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Abstract

This report considers the design of controllers for linear discrete time systems with a periodic state space

realization. Two types of cost functions are considered here—the `2 semi-norm, which generalizes the H2

norm, and the `2 induced norm, which generalizes the H∞ norm for stable systems. The theory for the `2

semi-norm and `2 induced norm is rigorously developed for systems with periodic state space realizations.

These results are then used to construct a methodology for multi-objective control design which utilizes

convex optimization. Finally, this methodology is applied to track-following control design for hard disk

drives. For this particular application, it is shown that the methodology is much less conservative than

in the general case. Multi-objective design is compared to standard single-objective design and the effects

of introducing multi-rate sampling and actuation characteristics (i.e. periodicity) into the plant model is

examined. It is shown that both multi-objective and multi-rate design greatly improve the closed-loop

performance of the system.



Chapter 1

Introduction

In the past several decades, optimal output feedback control has been the subject of much research. For a

long time, this research focused on methods whose solutions could be easily solved using Riccati equations,

such as H2 optimal control and H∞ optimal control. These control design methodologies have solutions

which are easy to compute, guarantee high performance of the closed-loop system, and when formulated

correctly guarantee robust stability of the closed-loop system. However, all of these methodologies have the

drawback of not being very flexible.

In more recent years, with the rapid increase of available computational power and efficient numerical

optimization algorithms, this view of control design has begun to shift towards the view that control design

problems are actually constrained optimization problems of the form

min
x

cT x

s.t. F (x) º 0

where the notation F (x) º 0 means that F (x) is positive semi-definite. Since this is, in general, an NP-hard

problem, the best we can hope for is finding a local minimum of our problem. However, in the special case

when F is affine in x, the optimization problem becomes a semi-definite program (SDP), for which there

are numerous algorithms and available software packages to find the solution. In addition, since SDP’s are

convex optimizations, these algorithms are guaranteed to find the globally optimal solution in polynomial

time. Although these optimization-based control design methods are not as computationally efficient as

those based on Riccati equations, they have the benefit of being very flexible.

One area in which the optimization-based approach to control design is particularly beneficial is multi-

objective control, in which multiple cost functions are simultaneously considered and constraints are imposed
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on the system [11]. An example of multi-objective control design would be to maximize the performance

of a system subject to the system having “enough” robustness. Clearly, these types of formulations allow

for much more general control design problems than the methodologies which use Riccati equations. Thus,

multi-objective formulations allow the control designer to deal with design tradeoffs and constraints in a

much more explicit manner, which in turn reduces the need for design iteration.

This report considers a certain class of discrete time multi-objective control problems for linear periodic

time-varying (LPTV) systems and shows how they can be represented as SDP’s. Chapter 2 presents the

theory associated with this class of problems. Then, in Chapter 3, this methodology is applied to the problem

of finding a track-following dual-stage hard disk drive controller which has multi-rate sampling and actuation

characteristics.
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Chapter 2

Periodic Discrete Time Systems

In this chapter, we start off by introducing the notation that will be used in this report and the class of

systems that will be examined. To motivate this class of systems, we will show that when multi-rate sampling

and actuation characteristics are added to a linear time-invariant (LTI) system, LPTV systems arise [2].

We will then define the `2 semi-norm of a linear operator and show a computationally feasible method of

computing it when the operator can be realized as an LPTV state space model. At this point, the relationship

between the `2 semi-norm of a linear operator and the H2 norm of a LTI system will be discussed. Finally,

a sharp upper bound on the `2 semi-norm of an operator will be presented in terms of matrix inequalities

for the case when the operator can be realized as an LPTV state space model.

After presenting the `2 semi-norm of a linear operator, we will define the `2 induced norm of a linear

operator and state some of its relevant properties when the operator can be realized as an LPTV state space

model. At this point, the relationship between the `2 induced norm of a linear operator and the H∞ norm of

an LTI system will be discussed. Finally, a sharp upper bound on the `2 induced norm of a linear operator

will be presented in terms of matrix inequalities for the case when the operator can be realized as an LPTV

state space model.

Finally, we will present an extension of the methodology in [11] for formulating a general class of multi-

objective control design problems as SDP’s with little conservatism. A few notes on the implementation and

efficiency of this optimization will then be made.

Many of the analytical developments related to the `2 semi-norm and the `2 induced norm in this section

are drawn from [10]. However, in that work, the matrices in their state space realizations are taken to be

infinite-dimensional block-diagonal linear operators. In an effort to simplify the analysis, we will instead

interpret the state space matrices as being a function of time.
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2.1 Preliminaries

To begin, we will introduce some definitions for linear operators. First we define for finite-dimensional

matrices the norm

‖M‖ := sup
x 6=0

(Mx)T Mx

xT x
.

Note that this norm is, by definition, equivalent to the largest singular value of a matrix and thus has the

properties

‖MN‖ ≤ ‖M‖ · ‖N‖

‖MT ‖ = ‖M‖.

The former of these properties is called the sub-multiplicative property. We define the spectral radius of M

as

ρ(M) := lim
n→∞

‖Mk‖1/k

which can be shown to satisfy

ρ(M) = max
k
|λk(M)|

where λk(M) is the kth eigenvalue of M . For all matrices considered in this report, unspecified entries are

zero and bullets represent entries whose values can be inferred by symmetry of the matrix. We will denote

that a symmetric matrix M is positive definite by M Â 0.

Now, note that linear systems can of the form

yk =
∞∑

j=−∞
Gk,juj

be represented as infinite-dimensional linear operators of the form




...

y0

y1

...




=




. . .
...

...
...

· · · G0,0 G0,1 · · ·
· · · G1,0 G1,1 · · ·
...

...
...

. . .







...

u0

u1

...



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where uk and yk are respectively the input and output at time k. This motivates the notation

y :=




...

y0

y1

...




, G :=




. . .
...

...
...

· · · G0,0 G0,1 · · ·
· · · G1,0 G1,1 · · ·
· · · ...

...
. . .




, u :=




...

u0

u1

...




.

In this framework, causal operators are ones that have the property that

Gk,j = 0, j > k.

Now we define the vector space

`2 :=

{
u :

∞∑

k=−∞
uT

k uk < ∞
}

and a norm on that vector space given by

‖u‖`2 :=

√√√√
∞∑

k=−∞
uT

k uk.

With this in mind, we will say that G is bounded if Gu ∈ `2, ∀u ∈ `2.

Now that we’ve finished introducing the operator notation, we will introduce the state space notation

and definitions. We will say that a causal linear operator has the realization

G ∼




Ak Bk

Ck Dk


 (2.1)

if 


xk+1

yk


 =




Ak Bk

Ck Dk







xk

uk


 .

We will further say that this is an LPTV realization if




Ak Bk

Ck Dk


 =




Ak+N Bk+N

Ck+N Dk+N


 , ∀k.

A causal operator which has an LPTV realization will be called an LPTV operator or an LPTV system.

The realization (2.1) will be called uniformly exponentially stable (UES) if there exist constants c > 0 and
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β ∈ [0, 1) such that

‖Ak+l−1 · · ·Ak‖ ≤ cβl, ∀k ∈ Z, l ∈ N

where Z denotes the set of integers and N denotes the set of positive integers. (Note that this is unrelated

to the condition that ρ(Ak) < 1, ∀k.) Finally, we have the following lemma [1].

Lemma 1. If a realization is UES and ∃M > 0 such that ‖Bk‖, ‖Ck‖ < M, ∀k, then the operator that it

realizes is bounded.

2.2 Multi-rate Sampling and Actuation

Before we develop the theory behind LPTV operators, we will first motivate why this is an important class

of operators by presenting a particular instance in which LPTV operators arise. Suppose we have an LTI

model with measurements and control inputs respectively given by

yk =




y1
k

...

y
ny

k




uk =




u1
k

...

unu

k




where yi
k and ui

k are scalars. We may want to measure the components of yk at different rates, i.e. we

measure yi
k only once every Ni time steps, where Ni is an positive integer. This situation could arise, for

example, when measurement rates of certain signals are limited by the physical system. For completeness,

we now further suppose that we want to actuate the plant at different rates, i.e. we change the value of ui
k

only once every Mi time steps, where Mi is a positive integer. We now define N to be the least common

multiple of N1, . . . , Nny ,M1, . . . , Mnu . There are thus two goals. First, we would like to create a model for

a multi-rate sampler which will take yk as its input and only let the measurements pass which are being

measured at that particular time step. Second, we would like to create a model for a multi-rate hold which

will take its inputs from a controller and hold these inputs for the necessary number of time steps in order

to create actuation signals which change at different rates than the LTI model actuation rate.

We will begin by considering the multi-rate sampler. Since we only measure yi
k once every Ni time steps,

we are interested in constructing the signal

yi
k :=





yi
k,

k − ni

Ni
∈ Z

0, otherwise
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where ni ∈ {0, . . . , Ni− 1} represents one particular time step at which we measure yi
k. This can be realized

as just a time-varying gain

yi
k = Si

kyi
k

Si
k :=





1,
k − ni

Ni
∈ Z

0, otherwise
.

It is clear that Si
k is periodic and has period N , i.e. Si

k = Si
k+N ,∀k. Now we can stack these up to form the

time-varying gain

Sk :=




S1
k

. . .

S
ny

k




.

This Sk is our multi-rate sampler model. Since Si
k has period N , it is obvious that Sk also has period N .

Thus, our multi-rate sampler is just a time-varying diagonal gain matrix with period N whose entries are

zeros and ones.

Now we turn our attention to finding a model for the multi-rate hold. Since we only change the value of

ui
k once every Mi time steps, we are interested in constructing the signal

ui
k :=





ui
k,

k −mi

Mi
∈ Z

ui
k−1, otherwise

where mi ∈ {0, . . . , Mi − 1} represents one particular time step at which we change the value of ui
k. When

Mi = 1, clearly ui
k = ui

k, which can be realized as the LTI static gain, Hi = 1. When Mi 6= 1 it is easily

verified that the dynamics from ui
k to ui

k have the LPTV realization

Hi ∼




1− δk δk

1− δk δk




δk =





1,
k −mi

Mi
∈ Z

0, otherwise
.

Note that in both cases, the state space realization has period N . We now stack these LPTV realizations
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up to form

H :=




H1

. . .

Hnu




.

Since each of the realizations of Hi have period N , the realization of H also has period N .

When we hook up our system to the multi-rate sampler and hold, the resulting system is still linear, but

its state space realization is periodically time varying. Hence, multi-rate measurement sampling and control

actuation results in LPTV systems.

2.3 `2 Semi-Norms of Operators

We first define the `2 semi-norm of the bounded operator G as

‖G‖22 := lim sup
l→∞

1
2l + 1

l∑

k=−l

∞∑

j=−∞
tr

{
Gk,j (Gk,j)

T
}

. (2.2)

Here, the factor of 2l + 1 is introduced to ensure that the `2 semi-norm is bounded for all admissible G

and the limit supremum guarantees existence of the limit in the right-hand side of (2.2). In a sense, the `2

semi-norm of an operator can be thought of as being analogous to the Frobenius norm for matrices, except

with a normalizing factor to ensure that it is bounded for bounded operators. It should also be noted that

the `2 semi-norm is not, in general, a norm. For instance, if an operator had only one non-zero entry in its

infinite-dimensional representation, it would not be the zero operator, but the `2 semi-norm of that operator

would be zero.

2.3.1 `2 Semi-Norms of LPTV Operators

Since we are interested in operators with time-varying state space realizations, we now present some results

which allow us to calculate the `2 semi-norm of these operators. We begin by looking at an equation which

is analogous to a discrete time Lyapunov equation for an LTI system.

Lemma 2. Suppose that a realization given by (2.1) is UES and a given sequence, Wk, satisfies

Wk º 0, ‖Wk‖ ≤ M ∀k
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for some scalar M > 0. Then the equation

Lk+1 = AkLkAT
k + Wk (2.3)

has a unique bounded solution given by

Lk = Wk−1 +
∞∑

j=1

(Ak−1 · · ·Ak−j)Wk−j−1 (Ak−1 · · ·Ak−j)
T

. (2.4)

Moreover, Lk º 0.

The proof of this lemma will be deferred to Appendix A.1. There are two ways to interpret (2.3): as an

infinite-dimensional linear equation or as an update equation in increasing k. For this second interpretation,

the unique bounded solution can be thought of as being the result of the following limiting process. Define

the sequence of sequences

L
[i]
k :=





0, k < −i

Ak−1L
[i]
k−1A

T
k−1 + Wk−1, k ≥ −i

.

Notice that for each i, L
[i]
k can be viewed as an update equation in increasing k where the initial condition

is taken to be L
[i]
−i−1 = 0. The unique bounded solution is then arrived at by simply taking the limit

Lk = lim
i→∞

L
[i]
k .

Just as the Lyapunov equation for LTI systems plays an important role in computing the H2 norm of a

system, this equation will play an important role in finding the `2 semi-norm of a operator with a time-

varying realization. The next lemma will highlight this fact.

Lemma 3. If a realization given by (2.1) is UES and ∃M > 0 such that

‖Bk‖ , ‖Ck‖ < M, ∀k,

then

‖G‖22 = lim sup
l→∞

1
2l + 1

l∑

k=−l

tr
{
DkDT

k + CkLkCT
k

}
(2.5)

where Lk is unique bounded solution of

Lk+1 = AkLkAT
k + BkBT

k . (2.6)
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Proof. First note that by Lemma 1, the operator corresponding to this realization is bounded. Now note

that
yk = Dkuk + Ckxk

= Dkuk + Ck


Bk−1uk−1 +

∞∑

j=2

Ak−1 · · ·Ak−j+1Bk−juk−j




⇒ Gk,k−j =





0, j < 0

Dk, j = 0

CkBk−1, j = 1

CkAk−1 · · ·Ak−j+1Bk−j , j > 1

.

Defining Wk = BkBT
k º 0 gives

∞∑

j=−∞
tr

{
Gk,jG

T
k,j

}
= tr

{
DkDT

k + Ck

[
Wk−1

+
∞∑

j=2

(Ak−1 · · ·Ak−j+1)Wk−j (Ak−1 · · ·Ak−j+1)
T

]
CT

k

}
.

By Lemma 2, the term in square brackets is the unique Lk corresponding to a bounded solution of (2.6).

Plugging this into (2.2) then gives the desired result.

Although this result is computationally intractable for a general time-varying realization, the next the-

orem will show that for LPTV realizations, the limit supremum in (2.5) is equivalent to the limit and the

infinite sum becomes a finite sum.

Theorem 4. If an LPTV realization given by (2.1) is UES, then

‖G‖22 =
1
N

N∑

k=1

tr
{
DkDT

k + CkLkCT
k

}
(2.7)

where

Lk+1 = AkLkAT
k + BkBT

k . (2.8)

Moreover,

Lk+N = Lk, ∀k.

Proof. Since we only have a finite number of values of Bk and Ck, it is trivial to verify that ∃M > 0 such
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that ‖Bk‖, ‖Ck‖ < M, ∀k. Therefore, (2.8) must have a unique bounded solution. Now, for notational

convenience, we define Rk := tr{DkDT
k + CkLkCT

k }. Note that if we define Lk := Lk+N , we get that

Lk+1 = Ak+NLkAT
k+N + Bk+NBT

k+N

= AkLkAT
k + BkBT

k .

Thus, by uniqueness of Lk (Lemma 2),

Lk+N = Lk = Lk

⇒ Rk = Rk+N .

Now let

l = Nnl + j

where nl is the largest integer such that Nnl ≤ l. Now we can express

‖G‖22 = lim sup
l→∞

1
2Nnl + 2j + 1

Nnl+j∑

k=−Nnl−j

Rk

= lim sup
l→∞

{
1

2Nnl + 2j + 1

(
nl−1∑

i=−nl

(i+1)N∑

k=iN+1

Rk +
−Nnl∑

k=−Nnl−j

Rk +
Nnl+j∑

k=Nnl+1

Rk

)}

= lim sup
l→∞

{
1

2Nnl + 2j + 1

(
2nl

N∑

k=1

Rk +
N∑

k=N−j

Rk +
j∑

k=1

Rk

)}
.

Note that by letting nl À j, we can see that the limit (not limit supremum) of the term in curly braces is

equal to the desired result. Since the limit supremum is equal to the limit when it exists, this completes the

proof.

This theorem lends itself to a computationally tractable means of computing the `2 semi-norm of LPTV

operators. To apply this theorem, since the solution of (2.8) is periodic, we only to solve a finite set of linear

matrix equations for the finite number of matrices (L1, . . . , LN ) which uniquely solve them and plug those

values into a finite summation.

2.3.2 Interpretation of `2 Semi-Norms of LPTV Operators

To build intuition regarding these `2 semi-norm of LPTV operators, we will now discuss several interpre-

tations of Theorem 4. First of all, it should be noted that when N = 1 (i.e. the realization is LTI), the `2
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semi-norm agrees with the H2 norm for its LTI realization. Since the H2 norm for an LTI system can be

related to the output covariance of a system, we would like to see if there is a similar interpretation for the

`2 semi-norm. Suppose that G is driven by u where

E [u] = 0

E
[
uuT

]
= I

i.e. uk is zero-mean white noise with covariance I. This implies that

E [y] = E [Gu] = GE [u] = 0

E
[
yyT

]
= E

[
GuuT GT

]
= GE

[
uuT

]
GT = GGT .

Thus, we can say that the covariance of yk is

E
[
ykyT

k

]
=

∞∑

j=−∞
Gk,j (Gk,j)

T
.

Now, recall from the proof of Theorem 4 that the limit supremum in (2.2) could be replaced by a limit.

Thus, when yk is scalar, we see that

‖G‖22 = lim
l→∞

1
2l + 1

l∑

k=−l

E
[
y2

k

]
.

Thus, we can interpret the `2 semi-norm in this case as the RMS (over time) standard deviation of yk. Note

that as hoped, this interpretation is similar to the interpretation that the H2 norm of an LTI system with

a scalar output corresponds to the standard deviation of that output when driven by white noise whose

covariance is I.

We now extend this comparison of the `2 semi-norm to the H2 norm by using a technique which “lifts”
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the LPTV system to an LTI system with similar characteristics [3]. We first define

Z :=




0 I 0
. . . . . .

. . . I

I 0




A :=




A1

. . .

AN




B :=




B1

. . .

BN




L :=




L1

. . .

LN




C :=




C1

. . .

CN




D :=




D1

. . .

DN




(2.9)

where, as previously mentioned, all unspecified elements are zero. With this new notation in mind, the

following lemma (whose proof will be deferred to Appendix A.2) gives an computationally tractable method

for determining whether or not an LPTV realization is UES.

Lemma 5. An LPTV realization is UES ⇔ ρ(ZTA) < 1, where Z and A are as in (2.9).

Now we will show a means by which to calculate the `2 semi-norm of an LPTV realization. We begin by

defining

L := ZLZT =




L2

. . .

LN

L1




so that (2.8) can be written in block diagonal form as

L = ALAT + BBT .

Exploiting the fact that Z is unitary gives

L = ZT
(ALAT + BBT

)Z

=
(ZTA)L (ZTA)T

+
(ZTB) (ZTB)T

.

Furthermore, (2.7) can be written

‖G‖22 =
1
N

tr
{DDT + CL CT

}
.
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With all of this in place, it is easily verified that

‖G‖22 =
1
N

∥∥∥∥∥∥∥



ZTA ZTB
C D




∥∥∥∥∥∥∥

2

H2

(2.10)

where the norm on the right-hand side of the equation is the usual H2 norm for LTI systems. Interestingly

enough, the LTI realization on the right-hand side of the equation is not a realization of G. However, if we

wanted to leverage existing software packages to compute the `2 semi-norm of an LPTV operator, using this

LTI system for computational purposes would work reasonably well.

It should be noted, though, that the MATLAB ss object does not support sparse state space matrices.

Furthermore, most of the algorithms for ss objects do not exploit sparsity. For instance, if you tried to find

L by computing the controllability gramian of the LTI system in (2.10), the solution will not, in general, be

exactly block diagonal—there will be some small numerical errors. Furthermore, these algorithms will tend

to be inefficient for large N . A better approach would be to instead consider the “lifted” system




AN,1 AN,2B1 AN,3B2 · · · AN,NBN−1 BN

C1 D1

C2A1 C2B1 D2

...
... C3B2

. . .

CN−1AN−2,1 CN−1AN−2,2B1

...
. . . DN−1

CNAN−1,1 CNAN−1,2B1 CNAN−1,3B2 · · · CNBN−1 DN




where Ai,j = Ai · · ·Aj . If we consider this system to have input uk and output yk which are given by

uk :=




uN(k−1)+1

...

uNk




yk :=




uN(k−1)+1

...

uNk




,

it is straightforward to check that this system realizes G. (The only difference is that the block partitioning

is a bit different.) Since this system has a factor of N fewer states than the system in (2.10), it is a lot more

efficient and reliable to compute the H2 norm of this system. Since this is an LTI realization of G, its H2

norm is equivalent to the `2 semi-norm of G. However, this LTI formulation is only useful for computing the

norm of an LPTV operator; it is not convenient for control design.

14



2.3.3 Upper Bound on `2 Semi-Norms of LPTV Operators

In this section, we present two formulations of an upper bound on the `2 semi-norm of an LPTV operator.

Both of these upper bounds are shown to be sharp. Although this seems like a counter-intuitive development

because we can directly compute the actual value of the `2 semi-norm using Theorem 4, it will be essential

to the control design developments in section 2.5.

Theorem 6. For LPTV operators, the following conditions are equivalent:

1. ‖G‖22 < γ

2. ∃ W1, . . . , WN , P1, . . . PN such that

1
N

N∑

k=1

tr Wk < γ,




Wk CkPk Dk

• Pk 0

• • I



Â 0,




Pk+1 AkPk Bk

• Pk 0

• • I



Â 0

holds ∀k ∈ {1, . . . , N} where PN+1 is taken to be P1.

3. ∃ W1, . . . , WN , Q1, . . . QN such that

1
N

N∑

k=1

tr Wk < γ,




Wk Ck Dk

• Qk 0

• • I



Â 0,




Qk+1 Qk+1Ak Qk+1Bk

• Qk 0

• • I



Â 0

holds ∀k ∈ {1, . . . , N} where QN+1 is taken to be Q1.

The proof of this theorem will be deferred to Appendix A.3. Note that the two matrices and the trace

in condition (2) are all affine in W1, . . . , WN , P1, . . . PN . With a little manipulation, these conditions can be

represented in the form F (x) Â 0, where F (x) varies linearly with x and x is a vector which contains all of

the entries of the upper triangular part of the matrices W1, . . . ,WN , P1, . . . PN . (Since all of these matrices

are symmetric, only their upper triangular entries are required to determine their values.) Thus, finding

the `2 semi-norm of an LPTV operator can be represented as an SDP in which γ is minimized. Similarly,

condition (3) can be used to construct a SDP to find the `2 semi-norm of an LPTV operator.
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2.4 `2 Induced Norms of Operators

In this section, we look at the `2 induced norm of LPTV operators. First we define the `2 induced norm of

a bounded operator to be

‖G‖∞ := sup
u∈`2\{0}

‖Gu‖`2

‖u‖`2

.

In a sense, the `2 induced norm of an operator can be thought of as being analogous to the maximum singular

value of a matrix. The basic result for calculating the `2 induced norm for an operator with a state space

realization is given by the following lemma, which is proven in [10].

Lemma 7. If G has the realization (2.1), then ‖G‖∞ < 1 ⇔ ∃ M > 0, Yk Â 0 such that ‖Yk‖ < M ∀k,

Yk+1 = AkYkAT
k + BkBT

k +
(
AkYkCT

k + BkDT
k

)
U−1

k

(
AkYkCT

k + BkDT
k

)T
, (2.11)

and AL
k is UES where

Uk = I −DkDT
k − CkYkCT

k Â 0

AL
k = Ak +

(
AkYkCT

k + BkDT
k

)
U−1

k Ck.

When we were analyzing the `2 semi-norm, the uniqueness of the solution to (2.3) was important because

it allowed us to say that the solution was periodic for LPTV realizations, which greatly simplified analysis.

Thus, we would like to see whether or not the Yk mentioned in Theorem 7 is unique. The following lemma

tells us that it is, indeed, unique.

Lemma 8. If ‖G‖∞ < 1, then the Yk mentioned in Theorem 7 is unique.

Proof. Let Yk, Uk, AL
k satisfy the conditions in Theorem 7. Also let Y k, Uk, A

L

k satisfy the conditions in

Theorem 7. Note that the following identity holds:

Uk = Uk + Ck

(
Yk − Y k

)
CT

k

⇒ U
−1

k = U−1
k + U

−1

k Ck

(
Yk − Y k

)
CT

k U−1
k

⇒ U
−1

k + U
−1

k CkYkCT
k U−1

k − U−1
k − U

−1

k CkY kCT
k U−1

k = 0.
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Using this identity, it is straightforward to show that

Yk+1 − Y k+1 = A
L

k

(
Yk − Y k

) (
AL

k

)T

⇒ Yk − Y k =
(
A

L

k−1 · · ·A
L

k−j

) (
Yk−j − Y k−j

) (
AL

k−1 · · ·AL
k−j

)T

⇒ ∥∥Yk − Y k

∥∥ ≤ cβ
j ∥∥Yk−j − Y k−j

∥∥ cβj .

Since Yk−j and Y k−j are bounded, the only way this can be true is when Yk = Y k.

Now, we look at the LPTV case. Our approach will be to first find a “lifted” LTI system [3] whose H∞
norm is equal to the `2 induced norm of the LPTV operator and then use the standard results for finding

the H∞ norm of an LTI system to find an upper bound on the `2 induced norm of the LPTV operator. We

begin by stating and proving the following lemma, which relates the `2 induced norm of an LPTV operator

to the H∞ norm of a “lifted” LTI system.

Lemma 9. If G is a bounded LPTV operator, then

‖G‖∞ < γ ⇔

∥∥∥∥∥∥∥



ZTA ZTB
C D




∥∥∥∥∥∥∥
H∞

< γ.

Proof. First note that it suffices to prove the result when γ = 1 because, for any norm, ‖αG‖x = |α| · ‖G‖x,

i.e. we can always scale an operator by a factor of γ−1 to recover the desired result. Since the solution to the

Riccati equation (2.11) is unique, it is easily verified using the same methodology as in the proof of Theorem

4 that Yk+N = Yk. Thus if we define

Y =




Y1

. . .

YN




U =




U1

. . .

UN




the conditions in Lemma 7 for ‖G‖∞ < 1 can be written

ZYZT = AYAT + BBT +
(AYCT + BDT

)U−1
(AYCT + BDT

)T Â 0

ρ
(
ZTA+

(ZTAYCT + ZTBDT
)U−1C

)
< 1

where

U = I −DDT − CYCT Â 0.

17



Multiplying the Riccati equation on the left by ZT and on the right by Z reveals that these conditions are

equivalent to saying that the H∞ norm of the LTI system above is < 1.

It should be noted that when N = 1 (i.e. the realization is LTI), the `2 induced norm agrees with the

H∞ norm for its LTI realization. Also, it is noteworthy that this “lifted” LTI system is the same as the one

that arose in the analysis of the `2 semi-norm of a LPTV system. Now, with this lemma in place, we can

now state and prove the final result of this section.

Theorem 10. For UES LPTV operators, the following conditions are equivalent:

1. ‖G‖2∞ < γ

2. ∃ P1, . . . PN such that




γI 0 CkPk Dk

• Pk+1 AkPk Bk

• • Pk 0

• • • I



Â 0

holds ∀k ∈ {1, . . . , N} where PN+1 is taken to be P1.

3. ∃ Q1, . . . QN such that




γI 0 Ck Dk

• Qk+1 Qk+1Ak Qk+1Bk

• • Qk 0

• • • I



Â 0

holds ∀k ∈ {1, . . . , N} where QN+1 is taken to be Q1.

The proof of this theorem will be deferred to Appendix A.4. Note that the matrix in condition (2) is

affine in P1, . . . PN . With a little manipulation, these conditions can be represented in the form F (x) Â 0,

where F (x) varies linearly with x and x is a vector which contains all of the entries of the upper triangular

part of the matrices P1, . . . PN . Thus, finding the `2 induced norm of an LPTV operator can be represented

as an SDP in which γ is minimized. Similarly, condition (3) can be used to construct a SDP to find the `2

induced norm of an LPTV operator.
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2.5 Output Feedback Control Design via SDP’s

In this section, we will apply the results of Theorems 6 and 10 to control design problems of the form

min
K,Γ

cT u subject to:



‖L1Gcl(K)R1‖2q1

...

‖LMGcl(K)RM‖2qM



≤ Γ, MΓ ≤




1
...

1




(2.12)

where inequalities are elementwise, c and M have nonnegative entries, and Gcl(K) is the closed-loop LPTV

operator as a function of the dynamic controller K. (In this formulation, the entries in Γ serve as upper

bounds on each relevant `2 semi-norm and `2 induced norm norm.) A few special cases of this optimization

formulation are H2 control, mixed H2/H∞ control, H2 control with H2 constraints, and their counterparts

for LPTV systems. This formulation is also able to handle much more general control design problems. For

instance, it is possible to impose a constraint on the squared `2 semi-norm of a relevant input-output pair

added to the squared `2 induced norm of a different input-output pair.

To solve this optimization problem, we will take the following approach: we will find an expression for the

realization of the closed-loop LPTV operator, apply a change of variables, and finally change the realization

of the operator so that the resulting matrix inequalities are all affine in a set of optimization parameters

from which the optimal controller can be extracted.

2.5.1 Problem Formulation

First, we assume that our plant model is in the form




xk+1

zk

yk




=




Ak B1
k B2

k

C1
k D11

k D12
k

C2
k D21

k 0







xk

wk

uk




where zk is the performance output of our system and wk is the disturbance input of the system. Our

controller will have the form 


xK
k+1

uk


 =




AK
k BK

k

CK
k DK

k







xK
k

yk


 .
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A realization for the closed-loop system from wk to zk with the state vector [xT
k (xK

k )T ]T is

Gcl ∼




Acl
k Bcl

k

Ccl
k Dcl

k




where



Acl
k Bcl

k

Ccl
k Dcl

k


 =




Ak 0 B1
k

0 0 0

C1
k 0 D11

k




+




0 B2
k

I 0

0 D12
k







AK
k BK

k

CK
k DK

k







0 I 0

C2
k 0 D21

k


 . (2.13)

We now make the following partitions of Qk from condition (3) of Theorems 6 and 10 and its inverse:

Qk =




Yk Nk

(Nk)T
Tk


 Q−1

k =




Xk Mk

(Mk)T
Rk


 . (2.14)

This allows us to define the matrix

Πk :=




Xk I

(Mk)T 0




and the change of variables




Âk B̂k

Ĉk D̂k


 :=




Nk+1 Yk+1B
2
k

0 I







AK
k BK

k

CK
k DK

k







(Mk)T 0

C2
kXk I


 +




Yk+1AkXk 0

0 0


 . (2.15)

Note that when Qk Â 0,

Q−1
k =




Y −1
k + Y −1

k Nk∆kNT
k Y −1 −Y −1

k Nk∆k

−∆kNT
k Y −1

k ∆k




where ∆k = (Sk − NT
k Y −1

k Nk)−1. Thus, in this case, det Mk = 0 ⇔ detNk = 0. Therefore, when Qk Â 0

and det Mk 6= 0 we can invert the change of variables (2.15) by using

[
AK

k BK
k

CK
k DK

k

]
=

[
N−1

k+1 −N−1
k+1Yk+1B2

k

0 I

] [
Âk−Yk+1AkXk B̂k

Ĉk D̂k

] [
(Mk)−T 0

−C2
kXk(Mk)−T I

]
. (2.16)

We now present several identities. First, note that

QkΠk =




I Yk

0 (Nk)T


 .
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Using this fact, it is straightforward to prove the following identities:

(Πk+1)
T

Qk+1A
cl
k Πk =




AkXk + B2
kĈk Ak + B2

kD̂kC2
k

Âk Yk+1Ak + B̂kC2
k




(Πk+1)
T

Qk+1B
cl
k =




B1
k + B2

kD̂kD21
k

Yk+1B
1
k + B̂kD21

k




Ccl
k Πk =

[
C1

kXk + D12
k Ĉk C1

k + D12
k D̂kC2

k

]

Dk = D̂k

(Πk)T
QkΠk =




Xk I

I Yk


 .

The right-hand side of all of these identities are all affine in Xk, Yk, Yk+1, Âk, B̂k, Ĉk, D̂k and all other matrices

are known from the plant model. This lends itself to two theorems. The first of these theorems, Theorem

11, gives an upper bound on achievable closed loop squared `2 semi-norms. The second of these theorems,

Theorem 12, gives an upper bound on achieveable closed loop squared `2 induced norms.

Theorem 11. If Lj and Rj are matrices and G is an LPTV operator, the following conditions are equivalent:

1. ∃AK
k , BK

k , CK
k , DK

k ,Wk, Qk for k ∈ {1, . . . , N} such that M−1
k exists and

1
N

N∑

k=1

tr Wk < γj ,




Wk LjCcl
k LjDcl

k Rj

• Qk 0

• • I



Â 0,




Qk+1 Qk+1A
cl
k Qk+1B

cl
k Rj

• Qk 0

• • I



Â 0

holds ∀k ∈ {1, . . . , N} where QN+1 is taken to be Q1, Mk is as defined in (2.14), and Acl
k , Bcl

k , Ccl
k , Dcl

k

are as defined in (2.13).
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2. ∃Wk, Xk, Yk, Âk, B̂k, Ĉk, D̂k for k ∈ {1, . . . , N} such that

1
N

N∑

k=1

trWk < γj (2.17a)

[
Wk Lj(C1

kXk+D12
k Ĉk) Lj(C1

k+D12
k D̂kC2

k) Lj(D11
k +D12

k D̂kD21
k )Rj

• Xk I 0
• • Yk 0
• • • I

]
Â 0 (2.17b)




Xk+1 I AkXk+B2
kĈk Ak+B2

kD̂kC2
k (B1

k+B2
kD̂kD21

k )Rj

• Yk+1 Âk Yk+1Ak+B̂kC2
k (Yk+1B1

k+B̂kD21
k )Rj

• • Xk I 0
• • • Yk 0
• • • • I


 Â 0 (2.17c)

holds ∀k ∈ {1, . . . , N} where XN+1 and YN+1 are respectively taken be X1 and Y1.

Proof. It is easy to see that condition (2) is equivalent to the existence of the relevant variables such that

1
N

N∑

k=1

tr Wk < γj




I

ΠT
k

I







Wk LjCcl
k LjDcl

k Rj

• Qk 0

• • I







I

Πk

I



Â 0




ΠT
k+1

ΠT
k

I







Qk+1 Qk+1A
cl
k Qk+1B

cl
k Rj

• Qk 0

• • I







Πk+1

Πk

I



Â 0.

Since detΠk = 0 ⇔ det Mk = 0, condition (2) is equivalent to condition (1).

Theorem 12. If Lj and Rj are matrices and G is an LPTV operator, the following conditions are equivalent:

1. ∃AK
k , BK

k , CK
k , DK

k ,Wk, Qk for k ∈ {1, . . . , N} such that M−1
k exists and




γI 0 LjCcl
k LjDcl

k Rj

• Qk+1 Qk+1A
cl
k Qk+1B

cl
k Rj

• • Qk 0

• • • I



Â 0

holds ∀k ∈ {1, . . . , N} where QN+1 is taken to be Q1, Mk is as defined in (2.14), and Acl
k , Bcl

k , Ccl
k , Dcl

k

are as defined in (2.13).
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2. ∃Wk, Xk, Yk, Âk, B̂k, Ĉk, D̂k for k ∈ {1, . . . , N} such that




γI 0 0 Lj(C1
kXk+D12

k Ĉk) Lj(C1
k+D12

k D̂kC2
k) Lj(D11

k +D12
k D̂kD21

k )Rj

• Xk+1 I AkXk+B2
kĈk Ak+B2

kD̂kC2
k (B1

k+B2
kD̂kD21

k )Rj

• • Yk+1 Âk Yk+1Ak+B̂kC2
k (Yk+1B1

k+B̂kD21
k )Rj

• • • Xk I 0
• • • • Yk 0
• • • • • I


 Â 0

holds ∀k ∈ {1, . . . , N} where XN+1 and YN+1 are respectively taken be X1 and Y1.

Proof. It is trivial to see that condition (2) is equivalent to the existence of the relevant variables such that




I

ΠT
k+1

ΠT
k

I







γI 0 LjCcl
k LjDcl

k Rj

• Qk+1 Qk+1A
cl
k Qk+1B

cl
k Rj

• • Qk 0

• • • I







I

Πk+1

Πk

I



Â 0.

Since detΠk = 0 ⇔ det Mk = 0, condition (2) is equivalent to condition (1).

The conditions in these theorems are very close to the condition that there exists a controller such that

∥∥LjGclR
j
∥∥2

qj
< γj (2.18)

is satisfied where qj is either ‘2’ or ‘∞’. Clearly, if the conditions of the appropriate theorem are satisfied,

then (2.18) must be satisfied. The only conservatism in these theorems is the constraint that the controller

must allow Mk to be invertible for some choice of Qk which satisfies condition (1) of either theorem. To

understand what conservatism this introduces, we first look at the LTI case, i.e. when N = 1. When M1 is

not invertible, it is always possible to change the realization of the controller such that the corresponding

Q1 has the form

Q1 =




Q̂1

Q̃1




where the dimension of Q̃1 is less than the dimension of xK
k . It is possible to show that in this controller

realization, it is possible to throw away the states corresponding to Q̃1 without any loss in closed-loop

performance with respect to either the `2 semi-norm or the `2 induced norm. Thus, from this, we can

extrapolate the interpretation for the LPTV case. The constraint that the controller must admit a choice

of Qk which gives invertible Mk means that we do not allow controllers with states at particular time steps

which can be thrown away with no loss in performance. This is a reasonable assumption in the LPTV case

because throwing away states at particular time steps would result in non-square Ak matrices.

23



With these theorems in mind, we can therefore construct an SDP corresponding to the control design

problem (2.12) by using condition (2) of these theorems. This SDP approach will, in general, be a little

bit conservative for two reasons. First, we require the values of Xk and Yk to be the same for each set of

relevant matrix inequalities. This corresponds to using the same values of Qk in each of the inequalities in

condition (3) of Theorems 6 and 10. Second, we can only consider closed-loop systems which admit a Qk

such that Mk is invertible, as discussed in the previous paragraph.

Once we solve this SDP, we need to reconstruct our controller from the optimal values of Âk, B̂k, Ĉk, D̂k, Xk, Yk.

However, in order to apply the inverse change of variables (2.16), we need to have values for Nk and Mk.

Since condition (2) of Theorems 11 and 12 imply that




Xk I

I Yk


 Â 0

⇒ Xk − Y −1
k Â 0, Yk Â 0

⇒ det (XkYk − I) det
(
Y −1

k

) 6= 0

we know that I −XkYk is nonsingular. Also, from examining the upper left block of Q−1
k Qk, we know that

XkYk + Mk (Nk)T = I

⇒ Mk (Nk)T = I −XkYk.

It is easily shown that whenever Mk and Nk are chosen to meet this condition, it is possible to choose Rk

and Tk such that 


Xk Mk

(Mk)T
Rk







Yk Nk

(Nk)T
Tk


 = I

i.e. there are no additional constraints that need to be met when choosing values of Mk and Nk. Thus, we

can find Mk and Nk using any matrix factorization technique, such as the QR decomposition. Then, once

we’ve chosen values of Mk and Nk, we can reconstruct our controller (i.e. AK
k , BK

k , CK
k , DK

k ) using (2.16).

2.5.2 Heuristics for Improved Numerics

In some cases, the quantity XkYk − I is ill-conditioned. In this case, there can be large numerical errors

when we try to reconstruct the optimal controller by using (2.16). Thus, we would like some heuristics to

improve the conditioning of the controller reconstruction. We will present two heuristics which both operate

24



using the same methodology:

1. Solve the SDP’s associated with the control design problem.

2. Pick a slightly sub-optimal value of the objective function and add the constraint to the SDP that the

objective function must be less than this value.

3. Redefine the cost function of the SDP so that it is trying to improve the numerics of the system. Add

any related variables and constraints to the SDP.

4. Solve the new SDP and reconstruct the controller from these optimal values.

The two heuristics presented in this report will only differ in the details of step (3) of this methodology.

We begin by looking at a heuristic presented in [11]. Consider the matrix inequality




Xk tI

tI Yk


 Â 0. (2.19)

Note that using Schur complements this is equivalent to

Xk − t2Y −1
k Â 0, Yk Â 0

⇔ Y
1/2
k XkY

1/2
k Â t2I, Yk Â 0.

Now let λj be an eigenvalue of Y
1/2
k XkY

1/2
k . Then, since Yk Â 0

det
(
Y

1/2
k XkY

1/2
k − λjI

)
= 0

⇔ det
[
Y

1/2
k (XkYk − λjI)Y

−1/2
k

]
= 0

⇔ det (XkYk − λjI) = 0.

From this we can say that the eigenvalues of XkYk are the same as the eigenvalues of Y
1/2
k XkY

1/2
k , which

are real. Also, we can say that

min
j

λj = sup
t

t2 s.t.




Xk tI

tI Yk


 Â 0.

Thus, for this heuristic, step (3) in the methodology outlined above corresponds to adding the variable t

and the constraint (2.19) to the SDP and redefining the cost function to be −t (i.e. we maximize +t). This

heuristic has the effect of pushing the minimum eigenvalue of XkYk as far away from 1 as possible.
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However, what we want is not for the smallest eigenvalue of XkYk to be large, but for XkYk − I to be

well-conditioned. Thus, a good heuristic would also make use of an upper bound. With this in mind, we

now construct the second heuristic for improving the numerics of the controller reconstruction. Consider the

matrix inequality




2z Xk + Yk

Xk + Yk z


 Â 0. (2.20)

Clearly this implies that

2z2I − (Xk + Yk)2 Â 0

⇒ 2z2I −XkYk − YkXk Â X2
k + Y 2

k Â 0

⇒ (
XkYk − z2I

)
+

(
XkYk − z2I

)T ≺ 0.

Note that this last equation looks like a Lyapunov equation for a stable continuous time LTI system. Thus,

since the eigenvalues of XkYk are real, we can say that the eigenvalues of XkYk−z2I are all strictly negative.

Thus, the maximum eigenvalue of XkYk is less than z2. Thus, for this heuristic, step (3) in the methodology

outlined above corresponds to adding two variables (t and z) and three constraints ((2.19), (2.20), and t > 1)

to the SDP and redefining the cost function to be αz− t, where α > 0 is a design parameter which trades off

the importance of minimizing the upper bound on XkYk and maximizing the lower bound on XkYk. This

heuristic has the effect of squeezing the maximum and minimum eigenvalues of XkYk together to make it

more well-conditioned. This, in turn, squeezes the maximum and minimum eigenvalues of XkYk−I together

to make it more well-conditioned. Through experience, it was found that a reasonable choice of α is 10−10.
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Chapter 3

Track-Following Control of

Dual-Stage Hard Disk Drives

For several decades now, the areal storage density of hard drives has been doubling every 18 months, as

predicted by Moore’s law. The current areal storage density of hard drives, as reported by Hitachi GST, is

345 gigabits/in2 [4]. As the storage density is pushed higher, the concentric tracks on the disk which contain

data must be pushed closer together, which requires much more accurate control of the read/write head.

This report will consider track-following control of the read/write head.

The current goal of the magnetic recording industry is to achieve an areal storage density of 1 terabit/in2.

The predicted track width required to achieve this data density is 46 nm. A good rule of thumb for track-

following control design is that three times the standard deviation of the position error signal (PES) between

the read/write head and the track center should be less than 10% of the track width [7]. Thus, the servo

design goal is to keep the 3σ value of the PES less than 4.6 nm.

There are several types of disturbances which act on the system. The first type, torque disturbances,

includes D/A quantization noise, power-amp noise, bearing imperfection and nonlinearity, and the effects

of high-frequency airflow turbulence. The second type, track runout, includes disk flutter, eccentricity due

to disk slippage, and imperfection of track circles. The third type, noises, includes demodulation noise and

A/D quantization noise [5].

A schematic of a typical hard drive is shown in Figure 3.1. A traditional hard drive setup uses only

the voice coil motor (VCM) to control the position of the read/write head. However, this places a strong

limitation on the closed-loop performance that can be achieved. In an effort to improve the achievable

closed-loop performance, we consider dual-stage hard drives, i.e. ones which have a secondary actuator. The
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Suspension

Figure 3.1: Hard drive schematic

secondary actuator considered here is a microactuator (MA) which directly actuates the slider upon which

the read/write head sits [8]. This MA has a built-in capacitive sensor which measures the MA displacement.

This signal is also called the relative position error signal (RPES). In addition, this system uses two PZT

sensors which are symmetrically placed on the suspension to measure the strain in the suspension which

corresponds to off-track head motion [6].

3.1 Modeling

Figure 3.2 shows the block diagram of the continuous time hard drive model where each signal is as described

in Table 3.1. Here, wv captures the effect of airflow turbulence and wr captures the rest of the disturbances

Figure 3.2: Block diagram of the hard drive model

mentioned in the previous section. Also, wv and wr have been normalized so that their variance is 1. The

suspension strain measurements have been scaled so that they correspond to off-track displacement of the
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Table 3.1: Summary of signals and units in Figure 3.2
Signal Description Units

uv Control input into VCM V
um Control input into MA mV
wv Airflow disturbance on VCM normalized
wr White noise which drives WR to produce runout signal normalized
r Runout signal nm
ys Suspension tip displacement nm
yh Head position relative to track center nm
yp Uncontaminated suspension strain measurement nm

RPES Uncontaminated RPES measurement nm
PES Uncontaminated PES measurement nm

head. The models for each block are given by

GS(s) :=
3∑

j=1

(
Mout

j

ω2
j

s2 + 2ζjωjs + ω2
j

M in
j

)

GM (s) :=
ω2

0

s2 + 2ζ0ω0s + ω2
0

GC(s) :=
2ζ0ω0s + ω2

0

s2 + 2ζ0ω0s + ω2
0

WR(s) :=
(12× 104)s2 + (2.89× 109)s + (5.298× 1012)

s3 + (2.684× 103)s2 + (1.756× 106)s + (4.703× 108)

where the model parameters are specified in Table 3.2 and GS is regarded as taking [wv uv]T as its inputs

and producing [yp ys]
T as its outputs. It is assumed here that wv and wr are both zero-mean Gaussian

Table 3.2: Hard drive model parameters
Parameter

j ζj ωj Mout
j M in

j

0 0.2 1.4137× 104 N/A N/A
1 0.05 376.99

[
0 104

]T [
0 1.4

]

2 0.015 4.6496× 104
[
0 1

]T [
0.48 −0.84

]

3 0.015 6.7218× 104
[
0.96 −0.5

]T [−0.816 0.6
]

white noises. The relevant frequency responses of the model are shown in Figures 3.3 and 3.4.

At this point, we put the model into a form more suitable for control. We assumed that our measurements

of the PES, the RPES and yp are respectively contaminated by the sensor noises nPES , nRPES , and np,

which are all zero-mean white Gaussian noises with standard deviation of 1 nm. With a bit of manipulation,

the model was put into the form 


z

y


 = Gct(s)




w

u



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Figure 3.4: Frequency response of the runout model

where the performance outputs, z, measurements, y, disturbances, w, and control inputs, u are given by
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z :=




PES

RPES

uv

um




w :=




wr

wv

nPES

nRPES

np




y :=




PES + nPES

RPES + nRPES

yp + np




u :=




uv

um


 .

Note that w is zero-mean white Gaussian noise whose covariance matrix is I, so the H2 norm from w to any

element of z can be interpreted as the standard deviation of that element of z.

Since we only have access to our PES measurements at the rate of 25 kHz, we must discretize our system.

We will consider two types of sampling and actuation schemes in this report. In the first scheme, we discretize

the system using a zero-order hold at 25 kHz and assume that all sampling and actuation occurs at that

frequency. In this case, since there is no need for a multi-rate sampler or a multi-rate hold, the resulting

discrete time system is LTI. In the second scheme, the system is discretized at 50 kHz using a zero-order

hold. In this case, we assume that we only have measurements of the PES for k ∈ {. . . ,−1, 1, 3, . . .} whereas

all other signals can be sampled and actuated at all time steps. Thus, we need a multi-rate sampler, but not

a multi-rate hold. The multi-rate sampler in this case is given by

Sk =





I, k − odd
[

0
1

1

]
, k − even

.

Incorporating Sk into the discrete time plant model in this case results in an LPTV system with period 2.

3.2 Control Design

This section will consider the control design for the hard drive model described in the previous section. The

goal of the control design is to minimize the PES while keeping uv, um, and the RPES reasonably small. In
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particular, we would like the following inequalities to hold:




σRPES

σuv

σum



≤ 1

3




100 nm

5 V

20 V




.

In the LPTV case, σ refers to the RMS standard deviation over time. We want the 3σ value of the RPES

to be smaller than 100 nm because that’s the range in which the capacitive sensor works best. This also

guarantees that the MA doesn’t saturate. We want the 3σ values of uv and um to be respectively smaller

than 5 V and 20 V because those are the maximum allowable control inputs. This report will compare

two approaches to meeting these closed-loop specifications. The first method applies a static weight to the

elements of z and minimizes the `2 semi-norm from w to z. In particular, we solve

min
∥∥∥∥
[

1
0

1
0.01

]
Gcl

∥∥∥∥
2

2

.

This will be called the unconstrained control design. The second method uses the multi-objective formulation

to minimize the `2 semi-norm from w to the PES while maintaining the inequalities




‖[0 1 0 0]Gcl‖2
‖[0 0 1 0]Gcl‖2
‖[0 0 0 1]Gcl‖2



≤ 1

3




100 nm

5 V

20 V




.

This will be called the constrained or multi-objective design.

For the constrained design, there is a simplification that arises in the SDP formulation of the problem.

When we formulate the problem, we have four identical copies of the matrix inequality (2.17c). Thus, we

can reduce the number of matrix inequalities that we need to satisfy. In addition, it is easy to show using

the methodology of Appendix A.3 that there is no conservatism introduced by requiring Qk to be the same

for all of the required inequalities. Thus, the control design methodology described in Section 2.5 will be

much less conservative when applied to this problem than in the general case.

Thus, since we have two types of sampling/actuation schemes and two types of control design formu-

lations, we have four controller designs to consider. These four optimizations were carried out using the

function mincx, which is a part of the Robust Control Toolbox for MATLAB. The results of all four controller

designs are summarized in Table 3.3. Note that all four designs meet the desired constraints on the RMS

3σ values of uv, um, and the RPES. (In the unconstrained case, this just means that we picked a reasonable
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Table 3.3: RMS 3σ values for signals in z for each controller design
Design Type PES (nm) RPES (nm) uv (V) um (V)

Single Unconstrained 23.19 65.82 3.66 0.96
Rate Constrained 21.18 100.00 5.00 2.61

Multi- Unconstrained 15.54 45.45 2.55 0.75
Rate Constrained 12.93 100.00 5.00 5.43

weighting for the elements in z.)

At this point, we compare the constrained control design results to the unconstrained control design

results. The first thing to note is that for both sampling/actuation schemes, the constrained control design

did significantly better than the corresponding unconstrained control design in terms of the 3σ PES value.

This improved PES performance, however, came at the cost of saturating uv and the RPES. Interestingly

enough, um did not saturate. The reason for this is that increasing the input into the MA tends to increase

the MA displacement, i.e increasing um tends to increase the RPES. Thus, at a certain point, um can’t be

increased any further without violating the RPES constraint. This is why the constrained control designs

are unable to further increase performance by increasing um.

Now we examine the effect of introducing multi-rate sampling and actuation into the control design. In

the multi-rate case, since the controller measures yp and the RPES twice as often, it has more information

about the plant. Also, since it can change the value of uv and um twice as often, it has more control over the

plant. Therefore, we expect dramatic closed-loop performance improvements in the multi-rate designs. This

is verified in Table 3.3. However, since the unconstrained design and constrained design have very different

interpretations of “performance,” introducing multi-rate sampling and actuation has a very different effect

on the two designs. In the unconstrained design, the cost function is a trade-off between the RMS standard

deviations of the relevant signals. Thus, the optimization tries to reduce the values of those signals in a

uniform way. In this particular example, the RMS standard deviation of all of those signals is reduced.

However, in the constrained design, the cost function includes only the PES RMS standard deviation. Thus,

the optimization only tries to reduce this value. Thus the PES performance increase is more dramatic in

the constrained design. An interesting effect to note is that RMS 3σ value of um actually increases when

the multi-rate sampling and actuation is introduced into the design. One way to interpret this is that the

controller uses some of its additional control over the plant to keep the RPES within its bound while applying

increased um.

Thus, in summary, the multi-rate and constrained designs respectively achieved better closed-loop per-

formance than the single-rate and unconstrained designs. And, when the constrained multi-rate design was

used, a 44% improvement of the RMS PES standard deviation was achieved.
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Chapter 4

Conclusion

This report presented a framework and methodology for multi-objective controller design for discrete-time

LPTV systems. The objectives could include squared `2 semi-norms (which were shown to generalize the

H2 norm) and squared `2 induced norms (which were shown to generalize the H∞ norm). The theory for

the `2 semi-norm and the `2 induced norm was rigorously developed and their interpretation in the LPTV

case was discussed.

This control design methodology was then applied to track-following control of dual-stage hard drives.

Two types of sampling and actuation schemes were considered. The first, a single rate scheme in which

all sampling and actuation was performed at the same frequency, could use LTI control design techniques.

The second scheme, which used multi-rate sampling and actuation required use of LPTV control design

techniques. It was shown that the multi-rate scheme achieve much better closed-loop performance than

the single rate scheme. Also, two types of control design objectives were considered. The first type was

an unconstrained design which minimized the `2 semi-norm of the closed-loop system with a static weight

on the its output. The second type was a constrained design which minimized the RMS PES variance

subject to the RPES and the control inputs being “small enough.” This constrained design, which is a

multi-objective control problem, achieved better closed-loop performance than the unconstrained (i.e. single

objective) design. It was also shown that using the constrained design with the multi-rate sampling and

actuation resulted in a 44% decrease in RMS PES standard deviation.
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Appendix A

Additional Proofs

A.1 Proof of Lemma 2

Lemma. Suppose that a realization given by (2.1) is UES and a given sequence, Wk, satisfies

Wk º 0, ‖Wk‖ ≤ M ∀k

for some scalar M > 0. Then the equation

Lk+1 = AkLkAT
k + Wk (A.1)

has a unique bounded solution given by

Lk = Wk−1 +
∞∑

j=1

(Ak−1 · · ·Ak−j)Wk−j−1 (Ak−1 · · ·Ak−j)
T

. (A.2)

Moreover, Lk º 0.

Proof. Define the sequence

L
[0]
k := Wk−1

L
[i]
k := Ak−1L

[i−1]
k−1 AT

k−1 + Wk−1.
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It is easy to see that

L
[i]
k = Wk−1 +

i∑

j=1

(Ak−1 · · ·Ak−j) Wk−j−1 (Ak−1 · · ·Ak−j)
T

and, moreover, that L
[i]
k º 0, ∀i ≥ 0, k. Fixing l > i gives

∥∥∥L
[l]
k − L

[i]
k

∥∥∥ =

∥∥∥∥∥∥

l∑

j=i+1

(Ak−1 · · ·Ak−j) Wk−j−1 (Ak−1 · · ·Ak−j)
T

∥∥∥∥∥∥

≤
l∑

j=i+1

‖Ak−1 · · ·Ak−j‖2 ‖Wk−j−1‖ .

Using the assumption that the realization is UES then gives

∥∥∥L
[l]
k − L

[i]
k

∥∥∥ ≤ c2M

l∑

j=i+1

(
β2

)j

≤ c2Mβ2(i+1)

1− β2
.

Thus ∀ε > 0 ∃N ∈ N such that i, j ≥ N ⇒ ‖L[l]
k − L

[i]
k ‖ < ε. Therefore, this sequence converges, which in

turn implies

lim
i→∞

(
L

[i]
k+1 −AkL

[i]
k AT

k −Wk

)
= 0

i.e. this sequences converges to a solution of (A.1). We now denote

Lk = lim
i→∞

L
[i]
k .

Clearly

‖Lk‖ ≤ ‖Wk−1‖+
∞∑

j=1

∥∥∥(Ak−1 · · ·Ak−j) Wk−j−1 (Ak−1 · · ·Ak−j)
T
∥∥∥

≤ M +
c2Mβ2

1− β2

i.e. this solution is bounded. It only remains to show that this solution of (A.1) is the unique bounded
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solution. Let Lk be any other solution. Then

Lk − Lk = Ak−1

(
Lk−1 − Lk−1

)
AT

k−1

= (Ak−1 · · ·Ak−j)
(
Lk−j − Lk−j

)
(Ak−1 · · ·Ak−j)

T

⇒
∥∥Lk − Lk

∥∥ ≤ c2β2j
∥∥Lk−j − Lk−j

∥∥ .

Thus

‖Lk−j‖+
∥∥Lk−j

∥∥ ≥ ∥∥Lk−j − Lk−j

∥∥

⇒ ∥∥Lk−j

∥∥ ≥
∥∥Lk − Lk

∥∥
c2β2j

− ‖Lk−j‖ .

Since Lk−j is bounded, this implies that either Lk = Lk or Lk−j becomes unbounded as j →∞.

A.2 Proof of Lemma 5

Lemma. An LPTV realization is UES ⇔ ρ(ZTA) < 1, where Z and A are as in (2.9).

Proof. (⇒)

A realization is UES if ∃c > 0, β ∈ [0, 1) such that

sup
k∈Z

‖Ak · · ·Ak−l+1‖ ≤ cβl, ∀l ∈ N.

In the LPTV case, if suffices to replace Z with {1, . . . , N}. To write this in a more convenient form, note

that two important properties of Z are

ZZT = ZTZ = I

‖MZ‖ = ‖M‖ .

(The second of these is proved by using the first property and the submultiplicitive property of the norm.)
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The UES condition can now be written

∥∥∥
(ZTAZ) (

(ZT )2AZ2
) · · ·

(
(ZT )lAZ l

)∥∥∥ ≤ cβl, ∀l ∈ N

⇒
∥∥∥
(ZTA)l Z l

∥∥∥ ≤ cβl, ∀l ∈ N

⇒ c−1/l
∥∥∥
(ZTA)l

∥∥∥
1/l

≤ β, ∀l ∈ N

⇒ ρ
(ZTA)

= lim
l→∞

∥∥∥
(ZTA)l

∥∥∥
1/l

≤ β < 1.

(⇐)

Define

α := ρ
(ZTA)

= lim
l→∞

∥∥∥
(ZTA)l

∥∥∥
1/l

< 1

β :=
α + 1

2
.

Since β ∈ (α, 1), we know that ∃N such that ‖(ZTA)l‖1/l < β, ∀l > N . Now define

c := max





1, max
l∈{1,...,N}

∥∥∥
(ZTA)l

∥∥∥
1/l

βl





.

It is easily checked that these choices of β and c imply that the realization is UES.

A.3 Proof of Theorem 6

Theorem. For LPTV operators, the following conditions are equivalent:

1. ‖G‖22 < γ

2. ∃ W1, . . . , WN , P1, . . . PN such that

1
N

N∑

k=1

tr Wk < γ,




Wk CkPk Dk

• Pk 0

• • I



Â 0,




Pk+1 AkPk Bk

• Pk 0

• • I



Â 0

holds ∀k ∈ {1, . . . , N} where PN+1 is taken to be P1.
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3. ∃ W1, . . . , WN , Q1, . . . QN such that

1
N

N∑

k=1

tr Wk < γ,




Wk Ck Dk

• Qk 0

• • I



Â 0,




Qk+1 Qk+1Ak Qk+1Bk

• Qk 0

• • I



Â 0

holds ∀k ∈ {1, . . . , N} where QN+1 is taken to be Q1.

In these conditions, a bullet represents an entry in the matrix which follows from symmetry.

Proof. (1) ⇒ (2):

In this part of the proof, we will construct the necessary variables which satisfy the given conditions in (2).

First we define

ε := γ − ‖G‖22 > 0.

Then, we define Lk and P I
k to satisfy

Lk+1 := AkLkAT
k + BkBT

k

P I
k+1 := AkP I

k AT
k + I.

By (2.4), Lk º 0 and P I
k Â 0. Now we define

α :=
ε

4max
{
1, tr{CkP I

k CT
k }

} > 0

Pk := Lk + αP I
k Â 0

Wk := CkPkCT
k + DkDT

k +
ε

4n
I

where n is the number of rows (and columns) in the Ak matrix. Note that Pk satisfies

Pk+1 = AkPkAT
k + BkBT

k + αI

⇒ Pk+1 −AkPkAT
k −BkBT

k Â 0

⇒




Pk+1 AkPk Bk

• Pk 0

• • I



Â 0.
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The last implication followed using Schur complements. Also note that Pk and Wk satisfy

Wk − CkPkCT
k −DkDT

k Â 0

⇒




Wk CkPk Dk

• Pk 0

• • I



Â 0

by Schur complements. Finally, note that

N∑

k=1

tr Wk =
N∑

k=1

tr
{

αCkP I
k CT

k + CkLkCT
k + DkDT

k +
ε

4n
I
}

=
N∑

k=1

tr
{
αCkP I

k CT
k + CkLkCT

k + DkDT
k

}
+

Nε

4

≤
N∑

k=1

tr
{
CkLkCT

k + DkDT
k

}
+

Nε

2

= N‖G‖22 +
Nε

2

⇒ 1
N

N∑

k=1

tr Wk < ‖G‖22 + ε = γ.

This completes the proof of (1) ⇒ (2).

Proof of (1) ⇐ (2):

Using Schur complements, we know that

Pk+1 −AkPkAT
k −BkBT

k = ∆k Â 0

⇒ Pk+1 = AkPkAT
k +

(
BkBT

k + ∆k

)

⇒ Pk+1 − Lk+1 = Ak (Pk − Lk)AT
k + ∆k

where Lk is as defined in the previous part of the proof. Thus, by (2.4), Pk − Lk Â 0. Also, we know that
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using Schur complements gives

Wk Â CkPkCT
k + DkDT

k

⇒ trWk > tr
{
Ck (Pk − Lk) CT

k + CkLkCT
k + DkDT

k

}

> tr
{
CkLkCT

k + DkDT
k

}

⇒ 1
N

N∑

k=1

trWk >
1
N

N∑

k=1

tr
{
CkLkCT

k + DkDT
k

}
= ‖G‖22.

Thus

‖G‖22 <
1
N

N∑

k=1

trWk < γ.

This completes the proof of (1) ⇐ (2).

Proof of (2) ⇔ (3):

0 ≺




Pk+1 AkPk Bk

• Pk 0

• • I




⇔ 0 ≺




P−1
k+1

P−1
k

I







Pk+1 AkPk Bk

• Pk 0

• • I







P−1
k+1

P−1
k

I




=




P−1
k+1 P−1

k+1Ak P−1
k+1Bk

• P−1
k 0

• • I




.
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Also,

0 ≺




Wk CkPk Dk

• Pk 0

• • I




⇔ 0 ≺




I

P−1
k

I







Wk CkPk Dk

• Pk 0

• • I







I

P−1
k

I




=




Wk Ck Dk

• P−1
k 0

• • I




.

Defining Qk = P−1
k completes the proof.

A.4 Proof of Theorem 10

Theorem. For UES LPTV operators, the following conditions are equivalent:

1. ‖G‖2∞ < γ

2. ∃ P1, . . . PN such that




γI 0 CkPk Dk

• Pk+1 AkPk Bk

• • Pk 0

• • • I



Â 0

holds ∀k ∈ {1, . . . , N} where PN+1 is taken to be P1.

3. ∃ Q1, . . . QN such that




γI 0 Ck Dk

• Qk+1 Qk+1Ak Qk+1Bk

• • Qk 0

• • • I



Â 0

holds ∀k ∈ {1, . . . , N} where QN+1 is taken to be Q1.
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Proof. (1) ⇒ (2):

By Lemma 9, condition (1) is equivalent to

∥∥∥∥∥∥∥



ZTA ZTB
C D




∥∥∥∥∥∥∥
H∞

< γ.

Since this is an LTI system, we can apply a well-known fact [9] which allows us to equivalently say that ∃P
such that

0 ≺




P ZTAP ZTB 0

• P 0 PCT

• • I DT

• • • γI




⇔ 0 ≺




I

Z
I

I







P ZTAP ZTB 0

• P 0 PCT

• • I DT

• • • γI







ZT

I

I

I




=




γI 0 CP D
• ZPZT AP B
• • P 0

• • • I




where we have used that Z is unitary. We now partition P as

P =




P1 ∗
. . .

∗ PN




where the asterisk denotes entries which are unimportant. Note that all of our matrices are now partitioned

into n× n blocks. Now we define

T1 :=




In

0n(N−1)×n


 .

Note that TT
1 MT1 extracts the 1st n× n block diagonal entry of M . Since T has trivial null space, we can
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say that the matrix inequality above implies that

0 ≺




TT
1

TT
1

TT
1

TT
1







γI 0 CP D
• ZPZT AP B
• • P 0

• • • I







T1

T1

T1

T1




=




γI 0 C1P1 D1

• P2 A1P1 B1

• • P1 0

• • • I




.

Since we can define Tk so that TT
k MTk extracts the kth n × n block diagonal entry of M , we can use the

same methodology to verify that




γI 0 CkPk Dk

• Pk+1 AkPk Bk

• • Pk 0

• • • I



Â 0

where PN+1 is taken to be P1. Therefore, condition (2) holds.

Proof of (1) ⇐ (2):

Each inequality in condition (2) can be expressed as




γI −DkDT
k − CkPkCT

k − (
AkPkCT

k + BkDT
k

)T

• Pk+1 −AkPkAT
k −BkBT

k


 Â 0

by using Schur complements. Using Schur complements again, each inequality in condition (2) can be

expressed as

Pk+1 −AkPkAT
k −BkBT

k −
(
AkPkCT

k + BkDT
k

)
U−1

k

(
AkPkCT

k + BkDT
k

)T Â 0

Uk = γI −DkDT
k − CkPkCT

k Â 0

Pk Â 0.
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Expressing these inequalities in block diagonal form gives

ZPZT −APAT − BBT − (APCT + BDT
)U−1

(APCT + BDT
)T Â 0

U = γI −DDT − CPCT Â 0

P Â 0

which can be rewritten using Schur complements as

0 ≺




γI 0 CP D
• ZPZT AP B
• • P 0

• • • I




⇔ 0 ≺




I

ZT

I

I







γI 0 CP D
• ZPZT AP B
• • P 0

• • • I







I

Z
I

I




=




γI 0 CP D
• P ZTAP ZTB
• • P 0

• • • I




.

From the first part of the proof, this is equivalent to condition(1).

Proof of (2) ⇔ (3):
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0 ≺




γI 0 CkPk Dk

• Pk+1 AkPk Bk

• • Pk 0

• • • I




⇔ 0 ≺




I

P−1
k+1

P−1
k

I







γI 0 CkPk Dk

• Pk+1 AkPk Bk

• • Pk 0

• • • I







I

P−1
k+1

P−1
k

I




=




γI 0 Ck Dk

• P−1
k+1 P−1

k+1Ak P−1
k+1Bk

• • P−1
k 0

• • • I




.

Defining Qk := P−1
k completes the proof.
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