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Abstract

Flying Height Control Sliders with Piezoelectric and Thermal Nanoactuators for

Ultrahigh Density Magnetic Recording

by
Jia-Yang Juang
Doctor of Philosophy in Engineering- Mechanical Engineering

University of California, Berkeley

The central theme of this dissertation is a comparative study of flying height (FH)
control sliders with piezoelectric and thermal actuation as well as a comprehensive study
of the design, fabrication, modeling and dynamic control of the piezoelectric
nanoactuator for achieving a FH of ~2 nm, which is required for an areal data density of 1
Tbit/in?, which is the goal on the next generation of hard disk drives.

It is found that the intermolecular and electrostatic forces at the head-disk
interface that occur at such small spacing are effectively reduced in both approaches. The
thermal protrusion of FH control sliders can be controlled by adjusting the power of the
heating elements, but the inherent power-consuming thermal actuation limits the
actuation displacement, especially for battery powered mobile applications. The
quasi-static nature allows thermal FH control sliders to compensate the static spacing loss.
The piezoelectric dynamic control slider shows promising performance of higher

bandwidth, larger actuation displacement, and higher power efficiency. However, the



requirement of piezoelectric materials and the modification of the slider design pose
challenges for the fabrication process and increase the manufacturing cost.

Even though the protruded area was relatively small for a thermally actuated
slider, there was still considerable counter effect of the air bearing, resulting in an
actuation efficiency of only ~50 %. A new air bearing surface (ABS) design, called
“Scorpion III”, is presented, which demonstrates an overall enhancement, including
virtually 100 percent efficiency with significantly less power consumption.

Another ABS design, named “Scorpion IV”, was designed and fabricated for a
piezoelectric slider. Dynamic analysis by numerical simulations show that Scorpion IV
exhibits an overall enhancement in flying performance, such as track-seeking and
dynamic load/unload, due to its remarkably high stiffness and damping. We also propose
an inexpensive and low-temperature process for integrating the piezoelectric material in
the fabrication of current Al,O3-TiC sliders, and we conducted experimental analysis to
investigate the flying and actuation performances of the fabricated
head-gimbal-assemblies. The FH was successfully reduced from about 10 nm to contact,
and a track of considerable lube depletion and carbon wear was observed after the contact
tests.

To dynamically suppress the FH modulation (FHM) under intermolecular and
electrostatic forces for the actuated air bearing slider we present a new 3-DOF analytic
model of an observer-based nonlinear compensator for calculating the required control
voltage for the piezoelectric nanoactuator. The nonlinear air bearing stiffness and
damping were identified by impulse responses, and these values were used in the model.

Numerical simulations show that the response of the model is in good agreement with a



Dynamic Simulator developed in the Computer Mechanics Laboratory. However, the
model requires much less computation time, and hence it can be used as a plant for the
observer-based nonlinear sliding mode controller. Numerical studies show that the FHM
due to disk waviness was effectively controlled and reduced.

The key contributions of this dissertation are the identification of some of the
mechanical challenges inherent in ultrahigh density magnetic recording required for the

next generation of hard disk drives as well as some solutions to address these challenges.

Professor David B. Bogy

Dissertation Chair
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CHAPTER 1
INTRODUCTION

1.1 Magnetic Hard Disk Drives
Among the information storage systems the magnetic hard disk drive (HDD) is
the dominant mass storage device for computers ranging from laptops to mainframes, and
one of the major storage devices for consumer electronics because of its large storage
capacity, low cost per megabyte, fast access time and a relatively mature manufacturing
infrastructure. The basic operation principles of magnetic hard disk drives have not
changed much since its introduction in 1957 by IBM. However, many technological
challenges have been overcome in the evolutionary process, which results in a rapid
increase in both the areal density and data transfer rate.
A magnetic disk drive is mainly composed of four parts [1]:
1. Magnetic read/write heads, magnetic disks and head-disk interface (HDI). Each
write/read element is located on the trailing edge of a slider. A slider is
mounted to the end of a stainless steel gimbal-suspension, forming a
head-gimbal assembly (HGA).
2. Data detection electronics and write circuit, mostly located on a print-circuit
board.
3. Mechanical servo and control system, including spindles, actuators,
suspensions and control chips.
4. Interface to microprocessor, located at one edge of the print-circuit board and
through which the microprocessor input information from or output

information to the disk drive is achieved.



Fig. 1.1 shows a photograph of a hard disk drive with its cover off, exposing the
components. The operation of the head-disk assembly is based on a self-pressurized air
bearing between the slider and the spinning disk, which maintains a constant separation
(called flying height, FH) between them, as shown in Fig. 1.2. By positioning the slider
along the radial direction, different data tracks can be read or written on the disk. The

state-of-the-art FH and track width are ~ 10 nm and 250 nm, respectively.

As shown in Fig. 1.3 the areal density of magnetic recording in HDDs has been
increased dramatically at an annual compound growth rate of ~ 60 % in the 1990s. This
fast pace was mainly due to the introduction of magnetoresistive (MR) heads and the
continuous reduction of the FH as shown in Fig. 1.4. In order to increase the areal density,
the magnetic data bits have to be packed closer together in both the circumferential and
radial directions, corresponding to linear bit density and track density, respectively. The
increase of data track density is possible only when the position accuracy of the servo
system can be improved while a reduction of FH is required for increasing the linear bit

density.

An areal density of 1 Tbit/in® is the current goal of academic and industry
researchers for future HDDs. Organizations such as the Information Storage Industry
Consortium (INSIC) in the US and the Storage Research Consortium (SRC) in Japan are
working on research in media and heads (magnetics) signal processing, servo systems

and tribology (head-disk interface) to achieve the goal of reaching 1 Tbit/in>.



1.2 Head-Disk Interface (HDI) and Air Bearing Surface (ABS)

Over the years the technological advancement in the air bearing slider and
magnetic read/write elements has enabled the sustained improvement of both mechanical
and magnetic performances of HDDs. Figs. 1.4 and 1.5 show a historical overview of the
miniaturization of the slider and read/write transducer. The body size of the slider has
changed from the full size slider (4.1 x 3.2 x 0.85 mm) to the current femto slider (0.85 x
0.70 x 0.23 mm). The air bearing surface (ABS) is a patterned surface that comes within
proximity of the disk surface. The relative motion between the slider and the disk creates
a thin air film bearing with a particular pressure distribution. The flying attitude,
including FH, pitch and roll angles, of the slider is determined by the force balance of the
generated pressure and the applied force from the suspension. The ABS design has
evolved to be very complicated to meet many requirements encountered as the FH is

continuously decreased.

However, in order to achieve the areal density of 1 Tbit/in?, the nominal
head-media spacing (HMS) has to be reduced to 5 nm. This HMS includes a physical
spacing (FH) of 2.5 nm between the read/write element and the surface of the disk, the
protective layers—slider and disk diamond-like-carbon overcoats, and lubricants on the
disk. The protective overcoats, made of diamond-like carbon and silicon, are necessary to
provide wear resistance and to protect the magnetic media and transducer from corrosion.
The lubricant is also required for reducing the wear and improving the durability of the

overcoats.



A stable and constant FH must also be sustained in the presence of altitude and
temperature changes, manufacturing tolerance, and track-seeking motion. Furthermore,
slider disk contacts must be avoided during load/unload processes and operational shocks.
The dynamic instability caused by FH modulations (FHMs) and nanoscale adhesion
forces, such as electrostatic and intermolecular forces, should be minimized. Those
challenges make a conventional air bearing surface (ABS) slider an unlikely choice for 1
Tbit/in®. Major challenges are expected in designing a reliable interface between the

read/write head and the magnetic disk or head-disk interface (HDI).

1.3 Research Objectives

The research presented in this dissertation is to study the feasibility of achieving
the FH goal for 1 Tbit/in® by utilizing FH control sliders with thermal and piezoelectric
nanoactuators. In a FH control slider an additional actuator, such as a heating element
(for thermal actuation) or a piezoelectric material (for piezoelectric actuation), is mounted
in the slider body. The read/write transducer is raised or lowered by the actuator on
demand for controlling the FH. This research is aimed at attaining the following five
objectives: The first objective is to investigate new phenomena associated with the
introduction of the nanoactuators, including the actuation stroke, bandwidth, efficiency
and power consumption. The second objective is to study special requirements of the
ABS for FH control sliders and to design air bearing sliders with 10-nm FH for both
thermal and piezoelectric actuations. We evaluated the static and dynamic flying
performance of the designed sliders by numerical modeling and simulation. The third

objective is to develop an inexpensive and low-temperature approach for integrating



piezoelectric materials in the fabrication of current Al,Os-TiC sliders and to conduct
experimental measurements and tests for the fabricated prototype sliders. The fourth
objective is to develop a lumped-parameter model for the piezoelectric slider and design
an observer-based nonlinear compensator for calculating the required control voltage for
suppressing the FH modulation and enhancing the dynamic stability of the HDI. The fifth
objective is to study the effects of the ABS on thermal actuation and track-seeking

motions for ultralow flying sliders.

1.4 Dissertation Organization

This dissertation is organized into eight chapters. Chapter 1 is an introduction that
covers the history and operation principles of magnetic hard disk drives, the HDI and air
bearing surface, the motivation for this work and the objectives of the research presented.
Chapter 2 is a study of two approaches, namely thermal and piezoelectric actuators, for
achieving the requirements for an areal density of 1 Tbit/in’. In Chapter 3, two ABSs
designed as FH control sliders with thermal and piezoelectric actuations have been
proposed and their flying dynamics have been investigated by numerical simulations.
Chapter 4 presents an inexpensive and low-temperature approach for integrating
piezoelectric materials in the fabrication of current Al,O;-TiC sliders. The fabricated
prototype sliders have been tested experimentally. Chapter 5 develops an analytical
model and an observer-based nonlinear sliding mode controller for compensating the
short range adhesion forces, such as intermolecular and electrostatic forces in the HDI,
and suppressing the FH modulation induced by disk morphology. Chapter 6 contains an

investigation of the effect of ABS design on the actuation performance of thermal FH



control sliders. Chapter 7 presents a quasi-static approximation for modeling the
track-seeking motion, which can substantially decrease the computation time over that
required for a dynamic analysis. The track-seeking performances of four different ABS
designs are numerically investigated and design guidelines are provided. Chapter 8

presents the conclusions of this dissertation.
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Fig. 1.1. Hard disk drive (http://www.seagate.com/).




o g 3
(a) 3
. | 4.1_)
c
&
=
Dats z ——
[ |
®) — Shider
| Spindle m Y Flying
| 7 | A Height
Disk | Air Bearing Head
|
(e)
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CHAPTER 2
TwO NANOACTUATOR DESIGNS FOR AREAL DENSITY OF 1
TBIT/IN®

To achieve the areal density goal in hard disk drives of 1 Tbit/in® the minimum
physical spacing or flying height (FH) between the read/write transducer and disk must
be reduced to about 2 nm. At such low spacing new nanoscale forces act between the
slider and disk, such as intermolecular and electrostatic forces, which must be taken into
consideration in the air bearing design. These forces increase the level of flying height
modulations (FHMs), which in turn creates dynamic instability and intermittent contact in
the flying head slider similar to what has been observed in experiments. Here we present
two possible approaches to minimize such forces and/or reduce FHM by FH control,
including a thermal flying height control slider and a piezoelectric flying height control

slider for hard disk drives.

2.1 Introduction

As the spacing between the slider and the disk decreases in hard disk drives the
linear bit spacing of the magnetic recording can decrease, resulting in higher areal density.
According to the Wallace spacing loss equation the magnetic signal increases
exponentially as the distance decreases between the magnetic media and the transducer.
The maximum magnetic signal can be obtained at a spacing of zero, resulting in a contact
recording scheme. However, there are trade-offs between reducing the bouncing vibration
and wear in such systems [1]. Another significant concern is the thermal stability of both

the media and GMR sensors. The read-back signal of GMR sensors can be significantly
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affected by thermal influences since their electrical resistance is temperature dependent.
Continuous high-speed contact generates excessive heat, which undermines the recording
performance. The above issues have to be addressed before a reliable contact recording

system can be realized.

Instead of contact recording we consider a flying scheme, in which the nominal
mechanical spacing (or flying height, FH) between the slider and the disk is reduced to
about 2 nm in order to achieve an areal density of 1 Tbit/in®. On the other hand, due to
this reduction in spacing between the slider and the disk, the threshold of new nanoscale
phenomena will be crossed. In particular, short range forces between the slider and disk
come into play, such as intermolecular and electrostatic forces. A study of the effect of
intermolecular forces and electrostatic forces was presented in previous papers, e.g. [2].
The intermolecular and electrostatic forces do not have a significant effect on the flying
characteristics of high flying sliders (spacings greater than 10 nm), but they become
increasingly important at low spacings (below 5 nm). These forces are attractive in nature
and hence result in a reduction in fly height as compared to what would be the case
without them. It is also found that these highly nonlinear forces increase the level of disk
morphology induced FHM, which in turn creates dynamic instability and intermittent

contact in the flying head slider.

Some indications of dynamic instability have been observed experimentally for
ultra low flying sliders, such as different take-off and touch-down disk speeds (hysteresis)

for flying sliders [3]. Various models have been used to explain the instability that results
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from the intermolecular forces and charge buildup at the HDI. With the decrease in the
head-media spacing (HMS) in order to achieve higher areal density the contribution of
intermolecular and electrostatic forces to the force balance at the HDI can no longer be
neglected. Hence it is important to investigate alternate air bearing slider designs that can
minimize nanoscale short range forces and/or reduce FHM by FH control. To minimize
these forces the area of the sliders in close proximity of disks has to be reduced. This can
be achieved by reducing the size of the central trailing pads and using higher flying
sliders with actuation that can move the read/write transducer closer to the disk on
demand. To reduce the FHM by FH control, the bandwidth of actuation has to be high

enough to compensate the air bearing dynamics.

In this chapter, we present two approaches to sustain a more stable HDI for low
(transducer) FH sliders, including a thermal flying height control slider and a
piezoelectric flying height control slider for hard disk drives. This chapter is organized as
follows. First, a thermal FH control slider with an additional heating element near the
read/write transducer is presented. Finite-element analysis and CMLAIr are used to
predict the magnitudes of thermal protrusion, FH reduction, intermolecular forces,
actuation bandwidth and power consumption. Then, the actuation bandwidth of a
piezoelectric slider is calculated by finite-element analysis and measured by Laser
Doppler Vibrometer (LDV). Further, the advantages and disadvantages of these two

solutions are discussed.

2.2 Two Approaches for Flying Height Control Sliders
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2.2.1 Thermal Nanoactuator

The read/write elements of a magnetic head slider consist of thin layers of
different materials including write poles, sensor, shields, undercoat, overcoat, coil,
insulation layer and the substrate. Due to the mismatch of the coefficients of thermal
expansion of the various materials the pole-tip of the write pole protrudes beyond the
ABS plane when the ambient temperature varies and/or when an internal heat source is
generated by Joule heating of the write current. These temperature-induced (T-PTP) and
write-induced (W-PTP) pole-tip protrusions adversely reduce the FH by several
nanometers and increase the risk of head-disk contact. Several groups have numerically

and/or experimentally investigated the effects of T-PTP and W-PTP [4]-[12].

Based on this concept Meyer et al. [13] deposited a resistance heating element
(heater) near the read/write elements and the gap FH was reduced by applying a current
through the heater to deliberately induce the pole-tip protrusion. Fig. 2.1(a)-(c) illustrate
the head-gimbal assembly (HGA) and the location of read/write elements on the slider.
The dimension of the slider is 1.25 mm x 1.00 mm x 0.3 mm. Fig. 2.1(d)-(f) show the

various layers of materials and the reduction of FH due to the thermal protrusion.

2.2.1.1 Numerical Analysis

In order to determine the magnitudes of the short range forces and the bandwidth
of the actuation at flying conditions, a finite-element model of a thermal FH control slider
was created as shown in Fig. 2.2. The heating element, coil, write poles, shields,

photoresist layer, undercoat insulation layer, and overcoat were modeled in detail to study
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the effects of the heating power on the flying attitude. The material properties and
thickness of each layer are shown in Table 2.1. The thermal conductivities of thin layers
are higher than the bulk values due to the heat carrier-boundary scattering and the altered

microstructure of thin films [14].

The cooling effect of the air bearing plays a key role in this 3-D heat transfer
problem. We first used CMLAIr to obtain the nominal FH, pitch, roll, and air pressure
distribution of a 5-nm FH ABS slider as shown in Fig. 2.3. The effect of intermolecular
forces was included with a nominal value of the Hamaker constant (A = 1x10"° J). Then
we calculated the heat flux through the air bearing based on the model developed by
Chen et al [15]. The temperature distributions and pole-tip protrusions were then
calculated based on the model and boundary conditions. Since the thermal protrusion
causes deformation of the ABS and hence changes the flying attitudes, an iteration

approach is used to obtain an equilibrium solution.

2.2.1.2 Results and Discussions

Fig. 2.4 shows that the steady-state FH and thermal protrusion were obtained after
several numerical iterations at a heating power of 30 mW. The disk rotational speed,
radial position of the head, and skew angle were 7200 rpm, 23 mm, 9.1 degrees,
respectively. The FH was reduced from 4.62 to 1.96 nm with a thermal protrusion of 4.2
nm. The ratio of FH reduction to protrusion was 63 %. The loss of 37 % FH reduction
was mainly attributed to the increased lift force and the reduced pitch angle as shown in

Table 2.2. More importantly, the intermolecular force (IMF) was found to be much
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smaller than that of conventional sliders with similar FHs due to the fact that only a small

region of the slider was protruded in the proximity of the disk.

The protrusion profiles on the ABS and along the center line across the read/write
transducer are shown in Figs. 2.5 (a) and (b), respectively. Fig. 2.6 shows the FH
reduction along the center line of the ABS. In the case with thermal protrusion the air
pressure near the read/write transducer significantly increases, and this lifts the slider
upwards, reducing the pitch angle. This highly concentrated air pressure induces

extremely high heat flux through the air bearing surface as shown in Fig. 2.7.

Fig. 2.8 shows the temperature distribution over the ABS and around the
read/write transducer at a heating power of 30 mW. A temperature valley is observed
near the read/write element, which is caused by the extremely concentrated pressure
effect on the heat transfer in the air bearing. A similar “butterfly shape” of temperature
distributions was experimentally measured by Xu et al. [16]. A lower temperature

increase is beneficial for GMR sensors which are sensitive to temperature variation.

A transient thermal study was conducted to investigate the bandwidth of the slider.
The power to the heating element was set to 30 mW from 0 to 2.5 ms and was turned off
at 2.5 ms. The temperature changes of both the GMR sensor and write gap were
monitored as shown in Fig. 2.9. It requires about 1 ms for the read/write transducer to
reach its steady-state values, corresponding to a bandwidth of 1 kHz. This is too slow

for active control of FHM.
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2.2.2 Piezoelectric Nanoactuator

The bandwidth of thermal actuation is much lower than the air bearing
frequencies, which may be up to 200 kHz. For this reason thermal FH control sliders
have little control over FHM and other dynamic losses of FH. The inherent high power
consumption of thermal actuation also limits the stroke of protrusions. Several research
groups [17]-[21] have presented the FH control using a piezoelectric unimorph cantilever
actuator. Some of their results are summarized in Table 2.3. However, their studies were
focused on compensating for static spacing loss caused by design tolerances and ambient
pressure changes. Neither short range forces nor suppression of FHM was considered.
Liu et al. [22] investigated an active FH control method for suppressing FHM by bonding
a layer of piezoelectric film on one side of the suspension and using real-time spacing
variation signals derived from the read-back signal as feedback. However, the short range
forces were not considered and since the active element was located on the suspension,

the bandwidth was limited by the suspension dynamics.

Juang and Bogy designed a nonlinear compensator for piezoelectric sliders for
dynamic active control of FH [23], [24] in the presence of short range forces, where the
piezoelectric unimorph cantilever was used as the actuator and the read-back signal was
used as feedback. A schematic of this concept is shown in Fig. 2.10. The FH of the
read/write elements is adjusted by applying an electrical voltage to the central portion of
the piezoelectric material. In order to suppress the FHM due to the air bearing dynamics

an actuation bandwidth of 400 kHz may be required. There is no inherent frequency limit
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for piezoelectric materials. In practice the frequency limits of application are usually
determined by resonances associated with the physical structure of the actuators. In order
to investigate the resonance frequencies of piezoelectric sliders we attached a 127 pm
thick PZT layer on a silicon pico-slider as shown in Fig. 2.11. It was then bonded on a
substrate and an LDV apparatus was used to measure the vibration of the cantilever as
illustrated in Fig. 2.12(a). Sinusoidal voltages with frequencies from 0 to 1 MHz were
applied to the central PZT layer. The first observed resonance frequency was about 610

kHz as shown in Fig. 2.12(b).

A finite-element analysis was also carried out for comparison. The results show
that the first natural frequency is about 470 kHz for two different boundary conditions as
shown in Fig. 2.13. The higher value of the measured frequency may be caused by an

amount of epoxy dispensing on the slider body in the experimental setup.

2.3 Discussions

A brief summary of the advantages and disadvantages for each approach is given
in Table 2.3. The quantitative values may vary from one design to another but the
qualitative properties should be the same. It is found that the intermolecular forces at a
transducer FH of 2 nm were reduced in both approaches. The thermal protrusion of FH
control sliders can be controlled by adjusting the power of the heating elements, but the
inherent power-consuming thermal actuation limits the actuation displacement, especially
for battery powered mobile applications. The quasi-static nature allows thermal FH

control sliders to compensate the static spacing loss. The piezoelectric dynamic control
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slider shows promising performance of higher bandwidth, larger actuation displacement,
and higher power efficiency. However, the requirement of piezoelectric materials and
modification of the slider design poses challenges in integration of the fabrication process

and increases the manufacturing cost.

2.4 Conclusion

While nanoscale design has been used in hard disk drives for several years, only
recently have new phenomena arisen that are associated with nanoscale dimensions. As
the hard disk drive industry advances toward the areal density of 1 Tbit/in® the physical
spacing between the air bearing slider that carries the read/write transducer and the top
surface of the magnetic disk will be reduced to ~2 nm. In this spacing range new forces,
such as intermolecular and electrostatic forces, act and can increase the level of FHM and
cause dynamic instability of the flying head slider. Two possible approaches were studied
to minimize such forces for flying sliders, including a thermal quasi-static control slider
and a piezoelectric dynamic active control slider for hard disk drives. The advantages and

disadvantages for each one are also discussed.
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TABLE 2.1 Material Properties used in the FEA

Young’s Thermal Coefficient of

Layer and Material modulus  conductivity Li;rglzion fa(gzson S
(GPa) (W/m.K) (x 10/ °C)

Slider ALOs-TiC 390 20 7.1 0.22

substrate

Under- ALLOs (thin 138 1.8 7.8 0.25

coat layer)

(1.2 um)

Shields Ni-Fe 200 35 12.8 0.3

(2.0 um)

Bottom Ni-Fe 200 35 12.8 0.3

pole

(1.0 um)

Coil Cu 130 400 15.4 0.34

(2 pm)

Heater Ni-Fe (thin 200 30 12.8 0.3

(250 nm) layer)

Coil Photo-resist 7 0.209 51 0.2

insulation

(5 pm)

Top pole  Ni-Fe 200 35 12.8 0.3

(1.0 um)

Over-coat AlLO3 138 25 7.8 0.25

(23 pum)
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TABLE 2.2 Comparison of Flying Attitudes

Protrusion FH Pitch Roll IMF Max. pressure
(nm) (nm) (urad)  (urad)  (gf) (atm)
Before 0 4.62 215 0.7 0.037 16
protrusion
After 4.2 1.96 212 0.4 0.065 30
protrusion
TABLE 2.3 Comparison of Three Approaches

Micro-trailing Thermal quasi-static Piezoelectric dynamic control

pad slider control slider slider
FH control or N/A Yes Yes
adjustment (thermal expansion) (piezoelectricity)
Intermolecular Minimize Minimize Compensate
forces (0.19 gf) (0.065 gf) (0.03 gf [17], [18])
Actuation N/A Low High
bandwidth (1 kHz) (610 kHz; >100 kHz [13];

700 kHz [14]; 243 kHz [15])

Actuation N/A Low High
displacement (0.14 nm/mW) (9 nm/V [12]; 17.5 nm/V [13];
(non-flying 15 nm/V [14]; 1.5 nm/V [15])
condition)
Power N/A High Low
consumption (30 mW)
Manufacturing Low Medium High
complexity
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(b) Enlarged view of the slider (c) Enlarged view near the trailing edge
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(e) the actuated pole-tip protrusion and the reduced FH

Fig. 2.1. Schematic diagrams of the actuated pole-tip protrusion of read/write elements.
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Fig. 2.2. The finite-element model of a TFC slider. The overcoat and photoresist are not
shown for a clear view of the read/write transducer.
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Fig. 2.3. (a) An ABS design used in this study; (b) the air pressure distribution of this
ABS. The scale displayed is normalized to ambient pressure: (p - pa)/pa.
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Fig. 2.4. Steady-state FH and thermal protrusion were obtained after several numerical
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iterations at a heating power of 30 mW.
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Fig. 2.5. Thermal protrusion profiles on the ABS (a) and along the center line across the
read/write transducer. The distances of the write gap and GMR sensor from the trailing
edge are 16.3 and 19.8 um, respectively.
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Fig. 2.7. The air pressure distribution (a) and the distribution of the heat transfer film
coefficient across the ABS with thermal deformation.
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Fig. 2.8. Temperature distributions of a flying slider with thermal protrusion at a heating

power of 30 mW. Line distributions show a clear temperature valley near the read/write
head.
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Fig. 2.9. Transient temperature changes of a flying slider with a varying heating power.
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Fig. 2.10. Two operational modes of a FH control slider with piezoelectric actuation. (a)
passive mode; (b) active mode.
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Fig. 2.11. A piezoelectric pico-slider used to determine the actuation bandwidth.
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Fig. 2.12. (a) Experimental set-up; (b) the first measured resonance frequency is about
610 kHz.
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Fig. 2.13. Finite-element models and the first two modes and natural frequencies for two
different boundary conditions.
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CHAPTER 3
AIR BEARING DESIGNS AND FLYING DyYNAMICS OF FH CONTROL
SLIDERS

To achieve the areal density goal in hard disk drives of 1 Tbit/in® the minimum
physical spacing or flying height (FH) between the read/write element and disk must be
reduced to ~2 nm. A brief review of several FH adjustment schemes is first presented and
discussed. Two ABS designs, Scorpion III and IV, for a FH control slider with thermal
and piezoelectric nanoactuators, respectively, are proposed to achieve virtually 100
percent actuation efficiency (defined as the ratio of the FH reduction to the unloaded
stroke). A numerical study is conducted to investigate both the static and dynamic
performances of the Scorpion sliders, such as uniformity of gap FH with near-zero roll
over the entire disk, ultrahigh roll stiffness and damping, low nanoscale adhesion forces,
uniform FH track-seeking motion, dynamic load/unload and FH modulation (FHM). The
Scorpion sliders are found to exhibit an overall enhancement in performance, compared

with several conventional ABS designs.

3.1 Introduction

As the spacing between the slider and the disk decreases in hard disk drives the
linear bit spacing of the magnetic recording can decrease, resulting in a higher areal
density. According to the Wallace spacing loss equation the magnetic signal increases
exponentially as the distance decreases between the magnetic media and the transducer.
The maximum magnetic signal can be obtained at a mechanical spacing of zero, resulting

in a contact recording scheme. However, there are trade-offs between reducing the
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bouncing vibration and wear in such systems [1]. Another significant concern is the
thermal stability of both the media and GMR sensors. The read-back signal of GMR
sensors can be significantly affected by thermal influences since their electrical resistance
is temperature dependent. Continuous high-speed contact generates excessive heat, which
degrades the recording performance. Also, the air bearing shear force and friction caused
by slider-disk contact may affect the tracking ability of these sliders. The above issues

have to be addressed before a reliable contact recording system can be realized.

Instead of contact recording we consider a flying scheme in which the nominal
head-media spacing (HMS) has to be reduced to 5 nm for an areal density of 1 Tbit/in’.
This HMS includes a physical spacing (or gap flying height, gap FH) of 2.5 nm between
the read/write element and the surface of the disk, the protective layers—slider and disk
diamond-like-carbon overcoats, and lubricants on the disk. A stable and constant gap FH
must also be sustained in the presence of altitude and temperature changes,
manufacturing tolerance, and track-seeking motion. Furthermore, slider disk contacts
must be avoided during load/unload processes and operational shocks. The dynamic
instability caused by FH modulations (FHMs) and nanoscale adhesion forces, such as
electrostatic and intermolecular forces should be minimized. Those challenges make a
conventional air bearing surface (ABS) slider an unlikely choice for 1 Tbit/in®. One
potential solution is a FH adjustment or controlled slider that is capable of adjusting its
gap FH. Table 3.1 summarizes the challenges of the head-disk-interface (HDI) for
ultrahigh density recording and potential solutions provided by a FH control slider.

Several approaches have been reported for FH adjustment or control as shown in Table
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3.2 [2]-[20]. They are categorized into five major principles of actuation with four
different actuation mechanisms. The effect of air bearing coupling indicates whether one
particular actuation is coupled with the air bearing. Such effect has to be minimized to
increase the actuation efficiency (defined as the ratio of FH reduction to actuation stroke).
Khanna et al. [11] in 1991 and then Zhang et al. [12] in 2005 reported a method of FH
adjustment by bonding a bulk piezoelectric material on the backside of a slider body. The
FH was adjusted by applying a voltage to the piezoelectric material and thereby changing
the crown and/or camber of the slider body. The structure of such sliders is simpler and it
is relatively easy to fabricate but the fact that the actuation is coupled with the air bearing
significantly limits the actuation stroke and efficiency. Instead of piezoelectric materials
Dietzel et al. [13] used a microfabricated thermal actuator to deform the slider body.
Besides the disadvantage of air bearing coupling, the power consumption was very high
compared to the operating power of an HDD, especially for battery powered mobile
applications. Another principle of actuation is to apply an electrostatic force in the HDI
[16], [17] or to change the pattern of air flow by ducts and valves [18]. Besides the
disadvantage of air bearing coupling, the former also significantly increases the risk of
electrostatic discharge (ESD) across the interface and the latter has difficulty achieving a
high resolution FH adjustment. Another approach is to bond a layer of piezoelectric
material to one side of the suspension and change the FH by bending the suspension [19],
[20]. Besides the strong coupling of the actuation and the air bearing, the bandwidth of
actuation is limited by that of the suspension dynamics, which is much lower than that of
the air bearing. Another concept of actuation is to drive the read/write elements so that

they have relative displacement to the slider body. Due to the minute area that the
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read/write element occupies on the slider air bearing surface the effect of air bearing
coupling could be minimized. Chen et al. [15] designed a micromachined monolithic
electrostatic actuator for adjusting FH. However, such an actuator was susceptible to
particle contamination due to the complex structure of the multiple parallel plates and the
electrostatic attraction force. The concept of adjusting the transducer FH by the thermal
expansion of materials was first demonstrated by Meyer et al. [14] in which a resistance
heating element (heater) was mounted to the slider body near the read/write element.
When a current is applied through the heater a portion of the head protrudes due to the
mismatch of the coefficients of thermal expansion of the various materials. Such
protrusion reduces the FH. In Chapter 2 we found that even though the protruded area
was relatively small, there was still considerable air bearing coupling with the resulting
actuation efficiency of only 63 %, which suggested that the ABS played a key role in
reducing the air bearing coupling. Another approach that can potentially exhibit high
actuation bandwidth, low power-consumption, and less air bearing coupling is to utilize
piezoelectrically actuated unimorph cantilever sliders. Yeack-Scranton et al. [9] proposed
an active slider for contact recording, where a piezoelectric material was inserted in a
channel that ran across the full width of the slider at its top rear. They experimentally
demonstrated movement of the read/write element from ~ 200 nm to contact, but the
proposed structure of piezoelectric actuator was difficult to implement in the smaller
currently used pico- or femto-sized sliders and the effect of the air bearing was not
discussed. In a previous study [10] we numerically and experimentally studied an
Al,O;-TiC slider with a unimorph piezoelectric cantilever. We used a conventional ABS

and found that the actuation efficiency was very low due to the highly pressurized central
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trailing pad. Several papers, such as Kurita et al. [2], [3], Tagawa et al. [5], Suzuki et al.
[4], and Su et al. [6], have presented active sliders made of silicon with piezoelectric
unimorph cantilevers. The slider structure was simpler and could be fabricated by silicon
microfabrication technology. An ABS design with less air bearing coupling effect was
also proposed, which was achieved by a small central trailing pad. The increase of
aerodynamic lift force caused by the bending of the cantilever was minimized such that
the flying attitude of the slider body was hardly changed during the head actuation.
However, the use of silicon as the slider material makes it difficult to integrate with
current fabrication technology. Also, the two slots that defined the cantilever significantly
reduced the amplitude of the negative pressure of their subambient ABS sliders and the
negative pressure is known to be a key attribute for high performance sliders. Since such
sliders have several merit features over other FH control schemes, it is important to study
and design an ABS for such sliders with high negative pressure and other required

characteristics.

In this chapter we present novel ABS designs for FH control sliders with thermal
and piezoelectric nanoactuators, which can achieve high actuation efficiency (or little air
bearing coupling), high negative pressure, high air bearing stiffness, and damping.
Numerical studies of the static and dynamic performances, including flying attitude,
actuation efficiency, nanoscale adhesion forces, track-seeking motion, dynamic
load/unload and FHM, are carried out and discussed. The results are also compared with

conventional ABS designs.
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3.2 Design Concept

In order to control the gap FH, we consider FH control sliders with thermal and
piezoelectric nanoactuators as described in Chapter 2. For a piezoelectrically actuated
slider the FH is about 10 nm in the off duty cycle (passive mode) and is reduced to ~2 nm
during reading and writing (active mode) by applying a voltage to the central piece of
piezoelectric material (Fig. 2.10). The actuation stroke is a function of the applied voltage,
the air bearing force generated by the central trailing pad, the actuator geometry and
materials [7], [8]. For a thermally actuated slider the FH is reduced by actuated pole-tip
protrusion (A-PTP) as illustrated in Fig. 2.1. Such reduction of FH of several nanometers
is expected to permit the increase in the areal density from less than 100 Gbit/in® to 1
Tbit/in®. Two ABS designs, called Scorpion III and IV, were designed for thermal and
piezoelectric sliders, respectively. As illustrated in Fig. 3.1(a) Scorpion IV has four levels
of etching steps. The recessed areas with 1.7 pm and 600 nm etch depths create a
subambient pressure zone and a negative pressure distribution (suction force), “pulling”
the slider towards the disk surface. The two side trailing pads generate a positive pressure
distribution (lift force), “pushing” the slider away from the disk surface (Fig. 3.1(b)).
Those negative and positive pressure distributions balance with the applied gram-load
and together determine the flying attitude, such as FH, pitch and roll, and other important
characteristics, including air bearing stiffness and damping. The read/write element is
located near the center of the trailing pad of the slider body. The targeted gap FH
(without actuation) is 10 nm at a disk velocity of 15000 rpm. Based on a similar concept,
Scorpion III was also designed as shown in Fig. 3.2. The Scorpion ABSs were designed

to achieve high actuation efficiency (low air bearing coupling) and to meet the following
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requirements: (1) constant FH profile from the inner diameter (ID) to the outer diameter
(OD) with skews, (2) high roll stiffness and damping, (3) reduced effect of nanoscale
adhesion forces in the HDI, (4) minimal FH changes during track-seeking motions, (5)
better dynamic load/unload performance, and (6) comparable FHM. The features of
Scorpion IV include the two slots defining the cantilever, the microtrailing pad, the cavity
walls enclosing half of the two 600-nm side etch levels, and the stripes on the two leading
pads. The slider is primarily supported by the positive force generated by the two
side-trailing pads as seen in Fig. 3.1(b). The two slots allow the cantilever to move
upwards or downwards, i. e., to adjust the FH. The reduced area of the microtrailing pad
effectively minimizes the air bearing coupling effect and the nanoscale adhesion forces,
such as electrostatic and intermolecular forces. The cavity walls hold the negative
pressure without it leaking to the slots and hence increase the stiffness. The multiple
stripes create pressure gradients and increase the air film damping [21]. A conventional
ABS, Slider A, is used for comparison (Fig. 3.3). Those results are shown and discussed

in the following sections.

3.3 Static Analysis
3.3.1 Flying Attitude and Actuation Efficiency

Numerical simulations were performed using the CML Static Air Bearing
Simulator, which solved the generalized Reynolds equations and determined the
steady-state flying attitude, including FH, pitch, and roll. The disk radius/skew range is

17.87 mm/-15.62° to 29.89 mm/7.22° with a disk velocity of 15000 rpm. The simulation

conditions and air bearing specifications for Scorpion III and IV are summarized in
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Tables 3.3 and 3.4, respectively. In Figs. 3.4 - 3.7 it is seen that a nearly uniform 10-nm
FH is achieved with minimal loss at high altitude (4500 m) and a roll angle less than 3
prad over the disk for both designs. A relatively high negative (suction) force is also
preserved, which is needed to maintain high stiffness and low sensitivity to ambient

pressure change.

Fig. 3.8 shows the simulated FH as a function of actuation stroke for Scorpion I'V.
Due to the small area of the central trailing pad and the support of the two side trailing
pads the actuation is not coupled with the air bearing pressure and a high actuation
efficiency (= FH reduction/stroke) of 98.75 % is achieved. It is seen that the reduction of
gap FH is essentially proportional to the stroke, and the FH of the rest of the slider is
nearly unchanged. A small increase of air bearing pressure is observed when the slider
has an 8-nm actuation stroke (Fig. 3.9). Similarly, the FH reduction as a function of the
heating power for Scorpion III is plotted in Fig. 3.10. Almost 100 % actuation efficiency
is also achieved. It is seen that the reduction of the gap FH is nearly proportional to the
power, and the FH of the rest of the slider is nearly unchanged. Little increase in air
bearing pressure near the center trailing pad is observed when the slider has a 7.5-nm

actuated pole-tip protrusion (A-PTP) as shown Fig. 3.11.

3.3.2 Stiffness and Damping of the Air Bearing
The air bearing stiffness and damping of a particular slider design are primarily
determined by the geometry of the air bearing surface. It has been shown that high

stiffness and damping are desired for a reliable and stable HDI. Modal analysis and the
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system identification method were used to calculate the frequency responses and obtain
the modal parameters, such as modal stiffness, damping ratios and nodal lines, of the air
bearing sliders [21]. Fig. 3.12 shows the frequency responses of Scorpion III, IV and
Slider A. It is seen that Slider A exhibits a typical three-peak curve, corresponding to the
roll, first pitch and second pitch modes. Scorpion III shows two peaks, which clearly
indicates that the damping ratio for the roll mode is very large. It is noted that Scorpion
IV shows only one peak as a result of large damping ratios for the roll and second pitch
modes. Comparisons of the modal frequencies, stiffness and damping ratios with
published data in [22], [23] are shown in Fig. 3.13 and Table 3.5. Among the five ABS
designs, Scorpion IV shows a remarkable increase of 52 %, 506 %, and 237 % in
damping ratios over the second most highly-damped conventional ABS II for the first
pitch, second pitch, and roll modes, respectively (Fig. 3.13). As listed in Table 3.5
Scorpion IV exhibits 694 % increase in the roll stiffness over Slider A but it shows 24 %
and 28 % decrease of the first and second pitch stiffnesses, respectively. Similarly,
Scorpion III shows a remarkable increase of 294 % in damping ratio over ABS II for the
roll mode. It will be demonstrated in the Dynamic Analysis section that the dynamical
performances of the Scorpion designs are greatly enhanced, which is primarily attributed

to the significant increase of the roll stiffness and damping.

3.3.3 Nanoscale Adhesion Forces
Nanoscale adhesion forces, such as electrostatic and intermolecular forces, can
cause dynamical instability in the HDI of ultralow flying sliders [24]. Even though those

forces cannot be completely attenuated their effect can be reduced by simply decreasing
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the effective slider area within proximity of the disk. For a FH control slider, this
reduction in area is achieved by flying at a higher FH and bending the microsized central
trailing pad close to the disk. Numerical simulations were performed to investigate the
effect of such forces on the flying attitude of the Scorpion sliders. Fig. 3.14 shows the
minimum FH as a function of electrostatic potential between the slider and the disk for
four different ABS designs, where the 4.5-nm and 5-nm minimum FHs of Scorpion III
and Scorpion IV at zero voltage are obtained with a 4-nm actuation stroke. It is seen that
the breakdown voltage of Scorpion IV (with 108 prad pitch) is 27 % and 43 % higher
than the high-pitch slider (245 prad) and low-pitch slider (190 prad), respectively. The
breakdown voltage of Scorpion III (with 123 prad pitch) is even higher due to its small
area of thermal protrusion. Similarly, in comparing the intermolecular force, Scorpion III
and IV exhibited 30—40 % and 24-28 % decreases, respectively, within the 2—4 nm FH

region as shown in Fig. 3.15.

3.4 Dynamic Analysis

The air bearing film and slider body form a complex coupled nonlinear dynamic
system. The CML Dynamic Air Bearing Simulator is used to solve the generalized
Reynolds equations coupled with the dynamics of the slider body and a lumped
parameter suspension, where the suspension is represented by flexure stiffnesses and
damping coefficients. By using the simulator we can obtain dynamic responses of a slider
subject to various dynamic inputs, including the flying characteristics during
track-seeking motion and FHM over measured disk morphology. The CML Load/Unload

& Shock Simulator, developed by Bhargava and Bogy [25], is used to simulate complex
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dynamic responses of a slider in the load/unload process and under operational shock.
This simulator is based on the Dynamic Simulator and uses more sophisticated

finite-element models for the suspension and disk.

3.4.1 Flying Characteristics during Track-seeking Motion

Track-seeking is the process for a slider to move from one track to another.
During this process the FH changes as a result of the skew angle and the relative disk
velocity as well as the inertia force due to the slider’s acceleration or deceleration in the
cross track direction. Track access time is one of the important hard drive performance
indices. Increasing the seek acceleration can reduce the access time. However, it also
leads to larger inertial effects and adversely increases FH drops. Fig. 3.16 shows the
track-seeking profile used in this study. The maximum acceleration is 65 G, and it takes
11 ms for seeking from the ID to the OD or vice versa. The effective skew angle is the
angle between the slider’s longitudinal direction and the relative disk velocity (or air flow
velocity) which is the resultant vector of the disk track linear velocity and the slider’s
seek velocity. The FH changes of Slider A and the Scorpion sliders during the seek
motion are shown in Fig. 3.17. It is seen that Scorpion III and IV exhibit remarkably flat
FHs during the entire seek profile with a maximum FH difference of less than 0.2 nm, as
compared with the 0.75-nm FH difference of Slider A near the MD. Since the Scorpion
ABSs have ultrahigh roll stiffness, their sensitivity to the skew angle change is

significantly reduced, hence, resulting in a more uniform FH profile.

3.4.2 Dynamic Load/Unload Performance

45



Dynamic load/unload (L/UL) has been widely used in recent hard disk drives for
achieving better shock resistance, lower power consumption as well as lower wear and
debris formation. Previous research showed that the ABS design significantly affects the
L/UL performance [26], [27]. The main design objectives of L/UL are no slider-disk
contact during the entire L/UL and a smooth and short unloading process. Challenges
exist in both the loading and unloading processes. During the loading process sliders may
hit the disk especially at high loading velocities. In the unloading process the air bearing
positive pressure quickly responds to changes in FH and pitch, while the negative
pressure generated by subambient cavities is relatively resistant to change. This results in
a negative net force, which in turn causes slider-disk contact. The negative pressure
therefore plays a key role in the L/UL processes. While the likelihood of contact can be
decreased or eliminated by reducing the negative force, this force is beneficial to
maintain high stiffness and low fly sensitivity. Another potential solution is to use a slider
with burnished or rounded corners [28]. However, this additional corner rounding can
cause sensitivity of the FH to tolerances associated with the manufacturing process.
Another solution is to design an ABS with high roll stiffness so that it can avoid the
undesirable roll motion during unloading. It has been shown in the previous section that
the Scorpion ABSs has much higher roll stiffness than the other conventional ABS
designs. The CML L/UL & Shock Simulator was used to investigate the L/UL of
Scorpion III and IV with a finite element model for the suspension (Fig. 3.18). The
simulator models actuator rotation over a prescribed ramp profile. The unloading process

takes place at the OD (29.89 mm, 7.22°) and 15000 rpm. The displacements and the

minimum clearances of Scorpion III and IV during unloading at 50 mm/s and 150 mm/s
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are shown in Figs. 3.19(a) and 3.20(a), respectively. The minimum clearance drops due to
the unloading process are illustrated in Figs. 3.19(b) and 3.20(b). It is seen that the
minimum clearance drops merely 0.3 nm even at a high velocity (Figs. 3.21 and 3.22).
Fig. 3.23 shows the air bearing forces of Scorpion III during unload. The lift-off forces
are -0.83 and -1.17 gf at 50 mm/s and 150 mm/s, respectively. The lift-off forces of
Scorpion IV are -0.74 and -0.79 gf at 50 mm/s and 150 mm/s, respectively as shown in
Fig. 3.24. The displacement, minimum clearance and air bearing forces during the
loading process are shown in Fig. 3.25 and 3.26. Similarly, there is no contact observed

in the process.

3.4.3 Flying Height Modulation

In order to quantitatively compare the FHM of the ABS designs, we measured the
topography of a current “super-smooth” disk surface by laser Doppler vibrometer (LDV)
and used it as external excitation in the simulations. Fig. 3.27 shows the measured disk
morphology used in the simulations at three radial positions. The peak-to-peak and
standard deviation (o) of the disk roughness are 1.76 and 0.31 nm, respectively. The
FHMSs of Scorpion III and IV are compared with that of Slider A as shown in Figs. 3.28
and 3.29. The quantitative results are summarized in Tables 3.6 and 3.7, which include
peak-to-peak values and standard deviations. The two Scorpion designs behaved
similarly in FHMs. The maximum peak-to-peak FHMs of Scorpion III and Slider A are
found to be 0.35 nm (at the ID) and 0.47 nm (at the OD), respectively. Scorpion III
exhibits a lower ratio of the maximum to minimum peak-to-peak value than Slider A. In

cross-comparing ABS designs at different radial positions, Scorpion III is found to have
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54—-62 % less FHM than Slider A at the MD and the OD but has 94 % more FHM at the
ID. The higher FHM of Scorpion III at the ID is due to the relatively higher skew

(-15.62°) and the very small positive pressure under the central trailing pad. Such FHM

can be further suppressed by the dynamic feedback controller proposed by Juang and
Bogy [7], [8]. However, due to the low bandwidth of thermal actuation, the FHM of

Scorpion III can not be suppressed by the actuator.

3.5 Conclusions

This chapter proposes novel ABS designs, Scorpion III and IV, for FH control
sliders with a thermal and a piezoelectric nanoactuator, respectively. It was found that the
Scorpion sliders exhibit virtually 100 percent actuation efficiency (or little air bearing
coupling), which indicates that the gap FH can be efficiently reduced by the actuator. A
uniform FH and near-zero roll angle were achieved across the disk. The FH losses at a
high altitude (4500 m) were found to be ~20 % and ~30 % for Scorpion III and 1V,
respectively, which can be readily compensated by the actuators with a pressure sensor.
The Scorpion designs showed a remarkable increase in damping ratios and roll stiffness
compared to several conventional designs, which was beneficial to better track-seeking
and L/UL processes. The FH drop was reduced to less than 0.2 nm during the
track-seeking motion. Even though the Scorpion sliders have rather high negative forces
(-3.1 gf for Scorpion IV and -4.8 gf for Scorpion III), the minimum clearance dropped
only 0.3 nm even at a high unloading velocity. The peak-to-peak FHMs of the Scorpion
sliders simulated with a measured disk topography were found to be 0.17-0.36 nm. The

higher value at the ID was due to the relatively higher skew (-15.62°) and the small

48



positive pressure under the central trailing pad. Furthermore, the nanoscale adhesion

forces, such as electrostatic and intermolecular forces, were found to be much less

compared to conventional designs due to the fact that the FH control slider flies relatively

higher with the miniature microtrailing pad in the close proximity of the disk surface.
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TABLE 3.1 Challenges of Ultra-low Flying Sliders And Potential Solutions Provided by
a Controlled FH Slider

Challenges

Potential Solutions

FH drop due to altitudes
FH drop during seek motions

Manufacturing tolerance (o)

Load/Unload process

Operational shock

FHM and nanoscale adhesion forces (such
as electrostatic and intermolecular forces)

FH adjustment (with a pressure sensor)

High roll stiffness

FH adjustment

Retract the read/write element while
loading/unloading
High roll stiffness and damping

Retract the read/write element during
shocks (with a accelerometer)
High stiffness and damping

Reduce those forces by reducing the area
of central trailing pads

FHM suppression by dynamic feedback
control (with a feedback of readback
signals)
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TABLE 3.2 Comparison of FH Adjustment/Control Sliders [2]-[20]

Principle of

Actuation Actua‘uqn Air Bgarmg Authors
Mechanism Coupling
Unimorph cantilever Piezoelectricity No Kurita [2],[3]; Suzuki [4],
Tagawa [5], Su [6], Juang
[71.[8]
Piezoelectricity Yes Yeack-Scranton [9], Juang [10]
Change of Piezoelectricity Yes Khanna [11], Zhang [12]
Crown/Camber ) )
Thermal expansion  Yes Dietzel [13]
Relative Thermal expansion N/A Meyer [14]
displacement of .
read/write elements  Lhermal expansion  Yes Juang (Chapter 2)
Thermal expansion No Juang (this Chapter)
Electrostatic force =~ N/A Chen [15]
Forces in HDI Electrostatic force ~ Yes Song [16], Feng [17]
Change of air flow  Yes Albrecht [18]
by ducts and valves
Suspension bending  Piezoelectricity Yes Good [20], Liu [20]

54



TABLE 3.3 AIR BEARING SPECIFICATIONS AND FLYING ATTITUDES FOR SCORPION III

Slider Size (mm): 1.245 x1.000x0.300
Crown: 9.3 nm

Camber: -2 nm

Suspension Load: 2.0 gf

Disk RPM: 15000

Radial Position (mm)  17.87 (ID) 21 23.88 (MD) 27  29.89 (OD)
Skew (°) -15.62  -8.197 -2.56 2.768 7.22
Pitch (urad) 11579  119.85 121.33 121.40 120.52
Roll (urad) 0.60 0.31 -0.39 -1.22 -2.09
Gap FH (nm) 9.79 9.95 9.99 10.04 10.12
Minimum FH (nm) 7.34 7.47 7.24 6.99 6.77
Negative Force (gf) -4.67 -4.73 -4.77 -4.81 -4.85

TABLE 3.4 Air Bearing Specifications and Flying Attitudes For Scorpion IV

Slider Size (mm): 1.245 x1.000x0.300
Crown: 9.3 nm

Camber: -2 nm

Suspension Load: 2.0 gf

Disk RPM: 15000

Radial Position (mm) 17.87 (ID) 21 23.88 (MD) 27 29.89 (OD)
Skew (°) -15.62  -8.197 -2.56 2.768 7.22
Pitch (urad) 103.03 107.64 108.55 107.39 105.16
Roll (prad) -2.07 -0.24 -0.32 -1.25 -2.58
Gap FH (nm) 9.77 10.01 10.05 10.13 10.33
Minimum FH (nm) 7.81 8.69 8.70 8.45 8.18
Negative Force (gf) -2.92 -3.02 -3.09 -3.17 -3.24
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TABLE 3.5 Comparison of Air Bearing Stiffness of Various ABS Designs. The data of
Scorpion III, IV and Slider A were evaluated at The MD

Multi-Level

Scorpion III  Scorpion IV~ Slider A ABS 1[22]

Cavity [23]

Form factor pico pico pico pico pico
Gap FH (nm) 9.99 10.05 10.65 10.23 4.80
Pitch (urad) 121 109 126 230 214
Roll (prad) -0.4 -0.3 -1.4 0.5 0.8
k, (gf/nm) 0.328 0.182 0.239 0.164 0.178
k, 1.036 0.517 0.715 0.49 0.537
(uUN.m/prad)

k; 0.403 0.246 0.031 N/A 0.059
(UN.m/urad)

Negative -4.8 -3.1 -4.0 -3.9 -3.1
force (gf)

TABLE 3.6 SIMULATIONS OF FHM WITH ACTUAL MEASURED DISK TOPOGRAPHY FOR
SCORPION III AND SLIDER A

Air Bearing Design

Scorpion III ~ Slider A Scorpion III/Slider A
ID: Peak-to-Peak (nm) 0.35 0.18 194 %
ID: o (nm) 0.05 0.03 167 %
MD: Peak-to-Peak (nm) 0.12 0.26 46 %
MD: ¢ (nm) 0.02 0.04 50 %
OD: Peak-to-Peak (nm) 0.18 0.47 38 %
OD: 6 (nm) 0.03 0.07 43 %
Max. p-p/min. p-p 292 % 261 %
Max. /min. ¢ 250 % 233 %
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TABLE 3.7 Simulations of FHM with Actual Measured Disk Topography for Scorpion

IV and Slider A

Air Bearing Design

Scorpion IV Slider A Scorpion I'V/Slider A
ID: Peak-to-Peak (nm) 0.36 0.18 200 %
ID: o (nm) 0.06 0.03 200 %
MD: Peak-to-Peak (nm) 0.17 0.26 65.38 %
MD: ¢ (nm) 0.02 0.04 50.00 %
OD: Peak-to-Peak (nm) 0.23 0.47 48.94 %
OD: o (nm) 0.03 0.07 42.86 %
Max. p-p/min. p-p 212 % 261 %
Max. o/min. ¢ 300 % 233 %
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Fig. 3.1. (a) Air bearing surface design, Scorpion IV; (b) Air bearing pressure profile at
the MD (radial position 23.88 mm, skew: -2.56°). The scale displayed is normalized to
ambient pressure: (p - pu)/Pa-
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Fig. 3.2. (a) Air bearing surface design, Scorpion III; (b) Air bearing pressure profile at
the MD (radial position 23.88 mm, skew: -2.56°). The scale displayed is normalized to

ambient pressure: (p - py)/Pa-
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Fig. 3.3. (a) A conventional pico-slider ABS, Slider A, used for comparison; (b) Air bearing
pressure profile at radial position 23.88 mm. The scale displayed is normalized to ambient
pressure: (p - pa)/pa.
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Fig. 3.4. Simulation of gap FH and minimum FH profiles of Scorpion IV at sea level, 0 m,
and high altitude, 4500 m.
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Fig. 3.5. Simulation of pitch and roll profiles of Scorpion IV at sea level, 0 m.
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Fig. 3.6. Simulation of gap FH and minimum FH profiles of Scorpion III at sea level, 0 m,
and high altitude, 4500 m.
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Fig. 3.7. Simulation of pitch and roll profiles of Scorpion III at sea level, 0 m.
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Fig. 3.8. Simulated FHs at the read/write transducer and one point on one of the side ABS
rails. The radial position is at the MD.
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Fig. 3.9. Air pressure distributions before (a) and after (b) a 8-nm actuation stroke.
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Fig. 3.10. Simulated FHs at the read/write transducer and one point on one of the side
ABS rails. The radial position is at the MD.
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Fig. 3.11. Air pressure distributions before (a) and after (b) a 7.5-nm actuation stroke.
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Fig. 3.12. Frequency responses of the air bearings of Scorpion III, IV and Slider A.

65



W Scorpion 1T
E u soorpion TV
= - M Slider A
)
T
3
e
=
<
]
=
First Pitch Second Pitch Roll
(a)
30
B Scorpion 1T
25 T B Scorplon IV 77T T T T T

| M Slhder A

Damping Ratio (%)

First Pitch Second Pitch Roll
(b)

Fig. 3.13. Comparison of modal frequencies and damping ratios of various ABS designs.
The data of Scorpion III, IV and Slider A were evaluated at the MD. The data of ABS I
and ABS II were obtained from [24].
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Fig. 3.14. The drop of minimum FH caused by the electrostatic potential across the HDI.
The actuation stroke of Scorpion III and IV is 4 nm. The pitches of Scorpion III and IV
are 123 and 108 urad, respectively, at zero voltage. The results of the high-pitch slider
(245 prad) and low-pitch slider (190 prad) are from [26].
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Fig. 3.15. Comparison of magnitudes of intermolecular adhesion forces of Scorpion III,
IV and Slider A as functions of minimum FH. The FH of Scorpion IV was reduced by
actuating the central trailing pad toward the disk and the obtained flying attitudes (min.
FH, pitch, and roll) were then used to calculate the intermolecular forces of Slider A.
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Fig. 3.16. Track-seeking profiles. The maximum acceleration is 65 G.
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Fig. 3.17. Gap FH changes due to the seek motion for (a) Slider A (with a maximum
difference of ~0.75 nm near the MD); (b) Scorpion III (with a maximum difference of
~0.1 nm near the ID); (c) Scorpion IV (with a maximum difference of ~0.2 nm near the
OD).

Fig. 3.18. Suspension model used in the dynamic load/unload simulation [27].
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Fig. 3.19. Comparison of the displacement and minimum clearance histories of Scorpion

IIT during the unloading processes with two unloading velocities, 50 mm/s and 150 mm/s,
at the OD (7.22° skew) and 15000 rpm.
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Fig. 3.20. Comparison of the displacement and minimum clearance histories of Scorpion

IV during the unloading processes with two unloading velocities, 50 mm/s and 150 mm/s,
at the OD (7.22° skew) and 15000 rpm.
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Fig. 3.21. The minimum clearances of Scorpion III during the unloading process as a
function of unloading velocity.
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Fig. 3.22. The minimum clearances of Scorpion Iv during the unloading process as a
function of unloading velocity.
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Fig. 3.23. Air bearing force histories of Scorpion III during unloading processes at the
OD. (a) unloading velocity: 50 mm/s; (b) 150 mm/s.
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Fig. 3.24. Air bearing force histories of Scorpion IV during unloading processes at the
OD. (a) unloading velocity: 50 mm/s; (b) 150 mm/s.
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Fig. 3.25. Displacement, minimum clearance and force histories of Scorpion III during
loading at the OD with 50 mm/s loading velocity and 15000 rpm disk velocity.
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Fig. 3.26. Displacement, minimum clearance and force histories of Scorpion IV during
loading at the OD with 50 mm/s loading velocity and 15000 rpm disk velocity.
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Fig. 3.27. Measured disk morphology used in the simulation at three radial positions, ID,
MD, and OD. The peak-to-peak and standard deviation of the disk roughness are 1.76 nm
and 0.31 nm, respectively.
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Fig. 3.28. Comparison of FHMs of Scorpion III and Slider A at three radial positions, 1D,
MD, and OD with skews -15.62°, -2.56°, and 7.22°, respectively.
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Fig. 3.29. Comparison of FHMs of Scorpion IV and Slider A at three radial positions, 1D,
MD, and OD with skews -15.62°, -2.56°, and 7.22°, respectively.
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CHAPTER 4
FABRICATION AND EXPERIMENTAL STUDY OF FLYING AND
CONTACT DYNAMICS OF AN AL,O3-TIC SLIDER WITH A
PIEZOELECTRIC NANOACTUATOR

In this chapter we report on the design and fabrication of Al,Os3-TiC sliders with a
special ABS design and piezoelectric actuator for achieving high actuation efficiency. We
demonstrate an inexpensive and low-temperature approach for integrating piezoelectric
materials in the fabrication of current ALLOs-TiC sliders. A bulk PZT sheet is bonded
onto the back of row-bars, and the sliders are separated by a standard dicing process. The
process requires no deep reactive-ion etching (DRIE) or high temperature processes and
is suitable for mass production. The fabricated prototype sliders have been tested
experimentally. The measured nonflying actuated stroke exhibits a linear relationship
with the applied voltage with a rate of ~ 0.8 nm/V. The FHs of two different sliders,
designed for the actuated center pad and actuated side pads schemes, were successfully
reduced from 15.5 nm and 8.5 nm to contact with applied voltages of 20 V and 10 V,
respectively, which demonstrates high actuation efficiency. The AE measurements show
clear spikes when the center pad is brought into contact with the disk by the actuator. The
pattern of the AE signals during contact is different from the one observed in
conventional sliders during “touchdown-takeoff tests” where there is a pronounced
increase in the AE amplitude upon contact. This difference is attributed to the sustained
air bearing even when the intermittent contacts occur in the head-disk interface. It is also
found that the dominant air bearing mode shifts from the first pitch to the second pitch as
a result of the intermittent contacts. In addition, a track of considerable lube depletion and

carbon wear was observed after the contact tests.
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4.1 Introduction

As the spacing between the slider and the disk decreases in hard disk drives the
linear bit spacing of the magnetic recording can decrease, resulting in a higher areal
density. A gap flying height of less than 5 nm between the read/write element and the
surface of the disk is required for the next generation of magnetic recording. A stable and
constant FH must also be sustained in the presence of altitude and temperature changes,
manufacturing tolerance, and track-seeking motion. Furthermore, the dynamic instability
caused by FH modulations (FHMs) and nanoscale adhesion forces, such as electrostatic
and intermolecular forces, should be minimized. Those challenges make a conventional
air bearing surface (ABS) slider an unlikely choice for an areal density of 1 Tbit/in>. One
potential solution is a FH adjustment or control slider that is capable of adjusting its gap

FH with sub-nanometer resolution.

Due to its quick response and low power consumption piezoelectric materials
have been proposed as active elements for adjusting the FH. Yeack-Scranton ef al. [1]
proposed an active slider for contact recording, where a piezoelectric material was
inserted in a channel that ran across the full width of the slider at its top rear. They
experimentally demonstrated movement of the read/write element from ~ 200 nm to
contact, but the proposed structure of piezoelectric actuator is difficult to implement in
the smaller currently used pico- or femto-sized sliders. Another approach is to bond a
layer of piezoelectric material to one side of the suspension and change the FH by

bending the suspension [2], [3]. The bandwidth of actuation is limited by that of the
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suspension dynamics, which is much lower than that of the air bearing. Khanna et al. [4]
in 1991 and then Zhang et al. [5] in 2005 reported a method of FH adjustment by bonding
a bulk piezoelectric material on the backside of a slider body. The FH was adjusted by
applying a voltage to the piezoelectric material and thereby changing the crown and/or
camber of the slider body. The structure of such sliders is simpler and it is relatively easy
to fabricate, but the fact that the FH is adjusted by changing the crown and/or camber
contradicts the ABS design rule of reducing sensitivity of flying attitudes to these two
parameters. Another approach is to utilize piezoelectrically actuated unimorph cantilever
sliders. Several papers, such as Kurita et al. [6], [7], Tagawa et al. [8], Suzuki et al. [9],
and Su et al. [10], have presented active sliders made of silicon with piezoelectric
unimorph cantilevers. The slider structure was simple and could be fabricated by silicon
microfabrication technology. However, the use of silicon as the slider material and the
requirement of high temperature processes make it difficult to integrate with current
fabrication technology. Juang et al. [11] developed a low-temperature and inexpensive
process for fabricating and integrating Al,O;-TiC sliders with piezoelectric nanoactuators
using a conventional ABS. They found that the actuation efficiency was only 7 % due to

the strong counter effect of the air bearing.

In this chapter we propose an approach for integrating piezoelectric materials in
the fabrication of current Al,O;-TiC sliders and conduct numerical and experimental
analyses to investigate their performance. We designed and fabricated Al,Os3-TiC sliders
with a special ABS for achieving high actuation efficiency. Experiments using a Zygo

optical profiler, dynamic FH tester (DFHT), acoustic emission sensor (AE), laser Doppler
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vibrometer (LDV) and optical surface analyzer (OSA) were carried out to study the
actuation and flying performance as well as the slider dynamics when the center pad is

actuated to contact the disk.

4.2 Fabrication

A schematic diagram of the controlled-FH slider with an unimorph piezoelectric
nanoactuator is shown in Fig. 4.1. The slider carries a layer of piezoelectric material,
which is located between the slider body and the suspension flexure. The two slits near
the trailing edge are created to form a cantilever. The piezoelectric layer is separated into
three parts by a dicing process. The read/write element is located on the air bearing
surface near the end of the cantilever. There are two operational schemes: actuated
center-pad and actuated side-pads. For the actuated center-pad scheme an electric voltage
is applied to the middle portion of the piezoelectric material and the cantilever bends
down or up depending on the polarity of the induced electric field, resulting in a decrease
or increase of the gap FH. For the actuated side-pads scheme an electrical voltage is
applied to the piezoelectric layers on the two sides and the FH is reduced when the two
side-pads are bent up, causing a relative downward displacement of the center pad with
respect to the ABS. According to the sign convention in this study a positive stroke is the

one that reduces the FH and vice versa.

Fig. 4.2 illustrates the fabrication process of Al,O;-TiC sliders with piezoelectric
actuators. The process starts from dicing wafers into quads and cutting them into

row-bars, followed by lapping of the row-bars to the desired slider thickness. The ABS is
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then defined and etched by photolithography and dry-etch processes such as ion-milling
and reactive-ion etching. A thin layer of diamond-like carbon (DLC) is deposited on the
entire ABS to protect the read/write element from corrosion and wear. The row-bars are
then bonded with 127-um thick commercially available lead-zirconate-titanate (PZT)
sheets (Piezo Systems, Inc.) by silver epoxy (Transene Company, Inc.). Thin vacuum
sputtered nickel electrodes have been deposited on both surfaces of the PZT sheets to
produce extremely low current leakage and low magnetic permeability. A standard dicing
process is used to separate the PZT and to cut the row-bars into individual sliders. Since
there are no deep reactive-ion etching or high temperature processes involved the cost
introduced by these additional steps can be kept at a minimum, and the previously
deposited read/write element will not be damaged. The sliders are then mounted onto
suspensions by the use of conductive and nonconductive glues to complete the
head-gimbal assembly (HGA). The electrodes on the suspension flexure for read/write
heads are used to apply voltages to the actuator. Two prototypes, Slider #1 and Slider #2
were assembled and studied for the actuated center pad and side-pads scheme,
respectively. Examples of a fabricated Al,Os-TiC slider with a layer of PZT and a

completed HGA are shown in Fig. 4.3 and Fig. 4.4, respectively.

4.3 Experiments

An ABS design named Scorpion is used in this study. As illustrated in Fig. 4.5(a)
it has four levels of etching steps and was designed for piezoelectric sliders with high air
bearing stiffness and damping [12]. The targeted gap FH (without actuation) is 12 nm at a

disk velocity of 15000 rpm. Fig. 4.5(b) shows the pressure distribution of the Scorpion
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ABS. Instead of being supported by a center pressure peak the slider is primarily
supported by the high pressures generated at the side trailing pads, which significantly
increases the actuation efficiency. The two white rectangles are slits that run through the
entire slider thickness and have dimensions of 65x600 pum.

These tests were conducted on a Candela OSA spin-stand with a dual-channel
LDV for monitoring slider dynamics and an AE sensor for detecting contact. One channel
of the LDV was focused on the slider backside and measured the slider’s velocity in the
Z-direction. This was integrated to obtain the slider’s displacement over time. To capture
the repeatable part of the slider displacements the second channel of the LDV was used
as a trigger to the data acquisition system, which averaged the slider velocity channel
accurately over 300 disk revolutions. The trigger was obtained from a scratch on the disk
edge, which gives a very accurate trigger [13]. Three measurements of slider
displacements were taken corresponding to each voltage, which was varied from OV to

60V in steps on 10V.

A smooth disk (rms 0.2 nm) with 12 A Zdol 4000 lube was used for conducting
the tests. After each voltage cycle of 0V-60V-0V, the disk was monitored for lubricant

depletion.

4.4 Results and Discussions
4.4.1 Nonflying Stroke
The unimorph actuator, composed of a piece of piezoelectric material and a

portion of the slider, deflects under an electric voltage 7 and an external vertical force F’
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exerted on the tip. The constitutive equation of the tip deflection subject to a voltage and

a force can be described as follows [14]:

o=aF+bV (4.1)

1 40 apf(1+p)
k,  Ewt B +2a2B 438 +25°)+1

N

p 3L ap(l+ B) J
2 apt v 2a2B 4382 4287 )41

p

azE/ , ﬂ:%
p p

where the subscripts s and p stand for the slider and piezoelectric materials, respectively.
E and ¢ are the Young’s modulus and beam thickness, respectively. L and w represent the
length and width of the composite beam. k; is the bending stiffness of the cantilever. d,

is the piezoelectric coefficient.

According to Eq. (4.1) the actuated stroke as a function of the cantilever length
was calculated without an external force. The thicknesses of the PZT and ALOs-TiC
layers are 127 and 300 um, respectively. The material properties are E, = 62 GPa, E; =
398 GPa, d;; = -320x107'2 m/V. It is seen that the stroke increases as the actuator length

increases and is about 0.6 nm/V for a length of 600-pum.

The nonflying actuated stroke of the prototype sliders at the pole-tip as a function
of applied voltage was measured by a Zygo optical profiler (NewView interferometer,

Zygo Corporation). Fig. 4.7 shows an example of a measurement obtained by the
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instrument. The topography of a portion of the slider near the trailing edge was measured
and analyzed. The profile along the direction of the slider’s width is plotted in Fig. 4.7(b).
It is observed that there are three etching steps (four levels) with etch depths of about 191
nm, 1.38 um and 1.88 um. The actuation stroke was measured as the height difference
between the center pad and the two side-pads when an electrical voltage is applied to the
piezoelectric materials. It is noted that an initial stroke of several nanometers was
observed even when no voltage was applied, which may be attributed to the
cutting/bonding process and/or the mismatch of coefficients of thermal expansion of the
PZT and Al,Os-TiC. Further investigation is required for minimizing and eliminating the

initial stroke.

The actuated stroke was obtained by subtracting the initial surface profile
(without voltage) from the actuated one (with voltage). Fig. 4.8 shows the stroke of Slider
#1 when the voltage is increased from 0 to 40 V and returned to 0 V. A stroke of 32 nm is
obtained with a voltage of 40 V, corresponding to a rate of 0.8 nm/V. A slight hysteresis
is also observed. The measured stroke is 0.2 nm/V larger than the calculated value of 0.6
nm/V at a length of 600 um, and it fits the calculated stroke when the actuator length is
700 um. This result indicates that the effective actuation length is 100 um longer than the

cutting length of the slits.

Similarly, the actuated stroke of Slider #2 was measured. The driving voltage was
gradually increased from 0 to 60 V, returned to 0 V, decreased to -60 V and returned to 0

V to form a complete loop as shown in Fig. 4.9(a). A hysteresis of 5 nm is observed due
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to the relatively high driving voltage. The measurement data and a linear fit for the
branch from 0 to 60 V are shown in Fig. 4.9(b). The stroke is found to be proportional to
the applied voltage with a rate of 0.72 nm/V. It is observed that Slider #1 and #2 have
initial strokes of -6 and 0 nm, respectively, which have to be included in the FH

measurements.

4.4.2 Flying Heights: Measurements and Simulations

We used an optical dynamic FH tester (DFHT4, KLA-Tencor Corporation) to
measure the FH of the fabricated suspended sliders. In the tests the sliders were flown
over a glass disk at three radial positions (ID, MD, and OD) at a rotational speed of
15000 rpm and a skew angle of 0 degree. The FHs were measured at the outer trailing
pad (Point A) and the inner trailing pad (Point B). The FH at the center trailing pad was
not measured since the light spot of the instrument (~30 pum) was larger than the available
area of the center pad. Instead of direct measurements the FHs at the center pad were
estimated by averaging the FHs at the two side-pads and taking the initial stroke into
account. Fig. 4.10 shows the measured FH of Point A at the MD as a function of degree
(360 degrees per revolution). The average and standard deviation are 9.11 and 0.14 nm,
respectively. The experimental results are compared with numerical ones simulated by
using the CML Air Bearing Simulator as shown in Table. 4.1. The measured values are 2
to 5 nm smaller than those obtained by simulations. Such a discrepancy may be due to the
measurement error and/or to the simulation model, which may not be accurate under
ultralow flying conditions. Based on the results the gap FHs of Slider #1 and #2 are

estimated to be 15.5 nm (9.5 nm + 6 nm) and 8.5 nm (8.5 nm + 0 nm), respectively.
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4.4.3 Contact Tests

Contact tests were conducted on a Candela OSA spin-stand with an AE sensor for
detecting contact. Slider #1 was loaded on the disk at a radial position of 26 mm and a
linear speed of 38 m/s. The slider body was electrically grounded and a voltage was
applied to the top electrode of the PZT actuator. The voltage was gradually increased
from 0 to 60 V in increments of 5 V. The process was repeated at a new radial position of
25 mm. Figs. 4.11(a) and 4.11(c) show the time histories of the AE signal when no
voltage was applied to the piezoelectric actuator, which indicates that the slider flew well
and no contact was detected by the AE sensor. Isolated spikes were observed when a
voltage of 60 V was applied to the actuator as shown in Figs. 4.11(b) and 4.11(d). These
spikes were caused by the intermittent contacts of the center pad and the disk. However,
such a pattern of the AE signals during contact is different from the one observed in the
conventional sliders during “touchdown-takeoff tests” [15] where there was a pronounced
increase in the amplitude of the AE signal upon contact. Thus, during controlled contact
(as is the case here) only a small portion of the slider comes into contact with the disk
while the rest of the ABS is supported by the air bearing. There is no loss of air bearing
as the voltage increases to increase the intensity of contact. Therefore the corresponding
AE signal showed only an increase in the frequency of contacts but not an AE avalanche,
which occurs in case of conventional sliders at touchdown due to complete loss of the air

bearing.

Fig. 4.12 shows the number of hits (spikes) and FH as functions of the applied
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voltage. A contact event that has an AE amplitude over £500 mV was counted as a hit.
The gap FH was obtained by the measured FHs at the two side-pads and the measured
initial stroke with consideration of the actuated stroke. At the radial position of 26 mm no
contact was detected when the applied voltage was less than 20 V, corresponding to an
estimated FH of -0.5 nm, and contact events were first detected when the applied voltage
was increased to 25 V, corresponding to a FH of about -4.5 nm. A monotonic increase in
the number of hits was observed as the voltage was increased, which indicated that the
event of intermittent contacts became more frequent when the actuated stroke of the
center pad was increased. It is noted that the contact was first detected at a FH between
-0.5 nm and -4.5 nm, which was less than the take-off height (~ 2 nm). There are two
possible reasons: one may be attributed to the AE sensor which may not be sensitive
enough to detect the slight contact. The other may be the push-back lifting force
generated by the center trailing pad, which may reduce the actuation stroke as compared
to the case without flying. A similar trend was also observed when a second test was
conducted on a new track (25 mm). It is seen that the intermittent contacts were detected
at a smaller voltage (15 V). Such reduction of slider stability may be attributed to the
lubricant pickup after the first test. Lubricant pickup decreases the slider’s stability.
Further, it also causes ABS contamination, which in turn may collect miniscule debris

particles and cause wear at the head-disk interface [15].

We carried out contact tests for Slider #2 for the actuated side-pads scheme.
Similarly, the contact event was detected by the AE sensor at a FH of about 0 nm. Fig.

4.13 shows the comparison of the nonflying strokes measured before and after the contact
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test, which demonstrates good repeatability of piezoelectric actuation even after contact.

4.4.4 Flying Height Modulation

Intermittent contacts due to increase in actuation voltage also cause a change in
slider dynamics. To investigate this we measured the fly height modulation for Slider #2
as described in the previous section. From Fig.4.14 we see that the peak-to-peak and
standard deviation (3c) of the slider displacements gradually increase as the voltage is
increased. However, the increase is not substantial and signifies a gradual increase in the
slider-disk contact as the center trailing pad is lowered due to the voltage increase. The

repeatability of this data was also found to be good, as seen from the small error bars.

Figs. 4.15(a) and 4.15(b) show the repeatable part of the slider’s displacement
without slider-disk contact at 0 V and during slider-disk contact at 60 V, respectively.
Comparing (a) and (b) we see the increased amplitude of slider displacements in the latter
case. Similar to the AE measurements, the difference is not as sharp compared to a
conventional slider where there is a pronounced increase in the amplitude of slider

displacements upon contact due to the complete loss of air bearing.

Figs. 4.16(a)-(f) show the frequency content of slider displacements as the
voltage is increased from 0 to 60 V. The CML Parameter Identification Program was
used to identify the air bearing frequencies and mode shapes of the Scorpion sliders in
Chapter 3. The first pitch and the second pitch modes were found to be near 100 kHz and

200 kHz, respectively. The nodal lines shown indicate that the axes of the first and
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second pitch modes lie near the trailing and the leading edges, respectively. Using this
information we can identify the dominant ABS frequencies in Figs. 4.16 (a)-(f). The
arrows shown in Figs. 4.16(a) and 4.16(f) indicate the first and second pitch modes. It is
seen by traversing the plots (a-f) that as the voltage (intensity of contact) increases, the
second pitch mode gradually becomes more dominant. This can be explained as follows:
When the slider is flying the trailing edge flies much closer to the disk than the leading
edge. Thus, the stiffness associated with the trailing edge is much more and the
modulations in the leading edge flying height due to disk forcing are much more than at
the trailing edge due to which the slider pitch mode is close to the trailing edge. Hence,
the first pitch mode is dominant when there is no slider-disk contact. As the trailing pad
protrudes due to an increase in the voltage the trailing edge flies higher, and the slider
pitch is also lowered. Further, only the trailing edge gets significant forcing due to impact
force. Due to this the modulations of the trailing pad are much higher than at the leading
pad so that the second pitch mode is dominant during slider-disk contact. This hypothesis
can be readily tested using the LDV to monitor the dynamics of multiple points on the

slider.

From Figs. 14(a-f) we also see an increase of about 14 dB (5 times) in the peak

frequency components during slider-disk contact.

FHM is defined as the difference between slider and disk displacements, i.e. the
modulation of mechanical fly height over time. During the experiments the disk was

scratched during slider disk contact, due to which its topography was changed
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substantially. Hence, the FHM as a function of applied voltage is not reported here and

further tests need to be carried out to examine the same.

4.4.5 Controlled Contact Effect on Lubricant

The effect of controlled contact on the lube was also monitored during the full
voltage cycle 0V-60V-0V, during which the trailing pad was forced in and out of contact.
When one such test was conducted substantial lube depletion was seen below the side
rails and the trailing pad, as indicated by the arrows in Fig. 4.17, which plots the average
lube depletion in the radial direction. Since the trailing pad was brought into contact the
depletion under it was more (5 A) than that under the side rails (1 A - 3 A). Overall the
depletion was relatively high due to which, when the controlled contact test was repeated
the second time, there was considerable wear, and a wear track was seen on the disk. Fig
4.18 shows the track. From the OSA analysis total lubricant depletion was seen in the
dark area. This area measured about 250 pm in width, slightly wider than the cantilever
width (200 um). The central white portion in the dark area was the only place where there
was only lubricant depletion and no carbon wear, while the rest of the dark area had
carbon wear and the generation of debris particles. There was also considerable wear of

the ABS surface as seen in Fig. 4.19.

More tests need to be conducted to determine the reliability of the interface during
partial contact using the Scorpion design. It is believed that the disk showed accelerated
wear due to excessive increase in voltage (60 V) to the cantilever which increased the

contact intensity.
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4.5 Conclusions

This chapter presented fabrication and experimental results of flying and contact
dynamics of Al,Os-TiC sliders with piezoelectric nanoactuators. We fabricated and
assembled prototype sliders using an inexpensive and low-temperature process. The
measured nonflying actuated stroke exhibited a linear relationship with the applied
voltage with a rate of ~ 0.8 nm/V. However, a hysteresis was observed when excessive
voltages (= 60 V) were applied to the piezoelectric actuators. The FHs of two different
sliders were successfully reduced from 15.5 nm and 8.5 nm to contact with applied
voltages of 20 V and 10 V, respectively, which demonstrated high actuation efficiency.
The AE measurements showed clear spikes when the center pad was brought into contact
with the disk by the actuator. However, such a pattern of the AE signals during controlled
contact is different from the one observed in the conventional sliders during
“touchdown-takeoff tests” where there is a pronounced increase in the AE amplitude
upon contact. This is attributed to the sustained air bearing even when the intermittent
contacts occur in the head-disk interface. It is also found that the dominant air bearing
mode shifted from the first pitch to the second pitch as a result of the intermittent contacts.
In addition, a track of considerable lube depletion and carbon wear was observed after the

contact tests.
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TABLE 4.1 Comparisons of the Simulated and Measured FHs at Point A (outer trailing
pad) and B (inner trailing pad). The values in the Parentheses are the Standard

Deviations.
OD MD ID
Sim. Exp. Sim. Exp. Sim. Exp.
(nm) (nm) (nm) (nm) (nm) (nm)
Point A 13.31 11.64 13.43 10.04 13.11 11.01
(0.2) (0.18) (0.18)
Point B 13.23 8.08 13.60 9.11 13.63 8.78
(0.1) (0.14) (0.16)
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Fig. 4.1. Two operational schemes of a FH control slider with piezoelectric actuation. (a)
actuated center-pad; (b) actuated side-pads.
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Fig. 4.2. Schematic diagram of the process flow.
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Fig. 4.3. Fabricated Al,Os3-TiC slider with a layer of piezoelectric material bonded on the
back-side.
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Fig. 4.4. HGA of the fabricated slider
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Fig. 4.5. (a) A pico-slider ABS used in this study. The two white rectangles are slits
through the entire thickness of the slider; (b) Air bearing pressure profile at radial
position 29.89 mm, 0 degree skew. The scale displayed is normalized to ambient pressure:

(P - Pa)/Pa-

101



1.2 e e e ; e

Stroke (nm/\/)

0 i I | | I
200 300 400 500 600 700 800
Length L (um)

Fig. 4.6. The actuated stroke of a piezoelectric unimorph actuator under 1 V. The
thicknesses of the piezoelectric and Al,O;-TiC layers are 127 and 300 um, respectively.
The material properties are E,= 62 GPa, E,= 398 GPa, d3; = -320x10">m/V. The stroke

is about 0.6 nm/V for a 600-um long cantilever.
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Fig. 4.7. An example of the air bearing topography measured by a Zygo optical profiler.
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Fig. 4.8. The measured nonflying stroke as a function of the applied voltage for Slider #1.
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Fig. 4.9. The measured nonflying stroke as a function of the applied voltage. (a) The
voltage was gradually increased from 0 to 60 V, returned to 0 V, decreased to -60 V and
returned to 0 V; (b) A linear fit of a rate of 0.72 nm/V is found to fit the measurement
data from 0 to 60 V. The minus sign indicates that a negative voltage is required for a
positive stroke in the actuated side-pads scheme.
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Fig. 4.10. The measured FH at Point A (the inner trailing pad) at the MD as a function of
degree.
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Fig. 4.11. The time histories of the AE signals: (a) 0 V at 26 mm; (b) 60 V at 26 mm; (c)
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Fig. 4.13. Comparison of the nonflying actuated strokes measured before and after the
contact test, which demonstrated good repeatability.
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Fig. 4.17. Average lube height as a function of radius on an experimental track.

Fig. 4.18. OSA scan of experimental track showing lube depletion and carbon wear.
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Fig. 4.19. Photograph of the piezoelectric slider after contact tests. Considerable amount
of debris and particles were accumulated on the ABS, especially near the center and inner
trailing pads.
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CHAPTER 5
MODELING AND DYNAMIC CONTROL FOR FLYING HEIGHT
MODULATION SUPPRESSION IN ULTRALOW FLYING AIR BEARINGS

As the slider flying height (FH) continues to be reduced in hard disk drives, the
flying height modulation (FHM) due to disk morphology and interface instability caused
by highly nonlinear attractive forces becomes significant. Based on the concept that the
FH of a portion of the slider that carries the read/write element can be adjusted by a
piezoelectric actuator located between the slider and suspension and that the FH can be
measured by use of a magnetic signal, a new 3-DOF analytic model and an
observer-based nonlinear compensator are proposed to achieve ultra-low FH with
minimum modulation under short range attractive forces. Numerical simulations show

that the FHM due to disk waviness is effectively controlled and reduced.

5.1 Introduction

The areal density of magnetic recording in hard disk drives has been increasing at a
multiple of 1.6 per year since the late 90’s. This achievement has been enabled
mechanically by decreasing the distance between the read/write transducer and the
rotating disks. According to the Wallace spacing loss equation the magnetic signal
increases exponentially as the distance decreases between the magnetic media and the
transducer. Therefore, the maximum magnetic signal can potentially be obtained at a
spacing of zero, resulting in a contact recording scheme. However, when the slider comes
into contact with the disk, other considerations must be addressed to assure a stable

contact interface with minimum wear and contact bouncing vibration. Yanagisawa et al.
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[1] used a 0.3 mm diameter glass ball to study contact sliding experimentally, and they
showed that the wear of the spherical contact slider decreased as the gram load decreased,
but the bouncing vibrations increased. In other words, there was a trade-off between

reducing the bouncing and wear.

Ono et al. [2] numerically studied the effects of several parameters on the bouncing
vibrations of a 1-DOF slider model and found that bouncing vibrations can be reduced by
decreasing the contact stiffness and increasing the contact damping as well as applied
load. Ono and Takahashi [3, 4] used a 2-DOF model for a tri-pad contact slider and
showed that in order to achieve minimum bouncing it is necessary to design the contact
pad such that its penetration depth is greater than the amplitude of the disk surface
waviness. Such high penetration causes a relatively severe wear of the disk or slider. The
effects of the front and rear air bearing stiffnesses, as well as the friction coefficient, on
the contact force and bouncing vibrations were analyzed numerically with a 2-DOF
tri-pad slider model in lida et al. [5]. It was found that the rear air bearing stiffness should
be larger than the front air bearing stiffness in order to reduce the vibration. However,
contact forces may be increased if the rear air bearing is too stiff. Accordingly, there is an

optimum rear air bearing stiffness in terms of both stable contact and wear durability.

In [6, 7], Ono and lida used a 1-DOF model to investigate the design conditions of a
contact slider over a random wavy disk surface. Assuming a uniform contact pressure
their simulation results showed that a larger contact pad area is better for wear durability

because the contact stiffness and applied load necessary to attain contact sliding increases
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in proportion to the square root of the contact area. Asperity contact and bulk
deformation were considered in Yamane et al. [8] to evaluate contact forces, contact
stiffness, and contact pressure in the near-contact regime as a function of separation
between the contact pad and disk surface. They showed that the mean contact force and
spacing variation increased with an increase in the rms value of micro-waviness of the
disk surface. The short range attractive forces between the slider and disk in the
proximity regime have to be considered in both flying and contact sliders. These forces
are strongly related to lubricant thickness, surface roughness, and slider/disk materials.
More significant bouncing vibrations and flying height hysteresis have been observed

experimentally when smoother disks or a thicker lubricant are used.

Additionally, lida and Ono [4, 5] included the meniscus attractive force in their
random asperity contact simulations. They observed similar touch-down and take-off
hysteresis as observed in experiments and showed that the attractive force could be
significantly reduced if the rms value of asperity heights was increased or the asperity
density was reduced. However, the attractive force increased with an increase in lubricant
thickness. Yamane et al. [8] studied the bouncing vibrations experimentally and by
numerical simulation using a 2-DOF dynamic model considering the adhesive force of
the lubricant as well as the friction force. The frequency spectra of the trailing edge
bouncing vibrations after touch-down and before take-off showed some similarity
between experimental and numerical results, but the vibration amplitudes had
considerable disagreement between the two cases. The bouncing vibrations observed in

the numerical simulations were self-excited vibrations caused by the combination effect
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of a relatively large short range attractive force and the friction force between the disk
and slider when the contact occurred. These self-excited vibrations were negligible if the
friction coefficient or the attractive force was small. The authors concluded that a contact
slider with minimum self-excited bouncing can be achieved by use of a stiffer air bearing
and with minimum friction coefficient and attractive force. Even though several design
considerations have been proposed to design a contact slider in the literature, it is still
unclear how those designs can be implemented into a real system, namely the design of

the air bearing surface (ABS) and the selection of lubricants.

As the flying height (FH) is reduced in a flying head slider to the sub 3-nm regime in
ultra-high density hard disk systems, the flying height modulation (FHM) induced by the
disk morphology and dynamic instability due to short range attractive forces become
more significant. Gupta and Bogy [9] conducted a numerical study of the effect of
intermolecular and electrostatic forces on the stability of the HDI, and they showed that
those short range attractive forces may cause an instability of the HDI at such low flying

heights. This effect must be considered in the design of the ABS.

In order to achieve reliable reading and writing of magnetic data it is required that
the transducer location on the slider vibrate less than £10 % of the nominal FH, or about
+0.3 nm, in future systems for 1 Tbit/in® areal density. Furthermore, considerable FHM
may cause instability of the interface due to adhesive forces. The concept of FH
adjustment by piezoelectric material has been proposed in [10-12], but the main purpose

in those papers was to decrease the effects of manufacturing tolerances and
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environmental variations on the FH. Those authors utilized silicon microfabrication
technology to fabricate the sliders. However, the use of silicon as the slider material may
cause other issues in slider fabrication and HDI tribology. Li et al. [13] presented a
real-time FH detection method by using readback or thermal signals and in [14] they
developed a real-time feedback control method to suppress the FHM. In this case, the
actuator was a piezoelectric film attached to the suspension. The actuation bandwidth was
limited by the suspension dynamics. The effect of short range attractive forces was not

taken into consideration in these studies.

In this chapter a new 3-DOF analytic model is proposed to describe the dynamics
of the piezoelectric actuated slider. The air bearing parameters, such as stiffness and
damping, are identified by a modal analysis method developed in the Computer
Mechanics Laboratory (CML) [15, 16]. Then, an observer-based nonlinear sliding mode
controller [17] is designed to compensate the short range attractive forces and to suppress
the FHM of ultra-low flying height air-bearing sliders in proximity, in which the
magnetic signal is used for real-time FHM measurement. The attractive forces are
included in the model as a highly nonlinear term and the effect of disk morphology is
modeled as unknown but bounded disturbances. The performance of the controller is

investigated by numerical simulations.

5.2 Nonlinear 3-DOF Lumped Parameter Model of Controlled Flying Sliders
A schematic diagram of the FH control slider with a piezoelectric nanoactuator is

shown in Fig. 5.1. The FH is about 20 nm in the off duty cycle and is reduced to about 3
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nm during reading and writing. Figure 5.2 shows the five-pad ABS design example used
in this chapter. The gap FH is adjusted by the deflection of the cantilever actuator. The
deflection is achieved by grounding the slider and applying a negative voltage to the top

electrode of the central piezoelectric material.

There are two modes of operation. In the passive mode, there is no external
voltage applied to the piezoelectric material so the active cantilever rests in the original
position. The gap flying height in this case may be designed to be between 10 and 20 nm,
depending on the ABS design. In the active mode the cantilever is bent into close
proximity of the disk with the application of a negative DC voltage to the middle portion
of the piezoelectric material. Meanwhile, an AC computed control voltage is superposed
on the DC voltage so that the FHM is minimized. The active mode is used only when the
read/write head is in operation. The duty cycle for a practical head is rather low. Most of
the time of the head is spent in non-read/write conditions, such as latency, seeking, or idle.
Thus the wear and power consumption can be greatly reduced by simply operating the
piezoelectric slider in the passive mode. The air bearing pressure distributions in both
modes are shown in Fig. 5.3, where the additional pressure peak is seen when the central

pad is deflected into close proximity to the disk.

The slider is modeled as a nonlinear 3-DOF lumped model in which the cantilever

actuator and the air bearing dynamics are modeled as 1-DOF and 2-DOF, respectively.

5.2.1 1-DOF Lumped Model of the Piezoelectric Unimorph Nanoactuator

119



The cantilever actuator, composed of a piece of piezoelectric material and a
portion of the slider, deflects under an electric voltage }" and an external vertical force F'
exerted on the tip as shown in Fig. 5.4(a). V" and F are the control voltage and air bearing
force in our application. The equation for the tip deflection when it is subject to a voltage

and a force can be written as follows [18]:

o=aF +bV (5.1)

14 af(1+ p)
k. Ewt B +2a28+362 +25°)+1

Cc

a =

p 3L af(1+p)
= d31
2 aft+ 20284387 + 247 )+1

p

azE/ , ﬂz%
p p

where the subscripts s and p stand for the slider and piezoelectric materials, respectively.

E and ¢ are the Young’s modulus and beam thickness, respectively. L and w represent the
length and width of the composite beam. k. is the bending stiffness of the cantilever. d3,

is the piezoelectric coefficient.

The deflections of the cantilever of three different slider thicknesses (0.3, 0.23,
and 0.2 mm) per volt (without external force) were calculated according to Eq. (5.1) and
were simulated by finite element analysis (FEA) with the results as shown in Fig. 5.5. It
was found that an optimal thickness of the PZT exists for which the deflection is

maximized for a given voltage and slider thickness.
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According to Eq. (5.1) the cantilever is modeled as a single DOF
mass-damper-spring system with (bending) stiffness k. and damping c. as shown in Fig.
5.4(b). k. is determined by Eq. (5.1) and ¢, is assumed to be zero in the calculation. The

equivalent mass m,, is calculated by the following equation,

My = (5.2)

where , is the first natural frequency of the cantilever obtained by finite element
analysis. @, 1s about 3380 rad/s for a pico-sized slider with 300 pm thickness and 80 pm
PZT plate as shown in Fig. 5.6. Since the bandwidth of the PZT itself is very high the
bandwidth of cantilever actuator is primarily limited by the first resonant frequency of the

structure, i.e. about 500 kHz in this case.

5.2.2 2-DOF Lumped Model of the Air Bearing and Its Parameter Identification

In this section we focus on the air bearing dynamics while the cantilever is fixed
without moving relative to the rest of slider. For symmetric ABS designs and flying at 0°
skew, the motion of the slider in the roll direction makes little contribution to the system
response. However, the two pitch modes contribute to the slider’s dynamics at the R/'W
transducer. This can be modeled as a 2-DOF system as shown in Fig. 5.7(a). The
equation of motion of this model for free vibration can be expressed in the following

form,

[m] {5} +[c]ix} +[k]ix} = {0} (5.3)

where
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[z, M 0
{x} = 9}; [m]:{o ]J;

c*+c, —(d,c*~d, c))
- (d,c*—d,c,)) d,zc*+dlzcl

Je* +k, —(d, k*—d, k)

k1=
L] —(d k*-d k) dfk*+d12kl ’

in which z), and @ are the displacement of the slider’s mass center and the pitch angle of
the slider with zero mean values, respectively. The slider’s mass M and moment of inertia
Ip are 1.6x10° kg and 2.2x107"° kg.m? respectively. The parameters that need to be
identified are described as follows: k; and £* are the air bearing stiffness. ¢; and c* are the
air bearing damping. d; and d;, are the distance from the resultant air bearing force to the
mass center of the slider. Index / or * represents the value at the leading (two pads) or

trailing edge (three pads).

A linear modal analysis program developed in CML [15, 16] is used to identify
the parameters. The method uses impulse responses of the slider to obtain the air bearing
modal parameters, such as modal frequencies, damping ratios, mode shapes, and physical
matrices (mass, stiffness, and damping). The impulse response is calculated by the
constrained CML Dynamic Simulator, in which the slider’s moment of inertia in the roll
direction /, is increased to prohibit the slider from rolling and the linear disk velocity is
15 m/s. The initial impulse has to be extremely small to avoid nonlinearity. The

deflection of the cantilever is implemented in the CML Dynamic Simulator by setting the
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relative heights of the central trailing pad and the other four pads.

Figure 5.8 shows the dynamic characteristics of the piezoelectric slider at a gap
FH of 3 nm (with the cantilever actuator deflection of 24 nm). It shows the nodal lines of
the two mode shapes, two modal frequencies and two damping ratios. The frequencies
and damping ratios at several different FH’s are shown in Table 5.1. The six parameters
k*, ki, c*, ¢, d,, and d; were determined algebraically by equating the six elements in the
matrices [c] and [k] and those identified by the linear modal analysis approach. The
calculated results are shown in Table 5.2. It is observed that only k* and c* exhibit
significant nonlinearities. For the other four parameters, the linearized values about FHy=

2.35 nm are used in the following sections.

In the active mode of operation the cantilever actuator is expected to deflect
dynamically. Hence, the central trailing pad, located at the end of the cantilever, has
relative motion with respect to the other two trailing pads. A more realistic model is
shown in Fig. 5.7(b), where k* and c* are decomposed into two parts, resulting in four
parameters k;, ¢;, k, and c. k; and ¢, are the air bearing stiffness and damping coefficient at
the two side trailing pads of the slider body. £ and ¢ are the stiffness and damping of the
central trailing pad, which is located at the end of the cantilever actuator. / (= 0.595 mm)
is the distance from the slider mass center to the read/write transducer. Since the FH at
the two side trailing pads is usually more than 40 nm the linearized values of k; and ¢, are
used. Table 5.3 shows the set of parameters for the 2-DOF model shown in Fig. 5.7(b). k

and c are the only nonlinear elements and ¢, is set to zero for simplicity. Figures 5.9 (a)
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and (b) show plots of k£ and ¢ as functions of FH at the pole tip (PT). Among the three
curve fitting laws, a natural logarithm curve is found to be the best fit to the stiffness
within the range of interest, giving a k(FH,,) in units of N/m as a function of FH at the PT

(FH,) in units of nm
k(FH )= p,-In(FH ) + o, (54)

The coefficients f and o for this fit are determined to be -211456 and 460671,

respectively.

The damping coefficient ¢ is almost constant for FH,; between 3 and 9. A linear
curve fit is applied to ¢ for FH,; less than 3 nm, giving a ¢(FH,,) in units of N.sec/m as a

function of FH at the PT (FH;) in units of nm
c(FH,)=p.-FH, +a, (5:5)

The coefficients £, and . for this fit are determined to be 0.0044 and 0.005, respectively.

This nonlinear 2-DOF model was compared to the CML Dynamic Simulator by
looking at impulse responses of the slider. The results for FHpt of 2.35nm are shown in
Figs. 5.10 and 5.11 in both the time and frequency (FFT) domains. H// and H21 are the
responses in the zy, and @ directions due to an impulse in the z), direction, respectively.
The results for FHpt of 3 nm are also shown in Figs. 5.12 and 5.13. In both cases there is

good agreement between the 2-DOF model and the CML Simulator.

5.2.3 Intermolecular and Electrostatic Forces
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Due to the reduction in the spacing between the slider and the disk the threshold
for new nanoscale phenomena will be crossed. In particular, new forces between the
slider and disk come into play, such as intermolecular and electrostatic forces. A study of
the effects of intermolecular forces and electrostatic forces was presented in Gupta and
Bogy [9]. The intermolecular and electrostatic forces do not have a significant effect on
the flying characteristics of high flying sliders (spacings greater than 10 nm), but they
become increasingly important at low spacings (below 5 nm). These forces are attractive
in nature and hence result in a reduction in fly height as compared to what would be the
case without them. Experimental investigations have indicated that these short range

forces are one of the major instability factors in ultra low HDI.

These short range attractive forces are considered to act on the cantilever tip, i.e.,

the 1-DOF cantilever actuator.

F.=F

act imf

+ F

elec

where

= (5.6)

1 V2

F;lec = __gOkeAe (57)
27 (FH ¥

and where the constants o’ and B’ depend on the ABS design while 4’ (1.8x107°) and B’
(2.7x10°®) are related to the material properties of the slider and disk. In this paper, the
values in Thornton [19] are used. The electrostatic force due to the electrical potential

across the slider and disk is shown in Eq. (5.7). &,, k. and V" are the permittivity constant
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(8.85 x 10" farad/m), dielectric constant of the medium (1 for air) and the potential
difference between the slider and the disk. The constant 4., in Eq. (5.7) is chosen such
that the force agrees with that simulated by the CML Static Simulator. A comparison of

the electrostatic forces between the CML Simulator and the model is shown in Fig. 5.14.

5.2.4 Nonlinear 3-DOF Lumped Model
Based on the analysis in the previous sections a nonlinear 3-DOF model is

constructed as shown in Fig. 5.15 and the equation of motion is written as follows:

[m]{X} + [c]{x} +[k]{x} = {F} (5.8)

where
KX M 0 0
xXi=1 0 |.im={0 1, 0f:
| Z 0 0 m
[ ¢+ +c, —(d.c,—d,c,—lIlc,) —c,
[cl=|-(dc, —dc —lc,) d’c,+d’c,+d’c, e,
i —c, le, c+c,
k,+k +k, —(d .k, —dk —1lk) -k,
[k]l=|—-(dk —dk —Ik,) dtzkt + dlzk, + dfkc Ik
—k, Ik, k+k,
Jat Ja kzgy+Czy+hkzy+cz,
{F} = dlfdl - dtfdt il dt (ktZdt + th.dt)+ dl (klZdl + CIZ.dl)
Fact_u+fd Fact_u+(kzd+cz.d)

Note that the disk profile quantities z4, z4, and z; are assumed unknown but bounded.
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Numerical simulations were conducted to calculate the responses of the system
over a harmonic wavy disk. The cantilever actuator is deflected at the FHy,; of 2.35 nm.
The peak-to-peak amplitude of the waviness is assumed to be 2 nm, and three
wavelengths are simulated: Imm, 0.5mm, and 0.2mm, corresponding to frequencies of 15,
30, and 75 kHz at a linear disk velocity of 15 m/s. The FHM is obtained by subtracting z,
from z,. Figure 5.16 shows the responses without including the short range forces.
However, when the forces are included in the model, severe contacts were indicated and

the slider could not fly stably.

5.3 Design of Nonlinear Compensators

The short range forces and disk waviness cause instability of the HDI and
increase the FHM. It is desirable to compensate the forces and to suppress the modulation
by feedback control. Because of the nonlinear components and uncertain disturbance in
the air bearing systems, an observer-based nonlinear control or nonlinear compensator
design approach is used [17]. A schematic diagram of the controller is shown in Fig. 5.17.
Assuming that the real-time FH can be measured we first built an observer for the state

estimation and designed a sliding control law using the observer as the plant.

Equation (5.8) is transformed into a state-space representation as follows:

(5.9)

X=Ax+Bu+ f(x)+ f,
y=Cx

The control goal is to push the FHM to zero. If z,, is used as a state this will be a tracking
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problem, z,, = z;. However, the future z, is unknown. In order to resolve this, a new state

7=z~ z4 1s used. The states of the system are

x=[x %, % %, x x| =[z, 2, 00 zz]"

And
i 0 1 0 0 0 0
—ﬁ(k/+k/+k(,) —i(c/+c,+c(,) —i(—dlkl+d,k,—lku) —ﬁ(—d/cl-%—d,c,—lcc) kﬁ CH
0 0 0 1 0 0
A= —%(—d,k, vdk, ~ k) —%(—dlc,+d,c,—lcc) —%(d,zk,+d,2k,+lzkﬁ) —%(dfc,,+dfc, +1%,) —”‘T“ —I‘T
0 0 0 0 0 1
& c. 7lk7¢ 7[076 7(k+k£,) 7(c+c{)
_ 1
B=[0 0 0 0 0 —]"; C=[0 0 0 0 1 0]
m
1 r
f(x)=[0 0 0 0 0 —F_]
m
_ 0 _
. 1 . .
k.zg+c.z, + H(ktzdt + 2y +kizy + clzdl)
0
= ) d . d .
Ja=|- lk.z, —le.z, + TI(kzzdz + ClZdl)_ 7’(ktzdt + CtZdt)
0
1
—Z, - _(kczd + ch.d)
L m _
The observer is designed as
X=Ax+ Bu+ f(x)+ L(y —Cx) (5.10)
The error dynamic is obtained by subtracting X from X
X=x-x=(A4-LO)x - f, (5.11)

Note that f(.) and fy represent the nonlinear components and disturbances, respectively.

128



The observer gain matrix L is chosen as in a Luenberger observer [20] so as to place the

poles of (A-LC) at desired locations.

The sliding surface is defined as
§ =X + AX;
We then have

§ =X, + AX;

_ %[kcfcl rek, Ik —leR, —(k+k )3 —(c+c )k, +

F

act

—u] +L6(x5 _)%5)"' ﬂ’[)% +L5(x5 _3%5)]
The control law is designed as

u=kx +cx,—lkx,—lcx,—(k+k)x,—(c+c,)x, +
F. . +mAl&, + Li(x, — %) ]+ mL (x; — %)+ mns

act

such that

§s=-ns> <0

(5.12)

(5.13)

(5.14)

(5.15)

Eq. (5.15) guarantees that s approaches zero based on Lyapunov theory and drives

the estimated FHM )AC5 to zero exponentially according to Eq. (5.12).

To investigate the controller’s performance we conducted a large number of

numerical simulation experiments. Figure 5.18 shows the results of FHM suppression

with the same conditions as used in Fig. 5.16. The required AC control voltages are

shown in Fig. 5.19. It is seen that the FHM is reduced almost to zero. The effects of
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intermolecular and electrostatic forces (0.5 V) are then included in the model. The
histories of the cantilever deflection and short range attractive forces are shown in Figs.
5.21 and 5.22, respectively. Figure 5.20 shows that the FHM can be effectively
suppressed even with an electrostatic potential of 0.5 V between the disk and slider
(which is an unstable system without control). The applied control voltage is also shown
in Fig. 5.20 (b). The observer performance is demonstrated by the comparison of the
estimated and true FHM in Fig. 5.23 where it is seen that the error between the true and

estimated values is very small.

When the electrostatic potential between the slider and disk increases from 0 V to
1 V (i.e. electrostatic forces increase), the mean control voltage shifts from 0 to about 3.3
V to compensate the increased electrostatic forces, as shown in Fig. 5.24. This DC shift
can actually decrease the applied DC control voltage required to bring the cantilever into

the active operational mode.

5.4 Conclusions

Due to the effects of short range forces and disk morphology it is unlikely that a
passive air bearing slider will be able to form a reliable head-disk interface at a spacing
much less than 5 nm. Substantial research has been carried out on contact recording, in
which the slider is expected to be in full contact with the disk. Several design
considerations have been given in the literature, but it is still unclear how to implement

such systems, namely ABS design, lubricant, and protective overcoat.
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In this chapter, a new 3-DOF dynamic model is proposed to model a FH control
slider with a piezoelectric nanoactuator. A linear modal analysis is used to identify the air
bearing parameters. Good agreement is obtained for the air bearing dynamics between the
model and the CML Dynamic Simulator. An observer-based nonlinear sliding mode
controller is designed based on the model. Numerical studies show that a FH below 3 nm
is achieved and the FHM due to disk waviness is effectively reduced in the presence of

short range attractive forces.
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Table 5.1. The results of parameter identification of 2-DOF air bearing at five flying

heights.
FHy: | Deflection | pitch Frequency 1 | Frequency 2 | Damping Damping
(nm) | (nm) (urad) (kHz) (kHz) ratio 1 (%) | ratio 2 (%)
0.41 35| 209.52 70 232 4.7817 0.4452
0.70 33| 21232 70 217 4.7304 0.6563
2.35 26 | 221.19 69 175 4.8100 1.4600
3.07 24| 22334 69 165 4.8500 1.7500
20.22 0] 235.10 68 112 5.2300 2.6800

Table 5.2. The results of parameter identification of 2-DOF air bearing at five flying

heights.

FHpt k C k; k] C] dl dt

(nm) (MN/m) | (N.sec/m) | (MN/m) | (MN/m) (N.sec/m) | (mm) (mm)
0.41 0.69 | 0.00650 0.3 | 0.194725 0.04386 | 0.2717 | 0.5358
1.75 0.35] 0.01300 0.3 | 0.194725 0.04386 | 0.2717 | 0.5358
2.35 0.28 | 0.01554 0.3 | 0.194725 0.04386 | 0.2717 | 0.5358
3.07 0.225 | 0.01800 0.3 | 0.194725 0.04386 | 0.2717 | 0.5358
5.75 0.105| 0.01900 0.3 | 0.194725 0.04386 | 0.2717 | 0.5358
9.02 0.04 | 0.01900 0.3 | 0.194725 0.04386 | 0.2717 | 0.5358

Table 5.3. The identified k and c1 at several flying heights with other parameters as in the
case of 2.35 nm. The value of c is set to be zero.

FHpt k C kt k] C] d[ dt

(nm) (MN/m) | (N.sec/m) | (MN/m) | (MN/m) (N.sec/m) | (mm) (mm)
0.41 0.69 | 0.00650 0.3 ] 0.194725 0.04386 | 0.2717 | 0.5358
1.75 0.35] 0.01300 0.3 | 0.194725 0.04386 | 0.2717 | 0.5358
2.35 0.28 | 0.01554 0.3 ] 0.194725 0.04386 | 0.2717 | 0.5358
3.07 0.225| 0.01800 0.3 | 0.194725 0.04386 | 0.2717 | 0.5358
5.75 0.105 | 0.01900 0.3 ] 0.194725 0.04386 | 0.2717 | 0.5358
9.02 0.04 | 0.01900 0.3 | 0.194725 0.04386 | 0.2717 | 0.5358
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(a) Passive mode (no control algorithm is applied)
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FHr~3nm

FH.
(b) Active mode (control algorithm is applied)

Fig. 5.1. Two operational modes of a controlled flying proximity slider with PZT
actuation. The R/W transducer is not shown in this diagram.
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Fig. 5.2 An ABS design of CFP sliders
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Fig. 5.3. Air pressure distributions of the ABS in Fig. 5.2. (a) passive mode and (b) active
mode. The gap flying height has been reduced from 20 nm to 2.35 nm.
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Fig. 5.4. Schematic diagram of a piezoelectric composite beam actuator (a) and the
1-DOF model.
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(a) the first mode (in-plane) (b) the second mode (out-of-plane)
Fig. 5.6. The first two modes of a pico-sized CFP slider simulated by finite element
analysis (COSMOSDesignSTAR®). The natural frequencies are 538 and 550 kHz.
(Slider thickness=300 um, PZT thickness=80 um).
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Fig. 5.7. Schematic diagram of 2-DOF dynamic model of CFP sliders. The cantilever is
fixed such that there is no relative motion between the slider and the cantilever.
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Fig. 5.9. (a) Nonlinear stiffness k and (b) nonlinear damping c1 as a function of FH at the

PT.
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CML and 2-DOF Model: Impulse Responses at FHpt=2.35
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Fig. 5.10. Impulse responses (initial velocity 0.002 m/s in z direction) of CFP slider
simulated by the 2-DOF model and the CML Dynamic Simulator: (a) TEC FH

modulation and (b) pitch modulation about the equilibrium of FHy,

2.35nm.
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FFT Representation of an Impulse Response, H11
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Fig. 5.11. Impulse responses (initial velocity 0.002 m/s in z direction) of CFP slider
simulated by the 2-DOF model and the CML Dynamic Simulator shown in the frequency
(FFT) domains: (a) the response of TEC FH and (b) the response of pitch about the

equilibrium of FHpt = 2.35nm.
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CML and 2-DOF Model: Impulse Responses at FHpt=3nm

: : : : : : : — CML
. : . . . . . === 2.D0F Model

TEC Modulation [nm]

3
0 0.02 004 006 0.08 0.1 012 014 016 0.18 0.2
Time [ms]

(a)

CML and 2-DOF Model: Impulse Responses

— CML

Pitch [urad]

0.1 0.12 0.14
Time [ms]

(b)

Fig. 5.12. Impulse responses (initial velocity 0.002 m/s in z direction) of CFP slider
simulated by the 2-DOF model and the CML Dynamic Simulator: (a) TEC FH
modulation and (b) pitch modulation about the equilibrium of FH,; = 3.07nm.
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FFT Representation of an Impulse Response, H11
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Fig. 5.13. Impulse responses (initial velocity 0.002 m/s in z direction) of CFP slider
simulated by the 2-DOF model and the CML Dynamic Simulator shown in the frequency
(FFT) domains: (a) the response of TEC FH and (b) the response of pitch about the

equilibrium of FHpt = 3.07nm.
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Comparison of Electrostatic Forces Between CML and Model at
FHpt=2.35nm
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Fig.5.14 . Comparison of electrostatic forces between CML Simulator and model. The
forces are calculated when the slider is fixed at FHpt = 2.35 nm and pitch =221 prad.
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Fig. 5.16. FHM of 3-DOF over three disk wavelengths without short range forces.
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FH Modulation suppression over wavy disk
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Fig. 5.20. (a) The results of FHM suppression of the CFP slider in the presence of
intermolecular and electrostatic forces (0.5 V). The disk waviness wavelength is 0.2 mm.
(b) the control voltage.
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Fig. 5.21. Deflection of the cantilever actuator.
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CHAPTER 6
AIR BEARING EFFECTS ON ACTUATED THERMAL POLE-TIP
PROTRUSION FOR HARD DISK DRIVES

Flying height (FH) control sliders with thermal actuation have been introduced
recently in commercial products for compensating the static FH loss and reducing the risk
of head-disk contacts. In the research reported here we investigated the effects of ABS
designs on the thermal actuation. We created a 3-D finite element model of an entire
slider with detailed read/write transducer structure, and then we conducted
thermal-structural coupled-field analysis using velocity slip and temperature jump
boundary conditions to formulate the heat transfer across the head-disk interface when a
slider flies over a spinning disk. An iteration procedure was used to obtain the
equilibrium solutions. Four ABS designs with distinct features were simulated. We
defined five measures of merit, including protrusion rate, actuation efficiency, power
consumption, pressure peak and temperature rise of the sensor, to evaluate the
performance of thermal actuation. It is found that the effect of the pressure is more
significant than that of the FH on the heat conduction from the slider to the disk. The
efficiencies of three conventional designs decrease as the FHs are continuously reduced.
A new ABS design, called “Scorpion III”, is presented and it demonstrates an overall
enhancement, including virtually 100 percent efficiency with significantly less power
consumption. Transient thermal analysis shows that it requires about 1-2 ms for the
temperature to reach the steady-state values, and there is a trade-off between increasing

the actuation bandwidth and decreasing the power consumption.
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6.1 Introduction

With the increase of areal density in hard disk drives the physical spacing (or
flying height, FH) between the read/write element and the surface of the disk has been
continuously decreased. A spacing of about 2.5 nm is said to be required for a density of
1 Thit/in>. At such a low FH static losses of the FH due to manufacturing tolerance,
ambient pressure changes and temperature variations can cause head-disk contact and
result in data loss. Furthermore, slider disk contacts must be avoided during load/unload
processes and operational shocks. The dynamic instability caused by FH modulations
(FHMs) and nanoscale adhesion forces, such as electrostatic and intermolecular forces,
should be minimized. Those challenges make a conventional air bearing surface (ABS)
slider an unlikely choice for 1 Tbit/in>. One potential solution is a FH adjustment or
controlled slider that is capable of adjusting its gap FH. Due to their quick response and
low power consumption piezoelectric materials have been proposed as active elements
for adjusting the FH [1]-[8]. However, the requirements of the piezoelectric materials and
the necessary modification of the slider design pose challenges in integration of the

fabrication process and increase the manufacturing cost.

The concept of controlling gap FH by the thermal expansion of materials was
demonstrated by Meyer ef al. [9], in which a resistance heating element (heater) was
deposited near the read/write elements and a temperature sensor was used for sensing an
operating temperature of the slider body. Similarly, Kurita ef al. developed an active head
slider with a nano-thermal actuator [10]. They used a finite element method to calculate

the temperature distribution and thermal protrusion of their slider. They found that the
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additional air pressure increase caused by the protrusion lifted the slider upward and the
amount of FH reduction was 30 % less than the protrusion. In their study the distribution
of the heat transfer coefficient on the ABS was assumed to be constant. However, the
effect of heat conducted from the slider to the disk through the ABS is a strong function
of both FH and air pressure distributions, and, hence, these two factors have to be
considered in the model. Juang et al. [11] studied the actuation performance of an ABS
slider with consideration of the effect of FH and pressure distributions. They found that
even though the protruded area was relatively small there was still considerable air
bearing coupling with the resulting actuation efficiency of only 63 %, which suggested
that ABS played a key role in the actuation performance. Therefore, it is highly desirable
to have a better understanding of the effects of the ABS on the thermal actuation and to

provide design guidelines for improving the performance.

In this chapter we study the effects of the ABS on actuated thermal pole-tip
protrusion by numerical simulation. A three-dimensional thermal-structural coupled field
finite element model is created with detailed structures of read/write and heating elements.
The cooling effect of the air bearing is included in the model as thermal boundary
conditions. Steady-state and transient analyses of four ABSs with distinct features are
presented. We found that a properly designed ABS can significantly improve the
actuation efficiency and power consumption of a FH control slider with thermal

actuation.

6.2 Numerical Modeling and Analysis
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The temperature distribution and thermal deformation of a slider body with
thermal actuation are determined by the configuration, dimensions and material
properties of the read/write and heating elements and boundary conditions. The heat
transfer boundary conditions depend on the flying state of the slider and hence the air
bearing surfaces. In this study we kept the structure of the transducers the same and
investigated the effect of ABS on actuation performance. We created a three-dimensional
finite element model of an entire slider (length = 1.25 mm, width = 1.00 mm, thickness =
0.30 mm) with detailed read/write transducer structure as shown in Fig. 6.1. The slider
has a single-layer 5-turn copper coil, a yoke width of 12 um, and a write track width of 1
um. The top and bottom poles are 1 um thick. The top and bottom magnetic shields are 2
pm thick. The heating element has a thickness of 250 nm, and it is located between the
coil and bottom pole. The photoresist layer, undercoat insulation layer and overcoat are
also included in the model. The material properties and thickness of each layer are shown
in Table 6.1. These values, in particular the thermal conductivity, are process-dependent,
and we used the data published in various papers [12]-[15]. A series of thermal-structural
coupled-field finite element analyses have been carried out using ANSY'S, a commercial
finite element package, to study the actuation performance of the thermal nanoactuator.
The air bearing modeling was done using the CML Air Bearing Simulator, which solved
the generalized Reynolds equation to obtain the steady-state flying attitude and pressure

distribution.

At the head-disk interface heat is transferred from the slider to the disk through

the air bearing cooling effect. The cooling effect of the air bearing plays a key role in this
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3-D heat transfer problem. Chen et al. [16] found that the dominant factor of this effect
was heat conduction. They applied the slip condition for the velocity and the jump
condition for the temperature at the boundaries of the air bearing and obtained the heat

transfer model as follows:

_ Ts(x’y)_Td
Q(xay)— kh(x,y)+2bi(x,y)+f(.) (6.1)

where T, and T, are the temperatures of the slider and the disk, respectively; b = 2(2 -
o1) v/ or(y + 1) Pr; & is the FH (air bearing thickness) of the slider; the mean free path
of the air under pressure p is A = Ao po/p, while the thermal conductivity & is a very weak

function of pressure.

Note that 75, # and A are functions of the coordinates, x and y. For air at 7= 300
K and atmospheric pressure, the thermal conductivity £ = 0.0263 W/m K, the mean free
path Ao = 65 nm, and the Prandtl number Pr = 0.7. The specific heat ratio y is 1.4 and the
thermal accommodation coefficient o1 is 0.9. We assume that the disk surface is kept at
the ambient temperature 7, = 25 °C. Since the first term of the right hand side is about
1-2 orders of magnitude larger than the other terms f{.) only this term is modeled in this
study. Unlike the ABS, the dominant factor of heat transfer at the non-ABS surfaces of

the slider is heat convection of a coefficient on the order of 100 W/m? K.

The numerical iteration approach developed in [11] is adopted in this chapter. We
used the CML Air Bearing Simulator to obtain the nominal FH, pitch, roll and air

pressure distribution of an ABS slider. Then we applied Eq. (6.1) to specify the thermal
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boundary condition at the ABS and calculated the temperature distribution of the slider
body. The obtained temperature distribution was used then as the body load to solve the
slider deformation and actuated pole-tip protrusion due to the temperature gradient and
the mismatch of coefficient of thermal expansions of various materials. Since the thermal
protrusion causes deformation of the ABS and hence changes the flying attitudes and the
thermal boundary conditions, several iterations are required to achieve an equilibrium

solution.

6.3 Results and Discussions
6.3.1 Four Air Bearing Designs

We study the actuation performances of four ABS designs that have distinct
flying attitudes and pressure distributions as shown in Fig. 6.2. Their flying attitudes are
summarized in Table 6.2. The first design, depicted in Fig. 6.2(a), is a five-pad design
labeled CML-5nm. It was designed using an optimization algorithm for a nearly uniform
5-nm FH across the disk. The second design, labeled Slider A, is a three-pad design
obtained from a commercial drive as shown in Fig. 6.2(b). It has three surfaces, each
specifically designed to achieve the overall desired FH performance characteristics. The
third and more complicated design is shown in Fig. 6.2(c) and labeled Slider B. This ABS
was designed for sliders with thermal actuation, and, it has recently been implemented in
commercial products. Figures 6.3(a)-(c) show the pressure profiles normalized by the
ambient pressure generated under the CML-5nm, Slider A and Slider B, respectively. The
sliders are mainly supported by the high pressure peaks generated by the central trailing

pads, which are typically used in commercial products. The high peak pressure helps to
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maintain the stiffness of the air bearings. However when the thermal actuation is used to
adjust the FH, the high peak pressure at the center trailing pad also corresponds to more
molecules per unit volume to transport energy, and thus most of the power generated by
the heating element is dissipated through the air bearing, which decreases the amount of
thermal protrusion and increases the required heating power. Besides, the actuation

efficiency is limited due to the strong counter effect of the air bearing push-back.

In order to increase the actuation efficiency and to reduce the power consumption
we designed an ABS, named Scorpion III, as shown in Fig. 6.2(d). The pressure
distributions exhibit a distinct pattern compared to conventional designs as shown in Fig.
6.3(d). Instead of being supporting by the center pressure peak the slider is primarily
supported by the high pressures generated at the side rails. Scorpion III was found to
exhibit an overall enhancement in performance, compared with several conventional

ABS designs [17].

6.3.2 Steady-State Analysis

Fig. 6.4 shows the steady-state heat transfer film coefficients on the air bearing
surfaces of the four designs obtained after several numerical iterations at a heating power
of 20 mW. Only part of the ABS that is close to the trailing edge is plotted. The distances
of the write gap and GMR sensor from the trailing edge are 33 and 36.5 um, respectively.
The disk linear speeds and skew angles are given in Table 6.2. It is seen that the heat
transfer coefficients are not constant, and they are indeed strong functions of both the FH

and air pressure distributions. The peak values are about 1.6, 1.2, 1.4, and 0.2 MW/m*.K

164



for CML-5nm, Slider A, Slider B, and Scorpion, respectively. The value of the Scorpion
ABS is about 83 % to 86 % less than those of Slider A and Slider B even though the FHs
of the three designs are similar, which clearly indicates that the effect of the pressure is

more significant than the FH effect.

Figs. 6.5 and 6.6 show the comparisons of the temperature rise and heat flux of
the four designs at 20 mW, respectively. The maximum temperature rises are 2.78, 2.52,
3.21 and 7.8 K for CML-5nm, Slider A, Slider B and Scorpion, respectively. The
Scorpion ABS has a higher temperature increase due to its relatively low heat flux
whereas the temperature distribution of Slider B exhibits a different pattern from the

others.

Using the temperature distributions as body loads in the finite element models, we
carried out the static structural analysis to calculate the slider deformation. A comparison
of the protrusion profiles is shown in Fig. 6.7. The maximum A-PTPs on the ABSs are
found to be 3.86, 3.56, 4.54 and 6.86 nm for CML-5nm, Slider A, Slider B and Scorpion,
respectively. As expected, the Scorpion slider achieves 51% more protrusion than the
second highest one at the same heating power of 20 mW. Fig. 6.8 shows the protrusion
profiles along the center line across the read/write elements, which indicates that the
peaks of protrusions are located at the read/write elements as a result of the higher local

temperature and higher coefficients of thermal expansion of the metal layers.

Fig. 6.9 shows the FH reductions as a function of the DC heating power. The
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results indicate that the FH reduction is not proportional to the power. Instead, quadratic
expressions have been found to fit the calculated data points for all the ABSs. This
nonlinearity is related to the fact that the air bearing becomes stiffer when the FH is
reduced and the heat transfer across the air bearing also becomes more effective because

of the increased pressure and reduced FH.

In order to evaluate the performance of thermal actuation we defined five
measures of merit as follows:

1. Actuation efficiency (%): The ratio of FH reduction to A-PTP.

2. Power consumption (mW): The power required for lowering one unit of the

FH.

3. Peak pressure increase (atm): The increase of pressure peak caused by the

thermal protrusion.

4. Protrusion rate (nm/mW): The amount of protrusion per unit power.

5. Temperature rise of the sensor (K): The temperature rise of the GMR sensors as

a function of FH.

Fig. 6.10 shows a comparison of the A-PTP as a function of the heating power.
Scorpion exhibits an increase of 80 %, 104 %, and 63 % in the protrusion rate over
CML-5nm, Slider A, and Slider B, respectively. Fig. 6.11 shows the actuation efficiency
as a function of the FH for the four ABSs. It is noted that the efficiencies of CML-5nm,
Slider A and Slider B monotonically decrease as the FHs are reduced by the thermal
protrusions and the values range from 40 % to 60 %. However, Scorpion demonstrates

virtually 100 percent efficiency which does not depend on the FH. The heating powers
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required for lowering the FHs are shown in Fig. 6.12. The Scorpion ABS requires
remarkably less power for reducing the FH from 10 nm to 3 nm compared to the other
designs. Another important parameter that has to be considered is the pressure increase
due to the deformed ABS. Fig. 6.13 shows that the peak pressures of Slider A and Slider
B are 84 and 149 atm, respectively, when the FHs are reduced to about 3 nm. Such high
pressures may not be physical in reality and may cause adverse effects. Since the
Scorpion slider is supported by the two side pressure peaks and the pressure underneath
the center pad is relatively low, the thermal protrusion of the center pad does not affect

the pressure distribution.

The temperature rise of the read/write elements is of great concern in the thermal
nanoactuator. The read-back signal of GMR sensors can be significantly altered by
thermal influences since their electrical resistance is temperature dependent. Fig. 6.14
shows the temperature rises of the sensors as a function of the FH. It is observed that
Scorpion has less temperature rise at FHs over 5 nm compared to Slider A and Slider B.
The temperatures of Slider A and Slider B decrease when the FHs are reduced to less

than 5 nm due to the highly concentrated pressures.

6.3.3 Transient Analysis

The bandwidth of thermal actuation is of great importance because it determines
the response time of the thermal protrusion to the heating power. A transient thermal
study was conducted to investigate the bandwidth of the thermal protrusion when the

slider flies over a disk. The power required for the first one nanometer FH reduction for
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each of the ABSs was applied from 0 to 2.5 ms and was turned off at 2.5 ms. The
temperature changes of the GMR sensors were monitored as shown in Fig. 6.15. It
requires about 1-2 ms for the read/write transducers to reach their steady-state values,
corresponding to a bandwidth of 0.5-1 kHz. It is also seen that Scorpion has the least
temperature rise and it takes longer to reach its steady-state value, which implies that a
trade-off between increasing the bandwidth and decreasing the temperature rise of the

SENSOrS.

6.4 Conclusions

The effects of the ABS on thermal actuation have been studied by numerical
simulation. A series of three-dimensional thermal-structural finite element analyses were
conducted using velocity slip and temperature jump boundary conditions to formulate the
heat transfer across the head-disk interface. An iteration procedure was used to obtain the
equilibrium solutions. Four ABS designs with distinct features were simulated. In order
to evaluate the performance of thermal actuation we defined five measures of merit,
including protrusion rate, actuation efficiency, power consumption, pressure peak and
temperature rise of the sensor. We found that the efficiencies of three conventional
designs decrease as the FHs are continuously reduced. A new slider Scorpion, which
meets all design and fabrication requirements, has been presented and exhibits an overall
enhancement, including virtually 100 % efficiency with significantly less power
consumption. Quadratic expressions have been found to best fit the curves of the FH

reduction as a function of the heating power for all the designs.
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Transient thermal analysis of the sliders in the flying conditions with a varying
heating power showed that about 1-2 ms are required for the temperature to reach the
steady-state values. It is found that Scorpion has the least temperature rise of the GMR
sensor at the first one nanometer FH reduction but the response time was longer than the
other three designs. Therefore, there is a trade-off between increasing the actuation

bandwidth and decreasing the power consumption.
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TABLE 6.1 Material Properties used in the FEA [13]-[16]

Young’s Thermal Cocfficient Specific
Layer and Material .. of thermal Poisson’s
modulus conductivity expansion heat ratio
(GPa) (W/m.K) (x 1 076/ Q) (J/kg.K)
Slider ALOs-Ti 380 20 7.9 878 0.3
substrate C
Under-coa Al,O3 200 1.5 7.5 760 0.25
t
(1.2 um)
Shields Ni-Fe 207 35 12.2 470 0.3
(2.0 um)
Bottom Ni-Fe 207 35 12.2 470 0.3
pole
(1.0 um)
Coil Cu 120 395 16.5 390 0.33
(2 pm)
Heater Ni-Fe 207 30 12.2 470 0.3
(250 nm)  (thin
layer)
Coil Photo-re 7 0.19 51.0 1460 0.2
insulation  sist
(5 pm)
Top pole  Ni-Fe 207 35 12.2 470 0.3
(1.0 um)
Overcoat  ALO; 200 1.5 7.5 760 0.25
(39.7 um)
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TABLE 6.2 Comparison of Flying Attitudes at the MD

FH Pitch Roll Peak Linea‘r skew

(nm) (wad)  (uad) P HOREY (o)
CML-5nm 5.3 220 0.9 18.9 17.3 9.10
Slider A 11.5 130 -1.2 234 37.5 -2.56
Slider B 12.0 115 24 21.0 18.0 -2.56
Scorpion III 10.5 124 -04 38.0 37.5 -2.56
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Fig. 6.1. The finite-element model of a FH control slider with thermal actuation. The

overcoat and photoresist are not shown for a clear view of the read/write transducer. The
protective carbon overcoat on the ABS and the pole-tip recession are not considered.
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4

(a) CML-5nm (b) Slider A
(c) Slider B (c) Scorpion III

Fig. 6.2. Four ABS designs used in this study (length: 1.25 mm; width: 1.00 mm).
Different colors indicate different etching levels.
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(a) CML-5nm  (peak: 18.9 atm) (b) Slider A (peak: 23.4 atm)

00 Hm 0 o um

(c) Slider B (peak: 21.0 atm) (d) Scorpion III (peak: 38.0 atm)

Fig. 6.3. The air pressure distributions of the ABS sliders. The scale displayed is
normalized to ambient pressure: (p - p,)/pa
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Fig. 6.4. The distributions of the heat transfer film coefficients on the air bearing surfaces
at a heating power of 20 mW. Only part of the ABS that is close to the trailing edge is
plotted. The distances of the write gap and the GMR sensor from the trailing edge are 33

and 36.5 um, respectively.
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Fig. 6.8. Comparison of actuated thermal protrusion profiles of the four air bearings along
the center line across the read/write element at a heating power of 20 mW.
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CML-5nm, Slider A and Slider B monotonically decrease as the FHs are reduced by the
thermal protrusions and Scorpion demonstrates virtually 100 % efficiency.
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CHAPTER 7
EFFECTS OF TRACK-SEEKING MOTION ON FLYING ATTITUDE OF
ULTRALOW FLYING SLIDER

The flying height (FH) change during a track-seeking motion becomes of
significant concern for ultralow flying sliders. The presence of nanoscale adhesion forces,
such as intermolecular and electrostatic forces, can adversely decrease the FH and even
cause head-disk impact. A quasi-static approximation of track-seeking motion is
proposed here, which if sufficiently accurate can substantially decrease the computation
time over that required for a dynamic analysis. The track-seeking performances of four
different air bearing surface (ABS) designs are numerically investigated by the
quasi-static approximation, and the results are compared with those computed by the
CML Dynamic Simulator. The former gives good agreements with the latter but with
much less computation effort. The effects of various factors causing FH changes are
presented and compared quantitatively. The effective skew angle is found to be the
dominant factor, but the inertia effect is also not negligible. Two designs, called Scorpion
IIT and Scorpion IV, designed previously as active FH control sliders, are found to exhibit
an enhancement in track-seeking performance, compared with two other conventional

ABS designs.

7.1 Introduction
As the spacing between the slider and the disk decreases in hard disk drives the

linear bit spacing of magnetic recording can decrease, resulting in a higher areal density.
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A physical spacing (or gap flying height, gap FH) of less than 5 nm between the
read/write element and the surface of the disk is required for ultrahigh density recording.
For such ultralow flying sliders the changes in FH during track-seeking motions not only
cause signal loss, but also significantly increase the risk of head-disk contact. Moreover,
the presence of nanoscale adhesion forces, such as intermolecular and electrostatic forces,
can cause dynamical instability. In order for a reliable head-disk interface to be
maintained the FH change and contact between the slider and disk have to be avoided.
Different ABS designs can perform quite differently during the track-seeking process.
Therefore, the dynamic track-seeking performance of air bearing sliders is becoming of
increasing importance. A better understanding of the factors that cause FH change should

help improve the ABS design to achieve better track-seeking performance.

Cha et al. [1] studied the FH change during seek operation for TPC (transverse
pressure contour) sliders. They suggested that at high seek velocities the skew angle
effect dominates over the inertia effect, but there was no quantitative comparison
between the cases with and without inertia effects due to the difficulty of measuring FH
during track-seeking and the absence of proper dynamic simulators. Liu and Soh [2]
experimentally investigated the effects of track-seeking velocity on air bearing skew
angle, air flow speed and flying performance of TPC and Tri-pad sliders. The effects of
the slider’s inertia and acceleration were not considered. Chen and Bogy [3] carried out a
numerical study of the track-seeking dynamics of the picosized TNPS and U sliders using

the CML Dynamic Simulator. They found that the two sliders had distinct dynamic
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characteristics. The Dynamic Simulator included the inertia effect and provided more
comprehensive simulations of track-seeking dynamics but it required much more
computation time. In a recent paper by Dorius et al. [4], the gap FHs of a pico and

femto slider were forced to drop about 20 and 10 %, respectively, during track seeking.

In this chapter we propose a quasi-static approximation of the track-seeking
motion, which includes the effects of HGA inertia, effective skew angles and nanoscale
adhesion forces in the HDI. We first compare the track-seeking simulations of four ABS
designs by quasi-static approximation with those obtained using the CML Dynamic
Simulator on a smooth disk surface. Then we quantitatively study the effects of various

factors on the FH change.

7.2 Theoretical Background and Numerical Methods
7.2.1 Air Bearing Slider and Suspension Dynamics

The pressure distribution between the slider and the rotating disk can be described
by the compressible Reynolds equation. The non-dimensionalized generalized Reynolds
equation can be written as follows:

0

) , OP
+_
oY

Z|\OPH>Z—_A _PH
GX[Q ox }

Spirs P _ _ol
[QPH ~ AYPH}_aaT[PH] (7.1)

where A, =6uUL/p,h. and A, =6uVL/p h’ are the bearing numbers in the x and y

directions, o =12uwl’ / p,h. is the squeeze number, u is the viscosity, p, is the ambient

pressure, and Q is the Poiseuille flow factor.
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The equations of motion of an air bearing slider flying over a rotating disk are:
mz =F+IA(p—pa)dA
1952M9+L(p—pa)(xg—x)dA (7.2)
1¢¢ =M, +L(P—pa)(yg _y)dA
where z, 6, and ¢ are the vertical displacement, pitch, and roll, respectively. /o and /4 are
the moments of inertia, x, and y, are the positions of the slider’s center of gravity, and F,
My and My are the force and moments exerted on the slider by the suspension. For

track-seeking motions, Mg and My include the contribution of the inertia forces.

The CML Dynamic Air Bearing Simulator was developed to solve the
generalized Reynolds equations (7.1) coupled with the dynamics of the slider body (7.2)
and a lumped parameter suspension, where the suspension is represented by flexure
stiffness and damping coefficients. By using the simulator, we can obtain the dynamic
flying attitude of a slider during track-seeking motions. However, since the time step
used in the dynamic simulation is usually on the order of 1x107 s, it requires considerable
computation effort to conduct one track-seeking simulation with an average seeking time

of 11 ms.

7.2.2 Qusai-Static Approximation of Track-seeking Motion
In order to reduce the computation effort of track-seeking simulations and

quantitatively study the contribution of various factors on the FH change during
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track-seeking, we carried out a quasi-static approximation of the track-seeking motion.
Instead of simultaneously solving Eq. (7.1) and (7.2) at each time step we solve Eq. (7.1)
under static suspension loading with consideration of the seeking velocity and HGA
inertia at different radial positions during track-seeking. The change of seeking velocity
causes changes of skew angle and air flow speed and direction. The geometrical skew
angle refers to the angle between the slider’s longitudinal axis and the track direction.
The effective skew angle is the angle between the slider’s longitudinal direction and the
relative disk velocity (or air flow velocity) which is the resultant vector of the disk track
linear velocity and the slider’s seeking velocity. As the seeking velocity increases the

difference between the geometrical and effective skew angles increases.

The acceleration of the center of gravity of a slider during track-seeking can be

expressed as

a=ae +ae,=ae +(0'rk, (7.3)
where @, and a, are the tangential and normal components, respectively. @ and r are the
angular velocity of the arm and the arm length of the VCM actuator, respectively. The
tangential component is also referred to as the seeking acceleration. Since the inertia
effect of the suspension has minimal effect on the roll angle and FH, only the inertia of

the slider is considered in this study. The additional torques exerted on the slider body

due to these inertia forces can be written as

AM(,:—m-an-g; AM¢:—m-a,-g (7.4)
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where m and 4 are the mass and thickness of the slider.

7.3 Results and Discussions
7.3.1 Air Bearing Designs and Track-seeking Performances

In this chapter, we study the track-seeking performances of four ABS designs that
incorporate subambient pressure regions. Their drive and air bearing specifications are
summarized in Table 7.1. The first design, depicted in Fig. 7.1(a), is a five-pad design
labeled ABS 1. It was designed using an optimization algorithm [5] for a nearly uniform
5-nm FH across the disk. The region of pole-tip recession in the original design was
removed for a more realistic calculation of the nanoscale adhesion forces in the HDI. The
second and more complicated design is shown in Fig. 7.2(a) and labeled ABS II. Figures
7.1(b) and 2(b) show the pressure profiles normalized by the ambient pressure generated
under the ABS I and ABS II sliders, respectively. The sliders are mainly supported by the
high pressure peaks generated by the central trailing pads, which are typically used in
commercial products. The third and fourth designs, named Scorpion III and Scorpion IV,
were analyzed in Chapter 3 as actively controlled-FH sliders with thermal and
piezoelectric nanoactuators, respectively. For a controlled-FH slider, the FH is about 10
nm in the off duty cycle (passive mode) and is reduced to ~2 nm during reading and
writing (active mode) by applying either a current or a voltage to an active element, such
as a resistive heating element or piezoelectric material. As shown in Figs. 7.3(a) and 7.4(a)
the areas of their central trailing pads have been significantly reduced to increase the

actuation efficiency. The pressure distributions exhibit distinct features compared to
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conventional designs as shown in Figs. 7.3(b) and 7.4(b). The high pressures generated at
the side rails of Scorpion III and Scorpion IV support the sliders and help achieve high
stiffness, especially in the roll direction, and constant roll angles over the disk. The
increase of roll stiffness can effectively reduce variations of roll angle due to inertia
forces during track-seeking motions. Therefore decrease in the minimum FH during these
seek motions are held to a minimum. The features of the two ABS pads near the trailing
edge of Scorpion III or Scorpion IV help generate high pressure and large negative force,
which are expected to reduce the sensitivity of the FH to the change of skew angle. A
summary of the flying attitudes, air bearing stiffness and negative forces at the MD is

given in Table 7.2.

Figures 7.5 - 7.7 illustrate the track-seeking profiles used in this study. The
maximum seeking acceleration is 637 m/s” (or 65 G) for all four of the ABS designs and
the other parameters, such as velocity, radial position, geometrical and effective skews
are determined by the length of the VCM actuator and the distance between the pivot and
the center of the disk according to specifications of each product. The simulation starts
with an outward seek that is followed by an inward seek, thus completing a full-stroke
seeking loop. For the outward seeking process of ABS I, the slider is first accelerated to
-2.548 m/s in 4 ms (the minus sign indicates that the direction of seek motion is from ID
to OD), followed by 1 ms of constant velocity, then it is decelerated to zero velocity in 4
ms. During the seek the geometrical skew angle changes from -1.211 to 13.999 degrees.

For the inward seek, we simply reverse the outward seeking process. Although the actual
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seeking profile in disk drives may be different from that shown in Fig. 7.5, the major

characteristics of track-seeking motion are contained in the profiles used in this study.

Figures 7.8 — 7.11 illustrate comparisons of gap FHs, pitch and roll angles during
the corresponding full-stroke seeking loop between dynamic simulations and the
quasi-static approximations introduced here for the ABS I, ABS II, Scorpion III, and
Scorpion IV sliders, respectively. It is seen that for all the designs the quasi-static
approximations demonstrate good agreements with the dynamic simulations. The inertia
effect is clearly seen in the roll and FH curves. It is noted that the Scorpion III and
Scorpion IV sliders exhibit extremely small FH, pitch and roll variations caused by the
track-seeking motion, which can significantly reduce the risk of head-disk contact during

track-seeking motion.

7.3.2 Factors Causing FH Changes during Track-seeking Motion

To investigate the contribution of effective skew, inertia and air flow speed to the
FH change during a track-seeking motion, we performed both outward and inward
quasi-static simulations of the ABS I slider with different combinations of the various
factors. Fig. 7.12(a) shows the minimum FH change when the slider moves from ID to
OD with the acceleration profile described in Fig. 7.5(a). The curve labeled
“Track-following” shows the FH without seeking. The curve labeled “with roll and pitch
torques” includes the effects of tangential (roll torque) and normal acceleration (pitch

torque), effective skew and air flow speed. This is used as a baseline for comparing the
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contributions of the factors. It is observed that the FH drops about 1.5 nm near the MD.
The effect of effective skew angle on the FH drop is the difference between the curve
“Track-following” and the curve “w/o inertia”. It is clearly seen that the skew angle
change is the dominant factor that causes the FH change during track-seeking. The
contributions of the other factors are shown in Fig. 7.12(b). The error is defined as the
ratio of the FH difference to the baseline value. The result without the inertia effect has
an error of 12 % near the radial position of 19 mm, which is attributed to the roll angle
change. The effect of centrifugal forces caused by normal acceleration has an error of less
than 5 % and the effect of the change of the air flow speed has an error of less than 2 %.
Similarly, Fig. 7.13 shows the minimum FH change when the slider moves from OD to
ID. In this case, the inertia effect is found to be comparable to the effect of skew angle

change.

The FH changes as a function of skew angle for the ABS I, ABS II, Scorpion III
and Scorpion IV sliders are shown in Figs. 7.14 and 7.15. It is seen that the FHs of
Scorpion III and IV are quite insensitive to skew angle as compared with ABS I and ABS
II. In Fig. 7.15, the minimum FH of Scorpion IV is reduced to 5 nm with a 4-nm

actuation stroke.

In order to study the effect of intermolecular and electrostatic forces on the
minimum FH during track-seeking motion we performed quasi-static simulations for

ABS T and Scorpion IV with a 4-nm actuation stroke in the presence of these forces. The
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effect of intermolecular forces was included with a nominal value of the Hamaker
constant (A = 8.9x107° J) and the electrostatic forces were added with different electrical
potentials (V =0, 0.3 and 0.6 V) between the slider and the disk. The minimum FHs of
ABS I and Scorpion IV are shown in Fig. 7.16(a) and (b), respectively. A comparison of
the FH drops under the influence of intermolecular forces and an electrical potential of
0.6 V is also illustrated in Fig. 7.16 (c). It is seen that the FH of ABS I drops over 30 %
near the radial position of 19 mm while Scorpion IV exhibits a much smaller and more

uniform FH drop of less than 10 %.

7.3 Conclusion

This chapter proposes a quasi-static approximation of the track-seeking motion,
which includes the effects of HGA inertia, effective skew angles and nanoscale adhesion
forces in the HDI. The track-seeking simulations of four ABS designs by the quasi-static
approximation give good agreements with those by the CML Dynamic Simulator but
with much less computation effort. A quantitative study of the effects of various factors
on the minimum FH change during track-seeking shows that the effective skew angle is
dominant but the inertia effect is not negligible. Intermolecular and electrostatic forces
were found to add to the FH drop of ABS I during the track-seeking. However, even with
an electrical potential of 0.6 V and intermolecular forces, the FH drop of Scorpion IV
remains less than 10%. Even though the FH change and the adverse effect of these forces
during track-seeking cannot be completely attenuated, a properly designed air bearing

slider that decreases its sensitivity to skews, minimizes these forces and increases the roll
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stiffness can greatly enhance the track-seeking performance.
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TABLE 7.1 Air Bearing Specifications

ABST ABS II Scorpion 111 Scorpion IV
[a] [b] [c]
Form-Factor Pico Femco Pico Pico
Technology N/A  Contact Start-Stop Load/Unload Load/Unload
Disk Speed (rpm) 7200 7200 15000 15000
Gram-Load (gf) 1.5 2.5 2.0 2.0
Crown (nm) 254 0 93 9.3
Camber (nm) 2.5 0 -2 -2
Etch Steps 2 4 2 3
1.7
Base Recess (um) 2.5 4.75 1.7
TABLE 7.2 Comparison of Flying Attitudes and Air Bearing Stiffness at the MD
FH " pitch Roll k, K, ke posative
(nm) (urad) (urad) (gf/nm) (uN.m/purad) (uN.m/prad) (af)
ABS1 6.3 202 -0.6 0.178 0.537 0.059 -3.1
ABS 11 12.3 104 3.5 0.176 0.404 0.031 -3.5
Scorpion 11 10.4 124 -0.3 0.328 1.036 0.403 -4.7
Scorpion IV 9.8 109 -0.4 0.182 0.517 0.246 -3.1
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Fig. 7.1. (a) Air bearing surface of a pico-slider, ABS I (1.25x1x0.3 mm); (b) Air bearing
pressure profile at the MD (radial position: 21 mm, skew: 6.8248 °). The scale displayed
is normalized to ambient pressure: (p - p,)/pa.
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Fig. 7.2. (a) Air bearing surface of a femco-slider (1.25x1x0.2 mm), ABS II; (b) Air
bearing pressure profile at the MD (radial position: 31 mm, skew: 2.48 °).
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Fig. 7.3. (a) Air bearing surface of a pico-slider, Scorpion III; (b) Air bearing pressure
profile at the MD (radial position: 23.88 mm, skew: -2.56°).
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Fig. 7.4. (a) Air bearing surface of a pico-slider, Scorpion IV; (b) Air bearing pressure
profile at the MD (radial position: 23.88 mm, skew: -2.56°).
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Fig. 7.5. Track-seeking profiles for ABS I. The maximum acceleration is 637 m/s* (or 65
G).
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Fig. 7.7. Track-seeking profiles for Scorpion III and IV. The maximum acceleration is 65
G.
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Fig. 7.8. Track-seeking performance of ABS I.
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Fig. 7.10. Track-seeking performance of Scorpion III.
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Fig. 7.11. Track-seeking performance of Scorpion IV.
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(b) Scorpion IV with a 4-nm actuation stroke
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Fig. 7.16. FH drops caused by the intermolecular and electrostatic forces during
track-seeking motion (The Hamaker constant A = 8.9 x 10720 1).
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CHAPTER &
SUMMARY AND CONCLUSIONS

One of the major technological challenges that still remains for achieving an areal
density of 1 Tbit/in® is to obtain a reliable and robust head-disk interface with a FH of 2.5
nm. A stable and constant FH must also be sustained in the presence of altitude and
temperature changes, manufacturing tolerance, and track-seeking motion. Furthermore,
slider disk contacts must be avoided during load/unload processes and operational shocks.
The dynamic instability caused by FH modulations (FHMs) and nanoscale adhesion
forces, such as electrostatic and intermolecular forces should be minimized. These
requirements have posed a tremendous challenge on the design of the next generation air

bearing sliders.

The research presented in this dissertation is to study the feasibility of achieving
the goal of 1 Tbit/in® by utilizing FH control sliders with thermal or piezoelectric
nanoactuators. Emphasis is placed on understanding the new phenomena associated with
actuation and controlling the FH for suppressing modulation and improving dynamic

stability.

Chapter 2 presented two approaches, namely thermal and piezoelectric actuators,
for minimizing the adhesion forces such as intermolecular and electrostatic forces and

achieving a stable 2.5 nm FH. It was found that its quasi-static nature allowed thermal FH
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control sliders to compensate the static FH loss, but the inherent power-consuming
thermal actuation limited the actuated pole-tip protrusion. The piezoelectric dynamic
control slider showed the promising performance of higher bandwidth, larger actuated
stroke and less power consumption. However, the requirement of piezoelectric materials
and modification of the slider design poses challenges in integration of the fabrication

process and increases the manufacturing cost.

In Chapter 3, two ABS designs, Scorpion III and Scorpion IV, for a FH control
slider with a thermal and piezoelectric nanoactuator, respectively, were proposed to
achieve virtually 100 percent actuation efficiency. A numerical study was conducted to
investigate both the static and dynamic performances of the Scorpion sliders, such as
uniformity of gap FH with near-zero roll over the entire disk, ultrahigh roll stiffness and
damping, low nanoscale adhesion forces, uniform FH track-seeking motion, dynamic
load/unload and FH modulation (FHM). The Scorpion sliders were found to exhibit an

overall enhancement in performance, compared with several conventional ABS designs.

In Chapter 4, we designed and fabricated Al,O;-TiC sliders with the Scorpion
ABS for achieving high actuation efficiency. We demonstrate an inexpensive and
low-temperature approach for integrating piezoelectric materials in the fabrication of
current Al,O3-TiC sliders. A bulk PZT sheet is bonded onto the back of row-bars and the

sliders are separated by a standard dicing process. It requires no deep reactive-ion etching
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(DRIE) or high temperature processes and is suitable for mass production. The fabricated
prototype sliders were tested experimentally. The measured nonflying actuated stroke
exhibited a linear relationship with the applied voltage with a rate of ~ 0.8 nm/V. The
FHs of two different sliders, designed for the actuated center pad and actuated side pads
scheme, were successfully reduced from 15.5 nm and 8.5 nm to contact with applied
voltages of 20 V and 10 V, respectively, which demonstrated high actuation efficiency.
The AE measurements showed clear spikes when the center pad was brought into contact
with the disk by the actuator. The pattern of the AE signals during contact is different
from the one observed in the conventional sliders during “touchdown-takeoff tests”
where there was a pronounced increase in the AE amplitude upon contact. This is
attributed to the sustained air bearing even when the intermittent contacts occur in the
head-disk interface. It is also found that the dominant air bearing mode shifted from the
first pitch to the second pitch as a result of the intermittent contacts. In addition, a track

of considerable lube depletion and carbon wear was observed after the contact tests.

In Chapter 5, based on the concept that the FH of a portion of the slider that
carries the read/write element can be adjusted by a piezoelectric actuator located between
the slider and suspension and that the FH can be measured by use of a magnetic signal, a
new 3-DOF analytic model and an observer-based nonlinear compensator were proposed
to achieve ultra-low FH with minimum modulation under short range attractive forces.

Numerical simulations showed that the FHM due to disk waviness was effectively
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controlled and reduced.

In Chapter 6, we investigated the effects of ABS designs on the thermal actuation.
We created a 3-D finite element model of an entire slider with detailed read/write
transducer structure and conducted thermal-structural coupled-field analysis using
velocity slip and temperature jump boundary conditions to formulate the heat transfer
across the head-disk interface when a slider flies over a spinning disk. An iteration
procedure was used to obtain the equilibrium solutions. Four ABS designs with distinct
features were simulated. We defined five measures of merit, including protrusion rate,
actuation efficiency, power consumption, pressure peak and temperature rise of the
sensor, to evaluate the performance of thermal actuation. It was found that the effect of
the pressure was more significant than that of the FH on the heat conduction from the
slider to the disk. The efficiencies of three conventional designs decreased as the FHs
were continuously reduced. A new ABS design, called “Scorpion III”, was presented and
demonstrated an overall enhancement, including virtually 100 percent efficiency with
significantly less power consumption. Transient thermal analysis showed that it required
about 1-2 ms for the temperature to reach the steady-state values and there was a
trade-off between increasing the actuation bandwidth and decreasing the power

consumption.

In Chapter 7, a quasi-static approximation of track-seeking motion was proposed,
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which substantially decreased the computation time over that required for a dynamic
analysis. The track-seeking performances of four different air bearing surface (ABS)
designs were numerically investigated by the quasi-static approximation, and the results
were compared with those computed by the CML Dynamic Simulator. The former gave
good agreements with the latter but with much less computation effort. The effects of
various factors causing FH changes were presented and compared quantitatively. The
effective skew angle was found to be the dominant factor, but the inertia effect was also
not negligible. The Scorpion designs were found to exhibit an enhancement in

track-seeking performance, compared with two other conventional ABS designs.
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