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Abstract 

 

Partial-Contact Head Disk Interface for Ultrahigh Density Magnetic Recording 

by 

Du Chen 

Doctor of Philosophy in Engineering- Mechanical Engineering 

University of California, Berkeley 

Professor David B. Bogy, Chair 

 

One of the major technological challenges for achieving an ultrahigh areal recording 

density of 1~10Tbit/in2 is to obtain a reliable and robust head disk interface with a flying 

height less than 2.5 nm. This results in a transducer clearance of less than 1 nm even on a 

smooth disk surface with a glide height of only 1.5 nm. It is also required that the 

amplitude of the flying height variation should be less than 10% of the clearance in order 

to maintain a stable read/write process. With such a low clearance, the impact and contact 

between the slider and disk become unavoidable, resulting in a large likelihood of the 

slider’s bouncing and the head’s wearing. The bouncing and wearing may cause 

instability of the head disk interface and the dysfunction of the read/write transducer. All 

of these challenge the design of the next generation air bearing sliders. 

This dissertation proposes and analyzes a partial-contact recording system with an air 

bearing to obtain the ultra-low but stable head disk spacing for 1~10 Tbit/in2. The 



 2

research reported here focuses on the numerical simulation of the slider’s performance in 

a partial-contact head disk interface and the feasibility of maintaining both a low 

bouncing amplitude and a low contact force. The effects of different factors important to 

the performance of the interface are numerically analyzed. 

First, existing models of slider-disk contact and adhesion are analyzed and improved 

for the numerical simulation of the partial-contact slider. Two types of quasi-static contact 

models- the asperity-based contact model and the elastic contact model based on the 

influence coefficient- are compared and implemented for different slider-disk interaction 

situations. The intermolecular adhesion models are improved for the slider-disk adhesion 

in the near-contact or contact regime. Second, a nonlinear dynamics model of the 

partial-contact slider with air bearing is proposed. Numerical simulations with this model 

are carried out to investigate the performance of a partial-contact slider and to study the 

effects of different factors. Based on this dynamics model, a six-degree-of-freedom slider 

model is employed to analyze the in-plane vibrations of the slider as well as the bouncing 

in the near-contact and contact regimes. Third, a different explanation of the slider’s 

bouncing vibration is presented based on numerical simulations using three slider 

dynamics models. Forth, a novel partial-contact head disk interface with thermal 

protrusion is proposed, which is stimulated by the widely used thermal flying control or 

dynamic flying height technology. The heat transfer at the air bearing surface is 

numerically studied. Different head disk interface heat transfer models are examined and 

compared. The performance of the partial-contact slider with thermal protrusion is 
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simulated and compared with a micro-trailing pad slider. It is found that the bouncing 

vibration amplitude can be reduced to become comparable to the flying height 

modulation, when the disk track is burnished or the air bearing pressure peak is enforced 

at the trailing edge center. 

The key contributions of this dissertation are the identification of the causes and 

influential factors of some mechanical challenges inherent in ultrahigh density magnetic 

recording required for the next generation of hard disk drives, as well as simulation-based 

solutions to address these challenges. 

 

                                   

Professor David B. Bogy 

Dissertation Chair 
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Chapter 1 Introduction 

1.1 Hard Disk Drive, Head Disk Interface, Head Media Spacing, Flying 

height and Air Bearing Surface 

A hard disk drive (HDD), also called a hard drive or hard disk, is a non-volatile data 

storage device which stores digitally encoded data on a rotating disk coated with 

magnetic layers. Since the first HDD was introduced in 1957 by IBM, new technologies 

have been applied in the evolution process of HDDs and a rapid increase in both the areal 

recording density and data transfer rate have been maintained all along. With the basic 

operation principles almost unchanged, however, today the HDD is still the main mass 

storage device for computers and networks due to its advantages in storage capacity, cost 

per unit storage amount, data access time and storage reliability. 

The structure of a HDD is shown in Figure 1.1. Usually the components inside a 

HDD can be divided into four main parts. They are 1.magnetic read/write heads, 

magnetic disks and head disk interface (HDI); 2.a printed circuit board with data 

detection electronics and write circuit; 3.mechanical servo and control system, including 

spindles, actuators, suspensions and control chips; 4 interface to microprocessor and 

power supplier. The mechanical operation of the head-disk assembly relies on an air 

bearing film between the slider and the spinning disk for a stable self regulating head 

media spacing (HMS). Different data tracks are in the range of read and write of the 

read/write heads, as the sliders are positioned along the radial direction. 

Figure 1.2 shows the rapid increase of areal recording density of HDDs. The 
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innovation of read/write transducers, the increase of the servo system’s position accuracy 

and especially the reduction of the HMS directly lead to the increase of recording density 

while keeping the signal to noise ratio obtained from the read heat within an acceptable 

range. The HMS includes the thickness of the protective layers- slider and disk 

diamond-like-carbon (DLC) overcoats and disk lubricant- and the physical spacing 

between the read/write transducer and the disk (flying height). The protective layers must 

have certain minimum thicknesses for their performance, so the reduction of the flying 

height (FH) is necessary. Figure 1.3 shows a continuous reduction of FH over the years. A 

reduced but still stable flying height of a slider mainly relays on a delicate design of the 

slider’s patterned surface opposite to the disk surface. This patterned surface is called the 

air bearing surface (ABS). The relative motion between the slider with a well designed 

ABS and the disk creates an air pressure field that can stably sustain the slider’s FH. The 

evolution of the slider and ABS is shown in Figure 1.4. 

As the result of the rapid development of the hard disk drive, magnetic recording 

densities between 1~10 Tbit/in2 have become the new targets of the Information Storage 

Industry Consortium (INSIC), a HDD organization in the US. The HMS and FH are 

required to be lower and lower for the higher and higher recording densities. The HMS 

for the 1 Tbit/in2 is designed to 5 nm. At most this can include a FH of 2.5 nm. Even if all 

of the protective layers can be reduced to 2.5 nm, it is quite challenging that the 

roughness (glide height) can be less than 1.5 nm. Therefore we are talking about no more 

than 1.0 nm clearance in the HDI for 1 Tbit/in2. The HMS for the 10 Tbit/in2 is designed 

to be 2 nm and the corresponding FH is 1 nm when the total thickness of protective layers 

is reduced to 1 nm. Even if the roughness of the disk can be reduced to 0.75 nm, there 

will be no more than 0.25 nm transducer clearance within the HDI for the 10Tbit/in2. 
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1.2 Research Motivation and Objectives 

“Contact” is unavoidable for the final solution to reducing the transducer clearance 

below 1 nm. With the pitch and roll angles and disk morphology considered, the 

transducer clearance may not be the smallest gap between the slider and disk. The slider 

may still have some part of its geometry in contact with a smooth enough disk. It is well 

known that bouncing vibration and flying hysteresis tend to increase with a decrease in 

roughness height, due to the increased van der Waals forces and electrostatic force in the 

HDI, as well as the contact force between the slider and disk. The contact induced 

in-plane vibration of the slider may decrease the track following ability and increase the 

read/write bit error. All of these factors will challenge the requirement that the clearance 

variation should be no larger than 10% of the transducer clearance. 

Conventionally there are several interface designs under consideration for high 

recording densities: “wear in”, “proximity”, “partial contact”, and “full contact”. It is 

expected that all of these technologies, except possibly the last one, will rely on an air 

bearing film to support most of the suspension load. Additionally, thermal flying height 

control or dynamic flying height control is widely used in current hard drives to locally 

lower the slider’s flying height. This advantageous technique makes use of a localized 

thermal protrusion at the read/write transducer, which is adjusted by the embedded 

micro-heater at the trailing edge center. Based on this technology, a contact HDI with 

thermal protrusion is proposed. This new partial-contact HDI has only a small protruded 

tip in contact with the disk surface, which has a small radius of curvature, while other 

parts of the air bearing surface (ABS) are almost unchanged and remain sufficiently far 

away from the disk to avoid contact. 
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The research addressed in this dissertation numerically analyzes the feasibility and 

influential factors of contact recording, especially partial-contact recording with air 

bearing, to achieve a stable transducer FH well below 3 nm for a recording density of 1 

Tbit/in2 or even greater. Models for slider disk contact, adhesion and friction are analyzed 

and adjusted to approximate the slider disk interaction. Factors within the HDI, which 

affect the slider’s bouncing vibration and the slider’s in-plane vibration due to the 

slider-disk contact, are numerically studied. For the new HDI with thermal protrusion, 

different HDI heat transfer models for the numerical calculation of FH reduction are 

analyzed and compared. Finally ABS designs for a partial-contact HDI with thermal 

protrusion are proposed and analyzed. 

1.3 Dissertation Organization 

This dissertation is organized into nine chapters. Chapter 1, i.e. the current chapter, is 

an introduction of the history and structure of HDD, the HDI, HMS, FH and ABS, the 

research objectives and dissertation organization. Chapter 2 is focused on the analysis of 

two types of contact models for the slider-disk impact, i.e. the asperity contact model and 

the elastic contact model based on influence coefficients. Chapter 3 develops a modified 

intermolecular adhesion force model for the slider-disk adhesion. The effect of adhesion 

and contact on an air bearing slider in the contact or near contact regime is analyzed. 

Chapter 4 presents the numerical analysis of a conventionally designed partial-contact 

HDI. Factors within the HDI that affect the bouncing and contact of the slider are studied. 

Chapter 5 analyzes the six-degree-of-freedom vibrations of the contact slider, including 

the in-plane vibration. Chapter 6 gives a new explanation of the cause of the slider’s 

bouncing vibration and compares it with previously reported research. Chapter 7 focuses 
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on the difference of HDI heat transfer models for an air bearing slider with thermal 

protrusion. Chapter 8 applies the thermal protrusion to the design of a partial-contact HDI 

and examines ABS designs for a partial-contact slider with thermal protrusion. Chapter 9 

presents the summary and conclusions of this dissertation. 

References 

[1] S. X. Wang and A. M. Taratorin, Magentic Information Storage Technology, 

Academic Press, 1999 
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(a) A HDD without cover              (b) A sketch of the HDD structure 

Fig.1.1. HDD without cover and sketch of the HDD structure (www.westerndigital.com) 
 

 

Fig.1.2. Increase of the areal recording density in the HDDs (www.hgst.com) 
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Fig.1.3. Reduction of the physical spacing (flying height) (www.hgst.com) 
 

 

Fig.1.4. Evolution of the slider and air bearing surface (www.hgst.com) 
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Chapter 2 Contact Models for the Slider-Disk 

Contact and Impact 

The slider-disk impact and contact need to be properly modeled in the air bearing 

slider dynamic simulator in order to accurately simulate the dynamics of contact or 

partial-contact sliders for 1Tbit/in2 or higher recording densities in hard disk drives. Static 

contact models, such as asperity-based contact models and the contact model based on 

influence coefficients, can be used to model the slider-disk contact and impact, since the 

contact and impact between the slider and the disk are quasi-static. The limitations of 

these models are discussed and the algorithms used for applying these models to the 

slider dynamic simulation are analyzed in order to efficiently use them in the simulation. 

Other contact models, such as the multi-asperity contact model proposed by Cha and 

Bogy [1] in the current CML air bearing program and the contact model proposed by Iida 

and Ono [2] in their simulations for contact and near-contact sliders, are also discussed in 

this chapter. 

2.1  Introduction 

The slider-disk spacing has to decrease to less than 3 nm for 1Tbit/in2 magnetic 

recording density, resulting in a high likelihood of slider-disk contact or impact. In the 

contact or partial-contact head disk interface (HDI) design, the slider’s trailing edge is 

expected to contact the disk surface during the reading and writing process. So the 

slider-disk impact and contact need to be properly modeled in the air bearing slider 

dynamic simulator in order to accurately analyze the dynamics of the contact or 
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partial-contact slider. 

Models of the slider-disk contact and impact should be simple and accurate and have 

an efficient numerical algorithm so they can be used in the slider dynamic simulation. 

The CML slider dynamic simulator uses the Newmark-Beta method to solve the 

slider-disk interface dynamic equations [3]. The time step is at most 10-6 sec due to the 

high frequency of the slider’s motion. This means that at least 103 time steps are required 

for the simulation of only 1ms of motion. When the slider contacts the disk, the simulator 

needs to solve for the slider-disk contact force several times as well as solving the 

dynamic Reynolds Equations for the air bearing pressure, until the entire system of the 

slider’s motion equations converge at each time step. Hence the slider dynamic 

simulation needs a numerically efficient model for the slider-disk impact and contact. 

In the early numerical simulations of the slider dynamics, the coefficient of restitution 

model of the slider-disk impact was used to calculate the approximate impact force and 

the speed of the slider after impact [4]. Another common approach was to use the contact 

stiffness and damping for the calculation of the slider-disk impact force [5]. These two 

methods are very convenient for computation; however, it is difficult to obtain the values 

of the required parameters, such as the coefficient of restitution, contact stiffness and 

damping coefficients for a 3-D slider-disk contact. Also the coefficient of restitution 

model cannot give the contact duration and the contact force at the same time. Later 

several static contact models were applied to the simulation, for example, the 

Greenwood-Williamson (GW) model [6], CEB model [7] and KE model [8]. All of these 

models belong to the class of asperity-based contact models. Cha and Bogy proposed a 

multiple asperity impact model [1], which is based on Chang and Ling’s elastic-plastic 

model [9]. Peng et al. [10] used an elastic contact model based on influence coefficients 
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to simulate the slider-disk contact. Iida and Ono [2] numerically calculated the contact 

force considering the asperity contact and the deformation of the base plane of each 

asperity due to the bulk deformation. Influence coefficients are used in their model to 

calculate the deformation of each asperity’s base plane. Although the finite element 

method (FEM) is adequate in solving elastic-plastic contact problems with acceptable 

accuracy [11 and 12], its requirement for a large number of elements reduces its 

effectiveness in analyzing surface contact with a practical size system. Its high 

computation cost makes it almost impossible to use the FEM to analyze the slider-disk 

contact in the slider dynamic simulation. 

Currently the CML air bearing program uses the GW model and CEB model (also 

called elastic-plastic model, i.e. EP model) for the slider-disk asperity contact, which 

occurs when the gap between the slider and the disk is less than the glide height but 

higher than zero, and it uses Cha’s model [1] for the crash contact, which occurs when the 

slider-disk gap is less than zero. In this Chapter we analyze all of these contact models, 

i.e. the asperity-based models and the elastic model with influence coefficients. Their 

applications and limitations to the slider dynamic simulation are examined. Finally a 

preferred approach for the simulation of the slider-disk contact and impact is proposed. 

2.2  Slider-Disk Quasi-Static Impact 

The dynamic impact between the slider and disk can be modeled as a quasi-static 

impact. The CML slider dynamic simulation shows that when the slider impacts the disk 

the impact speed of the slider is on the order of 10-1m/s, which is much less than the 

elastic wave speeds in the slider and the disk. The sliding speed of the slider with respect 

to the disk, which is proportional to the disk rotation speed and the radial position of the 
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slider, is on the order of 101m/s. This value is also much smaller than the elastic wave 

speeds. So the slider-disk impact is quasi-static, which means that the deformation is 

restricted to the vicinity of the contact area and can be obtained using the static contact 

theory. The elastic wave motion in the bodies can be ignored when only the slider-disk 

contact is considered. So we can use static contact models to approximate the slider-disk 

contact. In fact the asperity-based contact models, such as the GW model and the CEB 

model used by Hu [3] in the slider dynamic simulation and the KE model used by Suh 

and Polycarpou [13] for their two dimensional slider simulation, are all static contact 

models, as is Cha’s multi-asperity contact model [1]. The influence coefficient model of 

contact is based on static linear elasticity and it can also be used as a quasi-static impact 

model. 

2.3  Decoupled Normal Pressure and Tangential Friction 

In the quasi-static slider-disk contact problem the normal pressure and the friction 

traction can be decoupled without significant loss of accuracy. Johnson [14] showed 

analytically that the influence of frictional traction on the normal pressure is very small 

for a sliding punch over the surface of a half-space with a friction coefficient 0.5. The 

friction coefficient between the slider and the disk is usually less than 0.5 due to the 

lubricant and carbon overcoat. The default value used in CML simulation is 0.3. So we 

can employ the contact models to obtain the contact force and then obtain the friction 

force through Coulomb’s law with a constant friction coefficient. 

2.4  Asperity-based Contact Models 

Nomenclature 

nA  nominal contact area 
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A  real contact area 

d  separation between the mean asperity height of the slider and that of the disk 

*d  normalized separation ( * / sd d σ= ) 

sE  Young’s modulus of the slider  

dE  Young’s modulus of the disk 

E  Hertz elastic modulus (
2 2

11 1( )s d

s d

v vE
E E

−− −
= + ) 

H  hardness of the softer material 

K  hardness factor ( 0.454 0.410K v= + ) 

N  total number of asperities 

P  total contact force 

R  asperity radius of curvature 

t  lubricant thickness 

u  height of an asperity measured from the mean of asperity heights 

*u  normalized asperity height ( * / su u σ= ) 

sy  distance between the mean of asperity heights and the mean of surface heights 

η  area density of asperities 

v  Poisson’s ratio of the softer material among the slider and the disk 

sv  Poisson’s ratio of the slider 

dv  Poisson’s ratio of the disk 

σ  standard deviation of surface heights 

sσ  standard deviation of asperity height 
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ω  contact interference of an asperity 

cω  critical interference at the inception of plastic deformation inside the asperity  

ψ  plasticity index 

2.4.1 Single Asperity Contact and Contact Models 

The general approach of an asperity-based contact model is to incorporate a single 

asperity contact into a statistical model of multiple asperity contacts. The contact of two 

rough surfaces can be modeled by an equivalent single rough surface contacting a flat 

rigid plane, as proved by Greenwood and Tripp [15]. For the equivalent rough surface, 

five assumptions are usually adopted in an asperity-based model. 

(1) The rough surface is isotropic. 

(2) The asperities have the same simple geometry near their summits, for example the 

asperities are spherical or ellipsoidal.  

(3) The asperity heights vary randomly but follow a probability distribution, for example, 

a Gaussian distribution. 

(4) Asperities deform due to the contact with the rigid surface. But asperities are far 

apart and interactions between them are negligible. 

(5) Bulk deformation is also negligible. 

The first asperity-based contact model was presented in the pioneering work of 

Greenwood and Williamson (GW model) [6]. It is based on the Hertz elastic contact 

solution for a single elastic spherical asperity. So it is mainly valid for purely elastic 

contact. Much earlier some purely plastic contact models were proposed by Abbott and 

Firestone [16]. They were extended to asperity-based contact models for purely plastic 

contact. To bridge the gap between the purely elastic and the purely plastic contact, 
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Chang et al. [7] proposed the CEB model by introducing a critical interference (ωc), 

above which an elastic contacting asperity turns to fully plastic deformation. The fully 

plastically deformed asperity is assumed to have a uniformly distributed contact pressure 

on the contact area and conserve the volume of the asperity tip. However, this 

simplification causes a discontinuity in the contact load at the transition from elastic to 

plastic contact. Evseev et al. [17], Chang [18] and Zhao et al. [19] proposed various 

mathematical modifications to smooth the discontinuity. Kogut and Etsion [8] developed 

an FEM solution to the elasto-plastic contact between a sphere and a flat surface and 

revised the CEB elastic-plastic model to the KE model, which does not have the 

discontinuity. 

The GW model, CEB model and KE model are typical asperity-based contact models, 

which assume that the asperity tips are hemispheres with the same radius and the asperity 

heights are normally distributed. McCool [20] relaxed these two assumptions and treated 

the rough surface as anisotropic with a random distribution of asperity radii. However the 

results showed good agreement with those of the simple GW model. The GW model and 

CEB model, because of their simplicity, were extended to different asperity geometries 

and asperity height distributions, Horng [21], Kogut and Etsion [22], Yu and Polycarpou 

[23]. Also other modifications of these models were made, for example, the modification 

with a varying hardness by Jackson and Green [24]. However these papers [21-24] fail to 

show that the two simple assumptions of the GW, CEB and KE models produce results 

that deviate from real contact interfaces. In this Chapter we accept the assumptions of 

simple spherical asperities and Gaussian distribution of asperity heights and compare the 

three typical probabilistic models, i.e. the GW model, CEB model and KE model. 

Obviously Assumptions (4) and (5) limit the applicability of the asperity-based 
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contact models. When the surface separation is less than zero, the asperities can undergo 

large deformations which may violate Assumption (4). For a large average contact 

pressure, the bulk deformation may become significant, which violates Assumption (5). 

So asperity-based contact models are valid only when the surface separation is larger than 

zero ( 0d > ) and the nominal contact pressure is much less than the hardness of the softer 

material in the contact interface ( p H<< ). 

2.4.2 Surface Roughness Parameters 

In the GW model, CEB model and KE model, a rough surface is described by the 

standard deviation of the asperity heights, the areal density of the asperities and the radius 

of curvature of their summits. McCool [25] showed a systematic way to obtain these 

parameters from the surface profile z(x), assuming that z(x) is a Gaussian random variable. 

Three spectral moments of the profile z(x) are defined as, 

2
2 2 2

0 2 4 2[ ],  [( ) ],  [( ) ]dz d zm Average z m Average m Average
dx dx

= = = .  (1) 

Two isotropic rough surfaces in contact can be replaced by an equivalent rough surface 

contacting a rigid flat surface. Then three spectral moments of the equivalent rough 

surface are, 

0 0 1 0 2 2 2 1 2 2 4 4 1 4 2( ) ( ) ,  ( ) ( ) ,  ( ) ( )m m m m m m m m m= + = + = + .    (2) 

Obviously 0m  is the variance of surface heights, i.e., the surface height standard 

deviation 1/ 2
0( )mσ = . The radius of curvature, the asperity density, and the asperity height 

standard deviation can be expressed as [25], 

4
1/ 2 24

2 2
4 2

m 3.717 100.375( ) ,  = ,  
6 3 sR

m rm
π η σ σ

ηπ

−×
= = − .    (3) 
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From a mathematical point of view, the above equations can be proved only for 

Gaussian random surfaces [26]. They are not valid for a Weibull random surface. So 

using a non-Gaussian asperity height distribution with the above equations, which was 

carried out in [23], has not been validated. 

These three parameters, i.e. the radius of curvature, asperity density, and asperity 

height standard deviation, are scale-dependent. In practice the surface topography is not 

strictly a stationary random process and three spectral moments of the height distribution 

depend on the length of the statistical sample [27]. This means that instruments with 

different resolutions and scan lengths yield different values of these statistical parameters 

for the same surface. Majumdar and Bhushan [28] analyzed their dependence on the 

spatial resolution and surface magnification for a magnetic tape surface and a magnetic 

disk surface. They proposed a new contact model in which the rough surfaces are 

characterized by fractal geometry instead [29]. Based on that, contact analyses of 

elastic-plastic fractal surfaces were carried out [30 and 31]. However, all of these 

analyses retain Assumption 4 and Assumption 5, and they did not cite any experimental 

work as a proof that fractal contact models are superior to asperity-based contact models. 

2.4.3 A Proper Model for Slider-Disk Asperity Contact 

As mentioned above, the GW model is valid for purely elastic contact, the CEB 

model is a rough extension to elastic-plastic contact and the KE model is a more accurate 

elastic-plastic model based on the FEM analysis, but with the cost of much more 

complicated expressions. For specified rough surfaces all three of these models give the 

contact load and the real contact area as functions of the surface separation (d), where, in 

fact, d=FH-ys, or d=FH-ys-t if a lubricant thickness t is considered. 

GW model 
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1.52( ) ( )( )
3 c n d

P d RKH A Iπ ω η
∞

= ∫                                (4) 

1( ) ( )( )c n d
A d R A Iπ ω η

∞
= ∫                                      (5) 

CEB model 

1.5 12( ) ( )( )( 1.5 (2 ) )
3

c

c

d c
c n d d

P d RKH A I I
u d

ω

ω

ωπ ω η
+ ∞

+
= + −

−∫ ∫              (6) 

61 1( ) ( )( )( (2 ) )c c

c

d d c
c n d d

A d R A I I
u d

ω ω

ω

ωπ ω η
+ +

+
= + −

−∫ ∫                 (7) 

KE model 

6 1101.5 1.425 1.263 1

6 110

2 3( ) ( )( )( 1.03 1.4 )
3

c c c

c c c

d d d

c n d d d d
P d RKH A I I I I

K
ω ω ω

ω ω ω
π ω η

+ + + ∞

+ + +
= + + +∫ ∫ ∫ ∫   (8) 

6 1101 1.136 1.146 1

6 110
( ) ( )( )( 0.93 0.94 2 )c c c

c c c

d d d

c n d d d d
A d R A I I I I

ω ω ω

ω ω ω
π ω η

+ + + ∞

+ + +
= + + +∫ ∫ ∫ ∫        (9) 

2

2

1where ( ) ( ) ( ) exp( )
22c c ss

u d u d uI u du duα α αφ
ω ω σπσ
− −

= = − holds for the Gaussian 

random surfaces. 

The CEB model assumes the asperities are either elastically deformed ( cω ω< ) or 

fully plastically deformed ( cω ω≥ ), with the corresponding two terms on the right hand 

sides of Equations (6) and (7). However, the KE model uses the FEM results and asserts 

that asperities have four different deformation states. They are elastically deformed 

asperities ( cω ω< ), elastic-plastically deformed asperities with a plastic region under the 

contact interface ( 6c cω ω ω≤ < ), elastic-plastically deformed asperities with a plastic 

annulus on the contact interface ( 6 110c cω ω ω≤ < ), and fully plastically deformed 

asperities ( 110 cω ω≥ ). These four states correspond to the four terms on the right hand 
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sides of Equations (8) and (9). 

Although the right hand sides of Equations (4-9) have many variables, they can be 

reduced to functions of the separation d and the plasticity index Ψ. The plasticity index, 

which is defined by Greenwood and Williamson and expressed as 1/ 2( / )c sψ ω σ −= , 

determines the main deformation state of the contacting asperities, i.e. elastic, 

elastic-plastic, or plastic. Figure 2.1 shows the Gaussian distribution of asperity heights. 

All of the asperities with heights larger than the separation are in contact, shown as a dark 

region in Figure 2.1. All of the asperities with heights larger than the critical interference 

plus the separation are in elastic-plastic or plastic deformation. It is obvious that if the 

separation is larger than 3σs, the number of asperities in contact is negligible and in fact 

the surfaces are practically separated. The number of asperities in elastic-plastic 

deformation is ( )
c d

N u du
ω

φ
∞

+∫ . Here we have a restriction d>0 so that the assumption (4) is 

valid. The above number of asperities in elastic-plastic deformation is negligible if the 

critical interference is less than 3σs, which corresponds to Ψ<0.58. This is consistent with 

Greenwood and Williamson’s comment [6] that when Ψ<0.6 plastic contact could be 

caused only if the nominal pressure between two surfaces were very large. Further, we 

make the following conclusions, 

(1) The contacting asperities are mainly in elastic deformation if Ψ<0.58, i.e. 3c sω σ> . 

(2) The number of plastically deformed asperities is negligible if Ψ<6.06, 

i.e.110 3c sω σ> . 

(3) If 0.58<Ψ<1.41, i.e. 3 6c s cω σ ω< < , the number of elastic-plastically deformed 

asperities with plastic annulus on the contact interface is negligible, but the 



 19

elastic-plastically deformed asperities with a plastic region below the contact 

interface needs to be considered. 

So if Ψ<1.41 the asperities are mainly in elastic deformation or elastic-plastic 

deformation with a plastic region below the contact interface, which corresponds to the 

first two terms in Equations (8) and (9). Notice that the term in (8) 
6 1.4251.03 c

c

d

d
I

ω

ω

+

+∫  is 

close to 
6 1.51.00 c

c

d

d
I

ω

ω

+

+∫  and the term in (9) 
6 1.1360.93 c

c

d

d
I

ω

ω

+

+∫ is close to
6 11.00 c

c

d

d
I

ω

ω

+

+∫ . So we 

may expect that the KE model produces results close to those produced by the GW model 

when Ψ<1.41. 

Numerical results of three cases with different plasticity indices of the slider-disk 

contact are obtained using the GW model, CEB model and KE model. These three cases 

have typical slider and disk roughnesses and material parameters [13], as shown in Table 

2.1, and they have Ψ=0.836, 0.587 and 0.386, respectively. For each case, the contact 

load versus the separation and the contact area versus the separation are plotted for these 

three contact models, respectively. As shown in Figure 2.2, the difference between the 

results of these three models is very small except for case 1, where the result of the CEB 

model deviates from those of the GW model and KE model for separations less than 1nm. 

In case 1Ψ=0.836, the asperities are either in elastic deformation or in elastic-plastic 

deformation with plastic regions below the contact interface. The CEB model improperly 

assumes all of the elastic-plastically deformed asperities are in fully plastic deformation, 

while the contact force and contact area of these elastic-plastically deformed asperities 

are much closer to those of elastically deformed asperities than to those of fully 

plastically deformed asperities. This is the reason why it gives different results. From this 
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point of view, the CEB model may not be accurate for the slider-disk contact analysis 

with a large ψ  and a small separation. 

For the slider-disk asperity contact, if the material parameters E is 85.29 GPa, H is 2.5 

GPa, and ν is 0.2, the roughness parameters σs is less than 2 nm and R is on the order of 

1μm , then we can expect the plasticity index 1/ 2 1/ 22( ) ( )c s

s

E
KH R

ω σψ
σ π

−= =  to be around 

1. So the contacting asperities are mainly in elastic or elastic-plastic deformation. Hence 

the difference between the GW model and the KE model is expected to be very small for 

slider-disk asperity contact. For simplicity we will use the GW contact model in the 

slider’s dynamic simulation. If the slider-disk contact has Ψ>0.58, we can turn to the KE 

model for better accuracy, but the GW model is still a good approximation. However, the 

CEB model may not be applicable to the slider-disk contact with Ψ>0.58, as analyzed in 

the above slider-disk asperity contact cases. 

2.4.4 Numerical Implementation of the GW Model and the KE Model 

Notice that all of the terms in the Equations (4), (5), (8), and (9) have the following 

form, 

*

*

2( , ) ( , )

2( , ) ( , )

2( , )

2( , )

*2( , )2 * * *

( , )

1( ) exp( )
22

1              ( ) ( ) exp( )
22

1              ( ) exp( ) ,
22

c c
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c

c

u d u d

l d l d
c ss

u ds
l d

c s ss

u d

l d

u d uI du

u d u du

uu d du

ω ωα α

ω ω

ωα α

ω

ψα α

ψ

ω σπσ

σ
ω σ σπσ

ψ
π

−
= −

−
= −

= − −

∫ ∫

∫

∫

          (10) 

where ( , ) and ( , )c cu d l dω ω  are the upper and lower bounds of the integration, 

respectively. As seen from Equation (10), the integral is expressed as a function of d if Ψ 

is given. So in the GW model and the KE model the contact load and contact area are 
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only functions of the separation when the plasticity index of the contact interface is 

given. 

To avoid the integration process at each time step, a table look-up method can be used 

in the computation. The look-up tables are composed of all integration results for various 

values of d*. For the GW model the upper bound and lower bound in Equation (10) are 

independent of the given Ψ, so the tables can be predetermined. For the KE model the 

upper bound and lower bound in Equation (10) depend on the input Ψ. So the look-up 

tables have to be dynamically established in the program for different input values of Ψ. 

The improper integrals, which have ∞  as an upper bound, are approximated by proper 

integrals. Figure 2.1 shows that the density function of the Gaussian distribution, 

i.e.
2

2

1 exp( )
22 ss

u
σπσ

− , decreases to near zero extremely fast as u  increases beyond 3σs. 

So the upper bound in equation (10) can be replaced by a sufficiently large number, for 

example 3σs or 6σs, without significant loss of accuracy. The Romberg method [32] is 

used to calculate the proper integrals to establish the tables, instead of the numerical 

integration method currently in the CML air bearing code. With the Romberg method, the 

CML air bearing code does not have the convergence problem when calculating the 

contact force. 

Meshing the slider ABS is required in order to apply an asperity-based contact model 

to the slider-disk asperity contact. Due to the pitch and roll of the slider motion and the 

air bearing surface (ABS) patterns, the slider surface is not parallel to the disk. The slider 

ABS is meshed into small grids in the numerical simulation. Each grid on the ABS is 

assumed to have a uniform separation from the disk and the slider-disk contact force and 

contact area are hence discretized as step functions. The GW model or the KE model is 



 22

applied to each grid to obtain the contact load and contact area. Then the total contact 

load and contact area are the summation of the contact load and contact area of all grids. 

The table look-up method speeds up this process. In the CML air bearing simulation an 

adaptive grid generation based on the air pressure gradient is used to numerically solve 

the Reynolds Equation [33]. In this adaptive mesh the grid density is usually higher at 

ABS regions where the flying height is lower. Those places with lower flying heights are 

more likely to contact the disk. We can also use this adaptive mesh to analyze the 

slider-disk asperity contact in the slider dynamic simulation. This avoids introducing 

another mesh into the simulation. 

Both contact force and contact area are nonlinear functions of separation. So the 

effects of pitch and roll on the contact force and contact area are not negligible even for 

pitch and roll angles on the order of microradians. Figure 2.3 shows the relationships 

between the contact force and the pitch angle and between the contact area ratio and the 

pitch angle for the rough slider and disk surfaces (case 1 in Table 2.1) with a minimum 

separation of 2 nm. Here the tailing pad of the slider is a 30 μm×30 μm square and it is in 

asperity contact with the disk. We can see that the GW model and KE model give the 

same results and that the contact force and contact area strongly depend on the pitch 

angle. We may also expect that the roll angle has a similar effect on the contact force and 

contact area. But the effect of the roll angle is less than that of the pitch angle, since the 

roll angle is much smaller than the pitch angle. The slider-disk contact simulation by Suh 

and Polycarpou [13] neglected the effect of the pitch and roll and only considered the 

effect of the contact pad area, i.e. nominal contact area (An), upon the total contact force. 

This may not be accurate in common cases. 
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2.4.5 Asperity Contact Models with Assumptions 4 and 5 Relaxed 

There are several advanced asperity-based contact models that relax the last two 

assumptions of a typical asperity-based contact model, i.e. the assumption of no asperity 

interactions and the assumption of no bulk deformation. However, all of them are 

somewhat questionable. 

For example, Zhao and Chang [34] proposed a model of asperity interactions in 

elastic-plastic contact of rough surfaces, which basically is a kind of asperity-based 

contact model. First they applied Saint-Venant’s Principle of elasticity to equate the 

deformation at a given asperity due to pressures at all other contacting asperities, shown 

in Figure 2.4(a), to the deformation at that asperity due to an equivalent uniform pressure 

applied over the surface area outside the region of that asperity, shown in Figure 2.4(b). 

However, Saint-Venant’s Principle is at best valid only for the strain and stress of a given 

point remote from loading regions. So it can not validate the equivalence of the two 

situations shown in Figure 2.4. To consider the interactions between asperities, they used 

the linear elasticity theory and the influence coefficient (or Love’s formula [35]) to 

calculate the deformation of a given asperity due to the forces at all other contacting 

asperities, while the deformation of all contacting asperities is assumed to be 

elastic-plastic in their model. This approach also is questionable. 

Iida and Ono [2] included the bulk deformation in their asperity-based elastic contact 

model for the contact and near-contact sliders. In their model, the displacement of the tip 

of each asperity is composed of two parts. One part is due to the deformation of the tip of 

the given asperity under Hertzian contact and the other part is due to the deformation of 

the base plane of the given asperity under the asperity contact forces of all other 

contacting asperities. In this sense, for the contact of a rigid flat surface and a single 
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spherical asperity on a half space, the displacement of the asperity tip is only due to the 

Hertzian contact between the rigid flat surface and the spherical asperity, which depends 

only on the Young’s modulus of the asperity and the contact load. However, suppose that 

Young’s modulus of the half space is different from that of the spherical asperity, it is 

obvious that the displacement of the asperity tip increases as the Young’s modulus of the 

half space decreases. So Iida and Ono’s contact model is also questionable. 

2.5  Contact Model Based on Influence Coefficients 

2.5.1 Influence Coefficient and Corresponding Contact Model 

This kind of contact model is based on the linear elasticity theory of loading on an 

isotropic elastic half-space. The influence coefficient describes the effect of a uniform 

pressure acting on a rectangular area, as analyzed by Love [35]. The deflection of a 

general point (x, y) on the surface due to a uniform pressure p acting on a rectangular 

area 2 2a b×  centered at the origin is given by Love’s formula [35], 

2 2 2 22

2 2 2 2

2 2 2 2

2 2
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21  ( , ; , )vp c x y a b
Eπ

−
=                                         (11) 

Here the function c  is called the influence coefficient, which relates the normal pressure 

in the rectangle with the size of 2 2a b×  to the normal displacement at a given point (x, 

y). Obviously c is only a function of the position of the given point and the size of the 

rectangular area. Love also found expressions from which the stress components at a 
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general point in the solid can be obtained. He commented that the component of shear 

stress theoretically becomes unbounded at the corners of the rectangle, but elsewhere all 

the stress components are bounded. These results are useful in the numerical solution of 

more general static contact problems of two bodies with uniformly loaded rectangles as 

“boundary elements”. First, the normal and tangential tractions can be decoupled with 

only a small loss of precision by neglecting the effect of the tangential traction on the 

normal pressure, which arises when the materials of the two bodies are different. Then 

the discretized normal displacement of a contacting rough surface and the discretized 

normal pressure are related through the influence coefficients. Finally, the normal 

displacement of the contacting rough surface and the normal pressure are solved through 

numerical methods. This approach is systematically described by Johnson [14]. 

For contact with a layered half space or contact in cases where the normal pressure 

and the tangential traction are coupled, the influence coefficient can be calculated using 

the FEM [36], where the influence of the applied unit load on the deflection at each node 

is analyzed using the finite element analysis, or using the elasticity solution for a unit 

load on the surface of the half space [37], where the Papkovich-Neuber potentials are 

employed in a Fast Fourier analysis. By either method, the influence coefficient is still a 

function of the relative position and the size of the loading area. 

2.5.2 Application to Slider-Disk Contact 

Several approximations are made to simplify the slider-disk contact problem. We 

need not consider the layered structure of the disk since we are not interested in the stress 

field in the disk. The disk is simply assumed to be a homogeneous isotropic half space. 

As discussed before, the normal pressure and the friction traction are decoupled without 

significant loss of accuracy. So the influence coefficient expressed in Equation (11) can 
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be directly used. The slider and the projection of the slider on the disk are discretized into 

grids with the same mesh as shown Figure 2.5. Each grid rectangle has a center node. The 

gap between the slider and the disk, the slider profile and the disk profiles, the contact 

pressure between the slider and the disk, and the elastic normal displacements of the 

slider and disk surfaces due to contact are all assumed to be uniform on each rectangular 

grid with the value evaluated at the center node. In another words, all of them are 

discretized to stepwise functions. 

The slider-disk gap h  is the distance between the slider and disk 

profiles ( ) ( ) and s dZ Z , i.e., ( ) ( )s dh Z Z= − . In the slider’s dynamic simulation h 

corresponds to the motion of the slider, which means hi, the gap at node i, has the 

following property, 

0,  when node i is not in contact
0,  when node i is in contactih

>⎧
⎨<⎩

. 

Provided there is no interpenetration, the elastic normal displacements of node i on the 

slider ( )z s iu  and the elastic displacement of the corresponding node on the disk ( )z d iu , 

then satisfy the relationship, 

( ) ( )

0,  within a contact region
0,  outside contact regionsz s i z d i iu u h

=⎧
+ + ⎨>⎩

             (12) 

The influence coefficient ijc is used to express the displacement at node i due to a unit 

pressure element centered at node j acting on the rectangular grid. The total displacement 

at node i is then expressed by, 

2 2

( ) ( ) ( ) ( )
1 1

,  s d
z s i ij s j z d i ij d j

s d

v v
u c p u c p

E Eπ π
− −

= =∑ ∑ .         (13) 
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where ( )ij sc  and ( )ij dc  are the influence coefficient on the slider and on the disk surface, 

respectively. If we also apply Equation (11) to the slider surface for ( )ij dc , then we can 

obtain a similar equivalence of the contact between two rough surfaces and the contact 

between a flat and a rough surface as in [15]. Explicitly the relative displacement can be 

expressed as, 

2 2

( ) ( )

2 2

1 1

1 1                  ( )

                   ,
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s d
ij j

s d
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π π
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− −
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∑
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2 2

*

1 1 1s d
ij ij ij ij
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v vC c c c
E E Eπ π
− −

= + = .  

Then Equation (12) can be expressed as, 

,  within a contact region
,  outside contact regions,

i
ij j

i

h
C p

h
= −⎧
⎨> −⎩

∑               (14) 

Here the ijC ’s form a non-sparse matrix of the influence coefficients for the slider-disk 

contact interface and they define a linear system that relates the normal pressure to the 

elastic normal displacement. To simulate the slider dynamics, we need to solve the linear 

system and obtain the pressure elements. Notice that the pressure element ip should 

satisfy 0 ip H≤ ≤ . The total contact load P carried by the contact region is the sum of 

the pressure elements, i.e. 

i iP p s=∑ , where is  is the area of the grid at node i. 

Obviously this elastic model with the influence coefficients considers the interactions 

between nearby grids and the effect of bulk deformation. This model can simulate the 
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contact between discretized real surfaces. However, this model is not applicable when a 

large number of contact nodes are plastically deformed, since the basis of the model is 

from linear elasticity theory. The accuracy of this model strongly depends on the finess of 

the mesh; however, a fine discretization with a large grid number dramatically increases 

the computational time. So an efficient numerical scheme is of vital importance in 

applying this model to simulate the slider-disk contact. 

2.5.3 Numerical Schemes for Solving the Obtained Linear System 

Johnson [14] described two numerical methods – a matrix inversion method and a 

variational method – to solve the linear system, which is produced by the contact model 

based on influence coefficients for the normal pressure. In fact, almost all papers on the 

contact model based on influence coefficients uses one of these two numerical schemes, 

for example, [37-40]. Here we modify these two numerical methods and make them 

suitable for the simulation of slider-disk contact. 

a) Conjugate Gradient (CG) method  

The problem of the slider-disk contact is to find each contact region with known 

contact pressure p for a certain slider-disk gap h. A first approximation to the contact 

regions is the geometric overlap regions, i.e., all the nodes in contact regions are the 

nodes {Node i: hi<0}. Then the CG method instead of matrix inversion is used to solve 

the linear equations, 

 Contact Region
ij j i

j
C p h

∈

= −∑ ,             (15) 

or in a matrix form, [ ]{ } { }C p h= − . 

The solution of Equation (15) may have pressure elements at some nodes with negative 

values, which implies that a tensile traction is required at those nodes to maintain contact 
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over the entire assumed contact region. Then a new approximation to the contact region 

can be taken as the former region without those negative pressure nodes. Repeat this step 

and refine the approximation of the contact region until a set of positive pressure 

elements is achieved. The obtained solution may have pressure elements at some nodes 

larger than the hardness H. Then we change the values of these pressure elements to H. 

With this modified pressure elements and Equation (14), i.e. 

 Contact Region

,  then node i is in the new appxoimation of the contact region
,  then node i is out of the new approximation of the contact region

i
ij j

j i

h
C p

h∈

= −⎧
⎨> −⎩

∑
 

the new approximation to the contact region can be calculated. Then we repeat the steps 

mentioned above until all of the pressure elements have values between 0 and H. The 

algorithm is illustrated in Figure 2.8. 

The CG method itself is an iterative scheme that generates a sequence of 

approximations of the solution from an arbitrary initial approximation [32]. The method 

is represented by the following recurrence formulas, 

( ) ( )
( 1) ( ) ( )

( ) ( )

( ) ( )
( 1) ( ) ( )

( ) ( )

( 1) ( 1)
( 1) ( 1) ( )
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{ } [ ]{ }

{ } { }{ } { } [ ]{ }
{ } [ ]{ }
{ } { }{ } { } { }
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s T s
s s s

s T s

s T s
s s s

s T s

s T s
s s s

s T s

f tp p t
t C t

f tf f C t
t C t
f ft f t

f f

+

+

+ +
+ +

= +

= −
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where 0,1,2,...s =  is the step number. { }t and { }f are vectors of the same size as the 

pressure vector { }p . The starting pressure vector (0){ }p  is arbitrary 

and (0) (0) (0){ } { } { } [ ]{ }t f h C p= = − − . 

b) Gradient Projection Conjugate Gradient (GPCG) method 
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Mathematically the solution of the linear equations [ ]{ } { }K a b=  is also the solution 

that minimizes the convex function 1({ }) { } [ ]{ } { } { }
2

T Ta a K a a bΠ = −  if [ ]K  is a positive 

definite matrix. So obtaining the solution { }p  of the linear systems formed by the 

influence coefficient matrix, i.e. [ ]{ } { }C p h= − , is equivalent to minimizing the 

function 1({ }) { } [ ]{ } { } { }
2

T Tf p p C p h p= +  if [ ]C is a positive definite matrix, which is 

the case for a uniform mesh (the adaptive mesh is analyzed later). And the iterations in 

the CG method to obtain a solution { }p with all components bounded by 0 and H are 

equivalent in effort to that required to minimize the function 

1({ }) { } [ ]{ } { } { }
2

T Tf p p C p h p= +  within a bounded region [0, H] for all components. 

It was shown by Kalker [41] that the true contact area and distribution of surface 

tractions minimize the total complementary energy *V , 

*
( ) ( )

contact region contact region

1 ( )
2 z s z d iV p u u ds phds= + +∫ ∫ .        (16) 

Using a uniform mesh to discretize all functions we can express Equation (16) as, 

*

,   contact region   contact region

,   contact region   contact region

1
2

1    ( )
2

    ({ }).

i i ij j i i i
i j j

i ij j i i
i j j

V s p C p s p h

s p C p p h

sf p

∈ ∈

∈ ∈

= +

= +

=

∑ ∑

∑ ∑            (17) 

Equation (17) suggests the equivalence between minimizing *V  and minimizing the 

function ({ })f p . The object function for minimization in the case of an adaptive mesh is 

discussed later. 

We can still use the geometric overlap regions, which have all the nodes in the contact 
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region {Node i: hi<0}, as a first approximation to the contact area. Then the slider-disk 

contact problem becomes a standard quadratic minimization problem with simple bound 

constraints. Here we propose to use the GPCG method to deal with the quadratic 

minimization. The GPCG method was developed by More and Toraldo in 1991 [42]. It 

uses the conjugate gradient method to explore one active set of constraints and the 

gradient projection method to move to a new active set. It combines a multiple 

activation/inactivation strategy of gradient projection with the finite termination property 

of the CG method. It works efficiently for large-scale bound-constrained quadratic 

programming problems with a small number of iterations and a small number of 

function-gradient evaluations and Hessian vector products per iteration. 

The GPCG method starts from an arbitrary initial approximation. At each iteration the 

inputs of the GPCG method are, 

Function evaluation: ( ) ( ) ( )1 { } [ ]{ } { } { }
2

s T s T sp C p h p+  

Gradient evolution: ( )[ ]{ } { }sC p h+  

Hessian-vector production: ( )[ ]{ }sC p  

Obviously both the CG method and the GPCG method require a number of 

matrix-vector products. This is the reason why both of these two algorithms are quite 

time-consuming for larger scale contact problems, where the number of contacting nodes 

may be as large as 103 in CML dynamic simulations. 

c) Uniform mesh 

If the slider and its projection on the disk surface are discretized with a uniform mesh, 

the Fast Fourier Transform (FFT) method is usually used to improve the computation 

speed [37, 38, 39, and 40]. All grids are of the same size for a uniform mesh. Thus the 
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influence coefficient is only a function of relative position, which means ij jiC C=  and 

( , )ijC C m k n l= − − , where (m, n) and (k, l) are the coordinates of node i and node j in the 

x-y frame shown as Figure 2.5, respectively. The total elastic strain energy is always 

positive for nonzero pressure distribution, i.e. 

( ) ( )
,   contact region ,   contact regioncontact region

1 1 10 ( ) =
2 2 2z s z d i i i ij j i ij j

i j i j
U p u u ds s p C p s p C p

∈ ∈

≤ = + = ∑ ∑∫ ,  

where s  is the grid area. This ensures that the influence coefficient matrix is positive 

definite. So the convergence of the CG method or the GPCG method is guaranteed. 

Notice that each iteration in the CG or the GPCG method involves a large number of 

computations of the product of the influence coefficient matrix and a pressure vector. We 

have the coefficient matrix ( - , - )ijC C m k n l= , and the pressure element at node j 

( , )jp p k l= , which can be rewritten as a matrix [ ]( , )p k l  and the slider-disk gap at node 

i, ( , )ih h m n= , which can also be rewritten as a matrix [ ]( , )h m n . Then we have, 

,
   ( , ) ( , ) ( , )ij j i

i k l
C p h C m k n l p k l h m n= − ⇔ − − = −∑ ∑ . 

The summation of the multiplications on the left hand side of the second equation above 

has the form of a linear convolution. So the FFT can be used in the computation. 

,
( , ) ( , )  { ([ ]) ([ ])}

k l
C m k n l p k l Inverse FFT FFT C FFT p− − = •∑ , 

where “• ” is the operation of element -by-element multiplication. 

There are two numerical ways for applying the FFT to contact analysis. The general 

processes are simply sketched here. One way is based on the Continuous Convolution 

Theorem [38]. First, we use the FFT to transform the pressure vector to the frequency 

domain. Second, we calculate the influence coefficient matrix directly in the frequency 
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domain with the Fourier-transformed Papkovich-Neuber potentials. Third, we multiply 

each component of the ([ ])FFT p with the influence coefficient matrix at the 

corresponding frequency. Forth, we compute the inverse FFT to obtain the displacement 

matrix. The other way is based on the Discrete Convolution Theorem [43]. It is similar to 

the first way at the first step and the last step. But at the second step it calculates the 

discrete influence coefficient matrix in the space domain and then uses the discrete FFT 

to transform the coefficient matrix to the frequency domain. Then at the third step it does 

an element-by-element multiplication of the matrix ([ ])FFT C  and ([ ])FFT p . Notice 

that here the pressure vector { }p  is not a periodic function. A periodic error occurs if 

{ }p  is extended periodically for the purpose of computing the FFT. Some techniques 

have been developed to improve the accuracy of the FFT in contact analysis [39, 40, 43 

and 44]. However, all of them require the computational domain to be much larger than 

the target domain, resulting in a decrease of calculation efficiency. 

d) Adaptive mesh 

No publication was found that performed contact analysis based on an adaptive mesh. 

In an adaptive mesh all of the grids are not the same size, which means that ijC depends 

on the size of the grid at node j as well as the position of node i relative to node j. In this 

case, ij jiC C≠  and the matrix-vector multiplication cannot be transferred to a 

convolution form. So the FFT cannot be used to speed up the computation of the 

matrix-vector multiplication. To make sure that the CG and the GPCG method still 

converge, we make some changes in the influence coefficient matrix for the CG method 

and the GPCG method for use with adaptive meshes. 

Notice that [ ]{ } { }C p h= − [ ] [ ]{ } [ ] { }T TC C p C h⇔ = − . So in the CG method we 
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solve [ ] [ ]{ } [ ] { }T TC C p C h= − , where [ ] [ ]TC C  is a symmetric and positive definite 

matrix, instead of [ ]{ } { }C p h= − . In fact this is called the CG squared method. Another 

method, the Bi-conjugate Gradient method, can also be used for the original 

non-symmetric linear system. 

The total complementary energy is, 

*
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,   contact region   contact region

,   contact region   co
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ij jiC C= , and 
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2 i ij j i i

i j j

V p C p p h
∈ ∈

′ ′= +∑ ∑  

The total elastic strain energy is positive for any nonzero pressure distribution, 

( ) ( )
,   contact region ,   contact regioncontact region

1 1 10 ( ) =
2 2 2z s z d i i i ij j i ij j

i j i j
U p u u ds s p C p p C p

∈ ∈

′≤ = + = ∑ ∑∫ . 

So the matrix ijC′⎡ ⎤⎣ ⎦  is symmetric and positive definite. Thus we can use this ijC′⎡ ⎤⎣ ⎦  

instead of ijC⎡ ⎤⎣ ⎦  in the GPCG method. 

In the CML air bearing simulation an adaptive grid generation scheme based on the 

air pressure gradient is used to numerically solve the Reynolds Equation [33]. In this 

adaptive mesh the grid density is higher at the ABS where the flying height is lower. 

Those places with lower flying height are more likely to contact the disk. So this adaptive 

mesh can be used to analyze the slider-disk contact in the slider dynamic simulation. This 
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avoids introducing a new mesh for the slider dynamic simulation. 

2.5.4 Computation Time for the CG Method and the GPCG Method 

The computation time of the CG method or the GPCG method is related to the size of 

the first approximation of the contact regions, i.e. the number of nodes in the geometrical 

overlap regions. The time consumption versus the node number is plotted in Figure 2.6 

for the CG method and the GPCG method using a PC with 1.3 MHz CPU and 256 MB 

RAM. It is obvious that the GPCG method converges faster than the CG method. The 

reason is that the GPCG method has a smaller number of iterations and less matrix-vector 

multiplications per iteration. So we propose to use the GPCG method in the CML 

dynamic simulation. 

2.5.5 Comparison of the Contact Model Based on Influence Coefficients and the 

Multi-asperity Contact Model by Cha 

Cha and Bogy [1] proposed a multi-asperity contact model, which is used in the 

current CML air bearing simulation program for the slider-disk impact when d<0. This 

multi-asperity contact model is based on Chang and Ling’s elastic-plastic model [9]. This 

model considers the hysteresis between the loading and unloading process. In the 

unloading process, only the elastic strain energy is released. In Cha’s model each 

contacting node is a part of a spherical asperity whose radius is calculated through the 

contact interferences at four nearest neighboring nodes. This model is accurate for 

Hertzian contact but it may give incorrect results for non-Hertzian contact. Here we do 

numerical simulations for two cases using this multi-asperity contact model and the new 

contact model based on influence coefficients. The first case has a flat rigid slider in 

contact with a spherical asperity on the disk surface, as shown as Figure 2.7(a). The 

equivalent Young’s modulus E* is 85.29 GPa and the maximum interference is 1.0 nm. 
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The asperity radius is 2.0 μm. Since the Young’s modulus is high and the interference is 

only on the order of nanometer, the bulk deformation of the disk is negligible. So this 

case is very close to Hertzian contact. The second case is a rigid slider with a flat pad in 

contact with a smooth disk, as shown in Figure 2.7(b). This is non-Hertzian contact. The 

equivalent modulus E* is 85.29 GPa and the interference is 1.0 nm. Simulation results of 

the influence coefficient model, Cha’s model and the analytical solution are shown in 

Table 2.2(a) and (b), respectively. It is seen that with more nodes the contact model based 

on influence coefficients gives a more accurate result. And Cha’s model produces a 

wrong result for non-Herzian contact. 

2.6  Conclusions 

The GW model is proved to be the simplest and a sufficiently accurate model for the 

slider-disk asperity contact, while the KE model can give slightly more accurate results at 

the cost of computation efficiency. The CEB model, which is used in the current CML air 

bearing program, in fact can not give accurate contact results for the plasticity index 

larger than 0.58. When the slider crashes, i.e. the slider-disk gap is less than zero, these 

asperity-based contact models are no longer valid to model the slider-disk contact, since 

two of their pre-required assumptions may be violated. The contact model based on 

influence coefficients can be used for the slider-disk crash contact. The Gradient 

Projection Conjugate Gradient method is efficient in solving the linear system obtained 

from that contact model with the adaptive mesh generated by the air pressure gradient. 

The slider-disk contact may be non-Hertzian due to the ABS design and the arbitrary 

shape of the slider and disk surface profiles. In this case, Cha’s multi-asperity contact 

model [1] may give an incorrect result for the slider-disk contact. Simulation of the 
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dynamics of a partial-contact head disk interface uses the analysis of slider-disk contact 

and impact in this Chapter. 

The effect of the pitch and roll angles in slider-disk contact simulations should be 

considered in the simulation. Pitch and roll are important effects in the slider-disk contact. 

The total contact force and contact area decrease dramatically as the pitch angle increases 

from 0 to 200 µrad. Approaches considering only the effect of the area of the contact pad 

on the total contact force may not be sufficiently accurate. 
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Table 2.1 Slider and disk roughness and material parameters 
Individual Surfaces Disk 1 Disk 2 Disk 3 Slider 
σ  ( nm ) 1.486 1.066 0.123 0.643 
R  (μm ) 3.765 8.431 14.204 7.147 

η  ( -2μm ) 7.071 5.683 18.163 8.849 
 
Combined surfaces Case 1: 

Slider/Disk 1 
Case 2: 
Slider/Disk 2 

Case 3: 
Slider/Disk 3 

σ  ( nm ) 1.619 1.245 0.654 
R  (μm ) 3.331 5.452 6.384 

η  ( -2μm ) 7.393 7.177 9.871 

sσ ( nm ) 1.417 1.143 0.578 

sy ( nm ) 1.866 1.174 0.729 
ψ  0.836 0.587 0.386 
 
Material Properties  

dv and sv  0.20, 0.21 

dE and sE  (Gpa) 100, 450 
E  (Gpa) 85.29 
H (Gpa) 2.5 
 

Table 2.2 Numerical results for two cases of slider-disk contact shown in Figure 2.7 
 a)  
 Contact force (N) Contact area (m2) 
Model based on influence 
coefficients with 9 nodes 

5.277×10-6 7.177×10-15 

Model based on influence 
coefficients with 261 nodes 

5.097×10-6 6.482×10-15 

Cha’s contact model [7] 5.086×10-6 6.283×10-15 
Analytical solution 5.086×10-6 6.283×10-15 
 
b) 
 Contact force (N) Contact area (m2) 
Model based on influence 
coefficients with 9 nodes 

3.010×10-4 1.118×10-11 

Model based on influence 
coefficients with 261 nodes 

3.291×10-4 1.217×10-11 

Cha’s contact model [7] 0.0 0.0 
Analytical solution 3.412×10-4 1.257×10-11 
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Fig.2.1. Density function of Gaussian distributed asperity height u. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Contacting asperities Elastic-plastic deformed asperities 
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(a) ψ=0.836 

 

 
(b) ψ=0.587 

 
(c) ψ=0.386 

Fig.2.2. Contact force versus separation and real contact area ratio versus separation for 
three cases with GW, CEB (i.e., EP) and KE model with plasticity index ψ equal to 0.836, 

0.587 and 0.386, respectively. 
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Fig.2.3. Contact force and real contact area versus pitch angles for GW and KE model. 
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(a) Deformation at a given asperity caused by pressures on all other contacting asperities 

 

 
(b) Deformation at a given asperity due to an equivalent uniform pressure applied over 

the surface area outside the territory of the asperity [34] 
 

Fig.2.4. Two different contact cases that can not be related through Saint-Venant’s 
Principle. 
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Fig.2.5. Demonstration of two nodes on meshed slider air bearing surface. 
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Fig.2.6. Time consumption of CG method and GPCG method on a computer with a Intel 

Pentium Mobile 1.3GHz processor. 
 
 
 
 
 
 

 
 

(a) A flat rigid slider in contact with a spherical asperity on the disk surface 
 
 

 
(b) A rigid slider with a flat pad in contact with a smooth disk 

 
Fig.2.7. Two slider-disk contact cases. 
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(a) CG method 

 

 
(b) GPCG method 

 
Fig.2.8. Algorithms of two numercial skemes for contact analysis with the influcent 

coefficient model. 
 

Yes 

No.  
Remove those nodes with pj<0 from 
contact region {CR} 

Yes 

Take all nodes with negative separation as the contact region {CR} = {Node i: hi<0}. 

Calculate the contact pressure by solving  , for i,j { }ij j iC p h CR=− ∈∑

pj≥0 for j ∈{CR}? 

pj≤H for j ∈{CR}? No.  
Change those nodes with pj>H to pj=H  

Get the pressure vector {pj} and the real contact region {CR} 

Get hj for j ∈{CR} through the motion of the slider. 

Take all nodes with negative separation as contact region {CR}={Node i: hi<0} 

Calculate the contact pressure by solving the following linearly constrained minimization problem 
1   ( ) ,   0
2l l lk k k k lMinimize f p p C p h p with p H= + ≤ ≤∑ ∑

Get the pressure vector {pi} 

Get hj for j ∈{CR} through the motion of the slider 
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Chapter 3 Intermolecular Adhesion between 

an Air Bearing Slider in Contact or Near 

Contact Regime and a Disk 

When the minimum spacing between the slider and the disk is less than 5 nm, the 

intermolecular adhesion between the two solid surfaces can no longer be assumed to be 

zero. The model proposed by Wu and Bogy [1] can be viewed as a flat slider-disk 

intermolecular force model. A large repulsion between the slider and the disk is predicted 

in this model when the slider-disk spacing is in the contact regime. For accurate analysis 

of the intermolecular force effect on the head disk interface, we need to consider the 

slider and disk surface roughnesses when the flying height is comparable to the surface 

roughness root-mean-square value or when the slider-disk contact occurs. With the 

intermolecular force model and asperity roughness model implemented in the CML air 

bearing program, we analyze the effect of the intermolecular adhesion on the slider at an 

ultra-low flying height in static flying simulations. It is found that the intermolecular 

adhesion between the slider and the disk has a slight effect on the slider-disk interface for 

a flying slider. 

3.1  Introduction 

The effect of intermolecular adhesion on air bearing sliders in hard disk drives has 

been extensively investigated recently, starting with the paper by Wu and Bogy [1]. The 

intermolecular force between the slider and the disk is usually modeled based on the 
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Leonard-Jones potential, which describes the potential energy between two atoms as a 

function of the distance between their centers. In the implementation of this potential in a 

closely spaced slider-disk interface the force is expressed as a function of the distance 

between the slider and the disk, i.e. the local flying height (FH). However, when the FH 

is less than 3 nm, a contact distance ε (0.3-0.5 nm) needs to be considered and the 

intermolecular force then turns out to be a function of FH + ε. Hence for a very close 

spacing the intermolecular force is overestimated in Wu and Bogy [1], and others. With 

this modification, there occurs no unbounded repulsive intermolecular stress when the FH 

is less than 0.5 nm, or down to contact. 

The model resulting from this modification can be viewed as a flat slider-disk 

intermolecular force model. In order to get more accurate analysis of the intermolecular 

adhesion effect on the head disk interface, the slider and disk surface roughnesses need to 

be considered when the flying height is comparable to the surface roughness 

root-mean-square (RMS) value or when the slider-disk contact occurs. The improved 

DMT (IDMT) models [2, 3 and 4], which are suitable for small, stiff spherical asperities, 

can be used to approximate the rough slider-disk intermolecular adhesion force. The 

intermolecular adhesion between measured rough slider and disk surfaces is calculated 

using the IDMT models, and the results are compared with the intermolecular force 

between the corresponding flat slider and disk surfaces. With this improvement 

implemented in the CML air bearing program, the effect of adhesion on the slider at low 

flying heights is analyzed in static flying simulations. 

3.2  Intermolecular Adhesion Force Model 

As a special case of the Mie Potential, the Lennard-Jones potential is widely used to 
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describe the interaction between two atoms or molecules. It is expressed as, 

6 12( ) - / /w r C r D r= + ,         (1) 

where r is the center-to-center distance between the atoms and C and D are constants. For 

two atoms in vacuum the values C=10-77J·m6 and D=10-134J·m12 are usually adopted [1]. 

Differentiating the Lennard-Jones potential with respect to the distance r, we obtain the 

Lennard-Jones force as, 

7 13

6 12dw C Df
dr r r

= = − ,                        (2) 

where the direction of adhesion is chosen as the positive direction of the force. 

If we ignore the anisotropy, non-additivity, and retardation effects of the 

Lennard-Jones potential, and make the continuum assumption, we get through 

appropriate integration the potential between an infinite-half space and a unit area of a 

parallel infinite half space, as shown in Figure 3.1, 

1 1
2 3 9

( )
6 45h

C DU dz
z z

π ρ π ρρ ∞= − +∫ ,                    (3) 

where ρ1 and ρ2, respectively, are the number densities of atoms or molecules in these two 

infinite half spaces and h is the distance between the two center planes of the surface 

atoms or molecules. If we differentiate this potential with respect to the distance h, we get 

the intermolecular adhesion stress between two half spaces, 

3 9

1 1( )
6 45

dU A BP h
dh h hπ π

= = − ,       (4) 

where the Hamaker constant 2

1 2
A= Cπ ρ ρ and another constant 2

1 2
B Dπ ρ ρ= . This result 

is similar to the intermolecular force expression obtained by Wu and Bogy [1] except that 

here h is the center-plane-to-center-plane distance instead of the local FH. We assume 
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that the surfaces of the two half spaces are in contact when the total potential energy is a 

minimum [5]. If the minimum potential is at the distance h=ε, then the flying height is 

equal to h - ε. We see that P(h=ε)=0 when the potential is minimal. Then, using Equation 

(4) we find 

1/ 62( )
15

B
A

ε = .          (5) 

So Equation (4) can be written as, 

3 9
3

( ) [( ) ( ) ]
6

AP h
h h
ε ε

πε
= − .        (6) 

If we take the difference in surface energy before and after contact as the required 

energy to separate the two contacting surfaces against the intermolecular adhesion, then 

we have 

1 2 12 2
( )

16
AP h dh

ε
γ γ γ γ

πε
∞

Δ = + − = =∫ ,                 (7) 

where 1γ and 2γ  are the surface energies of the two surfaces before contact, and 12γ is 

the surface energy of their interface at contact. 

The contact distance ε between two half-spaces was suggested to be 0.3-0.5 nm [2, 3, 

and 4]. Recently Yu and Polycarpou [6] re-calculated ε using the relationship between the 

ground-state property of a given crystal and its intermolecular potential, which is 

dominated by the nearest neighbors. This approach is valid for molecular crystals, in 

which the total energy is primarily the sum of all interaction potentials between the 

molecules. The weak intermolecular interaction can be approximated by the 

Lennard-Jones potential. However, for covalent crystals, such as diamond and metals, the 

inter-atomic bonds are covalent bonds or metallic bonds, which cannot be described by 

the Lennard-Jones potential [7]. Another issue is the incompatibility between the 
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continuum approach and the molecular approach with the nearest neighbor assumption. 

The continuum approach considers the interaction between one atom or molecule and 

those non-nearest neighbors. So if we use the molecular approach and assume that only 

the nearest neighbors contribute the interaction energy, the obtained results can not be 

applied to the continuum approach. 

It is approximated that 1 2 12 2γ γ γ γ γΔ = + − ≈  for two surfaces composed of the 

same material, where γ  is their surface energy. Hence for two diamond-like carbon 

(DLC) surfaces, we know the surface energy 20.04 /J mγ ≈ [8] and the Hamaker 

constant 191.80 10A J−= × [9], then we can estimate the contact distance ε for DLC 

surfaces through Equation (7). This estimation gives ε≈0.22 nm. So it is reasonable to 

take ε≈0.3 nm. 

If we take ε≈0.3 nm, then the FH can not be approximated by h when it is comparable 

to ε. Figure 3.2 shows the adhesion stresses with FH=h and FH=h-ε. When FH=0, i.e. 

h=ε, the two surfaces are in contact, and the contact force can be obtained through 

contact mechanics. When the contact distance ε is considered, we will not have the result 

that an infinite repulsion will occur between the slider and disk when the flying height 

approaches zero. This is reasonable since the slider may contact the disk and even crash 

on the disk. 

3.3  Improved DMT Model for Asperity Adhesion 

If we also consider the surface roughness we cannot use the above simple integration 

method to calculate the total potential and adhesion stress between two surfaces. We need 

to turn to other asperity-based adhesion models. For a single asperity contact, Derjaguin 

et al. [5] proposed the IDMT model, which assumes that the adhesion is the sum of all the 
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intermolecular interactions outside the contact zone, and that there is no contribution 

from the contact area. Another, somewhat opposite model, called the JKR model [10], 

assumes that the adhesion is confined to the contact region. As pointed out by Tabor [11], 

these two models work under different conditions, which are determined by the adhesion 

parameter λ, 

2
1/3

2 3( )R
E
γλ
ε
Δ

= ,        (8) 

where E is the equivalent Young’s modulus and R is the radius of curvature of the asperity. 

It is shown that small values of λ (λ<1) correspond to a regime where the DMT model 

applies and large values of λ correspond to the JKR regime. The Maugis model [12], 

which used the Dugdale approximation [13] to the Lennard-Jones force, can be viewed as 

a bridge between the IDMT and JKR models, and it applies to a wide range of adhesion 

parameters. For a slider-disk interface, R is on the order of 101 μm, E is on the order of 

101 GPa and γΔ  is on the order of 10-2 J/m2, then though Equation (8) we determine that 

λ is approximately 0.15, which is much less than 1. So we can use the DMT model for the 

adhesion problem in the slider-disk interface. Of course here we have made the 

assumption that the adhesion between the slider and disk is quasi-static. 

The contact between two rough surfaces can be modeled by an equivalent single 

rough surface contacting a flat rigid plane. Some of the asperities on the equivalent rough 

surface are in contact with the flat surface, while others are not in contact. So we need to 

use the IDMT model [4] to consider the adhesion between those non-contacting asperities 

and the flat surface as well as the adhesion due to contacting asperities. Since the IDMT 

model only uses the Hertz profile of an elastically deformed asperity for all contacting 

asperities, Chang et al. [2] proposed a CEB-IDMT model with the profile obtained 
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through the volume conservation theory for plastic contact; Kogut and Etsion [3] 

developed the KE-IDMT model with the asperity profile from the finite element method 

(FEM) solution. The difference between the CEB-IDMT model and KE-IDMT model, 

numerically shown in [3], partially comes from the inaccuracy of Equation (19a) in [3], 

which occurs when the dimensionless interference is less than 0.1. Here we directly use 

Equation (15) in [3] for the KE-IDMT model. 

We use the equivalent slider and disk surface parameters as given in [14], shown in 

Table 3.1, and calculate the adhesion stresses based on these three adhesion models, i.e. 

IDMT, CEB-IDMT and KE-IDMT. The results are shown in Figure 3.3. Here the local 

FH is defined as the distance between the mean asperity surfaces of the slider and the 

disk, while the local FH between an ideally flat slider and flat disk is just the distance 

between them. Obviously the local FH is a function of position. It is found that the 

difference predicted by those various adhesion models is very small for low values of the 

plasticity index, which characterizes the elastic-plastic deformation of asperities. 

Asperities are mostly elastically deformed in the contact interfaces with the smaller 

plasticity index. If we compare the adhesion stress obtained using the IDMT model with 

that obtained using the intermolecular force model, i.e. the result shown in Figure 3.2 

with that in Figure 3.3, we find that the IDMT models give much a smaller adhesion 

stress than the intermolecular force model. 

3.4  Net Adhesion Stress 

The net adhesion stress on the slider is the asperity adhesion stress minus the asperity 

contact pressure. Asperity contacts occur when the distance between the slider and the 

disk is below the glide height. In the simulations we can take three times the standard 
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deviation of the disk surface height as the glide height. The asperity contact pressure 

increases as the distance between the slider and disk surfaces decreases towards zero. 

To model the slider-disk asperity contact we assume that all of the contacts are 

quasi-static. For the multi-asperity static contact between two parallel surfaces, the GW 

model [15], CEB model [16] and KE model [17] give different relationships between the 

contact pressure and the distance between two parallel surfaces, as described in Chapter 2. 

The GW model assumes that all of the contacting asperities are elastically deformed. The 

CEB model assumes that the contacting asperities are either elastically deformed when 

the interference is less than a critical value, or directly become fully plastically deformed 

when the interference is greater than the critical interference. In the KE model the 

elastic-plastic deformation of a single contacting asperity is analyzed using the FEM. 

Although the results of these three models are different, the difference is negligible when 

the plasticity index of the contact interface is small and only a few of the contacting 

asperities are fully plastically deformed. Figure 3.4 shows the contact pressures versus 

FH for the slider and the disk, using the surface parameters in Table 3.1. The results of 

these three models are close to each other for these three contact interfaces, except that 

the CEB model gives slightly larger contact pressure than the others when the plasticity 

index is 0.836. The reason is that the total contact force of a fully plastically deformed 

asperity is much larger than for an elastically or elastic-plastically deformed asperity. So 

the assumption of the CEB model is expected to predict a larger contact pressure. 

Figure 3.5 shows the net adhesion stress for these three slider-disk interfaces for the 

three models versus the flying height. The net adhesion stress in Figure 3.5 is much 

smaller than the intermolecular adhesion stress shown in Figure 3.2. Also, for the rougher 

slider-disk interface the net adhesion stress can become negative at a low flying height, 
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which means a repulsion effect instead of adhesion effect on the slider. 

3.5  Static Simulation of an Air Bearing Slider 

The adhesion stress calculation needs to be implemented in the air bearing simulation, 

in order to analyze the effect of the intermolecular adhesion on the slider. We can not 

make a simple conclusion that the effect of adhesion is negligible when the FH is above 3 

nm simply because in Figure 3.2 or Figure 3.5 the adhesion stress is close to zero when 

the flying height is above 3 nm. The reason is that the adhesion stress may still be 

comparable to the air bearing pressure although it looks very small in Figure 3.2 or 

Figure 3.3 for a FH greater than 3 nm. In addition, different regions on the slider have 

different flying heights, due to the pitch, roll and the air bearing surface (ABS) design 

features of the slider, and hence they have different adhesion pressures. The correct way 

to analyze the effect of adhesion is to consider the adhesion stress in the slider flying 

simulations. As shown above, the choices among these asperity contact and adhesion 

models do not make much difference for the flying slider/disk interface. So we picked the 

KE-IDMT adhesion and KE contact models in the following slider static simulations. 

The CML air bearing static simulation program is used in the simulations. In this 

program the generalized Reynolds equation is modified by the Fukui-Kaneko slip 

correction [18] to account for the rarefaction of the air at the slider/disk spacing down to 

asperity contact. The modified Reynolds equation is then discretized using Patankar’s 

control volume method, and the final discretization equations are solved using the 

alternating direction line sweep method combined with the full multi-grid algorithm. The 

ABS is discretized to small grids, which are approximately parallel to the disk surface 

with various flying heights. Then the intermolecular force model or asperity 
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adhesion/contact models are applied to each grid. Air bearing shear stress on the ABS is 

also considered in the simulation program and its effects on the pitch and roll of the slider 

have been analyzed previously [19]. The effect of the slider-disk asperity contact on the 

air bearing pressure is not considered due to the negligible real contact area as compared 

with the air bearing surface. In addition, the surface roughness effects are not included in 

the air bearing model. For a given ABS design the static simulation program uses the 

quasi-Newton method to calculate the slider’s static flying altitude, i.e., the equilibrium 

state. 

In the simulation we use a CML designed femto slider with the ABS shown in Figure 

3.6. Three cases are simulated, including the slider-disk interfaces with two types of 

surface roughness parameters, case 2 and case 3 in Table 3.1, and a flat slider/disk 

interface. The asperity adhesion/contact models are applied to the first two cases and the 

last one uses the intermolecular force models. Figure 3.7 shows the relationship between 

the disk revolutions per minute (RPM) and the slider’s minimum flying height for these 

cases. As the disk RPM decreases, the slider’s minimum flying height also decreases. 

Both the original and modified intermolecular force models show significant flying 

height decreases due to the intermolecular adhesion stress. At the same disk RPM the 

minimum flying height obtained using the modified intermolecular force model is higher 

than that obtained using the original intermolecular force model. This can be explained 

by the smaller adhesion stress calculated with the consideration of the contact distance in 

the modified intermolecular force model. However, the rougher and smoother slider disk 

interfaces using the asperity adhesion/contact model show less effect of adhesion. The 

minimum flying heights are close to that obtained without considering the slider-disk 

adhesion, when they are above the glide height, i.e., 3 times the standard deviation of the 
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surface height. When the minimum flying height is below the glide height, the rougher 

slider-disk interface, i.e. case 2 in Table 3.1, has a higher minimum flying height than in 

the case without considering slider-disk adhesion or contact, while the smoother 

slider-disk interface, i.e. case 3 in Table 3.1, shows the opposite trend. This indicates that 

the net adhesion stress takes effect only when the minimum flying height is less than the 

glide height. For the rougher slider-disk interfaces, the net adhesion stress becomes 

negative at a flying height below the glide height. Hence the slider has a higher minimum 

flying height. On the other hand, for the smoother slider-disk interface the net adhesion 

stress is positive, and it increases as the flying height deceases, so the slider has a lower 

flying height. 

In Figure 3.7 we also see that the modified intermolecular force model produces two 

minimum flying heights for one low value of disk RPM, as does the original 

intermolecular force model. The smaller of the two flying heights corresponds to an 

unstable equilibrium [20]. However, this unstable equilibrium has not been found in 

experiments. On the other hand, the asperity contact/adhesion models do not produce 

such an unstable flying height, and therefore they agree better with experimental results, 

which is reasonable since practical slider and disk surfaces always have certain 

roughnesses. 

3.6  Conclusions 

In this chapter we investigate the intermolecular force model and asperity 

adhesion/contact models for ultra-low flying height sliders. A contact distance is 

introduced and included in the original intermolecular force model, after which it is found 

that no infinite repulsive force occurs as the flying height approaches zero. The IDMT 
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model and GW models are recommended for multi-asperity adhesion and contact 

simulations, respectively. Other improved models have negligible difference for the 

slider-disk interface, which has a low plasticity index, high hardness and Young’s 

modulus. Asperity adhesion/contact models are implemented in the CML static air 

bearing simulation program and the following conclusions may be drawn from the 

simulations,  

1. The intermolecular force model overestimates the slider disk adhesion due to the 

neglect of the roughness of the slider and disk surfaces. 

2. For practical slider and disk surfaces with certain roughnesses, the effect of asperity 

adhesion/contact is negligible when the minimal flying height is above the glide height. 

3. The modified intermolecular force model that incorporates the contact distance 

predicts a smaller reduction in flying height than the original intermolecular force model. 

The effect is further reduced when surface roughness is included. 

4. When the slider and disk roughness is considered, the slider static simulation does not 

obtain an unstable equilibrium at low disk RPM. 

5. When the slider’s minimum flying height is less than the glide height, the minimum 

flying height is higher on rougher slider/disk interfaces since the net adhesion stress is 

smaller and may even become negative for rougher interfaces. 
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Table 3.1 Slider/disk equivalent roughness parameters 

Equivalent roughness 

parameter 

Case 1 

(slider/disk 1) 

Case 2 

(slider/disk 2) 

Case 3 

(slider/disk 3) 

Standard deviation of surface 

height (nm) 
1.619 1.245 0.654 

Asperity radius (μm) 3.331 5.452 6.384 

Asperity density (μm-2) 7.393 7.177 9.871 

Standard deviation of asperity 

height (nm) 
1.417 1.143 0.578 

Plasticity index Ψ 0.836 0.587 0.386 

Glide height (nm) 4.857 3.735 1.962 
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Fig.3.1.An infinite half space and a unit surface area of a parallel infinite half space. 

 

 

Fig.3.2.Adhesion stress obtained through intermolecular force model with and without 
considering the contact distance ε. 

 

 

Fig.3.3.Adhesion stresses obtained thorough the IDMT, CEB-IDMT and KE-IDMT 
model. 

 

 

h 
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Fig.3.4. Contact pressure obtained thorough the GW, CEB and KE model. 
 

 

Fig.3.5. Net adhesion pressure obtained thorough the GW, CEB and KE contact and 
adhesion models. 

 

 

Fig.3.6. Air bearing surface of CML femto slider. 
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Fig.3.7. Minimum flying height versus disk RPM for the rougher slider/disk surfaces 
(case 2 in Table 3.1), smoother slider/disk surfaces (case 3 in Table 3.2), flat slider/disk 
interfaces and the case without considering the slider/disk adhesion or contact (the solid 

lines represent stable equilibria and the dotted lines represent unstable equilibria). 
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Chapter 4 Dynamics of a Partial-Contact 

Head Disk Interface 

Based on the contact models and intermolecular adhesion models analyzed in Chapter 

2 and Chapter 3, a nonlinear dynamics model is developed in this chapter to analyze the 

bouncing vibration of partial-contact air bearing sliders, which are designed for the areal 

density of 1 Tbit/in2 and even above. In this model the air bearing with contact is 

modeled using the generalized Reynolds equation modified with the Fukui-Kaneko slip 

correction [1] and a recent slip correction for the contact situation [2]. The adhesion, 

contact and friction between the slider and the disk are also considered in this model. The 

adhesion force is calculated using a modified intermolecular force model as presented in 

the previous chapter; the contact force is obtained through an elastic quasi-static contact 

model that incorporates the slider and disk measured roughnesses. Realistic measured 

profiles of the slider and disk are used in the simulation. It is found that minimizing the 

trailing pad size can significantly reduce the slider’s bouncing and crash likelihood. The 

surface roughness and adhesion have a strong effect on the slider’s bouncing vibration, 

while the friction between the slider and disk is found here to have less effect. The 

slider’s bouncing can be decreased without much increase in contact force, to some 

extent, through increasing the preload. 

4.1  Introduction 

Reducing the flying height (FH) of sliders is a requirement to achieve higher 

recording densities in hard disk drives. The Wallace spacing loss equation reveals that the 
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magnetic signal increases exponentially as the distance decreases between the magnetic 

media and the read/write transducer. Reducing the flying height of the slider is necessary 

to achieve this lower spacing, since the protective layers- e.g. the slider and disk DLC 

and lubricant- must have certain minimum thicknesses for their performance. The 

maximum magnetic signal can be obtained at a spacing of zero, but this requires a contact 

recording interface. 

There are several contact interface designs under consideration for the planned 

magnetic recording density of 1 Tbit/in2 or more in Hard Disk Drives (HDD): “wear in”, 

“proximity”, and “full contact”. By a “wear-in” interface we mean an air bearing slider 

that initially flies with its trailing pad contacting the tallest disk asperities. After an initial 

service period it is expected that these asperities will be slightly worn so that the contact 

is lost. By “proximity” we mean an air bearing in which there continues to be intermittent 

or continuous contact between the trailing pad and the disk, while “full contact” means a 

contact interface without an air bearing. It is expected that all of these technologies, 

except possibly the last one, will rely on an air bearing to support most of the suspension 

load, while the trailing pad of the slider is in contact with the disk at the beginning, 

frequently or continuously. In this sense the HDI has partial contact. 

In this chapter we develop a nonlinear dynamics model to analyze the bouncing 

vibration and contact of partial-contact sliders. In the model the partial air bearing is 

obtained through the generalized Reynolds equation modified with the Fukui-Kaneko slip 

correction [1] and a recent slip correction for the contact condition [2]. The adhesion, 

contact and friction between the slider and disk are also considered in this model. 

Realistic measured roughnesses of the slider and the disk are used in the simulation. It is 

found that minimizing the trailing pad size can reduce the slider’s bouncing and tendency 
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to crash. The surface roughnesses and adhesion between the slider and disk have a strong 

effect on the slider’s bouncing vibration, while the friction between the slider and disk 

has less effect. The slider’s bouncing can be decreased without much increase in contact 

force, to some extent, through increasing the preload. 

4.2  Dynamics, Adhesion and Contact Models 

The generalized time-dependent Reynolds equation is used to model the air bearing 

between the partial-contact slider and the disk. The Reynolds equation is modified using 

the Fukui-Kaneko (FK) slip correction [2] to account for the rarefaction of the ultra thin 

air film within the slider/disk spacing. As indicated in Wu and Bogy [1], the FK 

correction has an unbounded contact pressure singularity for the air bearing with contact. 

They proposed a new second order slip model without the pressure singularity, which 

predicts results not far from the FK correction when the modified inverse Knudsen 

number is small. For the contact region in an air bearing, Huang and Bogy [3] adopted in 

their Monte Carlo method a no-fly-zone condition, which assumes that air molecules can 

not enter a gap smaller than themselves. Here we combine the FK model and the new 

second order slip model. When the air film thickness is larger than 0.3 nm, close to the 

diameter of an oxygen or nitrogen atom, we use the FK model; when it is less than 0.3 

nm, we use the new second order slip model to avoid the pressure singularity. 

As analyzed in Chapter 2, the impact between the partial-contact slider and the disk is 

quasi-static and therefore can be modeled with an elastic contact model based on the 

static influence coefficient matrix. The CML slider dynamic simulation shows that the 

impact speed of the slider is on the order of 10-1m/s. The sliding speed of the slider with 

respect to the disk, which is proportional to the disk rotation speed and the radial position 
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of the slider, is on the order of 101m/s. Both speeds are much less than the elastic wave 

speeds in the disk media. So the slider-disk impact is quasi-static, which means that the 

deformation is restricted to the vicinity of the contact area and can be obtained through 

use of static contact theory. Johnson [4] described a contact model based on influence 

coefficients from an elasticity analysis of loading on an elastic half-space. This model can 

be incorporated with the approach that approximates the contact between two rough 

surfaces as that between a rigid flat surface and an equivalent elastic rough surface. We 

use this model instead of asperity-based contact models, such as that in the CEB model 

[5], because those models are only valid when bulk deformation and interactions between 

asperities are negligible. For a partial-contact HDI, the flying height at some parts of the 

air bearing surface (ABS) may be negative, which means that the distance between those 

parts of the slider and the undeformed disk surface is less than zero. Under this condition, 

bulk deformation and interactions between asperities are not negligible. 

Adhesion is calculated through the modified intermolecular force model [6], which 

does not suffer from an infinite repulsion pressure when the slider and disk are in contact. 

The effect of the lubricant is included through the value of the surface energy difference 

before and after contact. This model is used instead of the asperity-based adhesion 

models, such as the CEB model, also because of the non-negligible bulk deformation and 

interactions between asperities. 

As for the friction between the slider and disk, we use coulomb’s law, the product of 

the normal contract force and a friction coefficient. Asperity-based friction force models, 

such as the CEB friction force model [7], are only valid for static friction with negligible 

bulk deformation and interactions between asperities. They are not suitable for the 

dynamic simulation of the partial-contact HDI. And no experimental work has shown that 
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the dynamic friction between the slider and the disk fits well with the asperity-based 

static friction model, although these models have been used in some published research 

papers. 

All of these models were implemented in the CML slider dynamic air bearing 

program. The ABS is discretized into small grids, which are approximately parallel to the 

disk surface with different flying heights. The modified Reynolds equation is then 

discretized using Patankar’s control volume method [8], and the final discretization 

equations are solved using the alternating direction line sweep method combined with the 

full multi-grid algorithm. Then the modified intermolecular force model and the elastic 

contact model are applied to each grid. The suspension is approximated here using three 

springs and three dampers in the vertical, pitch and roll directions. The dynamic program 

uses the Newmark Beta method to solve the slider dynamics equations. 

4.3  Simulation Results and Discussion 

Using the models described above, we analyze the dynamics of a partial-contact HDI. 

We employ micro-trailing pad sliders in the simulations. As was found in [9], in the 

contact regime a slider with a minimized trailing pad incurs smaller short range attractive 

forces between the slider and disk as well as less contact force. The ABS design of the 

slider is shown in Figure 4.1, and the related slider, disk and suspension parameters are 

listed in Table 4.1. In the dynamic simulation we analyze the effect of the trailing pad 

width, disk roughness, change of surface energy (Δγ), friction coefficient and suspension 

preload on the slider’s bouncing vibration and the contact force. These parameters have 

various values and those with an upper asterisk are the default values used in the 

simulations. A partial-contact HDI should have less slider bouncing and a smaller contact 
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force. Less bouncing keeps a stable head media spacing; smaller contact force does not 

incur serious wear, and therefore gives a more stable and reliable HDI. 

4.3.1 Disk Roughness and Surface Energy Change 

We use one ideally smooth disk and two real disks with measured track profiles in the 

simulation. The root-mean-square (RMS) values of the two surface profiles are 0.2 nm 

and 0.6 nm, respectively. Figure 4.2 shows the history of the flying height, pitch angle, 

roll angle and contact force, as well as the frequency analyses of the flying height, pitch 

angle and roll angle of the slider on the disk surface with RMS roughness equal to 0.6 nm. 

It is seen that the slider continuously bounces on the rougher surface with two frequency 

components; one is around 150 KHz and the other is about 900 KHz. The slider’s pitch 

motion also has these two frequency components. The situation is the same on the disk 

surface with RMS roughness equal to 0.2 nm. On the flat disk the slider flies on the disk 

with a slight contact. And its vibration does not have the 900 KHz frequency component. 

This higher frequency component is evidently associated with the slider-disk contact. The 

elastic contact between the slider and the disk has a much larger contact stiffness than the 

rear air bearing, and this evidently causes the higher pitch frequency. The roughness of 

the disk can excite this high frequency component. 

Figure 4.3 shows the 3-sigma of slider bouncing displacement vibration and the mean 

contact force on disk surfaces with various RMS roughness and Δγ values. It is seen that 

disk roughness is the main cause of the slider’s bouncing. On the ideally smooth disk the 

slider achieves steady state without bouncing, while the slider’s bouncing increases as the 

disk surface becomes rougher. Since Δγ is proportional to the Hamaker constant [6], 

increased Δγ means increased slider-disk adhesion. Increased slider-disk adhesion incurs 

more slider bouncing and larger contact force. 
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Usually the smoother the disk surfaces are, the larger is the adhesion between the 

slider and the disk [6]. Our dynamic model separates the roughness factor and the 

adhesion factor. But we still can see that a partial-contact HDI needs to balance the 

surface roughness and the adhesion. 

4.3.2 Friction Coefficient 

The dynamic friction coefficient of today’s DLC coated disks with lube is usually less 

than 1. In our simulation we use three different values, 0, 0.3 and 0.6. Figure 4.4 shows 

the corresponding 3-sigma of slider bouncing displacement vibration and mean contact 

force on disk surfaces with two values of Δγ. It shows no dramatic difference between 

these cases with different friction coefficients. This partially contradicts the analysis of 

Ono and Yamane [10] on the effect of a wide range of friction coefficients. They asserted 

that friction excites the slider vibration. Actually the adhesion and contact force exerts 

larger torques than the friction force with respect to the slider’s mass center, since the 

pitch angle is on the order of several hundred micro radians and the friction force is 

almost parallel to the ABS. So the effect of the friction force on slider bouncing might be 

important when the friction coefficient is larger than 1 and the slider’s pitch angle is also 

very large. In our cases we do not expect major effects of the friction coefficient on the 

partial-contact slider dynamics. 

4.3.3 Micro-Trailing Pad Width 

Here we analyze the dynamics of partial-contact sliders with the trailing pad widths 

of 120 μm, 100 μm to 80 μm. Figure 4.5 shows the 3σ of the slider’s bouncing 

displacement vibration and mean contact force of each design. Obviously the decrease of 

trailing pad size from 120 μm to 100 μm causes a decrease of the slider’s bouncing and 
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contact. However, the further decrease from 100 μm to 80 μm only slightly reduces the 

mean contact force. Decreasing the slider’s trailing pad width can lessen the slider’s 

bouncing and contact to some extent. A partial-contact HDI relies on a trailing pad 

contact to support part of the suspension load. Also the read/write structure needs to be 

embedded in the trailing pad. So the tailing pad width can not be decreased beyond a 

certain value. For a stable HDI the micro trailing pad needs to be optimized as part of the 

ABS design. 

4.3.4 Preload 

The effect of suspension preload on the slider dynamics is analyzed with a simple 

spring-damper model for the suspension. Three levels of preload are used in the 

simulation, 0.1 gm, 0.8gm and 1.6gm, where 0.8gm is a typical preload for a femto slider. 

Figure 4.6 shows the 3-sigma of the slider bouncing displacement vibration and mean 

contact force under different values of preload. The result illustrates the high nonlinearity 

of the air bearing. The increased preload changes the slider attitude, causing the air 

bearing force to increase. Hence the mean contact force does not increase as much as the 

preload. As the preload increases, the mean contact force increases, while the slider’s 

bouncing vibration decreases. However, the slope of the decreasing bouncing vibration is 

much steeper than that of the increasing mean contact force. This means that the slider’s 

bouncing can be suppressed without much increase in the mean contact force, to some 

extent, through increasing the preload. 

4.4  Conclusions 

Our nonlinear dynamics model, which includes the generalized Reynolds equations 

for the air bearing, an elastic contact model for the slider-disk impact and the modified 
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intermolecular force model for the slider-disk adhesion can simulate the partial-contact 

head disk interface. In the dynamic simulations we found that, 

1. As the slider-disk adhesion increases, the slider’s bouncing amplitude is increased and 

the contact force is also increased. 

2. Disk roughness is a main factor of slider bouncing. 

3. The friction coefficient of the disk surface has a slight effect on the slider’s bouncing. 

4. Minimizing the trailing pad width can decrease the slider’s bouncing and slider-disk 

contact to some extent. 

5. The slider’s bouncing can be suppressed without much increase in the mean contact 

force through increasing the preload. 
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Table 4.1 Slider, disk and suspension specifications 

 

Slider Trailing pad width: 120 μm, 100 μm*, 80 μm; 

Slider Size: 0.85×0.7×0.23mm3; 

Crown: 18 nm; Camber: 2.5nm; Twist: 0.0nm. 

Disk RMS: 0.0 nm, 0.2 nm*, 0.6nm; 

Change of surface energy: 0.008 J/m2 *, 0.08 J/m2; 

Friction coefficient: 0, 0.3*, 0.6; 

Disk RPM: 10000; Slider skew angle: 6.65°. 

Suspension Preload: 0.1 gm, 0.8gm* and 1.6 gm. 
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Fig.4.1. Air bearing surface design (unit: mm). 
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Fig.4.2. History of the FH, pitch, roll and contact force and their frequency analyses on 
the disk surface with RMS 0.6 nm. 

 

 
 

Fig.4.3. Slider bouncing 3σ and contact force on disk surfaces with various RMS and Δγ 
values. 

 

 
 

Fig.4.4. Slider bouncing 3σ and contact force on disk surfaces with various friction 
coefficients and Δγ values. 
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Fig.4.5. Slider bouncing 3σ and contact force of micro trailing pad sliders with various 
pad widths. 

 

 
 

Fig.4.6. Slider bouncing 3σ and contact force of micro trailing pad sliders with various 
values of preload. 
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Chapter 5 Six-Degree-of-Freedom Vibrations 

of Partial-Contact Sliders in Hard Disk 

Drives 

For a partial-contact slider the air shear and friction acting on the air bearing surface 

may cause the slider to experience in-plane motions, so that the slider has both bouncing 

and in-plane vibrations on the disk surface. The slider’s bouncing vibration may cause an 

unacceptably large FH variation, while the in-plain vibration may cause a large off-track 

variance, which reduces the slider’s track following capability. In this chapter we develop 

a nonlinear dynamic model to numerically analyze the in-plane vibrations of 

partial-contact sliders. The slider’s motion in the vertical, pitch, roll, down-track, 

off-track and yaw directions, the partial-contact air bearing and the adhesion, contact and 

friction between the slider and disk are all considered in this model. Realistic, measured 

disk track profiles are used in the simulations. It is found that the in-plain vibrations of 

the partial-contact slider with a micro-trailing pad are dominated by the suspension 

modes, and they are forced vibrations caused by the slider-disk friction. Increasing the 

suspension damping is critical to minimizing the in-plane vibration amplitudes. Friction 

and contact pad size have important effects on the slider’s in-plane vibrations. 

5.1 Introduction 

As discussed in previous chapters, reducing the flying height (FH) of sliders is a 

requirement to achieve higher recording densities in hard disk drives, and it leads to the 
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proposal of a partial-contact head disk interface. For a partial-contact slider the air shear 

and friction acting on the air bearing surface (ABS) may cause in-plane vibrations as well 

as a bouncing vibration of the slider on the disk. The slider’s bouncing vibration may 

cause an unacceptably large FH variation; on the other hand, the in-plain vibration may 

cause a large off-track variance. The off-track vibration reduces the slider’s track 

following capability and affects the recording track density. In this chapter we develop a 

nonlinear dynamic model to numerically analyze the in-plane vibrations of partial-contact 

sliders. In the model the partial-contact air bearing is obtained using the generalized 

Reynolds equation modified with the Fukui-Kaneko slip correction together with a recent 

slip correction for the contact condition, as in Chapter 4. A six-degree-of-freedom 

(6-DOF) model of the slider’s motion is implemented to model the slider’s vibrations in 

the vertical, pitch, roll, down-track, off-track and yaw directions, the last three of which 

contribute to the slider’s in-plane vibration. The adhesion, contact and friction between 

the slider and disk are also considered in this model. Realistic, measured disk track 

profiles are used in the simulations. 

It is found that the in-plain vibrations of the partial-contact slider with a 

micro-trailing pad are dominated not by the air bearing modes but by the suspension 

modes. Increasing the suspension damping is critical to decrease the in-plane vibration 

amplitudes. The in-plane vibrations are forced vibrations under the slider-disk friction. 

The disk micro-waviness and roughness can excite the vertical bouncing of the slider but 

they may not directly excite the in-plane vibration. Friction and contact pad size have 

important effects on the slider’s in-plane vibrations. 
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5.2  Air bearing, Adhesion, Contact and Friction Models for 

Partial-Contact Sliders 

The air bearing with contact, the slider-disk adhesion, contact and friction are all 

modeled as in Chapter 4. The generalized time-dependent Reynolds equation is used to 

model the air bearing between the partial-contact slider and the disk. When the air film 

thickness is larger than 0.3 nm, close to the diameter of an oxygen or nitrogen atom, we 

use the FK model; when it is less than 0.3nm, we use the new second order slip model to 

avoid the pressure singularity. The quasi-static impact between the partial-contact slider 

and the disk is modeled with an elastic contact model based on the static influence 

coefficient matrix. Coulomb’s law is used for the slider-disk dynamic friction, i.e. the 

product of the normal contract force and a friction coefficient. 

All of these models were implemented in the CML slider dynamic air bearing 

program. The ABS is discretized into small grids, which are approximately parallel to the 

disk surface with various spacings from the disk. The modified Reynolds equation is then 

discretized using Patankar’s control volume method, and the final discretized equations 

are solved using the alternating direction line sweep method combined with the full 

multi-grid algorithm. The modified intermolecular force model and the elastic contact 

model are applied to each grid. 

5.3  Six-DOF Slider Dynamic Model 

Suppose that the suspension with length r rotates with an angular velocity ω and an 

angular acceleration a. The suspension is approximated here using six linear springs and 

six linear dampers in the x, y, z, roll, pitch and yaw directions. The x, y and z directions 

are shown in Figure 5.1, where the xyz coordinate system is attached to the suspension. 
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Let φ, θ and β indicate the roll, pitch and yaw angles of the slider’s motion. The position 

of the suspension load point on the slider’s upper surface is (x0, y0, z0). Let (xc, yc, zc) 

indicate the position of the slider’s mass center. If we have obtained the air bearing 

pressure p, the adhesion/contact force and moment with respect to the mass center, Fd and 

Md, the air shear force and moment, Fa and Ma, the slider-disk friction force and moment 

Ff and Mf, then the equations of motion of the slider’s mass center within the xyz 

coordinate system are, 
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where Iφ, Iθ and Iβ are the mass moments of inertia of the slider about the roll, pitch and yaw 

directions, respectively. The slider’s equations of motion show that the in-plane vibration 

is caused by the air shear and slider-disk friction acting on the ABS. The effect of the 
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load offset, which corresponds to the terms 0 0( )x ck x y y−  and 0 0( )y ck y x x− , can be 

damped out. The in-plane displacements also have effects on the slider’s movement in the 

pitch and roll directions. 

The Newark-Beta method is used in the CML dynamic program to solve the six 

equations of motion of the 6-DOF slider. The in-plane vibrations of the slider include the 

slider’s vibration in the x, y and yaw directions. Let C denote the point at the trailing edge 

center, and let ψ denote the skew angle. Then the off-track and down-track displacements 

of the trailing edge center can be expressed as, 

off-track = cos ( sin ) sin ( cos ),

down-track = sin ( sin ) cos ( cos )
c c

c c

GC y GC x

GC y GC x

ψ β ψ β

ψ β ψ β

+ + +

+ + +
.   (3) 

5.4  Dynamic Simulations of a Micro Trailing Pad Slider 

A micro-trailing pad slider is employed in the simulations. As was found in [1], in the 

contact regime a slider with a minimized trailing pad incurs smaller short range attractive 

forces between the slider and disk as well as less contact force. It is a good candidate to 

be a partial-contact slider with small bouncing vibrations and small contact and adhesion 

forces. The ABS design of the slider is shown in Figure 5.2. The steady state minimum 

flying height of the slider on a flat disk surface is approximately 0.5 nm and the 

transducer flying height is 2.5 nm. The suspension stiffness parameters are listed in Table 

5.1, which are obtained from the finite element analysis of a suspension model. And the 

suspension damping coefficients used in the simulation are also listed in Table 5.1. 

5.4.1 Dynamic response to an Initial Excitation 

The dynamic response of the micro-trailing-pad partial-contact slider to an initial 

excitation is analyzed first. The slider is loaded onto a flat disk surface from a 2 nm initial 
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FH, steady state pitch and roll angles, zero in-plane displacements and zero yaw angle. 

Figure 5.3 shows the time histories of the slider’s minimum FH, pitch, roll, down-track, 

off-track displacements and contact force and the corresponding power spectra. It is seen 

that the minimum FH, pitch and roll have only small variations at the beginning. Then the 

initial excitation is damped out quickly and the slider achieves a steady state with a 

minimum FH close to 0.5 nm. The corresponding spectra plots show that the minimum 

FH and pitch vibration have frequency peaks around 8 kHz, 126 kHz and 385 kHz with 

its harmonic frequency around 770 kHz. The roll vibration has two peaks around 8 kHz 

and 133 kHz. The 1st pitch, roll and 2nd pitch modes of the air bearing are clearly shown. 

The down-track and off-track vibrations are dominated by only one frequency component 

around 8 kHz and they are damped out much more slowly than the vertical vibrations. 

The in-plane suspension force acting on the slider due to the slider’s in-plane 

displacement exerts a moment with respect to the slider’s mass center, since the load 

point is on the slider’s upper surface. This moment has components in the pitch and roll 

directions. So the slider’s pitch, roll and minimum flying height are affected by the 

slider’s in-plane vibration and they all have the 8 kHz frequency component. This 

frequency is clearly associated with a suspension mode. However, due to the simple 

spring-damper model of the suspension, the modes of the suspension can not be fully 

shown in the slider’s in-plane vibration. 

If no suspension damping is added in the simulation the slider’s dynamic response 

changes to that in Figure 5.4. The vertical, pitch and roll vibration components with air 

bearing frequencies are still damped out quickly. However, the low-frequency 

components of the out-of-plane and in-plane vibrations can not be damped out. The high 

damping ratio of the air bearing has no effect on the slider’s in-plane vibrations. This 
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agrees with all of the simulation results with a full suspension model in [2], which have 

zero suspension damping. So the suspension damping is critical to the slider’s in-plane 

vibration. 

5.4.2 Effect of Disk Micro-Waviness and Roughness 

As shown in [3], the disk micro-waviness and roughness, which move through the 

HDI as the disk rotates, can excite the slider’s vertical bouncing vibration. The effect of 

disk roughness on the slider’s in-plane vibration needs to be investigated. Figure 5.5 

shows a measured track with RMS roughness of 0.2 nm and the power spectrum of the 

track profile with a speed of 24 m/s, which corresponds to 10000 rpm. The power 

spectrum of the disk profile has peaks in a wide frequency range. Figure 5.6 shows the 

time history of the slider’s minimum FH, down-track and off-track displacements and 

contact force on this track and the corresponding power spectra. The slider’s vertical 

bouncing is excited and its two dominant frequencies are approximately 8 kHz and 400 

kHz with its harmonic frequency 800 kHz. The disk roughness moves into the HDI as the 

disk rotates, so the excitation never stops and the slider’s vertical bouncing vibration is 

continuous. The excited air bearing frequency is increased due to the slider-disk contact. 

The power spectra of shear forces in the X and Y directions show that all of the spectrum 

peaks are less than 0 dB. So the variation of shear force is extremely small. The contact 

force has frequency content similar to that of the minimum FH. The friction force, which 

is proportional to contact force, has the same frequency content. Notice that in this case 

the skew angle is zero, so the friction force is mainly along the slider’s length direction, 

i.e. down-track direction. Therefore the off-track vibration does not contain the air 

bearing frequency component and the vibration amplitude is negligible. However, the 

down-track vibration does not contain the air bearing frequency components, either. This 
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can be simply explained with the steady state response of a one-degree-of-freedom forced 

spring mass system. The steady state vibration amplitude is 

2
2 20

2/ (1 ) (2 )
nn

F f f
K ff

ς− + ,          (4) 

where F0 is the amplitude of the external force and f is its frequency; K, ζ and fn are the 

stiffness, damping factor and natural frequency of the system, respectively. Here we take 

K =1.316×103 N/m, i.e. the X-stiffness of the suspension; fn = 8 kHz, the suspension 

frequency, and f = 400 kHz, an excited air bearing frequency. Even if we take the 

damping factor to be zero and the peak to peak amplitude of the contact force at 400 kHz 

to be 0.1 gf, then F0 = 0.1/2×0.3×9.8 mN = 0.147 mN, and the steady state amplitude 

obtained is approximately 0.05 nm. This small vibration amplitude is still negligible 

compared with the down-track vibrations shown in Figure 5.6. This calculation 

qualitatively agrees with the experimental analysis of [4], in which one of the 

experimental cases showed that the air bearing pitch modes had amplitudes as large as 

20.5 nm in vertical bouncing but only 1 nm in the down-track vibration and 0.01 nm in 

the off-track vibration. 

5.4.3 Effect of Skew Angle 

It is expected that the component of the friction force along the off-track direction 

increases from zero and hence the off-track vibration increases, as the skew angle 

deviates from zero. But the effect of skew angle on slider dynamics interferes with other 

effects. In simulations it is difficult to change the skew angle while keeping the slider’s 

air bearing and static flying height unchanged. Figure 5.7 shows the time histories of the 

minimum FH, off-track and down-track displacements of the same simulation case as in 
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Figure 5.6 except that the skew angle is changed from 0o to 6.65o. The in-plane vibration 

amplitudes are increased. This is partially caused by the increased vertical bouncing 

vibrations and the increased contact force variation, which is due to the change of skew 

angle. But the off-track vibration amplitude increases by three orders of magnitude. This 

is caused by the non-zero friction force in the slider’s width direction, due to the non-zero 

skew angle. 

5.4.4 Effect of Friction 

The effect of friction force on the slider’s motion can be analyzed with simulations 

using different friction coefficients, since Coulomb’s law is used for the friction force. 

Figure 5.7 shows the vertical bouncing, contact force, down-track and off-track vibrations 

of the slider on a smooth disk with friction coefficients 0, 0.3, 0.6, 1 and 2, respectively. 

Here the skew angle is 6.65o. When the friction coefficient is zero, the initial in-plane 

vibrations are totally damped out. The reason is that the air shear almost remains constant, 

and it can not excite the in-plane vibrations. As shown in [3] the vertical bouncing 

vibration is almost not affected by the change of fiction coefficient. However, as the 

friction force increases, the in-plane vibration amplitudes increase. Here we can roughly 

conclude that the off-track vibration peak-to-peak amplitude is on the order of 10 nm and 

the down-track vibration peak-to-peak amplitude is on the order of 100 nm when the 

contact force is less than 0.25 gf and the friction coefficient is less than 0.3. So a small 

dynamic friction coefficient is important for small in-plane vibrations. 

5.4.5 Effect of the Micro Trailing Pad Width 

The micro-trailing pad of the slider used in the above simulations has a width of 100 

μm. Figure 5.8 shows the vertical bouncing, on-track and off-track vibrations of the slider 

with micro-trailing pad widths of 100 μm, 80 μm and 60 μm, respectively. As discussed 
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in [3], the slider’s vertical bouncing reduces as the pad’s width reduces. Here the 

simulations of in-plane vibrations show that down-track and off-track vibrations also 

decrease. If we check the contact force, we can see that the variation of the contact force 

decreases as the micro-trailing pad width decreases. A smaller contact pad helps to 

decrease the vertical bouncing and the variation of contact force; then the variation of 

friction force and in-plane vibrations are also reduced. This result agrees with the 

experimental observations in [5]. On the other hand, the width of the micro-trailing pad 

should also be large enough to embed the read/write transducer. So an optimized trailing 

pad size is important for reducing the vertical bouncing and the in-plane vibrations. 

5.5  Conclusions 

A six-degree-of-freedom slider dynamic simulator is developed to analyze the slider’s 

motion in the vertical, pitch, roll, yaw, length and width directions. The modified 

time-dependent Reynolds equation is used to model the air bearing and a new second 

order slip model is used for a bounded contact air bearing pressure. The simulator 

considers the air bearing shear acting on the ABS and the slider-disk contact and 

adhesion. Dynamic simulations of a partial-contact slider with a micro-trailing pad are 

carried out. The simulation results show the following, 

1. Within the HDI, the slider’s in-plane vibrations are forced vibrations by the air shear 

and slider-disk friction. The air shear remains almost constant and the in-plane vibration 

is mainly caused by the slider-disk friction. 

2. The in-plane vibrations are dominated by the suspension modes. The air bearing modes 

and damping do not have much effect on the in-plane vibrations. The damping of the 

suspension is critical to the decrease of in-plane vibration amplitudes. 
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3. Disk surface micro-waviness and roughness excite the slider’s vertical bouncing. But 

the micro-waviness and roughness can not excite the slider’s in-plane vibrations. 

4. The slider’s skew angle affects the slider’s off-track vibrations. The change of skew 

angle can cause a change in the order of magnitude of the off-track vibration amplitude. 

The skew angle also has an effect on the slider’s flying and contact attitude; accordingly, 

the vertical and in-plane vibrations are affected. 

5. The slider-disk friction is critical to the in-plane vibration, although it does not affect 

the vertical bouncing. The smaller the slider-disk friction, the smaller will be the in-plane 

vibration amplitudes. The dynamic simulator roughly predicts that the off-track vibration 

peak-to-peak amplitude is on the order of 10 nm and the down-track vibration 

peak-to-peak amplitude is on the order of 100 nm when the contact force is less than 0.25 

gf and the friction coefficient is less than 0.3. 

6. For the micro-trailing pad slider, the slider with a reduced trailing pad width incurs 

smaller contact force variation, smaller contact force and smaller slider-disk adhesion 

force. And the vertical and in-plane vibrations are also reduced. 
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Table 5.1 Suspension model used in the simulation 
 

Suspension model specifications 
Suspension Load: 0.8gf 
X stiffness: 1.316×103 N/m 
Y stiffness: 1.458×103 N/m 
Z stiffness: 1.593×101 N/m 
Roll stiffness: 6.987×10-5 N·m/rad 
Pitch stiffness: 3.769×10-5 N·m/rad 
Yaw stiffness: 4.847×10-2 N·m/rad 
X-damping: 5.13×10-3 N·s/m 
Y-damping: 3.94×10-3 N·s/m 
Z-damping: 4.73×10-5 N·s/m 
Roll-damping: 3.42×10-10 N·m·s/rad 
Pitch-damping: 2.82×10-10 N·m·s/rad  
Yaw-damping: 3.20×10-6 N·m·s/rad 
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Fig.5.1. Suspension and slider coordinate systems. 

 

 
 

Fig.5.2. Air bearing surface design of femto slider (unit: mm). 
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Fig.5.3. Dynamic response to an initial excitation of loading the slider from 2 nm onto a 

flat disk surface. 
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Fig.5.4. Dynamic response to an initial excitation of loading the slider from 2 nm onto a 

flat disk surface with zero suspension damping in the simulation. 
 
 

 
Fig.5.5. Measured track profile and its power spectrum at the disk velocity 24 m/s. 
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Fig.5.6. Time history of the slider on a smooth disk with RMS 0.2 nm and the 

corresponding power spectrum. 
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Fig.5.7. Time history of the slider with a skew angle of 6.65°. 
 

 

 
(a) Fiction Coefficient 0.0 

 

 

 
(b) Fiction Coefficient 0.3 



 100

 

 
(c)Fiction Coefficient 0.6 

 

 

 
(d) Fiction Coefficient 1.0 

 

 

 
(e) Fiction Coefficient 2.0 
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Fig.5.8. Time history of the slider on a smooth disk on a smooth disk with different 
friction coefficients. 

 

 

 
Fig.5.9 Time history of the slider with trailing pad width of 100 μm, 80 μm and 60 μm. 
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Chapter 6 Numerical Investigation of 

Bouncing Vibrations of an Air Bearing Slider 

in Near or Partial Contact 

The bouncing vibration of an air bearing slider in near or partial contact with the disk 

is numerically analyzed using three different nonlinear slider dynamics models. The near 

or partial-contact slider is designed for the future areal recording density in hard disk 

drives of 1 Tbit/in2 or even higher. In these three slider dynamics models, the air bearing 

with contact is modeled either using the generalized Reynolds equation modified with the 

Fukui-Kaneko slip correction and a recent second order slip correction for the contact 

situation, or using nonlinear springs to represent the air bearing. The contact and 

adhesion between the slider and the disk are considered either through an elastic contact 

model and an improved intermolecular adhesion model, respectively, or using an 

Ono-Yamane [1] multi-asperity contact and adhesion model. The contact friction is 

calculated by Coulomb’s law. The simulation results from all models show that the 

slider’s bouncing vibration occurs as a forced vibration caused by the micro-waviness 

and roughness. The disk surface micro-waviness and roughness, which move into the 

head disk interface (HDI) as the disk rotates, excite the bouncing vibration of the 

partial-contact slider. The contact, adhesion and friction between the slider and the disk 

do not directly cause a bouncing vibration in the absence of disk micro-waviness or 

roughness. 
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6.1  Introduction 

As discussed in previous chapters, reducing the flying height (FH) of sliders is a 

requirement for achieving higher recording densities in hard disk drives, and it finally 

leads to a partial-contact head disk interface (HDI). As observed in experiments, the 

slider bounces on the disk surface as it touches the rotating disk. As to the cause of the 

slider’s bouncing, different explanations have been put forward. The contact friction [1] 

or short-range forces between the slider and the disk [3 and 4] are two such proposed 

causes. 

In order to investigate these mechanism further, three different nonlinear slider 

dynamics models are used in this chapter to numerically analyze the vertical bouncing 

vibration of an air bearing slider in the near or partial-contact region. Numerical 

simulations of the slider’s dynamics show that the slider’s bouncing vibration is a forced 

vibration caused by the micro-waviness and roughness. The disk surface micro-waviness 

and roughness, which move into the HDI as the disk rotates, excite the bouncing 

vibration of the partial-contact slider. The contact, adhesion and friction between the 

slider and the disk do not directly cause a bouncing vibration in the absence of disk 

micro-waviness or roughness. 

6.2  Dynamics, Ahesion and Contact Models 

The generalized time-dependent Reynolds equation is used to model the air bearing 

between the partial-contact slider and the disk. As discussed in Chapter 4, when the air 

film thickness is larger than 0.3 nm, which is approximately the diameter of an oxygen or 

nitrogen atom, the FK slip correction [2] is used to account for the rarefaction of the ultra 
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thin air film within the slider/disk spacing; when it is less than 0.3 nm, the new second 

order slip model is used to avoid the pressure singularity. 

A simple alternative air bearing model uses non-linear springs to represent the air 

bearing [1]. The air bearing of the entire air bearing surface is modeled with a front 

lumped nonlinear spring, a front linear dashpot, a rear lumped nonlinear spring and a rear 

linear dashpot. The springs and dashpots are located at the front or rear air bearing 

pressure center. The spring stiffness values are chosen to match otherwise calculated or 

experimentally measured air bearing frequencies. And the damping coefficients are 

determined by preset damping ratios. 

The impact between the partial-contact slider and the disk is quasi-static and therefore 

can be modeled using an elastic contact model based on the static influence coefficient 

matrix, as described in Chapter 2. Because of the bulk deformation, asperity adhesion 

models and asperity-based friction models are also not suitable for the dynamic 

simulation of the partial-contact HDI. Here adhesion is calculated through the improved 

intermolecular force model developed in Chapter 3, which does not predict an infinite 

repulsion when the slider and disk are in contact. The adhesion effect of the lubricant is 

modeled using the value of the surface energy difference before and after contact. 

Coulomb’s law is used for the friction between the slider and disk. 

Another slider-disk contact and adhesion model, developed by Ono and Yamane [1], 

is also used here for comparison. It is a complicated multi-asperity contact and adhesion 

model, which considers the bulk deformation of the contact interface and assumes that 

the lubricant meniscus is the only source of adhesion between the slider and disk. This 

model gives a stochastically averaged contact and adhesion force and the effect of 

asperities, which model the equivalent rough disk surface, on the air bearing is not 
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considered. In this model the contact and adhesion forces between a slider and a disk are 

functions of the spacing between the contact pad and the disk, given the statistical 

characteristics of the roughness on the disk surface (including the radius of curvature of 

asperities, the asperity density and the standard deviation of asperity heights), the contact 

pad area and the surface energy of the lubricant. With the assumption that the contact 

area does not change at any interference depth, the slider-disk contact characteristics can 

be simply described using the maximum value of adhesion force, the bulk contact 

stiffness, the initial real contact force at the beginning of contact and the touch-down and 

take-off flying heights [1]. 

6.3  Three Slider Dynamics Models 

Two slider dynamics models are obtained by implementing the two sets of contact 

and adhesion models discussed above into the CML slider dynamics air bearing program. 

The ABS is discretized into small grids, which are approximately parallel to the disk 

surface with various flying heights. The modified Reynolds equation is then discretized 

using Patankar’s control volume method, and the final discretization equations are solved 

using the alternating direction line sweep method combined with the full multi-grid 

algorithm. The dynamics program uses the Newmark-Beta method to solve the slider 

dynamics equations. 

The third slider dynamics model analyzed in this chapter is the 

two-degree-of-freedom (2-DOF) slider model developed by Ono and Yamane [1]. It 

includes the nonlinear air bearing spring model and the simplified multi-asperity contact 

and adhesion model. The 4th order Runger-Kutta method is used to solve the slider’s 

equations of motion, as was done in [1]. 
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6.4  Slider Dynamics Simulation and Results 

6.4.1 Dynamic Simulations Using the CML Air Bearing Model, the Elastic Contact 

Model and the Modified Intermolecular Force Model 

Using the first model described above we analyze the vertical bouncing vibration of a 

partial-contact HDI. We employ micro-trailing pad sliders in the simulations. As was 

found in [5], a slider in the contact regime with a smaller trailing pad may incur smaller 

short range attractive forces between the slider and disk as well as a reduced contact force. 

This helps to decrease the slider’s tendency to crash in the partial-contact process. The 

ABS design of the slider is shown in Figure 6.1. 

Here three different disk surfaces are used in the simulation. The first is an ideally flat 

disk surface, i.e. the RMS of the surface roughness is zero; the second is a “rough” disk 

surface with RMS roughness equal to 0.2 nm; the third is the same rough disk surface, 

but the disk micro-waviness and roughness within the HDI remains stationary. The third 

case is not practical, since the disk surface profile within the HDI keeps changing with 

the disk rotation. But we use this case to analyze the effect of dynamic roughness on the 

partial-contact HDI by comparison with the previous case. 

Figure 6.2 shows the time histories of the minimum spacing between the slider and 

the mean plane of the disk surface, the pitch, the roll, and the corresponding power 

spectra of the minimum spacing for these three cases. We can see that in Case I and Case 

III the initial response of the slider to the loading process is quickly damped out and the 

slider achieves a continuous contact steady state. However, in Case II the slider keeps 

bouncing on the disk surface and the bouncing vibrations can not be damped. The 

frequency spectra of the minimum spacing in Case I and Case III are similar, while the 
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frequency spectrum in Case II is different and it has a series of peaks around 800 kHz. 

These higher frequency components are evidently associated with the slider-disk contact. 

The micro-waviness and roughness on the disk surface, which move into the HDI as the 

disk rotates, excite these high frequency components, and they cause the slider’s 

continuous vertical bouncing vibration. 

6.4.2 Dynamic Simulations Using the CML Air Bearing Model and the Multi-Asperity 

Contact and Meniscus Adhesion Model of Ono and Yamane 

Ono and Yamane [1] successfully implemented their multi-asperity contact and 

adhesion model in their 2-DOF slider dynamics model to study the unsteady bouncing 

vibration of low flying height sliders on a disk surface without micro-waviness or 

roughness. They reached a conclusion that the bouncing vibration can also be a 

self-excited vibration caused by the adhesion and friction forces in the absence of moving 

disk micro-waviness or roughness. This is different from the conclusion presented above. 

To analyze this self-excited vibration, Ono and Yamane’s contact and adhesion model 

[1] is incorporated in the CML slider dynamics model in place of the elastic contact and 

improved intermolecular force models used above. First, in order to avoid the difficulties 

in applying this contact and adhesion model to the 3-DOF slider model in the CML air 

bearing program, we reduce the CML slider model to a 2-DOF one by employing a very 

large suspension roll stiffness so that the motion in the roll direction is negligible. Second, 

the simplified contact characteristic model is used instead of the full multi-asperity 

contact and adhesion model. The contact area is assumed to be constant and the statistical 

characteristics of the equivalent disk surface are the same as those used by Ono and 

Yamane. The separation between the contact pad and the mean disk surface is assumed to 

be equal to the minimum spacing between the slider and the mean disk surface. Here we 
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fix the bulk contact stiffness to be 5.0×106 N/m, the initial contact force to be 5.0 mN and 

the touch-down FH to be 3.0 nm. Values of the minimum adhesion force, the bulk contact 

stiffness and the takeoff flying height are shown in Table 6.1, where those with an upper 

asterisk are the default values used in the simulations. 

The force hysteresis needs to be considered in implementing Ono and Yamane’s 

model. Figure 6.3 shows the relations of the real contact force Fcr, adhesion force Fm, 

contact force Fc (the sum of real contact and adhesion force) versus the separation d 

between the contact pad and the disk in the simplified model. The arrows on the lines 

denote the touch-down and take-off processes. In the simulation it is assumed that the 

slider’s initial state is touch-down if the initial separation is less than the take-off FH de. 

Then, the slider’s current separation d determines the slider’s state at the next time step, if 

the time step size used in the simulation is small enough. When the separation d is larger 

than de, the slider’s state at the next time step is touch-down. When the separation d is 

less than ds, the slider’s state at the next time step is take-off or touch-down, but it can be 

set to take-off since the touch-down line and take-off line coincide when d is less than ds. 

Then the slider’s state at the next time step remains the same as the current state when the 

separation is between ds and de. 

A CML slider design is used in the simulation. The air bearing surface is shown in 

Figure 6.4. It is a pico size slider (1.25 mm× 1.00 mm). The suspension preload is 1.5 gf 

and the disk RPM is 5400. Its static minimum flying height is approximately 3.2 nm and 

its pitch angle is approximately 176 μrad on a flat disk surface. This means that the disk 

may contact the slider if the take-off FH is above 3.2 nm. Figures 6.5-6.8 show the time 

histories of the slider’s dynamics with different maximum meniscus force, take-off FH, 

friction coefficient and initial FH, respectively. 
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The negative contact force in Figure 6.5 shows that the flying slider contacts the disk 

when the maximum meniscus force is increased to 15 mN. However, the slider’s 

bouncing vibration is damped out even when the slider contacts the disk with a negative 

total contact force. 

Figures 6.6-6.8 indicate the existence of two different steady states. Figure 6.6 shows 

that when the take-off FH is 4 nm, the slider does not contact the disk in the steady state; 

when the take-off FH is 5.5 nm or 8 nm, the slider contacts the disk in the steady state. 

Figure 6.7 shows that the slider contacts the disk in the steady state when the friction 

coefficient is increased to 2.0. Figure 6.8 shows that different initial FHs may also 

produce different final steady states. With an initial FH of 3.5 or 10 nm the slider does 

not contact the disk in the steady state; with an initial FH of 5 nm or 20 nm, the slider 

contacts the disk in the steady state. All of these indicate that the slider may have two 

different final steady states. One state is a flying state, i.e. the slider does not contact the 

disk. The other is a contact state with lower spacing, in which the slider contacts the disk 

with a negative total contact force. This negative total contact force is compensated by 

the increased air bearing force due to the lower spacing. The final state is determined by 

the take-off FH, the friction coefficient or the initial FH. However, the existence of these 

two steady states does not mean that the slider will vibrate between two states. Instead the 

slider’s bouncing vibration is damped out quickly. In addition, the effect of the friction 

coefficient and the take-off FH can be seen from the simulation results. The contact 

steady state in Figure 6.7 has a smaller pitch angle than the contact steady state in Figure 

6.8. This shows that a large friction coefficient may cause a low pitch angle when the 

slider contacts the disk. In Figure 6.6, the slider doesn’t contact the disk until the take-off 
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FH is increased beyond 5.5 nm. It corresponds to an experimental observation that higher 

take-off FH causes a greater likelihood of slider disk contact. 

In conclusion, the simulation results of the CML 2-DOF slider dynamics model, 

which incorporates Ono and Yamane’s simple contact characteristic model for the slider 

disk contact and adhesion, show that the slider-disk contact, adhesion and friction are not 

the direct cause of the slider’s bouncing vibrations. So this implies that the near or 

partial-contact slider-disk interface is not an adhesion and friction caused self-excited 

system as shown in [1]. The destabilizing mechanism of friction force shown in [1] might 

not provide a strong proof. On one hand, the work done by the friction to the air 

bearing-slider-suspension system is not guaranteed to be always positive. On the other 

hand, not only the friction force between the slider and the disk but also the contact force 

does work on the slider. The moment arm of the contact force is much larger than that of 

the friction force, given that the pitch angle is on the order of μrad. From these two points 

of view, the friction appears not to be the main cause of the slider’s vibration. With the 

statistically averaged contact and adhesion model, it is even found that the adhesion force 

actually helps to reduce the bouncing vibrations [4]. 

6.4.3 Dynamic Simulations Using Ono and Yamane’s 2-DOF Dynamics Model 

The 2-DOF slider dynamics model of Ono and Yamane [1], with the simple nonlinear 

air bearing model and the multi-asperity contact and adhesion model, is re-analyzed here 

in an attempt to obtain a non-decayed bouncing vibration of a slider in the near or 

partial-contact regime on a disk without micro-waviness, which is shown in Section 3.3 

of [1]. Figure 6.9 shows this 2-DOF system model. The air bearing is simply represented 

by two lumped nonlinear springs (stiffness coefficients kf and kr) and two linear dashpots 

(damping coefficients cf and cr) located at the front and rear bearing pressure centers, 



 111

respectively. With zf and zg denoting the spacing at the front and rear air bearing pressure 

center, respectively, the air bearing stiffnesses used in the model are expressed as, 
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where the subscript 0 denotes the parameters in the static state and d1 is a preset 

parameter. And the corresponding damping coefficients are 02f f fc Mkξ=  and 

02 rc Mkr rξ= . The suspension is represented by a normal linear spring (k) and dashpot 

( 2c Mkξ= ), an angular spring (kθ) and dashpot ( 2c Jkθ θ θξ= ), static load (F0) and 

static moment (M0). The simplified contact characteristic model shown in Figure 6.3 is 

used to model the slider-disk adhesion and contact. 

For a slider with a static flying height FH at the transducer and a static pitch angle θ0, 

the equation of motion of the slider is derived in [1] as, 
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where zg denotes the vertical displacement of the center of mass from the mean roughness 

plane of the disk and θ denotes the angular displacement in the counter clockwise 

direction from the horizontal line. 

Notice that for the static state, 
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Then if we define '
0g g gz z z= −  and '

0θ θ θ= − , we can re-write the equations of 

motion as, 
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The total energy of the air bearing, slider and suspension system, without considering 

the elastic contact energy, can be expressed as, 
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                   (5) 
The same parameter values as used in section 3.3 of [1], which are shown in Table 

6.2, are used in the simulation here. The parameter d1 used in the air bearing model is not 

discussed in [1]. With the no-fly-zone condition, d1 can be set to 0.3 nm; or d1 is set to be 

equal to ds [6], which means that the air bearing is lost when the separation is less than 

the touch-down flying height. We use both of these values in the following simulations. 

The 4th order Runger-Kutta method is used to solve the equations of motion as in [1]. 

If d1 = 0.3 nm is set, the time history of the slider dynamics of a 7 nm slider with an 

initial condition of FH = 250 nm and θ = 0 μrad is shown in Figure 6.10 (a). It is obvious 

that the slider’s vibration is damped quickly and the slider achieves a steady state, which 

is the same as its static state. If d1 = ds, the time history of the slider’s dynamics with the 

same initial conditions is shown in Figure 6.10 (b). It is seen that the slider’s dynamics 

doesn’t change with d1. The slider’s vibration is still damped out and the slider achieves 

its steady state quickly. The straight black line in the FH plot is the d1 line. In both cases 

the spacing at the rear air bearing center is always above d1. 
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Figure 6.11 shows the simulation results with the parameter values in Table 6.2 

except that the friction coefficient μ is changed to 2.0. It is seen that the slider’s vibration 

is again damped out quickly. The increase in friction force has no effect on this 7-nm 

flying slider. 

Figure 6.12 shows the simulation results with the parameter values in Table 6.2 

except that the maximum meniscus force fm is changed to 50 mN. When d1=0.3 nm, the 

slider’s vibration is damped out quickly and the slider attains a contact steady state. The 

FH of the steady state is 1.6 nm and the pitch angle is 94.2 μrad. The slider has a lower 

FH and higher pitch angle than previously due to the large adhesion force of 50 mN. But 

the slider doesn’t bounce continuously on the disk. When d1 = ds, the numerical 

calculation doesn’t converge even with the time step as small as 10-9 s. The spacing at the 

rear air bearing center is sometimes less than ds at the beginning of the vertical bouncing. 

This causes a corresponding sharp change of the rear air bearing stiffness from a positive 

value to zero. This abrupt change in the rear air bearing stiffness causes the divergence of 

the calculation and produces some complex values. These complex values in the 

simulation result in negative values of system energy, which is shown in Figure 6.12 (b). 

Figure 6.13 shows the simulation results with the parameter values in Table 6.2 

except that the take-off FH is set to 8 nm, which means that the static flying without 

considering contact and adhesion is below the take-off FH. In the steady state the slider 

contacts the disk, which is shown from the non-zero contact force and non-zero system 

energy. In both cases of d1=0.3 nm and d1=ds, the FH of the steady state is 3.8 nm and the 

pitch angle is 94.2 μrad. 

Figure 6.14 shows the simulation results with the parameter values in Table 6.2 

except that the air bearing damping ratios are changed from 0.01 to 0.002. If d1=0.3 nm, 
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the slider eventually obtains a steady state. If d1 is set to be ds, initially the spacing at the 

rear air bearing center becomes less than d1, the system energy becomes negative, but the 

slider goes to its steady state. The steady states in both cases are the same as the slider’s 

static state. The low air bearing damping ratios only cause a slow decay of the bouncing 

vibration. 

No continuous bouncing vibrations are observed in the simulations with a 7 nm slider. 

Now we turn to sliders with even lower FHs – a 4 nm FH slider and a 3 nm FH slider. 

Here d1 is set to be ds, the air bearing damping ratios are kept at 0.002, but the initial FH 

is varied. The simulation results are listed in Table 6.3. In some cases the numerical 

solution does not converge, i.e. the numerical scheme does not produce the same result as 

the time step size is reduced from 10-8 s to 10-9 s. However, it is seen that none of them 

show a slider with a continuous bouncing vibration. If the air bearing damping ratios are 

changed back to the default value 0.01, all of the numerical calculations converge and the 

slider achieves a steady state in all of the cases with different initial FH. 

As a summary of the above simulations with a simplified air bearing model and a 

simplified contact and adhesion model, no continuous bouncing vibration of the type 

shown in Section 3.3 of [1] is obtained. The bouncing vibration can always be damped 

out and the slider achieves a steady state on a flat disk without micro-waviness. This is in 

agreement with the results we obtained using the CML air bearing contact model with a 

smooth disk. 

6.5  Conclusions 

Three different nonlinear slider dynamics models are used for the numerical 

analysis of the bouncing vibration of an air bearing slider in near or partial contact with 
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the disk. In these three slider dynamics models, the air bearing with contact is modeled 

either using the generalized Reynolds equation modified with the Fukui-Kaneko slip 

correction and a new second order slip correction for the contact situation, or using 

nonlinear air bearing springs. The contact and adhesion between the slider and the disk 

are considered either using an elastic contact model and an improved intermolecular 

adhesion model, respectively, or using the Ono-Yamane [1] multi-asperity contact and 

adhesion model. The contact friction is calculated using Coulomb’s law. All of the 

simulation results show that the slider’s bouncing vibration is a forced vibration caused 

by the micro-waviness and roughness. The disk surface micro-waviness and roughness, 

which move into the head disk interface (HDI) as the disk rotates, excite the bouncing 

vibration of the partial-contact slider. The contact, adhesion and friction between the 

slider and the disk are not the direct causes of the slider’s bouncing vibration, since none 

of the simulations predict bouncing in the absence of a moving rough disk surface. 

However, the contact and adhesion affect the bouncing amplitude of a partial-contact 

slider, as analyzed in [7]. So in order to design a partial-contact slider with small 

bouncing, the disk surface, slider-disk contact and adhesion need to be systematically 

modeled in the simulation process. 
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Table 6.1 Parameter values used in the multi-asperity contact and adhesion model for the 
slider-disk contact (upper asterisks denote the default values used in the simulations) 

 
Maximum meniscus force (fm) 5.0 mN, 10.0 mN*, 20.0 mN 

Take-off FH (de) 4.0 nm*, 5.5 nm, 8.0 nm 

Friction coefficient (μ) 0.5, 1*, 2 

 
Table 6.2 Parameter values used for 2-DOF slider dynamic simulations 

 
slider width (b) 0.3 mm 
slider mass (M) 1.59 mg 
slider’s moment of inertia (J) 2.19×10-13 kg•m2

Distance between the mass center and the contact pad (dh) -0.550 nm 
Distance between the mass center and the front air bearing 
center (df) 

0.250 nm 

Distance between the mass center and the rear air bearing center 
(dr) 

-0.525 nm 

Suspension normal stiffness (k) 4.9 N/m 
Suspension angular stiffness (kθ) 1.6×10-4 N•m/rad
Suspension normal damping ratio (ζ) 0.002 
Suspension angular damping ratio (ζθ) 0.002 
Static front air bearing stiffness (kf0) 5.0×105 N•m 
Static rear air bearing stiffness (kr0) 1.3×106 N•m 
Front air bearing damping ratio (ζf) 0.01 
Rear air bearing damping ratio (ζr) 0.01 
Friction coefficient (μ) 1.0 
Contact stiffness (kc) 5.0×106 N•m 
Real contact force at the beginning of contact (fc0) 5.0 mN 
Maximum meniscus force (fm) 10.0 mN 
Touch-down FH (ds) 3.0 nm 
Take-off FH (de) 4.0 nm 
Static pitch angle (θ0) 90 μrad 
Static FH 7.0 nm 
Initial excitation 250 nm FH and 0 

μrad pitch angle 
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Table 6.3 Simulation results of a 4 nm slider and a 3 nm slider with ζf = ζr = 0.002 and  
d1 = ds 

 
 Initial FH and pitch 

angle 
Does the numerical 
calculation converge? 

Does the slider 
achieve a steady state 
finally? 

100 nm and 0 μrad Yes Yes 
50 nm and 0 μrad Yes Yes 

4 nm slider 

10 nm and 0 μrad No The FH becomes 
several microns. 

100 nm and 0 μrad Yes Yes 
50 nm and 0 μrad Yes Yes 

3 nm slider 

10 nm and 0 μrad No Yes 
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Fig.6.1. Air bearing surface design of a micro-trailing pad slider 
 

 

 
(a) Case I 

 

 

 
(b) Case II 
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(c) Case III 

 
Fig.6.2. Time histories of the minimum spacing, the pitch, the roll and the power spectra 

of the minimum spacing of case I (the micro trailing pad slider on the ideally flat disk 
surface), case II (the micro trailing pad slider on a rough disk surface with moving 

roughness within the HDI) and case III (the micro trailing pad slider on a rough disk 
surface with stationary roughness within the HDI) 

 

 
Fig.6.3. Simplified characteristic model of real contact force, adhesion force and contact 

force as functions of separation [1] 
 

 
Fig.6.4. Air bearing surface design of the CML slider used in the CML 2-DOF slider 

dynamic simulation 
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Fig.6.5. Time history of the slider dynamics with different maximum meniscus force fm 

 
Fig.6.6. Time history of the slider dynamics with different take-off FH de 

 

 
Fig.6.7. Time history of the slider dynamics with the different friction coefficient μ 

 

 
Fig.6.8. Time history of the slider dynamics with different initial FH 

 

 
Fig.6.9. 2-DOF slider model by Ono and Yamane [1] 
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(a) d1 = 0.3 nm 

 

 

 
(b) d1 = ds 

 
Fig.6.10. Time history of the 2-DOF slider model with the parameter values shown 

in Table 6.2 
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(a) d1 =0.3 nm 

 

 

 
(b) d1 = ds 

 
Fig.6.11. Time history of the 2-DOF slider model with the parameter values shown in 

Table 6.2 except that μ = 2.0 
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(a) d1 = 0.3 nm 

 

 

 
(b) d1 = ds 

 
Fig.6.12. Time history of the 2-DOF slider model with the parameter values shown in 

Table 6.2 except that fm = 50 mN. 
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(a) d1 =0.3 nm 

 

 

 
(b) d1 = ds 

 
Fig.6.13. Time history of the 2-DOF slider model with the parameter values shown in 

Table 6.2 except that de = 8 nm 
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(a) d1 = 0.3 nm 

 

 

 
(b) d1 = ds 

 
Fig.6.14. Time history of the 2-DOF slider model with the parameter values shown in 

Table 6.2 except that ζf = ζr = 0.002 
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Chapter 7 Simulation of Static Flying 

Attitude with Different Heat Transfer Models 

for a Flying Height Control Slider with 

Thermal Protrusion 

The air bearing cooling effect and viscous heating effect are considered in the 

numerical simulation of an air bearing slider with its flying height controlled by thermal 

protrusion, which is conventionally called thermal flying height control (TFC) or 

dynamic flying height (DFH). The simulation results show that the air bearing cooling is 

dominant compared with the viscous heating. Different models for the air bearing cooling, 

i.e. the heat conduction at the slider’s air bearing surface (ABS), are also used and 

compared in the numerical simulations. It is found that all of these models, including a 

recent one considering the dependence of the air molecule’s mean free path on the 

ambient temperature, give very close simulation results of the slider’s static flying 

attitude. The difference is less than 10% of the result obtained with Chen’s model [1], 

which is used in the current CML program. 

7.1  Introduction 

The thermal flying height control (TFC) - dynamic flying height (DFH) – technique, 

as presented in the patent by Meyer et al. [2], is widely used in current hard drives to 

lower the slider’s flying height. This advantageous technique makes use of a resistance 



 128

heating element near the read/write transducer. When a current is applied through the 

heating element, it undergoes local thermal expansion and forms a localized thermal 

protrusion near the trailing edge center of the slider close to the read/write transducer. 

The thermal protrusion reduces the flying height very locally at the transducer. In this 

way the transducer flying height becomes adjustable. This technique provides control that 

can compensate for the static flying height (FH) loss and reduce the likelihood of 

head-disk contact for an air bearing slider. Additionally, this technique has the potential 

of achieving a partial-contact head disk interface (HDI). The controllable contact area 

created by the thermal protrusion at the transducer helps maintain a very light contact 

between the slider and the disk, while the rest of the air bearing surface (ABS) remains 

undeformed and flies at a safe distance from the disk. 

For a slider with thermal protrusion, the cooling effect of the air bearing was first 

analyzed by Juang et al. [3]. The coupling problem between the thermal protrusion and 

the air bearing was numerically analyzed using a loop composed of a static Reynolds 

equation solver for the air bearing and a finite element analysis for the thermal protrusion. 

It was shown that the heat transfer from the slider to the disk through the air bearing film 

has a considerable effect on the flying height reduction efficiency. The work in that paper 

used a HDI heat transfer model developed by Chen and Bogy [1]. The viscous dissipation 

was neglected in that simulation, since Chen’s model concluded that on the ABS the 

viscous dissipation is about 1-2 orders of magnitude less than the heat conduction. An 

independent work done by Ju [4] produced another heat transfer model with different 

viscous dissipation. Recently Zhou et al. [6] and Shen et al. [7] proposed two different 

new HDI heat transfer models. As different heat transfer models for head disk interface 

are proposed, however, a question arises as to how much difference is caused in the static 
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flying attitude with the different heat transfer models applied in the simulation. In this 

chapter, this question is addressed using both pico and femto air bearing slider designs. 

The simulation results show that the viscous dissipation does not affect the static flying 

attitude even when the FH is less than 2 nm. It is also found that the different models for 

heat conduction on the ABS give very close simulation results for the slider’s static flying 

attitude. The relative difference is less than 10% in the static transducer flying height and 

less than 1% in the pitch angle, when compared with Chen’s model [1]. 

7.2  Heat transfer models for the head-disk interface 

In the numerical flying attitude analysis for a slider with thermal protrusion carried 

out by Juang et al. [3], the HDI heat transfer model developed by Chen and Bogy [1] is 

used for the heat conduction on the ABS. In fact, Chen’s model originates from the HDI 

heat transfer model by Zhang and Bogy [5]. Zhang’s model and Chen’s model both use 

the velocity slip and temperature jump theory at the boundary of the air bearing. Both 

models have shown that the heat flux on the ABS has two contributions. One is the heat 

conduction, which transfers heat from the slider to the air bearing when the ABS has a 

higher temperature than the disk surface; the other is the viscous dissipation due to the air 

flow within the HDI. Both models have the same expression for the heat conduction, the 

same expression for the viscous dissipation due to the Couette flow, but different 

expressions for viscous dissipation contributed by the Poiseuille flow. For a simplified 

situation with disk velocity U in the slider length direction (i.e. x-direction) and zero disk 

velocity in the slider width direction (i.e. y-direction), the expression for heat flux on the 

ABS is, 
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In the above heat flux expressions, k is the thermal conductivity of air; µ is the viscosity 

of air; Ts and Td are the temperatures of the slider and the disk, respectively; h is the local 

slider-disk gap; λ is the mean free path of air; p is the local air bearing 

pressure;
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, where σT is the thermal accommodation coefficient; Pr 

is the Prandtl number of air, γ is the ratio of the specific heat; 2a α
α
−

= , where α is the 

momentum accommodation coefficient. In fact the first term in the expression of qPoiseuille 

represents the coupling of Poiseuille flow and Couette flow. That term is included in the 

heat flux contributed by the Poiseuille flow for a notation simplification in this chapter. 

Zhang’s model and Chen’s model both show that the heat flux on the ABS is 

dominated by the heat conduction while viscous dissipation is only a second order effect. 

Because of this, only the heat conduction on the ABS, i.e. the cooling effect of the air 

bearing, is considered in the static flying height simulation by Juang et al. [3]. 

Ju [4] proposed another heat transfer model for the HDI. The heat conduction part is 

also based on the temperature jump theory, which makes it have a similar expression to 

those shown in Zhang’s and Chen’s models. In fact the heat flux due to conduction in Ju’s 

model is just the corresponding term in Zhang’s and Chen’s models with surface thermal 

accommodation coefficient σT equal to 1. However, the viscous dissipation due to the 
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Couette flow in Ju’s model is based on an approximate solution of the Boltzmann 

transport equation and the expression is different from the term in Zhang’s and Chen’s 

models. Also the viscous dissipation contributed by the Poiseuille flow is not included in 

Ju’s model. The complete expression for heat flux on the ABS in Ju’s model is, 

21 8 2
2 8 2

s d
ABS conduction viscous

T T RTq q q k U
h b h

λρ
λ π λ

−
= + = − +

+ +
, 

where ρ is the air density and T is the air temperature. 

Based on Zhang’s and Chen’s models, Zhou et al. [6] took the change of the air 

molecule’s mean free path caused by a temperature change into consideration and 

proposed a generalized heat transfer model. This model shows that the heat flux due to 

conduction varies significantly when the mean free path of the air molecules changes, 

giving 
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0

0
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pT

T p
ωλ ξ λ+=  with parameters ξ and ω determined by the model used for 

the mean free path of air. For example, ξ=1 and ω=0.5 for the hard sphere model; 

ξ=0.8244 and ω=0.75 for the variable soft sphere model; ξ=0.75 and ω=1 for the 

variable hard sphere model. Experimental data provide ξ= 0.80~0.85 and ω=0.75 for an 

air film [6], which indicates that the variable soft sphere model is applicable to air films. 

Different from these models based the velocity slip and temperature jump theory, a 

HDI heat transfer model based on the linearized Boltzmann equation was recently 

proposed by Shen and Chen [7] This model gives a heat conduction flux close to those 

obtained in Zhang’s model, Chen’s model and Ju’s model, but it has different viscous 

dissipations. In this model the relation between the viscous heating due to the Couette 
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flow and the inverse Knudsen number is quite different from that in Zhang’s and Chen’s 

models, but close to that obtained from Ju’s model. In both Ju’s model and Shen’s model 

the viscous dissipation due to the Couette flow asymptotically approaches a constant as 

the inverse Knudsen number decreases to 0.01, while in Zhang’s and Chen’s models the 

Couette-flow-caused viscous dissipation reduces almost to zero as the inverse Knudsen 

number goes to 0.01. Also the viscous dissipation contributed by the Poiseuille flow 

obtained from Shen’s model and from Zhang’s and Chen’s models are different. 

Presumably Shen’s model is more accurate for the heat transfer with small inverse 

Knudsen number, since it is directly derived from the linearized Boltzmann equation. 

However, the expression for heat flux given by this model has complex integrations with 

respect to molecule velocities. It is not applicable to the engineering simulation of the 

slider’s flying attitude with adjustable thermal protrusion. 

7.3  Simulation of air bearing sliders with thermal protrusion 

This chapter is focused on the numerical analysis of the air bearing cooling effect and 

the viscous heating effect on the slider’s static flying attitude, and numerical comparisons 

of different static flying attitudes obtained when different HDI heat transfer models are 

applied. First, Ju’s model is used for analysis of the effect of viscous heating on the 

slider’s static attitude, since the heat conduction term and the viscous heating term in Ju’s 

model are both validated by Shen’s model based on the linearized Boltzmann equation. 

Second, the slider’s static simulation results obtained with Zhang’s and Chen’s models, 

Ju’s model and Zhou’s model are compared to analyze the difference caused by different 

heat conduction models, which are applied for the air bearing cooling. 

In the numerical analysis, an INSIC pico slider [3] and a commercial femto slider are 
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used. The pico slider’s ABS is shown in Figure 7.1 and its heating-power-off static flying 

attitude is shown in Table 1. The static flying height of a slider with thermal protrusion is 

obtained using the loop shown in [3]. This loop contains a Reynolds equation solver for 

the steady state of an air bearing slider and a finite element analysis program to calculate 

the thermal protrusion with inside heating, heat convection on non-air-bearing surfaces 

and complex heat transfer at the ABS. In this chapter the CML static air bearing program 

is used to solve the generalized Reynolds lubrication equation for the slider’s static flying 

attitude. In the iteration the ABS with updated thermal protrusion is input into the CML 

program. The finite element model for a pico slider with a GMR head and a micro heater 

developed in [3] is used here for the protrusion calculation by an ANSYS program. The 

heat conduction at the ABS, i.e. air bearing cooling, can be treated as heat convection at 

the ABS with given convection coefficients in ANSYS. Since the boundary conditions of 

heat flux and convection can not be applied to the same boundary in ANSYS, the viscous 

dissipation flux is treated as surface heating on the ABS, which has a heat generation rate 

twice the viscous heating flux. 

The commercial femto slider’s ABS is shown in Figure 7.2. Due to the lack of an 

accurate ANSYS model for the read/write transducer, heater and other components in this 

femto slider, the structures of the read/write transducer and micro heater used in [3] are 

scaled down and adopted in the simulation of this femto slider. The same loop is used to 

obtain the femto slider’s static flying attitude with different HDI heat transfer models. 

7.4  Simulation results for static flying attitudes 

7.4.1 Pico slider 

a) Viscous heating versus air bearing cooling 
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Ju’s model is applied in the loop to analyze the effect of viscous dissipation on the 

slider’s static flying attitude. Table 7.2 shows the simulation results for 40 mW, 80 mW 

and 120 mW heating power using Ju’s model with and without the consideration of 

viscous dissipation contributed by the Couette flow. It is obvious that the effect is 

negligible, even when the flying height is below 2 nm. Figure 7.3 shows the 

corresponding temperature and heat flux at the ABS, and it is seen that the largest 

difference is less than 1%. So the viscous dissipation contributed by the Couette flow has 

negligible effect on the slider’s static flying attitude and the heat transfer on the ABS for 

this INSIC pico slider. 

b) Heat conduction in Ju’s model versus Zhang’s and Chen’s models 

The only difference between the heat conduction part in Ju’s model and that in 

Zhang’s and Chen’s models is that the surface thermal accommodation coefficient is 1.0 

in Ju’s model, while it is a parameter in Zhang’s and Chen’s models. For the slider and 

disk surface, the thermal accommodation coefficient is chosen as 0.9 in Zhang’s and 

Chen’s models. Here simulations are carried out with three values of heating powers, 40 

mW, 80 mW and 120 mW. Table 7.2 lists the slider’s static flying attitude obtained with 

Ju’s model and with Zhang’s and Chen’s models. Figure 7.4 graphically shows the 

comparison of static flying attitudes obtained using these two types of models neglecting 

the viscous heating. The largest relative difference in static transducer FH and pitch angle 

is less than 10%. The difference in static roll angle is less than 1µrad and thus negligible, 

although the difference is large compared with 1 micron radian level roll angle. Figure 

7.5 shows the temperature and heat flux on the ABS. The largest relative difference is 

also less than 10%. This difference is larger than the difference between the flying 

attitude results with and without considering the Couette-flow-caused viscous heating in 
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Ju’s model. It indicates that the surface thermal accommodation coefficient has a larger 

effect than the Couette-flow-caused viscous heating in the HDI heat transfer. 

c) Heat conduction in Zhou’s model versus Zhang’s and Chen’s models 

The only difference between Zhou’s model and Zhang’s and Chen’s models is that the 

dependence of mean free path of the air molecules on the ambient temperature is 

considered in Zhou’s model. Here simulations are carried out with different ambient 

temperatures. The air parameters used in the models, including the ratio of the specific 

heat, Prandtl number and thermal conductivity, change as the air temperature changes. 

Table 7.3 lists those parameter values for the air temperatures of 0oC, 25oC, 50oC to 

75oC. Using those values in Zhou’s model or Zhang’s and Chen’s models, the slider’s 

static flying attitudes are obtained and listed in Table 7.4 at the ambient temperatures of 

0oC, 25oC, 50oC to 75oC, when the heat power is 40 mW and 80 mW, respectively. It is 

obvious that as the ambient temperature increases, the air cooling effect on the slider 

surface, including the ABS and non-ABS, decreases if the convection and conduction 

coefficients do not change. This leads to an increase in the slider’s temperature and 

thermal protrusion at the trailing edge center. Increased thermal protrusion causes more 

flying height loss. Figures 6 and 7 graphically show the difference between the 

simulation results obtained from Zhou’s model and from Zhang’s and Chen’s models 

when the heating power is 40 mW and 80 mW, respectively. The largest relative 

differences in static transducer FH and pitch angle are less than 10%. Although the 

relative difference in static roll angle is larger than 10%, the absolute difference is still 

less than 1µrad and is negligible. 

It was shown in [6] that the mean free path of air increases as the air temperature 
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increases. So for the HDI a large difference in heat transfer between Zhou’s model and 

Zhang’s and Chen’s models is expected to occur at high temperatures. Figure 7.8 shows 

the temperature and heat conduction on the ABS at the slider’s static state for the cases at 

75oC ambient temperature, obtained using Zhou’s model and Zhang’s and Chen’s models, 

respectively. The maximum relative difference is less than 5%. 

7.4.2 Femto slider 

A heating power of 200 mW is used in the simulation of the commercial femto slider, 

whose ABS is shown in Figure 7.2. Usually its working power is less than 200 mW. 

Table 7.5 lists the static flying attitudes of the femto slider with different heat transfer 

models. It is obvious that the flying attitudes obtained with Ju’s model with and without 

considering Couette-flow-caused viscous heating, and Zhang’s and Chen’s models are 

almost the same. At the ambient temperature of 75oC, the static flying attitudes obtained 

with Zhou’s model and Zhang’s and Chen’s models are also very close. The largest 

difference is no more than 2% when compared with the results obtained with Zhang’s 

and Chen’s models. 

7.5  Conclusions 

Numerical simulations for the static flying attitudes of sliders with thermal protrusion 

are carried out using different head-disk-interface heat transfer models. The air bearing 

cooling effect is dominant at the air bearing surface compared with the viscous heating 

due to the Couette flow. Since the viscous heating contributed by the Poiseuille flow is no 

larger than the viscous dissipation contributed by the Couette flow [7], it is expected that 

the entire viscous dissipation has a negligible effect on the slider’s static flying attitude. 

The change of surface thermal accommodation coefficient from 1.0 (used in Ju’s 
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model [4]) to 0.9 (recommend in Zhang’s and Ju’s models [1, 5] for the slider and disk 

surfaces) causes less than a 10% change in static transducer flying height and pitch angle. 

The consideration of the dependence of the air molecule’s mean free path on ambient 

temperature in Zhou’s model gives a relative difference less than 10% in static transducer 

flying height and pitch angle when compared with Zhang’s and Chen’s models. 

Considering the dynamic flying height modulation of approximately 10% of the flying 

height, Zhang’s model (or Chen’s model), which is used in the current CML program for 

the air bearing cooling effect, is accurate enough for the static flying attitude simulation 

of an air bearing slider with thermal protrusion. 
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Table 7.1 Specification of the suspension used in the numerical analysis and 
corresponding static flying attitude of the pico slider (shown in Figure 7.1) with heating 

power off 
 

Suspension 
 

Suspension load: 1.5 gf 
Pitch torque: -6.4 µN.m 
Roll torque: 0.0 µN.m 
Pitch static attitude: 0.0 rad  
Roll static attitude: 0.0 rad 

Static flying attitude Transducer FH: 14.37 nm 
Pitch: 154.57 µrad 
Roll: 0.36 µrad 

 
Table 7.2 Static flying attitudes of the pico slider (shown in Figure 7.1) obtained with and 

without the viscous heating contributed by the Couette flow 
 

 Ju’s Model Zhang’s and 
Chen’s 
Models 

Heating 
power 

 With viscous 
heating 

Without viscous 
heating 

 

Transducer FH (nm) 8.51 8.51 8.35 
Pitch (µrad) 149.56 149.56 149.18 

40mW 

Roll(µrad) 0.0679 0.0678 0.10 
Transducer FH (nm) 4.21 4.23 4.00 
Pitch (µrad) 143.94 144.00 143.30 

80 mW 

Roll (µrad) -0.327 -0.244 -0.23 
Transducer FH (nm) 1.77 1.75 1.60 
Pitch (µrad) 137.18 137.19 136.07 

120 mW 

Roll (µrad) -0.80 -0.83 -0.84 
 

Table 7.3 Air parameters at different temperatures 
 

Temperature ratio of the 
specific heat γ 

Prandtl number 
Pr 

thermal 
conductivity k 
(W/m·K) 

0 oC 1.401 0.713 0.02428 
25 oC 1.400 0.707 0.02624 
50 oC 1.399 0.701 0.02816 
75 oC 1.398 0.697 0.03003 
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Table 7.4 Static flying attitudes of the pico slider (shown in Figure 7.1) obtained with 
Zhou’s model and with Zhang’s and Chen’s models 

 
Heating 
power 

Ambient 
temperature 

Flying attitude Zhou’s 
model 

Zhang’s and 
Chen’s models 

Transducer FH (nm) 9.47 9.20 
Pitch (µrad) 148.91 148.41 

0oC 

Roll (µrad) 0.079 -0.014 
Transducer FH (nm) 8.44 8.36 
Pitch (µrad) 149.49 149.21 

25oC 

Roll (µrad) 0.036 0.011 
Transducer FH (nm) 7.31 7.22 
Pitch (µrad) 149.47 149.45 

50oC 

Roll (µrad) 0.096 0.066 
Transducer FH (nm) 5.87 5.87 
Pitch (µrad) 148.48 148.60 

 
 
 
 

 
40 mW 

75oC 

Roll (µrad) 0.011 0.096 
Transducer FH (nm) 5.08 4.76 
Pitch (µrad) 143.35 142.39 

0oC 

Roll (µrad) -0.26 -0.34 
Transducer FH (nm) 4.16 4.01 
Pitch (µrad) 143.85 143.39 

25oC 

Roll (µrad) -0.27 -0.23 
Transducer FH (nm) 3.36 3.28 
Pitch (µrad) 144.35 144.15 

50oC 

Roll (µrad) -0.36 -0.26 
Transducer FH (nm) 2.29 2.33 
Pitch (µrad) 143.18 143.21 

 
 
 
 
 

 
80 mW 

75oC 

Roll (µrad) -0.43 -0.34 
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Table 7.5 Static flying attitudes of the femto slider (shown in Figure 7.8) obtained with 
different HDI heat transfer models 

 
 Ju’s Model Zhang’s 

and 
Chen’s 
Models 

Zhou’s 
model 
with 
75oC 

Zhang’s 
and 
Chen’s 
Models 
with 
75oC 

Heating 
power 

Flying 
attitude 

With 
viscous 
heating 

Without 
viscous 
heating 

Without 
viscous 
heating 

Without 
viscous 
heating 

Without 
viscous 
heating 

Transducer 
FH (nm) 

9.15 9.11 8.99 7.68 7.71 

Pitch (µrad) 103.65 103.81 103.26 103.45 103.70 

200mW 

Roll(µrad) -25.76 -25.58 -25.71 -26.15 -26.08 
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Fig.7.1. Air bearing surface of an INSIC pico slider (unit: mm). 

 

 
Fig.7.2. Air Bearing Surface of a commercial femto slider (unit: mm). 
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(a) 40 mW power considering the viscous heating contributed by the Couette flow 

 

 
(b) 40 mW power without considering the viscous heating contributed by the Couette 

flow 
 

 
(c) 80 mW power considering the viscous heating contributed by the Couette flow 



 144

 
(d) 80 mW power without considering the viscous heating contributed by the Couette 

flow 
 

 
(e) 120 mW power considering the viscous heating contributed by the Couette flow 

 

 
(f) 120 mW power without considering the viscous heating contributed by the Couette 

flow 
 

Fig.7.3. Temperature and heat flux on the ABS at the static state flying attitude with and 
without considering the viscous heating for a heating power of 40 mW, 80 mW and 120 

mW. 
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Fig.7.4. Static transducer flying height, pitch and roll angles of the slider obtained with 

Ju’s model versus with Zhang’s and Chen’s models. 
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(b) 40 mW heating power 

 

 
(c) 80mW heating power 

 

 
 120mW heating power 

 
Fig.7.5. Temperature and heat conduction flux on the ABS at the static state flying 

attitude obtained with Zhang’s and Chen’s models (the viscous dissipation is neglected). 
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Fig.7.6. Static transducer flying height, pitch and roll angle of the slider obtained with 
Zhou’s model versus Zhang’s and Chen’s models with the heating power of 40 mW. 
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Fig.7.7. Static transducer flying height, pitch and roll angle of the slider obtained with 
Zhou’s model versus Zhang’s and Chen’s models with the heating power of 80 mW. 
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(a) 75 oC ambient temperature and 40 mW heating power with Zhou’s model 

 

 
(b) 75 oC ambient temperature and 40 mW heating power with Zhang’s and Chen’s 

models 
 

 
(c) 75oC ambient temperature and 80 mW heating power with Zhou’s model 
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(d) 75oC ambient temperature and 80 mW heating power with Zhang’s and Chen’s 
models 

 
Fig.7.8. Temperature and heat conduction flux on the ABS at the static state obtained with 
Zhou’s mdoel versus Zhang’s and Chen’s models (the viscous dissipation is neglected) at 

the ambient temperature of 75oC. 
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Chapter 8 Partial-Contact Head-Disk 

Interface with Thermal Protrusion 

A new partial-contact head disk interface (HDI) with thermal protrusion is proposed 

in this chapter for magnetic recording with densities of 1 Tbit/in2 and above. This HDI 

has the advantage of maintaining light contact between the slider and the disk, so that 

both the bouncing vibration amplitude and the contact force are small compared with a 

traditional partial-contact HDI. The slider’s dynamic simulations are carried out to 

analyze the effect of various factors within the HDI, including the friction and adhesion 

between the slider and the disk, the track profile morphology on the disk and the air 

bearing design, on the slider’s dynamic performance. It is found that the bouncing 

vibration amplitude can be reduced to as small as the flying height modulation (FHM) of 

a non-contact air bearing slider without thermal protrusion. 

8.1  Introduction 

Reducing the read/write transducer to disk spacing and hence the slider’s flying 

height (FH) is required to achieve higher recording densities in hard disk drives. Among 

those proposed interface designs with reduced FH such as wear-in and contact, a 

partial-contact head disk interface (HDI) is a promising way to balance the requirements 

of low bouncing vibrations of the slider and low wear at the head. For full contact 

recording with a weak air bearing or without any air bearing [1], the vibration and wear 

of the slider are two obstacles for practical implementation. The wear-in HDI [2 and 3] 

may eliminate the mechanical-tolerance-related flying height modulation (FHM), 
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however, damage to the read/write transducer in the wear-in process can not be 

eliminated and the transducer is also worn away. On the other hand, studies [4-6] on 

partial-contact recording indicate that a small contact area is effective in reducing friction 

and slider bouncing. 

This chapter presents a new partial-contact HDI design to achieve a low transducer 

FH, low slider bouncing vibration, and a low contact force between the slider and disk. 

This HDI makes use of the thermal protrusion feature of a thermal FH control (i.e. 

dynamic FH) slider, so that only the protrusion tip, close to the protruded transducer, 

contacts the disk surface. This chapter is focused on the study of the factors in the HDI 

affecting the slider’s bouncing and slider-disk contact. An air bearing surface (ABS) 

design concept is proposed for the partial-contact HDI with thermal protrusion. 

8.2  Partial-contact HDI with thermal protrusion 

The thermal flying height control (TFC) or dynamic flying height (DFH) technique is 

widely used in current hard drives to lower the slider’s FH, which is presented in the 

patent by Meyer et al. [7]. This advantageous technique makes use of a resistance heating 

element near the read/write transducer. When a current is applied through the heating 

element, the Joule-heat-caused thermal expansion forms a local thermal protrusion close 

to the read/write transducer, which is near the trailing edge center. This local thermal 

protrusion reduces the flying height at the protruded transducer. In this way the 

transducer FH becomes adjustable. This technique not only provides control that can 

compensate for the static FH loss and reduce the likelihood of head-disk contacts for an 

air bearing slider, but also shows a potential of achieving a partial-contact HDI.  

With a heating power above a critical value in a properly designed slider, the thermal 
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protrusion at the transducer comes into contact with the disk. The small contact area at 

the thermal protrusion tip, which has a radius of curvature around 20-30 mm and 

controlled by the input heating power, helps maintain light contact between the slider and 

the disk, while the rest of the ABS remains undeformed and flies at a safe distance from 

the disk. Based on studies of the partial-contact recording [5 and 6], a small interference 

area between the slider and the disk results in small friction and contact force and small 

bouncing vibration. So it is expected that the performance of a partial-contact slider with 

thermal protrusion is better than a partial-contact slider with a micro trailing pad, such as 

that analyzed in [6]. 

8.3  Dynamic Simulation of a partial-contact slider with thermal 

protrusion 

The static simulation of an air bearing slider with thermal protrusion was first carried 

out by Juang, Chen and Bogy [8] with the consideration of the air bearing cooling effect. 

In the work of Chen and Bogy [9], HDI heat transfer models were implemented in the 

static simulation and the obtained static flying attitudes were compared. However, for the 

dynamic simulation of a partial-contact slider with thermal protrusion on the disk surface, 

the thermal protrusion changes dynamically due to the dynamic air bearing cooling and 

the dynamic slider-disk interaction, which are associated with the slider’s FHM or 

bouncing vibration. This dynamic thermal protrusion incurs difficulties in a full dynamic 

simulation of a partial-contact slider with thermal protrusion. 

In this chapter two approximations are adopted in the dynamic simulation. First, the 

thermal protrusion is taken as a constant geometry on the ABS, which only depends on 

the heating power for a given slider. This means that in the simulation the thermal 
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protrusion does not change as the flying height modulates or the slider bounces on the 

disk surface. In fact, a transient thermal response study shows that the response of 

thermal protrusion has a bandwidth of about 1 kHz [8], which is much smaller than the 

air bearing frequencies and bouncing frequencies. Hence, the first approximation is 

reasonable. Second, the friction heating and heat conduction caused by the slider-disk 

contact are negligible. In the slider-disk contact area, the friction heating counteracts the 

heat conduction from the slider to the disk. It is assumed in this chapter that the friction 

heating and contact-caused heat conduction cancel each other and the total effect is 

negligible, due to the small contact area at the tip of the thermal protrusion. 

Based on these two approximations, two steps are taken for the dynamic simulation of 

a partial-contact slider with thermal protrusion. First, the static flying attitude with 

thermal protrusion on a flat disk is calculated and the thermal protrusion profile is 

obtained for a given input heating power. The iteration approach in [8] with a static air 

bearing solver and a finite element analysis of thermal deformation is used. Second, the 

obtained thermal protrusion profile is added to the ABS profile and the dynamic 

simulation of the partial-contact slider is carried out. A nonlinear dynamics model 

developed for a partial-contact HDI in [6] is used here for the slider dynamics. The air 

bearing with contact and slider-disk adhesion, contact and friction are all considered in 

this model. As listed in [6], numerical methods are used to calculate the contact and 

adhesion force and solve the time-dependent air bearing equations and 

3-degree-of-freedom slider dynamic equations. 

In this chapter an INSIC pico slider with thermal protrusion, which was used in [8], is 

employed as Slider 1 in dynamic simulation. The slider’s ABS is shown in Figure 8.1. We 

are interested here in studying the effects of various parameters on the performance of 
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partial-contact sliders with thermal protrusion, and the pico form factor is suitable for that 

study, but we are not proposing a particular design for future use in HDDs, since the 

industry has already moved to the smaller femto form factor sliders. It has zero crown, 

camber and twist. The suspension preload is 1.5 gf and there is no load offset. The disk 

RPM is 7200. Another two sliders with the ABS’s modified based on Slider 1 are used in 

the analysis of the effect of the ABS design on the slider’s bouncing. A measured track 

profile, which is shown in Figure 8.2, is used in the dynamic simulation. Another rough 

disk track profile and burnished smooth track profiles are also used to analyze the effect 

of mico-waviness and roughness on the slider’s bouncing. In the simulation the sliders 

are thermally actuated from 5 nm and a 1-ms dynamic simulation is carried out for the 

slider’s response. 

8.4  Simulation results and discussion of partial-contact sliders with 

thermal protrusion 

8.4.1 FHM and bouncing vibration 

The slider’s transducer FH reduces as the heating power increases. Beyond a certain 

heating power, the slider may touch the disk surface. Figure 8.3 shows the time histories 

of the slider dynamics with heating powers from 0 mW, 15 mW, 20 mW to 25 mW. The 

slider flies above the disk surface when there is no heating. The 3-sigma of the variation 

of the transducer FH is 0.50 nm. When the heating power is increased to 15 mW, the 

slider touches the disk only at the beginning and the 3-sigma of the transducer FH is 0.57 

nm. When the heating power is increased beyond 15 mW, the slider touches the disk 

surface and the minimum spacing becomes negative. The 3-sigma of the variation of the 

transducer FH increases to 1.06 nm at 20 mW and 1.04 nm at 25 mW. The bouncing 
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vibration amplitude of the slider in partial contact is much larger than the FHM of the 

slider at flying. The mean pitch angle and roll angle decrease as the heating power 

increase, which agrees with the static simulation results in [9]. The variations of the pitch 

angle increase as the slider touches the disk. The contact force between the slider and the 

disk remains below 0.05 gf when the slider touches down, which is much smaller than the 

1.5-gf preload of the suspension force acting on the slider. 

Figure 8.3 also shows the corresponding power spectrum of the FH with these values 

of heating powers. It is seen that the slider’s peak frequencies increase as the slider flies 

lower with a heating power of 15 mW. This can be explained with the decreased FH and 

increased air bearing stiffness. When the slider touches the disk surfaces with heating 

powers above 20 mW, a high frequency peak around 700 kHz occurs. Similar to the high 

frequency peak of a partial-contact micro-trailing pad slider, this high frequency peak is 

related to the slider-disk contact. 

8.4.2 A partial-contact slider with thermal protrusion and a partial-contact 

micro-trailing-pad slider 

Figure 8.4 shows the time history of the dynamics of Slider 1 and the 

micro-trailing-pad slider in [6] on the smooth track in Figure 8.2. It is obvious that the 

vibration amplitudes of the transducer FH, pitch and roll of the micro-trailing-pad slider 

are much larger than those of Slider 1. The contact force of the micro-trailing-pad slider 

is also much larger than that of Slider 1. This indicates that the contact between the disk 

and the protrusion tip, as opposed to that of the micro trailing pad, causes a smaller 

interaction between the slider and the disk. The slider’s bouncing vibration and the 

contact force can be greatly reduced simultaneously through the partial-contact with 

thermal protrusion. 
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8.4.3 Friction between the slider and the disk 

As discussed in [6], the friction force between a partial-contact slider and a disk is not 

the direct cause of the slider’s bouncing vibration, and it has only a slight effect on the 

bouncing amplitude. The reason is that the torque acting on the slider due to the friction 

force is much less than that from the contact and adhesion force, with respect to the 

slider’s mass center. For the contact between the slider’s thermal protrusion and the disk, 

it is expected that the effect of friction force is negligible, since the contact area and 

contact force is even smaller. This is verified by the dynamic simulation of Slider 1 with 

25 mW heating power, as shown in Figure 8.5. Here the friction coefficient between the 

slider and the disk varies from 0.3, 1.0 to 2.0 and the disk track profile is that shown in 

Figure 8.2. The 3-sigma of transducer spacing remains approximately 1.0 nm. Also the 

vibrations of pitch and roll angles are almost the same as without friction considered. The 

contact force between the slider and the disk is also not affected by the friction coefficient. 

So the friction between the slider and the disk has almost no effect on the slider’s 

bouncing vibration. 

8.4.4 Adhesion between the slider and the disk 

The adhesion force between the slider and the disk is proportional to the change of 

surface energy before and after the slider-disk contact in the modified intermolecular 

force model [10]. To study the effect of adhesion on the dynamics of Slider 1, the change 

of surface energy before and after contact is set to range from 0.08 J/m2, 0.008 J/m2 to 

0.001 J/m2. The disk track profile shown in Figure 8.2 is used and the heating power is 25 

mW. The corresponding dynamic simulation results for Slider 1 are shown in Figure 8.6. 

As the change of surface energy varies, the vibration amplitudes of pitch and roll angles 

and the bouncing vibration amplitude do not change much. The 3-sigma of the transducer 
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spacing ranges between 1.0-1.2 nm approximately. But the mean of transducer spacing 

increases from 1.66 nm, 1.98 nm to 2.01 nm, as the change of surface energy decreases. 

Correspondingly, the peak of the contact force decreases from 0.15 gf, 0.05 gf to 0.02 gf. 

This indicates that the slider-disk intermolecular adhesion has a smaller effect on the 

bouncing vibration of Slider 1 with thermal protrusion than of a partial-contact slider 

with micro-trailing pad in [6]. The reason is related to the small contact area between the 

slider and the disk. As most parts of the ABS are farther away from the disk, the adhesion 

between them and the disk does not vary much. Reduced slider-disk adhesion only results 

in a higher transducer flying height and a smaller contact force, while the slider’s 

bouncing vibration is almost unchanged. 

8.4.5 Disk surface 

a) Rough disk surface and smooth disk surface 

The smooth track profile shown in Figure 8.2 has a root mean square (RMS) value of 

0.2 nm. A rough track profile with RMS 0.6 nm is shown in Figure 8.7. These two track 

profiles were obtained from the LDV-measured disk morphologies [14]. Frequency 

components below 10 kHz were filtered out and the profile features less than 5 µm could 

not be captured. These two tracks are incorporated into the dynamic simulation of Slider 

1. To exclude the effect of slider-disk adhesion, the change of surface energy before and 

after contact is set as zero. The time histories of the slider dynamics are shown in Figure 

8.8. The 3-sigma of the transducer spacing is around 3.5 nm on the rough track, while it 

is only around 1.0 nm on the smooth track. The peak of the contact force is 0.24 gf on the 

rough track, while it is only 0.02 gf on the smooth track. The vibration amplitudes of the 

pitch and roll angles are smaller on the smooth track than on the rough one. It is shown 

that a partial-contact slider with thermal protrusion has a smaller contact force as well as 
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bouncing vibration amplitude on a smoother disk surface. This agrees with the conclusion 

in [6] that the slider’s bouncing is a forced vibration due to the micro-waviness and 

roughness moving through the HDI as the disk rotates. A smoother track has a smaller 

excitation and reduces the slider’s bouncing vibration and contact force. 

b) Burnished Disk Surfaces 

As a further analysis of the effect of the track profile on the slider’s bouncing, we 

numerically burnish the track profile shown in Figure 8.2. Here we employ two kinds of 

burnishing. One is a time-domain burnishing, which approximates the burnishing process 

of a glide-head slider on the track; the other is a frequency-domain burnishing, which is 

to show the effect of high frequency components of the track on the disk surface. For the 

time-domain burnishing, a smoothing method called running line smoothing [11] is used 

to burnish local peaks. This method carries out a linear fitting between the measurement 

point position and the track profile height in the neighborhood of each measurement point. 

The linear fitting is taken as a base line at each point. The track is burnished where the 

track height is above the local base line. Here the neighborhood length is chosen to be 25 

µm, which is approximately the length of the trailing pad of a glide-head slider. The 

remaining local peak height after burnishing is set as 0.1 nm, since local peaks may not 

be totally flattened after burnishing. The burnished track profile and power spectrum are 

shown in Figure 8.9(a). The frequency-domain burnishing is used to remove the 

components with frequencies higher than a given value from the track profile. Here that 

frequency is set to be 500 KHz. A low pass filter is used for this burnishing process. 

Figure 8.9(b) shows the burnished track profile and its power spectrum. In practice, the 

frequency-domain burnishing is hard to implement. The RMS values of the burnished 

tracks are still approximately 0.2 nm. 
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The time histories of Slider 1 with heating power 20 mW on the original track in 

Figure 8.2 and the burnished tracks in Figures 8.9(a) and (b) are plotted in Figure 8.10. 

The vibrations of the pitch and roll angles of Slider 1 on these three tracks are almost the 

same. However, the 3-sigma of the transducer FH is 1.1 nm on the original track, while it 

is 0.9 nm on the time-domain burnished track and 0.5 nm on the frequency-domain 

burnished track. However, the time history of the contact force remains almost 

unchanged. The removal of frequency components above 500 KHz reduces the bouncing 

vibration more than the removal of local peaks. As the external excitations above 500 

KHz are removed, the bouncing vibration amplitude of Slider 1 can be lowered close to 

the FHM of Slider 1 without thermal protrusion. This is reasonable since the dominant 

frequencies of the slider’s bouncing are around 700 kHz. This is also indicated by the 

power spectra of FH on these disk tracks. It is seen that the patterns of the power spectra 

are similar, however, the frequency peak around 700 kHz is much lower on the 

frequency-domain burnished track than on the unburnished or time-domain burnished 

track. 

8.4.6 ABS designs for a Partial-Contact HDI with Thermal Protrusion 

It has been shown by Thornton and Bogy [12] that the ABS design has an important 

effect on the slider’s FHM. The ABS design with a high air pressure peak at the 

transducer helps reduce the slider’s FHM [12]. Here we focus on the effect of the ABS 

design on the bouncing vibration of a partial-contact slider, which has larger amplitude 

than the FHM of a flying slider. Two different ABS designs are obtained through 

modifying the ABS of Slider 1. The sliders with these two ABS’s are denoted as Slider 2 

and Slider 3, respectively, and they are shown in Figure 8.10. Slider 2 has no side trailing 

pads and Slider 3 has a small discrete trailing pad. With adjusted preload and load offset, 
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the static flying attitudes of Slider 1, 2 and 3 can be very close. They are listed in Table 

8.1. 

The static simulations with and without heating power are carried out for these three 

sliders. The air bearing pressure profiles at the static state without heating power for 

Sliders 1, 2 and 3 are shown in Figure 8.11. It is seen from Figure 8.12 that Slider 2 has 

the highest air bearing peak pressure at the transducer and Slider 3 has the lowest peak 

pressure. The touch-down heating power is approximately 20 mW for Slider 1, 40 mW 

for Slider 2 and 10 mW for Slider 3. It is seen that Slider 3, which has the lowest peak air 

pressure at the transducer, has the smallest touch-down heating power, while Slider 2, 

which has the highest air bearing peak pressure at the transducer without side air bearing 

peaks, has the largest touch-down heating power. This agrees with the ABS design 

guideline for high actuation efficiency developed by Juang and Bogy [13]. The 

corresponding air bearing pressure profiles on touch-down are shown in Figure 8.13. 

Slider 2 still has the highest air bearing peak pressure. With the touch-down heating 

power, Slider 1 as well as Slider 2 has a dramatic increase in the air bearing peak at the 

transducer. However, the air bearing peak pressure at the discrete trailing pad of Slider 3 

does not increase much after the heating power is on. This explains the small touch-down 

heating power of Slider 3. 

With each touch-down heating power, the dynamic simulations of Slider 1, Slider 2 and 

Slider 3 are carried out, respectively. The time histories of the slider dynamics are shown 

in Figure 8.14. It is seen that the vibration amplitudes of the sliders are almost the same 

in the pitch and roll direction. However, the vertical vibration amplitudes of these sliders 

are different. The 3-sigma of the transducer FH is 1.0 nm for Slider 1, 0.7 nm for Slider 2 

and 3.5 nm for Slider 3. The peak of the contact force is 0.5 gf for Slider 3, while it is 
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less than 0.05 gf for Slider 1 and Slider 2. The plot of the minimum spacing shows that 

Slider 2 contacts the disk surface only from time to time. This indicates that the high air 

bearing pressure at the trailing edge center helps keep the slider in a light contact 

condition with the disk so that the contact force and bouncing amplitude also remain 

small. 

8.5  Conclusions 

A new partial-contact head disk interface slider with thermal protrusion is analyzed to 

achieve a low transducer flying height for a high magnetic recording density. Light 

contact between the thermal protrusion tip, which is close to the protruded transducer, 

and the disk can be maintained with a certain heating power. A dynamic simulation 

scheme for such partial-contact sliders with thermal protrusion is presented and 

discussed. 

The results of the dynamic simulations show that the bouncing vibration amplitude 

and the contact force of a partial-contact slider with thermal protrusion are much smaller 

than the partial-contact mico-trailing pad slider on the same smooth disk track. 

The dynamic simulation results also show the effect of various factors within the HDI, 

including the friction and adhesion between the slider and the disk, the track profile 

morphology on the disk and the air bearing design, on the slider’s dynamic performance 

with thermal protrusion. It is found that the friction between the slider and the disk has 

almost no effect on the slider’s vibration and mean flying attitude. The slider-disk 

adhesion changes the mean flying height, but has little effect on the slider’s vibration. 

The slider’s bouncing vibration amplitude can be reduced to a value similar to the FHM 

with no contact, when the disk track is burnished or the air bearing pressure peak is 
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enforced at the trailing edge center. For the INSIC pico slider [8], the mean traducer 

flying height can be reduced below 3 nm with heating powers above 20 mW. The 3-sigma 

of the bouncing amplitude can be reduced from 1.1 nm to 0.5 nm, when the frequencies 

components above 500 Khz are removed from the track. A modified air bearing surface 

with a higher air bearing pressure at the transducer weakens the contact force between the 

protrusion tip and the disk, while the bouncing vibration amplitude is only 0.5 nm, which 

is comparable to the flying height modulation of the INSIC slider without thermal 

protrusion, and the peak of the contact force is less than 0.05 gf, which is much smaller 

than the suspension preload. 
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Table 8.1 Suspension load and flying attitudes of Slider 1, 2 and 3 with heating power off 
 

 Suspension load Flying attitude 
Slider 1 Preload: 1.5 gf 

X-offset: 0 nm 
Y-offset: 0 nm 

Transducer FH: 4.60 nm 
Pitch: 187.31µrad 
Roll: -0.57µrad 

Slider 2 Preload: 1.8 gf 
X-offset: 200 nm 
Y-offset: 0 nm 

Transducer FH: 4.46 nm 
Pitch: 169.40µrad 
Roll: 1.59µrad 

Slider 3 Preload: 1.1 gf 
X-offset: 50 nm 
Y-offset: 0 nm 

Transducer FH:4.87 nm 
Pitch: 179.60 µrad 
Roll: -1.70µrad 
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Fig.8.1. Air bearing surface of Slider 1 (unit: mm). 

 

 
Fig.8.2. A smooth track profile and its power spectrum corresponding to a disk linear 

velocity of 17.34 m/s. 
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Fig.8.3. Time history of Slider 1 with heating powers of 0 mW, 15 mW, 20 mW to 25mW 

and the corresponding FH power spectrum. 
 



 169

 

 
Fig.8.4. Time histories of a partial-contact slider with thermal protrusion and a 

partial-contact micro-trailing-pad slider on the smooth track. 
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Fig.8.5. Time histories of Slider 1 with 25 mW heating power on the smooth disk track 

with the friction coefficient values of 0.3, 1.0 and 2.0. 
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Fig.8.6. Time histories of Slider 1 on the smooth track with the change of surface energy 

before and after slider-disk contact (Δγ) for values of 0.08 J/m2, 0.008 J/m2 and 0.001 
J/m2. 
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Fig.8.7. A rough disk track profile and its power spectrum corresponding to a disk linear 

velocity of 17.34 m/s. 
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Fig.8.8. Time histories of Slider 1 with 25 mW heating power on the smooth track and 

the rough track. 
 

 
(a) Time-domain burnished track profile and its power spectrum corresponding to a linear 

velocity of 17.34 m/s. 

 
(b) Frequency-domain burnished track profile and its power spectrum corresponding to a 

linear velocity of 17.34 m/s. 
Fig.8.9. Burnished track profiles and their power spectra corresponding to a disk linear 

velocity of 17.34 m/s 
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Fig.8.10. Time histories of Slider 1 on the smooth track (shown in Fig.8.2.) and burnished 

tracks (shown in Fig.8.9.) and the corresponding power spectra of FH. 
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(a) Slider 2                           (b) Slider 3 

Fig.8.11. Air bearing surfaces of Slider 2 and Slider 3 (unit: mm). 
 

 
(a) Slider 1          (b) Slider2 

 
(c) Slider 3 

Fig.8.12. Air bearing pressure profiles of Slider 1, 2 and 3, respectively, at the static state 
with heating power off (unit: atm). 
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(a) Slider 1       (b) Slider 2 

 
(c) Slider 3 

Fig.8.13. Air bearing pressure profiles of Slider 1, 2 and 3, respectively, at the static state 
with the touch-down heating power (unit: atm). 
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Fig.8.14. Time histories of the slider dynamics on the smooth track for Slider 1, 2 and 3. 
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Chapter 9 Summary and Conclusion 

One of the major technological challenges for achieving an areal recording density of 

1~10Tbit/in2 in hard disk drives is to obtain a reliable and robust head disk interface with 

a flying height of less than 2.5 nm. This results in a transducer clearance of less than 1 

nm even on a smooth disk surface with a glide height of only 1.5 nm. It is also required 

that the flying height variation should be less than 10% of the clearance in order to 

maintain a stable read/write process. With such a flow clearance, impact and contact 

between the slider and disk becomes unavoidable, causing a large likelihood of the 

slider’s bouncing and the head’s wearing. The bouncing and wearing will cause the 

instability of the head disk interface. All of these inevitable events challenge the design of 

the next generation of air bearing sliders. 

A partial-contact head disk interface with an air bearing is proposed and analyzed in 

this dissertation to obtain an ultra-low clearance for 1~10 Tbit/in2. The research focuses 

on the numerical simulation of the slider’s performance in the partial-contact head disk 

interface and the feasibility of maintaining both a low bouncing amplitude and a low 

contact force. The effects of various important factors involved in the interface are 

analyzed. 

Chapter 2 analyzes two types of quasi-static contact models- the asperity-based 

contact model and the elastic contact model based on influence coefficients. The 

Greenwood-Williamson model is shown to be the simplest and a sufficiently accurate 

asperity-based model for the slider-disk asperity contact. The disk’s bulk deformation 

needs considering when the slider crashes onto the disk surface. In that case the elastic 
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contact model based on the influence coefficient is recommended. The effect of the pitch 

and roll angles on the contact is not negligible, so using a given contact area parallel to 

the disk mean surface is not an accurate approach for modeling the slider-disk contact. 

Chapter 3 investigates the intermolecular adhesion between the slider and disk 

surfaces. A contact distance is incorporated into the widely used intermolecular adhesion 

force model for the slider-disk adhesion in near-contact regions. Various different 

asperity-based intermolecular adhesion models are chosen and compared in the modeling 

of the adhesion between a non-flat slider and disk surface. It is found that the classical 

IDMT model provides a sufficiently accurate adhesion force for the slider-disk interface. 

As shown by the static air bearing simulation results, the intermolecular adhesion 

between real slider and disk surfaces has a negligible effect on the attitude of a flying air 

bearing slider. When the slider touches the disk surface, the net adhesion force, i.e. the 

sum of the adhesion force and the contact force, does affect the partial-contact slider’s 

attitude. As to the ultra-smooth slider and disk interfaces, the modified intermolecular 

adhesion force model predicts a strong adhesion. 

Chapter 4 presents a nonlinear dynamics model for the partial-contact air bearing 

slider. The numerical simulation results using this model show that both the slider’s 

bouncing vibration amplitude and the contact force are increased as the adhesion 

increases. The friction force between the slider and the disk does not affect the bouncing 

and contact. The disk surface roughness is the main factor in the cause of slider bouncing. 

Decreasing the contact pad width can significantly reduce the slider’s bouncing vibration 

as well as the contact force. Increasing the suspension preload may suppress the slider’s 

bouncing in a certain range without a significant increase in the contact force. 

Chapter 5 focuses on the in-plane vibrations of the partial-contact slider. A 
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six-degree-of-freedom model of the slider’s motion is implemented in the simulation of 

the slider’s dynamics. The in-plane vibrations are found to be forced vibrations caused by 

the air shear and the slider-disk friction. The slider’s skew angle affects the order of 

magnitude of the slider’s off-track vibrations. For a partial-contact pico slider with a 

micro-trailing pad, when the contact force is less than 0.25 gf and the friction coefficient 

between the slider and the disk is less than 0.3, the off-track vibration peak-to-peak 

amplitude is on the order of 10 nm and the down-track vibration peak-to-peak amplitude 

is on the order of 100 nm. A reduced trailing contact pad width incurs smaller in-plane 

vibrations as well as a smaller bouncing vibration. 

In Chapter 6, the root cause of the partial-contact slider’s bouncing vibrations is 

obtained using three non-linear slider dynamics models. It is again found that the slider’s 

bouncing vibration is a forced vibration caused by the moving disk waviness and 

roughness through the head-disk interface as the disk rotates. The friction between the 

slider and the disk has a negligible effect on the slider’s bouncing. 

In Chapter 7 we compare three different models of the heat transfer between the 

thermal flying control (i.e. dynamic flying height) slider and the disk. Both the pico and 

femto slider designs are used in the static simulation and the results indicate that the heat 

transfer between the slider and the disk is dominated by the heat conduction through the 

air bearing. The viscous heating does not affect the slider’s flying attitude. The different 

models of the heat conduction at the air bearing surface produce a relative difference of 

less than 10% in the slider’s flying height and pitch angle. 

Chapter 8 proposes a partial-contact head disk interface with thermal protrusion for 

the ultra-low clearance. This interface can maintain a light contact between the protrusion 

tip and the disk, so that the protruded read/write transducer, close to the tip, has a stable 
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low flying height. The bouncing vibration amplitude and the contact force of a 

partial-contact slider with thermal protrusion are much smaller than those of the 

partial-contact micro-trailing pad slider on the same disk surface. The adhesion and 

friction between the slider and the disk do not affect the bouncing amplitude, while the 

adhesion decreases the mean flying height of the slider. The slider’s bouncing vibration 

amplitude can be reduced to a value similar to the flying height modulation with no 

contact, when the disk track is burnished or the air bearing pressure peak is sufficiently 

localized at the trailing edge center. A modified air bearing surface with a higher air 

bearing pressure at the transducer weakens the contact force between the protrusion tip 

and the disk and suppresses the bouncing vibration amplitude. 

In conclusion, the results presented in this dissertation appear to indicate that with 

proper designs of the slider’s air bearing surface and the disk’s roughness pattern it will 

be possible to achieve a sufficiently stable heat disk interface for the areal density goals 

of the next generation of hard disk drives. 
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