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Chapter 1

Introduction

1.1 Data Arrangement and Access in Hard Disk Drives

In modern hard disk drives, writing of data/information is achieved by alternating

the polarity of current in the write head’s coil. During data writing, the disk spins

and the write head is positioned at the desired disk location with as low variance as

possible. As a result, data is stored in circular patterns of magnetization known as

data tracks or simply, tracks.

For the read/write head to access the disk data, information of the track number

and data location within the track should be accessible. Servo sectors are specially

coded magnetic patterns written on the disks that provide the location information for

the heads. Figure 1.1 is a demonstration of the data tracks and servo sectors on a disk.

A typical disk platter in the year of 2007 has more than 100, 000 tracks within one

inch and more than 220 sectors on one track [1]. As the TPI gets higher and higher,

writing of the servo patterns takes a longer and longer time. This requires additional

investment on servo track writers which translate to an increased production cost.

Spirals servo writing is therefore introduced to reduce the servo writing cost.

As shown in Fig. 1.2, two types of servo patterns exist in the spiral based servo

writing process: the spiral servo patterns for manufacturing purpose and the concen-

tric servo patterns, a.k.a. drive servo patterns, for track seeking and following in the

daily operation of a HDD unit. These two patterns are written in a two-step manner.



2� Data track

Servo sector

Figure 1.1: Data tracks and servo sectors on hard disks.

In step one, spiral servo patterns are written on an external servo writer. In step

two, using the spirals as references, the final product servo patterns are written via

in-drive self servo writing.� 0
1

2

3

4
5

6

N-1

� 0
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2

3

4
5

6

N-1

Figure 1.2: The two types of servo patterns on the disk. Left figure: spiral servo

patterns written on a blank disk; Right figure: drive servo patterns written based on

the spiral servo patterns.

When writing a spiral, the external servo writer controls the radial location of the

head for writing a plurality of spiral reference patterns between an inner circular seed

track and an outer circular seed track. In an ideal writing process from the outer

diameter (OD) to the inner diameter (ID), the head should follow a pre-designed
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velocity profile, which typically includes three regions as shown in Fig. 1.3: an accel-

eration region for the head to reach the desired spiral writing speed, a constant speed

spiral writing region, and a deceleration region to reach zero speed when approaching

the ID. The acceleration and deceleration distances should be kept as small as pos-

sible. Typical spiral writing speed is between two to six inches per second, and the

disk rotates fully about 10 times for each spiral.�
OD

ID

Rotation (time)

Acceleration Deceleration

spiral 
writing

Figure 1.3: The three velocity regions for the head to move from OD to ID.

When writing multiple spirals on a disk, the servo writer head moves back and

forth between OD and ID. Figure 1.4 demonstrates an example of writing 8 spirals

on a disk. Figure 1.5 is a possible trajectory for a complete moving cycle from OD to

ID and then back to OD. As shown in Fig. 1.4, the seed track at the outer diameter

contains timing information for spiral writing. The interrupts O1, O2, · · · , and O8

indicate the starting positions for the 8 spirals. When writing the first spiral, the

head initializes at position O1 and finishes writing at the seed track in ID. After a

short settling at ID, the head “re-traces” to return to the seed track at OD, and waits

for the writing position of the next spiral. Preferably, returning to OD should be

performed as fast as possible based on the available maximum energy and system

component characteristics. Notice that when coming back from ID to OD, the head

can not write spirals due to the inverse of the velocity direction. Also worth noticing

is that a sequential manner of writing multiple spirals is not necessary, i.e, writing of

the second spiral does not need to start at O2. Instead, the spirals can be written in
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a more complex or even random manner, as long as the software keeps tracking the

starting positions of spirals that have been written1.

Return to OD after 
spiral 1 is written

O1

O2

O3

O4

O5

O6

O7

Spiral 1

Spiral 2

V
C

M

Disk rotation 
direction

Figure 1.4: Multiple spiral writing on a disk surface.
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Figure 1.5: A possible spiral writing trajectory profile.

At fixed intervals, a sync pattern/mark is embedded to the spirals. For the servo

information to properly perform its function, the same amount of sync marks should
1In fact, it is beneficial to use a complex spiral sequence due to the thermal expansion of the

disk.
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lie on each spiral. If we index the sync marks from 1 to N between OD and ID, then

sync marks with the same index number i (1 ≤ i ≤ N) should lie on the same radius

and be circumferentially equally spaced, as shown in Fig. 1.6.

Sync marks 
should be equally 
spaced on a circle

Spirals should be 
equally spaced on 
the entire disk

Figure 1.6: Sync marks in spirals.

1.2 Hardware Description

The spiral servo writing process is performed on a media servo writer [2] in a

clean room. Several disks are stacked and packed in a disk hub which is attached to

a rotating shaft, as shown in Fig. 1.7. The servo writer heads are fixed on another

stack of actuator arms controlled by a voice coil motor (VCM), as shown in Fig. 1.8.

By servo-writing multiple disks at the same time, the usage of clean room space and

the consumption of time can be substantially reduced.

Figure 1.7: A stack of disks mounted on a hub.
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Figure 1.8: A group of actuator arms controlled by VCM.

During the writing process, disks keep spinning at a typical speed of 5400 rpm or

7200 rpm. A flexible air baffle device is applied to reduce the vibration caused by any

possible air disturbance. Figure 1.9 gives a graphical demonstration of the assembled

disks with air baffle protection.

Figure 1.9: Disk assembly with actuator arms and air shroud.

Table 1.1 is a quick summary for the media servo writer machine. Data is collected

mainly from the product introduction of LaserResearch Pte Ltd website [2].



7

Table 1.1: Summary of the media servo writer machine.

Number of Platters 10 disks

Spindle Speed 5400rpm (2400∼10000 flexible)

Spindle / Hub

Jitter < 0.01%

Spindle NRRO 0.14 micro-inch

Total RRO 0.60 micro-inch

Rotary Positioner and Clock Head

Encoder Resolution 0.01 micro-inch

Track Holding Accuracy < 0.12 micro-inch

Settling Time 2.0 ms

Clock Writing Resolution < 0.001 ns at 10 MHZ

Electronics/System

Maximum Frequency 300 MHz

Clock Closure < 2 ns

Phase-lock Loop Jitter < 100 ps/1 ns

Track to Track Phase < 0.5 ns/5 ns

Facility Requirement

Machine Footprint 660 mm×410 mm×1200 mm

Cleanliness Class 10

Power Supply 110 VAC at 60 Hz, 7 A single phase

1.3 Control Issues in Spiral Writing

The media servo writer comprises head positioning mechanics to derive the radial

location of the head. Precise positioning and timing are required when servo patterns

are laid down on the disk surface. The radial and circumferential positions of the head

need to be well controlled, this results in a position tracking problem. The timing for

the sync marks should also be as accurate as possible with additional robustness to
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the possible thermal effects of the disk and spindle.

This report focuses on the position control problem in spiral writing. The control

objectives are:

• Improve bandwidth of the position control loop system as high as possible;

• Minimize the acceleration region and ensure smooth settling when entering the

constant speed spiral writing region;

• Reduce the influences of disturbance (disk modes, windage, friction, thermal

expansion, etc);

1.4 Organization of the Report

In Chapter 2, system identification of the servo writer is provided. It will be

shown that the dynamic behavior of the servo writer is quite similar to that of an

actuator in modern hard disk drives. In Chapter 3, zero phase error tracking (ZPET)

control and a modified disturbance observer (DOB) are applied to the position control

of writing one stroke of spiral servo patterns. In Chapter 4, the repetitive writing

of multiple spirals is analyzed. A novel control algorithm that combines iterative

learning control (ILC) with ZPET and DOB is introduced and tested in simulation.

Chapter 5 discusses methods to reduce the non-repetitive error influence in ILC.

Chapter 6 concludes the report.
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Chapter 2

System Identification

2.1 FEA Model and Frequency Response of the Servo

System

Figure 2.1 shows the finite element analysis (FEA) model of the servo writer

system. For simplicity, the head and actuator pair at the bottom of Fig. 2.1 is called

the lower head system, and the one above it named the upper head system. Figure

2.2 shows the frequency responses of the lower and the upper head systems (input:

amplitude; output: deg). It is noted that the two systems only have small variances

in the frequency region higher than 10, 000 Hz. For analysis purpose, the dynamic

model of either of them can be applied as the system model in the proposed single

input single output (SISO) control.
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Figure 2.1: FEA model of the servo track writer.�
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Figure 2.2: Frequency response of the head system.

In the low frequency dynamics, if we consider the servo writer head and actuator

system as a rigid body, and the VCM as an ideal transformer [1], a working model of
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the VCM actuator plus the driver can be derived as a double integrator

Gn (s) =
K0

s2
. (2.1)

This also suits well with the FEA frequency response result, which has a −40 dB/dec

slope in the low frequency region.

In the high frequency region, similar to modern disk drives, resonance/vibration

modes are the major sources of non-repeatable run outs (NRROs) in servo writers.

Observing from the FEA results, we find several important vibration modes at respec-

tively 1567 Hz, 1781 Hz, 4802 Hz, 8844 Hz, and 13128 Hz, as shown in Figs. 2.3, 2.4,

2.5, 2.6, and 2.7. They correspond to the base bending and torsion (butterfly) modes,

and the suspension bending and sway modes. The dominating vibration modes are

approximated by second order under-damped systems. The system dynamic model

is finally derived as a summation of the double integrator model plus the dominating

vibration modes. Table 2.1 summarizes the identified parameters using the System

Identification Tool Box in MATLAB. �
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Figure 2.4: Plant vibration mode: base bending at 1781 Hz.�
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Figure 2.6: Plant vibration mode: suspension 2nd bending at 8844 Hz.�
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Figure 2.7: Plant vibration mode: suspension sway at 13128 Hz.
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Table 2.1: Model parameters

Low fre-

quency
High frequency

Base 1st

bend

Base

2nd

bend

Base

Torsion

Suspension

2nd bend

Suspension

sway

Damping

factor ζ

(×10−3)

\ 4.971 5.263 5.000 5.004 4.109

Time

constant T

(×10−4 sec)

\ 6.3820 5.6149 2.0813 1.1295 0.7606

Gain K

(×10−7 deg
sec2 ·A)

11× 107 8.635 6.299 −8.973 0.287 5.576

The system dynamic model can then be written as:

Gp(s) =
K0

s2
+

n∑
i=1

Ki

(Tis)2 + 2ζiTis+ 1

(
deg
A

)
, (2.2)

where n is the number of dominant resonant modes.

2.2 System Model Used in Simulation

Although the FEA result is available, the noise and disturbance data were not

available. From the analysis in the last section, it is seen that the servo writer system

actually has a similar behavior to a single actuator system in a HDD. In the following

design procedure, an open source benchmark problem [3] of HDD control is used as

an example plant. This problem is developed by a technical committee on Nano-

Scale Servo (NSS) system of IEE Japan. Figure 2.8 is the frequency response (input:

voltage; output: track number) of the dynamic system in the benchmark problem.
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Chapter 3

Robust High Precision Tracking

Control for Single Spiral Writing

In this chapter, we study the position control problem in writing one stroke of

spiral servo patterns.

3.1 Trajectory Design

Typical spiral writing speed is between 2 and 6 inches per second. Assume that

we are performing spiral writing to a 3.5-inch disk, with an effective distance from

OD to ID of 1.7 inches. Table 3.1 summarizes the parameters used in this report.

Table 3.1: Spiral writing parameters.

Parameters Values

Spiral writing speed 5 inch/s

Maximum acceleration of the writer head 500 inch/s2

Sampling frequency 26400 Hz

Sector number 220

Track density 100 kTPI

Track pitch 2.54× 10−7 m
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Recall that the process of moving the head from OD to ID contains three trajectory

regions as defined in Fig. 3.1.�
OD

ID

Rotation (time)

Acceleration Deceleration

spiral 
writing

Figure 3.1: The three regions for the head to move from OD to ID.

During acceleration, to maximize the effective spiral writing region without evok-

ing the vibration modes of the dynamic system, we apply the following Structural

Vibration Minimized Acceleration Trajectory (SMART) [4]:

y(t) =(6yf − 3vf tf +
af
2
t2f )(

t

tf
)5 + (−15yf + 7vf tf − af t2f )(

t

tf
)4

+ (10yf − 4vf tf +
af
2
t2f )(

t

tf
)3

v(t) =(30yf
1

tf
− 15vf +

5af
2
tf )(

t

tf
)4 + (−60yf + 28vf tf − 4af tf )(

t

tf
)3

+ (30yf
1

tf
− 12vf +

3af
2
tf )(

t

tf
)2

a(t) =(120yf
1

t2f
− 60vf

1

tf
+ 10af )(

t

tf
)3 + (−180yf

1

t2f
+ 84vf

1

tf
− 12af )(

t

tf
)2

+ (60yf
1

t2f
− 24vf

1

tf
+ 3af )(

t

tf
)1,

(3.1)

where the initial conditions are set to a (0) = 0, v (0) = 0, y (0) = 01, the end con-

ditions are assigned as a (N) = af = 0, v (N) = vf = constant spiral writing speed,

y (N) = yf = start position of the effective spirals, and N is the length of the accel-

eration trajectory. Based on minimizing the jerk (the rate of change in acceleration),
1The position is normalized w.r.t. the center of the OD seed track.



18

the above trajectory is shown to greatly suppress the high harmonics of the actuator

acceleration [4].

When entering the effective spiral writing region, the write heads maintain the

constant speed and print the servo patterns on the disk. In the deceleration region,

spiral writing is not performed. The deceleration portion of the trajectory can hence

be made as aggressive as possible, by applying the maximum deceleration. Figure

3.2 summarizes the proposed trajectory profile for moving the servo writer head from

OD to ID. �
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Figure 3.2: Desired trajectory profile for moving the head from OD to ID.

3.2 Overall Controller Structure

The proposed position control structure is shown in Fig. 3.3. Gp (z−1) is the

full order discrete time plant model. The output y (k) is the position of the write

head. The system is subjected to measurement noise plus input and output distur-



19

bances. A disturbance observer (DOB) is constructed to enforce robust input/output

behavior by canceling the effects of disturbances and modeling errors. Three notch

filters (or, more generally, plant shaping filters) are selected to attenuate the first

three dominating resonant modes. The DOB loop is then stabilized by a PD type

feedback controller2. In tracking control, feedback signal alone provides limited track-

ing precision. A feed-forward zero phase error tracking controller GZPET (z−1) [5] is

constructed to achieve perfect tracking during the constant speed spiral writing.

�

�

( )dy k

�

�

�

�

�

1( )ZPETG z− 1( )PDG z−

1( )Q z−

1 1( )niG z− −

1( )PG z−

mz−

1( )notchG z− �

�

sensor
noise n

�

�

�

output
disturbance d

input
disturbance w

measured
y(k)

true
y(k)

Disturbance Observer

Figure 3.3: Proposed controller structure for single spiral writing.

3.3 Disturbance Observer Design

3.3.1 Review of Standard DOB

The standard discrete disturbance observer (DOB) will be reviewed here briefly.

Further discussions can be found in [6, 7, 8].

3.3.1.1 Standard Structure

Consider a plant Gp(s), with a zero order hold equivalence Gp(z
−1), and a low-

order nominal model3 Gn(z−1) = z−mGni(z
−1). A standard digital DOB can be

constructed as shown in Fig. 3.4, where Q(z−1) is a so-called Q-filter that usually
2A PD controller is used here instead of a more general PID controller, since the DOB provides

the I action already.
3For the DOB design, we intentionally factorize out the delay terms z−m. Gni(z

−1) has a relative
degree of 0 and will be acting as the nominal plant for DOB inverse.
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has a low-pass structure in tracking control, Gni(z
−1)−1 is the inverse of the nominal

plant without delays, u(k), w(k), c (k), y(k), and n(k) are respectively the control

input, the plant input disturbance, the compensation signal, the plant output, and

the measurement noise.

The compensation signal c (k) is designed, by constructing the DOB, to approxi-

mate and cancel the disturbance w (k). To see this point, notice first that the signal

ŵ (k) is expressed by, in the operator notation,

ŵ (k) = Gni

(
z−1
)−1 [

Gp

(
z−1
)

(u (k) + w (k)) + n (k)
]
− z−mu (k) . (3.2)

A stable inverse model Gn (z−1)
−1 is needed in the above signal processing. If

Gn (z−1) has minimal phase, its inverse can directly be assigned, if not, stable inversion

techniques such as the ZPET method4 [9] should be applied. In the servo track

writer system, the nominal model is usually selected as the rigid bode model, to

avoid instability in the inverse nominal model Gni(z
−1)−1, and to simplify the design

of other feedback and feed-forward controllers.

In the low frequency region, the plant Gp (z−1) can be well approximated by its

nominal model Gn(z−1), i.e., Gp (z−1) ≈ Gn(z−1) = z−mGni (z
−1). Eq. (3.2) then

becomes

ŵ (k) ≈ z−mw (k) +Gni

(
z−1
)−1

n (k) . (3.3)

If in addition the sensor noise n (k) is small, the above equation is further simplified

to

ŵ (k) ≈ z−mw (k) = w (k −m) , (3.4)

which implies that ŵ (k) is a good estimate of the disturbance w (k). In reality, the

influence of n (k) can not be ignored. The low-pass filter Q (z−1) is constructed to

form the final compensation signal c (k). Adding the negative of c (k) into the control

input, we accomplish the disturbance rejection.

The properties of DOB can also be shown rigorously in the transfer function

domain. Notice first that Fig. 3.4 can be transformed to its equivalent forms in Fig.
4We will discuss in detail about this in Section 3.4.



21

( )y k

+-

+
-

1( )Q z−

1 1( )niG z− −

1( )PG z−

mz−

+
w(k)

n(k)

u
¤(k) u(k)

+

+

+

c(k)
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Figure 3.4: Block diagram of the standard digital DOB.

3.5 and Fig. 3.6. From Fig. 3.6, it is straightforward to derive the following transfer

functions from u∗(k), n(k), and w(k) to the output y(k):

Gu∗y

(
z−1
)

=
Gp (z−1)Gni (z

−1)

Gni (z−1) + (Gp (z−1)−Gni (z−1) z−m)Q (z−1)
(3.5)

Gny

(
z−1
)

=
−Gp (z−1)Q (z−1)

Gni (z−1) + (Gp (z−1)−Gni (z−1) z−m)Q (z−1)
(3.6)

Gwy

(
z−1
)

=
Gp (z−1)Gni (z

−1) (1−Q (z−1) z−m)

Gni (z−1) + (Gp (z−1)−Gni (z−1) z−m)Q (z−1)
. (3.7)

The output can thus be expressed as, in the operator notation:

y(k) = Gu∗y

(
z−1
)
u∗(k) +Gwy

(
z−1
)
w(k) +Gny

(
z−1
)
n(k). (3.8)

( )y k

-

+
-

1( )Q z−

1 1 1( ) ( )niQ z G z− − −

1( )PG z−

mz−

+
w(k)

n(k)

u
¤(k) u(k)

+

+

+

+

Figure 3.5: Equivalent form 1 of the standard DOB.

In the low frequency region where Q(z−1) ≈ 1, if the delay is small so that

(1− z−m)Gni ≈ 0, then Gwy(z
−1) ≈ 0 in Eq. (3.7), Gny(z

−1) ≈ −1 in Eq. (3.6), and

Gu∗y(z
−1) ≈ Gn in Eq. (3.5). The disturbance w(k) is thus attenuated and the entire

DOB loop behaves like the nominal plant Gn(z−1). This observation makes it possible
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Figure 3.6: Equivalent form 2 of the standard DOB.

to design other feedback or feed-forward controllers simply based on the low order

nominal model. In the high frequency region where Q(z−1) ≈ 0, DOB is essentially

inactive, therefore Gu∗y(z
−1) ≈ Gp(z

−1), Gwy(z
−1) ≈ Gp(z

−1), and Gny(z
−1) ≈ 0,

which indicates that the high frequency sensor noise is attenuated or it does not enter

the DOB loop.

The above analysis indicates that selection of the Q-filter plays an important role

in DOB performance. Two types of properties in Q (z−1) are essential: the cut-off

frequency and the high frequency roll off. In servo track writers, sensors are usually

accurate and measurement noise contributes little to the output error. It is therefore

preferred that the cut-off frequency of Q (z−1) be chosen as high as possible. To

analyze the effect of the high frequency roll off, we observe first from Eqs. (3.5) and

(3.7), that in the region where the true plant can be well modeled by the nominal

model, 1−Q (z−1) and Q (z−1) are approximately the sensitivity and complementary

sensitivity functions of the DOB loop. As can be seen from Fig. 3.7, the high

frequency roll off of the Q-filter determines the shape Q (z−1) and 1 − Q (z−1), and

hence the trade-off between DOB performance and robustness. It has been suggested

[10] that the following type of Q-filter results in a disturbance observer with balanced

overall properties:

Q(s) =
3τs+ 1

(τs+ 1)3
. (3.9)

For implementation, Q (s) is discretized using the following bilinear transforma-
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tion:

Q(z−1) = Q (s) |
s= 2

T
1−z−1

1+z−1
=

3τ 2
T

(1 + z−1)
2

(1− z−1) + (1 + z−1)
3(

τ 2
T

(1− z−1) + 1 + z−1
)3 , (3.10)

where T denotes the sampling time.
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Figure 3.7: Frequency response of a Q-filter with a cut-off frequency of 2000 Hz.

3.3.1.2 Stability Robustness

When there is unmodeled dynamics in the plant, the cut-off frequency of the

Q-filter should be carefully designed. Consider Gp(z
−1) as a perturbed version of

the nominal model z−mGni(z
−1), and the unmodeled dynamics as a multiplicative

perturbation ∆(z−1):

Gp

(
z−1
)

= z−mGni

(
z−1
) (

1 + ∆
(
z−1
))
. (3.11)

From Eq. (3.5), the closed loop characteristic polynomial is given by

Ac
(
z−1
)

= Gni

(
z−1
)

+
(
Gp

(
z−1
)
−Gni

(
z−1
)
z−m

)
Q
(
z−1
)

(3.12)

Substituting Eq. (3.11) to Eq. (3.12), we have

Ac
(
z−1
)

= Gn

(
z−1
) (
zm + ∆

(
z−1
)
Q
(
z−1
))
. (3.13)
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The small gain theorem gives that DOB is stable if the zeros of Gn(z−1) are all in

the unit circle and that ∣∣e−mjω∆
(
ejω
)
Q
(
ejω
)∣∣ < 1 ∀ω. (3.14)

Eq. (3.14) holds if and only if∣∣Q (ejω)∣∣ < 1

|∆ (ejω)|
∀ω (3.15)

Selection of the deterministic nominal model Gn (z−1) has been introduced at the

beginning of this section. The difficulty for maintaining stability is mainly caused by

the unmodeled dynamics ∆(z−1). When the nominal model is selected as the rigid

bode model, the ignored resonant modes will severely limit the bandwidth of Q-filter

and thus the disturbance rejection capability of DOB. Figure 3.8 shows the Q-filter

designed in a standard DOB for our servo track writer system. It is seen that in order

to maintain the DOB stability, the Q-filter’s cut-off frequency ωc is limited to 320 Hz.

To achieve a larger ωc, we propose in the next section a new modified disturbance

observer structure by shaping the plant to minimize the modeling error. This result

is discussed also in detail in [11].
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Figure 3.8: Magnitude responses of Q(z−1) and 1/∆(z−1) in the standard DOB:

cut-off frequency of Q-filter restricted to be below 320 Hz.



25

3.3.2 DOB Based on Optimal Plant Shaping

3.3.2.1 Controller Structure and Properties

Figure 3.9 shows the structure of the proposed DOB. Different from the standard

form, a shaping filter Gs (z−1) is cascaded preceding the plant Gp (z−1). Defining the

shaped plant Ḡp (z−1) , Gp (z−1)Gs (z−1), we now have

Gu∗y

(
z−1
)

=
Ḡp (z−1)Gni (z

−1)

Gni (z−1) +
[
Ḡp (z−1)−Gn (z−1)

]
Q (z−1)

,

Gny(z
−1) =

−Ḡp (z−1)Q (z−1)

Gni (z−1) +
[
Ḡp (z−1)−Gn (z−1)

]
Q (z−1)

,

Gwy(z
−1) =

Gp (z−1)Gni (z
−1) [1−Q (z−1) z−m]

Gni (z−1) +
[
Ḡp (z−1)−Gn (z−1)

]
Q (z−1)

.

(3.16)
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s ( )G z−

Figure 3.9: Block diagram: DOB based on optimal plant shaping.

Parallel to the analysis in Section 3.3.1, Table 3.2 can be constructed. It is seen

that the modified DOB possesses all the advantages of a standard DOB, i.e., low

frequency disturbance rejection, nominal model following, and high frequency sen-

sor noise attenuation. Moreover, superior to the standard disturbance observer, the

modified DOB has the following additional properties:

1. Resonance attenuation: from Table 3.2, in the high frequency region, the DOB

loop behaves like Gu∗y(z
−1) ≈ Ḡp(z

−1) = Gp(z
−1)Gs(z

−1). If a shaping filter is

properly constructed, the resonance modes can then be well attenuated.

2. Enlarged disturbance rejection bandwidth: by careful design, Gs(z
−1) can ac-

tively reduce the mismatch between Ḡp(z
−1) and Gn(z−1). After optimization
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of Gs(z
−1), the cut-off frequency of Q(z−1), and thus the DOB disturbance

rejection bandwidth, can be greatly enlarged.

Table 3.2: Properties of the Proposed DOB When z−m ≈ 1.

Frequency Region Low Frequency High Frequency

Q-filter Q (z−1) ≈ 1 Q (z−1) ≈ 0

Gu∗y (z−1) Gu∗y (z−1) ≈ Gn (z−1) Gu∗y (z−1) ≈ Ḡp (z−1)

Gwy (z−1) Gwy (z−1) ≈ 0 Gwy (z−1) ≈ Gp (z−1)

Gny (z−1) Gny (z−1) ≈ −1 Gny (z−1) ≈ 0

3.3.2.2 Stability Robustness

Similar to Section 3.3.1, we have the following results for the proposed DOB

structure:

The closed loop characteristic polynomial:

Āc
(
z−1
)

= Gni

(
z−1
)

+
[
Ḡp

(
z−1
)
−Gn

(
z−1
)]
Q
(
z−1
)
. (3.17)

Let Ḡp (z−1) be subjected to multiplicative model uncertainties:

Ḡp

(
z−1
)

= Gn

(
z−1
) (

1 + ∆̄
(
z−1
))
, (3.18)

where

∆̄
(
z−1
)

=
Gp (z−1)Gs (z−1)−Gn (z−1)

Gn (z−1)
. (3.19)

The stability of the modified DOB requires Gn (z−1) to have no zeros outside the

unit circle and that ∣∣∆̄ (ejω)Q (ejω)∣∣ < 1 ∀ω. (3.20)

Equation (3.20) appears to have a similar structure with (3.14), except that here

∆̄(z−1) is the multiplicative model uncertainty between Ḡp(z
−1) and Gn(z−1), while

in the standard DOB ∆ (z−1) = [Gp (z−1)−Gn (z−1)] /Gn (z−1). Assuming that the

nominal plant model remains the same in the two cases, in the proposed DOB, by
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cascading the shaping filter to the plant, we make the magnitude of ∆̄(ejω), and thus

that of
∣∣∆̄ (ejω)Q (ejω)

∣∣ smaller. Therefore, the Q-filter can have a higher cut-off

frequency in the proposed method.

3.3.2.3 Shaping Filter Design

Define x as the coefficient vector to be optimized in the shaping filter. Based on

the previous discussion, x should be chosen such that:

J(x) =
∥∥Gs(x, e

jω)Gp(e
jω)−Gn(ejω)

∥∥2

2
(3.21)

is minimized over the frequency range where there is strong model mismatch be-

tween Gp(z
−1) and Gn(z−1). For the servo track writer system, the range around the

resonant modes, i.e., [1 kHz, 13 kHz], needs to be taken into the optimization.

Notice that (3.21) contains two optimization problems, the magnitude matching

to minimize

J1 =
∥∥|Gs(e

jω)Gp(e
jω)| − |Gn(ejω)|

∥∥2

2
,

and the phase matching to minimize

J2 =
∥∥phase (Gs(e

jω)Gp(e
jω)
)
− phase

(
Gn(ejω)

)∥∥2

2
.

For the magnitude matching, when resonances are the main sources of model

mismatch, the structure of the shaping filter can be a combination of several notch

filters, i.e.,

Gs(s) =
m∏
i=1

s2 + 2ζiω̄is+ ω̄2
i

s2 + 2xiω̄is+ ω̄2
i

, (3.22)

where ζi and ω̄i are the damping ratio and center frequency of the ith resonance, and

are obtained through system identification5. xi (xi > ζi for notch filters) is the notch

coefficient that needs tuning. It is easier to perform optimization in the continuous

time domain, by noting that the magnitude response at frequency ωk is given by

|Gs (jωk) | =
m∏
i=1

√
(ω̄2

i − ω2
k)

2
+ 4ω̄2

i ω
2
kζ

2
i√

(ω̄2
i − ω2

k)
2

+ 4ω̄2
i ω

2
kx

2
i

. (3.23)

5The resonance frequency may change with respect to the temperature. In practice, adaptive
notch filter is assigned by using temperature sensors.
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Taking the log to normalize the unit to dB, we have

fk (y) = 20 log |Gs (jωk) | = Mk − 10
m∑
i=1

log {Ak +Bkyi} , (3.24)

where yi = x2
i , Ak = (ω̄2

i − ω2
k)

2, Bk = 4ω̄2
i ω

2
k, and Mk = 10

∑m
i=1 log {Ak +Bka

2
i }.

Noting that log |Gs(jω)Gp(jω)| = log |Gs(jω)|+ log |Gp(jω)|, we transform the mag-

nitude matching in (3.21) to the following simplified version:

min
y∈Rm

‖f (y)− 20 (log |Gn(jω)| − log |Gp(jω)|)‖2
2 (3.25)

subject to ζ2
i < yi < 1, i = 1, 2, . . . ,m (3.26)

where f (y), log |Gn(jω)|, and log |Gp(jω)| are column vectors with each of their ele-

ments being the magnitude response at selected frequency points. This is a nonlinear

least squares problem. When the number of parameters to be identified is small,

performing direct line search to yi over the region [ζ2
i , 1], i.e., evaluating the objec-

tive function at a variety of parameter values in the input space, can lead us to the

minimal. Otherwise, nonlinear programming based on combined gradient and New-

ton methods can be applied. The latter can be performed in MATLAB using the

nonlinear least squares data fitting function lsqcurvefit.

The Gs (s) derived above is then digitized to Gs(z
−1), using MATLAB’s c2d func-

tion with the pole zero match method (matched). The phase match problem can now

be addressed by adding delay z−j or advance elements zj into Gs(z
−1), and examin-

ing directly the phase difference between Gs(e
jω)Gp(e

jω) and Gn(ejω) in the frequency

response. For causality, when zj is needed, instead of modifying Gs(z
−1), z−j can be

added to Gn(z−1), since minimizing the phase difference between zjGs(z
−1)Gp(z

−1)

and Gn (z−1) is equivalent to minimizing the phase difference between Gs(z
−1)Gp(z

−1)

and z−jGn (z−1). However, to achieve a DOB with high performance, the delay ele-

ments should not be too many [6].

We now apply the proposed shaping method to our system. The solid line and the

dotted line in Fig. 3.10 show the frequency responses of the plant and the nominal

plant. There are three dominant resonant modes in the plant. The shaping filter is

the product of three notch filters. In the magnitude matching, the notch coefficients
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Figure 3.10: Frequency responses of the plant, the nominal plant, the optimally

shaped plant, and the plant with initial shaping filter guess.

are all initialized at the value of 0.1. It can be observed, that the resulting optimal

solution [0.403, 0.316, 0.364]T achieves good matching between the shaped plant and

the nominal plant. Figure 3.11 presents the frequency response of the final optimal

shaping filter.

Figure 3.12 shows graphically the robust stability conditions in the proposed DOB

structure. Compared with Fig. 3.8, the high frequency model uncertainties have been

greatly reduced, and the Q-filter cut-off frequency can now increase from 320 Hz to

as large as 2000 Hz.

The shaping filter brought some phase drop starting at around 1kHz. Phase

matching was thus performed after the magnitude matching. Note that digital dis-

turbance observers accept only integer amounts of delays. Two delay steps were added

to achieve the good phase match up to about 3 kHz, which is high enough for normal

servo operation. The nominal plant finally developed a form as a double integrator
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Figure 3.11: Frequency response of the optimal shaping filter.
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Figure 3.12: Magnitude responses of Q(z−1) and 1/∆(z−1) in the proposed DOB:

Q-filter cut-off frequency can expand to as large as 2000 Hz.



31

with two delay steps, i.e.,

Gn(z−1) = z−2K0T
2
s z
−1(1 + z−1)

2(1− z−1)2
. (3.27)

3.3.2.4 Optimal Plant Shaping From the View Point of Nominal Model

Through simple block diagram transformation, it can be shown that the proposed

DOB is equivalent to the form in Fig. 3.13.
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Figure 3.13: Equivalent form one of the proposd DOB.

The block diagram in Fig. 3.13 can be additionally transformed to that shown in

Fig. 3.14, via the transformation in Fig. 3.15.
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Figure 3.14: Equivalent form two of the proposed DOB.

From Fig. 3.14, we see that the proposed DOB can be alternatively viewed from

the nominal model aspect. It is now observed that our design is optimal in the sense

of not only shaping the actual plant, but also providing a stable inverse of a nominal

model that contains the plant resonances. Notice that simply inverting the full-order

plant model Gp (z−1) will not provide a stable G−1
ni (z−1), while in our optimal design,

Q (z−1)G−1
ni (z−1) is always stable in Fig. 3.14.
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Figure 3.15: Equivalent loop transformation of the proposed DOB.

3.4 Zero Phase Error Tracking for Improved Spiral

Writing

Recall our overall controller structure in Fig. 3.16, where the optimal DOB dis-

cussed in the previous section is applied as an inner loop controller, and a PD type

feedback controller GPD(z−1) serves as the closed loop servo controller to meet the

stability and the bandwidth requirements. The disturbance observer makes the DOB

loop behave like the nominal plant Gn(z−1), and remain robust in the presence of

low frequency disturbances. Therefore, below the cut-off frequency of Q(z−1), the

feedback closed loop transfer function will be close to

Gclosed(z
−1) =

Gn(z−1)GPD(z−1)

1 +Gn(z−1)GPD(z−1)
. (3.28)



33

�

�

�

�

�

�

�

1( )Q z−

mz−

�

�

n(k)�

�

�

d(k)w(k)

y(k)yd(k) 1
s ( )G z− 1( )PG z−

1 1( )niG z− −

1( )ZPETG z− 1( )PDG z−

Figure 3.16: Overall controller structure applying the DOB based on optimal plant

shaping.

Based on Gclosed(z
−1), a feed-forward zero phase error tracking [9] controller can

now be constructed to achieve high performance tracking. To begin our design, par-

tition first the overall feedback loop transfer function by

Gclosed(z
−1) =

z−dBc(z
−1)

Ac(z−1)
=
z−dB−c (z−1)B+

c (z−1)

Ac(z−1)
, (3.29)

where B−c (z−1), B+
c (z−1) and Ac(z−1) denote respectively the non-cancellable numer-

ator part, the cancellable numerator part, and the stable closed loop characteristic

polynomial. The ZPET controller is then given by

GZPET (z−1) = zd
Ac(z

−1)B−c (z)

B+
c (z−1)B−c (1)2

, (3.30)

where B−c (z) is derived by replacing every z−1 in B−c (z−1) with z, and B−c (1) is

obtained through replacing every z−1 in B−c (z−1) with 1.

The overall transfer function from yd(k) to y(k) is therefore given by

Goverall(z
−1) = GZPET (z−1)Gclosed(z

−1) =
B−c (z−1)B−c (z)

B−c (1)2
. (3.31)

We observe that:

• The stable poles and cancellable zeros in Gclosed(z
−1) are canceled by the ZPET

controller.

• The product of the complex conjugate pair B−c (z)B−c (z−1) remains zero phase in

the entire frequency domain. By the additional scaling of 1/B−c (1)2, we achieve
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a DC gain of 0 dB.

In the spiral writing case, the unstable zero z = −1 in the nominal plant (Eq. (3.27))

is preserved under feedback control, and B−c (z−1) = 1 + z−1. We thus have

Goverall =
(1 + z−1)(1 + z)

4
,

which is a zero-phase low-pass filter. It has been shown [5] that if the desired position

trajectory is either a step signal or a ramp signal, the above ZPET control algorithm

achieves asymptotic perfect tracking .

The transfer function in Eq. (3.30) is not directly implementable. Denoting s as

the order of B−c (z), we instead add d+ s steps of delays to Eq. (3.30) and apply the

d+ s step-advanced version of the reference trajectory, as shown in Fig. 3.17.

yd(k + d+ s) −→ z−sAc(z
−1)

B+
c (z−1)

B−c (z)

B−c (1)2
−→ Gclosed(z

−1) −→ y(k)

Figure 3.17: Practical implementation of the ZPET control algorithm.

There have been several suggested methods to enhance the performance of ZPET

controllers [12, 13]. The common cost of enhancing the tracking performance is the

increased liability on the future knowledge of the desired trajectory. Here we apply

one of the methods [12] that appears to be simple and efficient. The so called E-filter

method [12] cascades an additional zero phase filter to the original ZPET controller

to enlarge the bandwidth of the overall transfer function Goverall(z
−1). The E filter

takes the form

GEfilter(z
−1) =

(βe + z−1)(βe + z)

(1 + βe)2
, (3.32)

where 0 < βe < 1 is a design parameter that determines the filter bandwidth. Guide-

lines of selecting βe are provided in [12].

Plotting the magnitude responses of Goverall (z
−1) in Fig. 3.18, we observe that

either with or without the E-filter, the overall system behaves like a unity function

in a wide low frequency range, and the E-filter simply further extends the cut-off

frequency of Goverall (z
−1).
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Figure 3.18: Magnitude responses of Goverall (z
−1) with and without E-filter (sampling

frequency: 26400 Hz).

3.5 Simulation Results

In this section, the proposed control structure is applied to single spiral writing.

We present first the deterministic reference tracking result, to show the efficacy of

our trajectory design and the system’s tracking ability. The servo performance under

various external disturbance, such as the pivot friction, the repeatable runout (RRO),

the sensor noise, etc, will then be presented in Section 3.5.2, where we will examine

the robustness of the systems, and especially, the performance of the disturbance

observer.

3.5.1 Deterministic Tracking

Figures 3.19 and 3.20 present the servo performance when no external disturbance

is added to the system. It is observed that the tracking errors have been well controlled

to be below 0.02 track pitch (1 track pitch = 0.25µm). Moreover, we have achieved

zero tracking error in the constant speed spiral writing region, and smooth settling

during the acceleration (less than 0.001 track pitch). As has been discussed in Section
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3.1, no spirals are written in the deceleration region. Therefore, errors around 0.85 sec

(although already smaller than 0.02 track pitch) do not influence the spiral pattern

quality. No chattering appears in the tracking error, indicating the high frequency

resonant modes are not provoked.

Figure 3.19: Simulated position tracking result.
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Figure 3.20: Simulated position tracking error.

3.5.2 Tracking in the Presence of External Disturbances

In spiral servo writing, a group of actuators work together to achieve multi-disk

writing at the same time. The motion of each actuator and the spindle vibration of

each disk can all cause disturbance to the system. There also exist friction induced

input torque disturbances, sensor noise, and repeatable output disturbances. In this

section, we consider the above uncertainties and introduce disturbances at the input

side and the output side of the plant. Detailed knowledge about the disturbances

in servo track writing is currently unavailable either in literature or in experiments.

What we employ in our simulation is the disturbance profile from a realistic bench-

mark HDD track following problem [3]. Servo track writers are much more precise

machines than HDDs. Our simulation can therefore be regarded as a worst case

analysis of what may happen in actual servo track writing.

Let us revisit the single spiral writing control structure in Fig. 3.21. The modeled

input disturbance w is a zero mean white noise with standard derivation σ = 1 ×
10−4 amp. The disturbances d at the output side is composed of two parts: a zero
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mean colored disk flutter disturbance η (σ = 1.7% track pitch) and a repeatable

output disturbance ν whose energy is concentrated at 100 Hz, 200 Hz, and 300 Hz.

Additionally, a zero mean white measurement noise n (σ = 1.5% track pitch) is added

to the system. Figure 3.22 and 3.23 show respectively the spectra of the repeatable

disturbances and the non-repeatable disturbance signal.
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Figure 3.21: Block diagram of the proposed control structure in noisy environments
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Figure 3.22: The repeatable output disturbance data.

The tracking results are shown in Fig. 3.24. It is seen the tracking error is kept

to be below 0.1 track pitch (TP). Figure 3.25 further shows the disturbance rejection

performance in the frequency domain. The disturbance below 1000 Hz has been

greatly reduced compared to the case without the DOB.
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Figure 3.24: Simulated position tracking result in a noisy environment.
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Figure 3.25: Spectrum of the simulated position tracking error in a noisy environment.

To see further the advantages of the proposed high bandwidth DOB based on plant

shaping method, we perform another simulation with the proposed DOB replaced by

the standard DOB6. Figure 3.26 shows the tracking errors in the two cases. The max-

imum error dropped from 0.21 TP in the standard DOB to 0.13 TP in the proposed

DOB, implying a 38% improvement. The standard deviation of the error decreased

from 0.0518 to 0.0319. A spectrum analysis of the error signals further reveals the

superiority of the proposed algorithm. We can see from Fig. 3.27, that compared to

the standard DOB, the proposed algorithm had a much higher disturbance rejection

band. Errors below 2000 Hz were greatly reduced due to the high cut-off frequency

of Q-filter.

Finally, the magnitude responses from the input disturbance to the plant output

are shown in Fig. 3.28. The response in the proposed DOB exhibits a much deeper

magnitude drop in the middle frequency region, resulting in a larger disturbance

rejection capability. A small high frequency region gets slightly amplified, due to the

waterbed effect that it is theoretically impossible for the closed loop transfer function

to simultaneously have small magnitudes at all frequencies. However, since the low

frequency disturbance dominates, overall the error is better attenuated.
6The feedback controller in this case is the same PD controller cascaded with several notch filters.
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Figure 3.26: Time traces of the tracking errors.
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Figure 3.27: Frequency spectra of the tracking error.

3.6 Summary

In this chapter, we have discussed the control of writing the servo patterns in one

spiral. A robust high performance tracking control scheme has been developed that

combines good tracking and disturbance rejection performances. In reality, hundreds

of spirals need to be written on one disk. The above task is thus repeated until enough

spirals are written for the self servo writing process in the next HDD manufacturing

stage. The repetitive nature of spiral writing makes it possible to further increase the

tracking accuracy by using customized control algorithms. We will show in the next

chapter that this can be (simply) achieved by further modifying the control structure

presented in this chapter. The key idea is to ’learn’ from the errors in the previous

spirals and make some adjustment in the new control input, and the tool we use is
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Figure 3.28: Magnitude response from input disturbance to plant output.

iterative learning control.
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Chapter 4

Iterative Learning Control for

Multiple Spiral Writing

In this chapter, the control of writing several spirals is discussed. There are

typically over 400 spirals to write for one disk. After finishing writing one spiral,

the servo writer heads rotate back to the initial position at the outer diameter (OD)

and wait for the correct timing to write the next stroke. In consequence, the heads

move back and forth between the inner diameter (ID) and OD, sweeping the disk by

following the same trajectory.

Iterative learning control (ILC) is a popular and effective feed-forward control

technique to improve tracking performance in systems that perform a task for multiple

times. The key concept in ILC is that one additional domain is introduced due to the

repetition of the same task. Errors in the previous trials1 can be used for the design

of the current trial input signal. To begin our discussion, we introduce the following
1A trial is sometimes also called an iteration/repetition, or an execution.
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notations for the control scheme in Fig. 4.3.

j :trial number

k :time index within each iteration

uj(k) :(general) control input at the jthiteration

ηj (k) :non-repeatable output disturbance at the jthiteration

wj (k) :non-repeatable input disturbance at the jthiteration

nj (k) :non-repeatable sensor noise at the jthiteration

ν (k) :iteration independent disturbance (lumped at the output side)

We now present the idea of ’learning’ in Fig. 4.1 and Fig. 4.3. In writing the

first stroke of spiral, i.e., in the first trial, the ZPET plus optimal DOB algorithm is

used, and the system works the same as that in Chapter 3. Starting from the second

trial, ILC concept is applied. As shown in Fig. 4.2 and Fig. 4.3, the closed loop is

considered as the new generalized plant with a transfer function Gclosed(z
−1). The

input uj(k) to Gclosed(z
−1) is composed of two signals: uj−1(k) from the last trial plus

a filtered version of the last trial error, which is defined as

ej−1(k) = yd(k)− yj−1(k).

In the error filtering process, L(z−1) is the so-called learning filter and QILC (z−1) is a

zero-phase low-pass filter to improve the system robustness. If L(z−1) is set to be zero,

no correction will be made to the input signal, and in each iteration the system works

the same as that controlled by the ZPET plus optimal DOB controllers. By a proper

design of L(z−1) and QILC (z−1), tracking error can be effectively reduced as the task

repeats. Notice that ILC here is introduced as an enhancing control technique. The

existing feedback system does not need to be broke down to change any functions or

hardware initialization routines. Figure 4.4 presents an equivalent form of Fig. 4.3

where the input to the closed loop system is decomposed to the ZPET initialization

plus the learned information from the previous trials.



45

+

-

+
-

+
-

+
1( )PDG z−

1( )Q z−

1 1( )niG z− −

1( )PG z−

mz−

1( )notchG z− +

+ n1
+

+ +

d1 = º + ´1w1

measured
y1(k)

true
y1(k)

( )ZPETG z
( )dy k u1(k)
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Figure 4.4: Equivalent form of the proposed ILC algorithm.

4.1 Trajectory Design

The trajectory of multiple spiral writing differs from that of single spiral writing

only in how the heads behave after reaching the inner diameter. As has been discussed

in Section 3.1, spirals are only written in the constant speed region when moving the

heads from OD to ID. The trajectory for moving the heads back to OD can be made as

aggressive as possible. As a demonstration, we apply the maximum acceleration and

deceleration when setting the head to the initial position, and assume the allowable

maximum speed to be twice the spiral writing speed. Figure 4.5 shows the trajectory

for one full movement from OD to ID and then back to OD.
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Figure 4.5: Reference trajectory for one trial.

4.2 Iterative Learning Control Design

4.2.1 Control Law Derivation

Consider the general case that a feedback loop has been constructed with a feed-

back controller C (z−1) as shown in Fig. 4.6. Assume the process starts from zero

initial condition at each iteration, i.e., yj(0) = 0 ∀j and uj(k) = 0 ∀k < 0, ∀j ≥ 1.

The transfer functions from uj → yj, wj → yj, dj → yj, and nj → yj are given by2

Tu =
GpC

1 +GpC
; Tw =

Gp

1 +GpC
; Td =

1

1 +GpC
; Tn =

−GpC

1 +GpC
. (4.1)

The input-output relation is thus given by

true output: yj = Tuuj + Twwj + Td (ν + ηj) + Tnnj, (4.2)

measured output: mj = Tuuj + Twwj + Td (ν + ηj) + Tnnj + nj. (4.3)

2To simplify the notations, we drop the time index k and the z-domain index z when no confusion
is generated.
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Figure 4.6: Equivalent block diagram of ILC combined with ZPET control

Let yd(k) denote the desired position trajectory, we can then define at iteration j

the true error eoj(k) = yd(k) − yj(k), and the measured error ej(k) = yd(k) −mj(k).

Notice that there exist the following relationship between the true and the measured

signals

mj = yj + nj; ej = eoj + nj. (4.4)

Only mj is available for the controller design. The ILC control law for the closed

loop is constructed by

uj+1(k) = uj(k) +QILC

(
z−1
)
L(z−1)ej(k). (4.5)

The following theorem holds for the proposed ILC algorithm. The proof is pro-

vided in Appendix A.

Theorem 4.1. In the proposed ILC control structure, the error caused by the repeti-

tive disturbance ν can be perfectly attenuated, and the true error is updated by

eoj+1 = (1− TuQILCL) eoj+Tw (wj − wj+1)+Td (ηj − ηj+1)+Tn (nj − nj+1)−TuQILCLnj.

(4.6)

In Eq. (4.6), the non-repeatable error terms wj − wj+1, ηj − ηj+1, and nj − nj+1

are bounded zero mean stochastic processes. Learning only happens in the term

(1− TuQILCL) eoj . The best we can do is to let the first term on the right hand side

be as close to zero as possible. It appears clearly the ideal compensator would be

L = T−1
u , and QILC = 1. In that case, the maximum convergence rate is achieved, i.e.,

the repeatable error goes to zero at the second iteration. However, this can hardly

be realized in practice due to the fact that an exact stable plant inverse is usually
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unavailable. Here we propose to apply the zero phase error tracking idea to the ILC

compensator design. Similar to the ZPET design in Section 3.4, we first partition

Tu (z−1) as follows

Tu(z
−1) =

z−dBc(z
−1)

Ac(z−1)
=
z−dB−c (z−1)B+

c (z−1)

Ac(z−1)
,

where B−c (z−1) and B−c (z−1) are respectively the uncancellable and cancellable parts

in the numerator.

To approximate T−1
u (z−1), the learning filter can then be designed as

L(z−1) = zd
Ac(z

−1)B−c (z)

B+
c (z−1)B−c (1)2

. (4.7)

In our spiral writing project, the assign of L (z−1) is greatly simplified since

Tu (z−1) is the same as Gclosed (z−1) in Section 3.4. Therefore, the ZPET controller

GZPET (z−1) can be directly assigned as the learning filter L (z−1). Additionally, the

implementation of ILC is also the same as that in Section 3.4, namely, adding delays

to L (z−1) to make it realizable and sending the several step-advanced version of the

reference trajectory as the input of L (z−1). The proposed algorithm can be regarded

either an extension of the general two degree of freedom control structure or as an

ILC algorithm that applies ZPET as its initialization.

4.2.2 Stability and Robust Stability

In the following analysis, we assume the trajectory cycle length N →∞, so that

z-domain and frequency domain analysis is rigorous.

Using the control structure described in the previous section, and noting that in

our spiral writing project, Tu (z−1) = Gclosed (z−1), we have

L
(
z−1
)
Tu
(
z−1
)

= L(z−1)Gclosed(z
−1) =

B−c (z−1)B−c (z)

B−c (1)2
=

(1 + z−1)(1 + z)

4
. (4.8)

The above transfer function is a low-pass filter. QILC (z−1) is also a zero-phase

low pass filter. Therefore 1− L(z−1)QILC (z−1)Tu(z
−1) in Eq. (4.6) satisfies

|1− L
(
e−jωT

)
QILC

(
e−jωT

)
Tu
(
e−jωT

)
| < 1 ∀ω > 0. (4.9)
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Notice that Eq. (4.6) describes a first order dynamic system. Equation (4.9)

therefore indicates that the proposed ILC structure is asymptotically stable.

Design of FIR Zero Phase Low-pass Filters There are different methods for

designing zero phase filters. One popular way is to use the command filtfilt in MAT-

LAB. This method performs a time inverse to the data, and applies a non-zero-phase

filter twice. Alternatively, we can apply the following design of a non-causal FIR

zero-phase low-pass filter. A simple candidate of such a filter is

QILC

(
z−1
)

=
(1 + z−1)(1 + z)

4
. (4.10)

To have extra freedom on the cut-off frequency, we add additional zero pairs to

the above filter. The transfer function for such a zero pair can be given by

H
(
z−1
)

=
1− 2βz−1 + z−2

2− 2β
· 1− 2βz + z2

2− 2β
. (4.11)

A negative β in the above equation results in four zeros on the left hand side of

the unit circle. 1−2βz+z2

2−2β
is the complex conjugate of 1−2βz−1+z−2

2−2β
, resulting in H (z−1)

to have zero phase in the entire frequency range.

Combining Eq. (4.10) and Eq. (4.11) yields

QILC

(
z−1
)

=
(1 + z−1)(1 + z)

4
·
M∏
i=0

(
1− 2βiz

−1 + z−2

2− 2βi
· 1− 2βiz + z2

2− 2βi

)
. (4.12)

Figure 4.7 is the pole zero map of a low-pass filter following the above design

process. Two pairs of zeros are added with β1 = −0.3 and β2 = −0.7 respectively.

Figure 4.8 shows the corresponding frequency response.
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Figure 4.7: Pole zero map of a zero phase low-pass filter.
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Figure 4.8: Simulated frequency response of a low-pass filter.

4.3 Simulation Results

We now implement the proposed algorithm to the servo track writing process.

Similar to Chapter 16, we first consider the deterministic tracking performance, then

discuss the case with external disturbances.
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4.3.1 Deterministic Tracking

Figure 4.9 shows the stacked time trace of the tracking errors in the first fourteen

spirals when no external disturbance is present (wj = 0, ν = 0, ηj = 0, nj = 0).

Each trial lasts one second. It is observed that after four trials we have more than

eighty percent reduction in the maximum error magnitudes. In Fig. 4.10, the ILC

stability and convergence are graphically presented from the propagation of the l2
and l∞ norms of the tracking errors.�
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Figure 4.9: Simulated tracking errors in the deterministic reference tracking: each

trial lasts one second, the time traces of all the 14 trials are stacked into a long vector

to demonstrate the tracking performance.
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Figure 4.10: Norms of the simulated tracking errors in the deterministic reference

tracking.

In deterministic tracking control, the ultimate aim is finding the signal input to

the closed loop system such that the output of the plant follows the desired trajectory

as close as possible. If the process is highly repeatable, ILC can be applied in the

actual process. Even when the control task is non-repetitive, if exact models of plant

and disturbances are available, we can always perform ILC simulations first and then

apply the ’learned’ control signal to the actual system.

4.3.2 Tracking in the Presence of External Disturbances

Applying the same disturbance profile as in Section 3.5.2, and using the control

law discussed in Section 4.2, we get the tracking results as shown in Fig. 4.11 and

Fig. 4.12. It can be seen that although the repetitive disturbances at the frequencies

around 100 Hz (RRO center frequency), 200 Hz (RRO center frequency), 1000 Hz

(plant modeling error frequency), and 2000 Hz (plant modeling error frequency) are

well attenuated by the proposed ILC structure, the overall performance enhancement

is not very apparent. This is due to the fact that the applied disturbance profile

contains too much non-repeatable components, namely, the term Tw (wj − wj+1) +

Tν (ηj − ηj+1) + Tn (nj − nj+1)− TuQILCLnj in Eq. (4.6) takes a dominant role.
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Figure 4.11: Comparison of the simulated error spectra: first and 30th iteration.

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Error propogation

Iteration number

L ∞
 n

or
m

 o
f 

th
e 

P
os

iti
on

 t
ra

ck
in

g 
er

ro
r

Figure 4.12: l∞ norms of the simulated tracking errors with external disturbance.

Recall that we applied a HDD disturbance profile in our simulation, which can

only be a worst case approximation of the servo track writer system. In Fig. 4.13,

we make the amplitude of the repetitive disturbance 10 times larger than that in the

previous disturbance profile. The proposed ILC then results in apparent performance

enhancement.
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Figure 4.13: Simulated tracking errors with enhanced repetitive disturbance.

We have seen in this section that non-repetitive disturbances reduces the tracking

accuracy. This is indeed a notorious problem in iterative learning control, as has been

pointed out in [14, 15]. We will look into this problem in the next chapter.

4.4 Summary

In this chapter, ILC has been proposed to combine with the ZPET plus optimal

DOB control structure. Simulation results show apparent improvements in the deter-

ministic reference tracking, where the tracking error decreases monotonically as the

task repeats. The algorithm also works well when the major disturbance is repetitive

over iterations.

The presence of high levels of non-repeatable disturbance deteriorates the ILC

performance. Depending on the actual servo track writer hardware characteristics,

minor modifications may be required. In the next chapter, strategies will be made to

reduce the learning speed of those non-repetitive disturbances. It will be shown that

some careful modifications to the ILC control law will result in effective learning even

when non-repetitive disturbance dominates.
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Chapter 5

Robust Iterative Learning Control

In the last chapter, ILC in the presence of external disturbances has been simulated

in the spiral writing project. As it has been shown, the algorithm worked fine if the

repetitive disturbance dominates (Fig. 4.13). However, if non-repetitive disturbances

take the leading parts, conventional ILC would not work well (Fig. 4.12). In this

chapter, we try to reduce the influence of non-repetitive disturbances in ILC.

5.1 Multi-iteration ILC

Recall the ILC error update equation:

eoj+1 = (1− TuQILCL) eoj + Tw (wj − wj+1) + Td (ηj − ηj+1) (5.1)

+Tn (nj − nj+1)− TuQILCLnj

= (1− TuQILCL) eoj + (Twwj + Tdηj + Tnnj − TuQILCLnj)

− (Twwj+1 + Tdηj+1 + Tnnj+1) .

On the right hand side of the above equation, the third term comes from the

disturbance in the current iteration, and can be attenuated only by the feedback

loop design; the second term is resulted from the ILC update (see also the proof in

Appendix A):

uj+1(k) = uj(k) +QILC

(
z−1
)
L(z−1)ej(k). (5.2)
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To reduce the influence of the non-repetitive term Twwj+Tνηj+Tnnj−TuQILCLnj

in ILC, the simplest way would be to recognize its zero-mean property and perform

an averaging process as follows:

Step 1, run the system forM (M > 1) times and collect the errors in each iteration.

Step 2, calculate the mean of the collected errors over the iterations.

Step 3, apply the calculated mean values as the last trial error in ILC, and update

the control law in the next iteration.

Step 4, go to step 2 and repeat until the iteration ends.

As a demonstration of writing 56 spirals, we set M = 7 and updated the ILC

control law by the above multi-iteration averaging process. Figure 5.1 shows the

resulting tracking error. We observe in Fig. 5.1a a reduction of the l2 norm from

around 5.2 to 4.8 after the first update, and a further reduction to 4.5 after a few

more learning steps. Similar observations can be found in the l∞norm update in Fig.

5.1b.
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Figure 5.1: Norms of the simulated errors: ILC control law updated 7 times in 56

repetitions.

To further investigate the ILC stochastic performance. We simulate the system

with only the non-repetitive disturbances, i.e., we set ν = 0 in Fig. 4.6. Figure 5.2

shows the tracking error. It has an infinity norm of 0.1245 and a 2 norm of 4.1814.
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Comparing this result with the one we obtained using the multi-iteration averaging

method, we see that after about six updates of learning control, the error has reduced

to about the same as the case without repetitive disturbance, indicating that the

learning is successful.
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Figure 5.2: Simulated tracking errors when no external repetitive disturbance is

present.

5.2 ILC Based on Adaptive Repetitive Error Esti-

mation

Recall that our ILC control law is given by

uj+1(k) = uj(k) +QILC

(
z−1
)
L(z−1)ej(k). (5.3)

As has been mentioned in the last section, the key to reduce the influence of non-

repetitive disturbance is to perform some averaging (or more generally, filtering) on

ej(k). In this section, efforts are made to mathematically derive the optimal estimate

of the repetitive components in ej(k), denoted as ε (k), and then apply this estimate

to the learning control law as shown in Fig. 5.3.

Definition 5.1. The repetitive error ε(k) is defined as the tracking error when the

system is subjected only to the repetitive output disturbance ν. The sources of ε(k)

include: plant modeling error and any repetitive disturbance.
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Figure 5.3: Block diagram of ILC based on adaptive repetitive error estimation

In Fig. 5.3, the measured error is given by

ej (k) = yd (k)−mj (k)

= yd (k)− Tuuj (k)− Twwj (k)− Td (ν (k) + ηj (k))− Tnnj (k)− nj (k)

= (r (k)− Tuuj (k)− Tdν (k))︸ ︷︷ ︸
repeatable error εj

− (Twwj (k) + Tdηj (k) + Tdnj (k) + nj (k))︸ ︷︷ ︸
nonrepeatable error n̄j

where n̄j (k) denotes the error caused by the non-repetitive disturbances wj, ηj, and

nj.

To extract εj from ej, we apply the least mean square error estimation to minimize

the following cost function:

Jj,k = E
[
(εj (k)− ε̂j (k))2] , (5.4)

which achieves its minimum at

ε̂j (k) = E [εj (k)] = E [ej (k) + n̄j] = E [ej (k)] . (5.5)

The expectation can only be approximated from the empirical mean. We thus get

the realizable best estimation of the repeatable error

ε̂j (k) =
1

j

j−1∑
i=1

ei (k) (5.6)

Since the estimation is simply an averaging process, it is stable. The ILC update

law is then modified to be

uj+1 (k) = uj (k) +QILC

(
z−1
)
L
(
z−1
)
ε̂j+1 (k) (5.7)
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We now implement the above algorithm in the spiral servo writing project. Similar

to Section 5.1, 56 spirals were written in simulation. The results are shown in Fig.

5.4. It is observed that after a transient response in the first two trials, the norms

of the errors follow a decreasing trend. The l2 and l∞ norms decrease respectively

to about 4.4 and 0.12 at the end of iteration 56, which are all close to the results

without external repetitive disturbance (4.1814 and 0.1245). This indicates that we

have effectively attenuated the repeatable error ε (k) using the ILC algorithm.
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Figure 5.4: Norms of simulated errors: ILC based on adaptive minimum mean square

repetitive error estimation.

5.3 ILC Based on Repeatable Disturbance Estima-

tion

Section 5.2 investigated the estimation of repetitive error in ILC, which includes

both the repetitive disturbance and the modeling error. When a good model is

provided, it may be beneficial to directly compensate the repetitive disturbance. In

this section, an repetitive disturbance rejection method is discussed. Figure 5.5 shows

the configuration of the proposed algorithm.



61

+

-

+
1( )P z− +

sensor noise nj

+
+

output dist
dj = ´j + ºinput dist wj

measured output
mj(k)

yj(k)1( )C z−
uj(k)+

º̂j(k)
1 1

1

( ) ( )nP z C z− −

( )ZPETG z
( )dy k u1(k) - u

¤

j(k) +
+

Figure 5.5: Block diagram of the ILC based repetitive disturbance compensation

algorithm.

The input-output relation is given by

mj (k) =
PC

1 + PC
uj (k) +

P

1 + PC
wj (k) +

1

1 + PC
(ν (k) + ηj (k)) +

1

1 + PC
nj (k)

(5.8)

The aim is to attenuate the repetitive output disturbance ν (k). We do so by first

adaptively estimate νj (k) and then update the control input based on the estimation.

Similar to the analysis in the last section, least mean square estimation can be applied

in this adaptive process. We define the cost function

Jj,k = E
[
(ν (k)− ν̂j (k))2] , (5.9)

which achieves its minimum at

ν̂j (k) = E [ν (k)] .

Using the fact that in Fig. 5.5

mj (k) = P
(
z−1
)
u∗j (k) + P

(
z−1
)
wj (k) + ν (k) + ηj (k) + nj (k) , (5.10)

we have

ν (k) = mj (k)− P
(
z−1
)
u∗j (k)− P

(
z−1
)
wj (k)− ηj (k)− nj (k) (5.11)

Therefore

ν̂j (k) = E [ν (k)] (5.12)

= E
[
mj (k)− P

(
z−1
)
u∗j (k)

]
(5.13)

≈ 1

j

j−1∑
i=0

(
mi (k)− P

(
z−1
)
u∗i (k)

)
, (5.14)
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where the second equality is derived using the fact that P (z−1)wj (k)−ηj (k)−nj (k)

is zero mean.

Notice that Eq. (5.8) can be transformed to

mj (k) =
PC

1 + PC

(
uj (k) +

1

PC
ν (k)

)
+

[
P

1 + PC
wj (k) +

1

1 + PC
ηj (k) +

1

1 + PC
nj (k)

]
(5.15)

The second part in the above equation is the contribution of the non-repetitive

disturbances. To attenuate ν (k), the control law should be given by

uj (k) = u1 (k)− 1

P (z−1)C (z−1)
ν̂j (k) (5.16)

The above control law requires a stable inverse of P (z−1)C (z−1). As has been

discussed before, ZPET algorithm can be used. To increase the system robustness, a

(zero-phase) low-pass filter Q (z−1) can be placed ahead of ν̂j (k), yielding

uj (k) = u1 (k)− Q (z−1)

P (z−1)C (z−1)
ν̂j (k) (5.17)

Simulating the algorithm in this section yields the results shown in Fig. 5.6. The

ILC system response follow a similar decreasing pattern as the previous two cases

in this chapter. The l2 and l∞ norms of the tracking error decrease respectively to

about 4.6 and 0.12 at the end of iteration 56. The performance is slightly worse than

the other two cases, due to the fact that only the output repetitive disturbance was

attenuated.

To test the efficiency of the estimation, another simulation was conducted, where

only the repetitive output disturbance ν was added to the system. A low pass filter

Q (z−1) with a cutoff frequency of 1000 Hz was applied. Figure 5.7b shows ν and ν̂

using the proposed estimation algorithm. It is observed that the low frequency part

of the true disturbance was well estimated. From Fig. 5.7a, we see that the l2 norm

of the resulting tracking error decreased to its steady state value after two iterations,

indicating a fast response of the ILC system.
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Figure 5.6: Norms of simulated errors: ILC based on non-repetitive disturbance

estimation.
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Figure 5.7: Repetitive disturbance rejection performance.

5.4 Summary

In this chapter, we have analyzed three different ILC algorithms to attenuate the

influence of non-repetitive disturbances. All of the three are proved to be effective by
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simulation. Yet, each algorithm has its own shortcoming. The multi-iteration ILC

provides the deep error reduction but requires trials of system running without updat-

ing the control law. The adaptive repetitive error estimation method has relatively

worse transient response. The repetitive disturbance estimation method only attenu-

ates the influence of repetitive disturbances, ignoring the modeling errors. Choosing

from the three should be based on the actual requirement and hardware restrictions.
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Chapter 6

Conclusions and Future Research

In this report, the position control problem in spiral servo writing has been dis-

cussed. Two main control algorithms have been presented: the first applies ZPET,

an optimal DOB to the position control of one stroke spiral writing; the second fur-

ther introduces ILC with a ZPET learning filter to deal with the repetitive writing of

multiple spirals. The controllers were evaluated on a benchmark problem. The con-

troller performance was verified in both deterministic and noisy environments. The

simulation results agree with the predicted system behavior.

Future research can be conduced on improving the stochastic ILC behavior in

Chapter 5. The methods we presented all share the same central idea that they use

the information from the previous iterations to improve the system performance in

the future. This is essentially conducting signal processing/filtering in the iteration

domain. Depending on how we set up the cost functions, various enhancement may

be achieved.

Compensation of thermal induced disk deformation is another topic worth investi-

gating. The rotating spindle motor on a servo track writer generates a great amount

of heat which in turn results in thermal expansion to the disks mounted on the spin-

dle. The distance between ID and OD of the disk could be increased by an order of

about 40 tracks [16]. One possible way to address this problem would be to adjust

the spiral writing velocity profile at the beginning of each trial. A scaling factor to

the head velocity profile may be applied, bsed on the distance between the inner and
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outer circular seed tracks measured during writing of the last spiral pattern.
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Appendix A

Proof of Theorem 4.1

Theorem 4.1 states that: In the proposed ILC control structure, the error caused

by the repetitive disturbance ν can be perfectly attenuated, and the true error is

updated by

eoj+1 = (1− TuQILCL) eoj+Tw (wj − wj+1)+Td (ηj − ηj+1)+Tn (nj − nj+1)−TuQILCLnj

(.1)

Proof. From the definition of the tracking error, e0
j+1 in Fig. 4.6 is given by

eoj+1 = yd − yj+1

⇓ substitute in Eq. (4.2)

= yd − [Tuuj+1 + Twwj+1 + Td (ν + ηj+1) + Tnnj+1]

⇓ substitute in the control law Eq. (4.5)

= yd − Tu (uj +QILCLej)− [Twwj+1 + Td (ν + ηj+1) + Tnnj+1]

= yd − Tuuj − (TuQILCL) ej − (Twwj+1 + Td (ν + ηj+1) + Tnnj+1) . (.2)

Notice that

yj = Tuuj + Twwj + Td (ν + ηj) + Tnnj.

Solving for Tuuj from the above equation and substituting the result to Eq. (.2),
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we have

eoj+1 = yd − yj − (TuQILCL) ej + Twwj + Td (ν + ηj) + Tnnj

− [Twwj+1 + Td (ν + ηj+1) + Tnnj+1] . (.3)

Noticing that the first two terms on the right hand side of Eq. (.3) equals to e0
j

and that ej = e0
j + nj, we get

eoj+1 = (1− TuQILCL) eoj + Td (ν − ν)

+ Tw (wj − wj+1) + Td (ηj − ηj+1) + Tn (nj − nj+1)− TuQILCLnj,

which is essentially the error propagation law in Eq. (.1). Additionally, the second

term on the right hand side of the above equation equals 0 regardless of Td. We see

the repetitive disturbance ν is indeed perfectly rejected.
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