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Abstract

New nanoscale heat transfer effects are introduced in a heat assisted magnetic
recording hard disk drives, a potential new technology to increase recording den-
sity. One such effect is thermal creep, a rarefied gas phenomena in which a tan-
gential boundary temperature gradient drives fluid flow from cold to hot. Thermal
creep has been added to an air bearing finite volume solver. Poiseuille and ther-
mal creep non-dimensionalized flow rate coefficient databases were generated using
Chebyshev polynomial expansions and the variational method. The simple case
of an infinite parallel plate-slider configuration was simulated and compared very
well with semi-analyical results. Some preliminary trailing pad simulation results
are presented. The contribution of thermal creep arising from laser heating of
the disk is to slightly enhance the air bearing mass flow rate locally around the
laser spot. The length scale of the laser spot was too small to effect the pressure
distribution significantly or alter the pressure force. Future work will determine if
the temperature gradient on the slider surface has a notable effect on pressure vis
thermal creep.
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Nomenclature

c average molecular speed
Cn(x) Chebyshev polynomial of the first kind, cos(n cos−1(x))
D inverse Knudsen number,

√
π/2Kn

h channel height or lubricating film thickness [m]
hm minimum (characteristic) spacing [m]
H nondimensional spacing, h/hm
Kn Knudsen number, λ/h
L slider (characteristic) length [m]
k modified Knudsen number, (2/

√
π)Kn = 1/D

Ṁ, mass flowrate per unit channel width, [kg/s/m]
P nondimensional local pressure, p/p0

p local pressure [Pa]
p0 ambient pressure [Pa], usually 1 atm
QP , QT non-dimensionalized flow rate coefficient
Qcon flow rate coefficient for Poiseuille flow, D/6
QP , QT relative non-dimensionalized flow rate coefficient, Q/Qcon

T temperature, [K or ◦C]
T0 characteristic temperature, [K or ◦C], usually 25◦C
Tn(Z) Abramowitz function,

∫∞
0
tn · exp

(
−t2 − Z

t

)
dt

U boundary speed [m/s]
u, v, w x, y, z components of velocity
x, y, z Cartesian coordinates with x being the flow and slider length direction,

y the width direction into the page, and z the film thickness direction
X, Y, Z nondimensional coordinates, x/L, y/L, z/hm
Γ diffusion coefficient, QPPH

3 for the FK lubrication equation
λ molecular mean free path [m]

Λ bearing number, u 6µL
pah2

m

µ viscosity [kg/s/m=Pa·s]
φ perturbed quantity of flow velocity distribution, f/f0 − 1
ρ density [kg/m3]
σv momentum accommodation coefficient
τ nondimensional temperature, T/T0 − 1

Subscripts
P Poiseuille flow
C Couette flow
T thermal creep flow
w boundary
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Introduction

The Information Storage Industry Constortium has announced the goals of demon-
strating stable hard disk magnetic recording technology at areal densities of 4 Tb/in2

by early 2013 and up to 10 Tb/in2 by the end of 2015 [6]. The super-paramagnetic
limit poses a barrier when scaling down traditional hard disk drive technologies–
beyond this threshold signal-to-noise, thermal stability, and writability are com-
promised. A new technology known as heat-assisted magnetic recording (HAMR)
uses a higher coercivity magnetic media that is thermally stable at room temper-
ature with very small grain sizes, but also introduces new tribological, material,
and heat transfer challenges.

HAMR requires the local heating of the magnetic media to several hundreds of
degrees within a nanosecond. With such high temperatures required for recording,
the disk lubricant can start to desorb and/or degrade which can lead to catas-
trophic head-disk interface failure. Moreover, the effects associated with the rapid
temperature rises and high temperature gradients at nanoscales also could further
exacerbate the head-media interface stability. Due to the scale and complexity
of the HAMR system, direct experimental diagnosis is very challenging. On the
other hand, numerical modeling and simulation can provide more quantitative re-
sults and insightful information, and is preferable due to its convenience and cost-
effectiveness. Yet, the HAMR system also provides many modeling challenges in
numerical simulations.

The HAMR system is outside the range of classical theory due to rarefaction
and compressibility effects in the air bearing and the nanoscale dimensions. Rough
estimates indicate that a laser spot on the order of (12 nm)2 and a slider-disk
spacing of 2.5 nm is needed to achieve 4 Tb/in2. The laser system integrated into
the slider will dissipate energy into the slider and cause thermal distortion, affecting
flying height and pitch [2, 18]. The lubricant and magnetic media undergo flash
heating as the temperature reaches 350◦C or more above ambient temperature
within 1 ns and rapidly cool back to ambient [3]. A robust lubricant must be
designed to withstand rapid temperature rises and large thermal gradients in order
to avoid lubricant depletion by evaporation or thermocapillary stress [17]. Thus
there are many new nanoscale thermal effects to consider and investigate.
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This report details the first step in developing a HAMR model: adding thermal
creep flow to the air bearing governing equation and studying its effects on the air
bearing flow. In a rarefied gas, it is possible to start and maintain gas flow with a
tangential temperature gradient in the boundary wall. In a traditional hard disk
drive (HDD), even thermally actuated sliders, the temperature gradients in the
slider and disk are zero or negligible and thermal creep flow is not present. How-
ever, very large temperature gradients will exist in the disk around the laser spot.
Even though the laser spot is very small (< 100 nm), the resulting temperature
gradient is so large (increase of 350◦C in 7 nm) that thermal creep will enhance
the airflow locally. The first chapter describes the fundamentals of the thermal
creep phenomena. The second chapter describes how to create databases for the
Poiseuille and thermal creep flow rate coefficients that appear in the governing
generalized lubrication-type equation. In the third chapter the finite volume dis-
cretization including thermal creep is described. Semi-analytical solutions to the
simple problem of an infinitely long parallel plate-slider are shown in the fourth
chapter. The fifth chapter presents the results of a numerical simulation of this
same problem using the static solver CMLAir QuickHAMR that includes thermal
creep. Preliminary trailing pad simulation results are presented in chapter six.
The concluding seventh chapter describes future work to continue to add to the
HAMR numerical simulation.
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Chapter 1

Thermal Creep Fundamentals

A tangential temperature gradient along a channel wall can drive flow in a rarefied
gas from from cold to hot. This phenomenon is called thermal creep or thermal
transpiration. The following explanation of thermal creep fundamentals is based
on Section 5.1 in [11].

Consider two tanks both filled with the same and kept at the same pressure
initially (p1 = p2) but different temperatures (T1 > T2) and connected by a chan-
nel as shown in Figure 1.1. In the familiar continuum regime where the channel
is relatively thick (λ� h, Kn < 0.01), the equilibrium condition is no flow in the
channel. However, if the channel thickness h is comparable in magnitude to the
mean free path λ, the interaction of the gas molecules with the channel walls is
significant and rarefied gas effects must be considered. For simplification, consider
the free molecular regime (λ � h, Kn > 10) where intermolecular collisions are
negligible compared to molecule-wall interactions. Furthermore, consider specu-
lar reflection of the molecules from the boundary: the tangential velocity of the
reflected molecules is unchanged but the normal velocity is reversed (σv = 0).

Assume that the fluid density ρ is proportional to the number of molecules per
unit volume n and temperature of the fluid T is proportional to the square of the
average molecular speed c2. Take m to be the mass of a gas molecule and the
equation of state to be p = ρRT . The mass fluxes at the hot and cold ends are
mn1c1 and mn2c2 respectively.

mn1c1

mn2c2

≈ ρ1

ρ2

√
T1

T2

=
p1

p2

√
T2

T1

=

√
T2

T1

≤ 1

So the mass flux at the hot end is less than the mass flux at the cold. This exercise
indicates that fluid is creeping form cold to hot.

In rarefied gas flows where channels in atmospheric conditions have charac-
teristic dimensions of the same order or smaller than the mean free path of the
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Figure 1.1: Thermal creep illustrative problem: two tanks at the same pressure
and different temperature connected by a microchannel.

molecules or channels where the pressure is low, thermal creep effects can be sig-
nificant. The purpose of this report is to determine if very large but localized
boundary temperature gradients on the disk surface will mean thermal creep flow
is significant in a HAMR HDD.
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Chapter 2

Flow Rate Coefficient Databases

The Reynolds-type lubrication equation derived by Fukui and Kaneko [8] from
the linearized Boltzmann equation governs the air bearing problem. The one
dimensional steady-state form is:

d

dX

{
QP (D)

dP

dX
PH3 −QT (D)

dτw
dX

P 2H3 − ΛPH

}
= 0 (2.1)

Students in the Computer Mechanics Laboratory have developed a static air bear-
ing solver, CMLAir Quick 4.32, to solve this equation (without thermal creep, i.e.
dτw
dX

= 0) for the unknown P in traditional HDDs. Equation 2.1 is discretized using
a finite volume formulation and then solved iteratively with a multigrid solver. The
relative non-dimensionalized Poiseuille flow rate coefficient QP , which depends on
local pressure P and spacing H, is quickly obtained at each location on the slider
by look-up in a database created at the beginning of the simulation. In order to
add thermal creep to the finite volume formulation, a similar database needs to be
created for QT . As this chapter will explain, the Quick 4.32 method of determining
QP is not adequate for QT , so a new technique had to be developed.

2.1 Poiseuille Flow Rate Coefficient

In Equation 2.1 the flow rate coefficients are cast as relative flow rates: the ratio of
QP (D) andQT (D) toQcon = D/6, the flow rate coefficient for continuum Poiseuille
flows. They are functions of the inverse Knudsen number D which can be written
in terms of a characteristic inverse Knudsen number D0, non-dimensional pressure
P and spacing H:

D = D0PH (2.2)

The integro-differnetial equations for Poiseuille flow velocity profiles for diffuse re-
flection of gas molecules at boundary surfaces (σv = 1, molecules are reflected from
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the walls with zero average tangential velocity) are given in [8] and summarized
here. The perturbed quantity of Poiseuille flow velocity is determined from the
linearized Boltzmann equation and found to be:

φP (Z) = 1 +
1√
πk0

∫ H

0

T−1

(
|Z − Z ′|

k0

)
· φP (Z ′)dZ ′ (2.3)

where Tn is the Abramowitz function

Tn(Z) =

∫ ∞
0

tn · exp

(
−t2 − Z

t

)
dt (2.4)

The non-dimensional flow rate is given by the expression

QP (D) = − 1

D
+

1

D2

∫ H

0

φP (Z)dZ (2.5)

Equation 2.3 can be transformed into a system of linear algebraic equations by
casting it in a finite difference formulation. As shown in [9], discretize the spacing
H by n grid points with a spacing ∆ = H/n and solve for the unknown Poiseuille
velocity perturbation (φP )j at each grid point Zj = ∆ · (j − 1

2
). The system of

equations for the vector of Poiseuille velocity perturbations at each grid point φP
is:

n∑
j=1

Aij(φP )j = 1 (2.6)

where

Aij =

 δij − 1√
π

[
T0

(∣∣∣Zi−Zj

k0

∣∣∣− ∆
2k0

)
− T0

(∣∣∣Zi−Zj

k0

∣∣∣+ ∆
2k0

)]
if i 6= j

2√
π
T0

(
∆

2k0

)
if i = j

(2.7)

where T0 is the Abramowitz function for n = 0 given in Equation 2.4 and k0 = 1
D0

is
characteristic modified Knudsen number. Then the Poiseuille flow rate coefficient
is

QP = − 1

D
+

1

D2
∆

n∑
j=1

(φP )j (2.8)

For a range of inverse Knudsen numbers 0.001 < D < 100, published results
of this numerical method [9, 13] are plotted with the independent results of this
author in Figure 2.1. Agreement is very good, and the curves practically lie on
top of each other.

However, the numerical method is fairly computationally expensive. Loyalka
has demonstrated that variational results are within 1% of the more accurate
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Figure 2.1: QP results with the finite difference numerical method described by
Equations 2.6-2.8 published in [9, 13] and reproduced by the author

finite difference results [13]. Thus CMLAir developers chose to use the variational
results to generate an extensive QP database for various D at the beginning of each
simulation, a much larger database than the that published in [9]. The variational
result of Loyalka for Poiseuille flow:

QP (D) = − 1

D
+

1

∆

(
C11 −

D2

6
C12 +

D4

144
C22

)
(2.9)

where the constants C11, C22 and C12 depend on T0(Z), T1(Z), and T2(Z) and are
given in Appendix 2 of [8]. Thus a method must be developed to evaluate the the
Abramowitz function for n = 1, 2, 3. Currently in CMLAir Quick 4.32, Tn(Z) is
evaluated by its power series representation for D < 1.1 and the asymptotic ex-
pansion for D ≥ 1.1. The power series representations and asymptotic expansions
are given in [1, p. 1001]. This piecewise method of evaluating Tn(Z) results in a
database of QP computed very quickly that closely matches the finite difference
method results.
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2.2 Thermal Creep Flow Rate Coefficient

Similar to φP , the thermal creep velocity perturbation φT is governed by an integro-
differential equation [8]:

φT (Z) =
1

2
+

1√
πk0

∫ H

0

T−1

(
|Z − Z ′|

k0

)
· φTdZ ′ +

1√
πk0

∫ H

0

T1

(
|Z − Z ′|

k0

)
dZ ′

(2.10)
The non-dimensional flow rate is given by the expression

QT (D) = − 2

D2

∫ H

0

φT (Z)dZ +QP (2.11)

A finite difference formulation gives a system of linear algebraic equations for φT
[13]:

n∑
j=1

Aij(φT )j = Si (2.12)

where Aij is the same as for φP in Equation 2.7 and Si is defined as

Si = S(Zi) =
1

2
− 1

4
√
π

[
T0

(
H

2
+ Z

)
+ T0

(
H

2
− Z

)]
− 1

2
√
π

[
T2

(
H

2
+ Z

)
+ T2

(
H

2
− Z

)]
(2.13)

The finite difference approximation of QT is

QT = − 2

D2
∆

n∑
j=1

(φT )j +QP (2.14)

For a range of inverse Knudsen numbers 0.001 < D < 100, published results of
this numerical method [13] are plotted with the independent results of this author
in Figure 2.2. Agreement is very good, and the curves practically lie on top of
each other as with QP .

To speed up computation time, use the variational result of Loyalka for thermal
creep flow:

QT (D) = QT (D) =
2

D2

(
D3

12
α3 +Dα4

)
−QP (D) (2.15)

The coefficients α3 and α4 depend on T1(Z), T2(Z), T3(Z), T4(Z), and T5(Z) and
are given in Appendix 3 of [8]. Note that there is a typographical error in Equation
65 for the intermediate coefficient C ′1: the first plus sign should be a minus sign.

Unfortunately, evaluating Tn(Z) in a piecewise manner as was done for QP in
CMLAir Quick 4.32 results in inaccurate results in the range 1.1 < D < 10 as
shown in Figure 2.3. The error in the asymptotic expansion of the Abramowitz
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Figure 2.2: QT results of the finite difference numerical method described by
Equations 2.12-2.14 published in [13] and reproduced by the author

function at those fairly small values compounds in the calculations (notice QP

appears in Equation 2.11) and results in a hump in the blue curve of Figure 2.3.
Thus a new method for evaluating Tn must be found.

As described by Macleod [15], Abramowitz functions can be expanded using
Chebyshev polynomials of the first kind:

Cn(x) = cos(n cos−1(x)); (2.16)

Details of the expansion are simple but involved. A break-point value a = 2
was use, which Macleod determined to be optimal. The main advantage of this
Chebyshev polynomial expansion is that the resulting QP and QT databases are
accurate for the whole domain and no piecewise definitions are necessary. The QT

results using Chebyshev polynomial expansions for Tn were practically the same
as the numerical results in Figure 2.2. Thus this Chebyshev polynomial expansion
was implemented in the under-development CMLAir QuickHAMR for both QP

and QT . The QT database is the yellow curve plotted in Figure 2.3. The QP

Chebyshev database matches the curves in Figure 2.1 for all practical purposes
and a plot is not deemed necessary.
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Figure 2.3: QT database results for the Abramowitz function evaluated with piece-
wise power series and asymptotic representation (blue curve) and Chebyshev poly-
nomial expansions (yellow). The red triangles are the results from a MATLAB code
using Chebyshev polynomials that matched finite difference numerical results al-
most exactly.
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Chapter 3

Finite Volume Discretization

3.1 Differential Equations

In his book on numerical heat transfer fluid flow [16], Pantankar notes that relevant
differential equations in physics indicate that the dependent variables of interest
obey a general conservation principle:

ρ
∂φ

∂t︸︷︷︸
unsteady

+ div (ρuφ)︸ ︷︷ ︸
convection

= div(Γgradφ)︸ ︷︷ ︸
diffusion

+ S︸︷︷︸
source

(3.1)

In this general differential equation for a convection-diffusion process φ is the
dependent variable, ρ is the density, u is the flow velocity, Γ is the diffusion
coefficient, and S is the source term. φ can stand for mass fraction of a chemical
species, enthalpy or temperature, a component of the velocity, or turbulent kinetic
energy. For each meaning of φ, the appropriate meaning is given to S and Γ.

In two dimensions with no source term, the steady state equation reduces to

∂Jx
∂x

+
∂Jy
∂y

= 0 (3.2)

where the total (convection plus diffusion) fluxes are

Jx ≡ ρuφ− Γ
∂φ

∂x

Jy ≡ ρvφ− Γ
∂φ

∂y
(3.3)

The pressure in the air bearing is found using a finite volume method to solve
the Reynolds-type equation including thermal creep flow based on linearized Boltz-
mann theory [8]. In order to derive a generalized Reynolds-type lubrication equa-
tion, Fukui and Kaneko need to accurately estimate the mass flowrate per unit

15



channel width, Ṁ , in the lubrication film [8]. The mass flow conservation law
is used to derive their final result: a generalized lubrication equation including
thermal creep flow.

In this model, the total flow rate Ṁ is the sum of the Poiseuille flow rate ṀP due
to the pressure gradient dP

dX
, the Couette flow rate ṀC due to the moving boundary,

and thermal creep flow ṀT due to a temperature gradient in the boundary dτw
dX

.

Ṁ = ṀP + ṀC + ṀT

The flowrate of Couette flow is independent of the Knudsen number and is
simply the solution to the continuum Couette flow problem for a plate moving at
speed U and with a spacing h:

ṀC =
ρUh

2

The Poiseuille and thermal creep mass flowrates can calculated from expressions
[12, Eqns. 86-87] semi-analytically obtained by Loyalka using the variational
method to solve the linearized Boltzmann equation as shown in the previous chap-
ter. These expressions were derived for the simplified case of a parallel plate chan-
nel and a collision process described by the BGK model with diffuse reflections at
the walls.

Using the mass flowrates just discussed, Fukui and Kaneko expressed the non-
dimensionalized two dimensional steady-state lubrication equation as follows:

∂

∂X

{
QPPH

3 ∂P

∂X
−QT

∂τw
∂X

P 2H3 − ΛxPH

}
+

∂

∂Y

{
QPPH

3∂P

∂Y︸ ︷︷ ︸
Poiseuille flow ”diffusion”

− QT

∂τw
∂Y

P 2H3︸ ︷︷ ︸
thermal creep ”convection”

− ΛyPH}︸ ︷︷ ︸
Couette flow ”convection”

= 0 (3.4)

Equation 3.4 is a special case of the general convection-diffusion differential
equation 3.1. In former CML student Sha Lu’s dissertation [14], the absence
of thermal creep made direct substitution of the above values into Equation 3.3
straightforward: φ = P , ρ = H, Γ = QPPH

3, u = Λx and v = Λy.

Λx = u
6µL

pah2
m

Λy = v
6µL

pah2
m

(3.5)

are the bearing numbers in the X and Y directions, u and v are the X and Y
velocity components. Note that u and v still have dimensions while X = x

L
and

Y = y
L

are the non-dimensionalized slider length and width directions, respectively.
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Here, consider thermal creep to be an additional convection term. Poiseuille
flow, the gradient-driven diffusion term in Lu’s application, is the result of a pres-
sure gradient in the air bearing, while thermal creep is due to a temperature
gradient in the boundary wall. Thus thermal creep is not a result of a gradient
in the unknown field quantity P , and is therefore summed with Couette flow to
form a total convection term. In addition, the thermal creep term maybe written
as ΩxPH, of the same form as the Couette flow term ΛxPH. Introduce

Ωx = QT

∂τw
∂X

PH2

Ωy = QT

∂τw
∂Y

PH2 (3.6)

as the thermal creep coefficients in the X and Y directions. The substituted values
for the flow velocity components becomes u = Λx + Ωx, v = Λy + Ωy. Thermal
creep is an additional contribution to the convection (not pressure gradient driven)
flow and Ωx and Ωy have been added to u and v

The total fluxes, the sum of convection, diffusion and thermal creep, become:

Jx ≡ (Λx + Ωx)PH − Γ
∂P

∂X

Jy ≡ (Λy + Ωy)PH − Γ
∂P

∂Y
(3.7)

3.2 Discretization of Governing Differential Equa-

tion

Figure 3.1 is a schematic of a control volume surrounding node P with neighboring
nodes E, W , N , and S. The associated interfaces of the control volume are denoted
e, w, n, and s.

Integrate the steady-state governing differential equation, Equation 3.2, over
the control volume. Consider the control volume to be of unit depth into the page.
The resulting steady-state integrated discretized differential equation is:

Je − Jw + Jn − Js = 0 (3.8)

Je = (Jx∆Y )e is the integrated total flux at control volume face e. The same
notation applies for the other faces of the control volume.

The values of the unknown non-dimensionalized pressure P at interfaces is
approximated using the central difference scheme. Following Patankar’s notation,

(P )e ≈
PP + PE

2

(
∂P

∂X

)
e

≈ PE − PP
(δX)e
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Figure 3.1: Control volume after Patankar [16]. Capital letters signify nodes while
lower case letters signify interfaces of the control volume that lie between nodes.

(P )w ≈
PP + PW

2

(
∂P

∂X

)
w

≈ PP − PW
(δX)w

(P )n ≈
PP + PN

2

(
∂P

∂Y

)
n

≈ PN − PP
(δY )n

(P )s ≈
PP + PS

2

(
∂P

∂Y

)
s

≈ PP − PS
(δY )s

Take Je for example:

Je =

{
((Λx + Ωx)PH)e −

(
Γ
∂P

∂X

)
e

}
∆Y

= ((Λx + Ωx)H)e
PP + PE

2
− Γe

(
PE − PP

(δX)e

)
∆Y

=

[
1

2
(ΛxH + ΩxH)e∆Y +

Γe∆Y

(δX)e

]
PP +

[
1

2
(ΛxH + ΩxH)e∆Y −

Γe∆Y

(δX)e

]
PE

=

[
De +

Fe +Ge

2

]
PP −

[
De −

Fe +GE

2

]
PE
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Define coefficients as follows.
Convection coefficients:

Fe = (ΛxH)e∆Y (3.9a)

Fw = (ΛxH)w∆Y (3.9b)

Fn = (ΛyH)n∆X (3.9c)

Fs = (ΛyH)s∆X (3.9d)

Thermal creep coefficients:

Ge = (ΩxH)e∆Y (3.10a)

Gw = (ΩxH)w∆Y (3.10b)

Gn = (ΩyH)n∆X (3.10c)

Gs = (ΩyH)s∆X (3.10d)

Diffusion coefficients:

De =
Γe∆Y

(δX)e
(3.11a)

Dw =
Γw∆Y

(δX)w
(3.11b)

Dn =
Γn∆X

(δY )n
(3.11c)

Ds =
Γs∆X

(δY )s
(3.11d)

The two dimensional steady-state momentum balance Equation 3.2 can be
written in terms of the convection coefficients F , the thermal creep coefficients
G, the diffusion coefficients D, the node of interest P , and the neighboring nodes
E, W , N , and S. In an unfortunate convergence of nomenclature, the unknown
field quantity to be solved for is the non-dimensionalized perssure P . The pressure
value at the node P which is surrounded by the control volume is denoted PP , and
is similarly notated for the neighboring nodes.

aPPP = aEPE + aWPW + aNPN + aSPS + b (3.12)

where

aE = De −
1

2
(Fe +Ge) (3.13a)

aW = Dw +
1

2
(Fw +Gw) (3.13b)
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aN = Dn −
1

2
(Fn +Gn) (3.13c)

aS = Ds +
1

2
(Fs +Gs) (3.13d)

aP = aE + aW + aN + aS (3.13e)

b = 0 (3.13f)

It is possible for coefficients in Equation 3.13 to become negative, which can result
in unrealistic solutions or divergence of the solution. This problem will be remedied
in the next section.

3.3 Stability of the Solution

Going back to the notation of the general differential equation, F ≡ ρu is the
strength of convection and can be positive or negative, depending on the direction
of the fluid flow. D ≡ Γ

δx
is the diffusion conductance and is always positive. For

the air bearing application the convection is the sum of Couette flow and thermal
creep contributions, and the strength of convection is F +G = (Λ + Ω)H∆Y . The
diffusion conductance in this application is D = Γ∆Y

(δX)
.

The Peclet Number Pe≡ ρuL
Γ

is the ratio of the strengths of convection and
diffusion. In the application under consideration, Pe can then be written as:

Pe ≡ F +G

D
=

(Λ + Ω)H∆Y

Γ∆Y/δX
=

(Λ + Ω)H

Γ/δX
(3.14)

The coefficients arise in Equation 3.13 are negative if |Pe| > 2, which lead to
divergence of the solution.

The steady discretized continuity equation is

Fe +Ge − Fw −Gw + Fn +Gn − Fs −Gs = 0

Destability can arise if continuity is not identically satisfied, that is the net fluxes
of the convective terms due to Couette and thermal creep flows do not sum to zero.
An imperfect pressure field will be obtained at intermediate iterations until final
convergence is attained. If the sum of the F ’s and G’s is negative, then aP <

∑
anb

and the solution is destabilized. Remedy this problem by setting

aP = aE + aW + aN + aS +

max(0, Fe +Ge − Fw −Gw + Fn +Gn − Fs −Gs) (3.15a)

b = max(0, Fw +Gw − Fe −Ge + Fs +Gs − Fn −Gn)PP (3.15b)

where PP is the most current value of the unknown pressure at the control volume
point P .

20



Many schemes have been developed to overcome the stability problems inher-
ent in the central difference scheme used to discretize the differential equation
(Patankar 1980 Chapter 5). Lu (1997) determined that out of the various stable
convective schemes, the hybrid method is most suitable for the air bearing prob-
lem. In the hybrid method, a central difference scheme is used until |Pe| > 2, then
the upwind scheme is employed in which the diffusion terms has been set to zero
(convection dominated).

aE = DeA(|Pee|) + max(−(Fe +Ge), 0) (3.16a)

aW = DeA(|Pew|) + max(Fw +Gw, 0) (3.16b)

aN = DnA(|Pen|) + max(−(Fn +Gn), 0) (3.16c)

aS = DsA(|Pes|) + max(Fs +Gs, 0) (3.16d)

aP = aE + aW + aN + aS +

max(0, Fe +Ge − Fw −Gw + Fn +Gn − Fs −Gs) (3.16e)

b = max(0, Fw +Gw − Fe −Ge + Fs +Gs − Fn −Gn)PP (3.16f)

where the function A(|Pe|) for the hybrid scheme is

A(|Pe|) = max(0, 1− 0.5|Pe|) (3.17)
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Chapter 4

Semi-analytical Solutions to
Infinitely Long Parallel
Plate-Slider Bearing

Consider an infinitely long parallel-surface slider air bearings pictured in Figure 4.1.
Thermal creep flow between parallel plates has been analyzed by many authors
[12, 13, 4], so simulation of this same problem can be verified with published
results. Figure 4.1 is the scenario that will be investigated semi-analytically and
analytically, and then these results are compared with the simulation results from
the new CMLAir QuickHAMR that includes thermal creep.

Figure 4.1: Infinitely long parallel-surface slider air bearing. This simple problem
is used to validate the implementation of thermal creep into CMLAir.
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4.1 Continuum Lubrication Theory

In Fluid Film Lubrication [10, Ch. 3], analytical solutions to lubrication analysis
for simple, infinitely long slider, roller and journal bearings are presented. Infinite-
length fluid films are easier to analyze and relatively simple closed-form solutions
can be obtained for the pressure distribution, load capacity, friction force on the
moving surface, center of pressure, and mass flow. The limiting solution for in-
finitely long parallel-surface slider bearings for a gas film for Λ = 0 will be used to
reason why the pressure will remain ambient within the bearing.

For gas films only, when the infinite boundary surface is stationary U = 0
(Λ→ 0), the solution for the non-dimensionalized pressure P is:

P =
[
1 + (P 2

2 − 1)X
]1/2

(4.1)

In CMLAir Quick 4.32, the boundary condition for pressure is ambient (P = 1) at
the edges of the slider. For these boundary conditions P2 = 1 and therefore P = 1
everywhere in the bearing from X = 0 to X = 1. The mass flow into the bearing
for this case is

m′ = −P
2
2 − 1

24
= 0

It makes sense for this boring case that the air is just ’sitting there’ between the
two plates. No pressure difference and no relative velocity means air is not flowing
in the continuum case.

Extrapolate this pressure distribution to the case where the plates are held fixed
so they don’t collapse since the air bearing won’t support a gap. Now introduce
a linear temperature gradient on the boundary surfaces. Since the spacing is
constant and the temperature gradient is constant in the whole air bearing domain,
it is reasonable considering the continuum solution just discussed to assume that
the pressure is ambient in the air bearing and dP

dX
= 0 everywhere. In other words,

the only mass flow will be due to thermal creep since the pressure gradient is zero
(no Poiseuille flow) and the relative motion between the boundary surfaces is zero
(no Couette flow).

4.2 Semi-analytical Solution to FK Equation

Now use the conclusion of ambient pressure in the entire domain to solve the
generalized lubrication equation based on the Boltzmann equation (abbreviated
in following discussions as the FK equation). Since dP

dX
= 0 and Λ = 0, the FK

equation reduces to
d

dX

[
QT (D)

dτw
dX

P 2H3

]
= 0
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Here P = 1, H = 1, dτw
dX

is constant, and QT (D) is constant for a given value of
D, so we can simply integrate:

QT (D)
dτw
dX

P 2H3 = constant

In otherwords the mass flowrate is only due to thermal creep and is uniform in the
domain. There are no reservoirs to store air at either end of the plate domain so
no pressure head can develop as fluid creeps along the boundary walls from cold to
hot (thermal creep). Therefore the pressure in ambient throughout the air bearing
as assumed. Mass flowrate in X direction per unit slider width [kg/s/m]:

Ṁ = ṀT = QT

dτw
dX

P 2H3 · D0

6

h2
mp0

L
√

2RT0

(4.2)

Rewrite Equation 4.2 to highlight the trend of ṀT with Knudsen number:

ṀT = PH2dτw
dX

p0λ
2

L
√

2RT0

· QT

Kn2 (4.3)

The only quantities in the above equation that change with Kn if the reference
condition remains standard atmospheric are QT and Kn−2. The plot of QT vs Kn is
approximately logarithmic and a logarithmic best fit curve of the form a log(Kn)+b
is found. The ratio of this QT fit curve to Kn2 is plotted in Figure 4.2. The log-
arithmic increase of QT is dominated by Kn−2 so the overall trend is for ṀT to
decrease with increasing Knudsen number. Put differently, for ambient reference
state, decreasing the spacing decreases the mass flow rate due to thermal creep
between to parallel plates. ṀT for different values of Kn are compared with sim-
ulation results in upcoming chapter in Table 5.2.

4.3 Semi-analytical Solution to Lubrication Equa-

tion with Velocity Slip Boundary Conditions

Microflows and Nanoflows [11] describes another method to evaluate the mass flow
due to thermal creep between two parallel plates in the slip flow regime (0.01 <
Kn < .1). In this regime the flow is governed by the compressible Navier Stokes
equations and rarefaction effects are modeled with velocity slip and temperature
jump boundary conditions.

For low Re flows and large aspect ratio channels L
h
� 1 the inertial terms can

be neglected. The momentum equation in streamwise direction (the same equation
appears in the theory of [10]):

∂p

∂x
= µ

∂2u

∂z2
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Figure 4.2: ṀT trend with Kn.

The slip velocity boundary condition including thermal creep is:

us =
1

2
[(2− σv)uλ + σuw] + uc

where uc = 3
4
µR
P

∂T
∂s

is the thermal creep flow for rarefied flows with λ < h is
derived from the Boltzmann equation. It enchances the flow velocity near the
wall. Integrating the momentum equation and enforcing slip velocity boundary
conditions gives the velocity flow profile u(z). The mass flow rate per unit channel
depth [kg/s/m] follows from integrating the velocity profile and multiplying by the

density Ṁ = ρ
∫ h

0
u(z)dz:

Ṁ = − h3P

12µRT

dP

dX

[
1 + 6

2− σv
σv

(Kn−Kn2)

]
+

3

4

µh

T

dT

dx
(4.4)

It has already been argued for this problem dP
dX

= 0. So the steady-state velocity
due to thermal creep can be approximated by

ṀT,ss =
3

4

µh

T

dT

dX

where µ is evaluated at the average temperature. Results for different Knudsen
numbers appear in the next chapter in Table 5.2.
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Chapter 5

Simulation of Infinitely Long
Parallel Plate-Slider Bearing

Simulation of the parallel-plate slider was done with the new CMLAir Quick-
HAMR, the static air bearing solver with thermal creep added. The simulation
parameters for a small temperature gradient (∂τw

∂X
= 1

3
� 1) are in Table 5.1. The

notation for temperature follows that for pressure: T1 is the temperature at X = 0
and T2 is the temperature at X = 1. Note that is was an extreme case for the
static solver to run: 0 rpm, no rails or recess, fixed attitude solution. But the air
bearing solver still ran and outputted what was expected: ambient pressure in the
whole domain, no Poiseuille or Couette flow, and uniform thermal creep flow in the
direction of the temperature gradient. Table 5.2 contains the simulation results for
the parameters in Table 5.1. The simulation results match semi-analytical mass
flow rate ṀT,FK from Section 4.2 within three significant digits and closely match
the slip flow result ṀT,ss of Section 4.3. All show the same trend: thermal creep
mass flow rate decreases with decreased spacing.

Table 5.1: Small temperature gradient simulation parameters.
p0 1 atm
T0 = T1 25◦C
T2 125◦C
∂τw
∂X

1
3

L 0.85 mm
Grid size 49x49 uniform

A temperature jump of only 100◦C over the entire length of the slider would
be very small in a HAMR HDD. For a 4 Tb/in2 HDD, a bit radius of 6.35 nm is
needed. HAMR magnetic media will need to be heated 300-400 K above ambient
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temperature, so estimate ∆T = 350 K. For T0 = 300 K and L = 0.85 mm, the
non-dimensionalized temperature gradient is

dτ

dX
= 156168 ∼ O(105)

This is a very large temperature gradient and outside the assumptions for the
linearized Boltzmann equation. But proceed with a simulation with this large
gradient to obtain an estimate of a HAMR mass flow rate and velocity.

All the parameters for this fixed attitude solution for a flat, rail-less slider design
simulation are give in Table 5.3. FK equation semi-analytical and simulation
results for this temperature gradient are given in Table 5.4.

Comparison of the magnitudes of the mass flow rates in Tables 5.2 and 5.4
show that mass flow rate is proportional to the boundary temperature gradient.
Increasing the temperature gradient by a factor of ∼ 468500 resulted in the same
factor increase in thermal creep mass flow rate for the range of Knudsen numbers
studied. This trend has been proved using the linear Boltzmann equation in [4].

Whereas the small temperature gradient has film thickness-averaged velocities
on the order of nm/s, the velocities for the HAMR temperature gradient were on
the order of cm/s. For comparison, the speed of the airflow in a conventional HDD
can be expected to be on the order of the linear speed of the disk, O(10) m/s. So
the contribution of thermal creep to the mass flow will be small. So in full slider
simulations with a laser spot at the trailing edge center, thermal creep can be
expected to only locally modifying the flow and probably not enough to warrant
air bearing surface design modifications.

Table 5.2: ṀT vs. Kn study with semi-analytical FK equation, slip theory, and
simulation results. Corresponding spacing hm is also indicated. uave is the thick-
ness averaged velocity based on the simulation results.

Kn hm (nm) ṀT,FK ṀT,ss ṀT,simul uave (nm/s)

1 68.6 1.4108e-10 3.5900e-10 1.4097e-10 25.3
5 13.72 1.0503e-11 7.1798e-11 1.0500e-11 9.43
10 6.86 3.2565e-12 3.5899e-11 3.2556e-12 5.85
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Table 5.3: Small temperature gradient simulation parameters.
p0 1 atm
T0 = T1 25◦C
T2 375◦C
∂τw
∂X

156168
L 0.85 mm
Grid size 49x49 uniform

Table 5.4: ṀT vs. Kn study for a HAMR temperature gradient results for the
FK equation semi-analytical and simulation. Corresponding spacing hm is also
indicated. uave is the thickness averaged velocity based on the simulation results.

Kn hm (nm) ṀT,FK ṀT,simul uave (cm/s)

1 68.6 6.610e-5 6.604e-5 12
5 13.72 4.921e-6 4.919e-6 4.4
10 6.86 1.526e-6 1.525e-6 2.7
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Chapter 6

Preliminary Trailing Pad
Simulation

Since ṀT = 0 when ∂τw
∂X

, thermal creep will only occur over the laser spot at the
center of the trailing pad and will be very localized to an area with a diameter of
O(100) nm. In order to get a fine grid that would capture the laser spot in more
than just the one node possible with the full slider simulation, just a portion of the
trailing pad was simulated. CMLAir Quick 4.32 was used to determine the trailing
edge center (TEC) fly height, pitch, and roll (flying attitude) of the slider design.
To simulate the slider, a 0.025 mm square (the width of the trailing pad) flat plate
at this fixed attitude solution with a spinning disk was executed. The boundary
temperature used, which corresponds to the HAMR disk surface, is depicted in
Figure 6.1. The spacing if the trailing pad portion as determined by the slider
static attitude is plotted in Figure 6.2.

The thermal creep mass flow rate vector field plotted in Figure 6.3 shows that
thermal creep flow is contained over the laser spot and follows the temperature
gradient, as expected. The largest value of ṀT realized at the TEC is O(10−7)
kg/s/m. Simulations of the full slider without a temperature gradient show an
Ṁ = ṀP + ṀC of the size O(10−3) kg/s/m. So in a very localized area, thermal
creep due to the disk laser spot will slightly enhance the total mass flow rate.

Recall that the purpose of CMLAir is to solve for the unknown P in the FK
equation and determine the pressure distribution under the slider. Other quantities
can be derived from the pressure: pressure force, air shearing force on the lubricant,
center of total pressure force, mass flow streamlines. This author has added mass
flow rates and a thickness-averaged velocity to outputted derived quantities. So to
evaluate the effect of thermal creep, the effect on pressure must be investigated.

Compared with the case of an isothermal, ambient temperature disk, the pres-
sure distribution was not significantly affected. The pressure in the control volumes
directly above the ∼ 200 nm radius laser spot decrease 10-20%. Within a ∼ 500
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Figure 6.1: Trailing pad simulation boundary temperature distribution corre-
sponding to laser heating of the disk at the TEC.

nm radius of the laser spot center the pressure decreased O(1%). So an area about
2.52 = 6.25 times the area of the laser spot saw a slight decrease in pressure. De-
crease in pressure with increasing mass flow rate (or velocity) in subsonic flow can
be qualitatively explained with incompressible flow behavior. For steady, friction-
less flow and neglecting potential energy changes, Bernoulli’s equation says that
along a streamline

p

ρ
+
u2

2
= constant

So for constant density, an increase in velocity is accompanied by a decrease in
pressure. However, the pressure force and the center of the pressure force were
unaffected. The decrease in pressure was too small and over too small of an area
to change the force when integrating over the trailing pad. Thus thermal creep
due to the laser spot on the disk can be considered negligible.

More boundary temperature gradients will be realized once a heat transfer
model between the slider and disk is developed and the surface temperatures of
the disk and slider found with numerical simulation. For this report, the thermal
creep results are just for an estimated disk surface temperature distribution.
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Figure 6.2: Trailing pad simulation fixed attitude.
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Figure 6.3: ṀT vector field for the trailing pad simulation. The vector at the TEC
has been scaled smaller because it is two orders of magnitude greater than the
rest.
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Chapter 7

Future Work

The implementation of thermal creep into the air bearing solver was the first step in
creating a HAMR HDD model. Next the heat transfer between the disk and slider
will be implemented by creating an iterative solver between CMLAir Quick HAMR
and a finite element solver, as was done for the TFC CMLAir code developed by
Jinglin Zheng. Thermal distortion of the disk and slider will be computed using a
commercial finite element solver. The model will iterate between the finite volume
solution to the air bearing and the finite element solution for the disk and slider.
Conduction through the air bearing is the other mode of heat transfer and a flux
expression for it is derived from first-order slip theory that has been shown to
agree well with experimental results [5]. Near-field effects have the potential to
drastically enhance irradiation if the layered materials making up the slider and
disk complement each other. The slider and disk can be considered two half spaces
(Al2O3/TiC and Co, respectively) each with a 1 nm DLC overcoat layer separated
by a 2 nm vacuum gap. The dielectric function of these materials have to be
determined. The thermal radiation in this one-dimensional layered media will be
evaluated using dyadic Green’s functions and the scattering matrix method [7].

Looking further ahead, a lubricant flow model based on lubrication theory will
predict the transient lubrication depletion [17]. After a static model is complete,
transience will be added to make a realistic dynamic HAMR model.

Note: Contact the author for color figures: jobechtel@gmail.com
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