors from propagating and to achieve good disturbance attenuation. In the
second methodology, an analytic expression for the power spectrum density of track
errors was derived. The expression was subsequently used to formulate the simultane-
ous design of both feedback and feedforward controllers, using a mixedH2/H∞ control
scheme, which ensures the containment of the error propagation and the achievement
of good disturbance attenuation. In addition, a controller parameterization was em-
ployed so as to reduce the conservatism which is caused by the constraint imposed to
recover the convexity. Then, the mixed H2/H∞ control was solved via the solution
of a set of LMIs. Neither of these techniques utilizes the simplifying assumptions
in [56]. Simulation results using the HDD benchmark problem developed in [49]
showed that the controllers synthesized using the proposed schemes outperform the
controllers synthesized by the techniques in [56], and offer levels of performances that
are comparable with the 2-Dimensional H2 control technique in [16] while having a
simpler structure. Moreover, the track error propagation converged after about 15
tracks despite the seed track having a large track error.
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Chapter 6

Conclusions

6.1 Conclusions

In order to sustain the continuing increase of HDD data storage density, dual-stage
actuator servo systems have been developed to increase their servo bandwidth and
thus improve the precision of read/write head positioning control. Unfortunately, the
sampling intervals in HDDs are not always equidistant and even sometime an irreg-
ular sampling rate due to missing PES sampling data is unavoidable, for example,
the unavailability of the feedback signals in HDD servos with false PES demodula-
tion (due to incorrect servo address mark detection or damaged servo patterns). In
addition, such an irregular sampling rate also often occurs in self-servo track writing
process with the “collision” of reading the PES with writing the final servo patterns.
Therefore, it is important to address the issue of designing HDD servo systems un-
der irregular sampling rates. In addition, since servo patterns are used to generate
the feedback PES, the quality of servo track writing also plays an important role in
increasing HDD data storage density. In this dissertation, dual-stage control design
methodologies, optimal H∞ control algorithm for the servos with irregular sampling
rates, and control design techniques for concentric self-servo track writing were de-
veloped for HDD servo systems.

In the control design of dual-stage track-following servos, the modeling of these dual-
stage servo systems was first established. Subsequently, the disturbance observer
with the base line control of the sensitivity-decoupling control and the control syn-
thesis using the idea of a mixed H2/H∞ control scheme were developed. Because
of the conservatism of mixed H2/H∞ control synthesis using LMIs, a controller was
alternatively designed using nominal H2 control synthesis in which the control input
weighting value was tuned to achieve robust stability. Consequently, the designed
nominal H2 control can achieve not only a good servo performance but also the
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robust stability. The designs were experimentally validated using a dual-stage servo
system with a PZT-actuated suspension. The sensitivity-function crossover frequency
of the disturbance observer design is 2.08 KHz and that of the nominal H2 control
design is 3.67 KHz. The 3σ NRRO PES for the disturbance observer design is 13.1
nm, while the 3σ NRRO PES for the nominal H2 control design is 9.4 nm.

For the control design of HDD servo systems with irregular sampling rates caused by
missing PES sampling data, these servo systems were modeled as linear periodically
time-varying systems with period equal to the number of servo sectors. An optimal
H∞ control synthesis algorithm based on the solution of discrete Riccati equations was
developed to for LPTV systems achieve the robust performance for large variations in
HDD dynamics due to variations in manufacturing and assembly. First, the developed
control synthesis technique was tested by designing both single-rate and multi-rate
H∞ track-following controllers for single-stage HDD servo systems. Compared to the
control synthesis methodology in the Matlab function of “hinfsyn”, our proposed syn-
thesis technique is more numerically robust in calculating optimal discrete-time H∞
controllers for discrete-time linear time-invariant systems. Moreover, the presented
control synthesis algorithm is also applicable to multi-rate sampling and actuation,
while the “hinfsyn” function in Matlab is only applicable for LTI plants. Simulation
results demonstrate that multi-rate H∞ controllers synthesized using the technique
presented in this dissertation consistently outperform their single-rate counterparts
and offer the improved robust performance.

The developed optimal H∞ control algorithm was then applied to HDD servo systems
with irregular sampling rates. In order to make the resulting periodic controllers more
practical for implementation in real hard disk drives, a control parameter simplifica-
tion was established. The simulation and experimental studies on multiple hard disk
drives validate the synthesized controller’s effectiveness in handling irregular sam-
pling rates and achieving the robust performance of a desired error rejection transfer
function for disturbance attenuation. The simulation results were verified by the
implementation results on ten actual 2.5” single-stage hard disk drives. Moreover,
compared to the currently-used methodology for missing PES samples, our proposed
optimal H∞ control algorithm has improved the 3σ PES by around 20% for the tested
hard disk drives in the experimental study.

In order to improve the quality of servo track writing and reduce its cost, two novel
controller synthesis methodologies using a feedforward control structure were pro-
posed for performing concentric self-servo track writing in single-stage hard disk
drives. In the first methodology, it is assumed that a conventional causal track-
following controller has been designed and a non-causal feedforward controller, which
utilizes the stored error signal from writing the previous track, is designed using
standard H∞ control synthesis techniques. In the second methodology, an analytic
expression for the power spectrum density of track errors was derived. The expres-
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sion was subsequently used to formulate the simultaneous design of both feedback
and feedforward controllers, using a mixed H2/H∞ control scheme. By imposing a
constraint to recover the convexity, the mixed H2/H∞ control problem was solved
via the solution of a set of LMIs. In addition, a controller parameterization was em-
ployed so as to reduce the conservatism caused by the constraint. Simulation results
show that the controllers synthesized using the proposed schemes outperform the
controllers synthesized by the iterative learning control techniques in [56] and offer
levels of performances that are comparable with the 2-dimensional H2 control tech-
nique in [16] while having a simpler structure. Moreover, the track error propagation
converges very quickly despite the seed track having a large track error.

6.2 Future Work

Related to the work presented in this dissertation, several interesting future research
topics are described as follows.

The HDD dual-stage track-following control design methodologies presented in Chap-
ter 2 just considered the stability robustness for the hard disk drive with dynamic
uncertainties. In reality, it is more interesting that all of many several hard disk drives
could achieve as better servo performance as possible by using one single controller.
In other words, we have to synthesize a controller to achieve the best performance
for the worst case of these HDDs with defined uncertainties. Since disk drives are
stochastic systems and their performance is represented by the statistical distribution
of the PES, the HDD servo performance can be characterized by the H2 norm of the
close-loop system. Thus, synthesizing controllers that minimize the H2 norm of the
worst case of the closed-loop systems under the uncertainties is an interesting research
topic and this topic turns out to be a robust H2 control problem. For convenience
in its control synthesis, H2 guaranteed cost control problem [13] has been recently
studied as a conservative approximation of a robust H2 control problem.

By considering that HDD servos with irregular sampling rates can be represented as
linear periodically time-varying systems, another interesting research topic is to ex-
tend H2 guaranteed cost control synthesis techniques to discrete-time LPTV systems.
As a result, the H2 guaranteed cost control design methodology could then be applied
to disk drives with missing PES sampling data.

In this dissertation, the servo control designs of self-servo track writing were based on
the single-stage HDD configuration. In the future, the dual-stage HDD configuration
may be utilized in self-servo track writing process. Then, the servo design of dual-
stage self-servo track writing is a quite attractive research topic by considering that
we can improve the accuracy of positioning write heads using dual-stage actuation.
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On the other hand, the precision of read/write head positioning in HDD servos
can also be improved by amending HDD hardware. For example, instead of us-
ing actuated-suspension assembly, we can utilize actuated-head assembly [33, 53] for
dual-stage actuation. In the actuated-head approach, a micro-actuator is integrated
into the slider structure and moves the read/write head only. Consequentially, the
actuated-head type micro-actuator has a much higher bandwidth than the actuated-
suspension type. Currently, one member in our research group is working on the
fabrication of such micro-actuator prototype. In addition, the technique of using ad-
ditional sensing [19, 20] has also been employed to improve the HDD servo control. In
our research group, high resolution thin film strain sensors have been successfully inte-
grated into instrumented suspension prototypes and some basic experimental studies
have been carried out on these instrumented suspensions in order to evaluate the
effectiveness of the sensors. In the future, more complicated system models by inte-
grating the additional sensor signal into dual-stage HDDs need to be established for
synthesizing track-following controllers. It is interesting to investigate the advantages
of introducing additional sensing by applying our currently-developed robust control
synthesis algorithms to HDDs with an instrumented suspension.
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Appendix A

Minimum Entropy Output
Feedback Control Reduction

In this appendix, we will reduce the output feedback control problem for the linear
time-varying systemGOF := G in (3.1) to a full control problem. With the assumption
of DT

12(k)D12(k) ≻ 0,∀k in Chapter 3, we can assume without loss of generality that

D12(k) =
[
0 I

]T
. Throughout this appendix, we say a controller K is admissible for

a system Ḡ if and only if ∥Fℓ(Ḡ,K)∥2←2 < 1.

A.1 Reduction to Output Estimation Problem

We now consider a full information system with the state-space realization

GFI ∼


A(k) B1(k) B2(k)
C1(k) D11(k) D12(k)[
I
0

] [
0
I

]
0

 . (A.1)

Obviously, if there exists an admissible controller KOF for GOF in (3.1), then the
controller KOF

[
C2 D21

]
is admissible for GFI since

Fℓ(GOF , KOF ) = Fℓ(GFI , KOF

[
C2 D21

]
) .

Based on the results in [41], we know if there exists an admissible controller KOF for
GOF , then there must exist X(k) and T (k) such that

• X(k) ≽ 0, T (k) =

[
T11(k) 0
T21(k) T22(k)

]
, T11(k) ≻ 0, and T22(k) ≻ 0;
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• R(k)+BT (k)X(k+1)B(k) = T T (k)JT (k) where R(k) = DT
1•(k)D1•(k)−

[
I 0
0 0

]
,

J =

[
−I 0
0 I

]
;

•

X(k) = AT (k)X(k + 1)A(k) + CT
1 (k)C1(k)−M(k)×(

R(k) +BT (k)X(k + 1)B(k)
)−1

MT (k)

where M(k) = AT (k)X(k)B(k) + CT
1 (k)D1•(k);

• Acl(k) = A(k) +B(k)F (k) is UES with[
F1(k)
F2(k)

]
=
(
R(k) +BT (k)X(k + 1)B(k)

)−1
MT (k) .

Let D⊥(k) =
[
I 0

]T
be an orthogonal matrix to D12(k) and define a matrix W (k)

such that W T (k)W (k) = I − T T
11(k)T11(k) and W (k) has appropriate dimensions so

that the following matrix multiplication is well defined:

D̄11(k) = D⊥(k)W (k) +D12(k)T21(k) .

In addition, we define the following LTV system Gtmp with the state-space realization

Gtmp ∼

 Ā(k) B1(k) B2(k)T
−1
22 (k)

C̄1(k) D̄11(k) D12(k)
C̄2(k) D21(k) 0


:=

 A(k) +B1(k)F1(k) B1(k) B2(k)T
−1
22 (k)

−D12(k)T22(k)F2(k) D̄11(k) D12(k)
C2(k) +D21(k)F1(k) D21(k) 0

 . (A.2)

Then, we have the following lemma:
Lemma 3. The controller KOE is admissible for Gtmp if and only if the controller
given by T−122 (k)KOE is admissible for GOF .

Proof. Suppose the controller KOE admits the state-space realization

KOE ∼
[
Ac(k) Bc(k)
Cc(k) Dc(k)

]
and consider the LTV system

Gvyru ∼

 A(k) +B1(k)F1(k) B1(k)T
−1
11 (k) B2(k)

−T22(k)F2(k) T21(k)T
−1
11 (k) T22(k)

C2(k) +D21(k)F1(k) D21(k)T
−1
11 (k) 0

 .



91

Then, we have[
D⊥(k) D12(k)

] [ W (k)
Fℓ

(
Guvru, T

−1
22 (k)KOE(k)

)
T11(k)

]

=

 A+B1F1 +B2T
−1
22 Dc (C2 +D21F1) B2T

−1
22 Cc B1 +B2T

−1
22 DcD21

Bc (C2 +D21F1) Ac BcD21

−D12T22F2 +D12Dc (C2 +D21F1) D12Cc D⊥W +D12T21 +D12CcD21


=Fℓ(Gtmp(k), KOE(k))

where the time index k is skipped for the last equality. By consideringD⊥(k)
TD⊥(k) =

I and D⊥(k)
TD12(k) = 0, we have

I −Fℓ(Gtmp(k), KOE)
TFℓ(Gtmp(k), KOE)

=I −W T (k)W (k)− T T
11(k)Fℓ

(
Guvru, T

−1
22 (k)KOE

)T Fℓ

(
Guvru, T

−1
22 (k)KOE

)
T11(k)

=T T
11(k)

[
I −Fℓ

(
Guvru, T

−1
22 (k)KOE

)T Fℓ

(
Guvru, T

−1
22 (k)KOE

)]
T11(k)

⇒ ∥Fℓ(Gtmp, KOE)∥2←2 < 1 ⇔ ∥Fℓ(Gvyru, T
−1
22 KOE)∥2←2 < 1 .

From [41], we learn that

∥Fℓ(GOF , T
−1
22 KOE)∥2←2 < 1 ⇔ ∥Fℓ(Gvyru, T

−1
22 KOE)∥2←2 < 1 .

Thus, we conclude that

∥Fℓ(Gtmp, KOE)∥2←2 < 1 ⇔ ∥Fℓ(Gvyru, T
−1
22 KOE)∥2←2 < 1 .

With Lemma 3, the output feedback control problem is reduced to an output estima-
tion problem associated with Gtmp.

A.2 Reduction to Full Control Problem

With D12(k) =
[
0 I

]T
, we have

C̄1(k) =

[
0

−T22(k)F2(k)

]
, D̄11(k) =

[
D̄111(k)
D̄112(k)

]
, B̄2(k) = B2(k)T

−1
22 (k) .

Then, Gtmp in (A.2) can be represented by

Gtmp ∼


Ā(k) B1(k) B̄2(k)[
0

C̄12(k)

] [
D̄111(k)
D̄112(k)

] [
0
I

]
C̄2(k) D21(k) 0

 .
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Figure A.1: Fixed control structure for the output estimation control problem

Since the first part of both C and D matrix is zero, the minimum entropy H∞ control
design for Gtmp is equivalent to the one for the following LTV system Ḡtmp

Ḡtmp ∼

 Ā(k) B1(k) B̄2(k)
C̄12(k) D̄112(k) I
C̄2(k) D21(k) 0

 . (A.3)

In order to construct an admissible controllable for GOF , we consider fixing the control
structure of KOE for Ḡtmp as shown in Fig. A.1a. Choose Kest with the following
state-space realization:

Kest ∼

xe(k + 1)
u(k)
ye(k)

 =

 Ā(k)− B̄2(k)C̄12(k) 0
[
0 −B̄2(k)

]
C̄12(k) 0

[
0 I

]
C̄2(k) I

[
0 0

]



xe(k)
y(k)[
ux(k)
uw(k)

]
 (A.4)

Let G̃FC denote the interconnection of Ḡtmp and Kest, and it can be written as

G̃FC ∼


Ā(k) B̄2(k)C̄12(k) B1(k)

[
0 B̄2(k)

]
0 Ā(k)− B̄2(k)C̄12(k) 0

[
I −B̄2(k)

]
C̄12(k) C̄12(k) D̄112(k)

[
0 I

]
C̄2(k) C̄2(k) D21(k)

[
0 0

]
 .

Then, after applying the state transformation matrix Tst = T−1st =

[
−I 0
I I

]
to the

above state-space realization for all k, we get

G̃FC ∼


Ā(k)− B̄2(k)C̄12(k) −B̄2(k)C̄12(k) −B1(k)

[
0 −B̄2(k)

]
0 Ā(k) B1(k)

[
I 0

]
0 C̄12(k) D̄112(k)

[
0 I

]
0 C̄2(k) D21(k)

[
0 0

]
 (A.5)

Obviously, the first part of the state in (A.5) is unobservable but stable by considering
that Ā(k) − B̄2(k)C̄12(k) = A(k) + B1(k)F1(k) + B2(k)F2(k) = A(k) + B(k)F (k) is
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UES which is guaranteed in Lemma 3. As a result, G̃FC can be simplified as

G̃FC ∼

 Ā(k) B1(k)
[
I 0

]
C̄12(k) D̄112(k)

[
0 I

]
C̄2(k) D21(k)

[
0 0

]
 . (A.6)

Obviously, G̃FC with the state-space realization in (A.3) is a full control system.
Then, we consider the following lemma to reduce an output estimation problem to a
full control problem.
Lemma 4. There exists an admissible controller KOE(k) for Ḡtmp if and only if there
exists an admissible controller K̃FC for G̃FC.

Proof. In this proof, we prove sufficiency and necessity separately.

• Sufficiency can be obtained with the control structure shown in Fig. A.1c and

state transformation Tst =

[
−I 0
I I

]
. Suppose that K̃FC is admissible for G̃FC ,

then the controller given by KOE = Fℓ(Kest, K̃FC) is admissible for Ḡtmp where
Kest is defined in (A.4).

• Necessity is trivial. If KOE is admissible for Ḡtmp, then the controller

K̃FC =

[
B2(k)
I

]
Kest

is admissible for G̃FC , since Fig. A.1 demonstrates that

Fℓ(G̃FC , K̃FC) = Fℓ(Ḡtmp, KOE)

At this point, we are able to reduce an output feedback control problem to a full
control problem and thus we can reconstruct the output feedback controller KOF

from the controller K̃FC solved in the corresponding full control problem by using

KOF = T−122 (k)KOE = T−122 (k)Fℓ(Kest, K̃FC) .

Notice that the minimum entropy controller for the full control problem is provided
in [41].
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Appendix B

Proof of Lemma 1

First, we will show the periodicity of the solution to the discrete Riccati equation (3.5)
in Step 1). Suppose (· · · , X(j), X(j + 1), · · · ) is a solution to the discrete Riccati
equation in (3.5), which means that

X(j) = AT (j)X(j + 1)A(j) + CT
1 (j)C

T
1 (j)− ηj (X(j + 1))

where

ηj(X(j + 1)) = Mj(X(j + 1))
(
R(j) +BT (j)X(j + 1)B(j)

)−1
MT

j (X(j + 1))

with Mj(X(j + 1)) = AT (j)X(j + 1)B(j) + CT
1 (j)D1•(j). At the time of j +N ,

X(j +N) = AT (j +N)X(j +N + 1)A(j +N) +

CT
1 (j +N)C1(j +N)− ηj+N (X(j +N + 1)) .

By considering that the plant G in (3.1) is periodic with period N (i.e. A(j +N) =
A(j), B(j +N) = B(j), C1(j +N) = C1(j), and D1•(j +N) = D1•(j)), we have:

X(j +N) = AT (j)X(j +N + 1)A(j) + CT
1 (j)C1(j)− ηj (X(j +N + 1)) (B.1)

where

ηj(X(j +N + 1)) = Mj(X(j +N + 1)) (R(j) +

BT (j)X(j +N + 1)B(j)
)−1

MT
j (X(j +N + 1)) .

Thus, the equation in (B.1) implies that (· · · , X(j +N), X(j +N + 1), · · · ) is an-
other solution to the discrete Riccati equation in (3.5). From [41], we know that the
bounded stabilizing solution to the discrete Riccati equation in (3.5) is unique, which
implies X(j) = X(j +N).
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As a result, all matrices Ā(k),

[
C̄12(k)
C̄2(k)

]
, and

[
D̄112(k)
D21(k)

]
for (3.7) are periodic with

period N .

Moreover, the periodicity of the solution to the discrete Riccati equation (3.7) in Step
5) for constructing a minimum entropy controller, i.e. Y (k) = Y (k+N), can be shown
in a similar manner. Consequentially, the periodicity of X(k) and Y (k) implies that
all of the parameters to construct the H∞ controller in (3.4) are periodic with period
N . Therefore, the optimal H∞ controller for the linear periodically time-varying
system G is also periodic with period N .



96

Appendix C

Proof of Lemma 2

Since Lt(k) = T−122 (k)T̃12(k)T̃
−1
22 (k) and Ft(k) = F̃ T

1 (k)T̃12(k)T̃
−1
22 (k)+F̃ T

2 (k), the proof
is done if we can show T̃12(k) = 0 and F̃ T

2 (k) = 0n×1 when PES(k) is unavailable.
Here n is the order of the system G4 in (4.5). During the following proof, we just
consider the instance k when PES(k) is unavailable.

C.1 Proof of T̃12(k) = 0

With the equation in (4.11), we have[
−T̃11(k)T̃

T
11(k) + T̃12(k)T̃

T
12(k) T̃12(k)T̃

T
22(k)

T̃22(k)T̃
T
12(k) T̃22(k)T̃

T
22(k)

]
=

[
D̄112

D21(k)

] [
D̄112

D21(k)

]T
−
[
I 0
0 0

]
+[

C̄12

C̄2(k)

]
Y (k − 1)

[
C̄12

C̄2(k)

]T
⇒ T̃22(k)T̃

T
22(k) = D21(k)D̄

T
112 + C̄2(k)Y (k − 1)C̄12 .

With C2(k) = 01×n and D21(k) =
[
0 1

]
from (4.6), we know

T̃22(k)T̃
T
12(k) =

[
0 1

]
D̄T

112 .

Obviously, if D̄112 has the form of D̄112 =
[
∗ 0

]
, then T̃12(k) = 0. Here, we utilize

“*” to represent unspecified elements in a matrix. Since

[
D̄111

D̄112

]
= D⊥W + D12T21,

we just need to show that W and T21 have the following representation

W =
[
∗ 0

]
and T21 =

[
∗ 0

]
.
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With the equation in (4.9), we have[
−T T

11T11 + T T
21T21 T T

21T22

T T
22T21 T T

22T22

]
=

[
D̄T

11

DT
12

] [
D11 D12

]
−
[
I 0
0 0

]
+

[
BT

1

BT
2

]
X
[
B1 B2

]
⇒
{

DT
11D11 +BT

1 XB1 − I = T T
21T21 − T T

11T11

DT
12D11 +BT

2 XB1 = T T
22T21

.

Since the fictitious disturbance w2 directly goes into the feedback signal y(k) when
PES(k) is unavailable, the elements in D11 and B1 associated with w2 are zero. As
a result, we have:

D11 =
[
∗ 0nz×1

]
and B1 =

[
∗ 0n×1

]
⇒ T21 = T−T22

{
DT

12D11 +BT
2 XB1

}
= T−T22

[
∗ 0

]
=
[
∗ 0

]
where nz is the dimension of the “performance monitoring” output z. In addition,
for W , we have

W TW = I − T T
11T11 = DT

11D11 +BT
1 XB1 − T T

21T21

=

[
∗ 0
0 0

]
+

[
∗ 0
0 0

]
+

[
∗ 0
0 0

]
=

[
∗ 0
0 0

]
.

Obviously, we can take the factorization of W =
[
∗ 0

]
. Therefore, W =

[
∗ 0

]
and T21 =

[
∗ 0

]
implies D̄112 =

[
∗ 0

]
, which results in

T̃ T
12(k) = T̃−122 (k)D12D̄

T
112 = T̃−122 (k)

[
0 1

] [ ∗
0

]
= 0 .

C.2 Proof of F̃ T
2 (k) = 0n×1

From the previous section, we learn that C2(k) = 01×n, D21(k) =
[
0 1

]
, and B1 =[

∗ 0n×1
]
. Thus, we calculate

M̃T (k) =

[
C̄12

C̄2(k)

]
Y (k − 1)ĀT +

[
D̄112

D21(k)

]
BT

1

=

[
C̄12Y (k − 1)ĀT

01×n · Y (k − 1)ĀT

]
+

[
D̄112B

T
1

D21(k)B
T
1

]
=

[
∗

01×n

]
+

[
∗

01×n

]
=

[
∗

01×n

]
.
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The result T̃12(k) = 0 from the previous section implies

T̃ (k)J̃ T̃ T (k) =

[
−T̃11(k)T̃

T
11(k) + T̃12(k)T̃

T
12(k) T̃12(k)T̃

T
22(k)

T̃22(k)T̃
T
12(k) T̃22(k)T̃

T
22(k)

]
=

[
−T̃11(k)T̃

T
11(k) 0

0 T̃22(k)T̃
T
22(k)

]
.

Substitute the right side of (4.11) into the right side of the equation (4.12):[
F̃1(k)

F̃2(k)

]
=

(
T̃ (k)J̃ T̃ T (k)

)−1
M̃T (k)

=

 −
(
T̃11(k)T̃

T
11(k)

)−1
0

0
(
T̃22(k)T̃

T
22(k)

)−1
[ ∗

01×n

]

=

[
∗

01×n

]
⇒ F̃2(k) = 01×n .

With the above proof, we conclude that

T̃12(k) = 0 and F̃ T
2 (k) = 0n×1

at the instance k when PES(k) is unavailable.


