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Abstract

Computing turbulence induced vibrations in hard disk drives

by

Sujit Vishwas Kirpekar

Doctor of Philosophy in Engineering-Mechanical Engineering

University of California, Berkeley

Professor David B. Bogy, Chair

With the rapid proliferation of hard disk drives into non-traditional applications new de-

mands are placed on the size, speed and reliability of these drives. There has been a strong

demand for higher areal density, faster data transfer rates and better reliability. Higher

track densities require in the reduction of the available area to position the read-write

head, thereby reducing the allowable tolerance for track-misregistration (TMR). On the

other hand, higher data transfer rates require higher speeds of disk rotation, which in turn

increase the Reynolds number of the air flow and hence the turbulent excitation of the flow.

Numerical simulations of the turbulent flow of air inside model hard disk drives are re-

ported here using a commercial CFD software, CFD-ACE. Even with current supercomputer

resources direct numerical simulation (DNS) is not feasible. On the other hand, Reynolds

Averaged Navier Stokes (RANS) methods would not capture the essential unsteadiness of

the flow. For this reason, large eddy simulation (LES) is the most reliable and accurate

method for simulating such flows at reasonable cost. Different flow quantities (velocities,

pressure, vorticity) are analyzed, global quantities such as drag on the arm and windage

are reported, and the coupled flow structure interaction problem is solved. The pressure

and shear stress coupling is done in only one direction, from the flow to the structure. It

is observed that rapid vorticity shedding occurs from the sharp corners of the arm, and
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subsequently this vorticity organizes into turbulent eddies. The highly unsteady wake is

transported by the rotating disks and is dissipated along the azimuthal span of the drive.

The off-track vibrations of the are approximately 4-5 nanometers in RMS, mainly due to

vibrations in the first sway and torsion modes.

After reporting the basic flow features, attention is devoted to the accuracy and validity

of the results. Firstly, the behavior and accuracy of subgrid scale models (SGS), which

form the central core of the LES technique, are investigated. Three different SGS models

are compared with a direct numerical simulation. It is shown that the algebraic dynamic

model is the optimal choice for the SGS model. Next, three commercial CFD codes CFD-

ACE, Fluent and CFX are benchmarked in their ability to solve a standard test problem for

LES – the flow across a square cylinder. It is observed that Fluent and CFD-ACE provide

accurate results when using the dynamic model, but the results deteriorate when using the

Smagorinsky model. CFX displayed the largest deviations in results among the three codes

when compared to the experimental data.

To build more credibility into the results, extensive experimental validation is carried

out. Validation is carried out against both hot-wire anemometry data (Gross 2003) and

particle image velocimetry (Barbier 2006) data. In the context of experimental validation

comprehensive grid convergence studies are also performed. It is shown that grids in the

2-2.5 Million cell range are in asymptotic range for convergence. The rates of convergence

agree well with the theoretical rates for the discretization schemes. The grid based uncer-

tainty of our results is then estimated to be approximately between 15-30%. Further, the

numerical dissipation associated with our grid and temporal numerical scheme is approxi-

mated using a simple technique. The artificial dissipation is approximately 18% of the total

dissipative processes.

The LES results are then applied to two problems: computation of the flow induced

vibrations of the rotating disk and computation of the vibrations of the arm in the presence

of flow mitigation devices. In the former, a self developed spectral finite-difference code is

used to solve for the elastic vibrations of the rotating disk. In the latter, HDD casings which

claim reduction in flow induced vibrations by the use of small geometrical modifications are
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investigated. These modification include, an upstream spoiler, a downstream spoiler and a

blocking plate. It is observed that the blocking plate is the most effective in reducing the

flow induced vibrations of the arm. It is also shown that by reversing the spinning direction

of the disks the flow induced drag on the arm is reduced by one order in magnitude.

Finally, a novel and computationally inexpensive technique is suggested as a

method for solving flow induced vibration problems. By approximating the flow in-

duced forcing spectrum by a piecewise linear model, we show that the computational

cost may be reduced significantly without sacrificing much accuracy of the results.

Professor David B. Bogy
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Introduction

This thesis is a computational investigation into the turbulent flows that occur inside

hard disk drives. In this chapter, we begin by giving the reader a short historical account

of the development of disk drives. Several terms that are specific to disk drives are defined,

the problem under investigation is outlined and some of the common strategies used to solve

the problem are listed. Here, and in the rest of the chapters, hard disk drive, disk drive,

HDD, or simply drive mean the same and are used interchangeably.

1.1.1 A brief introduction to hard disk drives

The IBM 350 (part of the IBM RAMAC 305) is often claimed to be the first commercial

disk drive product, introduced on September 4, 1956. (Wikipedia 2006) RAMAC stood for

“Random Access Method of Accounting and Control”. The IBM 350 stored 5 million

characters (about 5 megabytes), had fifty disks of 24-inch diameter with 100 recording

surfaces. The disks spun at 1200 rotations per minute (RPM). Data transfer rate was 8,800

characters per second. Two independent access arms moved up and down to select a disk

and in and out to select a recording track, all under servo control. Interestingly, the IBM

RAMAC 305 system with the IBM 350 disk storage leased for $3,200 per month.
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Exactly fifty years later, at the time of writing of this thesis, the Seagate ST3500641A

disk drive, which has two disks spinning at 7200 RPM, offers a storage capacity of 500

gigabytes. The data transfer rate is about 300 megabytes a second. A quick search on a

popular retail website indicates that one can buy this drive for $217! Moreover, the Seagate

drive is about 10 × 15 × 2.5 cm in size, which is grossly smaller than the original IBM

machines. Figures 1.1 and 1.2 show both these drives.

This simple example really demonstrates the astronomical progress that disk drives

have made in the past half century. Moore’s Law which is famous in the semiconductor

industry, states that at the current rate of technological development, the complexity of an

integrated circuit, with respect to minimum component cost, will double in about 18 months.

On similar lines, the newly coined “Kryder’s Law” 1 states that at current technological

advances, the storage density on disk drives will double approximately every 13 months.

Magnetic disk-based storage has been a critical component of the computer revolution

and is playing an even more important role today. The exponential increase in storage

density (at the same cost) has enabled the commercial viability of consumer products that

require large storage capacities, such as the Apple iPod digital music player, the TiVo

personal video recorder, and Google’s Gmail web-based email program.

1.1.2 Definitions and nomenclature

Disk drives consist of one or more rotating disks on which data is stored on several

closely-packed circumferential “tracks”. Each track again consists of several thousand “mag-

netic bits”, where data can be stored in the form of a binary unit. Data is read from and

written to these bits using a “read/write head”, which is usually a giant-magnetoresistive

coil that changes the polarity of the magnetic bits. Since the bits are closely packed, the

read-write head needs to be positioned very close to the bits. This is done using a “slider”

which is either an active or passive element that “flies” a few nanometers over the rotating

disk by means of an air bearing. The “actuator” is an internal arm in a disk drive that

1Kryder’s Law is named after Mark Kryder, an engineer currently at Seagate Technology
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moves the read/write element from one location to another. Generally, modern actuators

are driven by a voice-coil motor and servo control is utilized to accurately position the arm.

Storage density is usually characterized by one of the following metrics: tracks-per-

inch (TPI), is the number of tracks that fit into one radial inch; bits-per-inch (BPI) is

the number of bits in a single track length of one inch; and areal density (gigabits-per-

square-inch) is simply the number of magnetic bits (usually in gigabits) in an area of one

square inch. Figure 1.3 shows the remarkable growth in areal density over the past half

century, while Figure 1.4 shows the drop in the unit price of storage over the past few years.

Increasing areal density requires the head to be positioned closer to the magnetic bits and

this trend is shown in Figure 1.5. The figure clearly shows the decreased spacing between

the head and the magnetic media for increasing areal densities. It is foreseeable that such

high growth in areal density (20-50% annually) and the decrease in head-disk spacing to

such small extremes (3-6 nanometers) will eventually slow down. Nonetheless, promising

technologies such as perpendicular recording, thermal or piezo-based slider control, heat-

assisted magnetic recording, etc are expected to keep growing the areal density. This is

briefly shown in the magnetic media roadmap in Figure 1.6.

1.2 Motivation

Given that the disks inside a disk drive are spinning (typically between 5400 to 15000

RPM), the air in the drive gets spun up. This air flow impinges on various components in

the drive and causes them to vibrate. Generally, the actuator is the most affected by the

flow, since it forms a blunt body obstruction to the circumferential flow. Such flow induced

vibrations of the actuator cause it to be displaced from its intended position, a condition

that is called track mis-registration (TMR).

Incorrect positioning of the arm leads to errors in the read/write operation, which need

to be corrected – hence slowing down the speed of operation of the drive. Moreover, since

the flow in largely turbulent, the flow-induced vibrations are generally random and cannot

be compensated by the control system in advance.
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In modern disk drives, there is a continuing trend for higher speeds of rotation – even

above 15,000 RPM. This has mainly been driven by the need for faster data transfer rates

between the magnetic bits and the read/write head. Increasing the RPM simply increases

the Reynolds number (to be defined for this case later) of the flow causing higher turbulent

fluctuations. On the other hand, higher areal densities require very accurate positioning of

the head over the track. With the current areal density of approximately 200 gigabits/in2,

the requirement for accuracy in the positioning of the arm (called the TMR budget) is

approximately 100 nanometers. It is widely projected that conventional technology will

ultimately achieve 1 terabit/in2 and it is foreseeable that at such areal densities, a track

density of 0.5 Million TPI will be required, with each recorded bit being roughly 13 x 50

nanometers (Wood et al. 2002). Under such conditions, the tracking accuracy required is

approximately 1.5 nm RMS (root mean square).

These trends clearly manifest the need to minimize the effects of air flow on drive level

components inside a disk drive. For this reason the flow field inside an HDD has received

attention from the research community over the past few years – and is also the topic of

this dissertation.

Interestingly, the flow of air is not the only cause of TMR. Several other sources have

been identified as:

− A significant source of positioning error is from the servo controller itself

− Hysteresis at the bearing which holds the rotary actuator is a source of positioning

error

− Run-out of the disk, clamping distortions at the inner edge of the disk and manufac-

turing defects in the spindle are also sources of TMR

− The air bearing over which the slider flies displays highly non-linearly behavior at low

spacings and when the slider contacts the disk. The elastic nature of the actuator

(weakly) couples the flying dynamics of the head with its horizontal motions that

cause TMR. Thus short range forces (e.g. intermolecular) which occur at small fly
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heights and impact and contact forces when the slider contacts the disk could possibly

cause TMR

− Shocks or external vibrations affect the disk and the arm – and cause the arm to lose

its positioning accuracy

1.2.1 Some proposed solutions

Several methods / techniques have been proposed to mitigate the TMR problem:

− By reducing the disk diameter and increasing its thickness, which increases the rigidity

of the disk, reducing TMR caused by disk flutter and spindle run-out

− By increasing the stiffness of the actuator arm, especially the suspension (which is

defined later). This causes the modes of vibration to move to higher frequency ranges,

thereby reducing their relative amplitudes

− By achieving better control using a dual stage actuator

− By isolating the drive from external vibration, using fluid spindle bearings and possibly

replacing the air with a lower density, non-corrosive gas like Helium (Wood et al. 2002)

− By modifying the air flow in the drive using geometrical features, such that the resul-

tant vibrations are reduced. A few such modifications are studied in Chapter 8.

1.3 Objective

Succinctly, this dissertation aims to provide accurate and reliable computational solu-

tions for flows occurring in disk drives and whenever feasible, to compute the response of

the structures to the flow.

1.3.1 Organization of the dissertation

This dissertation is organized as follows:
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1. Chapter 1 is completed with a brief review of the prior work in this field

2. Chapter 2 outlines our simulation methodology including: the geometric details of

computational model, the grid used to discretize the domain, the initial and boundary

conditions used, the numerical methods of the code, and solution strategies that are

employed for computing the flow-structure interaction. The chapter describes in detail

the fluid mechanics of flows in disk drives and concludes with results showing the

response of the arm to the flow. In the remaining chapters the focus is shifted from

the fluid mechanics of the flow to different aspects of the simulations.

3. Since the sub-grid scale (SGS) model (defined later) is the key element of a large

eddy simulation, Chapter 3 compares and contrasts three different SGS models imple-

mented in the same commercial code. Comparisons are made with a direct numerical

simulation.

4. Chapter 4 compares three different commercial codes (and their implementation of

four SGS models). This is necessary, since this dissertation is heavily based on results

from a commercial code (as are many similar comtemporary CFD-related works) .

Instead of using the complex disk drive flow, a simpler test case, flow past a square

cylinder, is used for benchmarking.

5. Chapter 5 is an attempt at validating our simulation results with some published

experimental hot-wire results of Gross (2003). In this chapter, extensive grid refine-

ment studies are performed, and uncertainties due to the grid and due to numerical

dissipation are quantified, in the context of experimental validation.

6. Chapter 6 continues the validation efforts of Chapter 5. Simulations are validation

with particle-image-velocimetry based experimental data of Barbier (2006). The role

of numerical dissipation is also discussed.

7. Chapter 7 demonstrates the effect of the flow on the rotating disk itself. A self

developed finite difference code is used to compute the elastic response of the disk to

the flow
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8. In Chapter 8, three commonly used “devices” which mitigate the effects of the flow on

the arm are tested, computationally. Also, the effect of disks spinning in the opposite

direction to the convention is tested.

9. Chapter 9 concludes this dissertation, by summarizing the main findings and listing

the significant contributions. A general discussion of future challenges follows, and

some ideas are presented to advance the-state-of-the-art. Some simple numerical

experiments are also performed to demonstrate the viability of the proposed ideas.

1.4 Literature review

There has been significant experimental, theoretical and numerical research on air flow

in hard disk drives over the past 30 years. Several recent Ph.D. theses have reviewed the

major accomplishments in this field (chronologically, see Gross (2003), Kazemi (2004) and

Barbier (2006)). Nevertheless, a literature review is also presented here briefly, with several

updates, especially in the computational results. Results presented in Chapter 2 are largely

built on the past work outlined below. In later chapters (3-8) which do not deal exclusively

with the flow inside a model HDD, shorter literature reviews relevant to the topic under

discussion are presented where necessary.

1.4.1 Experimental research

The experimental work of Lennemann (1974) was one of the first experimental investi-

gations directly focused on disk drives. The author used model disks of diameter between

355.6 - 457 mm running at 710-3600 RPM and used water and aluminum powder for flow

visualization. Experiments were performed with and without a slider arm. The author

shows the existence of a central laminar core that is rotating slightly slower than the disk

and a highly turbulent outer region. The paper also contains an extensive list of prior work

related to rotating disks, but not specifically disk drives.
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Kaneko et al. (1977) performed similar flow visualization experiments to study the flow

between disks with and without a cylindrical shroud. They observed a “bumpy laminar

core” that extended from the hub to the mid-radius of the disks, followed by a “more

turbulent outer region”

Abrahamson et al. (1989) performed experiments using an acid-base indicator, Bro-

mothymol Blue, in water. Disk speeds were varied from 5-50 RPM, the disk diameter was

fixed at 112 cm. They observed three distinct regions of flow: “a solid body inner region

near the hub, an outer region dominated by counter rotating vortices and a boundary layer

region near the shroud”. They reported that decreasing the Ekman number (Ek = ν/R2Ω)

or increasing the axial spacing between the disks resulted in lesser vortical structures in the

outer region and consequently greater overall mixing.

Girard et al. (1995) investigated the effect of an actuator-like rotary arm on the flow

field in the drive, using water based flow visualization. Their main conclusions were related

to the effect of the arm and the wake it creates.

Tzeng and Humphrey (1991), Schuler et al. (1990) and Usry et al. (1993) performed

several laser-Doppler velocimetry experiments of rotating disks with and without an ob-

struction. They primarily reported mean and RMS values of circumferential velocities and

the corresponding frequency content. Usry et al. (1993) also conclude that once the flow

separates by flowing over the obstruction, “the flow does not recover within one revolution

from the effects of the obstruction”.

Experimental research using realistic disk drive configurations for suspensions and slid-

ers has been limited. Yamaguchi et al. (1990) performed hot wire anemometer experiments

using a suspension in a uniform and rotating flow. They found no noticeable peaks in the

frequency content of the flow and concluded that the flow acts as an aperiodic irregular

excitation.

In the Ph.D. thesis of Gross (2003), experimental data in the near vicinity of the e-block

arm was made available. Gross also investigated the effect of the thickness of the e-block

arm and the shape of it’s trailing edge on the airflow and consequently on the flow induced
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vibrations in the slider. The experimental data set resulting from the work of Gross (2003)

has been very useful as a validation tool for our simulations. This validation is presented

in Chapter 5.

The thesis of Barbier (2006) is a recent addition to the experimental works. The thesis

details results using hot-wire anemometery and particle-image velocimetry. Measurements

were made in several locations upstream and downstream of the arm using a twice-large

(2x) model of a disk drive. Asymptotic behavior of the velocity profile was observed for

increasing speeds of rotation. This dataset is also used for validation in Chapter 6.

1.4.2 Numerical research

Among the first numerical investigations of the air flow in disk drive like enclosures was

done by Chang et al. (1990). Using a finite difference code incorporating the k − ε model,

they showed good agreement between experiments and simulation with regard to the mean

flow velocity and heat transfer characteristics.

The first three-dimensional numerical study of the unsteady flow was published by

Humphrey et al. (1995). They showed that the toroidal vortices at the shroud “acquire

a time-varying sinuous shape in the circumferential direction”.

Using a different code, Suzuki and Humphrey (1997) numerically studied the effect of

a radially inserted actuator arm and an “airlock” (which is a similar obstruction to the

flow). They mainly discuss the pressure, shear stress and disk torque coefficient that they

compute. Using the same code as Suzuki and Humphrey (1997), Iglesias and Humphrey

(1998) performed 2- and 3-dimensional calculations for different Reynolds numbers. Using

a similar non-commercial software Kazemi (2004) has conducted 2-D and 3-D numerical

calculations of the flow around a suspension-head unit and reports the resulting vibrations

calculated by a finite element technique.

Most of the recent works on air flows in disk drives have used commercial computational

fluid dynamics (CFD) software. Due to the rapid increase in computer speeds and research
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advances in turbulence modeling, numerical investigations are increasingly modeling the

geometrical complexities of a real HDD.

Ng and Liu (2001) performed CFD calculations using CFX-5, Shimizu et al. (2001) used

large eddy simulation (LES) to study flow induced disk flutter, and Shimizu et al. used

LES to study the airflow induced vibrations of the HGA. Tsuda et al. (2003) report DNS

results, while Tatewaki et al. (2001) report LES results of airflows in realistic disk drives.

Recognizing that the air flow in a disk drive is highly unsteady and random, most

researchers have performed unsteady (time-marching) calculations, typically using LES, (or

where resources permit, DNS). Calculations based on Reynolds Averaged methods (which

are useful in predicting mean flow fields and particle trajectories) have also been reported

by Song et al. (Jan 2004)

Finally, there has also been some published work on reducing flow induced vibrations

in disk drives. Hirono et al. (2004) study the effect of an upstream spoiler, while Nakamura

et al. (2004) study the effect of miniaturizing the suspension. There has also been some

(experimental) work using very similar modifications that have been studied here. E.g.

Deeyienyang and Ono (2001) studied the use of “squeeze air bearing plates” in reducing the

vibrations of the disk. Other methods of mitigating flow induced vibrations have also been

proposed. E.g. Hendriks and Chan (2005) propose the use of an “aerodynamic bypass”

which can offer drastic reduction in the upstream pressure at lower costs.
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1.5 Figures

Figure 1.1. IBM 305 at U. S. Army Red River Arsenal Foreground: Two 350 disk drives.
from Wikipedia (2006)

Figure 1.2. The Seagate Barracuda 7200.9, ST3500641A.
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Figure 1.3. Areal Density growth in time; from the first hard drive (1956) to 2004. Courtesy
of Hitachi Global Storage Technologies

Figure 1.4. Price of storage per unit megabyte, over the past 15 years. Courtesy of Hitachi
Global Storage Technologies
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Figure 1.5. Reduction in head-media spacing due to increase areal density. Courtesy of
Hitachi Global Storage Technologies

Figure 1.6. Magnetic media roadmap, Courtesy of Hitachi Global Storage Technologies.
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Chapter 2

Computing HDD Flows

2.1 Introduction

This Chapter provides a detailed description of the simulation procedures and practices,

justifying their use along the way. In addition to the background information about the

simulation methodology, this Chapter also serves to describe the fluid mechanics that occur

inside realistic disk drive configurations. This Chapter shall serve as a useful guide to the

reader wanting to recreate the results described in this and future Chapters.

2.2 CFD Modeling

2.2.1 The finite volume algorithm

Our simulations have been performed using commercial computational fluid dynamics

(CFD) software – CFD-ACE. (In Chapter 4, two of the other most popular commercial

CFD codes, Fluent and CFX, are tested). The CFD-ACE code includes an unstructured,

polyhedral cell flow solver, an interactive geometry modeling and grid generation system

and a post-processing system. The code solves the incompressible Navier Stokes equations,
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∂u

∂t
+ u · ∇u = −1

ρ
∇p + ν∇2u; ∇ · u = 0 (2.1)

in strong conservation form using the finite volume method. The algorithm used is the well-

known SIMPLEC method (semi-implicit method for pressure-linked equations – consistent).

A very good description of pressure correction methods is given in Anderson (1995) and

the original algorithm is published in Van doormaal and Raithby (1984). We describe the

highlights here,

In solving the integral form of the Navier Stokes equations (momentum) in discretized

form, we seek solutions of the equations of the form,

APun+1
i,P +

∑

l

Alu
n+1
i,l = −

(
δp

δxi

)n+1

P

(2.2)

The above equation represents an equation for the velocity component ui at point P ,

ui,l are velocity components at neighboring grid locations, and the coefficients AP and Al

are determined by the scheme used to discretize the advective and diffusive terms in the

Navier Stokes equations. We use the symbol δ to denote the specific numerical scheme to

implement the gradient of pressure. Notice that the equations are implicit and hence require

the solution of a large system of non-linear equations. We also note, that by choosing an

implicit scheme, we are no longer restricted by the CFL-like conditions on the time-step,

and our numerical method is assured of unconditional stability in time.

The equation for continuity is represented by,

δui

δxi
= 0 (2.3)

The SIMPLEC algorithm is inherently iterative – it uses pressure and velocity data from

the previous time-step (or iteration) and seeks to correct it by satisfying the continuity and

momentum equations. We call the previous values of velocity and pressure by um∗ and pm∗,

and propose corrections of the form,

um = um∗ + u′; pm = pm∗ + p′; (2.4)
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where the subscript i has been dropped for notational convenience. Since um∗ from the

previous iteration satisfies Eqn. 2.2 we may write,

um∗
i,P =

−∑l Alu
m∗
l

AP
− 1

AP

(
δp

δxi

)m∗

(2.5)

or

um∗
i,P = ũm∗

i − 1

AP

(
δp

δxi

)m∗

(2.6)

where,

ũm∗
i =

−∑l Alu
m∗
l

AP
(2.7)

Taking the divergence of Eqn. 2.6 we obtain the following Poisson equation for the

pressure correction,

δ

δxi

(
ρ

AP

δp′

δxi

)
=

δ

δxi

(
ρũ′

i,P

)
+

δ

δxi

(
ρum∗

i,P

)
(2.8)

Since, the term ũ′
i,P is still unknown we approximate it by,

ũ′
i,P = −u′

i,P

∑
l Al

AP
(2.9)

This gives us the final equation to solve, so that the pressure correction satisfies the

divergence condition,

δ

δxi

(
ρ

AP +
∑

l Al

δp′

δxi

)
=

δ

δxi

(
ρum∗

i,P

)
(2.10)

Once the value of pressure correction is obtained, it is used to solve the momentum

equations (Eqn. 2.2) to obtain the corrected velocities. In the CFD-ACE code a multi-

grid or a conjugate-gradient based method may be used to solve the Possion equation for

pressure. This procedure is continued until the corrections obtained are sufficiently small

with each iteration. In our simulations the criterion for convergence was maintained at

10−4. Typically, convergence was observed in less than 50 iterations per time step.
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2.3 Discretization

The diffusive terms of the Navier Stokes equations are always discretized by second-

order central differences. The convective terms pose a harder problem. For the SIMPLEC

method described above, fluxes at the cell boundaries need to be evaluated from the variable

values at the cell center, for integration of the convective terms. Several methods have been

proposed to do this, but we prefer to again use second order central differencing, with the

intention of avoiding the well known dissipative errors of upwind-based methods (Mittal

and Moin (1997)). However to increase the stability of such a scheme in an inherently

iterative solver, sometimes (as in Chapter 4) it is necessary to “blend” the central difference

with a first order upwind differencing scheme. The contribution of the upwinding scheme

is typically limited to only 10%.

Our time step is chosen so that numerical stability is assured and the turbulent motions

are accurately resolved in time. We ensure that our time-step is smaller that the time scale

of the smallest resolved scale of motion. This is given by,

τ =
∆x

U
(2.11)

where ∆x is an average estimate of the grid size and U is the mean (outer) velocity and

that position. Considering this CFL like condition and experience from past research, we

choose a time-step of 1× 10−5 seconds. We also note that the frequencies of oscillations of

the structures in a disk drive have experimentally been shown to be of the order of a few

kHz, hence such a small time step is indeed necessary to resolve the dynamics of the flow.

A time step of 1× 10−5 seconds allows us to resolve a frequency range up to 50 kHz, which

is well above the range of the essential physics.

For advancement in time we use the Implicit Euler’s method. Implicit methods are

usually needed due to the diffusive terms in the equations of motion. We note that using

a first order method will not introduce large errors in the simulation because of the small

time step we are using, and the local truncation error is O(∆t2) = O(10−10).
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2.4 Turbulence Modeling

For disk rotation speeds of 10,000 RPM the linear velocity U of the outer radius of a 3.5

inch disk is 46.54 m/s. Such high speeds generate high shear stresses at the disks, causing

large amounts of viscous dissipation. If the disk-to-disk spacing h is 3 mm, the Reynolds

number based on the disk spacing, at standard atmospheric conditions (density ρ = 1.1614

kg/m3, dynamic viscosity µ = 1.864e-05 kg/m s), calculated by,

Re =
ρ(ΩRo)h

µ
(2.12)

is approximately 8700. Here Ω is the disk angular velocity and Ro is the outer radius of

the disk. This is often referred to as the tip based Reynolds number. Some authors prefer

to report the Reynolds number based on the disk radius, Re = ρ(ΩRo)Ro

µ . However, this

method leads to higher Reynolds numbers by one order, but is generally not valid as it

ignores the length scale in the axial direction. In later Chapters, we only report the tip

based Reynolds number.

The Reynolds number of such flows is usually not an accurate indicator of the turbulent

nature of the flow. Although the number is seemingly small, the azimuthal symmetry of

the flow is broken by the presence of a large obstruction formed by the actuator arm.

This blunt body obstruction is a source of turbulent vorticity generation, and any serious

modeling effort (as past research has shown) must make use of a turbulence model.

2.4.1 The Kolmogorov microscale

For turbulence modeling we realize that it is not practical to compute the Navier Stokes

equations directly, given the complexity of the problem. The Kolmogorov microscale may

be computed approximately as,

η =

(
ν3

ε

)1/4

= O(10−5)m (2.13)

where η is the Kolmogorov’s scale, ν is the kinematic (molecular) viscosity and ε is the dissi-

pation. Values of ε may be easily estimated by a k−ε type Reynolds-Averaged Navier-Stokes
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(RANS) solution and this calculation implies that our simulation would need approximately

O(1010) cells in a typical 3D domain. The same result may have been obtained (approx-

imately) by realizing that the number of grid cells in a direct simulation scale as Re9/4.

From this calculation, we realize that a direct simulation would be impossible given our

current computing resources.

While RANS models are not suitable for highly unsteady flows our current workstations

necessitate the use of large eddy simulation (LES). Past work also shows that LES has by

far been the most practical method to solve flows in disk drives with a reasonable balance

between cost and accuracy.

2.5 Large Eddy Simulation (LES)

Turbulent flows consist of a wide range of length and time scales. The larger scales

are more energetic than the smaller scales, and they are responsible for the transport of

conserved quantities. The smaller scales are universal, self similar and are unaware of the

mean flow because such information is lost through the energy cascade procedure (Pope

(2003)). Hence large eddy simulation uses a filtering approach to resolve only the larger

scales of motion and uses a sub-grid scale (SGS) model to model the unresolved scales.

For an incompressible flow, the filtered Navier Stokes equations are (obtained by filtering

Eqn. 2.1),

∂(ρui)

∂xi
= 0 (2.14)

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj
= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂(ρui)

∂xj
+

∂(ρuj)

∂xi

)]
(2.15)

where the over bar indicates the filtering operation 1. The quantity uiuj 6= ui uj on

the left side of Eqn. 2.15 is unknown and is replaced by ui uj. The difference between the

1Filtering involves convolving a quantity with a “filtering kernel” to produce the filtered variable
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terms is modeled by an approximation.

τR
ij = (uiuj − ui uj) (2.16)

Here τR
ij is called the sub-grid scale (SGS) stress, and it represents the interaction of the

filtered field with the unresolved field. Different SGS models seek to provide an approxi-

mation to the SGS stress term, either through an algebraic equation or by the solution of

a differential equation.

The LES research community has produced several SGS models over the past 30 years.

Only a few of the available models are used in our work, and hence are described below.

For more comprehensive reviews of different SGS models and also for a general introduction

to the practice of LES we refer the reader to Ferziger (1983), Ferziger (1996) and Rogallo

and Moin (1984).

2.5.1 The Smagorinsky model

The Smagorinsky model (Smagorinsky (1963)) is an algebraic SGS model based on the

eddy viscosity hypothesis (gradient diffusion hypothesis) of Boussinesq (1877). Since small

scales tend to be more isotropic than large ones it is usually acceptable to parameterize

them using an eddy viscosity assumption. The SGS stress is related to the filtered strain

rate through a single constant called the eddy viscosity, just as the shear stress is related

to the strain rate linearly in a Newtonian fluid. If the filtered strain rate is defined as,

Sij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(2.17)

and the mean strain rate as,

|S| =
√

2Sij Sij (2.18)

the SGS stress (most often only the anisotropic part of the SGS stress) is given by,

τR
ij = −2νT Sij (2.19)
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where the eddy viscosity νT is evaluated in a way similar to Prandtl’s mixing length

hypothesis,

νT = l2m|S| lm = Cs∆ (2.20)

in which Cs is the Smagorinsky constant. This gives the final expression for the SGS

stress as:

τR
ij = −2∆2C2

s |S|Sij (2.21)

Thus the Smagorinsky model implies that the SGS stress tensor and the filtered strain

rate tensor are aligned and can be related through a single constant Cs. We note that no

explicit filtering is needed to implement the SGS model. In our code variable values on

the grid are taken as filtered values, which implies the application of a box filter with a

(variable) width equal to the cell size. Thus, it is not possible for us to determine an exact

filter function in order to compare our results with DNS, as would be the case with any other

complex geometrical simulations. We also note that the turbulence production term, which

is the inner product of the SGS stress τR
ij and the filtered strain Sij, is negative definite

implying that energy is being transferred from the large scales to the small scales. This

is only qualitatively correct, and it does not allow reverse energy cascades or backscatter.

By studying the behavior of the model in the inertial range various authors have made

predictions to estimate the constant Cs. Lilly (1967) first predicted a value of 0.17; others

have predicted lower values ranging from 0.065 to 0.1. Unfortunately there is no common

agreement on the value of Cs which is determined empirically. The more complicated the

flow gets the more difficult it is to predict the model constant Cs, and no such value is

known for separated shear flows with curved streamlines, as in our case. In our simulation

we use Cs = 0.1, as predicted by Piomelli et al. (1988).

In addition to the ambiguity of Cs the Smagorinsky model has many drawbacks. In

most commercial codes the model must rely on ad hoc methods to extrapolate sub grid scale

(SGS) shear stresses near the wall. Our CFD-ACE code uses the well known Van Driest
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(1956) damping function to locally extrapolate eddy viscosity to the wall. The behavior

of the model at the wall is especially important to our simulation since we calculate shear

stress at the wall And finally, since the model constant is fixed, the model does not allow

energy flow from small scales to large scales which can be significant (Germano et al. 1991)

and hence produces excessive disspation of large scale fluctuations.

2.5.2 The dynamic model

The dynamic model, originally due to Germano et al. (1991), is also an algebraic SGS

model. Here, in addition to the subgrid filtering, another filter called the subtest filter is

applied to the flow field. Typically the width of the subtest filter is chosen to be twice the

width of the subgrid filter. Our code uses implicit filtering for the subgrid level and explicit

filtering with a top-hat filter (in all three directions) for the subtest level. We denote the

subgrid filtering with an overbar and the subtest filtering with a tilde. Then, using the eddy

viscosity hypothesis and a Smagorinsky-type model for the subgrid and subtest stresses, we

obtain,

τR
ij = (uiuj − ui uj) = −2∆

2
C|S|Sij (2.22)

Tij =
(
ũiuj − ũi ũj

)
= −2∆̃

2
C|S̃|S̃ij (2.23)

where we denote the subgrid scale stress by τ R
ij and the subtest level stress by Tij. Here

we have replaced the C2
s (in Eqn. 2.21) by C to allow for the variation of sign. It is easy to

see that the Leonard stress tensor defined by,

Lij = Tij − τ̃R
ij = ũiuj − ũi ũj (2.24)

is a known quantity, and it can be used to evaluate the model constant. The Leonard

stress tensor may also be written as,
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Lij = −2C

[
∆̃

2
|S̃|S̃ij −∆

2 |̃S|Sij

]
(2.25)

This equation may be used to evaluate C, but a single constant C is needed from the 5

independent components of the anisotropic part of L. To overcome this Lilly (1992) mini-

mized the error using a least square technique. This procedure, however, leads to numerical

instabilities, hence most implementations average the coefficient in the homogeneous direc-

tion, as proposed by Piomelli (1993).

There are several advantages of using the dynamic model compared to the Smagorinsky

model. Firstly, the model coefficient is neither prescribed nor remains constant, rather it

is determined as a part of the solution. Secondly, the Leonard tensor is zero in laminar

flow, giving the correct zero SGS stress. Thirdly, the model predicts a cubic behavior of

the SGS stress near the wall, which agrees well with experimental results. Also, the model

can do away with ad hoc modifications to the SGS near the wall, as is commonly done in

the Smagorinsky model. Lastly, the model constant C can take negative values, and hence

the model can account for energy transfer in both directions.

2.5.3 The localized dynamic model

The localized dynamic model first proposed by Menon and Kim (1997) is a one-equation

SGS model based on a method of first solving a model transport equation for the subgrid

scale kinetic energy k.

k =
1

2

(
u2

i − ui
2
)

(2.26)

∂k

∂t
+ ui

∂k

∂xi
= −τR

ij

∂ui

∂xj
− ε

∂

∂xi

(
νT

∂k

∂xi

)
(2.27)

The three terms on the right hand side of Eqn. 2.27 represent the production, dissipation

and transport of SGS kinetic energy. Here the SGS stress is modeled using the eddy viscosity

hypothesis, the eddy viscosity is modeled using the SGS kinetic energy and dissipation is
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also modeled using the SGS kinetic energy on dimensional grounds. This procedure is

similar to that used in the one-equation Reynolds Averaged methods.

τR
ij = −2νT Sij νT = cνk

1/2∆ ε = cε
k1/2

∆
(2.28)

The model constants cν and cε are evaluated by applying the dynamic modeling method

(as described above) to the kinetic energy equation. This SGS model removes the mathe-

matical inconsistency of the algebraic dynamic model (having to approximate one constant

from five equations), and because the model computes the evolution of SGS kinetic energy,

it is capable of capturing non-local and history effects of the turbulence. This is the central

advantage of the model over other algebraic models.

2.6 Structural modeling

To compute the response of the arm-suspension structure obstructing the flow we employ

a finite element stress solver module included in the CFD-ACE code that can be directly

coupled to the flow solver. Equations of structural mechanics are solved in finite element

form, derived from the principal of virtual work. For each element displacements are defined

at the nodes and obtained within the element in the usual manner, by interpolation from

the nodal values using the shape functions.

2.6.1 Structural damping

To treat structural damping in the actuator arm we use the simple Rayleigh damping

(proportional damping) method. By allowing,

C = αM + βK (2.29)

for each degree of freedom of the structural model,

ξi =
1

2

(
α

ωi
+ βωi

)
(2.30)
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where ξ is the damping ratio and ω in the natural frequency. Such a formulation

(Cook et al. 1989) permits us to choose the amount of damping for two frequencies. In our

particular case we choose 2% of critical damping at the first and tenth modes of vibration

of the structure. This effectively guarantees that the damping in the spectrum of interest

(first ten modes, 1-40 kHz) is below 2% and vibration modes outside this range are heavily

damped out.

2.6.2 Coupling of the fluid and structural models

On the completion of one time-step by the flow solver, pressure data (normal loading)

and shear stress at the wall (tangential loading) are passed on to the stress solver. These

forcing boundary conditions are implemented on a face-by-face basis, without the use of sim-

plifying assumptions. The resultant forces on the actuator may be obtained by integrating

the pressure and shear loads over the surface area of the actuator:

∫

∂S
pnidS

∫

∂S

(
τij + τR

ij

)
njdS (2.31)

Theoretically the SGS stress τR
ij should asymptote to zero at the walls, however, this is

not always the case practically, hence it is included in the integration of the shear stress. The

FE stress solver then determines the response of the structure as the simulation progresses.

The deflections of the actuator arm (of the order of a few hundred nanometers) are usually

very small compared to the grid size in the vicinity of the arm. Such deformations are

also small compared to the mean free path of the fluid (65 nanometers), hence, there is no

need to feed back the structural solution to the flow solver. Thus all our simulations are

unidirectionally coupled from the flow to the structure.

2.7 Model setup

Unlike in experimentation, computational investigations provide relative ease in sim-

ulating different geometries and configurations. This dissertation includes simulations for
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various geometries, form factors and arm positions. In this Chapter two basic simulation

models are described. In later Chapters, when different models and constructed and simu-

lated, they are described individually as and when necessary.

In this Chapter, two generic disk drive models and built and simulated. Both models,

shown in Figures 2.1 and 2.2, consists of two 3.5” disks rotating at 10,000 RPM in a

fixed, closed enclosure. The difference between the models lies in the details of the actuator

that is placed symmetrically between the rotating disks. Figures 2.1 and 2.2 also show an

exaggerated schematic of the cross section between the disks. The first model consists of

a single e-block arm only, while the second actuator consists of a more realistic actuator,

containing the suspension and slider unit. Table 2.1 gives material properties for different

components of the actuator. Table 2.2 provides details of the geometric dimensions of each

component in the models.

The grids that were used in the large eddy simulations are shown in Figures 2.3 and 2.4.

Generally since the dimension in the r−φ plane is much larger than the in z direction, the

grid is generated by first entirely specifying the grid in the two in-plane dimensions and then

it is extruded along z. Hence, all computational cells are hexahedrals and we thus avoid the

inaccuracy and numerical dissipation of tetrahedral volumes. The azimuthal symmetry of

the shrouded portion of the drive (for a span of 200-250 degrees) allows the use of a block

structured grid in that region. In the region close to the arm the grid is unstructured to

conform to the complicated geometry of the actuator arm. However, instead of using the

traditional triangular elements we use unstructured quadrilaterals which typically require

lesser cells for the same average resolution. Generally with elements that accurately conform

to the boundaries our unstructured grids contain 5-10% triangular elements, while the rest

are quadrilateral elements. In Chapter 5 the grid generation is discussed in more detail,

and the uncertainty due to the grid itself is quantified.

Figure 2.5 shows the location of the shroud wall (which forms the external boundary

of the domain) with respect to the disk. The disk to shroud clearance is 1 mm. Actuators

that are used in current disk drives are made up of certain specialized structural compo-

nents. Figure 2.6 shows a close up of the actuator used in Figure 2.2 and also shows the
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nomenclature used for each component. Figure 2.6 also shows two directional arrows la-

beled “off-track” and “on-track”. These schematic arrows have been shown to depict the

definitions of off-track and on-track that have been used in the rest of this dissertation. The

off-track direction is taken to be perpendicular to the longitudinal axis of the actuator, while

the on-track direction in taken to be parallel to this axis. The model shown in Figure 2.1

contains an e-block arm only, and a close up of the arm is shown in Figure 2.7.

It is important to realize the structures are three dimensional and the axial dimension

of the structure is modeled and simulated in all our simulations. A three dimensional view

of the e-block arm used 2 in Figure 2.1 and the entire actuator used in Figure 2.2 is shown

in Figures 2.7 and 2.8 respectively.

2.7.1 Boundary and Initial Conditions

The boundary conditions for the computational domain are shown in Figure 2.9. They

are implemented as follows:

− The top and bottom disks (along with the central hub) are modeled as rigid rotating

walls. Effects such as run-out (especially non-repeatable run-out, NRRO), clamping

distortions and disk vibrations cannot be accounted for in this model.

− The actuator (either the e-block arm or the complete actuator) is modeled as a fixed

obstruction to the flow, with no-slip boundary conditions. The back face of the ac-

tuator, flat in the case of Figure 2.1 and curved in the case of Figure 2.2 is fixed.

Generally one of the causes of off-track motions is the rigid body motion of the ac-

tuator, due to slip at the actuator bearing. This slip (sometimes referred to as the

actuator buffetting) is not accounted for in our simulations. The slider is modeled as

being simply supported on the disks, i.e. the small fly-height head-disc spacing with

the inherent air bearing stiffness is not modeled. There are no computational cells

representing the air bearing and the slider is free to slide on the rotating disk.

2The term “e-block” derives from arm structures to which three or more arms could be attached

27



− In the computational domain the shroud gaps are modeled as symmetric boundaries

(slip wall boundary conditions). This ensures that in the gap, airflow is permitted

only in the plane of the disks, but not perpendicular to them. Since the addition of

cells to the top and bottom of the current domain is not computationally feasible, this

is a good approximation to the narrow shroud gap. Alternatively, a periodic boundary

condition may be enforced between the top and bottom shroud gaps, such that the

flow leaving the domain at the top re-enters the domain at the bottom. This boundary

condition, however, led to unphysical travelling waves in the velocity solutions, and

hence was not used.

The LES simulation is initialized from a steady state RANS (Reynolds Averaged Navier

Stokes) solution, using the standard k−ε model. To this solution, we add 5% random fluctu-

ations to velocities, to perturb the base flow. This implies that for the initial condition, the

flow field is assumed to be in steady state with the rotating disks, with small perturbations

from the mean. In Chapter 5, Section 5.2.5, a detailed discussion provides the justification

for the use of such initial conditions and also estimates the dependence of our solutions on

the initial conditions.

2.8 Results

2.8.1 Modal Analysis

To begin, a modal analysis is performed to estimate the natural frequencies of vibration

of the single e-block arm and the entire actuator. The natural frequencies and mode shapes

are listed in Tables 2.3 and 2.4 respectively. The first four modes of the e-block arm are

also shown in Figures 2.10–2.13. Of particular interest to the current problem are the

sway modes, which contribute most to the off-track displacement, while the lower bending

modes contribute primarily to the on-track displacement. All of the results presented in

this Chapter refer to the simulations using the Dynamic LES model. The three different

SGS models described above are tested in the next Chapter.
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2.8.2 Flow Field

The flow inside a disk drive casing is very complex and involves regions of mostly

transitional and turbulent flows. For the configuration in our simulations the flow field near

the center of the rotating disks remained transitional, while most of the other regions –

including the sheared region at the shroud and the wake – was largely turbulent.

The flow displays a strong stagnation zone near the leading edge of the arm. The top

and bottom surfaces of the arm contain regions of unsteady separation and reattachment

which results in the formation of coherent structures, particularly in the wake of the arm.

The wake itself is very complex showing regions of shear and the presence of intense vortices

that are continually being transported due to the shearing effect of the rotating walls at

the top and bottom. Due to the lack of symmetry of the arm with respect to the incoming

flow there appears to be no strict periodicity in the shedding of vortices.

Figure 2.14 and Figure2.15 show the time averaged contour plots of the azimuthal and

radial velocities, respectively, in the mid plane of the model, averaged after 5 revolutions

of the disk, for the first simulation model. The figures show a largely uniform flow field

in about the 3/4 portion of the drive upstream of the arm. The wake region contains a

more irregular flow topology. Interestingly there is a small region of flow reversal, near the

hub, just upstream of the arm. This flow reversal is probably due to the adverse pressure

gradient (the flow stagnates at the arm). The radial contours show a strong inflow in the

wake of the arm; this is primarily due to the constraining geometry and the disk rotation.

There are several methods to quantify the “turbulence level” of a flow. Some of them

include: turbulence intensity (used in this Chapter, and Chapters 3,5 and 8), Magnitudes

of Reynolds stresses (used in Chapter 4), RMS of velocities (used in Chapters 3, 5, 6, 7

and 8), Energy Spectra (used in Chapters 3 and 5) or the contribution to RMS fluctuations

from different frequency bands, (used in Chapters 5, 6 and 7). Higher order statistics of the

flow (such as 3rd and 4th moments of velocity or kinetic energy) and intermittency are not

used in this dissertation.

Figure 2.17 shows the values of turbulence intensity along chords 1-5 that are defined
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in Figure 2.16. The turbulence intensity (sometimes expressed as a percentage) is defined

as the ratio of the RMS of the velocity and the mean velocity.

The plots in Figure 2.17 demonstrate the high levels of turbulence generated in the wake

formed behind the arm for the model in Figure 2.1. As the location of the chord increases

in its azimuthal distance from the arm, the turbulence intensity decreases, mainly due to

viscous and sub-grid scale dissipation. The bulk of the turbulent fluctuations shift towards

the center radius of the disks due to the constricting nature of the shroud wall. As the

flow comes back to approach the arm the turbulence does not dissipate completely, but is

approximately 20% of the turbulence intensity in the wake.

The velocity profile of the flow between the two disks is very similar to a turbulent

Couette flow. Figure 2.18 shows the inter-disk velocity profile at four azimuthal locations

for the model in Figure 2.2. The velocity is projected into it’s radial and azimuthal compo-

nents. The azimuthal velocity shows several interesting features: the black line shows the

profile immediately in the wake of the arm. Here the velocity has the “smallest profile”, in-

dicating that the flow has lost some momentum due to the formation of the turbulent wake.

As the flow moves on towards subsequently increasing azimuthal positions, the flow gains

momentum by convection/diffusion from the rotating disks and the velocity profile becomes

“fuller”. The thickness of the boundary layer increases with the azimuthal position. On the

other hand, the radial velocity in Figure 2.18 is highly negative in the wake – indicating a

strong radial inflow downstream of the arm. This is mainly due to the constricting geometry

of the shroud. As the presence of the shroud reduces the radial pressure gradient, the flow

shows smaller radial velocities as seen in Figure 2.18. The positive peaks in radial velocity

that occur near the disks in both Figures 2.18 and 2.19 are due to the centrifugal effect of

the rotating disks.

Figure 2.19 basically shows that the mean velocity upstream of the arm attains solid

body rotation characteristics. This is evident by the linear dependence of the azimuthal ve-

locity with radius. Also, the velocity profiles shown in the Figure 2.19 very closely resemble

those of turbulent Couette flow.
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2.8.3 Vortex dynamics

Figure 2.20 shows a three dimensional view of instantenous streamtubes in the region of

the wake behind the arm. They are color-coded (for contrast) according to the azimuthal

velocity. Figure 2.21 shows the orientation of these tubes with respect to the midplane.

Additionally the midplane is colored to reflect the axial velocity of the flow. These figures

demonstrate the orientation of vortical structures shed by the arm, whose axes are oriented

at an angle to the arm. This is most likely due to the “forcing” of the disks, and results in an

orientation that is different compared to the wake of a regular cylinder. Eddies are typically

generated from every sharp edge of the arm and transported downstream by the Couette

type flow. These structures are coherent and persistent; viscous dissipation does not cause

them to be dissipated completely before they approach the arm after being transported to

its upstream side.

2.8.4 Drag

Figure 2.22 and Figure 2.23 show the pressure drag and the viscous drag on the e-block

arm as a function of time. We define drag as the net resultant force acting in a direction

perpendicular to the axis of symmetry of the arm. These have been obtained by integrating

the pressure and shear stress on the area of the arm using Eqn. 2.31. The area ∂S includes

all of the surfaces of the arm (including the surfaces formed by the holes). We note that the

viscous drag (or the skin friction drag) is two orders of magnitude smaller than the pressure

drag, and hence the corresponding contribution of the pressure drag to the vibration of the

arm is significantly higher.

Figure 2.24 shows the frequency spectrum of the total drag. We see that the power of the

spectrum is concentrated in the low frequency (0 - 4 kHz) range, and the higher frequency

part of the spectrum is more uniform. This implies that we can (numerically) expect a low

frequency forcing of the e-block arm by the flow. Moreover, none of the velocity or pressure

frequency spectra show sharp peaks at a single well defined frequency. This leads us to

believe that the flow-structure interaction does not get locked into a Strouhal frequency
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and the vortex shedding process is highly unsteady and random. Frequency spectra are

discussed in more detail in Chapters 5-8.

2.8.5 Spatial Variation of Pressure

Given that pressure contributes the most to the vibrations of the e-block arm, we

discuss the pressure fluctuations in the flow field along the leading edge face of the arm. In

particular, we note the pressure at ten points on the leading edge face of the arm as shown

by the small dots in Figure 2.25. The points are numbered so that they start from 1 at the

tip of the arm, and go to 10 at the fixed pivot of the arm. Figure 2.26 shows a waterfall

plot, where each line denotes the frequency spectrum of pressure fluctuation at that point.

From this figure we again note that the pressure fluctuations are rich in the low frequency

range. It is of interest to note that point #9 displays a significantly higher amplitude (of

the spectrum) in the low frequency range than its neighbors. This is most likely due to the

fact that the upstream incoming velocity is the highest at this point, and this results in a

large pressure rise as the flow stagnates at the face of the arm.

2.8.6 Windage

Finally, we also calculate the “windage” loss at the disks, shown in Figure 2.27. This

quantity refers to the power required by the motor to rotate the disks at 10,000 RPM due

to viscous effects. In general there is no agreement on the definition of the term “windage”.

Some authors (Tsuda et al. (2003)) use the term to imply the disk power loss (in watts),

while others use it more generally to refer to “the fluctuating aerodynamic force” (Shimizu

et al. (2003)) and some others (Hirono et al. (2004)) use “windage” to refer to the flow-

induced displacements of the arm. We prefer to use windage to refer strictly to the power

loss at the rotating disks due to viscous action. This quantity may be calculated using the

expression. Windage may be easily calculated as,

W =

∫

Ad

(
2νujSij − ujτ

R
ij

)
dA (2.32)
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where W is the windage and Ad is the area of the disks. The calculated value of

windage in watts agrees very well the experimental and computational results of Tatewaki

et al. (2001). Figure 2.27 shows a time history of the windage loss. We note that this

estimate of windage considers only 1 face of each of the 2 rotating disks. In an actual drive

windage is due to power lost on both faces of each rotating disk.

2.8.7 Vibrational response of the arm

The vibrations of the structures as a response to the flow described above are reported

in terms of off-track and on-track displacements.

For the first model with a single e-block arm, Figure 2.28 and Figure 2.29 show the

displacements of the end of the e-block arm in the off-track and on-track directions respec-

tively. Figure 2.30 and Figure 2.31 show the corresponding frequency spectra. From the

figures, we conclude that the off-track amplitude is limited to about 2.2 nm peak-to-peak,

with a mean at about 2.5 nm. The on-track vibration is significantly greater, with a peak

to peak amplitude of about 5.2 nm, with a mean at about 2 nm. We conclude that the

response of the arm in the on-track direction is larger due to its lower stiffness in bending.

Since the arm is modelled here as a cantilever its lowest stiffness is in bending, and this

causes relatively large bending vibrations (out of plane vibrations) as shown in Figure 2.32.

Large on-track displacements are simply a consequence of the bending.

The frequency spectra of the vibrations correlate very well with the modal analysis. In

Figure 2.30 peaks are seen at 5.785 kHz (very close to the second bending mode), 7.621

kHz (first torsional mode) and a large peak at 8.901 kHz (close to the first sway mode).

In the on-track spectrum, a large portion of the power is concentrated in the region close

to the 1.252 kHz first bending mode, implying that the dominating frequency of oscillation

corresponds to the first bending mode. Additionally, the second bending, first torsion and

first sway modes are also evident.

For more physical insight into the vibrations we plot the trajectory of the point under
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consideration on the x-y plane in Figure 2.33, where the large dot represents its original

undeflected position.

Generally we note that the vibrations of the e-block arm are primarily dominated by

the first bending mode. In practice the boundary conditions for the drive level components

are different, given that a suspension and slider is attached to the end of the arm. This

may be studied using the simulation containing the full actuator model.

Figures 2.34 and 2.35 show the time history and frequency spectra of the vibrations of

the complete actuator arm. The off-track and on-track vibrations are reported at the center

of the slider while the out-of-plane motions are reported at the edge of the suspension. In

this case, the peak-to-peak off-track vibrations of the slider are approximately 4 nm and

on-track vibrations are approximately 5 nm. We also notice that the off-track mean is quite

large, approximately 10 nm. The off-track deflection of the slider achieves its steady mean

at about 0.012 s which corresponds to 2 rotations of the disk at 10,000 RPM.

The frequency spectra also correlate very well with the modal analysis in Table 2.4. The

modes are: the first sway and the first torsion in the off-track direction, the first and second

bending in the on-track direction and the first and second bending and the first torsion in

the out-of-plane direction.

2.9 Conclusions

This Chapter seeks to provide an introduction to Large Eddy Simulation as a useful

tool for studying flows in disk drives. Using LES our simulations provide rich data in terms

of pressure and velocities. We have also been successful in integrating the flow and stress

solvers, and the structural response results agree quite well with the modal analysis.

In terms of the flow topology we observe a highly complicated shear flow with aperiodic

vortex shedding in the wake of the arm. The turbulent eddies are not dissipated completely

by the time they complete one revolution and the upstream turbulence intensity is 10-15%

of the intensity in the wake. The pressure fluctuations are rich in the low frequency (0-3
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kHz) range and act as low frequency excitations to the structures. The pressure drag on

the arm is two orders in magnitude larger than the viscous drag.

In terms of the response of the arm to the flow – the structure vibrates at frequencies

corresponding to its first few modes. Due to the nature of the model (i.e. the arm being

modeled as a cantilever) the arm shows relatively large vibrations in bending, which in

turn contribute to the on-track displacement. The vibrations that are more important to

designers, (i.e. off-track) correspond closely to the first sway mode, which in the case of

the e-block arm has a frequency of 9.3 kHz. Similar modal excitations are seen in the case

with the complete actuator. The off-track mean is shifted to 10 nm while the peak-to-peak

is about 4 nm at the slider.

While this Chapter seeks to provide numerical results for the flow variables (velocities,

intensities and pressure) and structural response (displacements and spectra), very little

attention has been devoted to the role of the turbulence model, the internal numerics of

the code or the grid used in the simulation. These shall be the topics of investigation in

Chapters 3, 4 and 5.

In future Chapters we do not compute the flow induced vibration results of the actu-

ator, for two reasons. Firstly, CFD-ACE (as of 2006) does not allow the computation of

structural vibrations when performing simulations in parallel. The simulations presented

in this Chapter are smaller in size (i.e. number of cells) and are able to be computed on a

single desktop computer. Most simulations presented later on are much larger cases that

need several CPUs. As a response to this constraint one may suggest the coupling of CFD

and structural codes outside the setting of the commercial code CFD-ACE. However, off-

track and on-track vibrations of the slider are dependant on several other factors beyond

just the flow (as listed in Section 1.2) and modeling all those factors is beyond the scope of

this dissertation – this is the second reason. In Chapter 9, with the help of a valuable code

developed by another researcher, we couple our CFD forcing data with a realistic model for

the suspension elasticity and slider-disk dynamics.
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2.10 Tables

Table 2.1. Material properties of actuator

e-block arm Young’s Modulus 69 GPa
Density 2710 kg/m3

Poisson’s Ratio 0.33

Base Plate Young’s Modulus 210 GPa
and Suspension Density 8700 kg/m3

Poisson’s Ratio 0.3

Slider Young’s Modulus 410 GPa
Density 4350 kg/m3

Poisson’s Ratio 0.3

Table 2.2. Geometry data

Simulation 1 Simulation 2

Number of disks 2 ←
Number of e-block arms 1 1
Number of base plates 0 2
Number of suspensions 0 2
Number of sliders 0 2
Disk thickness (mm) 1 ←
Disk diameter (mm) 76.2 ←
Width of shroud gap (mm) 1 ←
Length of actuator (mm) 45 ←
Length of e-block arm (mm) 32.5 ←
Length of base plate (mm) 6.5 ←
Length of suspension (mm) 11.1 ←
Thickness of e-block arm (mm) 0.8 ←
Thickness of base plate (mm) 0.3 ←
Thickness of suspension (mm) 0.1 ←
Dimensions of slider (mm) 1 × 0.8 × 0.3 ←
Number of weight saving holes 2 ←
in e-block arm
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Table 2.3. Natural Frequencies and mode shapes of the e-block arm

Mode Natural Mode
Number Frequency Type

(kHz)

1 1.252 First Bending
2 5.529 Second Bending
3 7.768 First Torsion
4 9.387 First Sway
5 13.792 Third Bending
6 16.877 Second Torsion
7 24.398 Fourth Bending
8 25.292 Second Sway
9 28.103 Third Torsion

10 40.733 Third Sway

Table 2.4. Natural Frequencies and mode shapes of the complete actuator

Mode Natural Mode
Number Frequency Type

(kHz)

1 1.417861 First Bending
2 4.784891 Second Bending
3 5.534802 First Sway
4 6.26456 First Torsion
5 10.77796 Third Bending
6 11.4283 Fourth Bending (Suspension)
7 11.75965 Second Sway
8 14.20358 Second Torsion
9 15.98683 Fifth Bending

10 21.72979 Third Sway (asymmetric)
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2.11 Figures

Figure 2.1. Front view and schematic sec-
tional view of CFD model containing a
single e-block arm only

Figure 2.2. Front view and schematic sec-
tional view of CFD model containing an
e-block arm, base plates, suspensions and
sliders
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Figure 2.3. Plan view of hexahedral grid
used to simulate geometry shown in Fig-
ure 2.1. The grid is block-structured in the
symmetry region and grid density is in-
creased upstream and downstream of the
e-block arm

Figure 2.4. Plan view of hexahedral grid
used to simulate geometry shown in Fig-
ure 2.2. The grid is block-structured in the
symmetric region and grid density is in-
creased upstream and downstream of the
actuator arm
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Figure 2.5. Location of the shroud with
respect to the rotating disks

Figure 2.6. Closeup and nomenclature of
the actuator used in typical disk drives

Figure 2.7. Three-dimensional view of e-
block arm

Figure 2.8. Three-dimensional view of ac-
tuator, showing the single e-block arm,
two base plates, two suspensions and two
sliders
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Figure 2.9. Overview of the boundary conditions used in the simulations
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Figure 2.10. Mode 1: First Bending, 1.252 kHz

Figure 2.11. Mode 2: Second Bending, 5.529 kHz

Figure 2.12. Mode 3: First Sway, 7.768 kHz

Figure 2.13. Mode 4: First Torsion, 9.387 kHz
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Figure 2.14. Time averaged contours of azimuthal velocity

Figure 2.15. Time averaged contours of radial velocity
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Figure 2.16. Locations of chords 1-5 on which turbulence intensity is plotted in Figure 2.17.
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Figure 2.17. Turbulence intensity along chords 1-5 shown in Figure 2.16.
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Figure 2.18. Profiles of the mean radial and azimuthal flow velocity as a function of az-
imuthal positions.

Figure 2.19. Profiles of the mean radial and azimuthal flow velocity as a function of radial
positions.
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Figure 2.20. Three dimensional view of streamtubes in the wake of the arm

Figure 2.21. [h] Orientation of streamtubes relative to the midplane of the model
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Figure 2.22. Pressure Drag on the arm as a function of time. The dotted line indicates the
mean value

Figure 2.23. Viscous Drag on the arm as a function of time. The dotted line indicates the
mean value

48



Figure 2.24. Frequency Spectrum of the Drag Force.
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Figure 2.25. Schematic of points where pressure fluctuations are reported.

Figure 2.26. Waterfall plot showing the frequency content of pressure fluctuations at 10
points along the face of the arm.

50



Figure 2.27. Windage loss at disks as a function of time.
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Figure 2.28. Off-track deflection of arm-tip (nanometers).

Figure 2.29. On-track deflection of arm-tip (nanometers).
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Figure 2.30. Frequency Spectrum of off-track deflections.

Figure 2.31. Frequency Spectrum of on-track deflections.
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Figure 2.32. Out of plane (bending) deflections (nanometers).

Figure 2.33. Plot of trajectory of the arm tip in the horizontal plane.
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Figure 2.34. Off-track, On-track and out-of-plane flow indiced vibrations of the actuator.
The off-track and on-track are reported at the slider, while the out-of-plane are at the
suspension edge.
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Figure 2.35. Frequency spectra of Off-track, On-track and out-of-plane vibrations of the
actuator
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Chapter 3

A Comparison of SGS Models

3.1 Introduction

As we saw in the last Chapter the air flow generated due to high speed rotating disks in

modern computer disk drives is complicated and contains a range of attributes that require

careful attention in a simulation. This Chapter presents an in-depth comparison of LES

models, with an emphasis on accurate simulation of airflows in disk drives.

We also observed in the last Chapter that the flow field upstream of the arm (after

one complete turn around), has a turbulence intensity of nearly 10-15%. Any change in

the upstream turbulence will lead to changes in the pressure fluctuations at the e-block

arm, corresponding to a different structural excitation. For this reason, it is important to

model the turbulence dissipation (by subgrid transfer and by viscous action) correctly, i.e.

the numerical differencing method and sub-grid scale turbulence model should be relatively

free of artificial dissipation.

The flow field is also characterized by separation and vortex shedding at the trailing

edges of blunt bodies in the flow. This random unsteady shedding of vortices leads to random

changes in circulation around these bodies, resulting in unsteady aerodynamic forces. The

turbulence model should be able to capture the vortex shedding and the associated form

drag.
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In modern computer simulations of disk drive enclosures very little attention is paid to

the turbulence model used. This is often because, from a user’s perspective, the inclusion of

a turbulence model in a fluid dynamics calculation can be done very easily in commercially

available CFD codes. On the other hand, there is very little experience in the use of LES

models for disk drive airflow simulations. Usually the LES model is chosen indiscriminately,

often resulting in less than accurate results.

To build credibility into a set of results, it is customary to perform either a-priori or

a-posteriori tests. In the former, experimental or DNS data can be filtered to observe the

performance of the LES model and direct comparisons of the predicted SGS stresses can

be made. In a-posteriori testing, statistics of computed LES solutions may be compared

with those obtained by experiments or DNS. Unfortunately for flows in disk drives limited

experimental data (Gross 2003; Barbier 2006) and no DNS data is currently available in the

literature, which considerably limits the scope of this exploration. Therefore we are limited

to comparing the performance of different LES models only, but this comparison leads to

valuable insights about the behavior of these models. We are able to compare the flow fields

using these different LES models and relate the properties of the field to the property of

the model. In the Sections that follow we make a comparison between the Smagorinsky

model (Section 2.5.1), the Dynamic model (Section 2.5.2), the localized dynamic model

(Section 2.5.3) and a direct simulation on the same grid as the LES calculations.

Similar comparisons of LES models appear in other works, such as Vreman et al. (1997)

and Fureby et al. (1997). Although these works deal with simple flows there is excellent

qualitative agreement in the results. This dissertation presents the first such comparison

applied to the complicated flows in disk drives.

3.2 Model Setup

This Chapter uses the same computational model as used in Chapter 2, with the single

e-block arm only, shown originally in Figure 2.1. The Figure is repeated in this Chapter,

as Figure 3.1. The model consists of 2 disks, rotating at 10,000 RPM, separated from
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each other by a gap of 3 mm. The gap between the disk outer edge and the enclosing

wall (shroud) is 1 mm. A single obstruction in the form of an e-block arm was used. The

thickness of the arm is 1 mm, and it is placed symmetrically at the midplane between the

disks. The horizontal boundary surfaces of the computational volume at the top and bottom

(except the rotating disks), were modeled as an inviscid wall (symmetry plane boundary

conditions). The structure was fixed at its back face and thus modeled as a cantilever. Each

simulation was started from the same initial conditions, which were obtained from a steady

state k-epsilon solution of the average flow.

An unstructured grid, with quadrilateral dominant cells (90% quadrilateral elements,

10% triangular elements) was used. The grid is shown in Figure 3.2. The total number of

cells was 245,745, the smallest volume was 6.13e-12 m3 and the largest volume was 5.41e-10

m3. A representative grid size of 0.408 mm may be calculated by averaging over all the

control volumes as,

h =

(
1

N

∑

N

∆V

)1/3

(3.1)

It is important to compare our grid size with the Kolmogorov scale and the Taylor micro-

scale. The Kolmogorov scale gives an estimate of the length scale at which dissipation takes

place. Ideally, direct numerical simulations resolve the Kolmogorov scale and require no

artificial SGS-type dissipation. Using the k − ε method we are able to approximate the

dissipation, ε, in our computational volume. Dissipation is obviously a function of position,

but when averaged over the entire domain it is found to be approximately 9.78 × 104. We

note that this value is in good agreement with the dissipation predicted by the large eddy

simulations (see Table 3.2). The upper bound on dissipation was 5.64 × 105. We used

this average estimate of dissipation to approximate the Kolmogorov length scale, and the

velocity and time scales,

η =

(
ν3

ε

)1/4

= 0.0143mm (3.2)
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uη = (εν)1/4 = 1.126m/s (3.3)

τη =
( ε

ν

)1/2
= 1.267 × 10−5s (3.4)

This calculation indicates that our grid size is one order larger than what is needed

to resolve the Kolmogorov scale. Hence the direct simulation cannot represent all of the

dissipating motions, and therefore we should observe a build up of excessive small scales.

This prediction is later confirmed.

Another method to estimate a length scale is the Taylor’s microscale, λ. Although it

does not have a clear physical meaning (Pope (2003)), the Taylor scale may be used as an

estimate of intermediate size eddies (at sufficiently high Reynolds numbers). For calculating

the Taylor scale, the size of the largest eddies (L) is taken as the separation distance between

the disks, i.e. 3 mm. To approximate the velocity scale of the largest eddies, we use 5% of

the disk linear velocity to obtain,

λ = L
√

10Re
−1/2
L = 0.455mm (3.5)

This calculation shows that our grid resolution is sufficient to resolve the Taylor scale λ.

There is excellent agreement of the above length, time and velocity scales with the recent

work of Kazemi (2004).

A time step of 2× 10−5 was chosen, which allows us to resolve a frequency range up to

25 kHz. Given that the important dynamics of the flow is in the low frequency range as

observed in the last Chapter, a 25kHz resolution is sufficient to resolve the essential physics

of the flow. In order to compare the results from different turbulence models we used the

same grid in each simulation. Each simulation was integrated for 2400 time steps, which

at 10,000 RPM, corresponds to 8 revolutions of the disks. A conjugate gradient method

was used to solve the elliptic Poisson equation for pressure (in the SIMPLE procedure) in
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all the simulations, and the over-relaxation parameters for each dependant variable (which

control the speed of convergence) were the same.

3.3 Results and Discussion

3.3.1 Kinetic energy

We define the resolved kinetic energy as,

Ef =
1

2
ui ui (3.6)

and a conservation equation for this quantity may be easily derived as:

DEf

Dt
− ∂

∂xi

[
uj

(
2νSij − τR

ij −
p

ρ
δij

)]
= −2νSijSij − τR

ij Sij (3.7)

The convention from the previous Chapter is continued, i.e. · represents filtering,

while 〈·〉 represents time averaging. Eqn. 3.7 is examined in more detail in Chapter 5 in

determining the role of the initial conditions.

When integrated over the entire volume the second term on the left hand side of Eqn. 3.7

should be zero, for a closed computational volume. Numerically, however, this term is

not zero, and its value is a measure of the numerical dissipation of the simulation. The

first term on the right of Eqn. 3.7 is the viscous dissipation (which is always negative

by the second law of thermodynamics) and the second term is the loss of kinetic energy

to the residual scales (i.e. production of residual kinetic energy k). This term is always

negative for the Smagorinsky model, but it can change sign in the other two models. A

positive SGS dissipation term implies the backscatter of energy from small scales to large

ones. Direct simulations that do not calculate the SGS stress tensor τ R
ij have zero SGS

dissipation. Finally, the terms
(
2νujSij − ujτ

R
ij

)
are a source term for the kinetic energy,

which represents the work done by the rotating disks on the fluid volume. This rate of

energy input is equal to the power loss at the disks, which we refer to as windage.
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3.3.2 Windage

Plotted in Figure 3.3 is the resolved kinetic energy integrated over the entire volume,

and Figure 3.4 shows the windage. A legend for all of the plots in this Chapter is given in

Table 3.1. We note that there is very little difference in the global kinetic energy between

the different turbulence models. This implies that the main features of the resolved flow

are reasonably independent of the SGS model. This is in good agreement with Fureby et al.

(1997). However, the direct simulation predicts approximately 1-5% less kinetic energy. On

the other hand, as seen in Figure 3.4, the energy input into the system (i.e. the windage)

is about 20% more for the dynamic model and localized dynamic model, and about 15%

more for the Smagorinsky model, as compared to the direct simulation. This indicates

that there are significant differences in the energy transfer mechanisms of these simulations.

Clearly, the direct simulation has the least amount of energy input from the disks (W ), but

it exhibits kinetic energy comparable to the LES simulations. This is because the direct

simulation lacks a mechanism to transfer energy to the unresolved scales ( τij is zero) which

leads to the accumulation of too many small resolved scales. On the other hand, there is less

than 1% difference in the kinetic energy between the dynamic model, the localized dynamic

model and the Smagorinsky model, but an approximate 5% difference in their energy input

rates. This indicates that although the Smagorinsky model has less energy input per unit

time, it bears almost the same kinetic energy as the dynamic model. More insight into this

discrepancy can be obtained by considering the way each model resolves the wall layer.

For practical considerations the first grid point from the wall in our simulations was

maintained at 8 ¡ y+ ¡ 20. This ensures that the first grid point is between the viscous

sublayer and the inertial sublayer. In the CFD-ACE code the Smagorinsky constant is

damped near the wall using the well known van Driest damping function (Van Driest (1956)).

Cs = cs

(
1− ey+/A

)
(3.8)

where A is taken to be 26, as customary. The dynamic models do not use any damping

functions and are known to display the correct asymptotic behavior at the wall (Germano
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et al. (1991)). This indicates that the Smagorinsky model’s wall functions (which have

no physical grounds, and are implemented only to agree with experimental results) are

inaccurate in representing the velocity field close to the disks (hence the shear stress at the

disks, and correspondingly the windage). Thus more confidence may be placed in the results

due to the dynamic models, and we conclude that the Smagorinsky model is not accurate

in representing the energy flow into the system, and this may have serious consequences on

the physics of the flow.

Finally, we observe that the global kinetic energy of all simulations asymptote to the

same value, which indicates that our simulations have a tendency to equilibrate to the same

energy level although there exist differences between the amount of energy input per unit

time. This is a surprising result, and it suggests that different energy production (windage)

and dissipation (SGS dissipation, viscous dissipation and numerical dissipation) mechanisms

have compensated each other. For this reason, the physics of these flows are reasonably

similar in the mean.

3.3.3 Mean and RMS fluctuations of azimuthal velocity and pressure

The azimuthal and radial velocities can be decomposed into their mean and fluctuating

components. Turbulence intensity is a non-dimensional quantity representing the ratio of

the RMS of the fluctuation to the mean flow speed. We calculate the mean and RMS

components of the azimuthal velocity, starting the averaging at 2 revolutions and ending it

at 8 revolutions of the disk, i.e. averaging over 6 revolutions, or 1800 time steps.

We plot these turbulence statistics along four radial chords in the flow domain, each

of them located midway between the disks (the chords used here are the same ones used

in Chapter 2, Figure 2.16. The locations of the chords are shown again in Figure 3.5).

The chord 1 lies in the turbulent wake formed behind the arm, and the chords 2, 3 and 4

are at successively increasing angular positions along the direction of rotation of the disk.

Mean flow velocities are plotted for each chord in Figures 3.6 to 3.9. RMS values of the

fluctuations are plotted in Figures 3.10 to 3.13. Finally, the ratio of the two, (sometimes
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also referred to as the turbulence intensity) are plotted in Figures 3.14 to 3.17. To generate

these figures, we used data at 10 points (12 points for chord 1) along the chord and a shape

preserving spline interpolant was fit through the points. For all chords, 0 represents the

inner boundary at the hub, and 1 represents the other boundary at the shroud.

We note that the regions close to the disk hub in Figure 3.13 representing chord 4

should be neglected from this analysis. The mean flow speed is small near the hub (often

the flow reverses direction) resulting in large turbulence intensity (which is calculated using

the mean flow in the denominator). Such turbulence intensity values (of the order of 100%)

are unphysical.

For chord 1 we see that there is better agreement in the mean velocities and the RMS

fluctuations predicted by the direct simulation and the dynamic models than with those

predicted by the Smagorinsky model. We observe that the Smagorinsky model predicts

significantly smaller fluctuations, which is an indication of its diffusive nature.

The same observations apply to chords #2, 3 while at chord #4 the difference between

the mean velocities predicted by the models becomes insignificant. From all the figures

illustrating the RMS fluctuations of velocity we can conclude that the Smagorinsky model

has a tendency to predict lower fluctuations than the other turbulence models. This is

evidence of the well known fact that the Smagorinsky model is overly diffusive and delays

the transition of laminar to turbulent flow.

The above analysis is also consistent with our global kinetic energy diagram in Fig-

ure 3.3. The smaller fluctuations of the Smagorinsky model do not affect the total kinetic

energy very much – fluctuations which are 5% of the mean contribute only 0.25% to the

total kinetic energy.

Finally, plotted in Figures 3.18 to 3.21 are the mean pressures along the chords 1-4 and

in Figures 3.22 to 3.25 the RMS values of pressure fluctuation are plotted along chords 1-4.

Very little variation in the mean pressure is consistently observable. Also, the Smagorinsky

model shows smaller fluctuations in the wake (chord 1), and the direct simulation shows
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larger fluctuations in the other three locations (chords 2, 3 and 4). This has an effect on

the vibrations of the e-block arm, as will be discussed subsequently.

3.3.4 Energy Spectra

The spectrum of kinetic energy is useful in demonstrating the distribution of energy

among the various scales of motion. For flows with simple geometries and/or periodic

domains, obtaining a kinetic energy spectrum is straightforward. However, in our test case,

the turbulence is inhomogeneous, and the mean flow is hard to define. In general, the

problem does not lend itself to theoretical analysis. To obtain a turbulence spectrum we

measure the azimuthal velocity at a particular point in the domain as a function of time.

Using Taylor’s frozen field hypothesis 1

We convert this time history to a spatial history, and use this data to obtain a (one

dimensional, scalar) spatial auto-correlation function,

R(x) = 〈uφ(x0)uφ(x0 + x)〉 (3.9)

where the brackets indicate averaging over all x0. The Fourier transform of this function

represents the one dimensional kinetic energy spectrum as a function of wavenumber (k).

This turbulence spectrum of the airflow in a disk drive provides valuable confirmation of

the existence of an inertial cascade.

According to Kolmogorov’s law of universal equilibrium the energy spectrum E(k)

should scale as,

E(k) = Ckε
2/3k−5/3 (3.10)

where Ck is a constant of order unity, ε is the dissipation rate (rate of energy transfer

1Taylor’s hypothesis is based on the assumption that the time scale of turbulent evolution is much slower
than the time scale of the mean flow. This is valid if the fluctuations are comparably smaller than the mean
flow. We can then assume that the turbulent field is “frozen” and is simply advected by the mean flow. In
this analysis, we ensure that the standard deviation of the velocity is not more than 10% of the mean. The
error in the kinetic energy spectrum associated with such an approximation is not easy to quantify.
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through the cascade process) and k is the wavenumber. In our case the dissipation ε (which

traditionally has units of [length2/time3]) may be taken to be the windage per unit mass.

It is hypothesized to be independent of the wavenumber k, hence we use the average value

of windage for estimating it. These values of are in good agreement with our preliminary

k − ε calculation. The values calculated by different SGS models are listed in Table 3.2.

Figure 3.26 shows the kinetic energy spectra obtained using the different models. These

have been constructed by using velocity data at a single point in the wake of the arm.

Spectra based velocity data at other points in the drive do not show significant differences

from those in Figure 3.26. Firstly, all spectra show rough agreement with the −5/3rd law

(see the thick line in Figure 3.26) demonstrating the existence of an inertial sub-range. We

observe that the Smagorinsky model curve drops off faster than those of the dynamic model

and the localized dynamic model indicating the dissipation of energy at higher wavenumbers.

Also, the energy spectrum corresponding to the direct simulation contains the most energy

at high wavenumbers, indicating an excessive build up of small scales due to the lack of an

SGS model.

Theoretically, a more logical comparison can be made between LES and DNS energy

spectra. If the filter function is known in wavenumber space an LES spectrum may be

divided by the square of this function, to obtain the equivalent “unfiltered” spectrum. In

our simulations, however, the top-hat filter is anisotropic and inhomogeneous in all three

directions. The use of a one dimensional function to represent such a filter is not accurate

and hence we refrain from making such a comparison.

There is also very little difference in the spectra predicted by the localized dynamic

model and the dynamic model. The localized dynamic model has the advantage of com-

puting a transport equation for SGS-k, which should include non-local and history effects.

However, on a sufficiently fine grid such as ours the assumption of equality between pro-

duction and dissipation appears to be valid, and very little difference is observed in the

flow fields of the dynamic model and the localized dynamic model. Finally, we observe

a significant variation in the model coefficients both in space and time, for the dynamic

model (C) and the localized dynamic model ( cν and cε ). The Smagorinsky model is un-
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able to capture this local variation. However, this spatial and temporal variation cannot be

interpreted easily; hence we refrain from plotting it.

3.3.5 Vibrations

Often the off-track vibrations of the e-block arm or the slider are the most desired results

of such a coupled fluid-structure simulation. Hence we compare the vibrations predicted by

the various simulations. The off track vibrations of the tip of the e-block arm are plotted in

Figure 3.27 as a function of time. The mean and peak-to-peak amplitudes of vibrations are

given in Table 3.3. The mean is calculated by averaging over the final 6 revolutions of the

disk, and the peak-to-peak is defined as the difference between the maximum and minimum

deflection during this period. We observe that the Smagorinsky model, which predicts a

slightly higher mean displacement also predicts the least peak to peak oscillations. Clearly,

this is a direct result of the reduced pressure fluctuations. On the other hand, the direct

simulation, due to its excessive fluctuations, records a smaller mean displacement and larger

peak-to-peak oscillations. Although the differences in vibration values predicted by the

simulations are small (less than 1 nm), we note that these trends will get amplified several

times when more realistic structures such as suspensions and sliders are included in the

simulation and the sliders off-track vibrations are compared.

Figure 3.28 shows the frequency spectra of the off-track vibrations shown in Figure 3.27.

In all 4 cases we see the same modes (which correspond to sway and torsion) are excited in

the structure. (Peaks are observed at 6.6 kHz, 7.5 kHz, 10 kHz, 1.12 kHz and 1.195 kHz.)

3.3.6 Comparison of computational cost

Large eddy simulations of disk drive airflows need to be computed until the turbulence

field achieves a statistically steady state and sufficient time has elapsed for the important

modes of the structure to be excited. This typically requires that the computations be

carried out for 6-10 revolutions of the disk. Additionally the dynamics of interest lies in the

0-25 kHz range, which limits the size of the time step. As a result, such calculations take
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a substantial amount of time on desktop workstations, ranging from a couple of weeks to

more than a month. In this context the cost of each turbulence model becomes important.

In Table 3.4 we compare the normalized cost per time step of each turbulence model with

a Navier Stokes solution on the same grid. This data has been obtained on a desktop

Pentium 4 computer running at 3.2 GHz with 2 GB of RAM. The dynamic model is 33%

more expensive than the Smagorinsky model and the localized dynamic model is 25% more

expensive than the dynamic model.

3.4 Conclusions

The study of large eddy simulation SGS models is of considerable interest to the future

research in airflow simulations in disk drives. This Chapter presents an investigation of

three SGS models, under the limitations of a commercial CFD code. These models occur

almost invariably in popular CFD software and their inclusion in a calculation is very easy.

We provided a posteriori tests of the Smagorinsky model, the dynamic model and the

localized dynamic model. By examining various turbulence statistics and measures like the

kinetic energy and the energy spectrum we are able to draw useful conclusions about the

performance of each model.

We conclude that the Smagorinsky model does not correlate well with the direct simula-

tions in terms of mean and fluctuating velocities and pressures. We see a better correlation

between the dynamic model, the localized dynamic model and the direct simulation. We

also observe very little difference between the results predicted by the dynamic model and

the localized dynamic model. The Smagorinsky model has a tendency to predict the highest

dissipation at small scales, and this leads to smaller fluctuations in velocity and pressure.

This extra dissipation leads to smaller peak-to-peak oscillations of the e-block arm, and we

anticipate that the errors in vibration results of the structure would be amplified by the ad-

dition of slender and more flexible structures like the suspension and the slider. The direct

simulation does not resolve up to the Kolmogorov scale, and hence it lacks a mechanism to

dissipate energy, which would have ideally taken place at the Kolmogorov scale. This leads
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to excessive energy at small scales and results in larger fluctuations. Due to this unphysical

feature the structure displays more peak-to-peak oscillations.

The best choice for turbulence modeling appears to be either the dynamic model or the

localized dynamic model since they agree well with the direct simulation in the mean and

do not show the over dissipation of the Smagorinsky model at the small scales. However,

the localized dynamic model requires the computation of SGS-k, which makes it the most

expensive choice. This cost is not justified when compared to the results of the dynamic

model, and hence we advocate the use of the dynamic model in the following Chapters. As

mentioned earlier, we cannot say which model delivers the “true” physical behavior, but

our effort to compare the models has revealed significant differences between them.

This Chapter has exclusively used the CFD-ACE code for comparing SGS models. In

the next Chapter, we broaden our investigation by comparing three different commercial

codes and their implementation of various SGS models.
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3.5 Tables

Table 3.1. Legend for figures

SGS Model Line Type in figures

Smagorinsky model Full line
Dynamic model Dashed line
Localized dynamic model Dotted line
Direct simulation Dash-dotted line

Table 3.2. Average dissipation predicted by different SGS models

SGS Model ε

Smagorinsky model 101212.701
Dynamic model 104219.471
Localized dynamic model 104448.123
Direct simulation 88461.554

Table 3.3. Mean and peak-to-peak vibrations of e-block arm tip as predicted by different
SGS models

SGS Model Mean (nm) Peak-to-Peak (nm)

Smagorinsky model 3.3838 1.2138
Dynamic model 3.1425 1.4965
Localized dynamic model 3.2445 1.5947
Direct simulation 2.9156 1.7805
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Table 3.4. Normalized cost of different SGS models per time step

Method Normalized cost per time step

Direct simulation (same grid) 1
Smagorinsky model 1.253
Dynamic model 1.677
Localized dynamic model 2.1
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3.6 Figures

Figure 3.1. Top view of computational model
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Figure 3.2. Plan view of hexahedral grid. The grid is block-structured in the symmetry
region and grid density is increased upstream and downstream of the e-block arm
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Figure 3.3. Resolved scale kinetic energy (see Table 3.1 for legend)

Figure 3.4. Windage (Watts) (see Table 3.1 for legend)
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Figure 3.5. Location of radial lines (chords) for plotting turbulence intensity
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Figure 3.6. Mean azimuthal flow velocity
along chord 1 (m/s) (see Table 3.1 for leg-
end)

Figure 3.7. Mean azimuthal flow velocity
along chord 2 (m/s) (see Table 3.1 for leg-
end)

Figure 3.8. Mean azimuthal flow velocity
along chord 3 (m/s) (see Table 3.1 for leg-
end)

Figure 3.9. Mean azimuthal flow velocity
along chord 4 (m/s) (see Table 3.1 for leg-
end)
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Figure 3.10. RMS fluctuating azimuthal
flow velocity along chord 1 (m/s) (see Ta-
ble 3.1 for legend)

Figure 3.11. RMS fluctuating azimuthal
flow velocity along chord 2 (m/s) (see Ta-
ble 3.1 for legend)

Figure 3.12. RMS fluctuating azimuthal
flow velocity along chord 3 (m/s) (see Ta-
ble 3.1 for legend)

Figure 3.13. RMS fluctuating azimuthal
flow velocity along chord 4 (m/s) (see Ta-
ble 3.1 for legend)
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Figure 3.14. Turbulence Intensity along
chord 1 (see Table 3.1 for legend)

Figure 3.15. Turbulence Intensity along
chord 2 (see Table 3.1 for legend)

Figure 3.16. Turbulence Intensity along
chord 3 (see Table 3.1 for legend)

Figure 3.17. Turbulence Intensity along
chord 4 (see Table 3.1 for legend)
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Figure 3.18. Mean pressure along chord 1
(Pa) (see Table 3.1 for legend)

Figure 3.19. Mean pressure along chord 2
(Pa) (see Table 3.1 for legend)

Figure 3.20. Mean pressure along chord 3
(Pa) (see Table 3.1 for legend)

Figure 3.21. Mean pressure along chord 4
(Pa) (see Table 3.1 for legend)
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Figure 3.22. RMS of pressure fluctuation
along chord 1 (Pa) (see Table 3.1 for leg-
end)

Figure 3.23. RMS of pressure fluctuation
along chord 2 (Pa) (see Table 3.1 for leg-
end)

Figure 3.24. RMS of pressure fluctuation
along chord 3 (Pa) (see Table 3.1 for leg-
end)

Figure 3.25. RMS of pressure fluctuation
along chord 4 (Pa) (see Table 3.1 for leg-
end)
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Figure 3.26. Kinetic energy spectra
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Figure 3.27. Off-Track vibrations of e-block arm tip
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Figure 3.28. Frequency spectra of e-block arm off-track vibration
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Chapter 4

A Comparison of Commercial CFD

Software

4.1 Introduction

Engineering calculations of flows in complex geometries such as ours are often presented

without any verification or validation, in spite of being most susceptible to errors. (Val-

idation is defined (Stern et al. 2001) as “a process for ascertaining simulation modeling

uncertainty by using benchmark experimental data and, when conditions permit, estimating

the sign and magnitude of the modeling error itself”). Moreover, commercial CFD codes

used in industrial applications are efficient in calculating results, but do not offer insights

into the numerical uncertainties of those results. The industrial CFD community usually

treat commercial CFD codes as “black boxes” which return results given a set of inputs.

In this light the LES results of the flow across a square prism are presented using three

commercial codes, and four different SGS models.

From Chapters 2 and 3 we realize that flows is hard disk drives are highly complex and

little experimental data is available for comparison (See Chapters 5 and 6 for experimental

validation). When experimental data is limited a common practice is to use the commercial

code to solve a well known test case for which a rich set of experimental data is available.
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This often helps in highlighting the merits and demerits of the software. The test case chosen

here (the flow across a square prism) has several similarities with the original disk drive

problem of interest. Both flows have a blunt body obstruction, massive flow separation,

formation of a “flapping” shear layer, regions of laminar, transitional and turbulent flow,

recirculation, vortex shedding and an inherent three dimensional nature.

In a CFD Biathlon Forum (Freitas 1995) several commercial codes were tested (including

CFD-ACE and Fluent) in solving five model problems. The flow across a square prism was a

part of these tests, but only 2-dimensional simulations using RANS models were presented.

Several LES codes were used to solve the square prism case during a workshop held in

Germany in June 1995 (Rodi et al. 1997). Similarly, at the ERCOFTAC Workshop, seven

groups submitted their time-averaged solutions of the problem; the results are published in

Voke (1997). In addition to these workshops there is a wealth of literature discussing the

application of LES to this problem. Among the most recent works is that of Sohankar et al.

(2000), who tested three SGS models and varied other parameters such as the grid size,

time step and spanwise dimension. Fureby et al. (2000) also tested several SGS models and

generated a database of first and second order statistical moments of the resolved velocity.

Most of the cited literature above use codes that were developed by university re-

searchers, but there exist no such published tests on commercial codes. The main objective

of this Chapter is to investigate the ability of three commercial codes to solve the square

prism problem: CFD-ACE 2004, Fluent 6.2.16 and CFX 5.7.1,(and their implementations

of four SGS models: the Smagorinsky model (Smagorinsky 1963), the (Algebraic) dynamic

model (Germano et al. 1991), the localized dynamic one-equation model (Kim and Menon

1995) and the wall-adapting local eddy-viscosity (WALE) model (Nicoud and Ducros 1999)).

Such a comparison between the simulation results from different commercial codes serves

as an effective test of the internal numerics of the code, which are usually hidden from the

user, e.g.

− Segregated v/s Coupled solution strategies

− Convergence criteria for each time step
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− Under-relaxation parameters in iterative segregated solvers

− Artificially imposed bounds or limiters that prevent the code from crashing

− Inaccurate representation of SGS models

4.2 Configuration and Setup

A two-dimensional schematic plan view drawing of the problem geometry is shown in

Figure 4.1. In Cartesian coordinates, the origin is located at the center of the prism, the

mean flow is oriented in the x-direction, and Figure 4.1 depicts a representative x−z plane.

The length of the square prism side is (in the streamwise direction) d and the inflow x-

velocity is U∞. Henceforth, as is traditional, all dimensions are scaled by d, all velocities

by U∞ and times by d/U∞.

The Reynolds number of the flow (Re = U∞d
ν ) was 22,000, the upstream distance, Xu

was 4.5, while the downstream distance Xd was 15. The lateral dimension H was 4, while the

dimension in the y-direction was 14. All of the simulations used the same grid, consisting of

165×105×25 cells, an x−y plane of which is shown in Figure 4.2. The distribution of nodes

was uniform outside a region extending two units upstream, downstream and sideways (in

the y-direction) of the prism (as in Sohankar et al. (2000)). The uniform cell spacing was

0.167 downstream (∆xd), 0.25 upstream (∆xu) and 0.167 in the z-direction (∆z), again as

in Sohankar et al. (2000). In the region of the grid close to the prism, a hyperbolic tangent

function was used to stretch the cells. The first node away from the prism wall was at a

distance of 0.00815 in both and x- and y- directions.

The CFD-ACE and Fluent codes are based on the incompressible cell-centered finite

volume formulation. The governing system was solved iteratively using the SIMPLEC

technique (originally due to Van doormaal and Raithby 1984) (i.e. they use segregated

solvers), although other methods (e.g. PISO) were available in Fluent. On the other hand,

CFX employs a pressure based coupled solver. A preconditioned multigrid method is used

to solve the linear system arising from the coupled Navier Stokes and continuity equations.
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For further details on the solution strategies of each software, we refer the reader to their

respective user manuals. Seven simulations were computed:

1. CFD-ACE using the Smagorinsky model (ACE1)

2. CFD-ACE using the dynamic model (ACE2)

3. CFD-ACE using the localized dynamic model (ACE3)

4. Fluent using the Smagorinsky model (Flu1)

5. Fluent using the dynamic model (Flu2)

6. Fluent using the WALE model (Flu3), and,

7. CFX using the Smagorinsky model (CFX1) 1

Descriptions of the above SGS models are given in Sections 2.5.1 to 2.5.3. Simulations

ACE1, Flu1 and CFX1 used Cs = 0.1 for the Smagorinsky’s model. In simulation Flu2, the

value of Cs was clipped below 0 and above 0.23. And in simulation Flu3, the parameter Cω

of the WALE model was set to 0.325.

All simulations used centered differencing for the convective terms to avoid the well

known diffusion associated with upwind biased schemes. The effect of adding a small amount

of upwind-biased differencing is discussed later in Section 4.4. All CFD-ACE simulations

used the first order Implicit Euler’s method for time advancement. A semi-implicit second

order method (Crank Nicholson) was available in CFD-ACE, but calculations using it be-

came unstable as time progressed. All Fluent simulations and the CFX simulation used

a two step BDF method, which is second order accurate and provides better stiff stabil-

ity than corresponding implicit Adams methods (This method is also known as BDF2 or

Second Order Implicit Euler). For both Fluent and CFX it not not clear from their user

manuals how these 2 step methods are started.

The inflow boundary condition was specified to be a constant inflow in the x-direction

(u = U∞, v = 0, w = 0), perturbed with 2% turbulent fluctuations. In Fluent the

1The Smagorinsky model was the only SGS model available in CFX.
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“spectral synthesizer” model (based on Smirnov et al. 2001) was used to model the velocity

fluctuations. At the outflow convective boundary conditions of the form

∂ui

∂t
+ U∞

∂ui

∂x
= 0 i = 1, 2, 3, (4.1)

were used. Symmetry conditions simulating a frictionless wall,

un =

(
∂ui

∂n

)

i6=n

= 0, (4.2)

were used for all of the exterior lateral walls, where n is the normal direction to the wall.

The prism wall was modeled as a no-slip boundary in all simulations. None of the

simulations used wall functions and the coarseness of the grid did not allow the very small

turbulent structures near the wall to be resolved. Simulations ACE1 and CFX1 used the

standard Van Driest (1956) damping modification for the Smagorinsky parameter Cs near

the wall. Flu1 and Flu2 used a “damped mixing length” near the wall, such that for the

Smagorinsky model constant, Cs = min(κywall, 0.1∆), where κ is the von Kármán constant

and ∆ is the filter width. The other simulations, ACE2, ACE3 and Flu3 did not use any

near wall modeling. All simulations used implicit grid filtering for the Smagorinsky models,

and used a top-hat filter (which is anisotropic and inhomogeneous) for test filtering in the

dynamic models, whose size was twice the grid filter.

4.3 Results and Discussion

All simulations were started from the initial conditions of rest and ran for at least 8

shedding cycles, identified by the time history of the lift. Coherent vortex shedding started

after approximately 500 time steps. Flu1, Flu2, Flu3 and CFX1 were computed on local

desktop Pentium machines, while ACE1, ACE2 and ACE3 were computed on a parallel

cluster using 8 processors.

Two sets of results are presented in this Chapter: time-averaged and phase averaged.

Phase averaged data was not available for CFX1, hence only time-averaged data will be

presented for it. Time averaging was done only over complete shedding cycles i.e. initial
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start up data was ignored. Phase averaged data is presented by breaking up each shedding

cycle into twenty phases, as in Lyn and Rodi (1994) and Lyn et al. (1995).

4.3.1 Global Quantities

Table 4.1 reports global quantities of the flow. St = fd
U∞

is the Strouhal num-

ber, lr is the time-averaged recirculation length (calculated from the prism center),

〈CD〉, CD,RMS, 〈CL〉, CL,RMS are the mean and RMS. values of the coefficients of drag and

lift on the prism, respectively. Some authors (of both numerical and experimental works)

choose to report global quantities corrected for blockage effects ((Sohankar et al. 2000),

Bearman and Obasaju (1982)). However, both LES workshops (Rodi et al. (1997) and

Voke (1997)) do not present blockage-corrected results, and this custom is followed here

also. It should be noted that obtaining blockage-corrected values from the results presented

here is a straightforward exercise, given that the blockage parameter is 7.1% (the ratio of

the projected area of the prism to the area of the empty channel).

Table 4.1 includes results from our test cases (ACE1 to CFX1) and results from sev-

eral experimental investigations. Although some of the experiments used vastly differ-

ent Reynold’s numbers a rough comparison still holds, based on the grounds that non-

dimensional quantities like force coefficients are independent of the Reynolds number once

the Reynolds number is above 20,000 (McLean and Gartshore 1992). Also included are

three representative results from the LES workshop in Germany (Rodi et al. 1997) and

direct numerical simulation (DNS) result from the workshop by Voke (1997).

It appears that all of our simulations are accurate in predicting the Strouhal number

while not being accurate in other quantities, which confirms the idea that the Strouhal num-

ber is insensitive to the SGS model. The mean recirculation length, which is an important

quantity that determines the average size of the wake, is computed from the time-averaged

streamwise velocity profiles. As will be evident from the velocity profile itself, Flu2 and

ACE2 most accurately predict lr. Flu2 is the better of the two predictions, while the worst

result is from CFX1. All simulations overpredict the mean drag coefficient when compared
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to the experiments, but the dynamic models (ACE2, ACE3 and Flu2), which do not use

any near-wall damping, are better at predicting the mean drag than the Smagorinsky mod-

els. Generally it is expected that the recirculation length and the mean drag coefficient

are inversely proportional, but the mean drag values are close to each other, and a clear

trend is not manifested. It is also known (due to Lee 1975) that increasing the free stream

turbulence decreases the mean drag. Even though all the experimental results are for free

streams which are smooth and relatively less turbulent (except Lyn and Rodi (1994) which

report 2% upstream turbulence), our simulations predict a higher mean drag. With the

exception of ACE2, ACE3 and CFX1 there is good agreement in the RMS drag coefficient,

while the mean lift coefficient (which should be zero due to symmetry) is appropriately close

to zero in all simulations. For flow structure interaction problems it is crucial to predict

the RMS lift coefficient accurately. Generally the RMS lift coefficient is determined by

the vortex dynamics of the wake since the lift is directly related to changes in circulation

around the prism. The dynamic models, ACE2 and Flu2, again appear to provide impres-

sive results, with ACE2 the better of the two simulations. Both the WALE model and the

localized dynamic model under predict CL,RMS, but there is no consistent trend among the

Smagorinsky models: ACE1 overpredicts CL,RMS, while Flu1 and CFX1 underpredict this

quantity.

In conclusion, ACE2 and Flu2, both based on the dynamic model, appear to provide

the best agreement regarding the important global quantities. The two other models tested

here, in simulations ACE3 and Flu3, provide reasonable agreement in all global quantities,

but they under predict the RMS lift coefficient.

In the remainder of the Chapter a detailed comparison is provided with the results of

Lyn and Rodi (1994). However, as pointed out in Sohankar et al. (2000), such a comparison

should be made with caution. This is because the experimental measurements were made

without the use of “end plates” and the prism aspect ratio used in the experiments was

relatively small (side = 1 : axial length = 9.75).
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4.3.2 Time-Averaged Quantities

The time-averaged streamwise velocity along the centerline is plotted in Figure 4.3.

The legend is given in Table 4.2, and it is used in all subsequent figures. The mean recir-

culation length, which is the point of zero-crossing of the streamwise velocity, has already

been discussed. In the near wake region all simulations tend to overpredict the size of the

wake. Of the ACE simulations, ACE2, based on the dynamic model has the best spatial

agreement with the experiments. Among the Fluent simulations, Flu2, again based on the

dynamic model, has excellent agreement with the experimental data, better than all other

simulations. Simulations using the Smagorinsky model (CFX1, ACE1 and Flu1) consis-

tently overpredict the negative velocity in the wake. The experimental data shows that the

velocity levels off quickly at about 4 span lengths to about 60% of the free stream velocity.

This trend is not displayed by any of the simulations; all simulations tend to level off at

much later distances, to larger values. This has been a common trend in much of the pub-

lished simulations (at least Sohankar et al. (2000), Rodi et al. (1997) and Voke (1997)). The

reasoning behind such a trend is unclear: the SGS model, grid stretching and freestream

turbulence may play a part.

Figures 4.4 and 4.5 show the variation of the RMS velocities with the streamwise length.

These velocities are thus time-averaged representations of the Reynolds stress tensor. Since

LES does not explicitly represent the small scales, but only represents their effect on the

large scales through an SGS model, one cannot expect true agreement between the LES

data and the experimental data. In general the agreement should increase if the higher

frequency contribution to the RMS is negligible. Almost all simulations tend to overpre-

dict the RMS streamwise velocity and underpredict the RMS vertical velocity. This trend

(consistent among all simulations) indicates that the larger eddies of the flow, which are

explicitly represented, show artificially higher fluctuations in the direction of the mean flow

and smaller fluctuations in secondary directions orthogonal to the mean flow. The spatial

distribution of the RMS streamwise velocity (e.g. the location of the peak) is also likely to

be influenced by the mean flow. The Smagorinsky solutions of ACE (ACE1) and Fluent

(Flu1) show the highest RMS velocities in both the streamwise and vertical directions. A
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correlation is clearly evident between the RMS streamwise velocity in the wake and the

RMS lift on the prism.

The cross term of the time-averaged Reynolds stress 〈u′v′〉, which is a measure of the

anisotropy of the turbulent field, is shown in Figure 4.6. Among the various quantities

discussed in this Chapter the cross term of the Reynolds stress is generally the most difficult

for any SGS model to accurately reproduce. ACE3 shows excellent agreement with the

experimental data, and Flu2 and Flu3 also show good agreement. The central advantage

of the localized dynamic model (of ACE3) over the algebraic dynamic models (of ACE2,

Flu2) is that it captures the “non-local and history effects” of the flow by computing the

differential equation for the SGS kinetic energy. From Figure 4.6 it appears that this model

has a superior ability to predict the cross term of the Reynolds stress, hence providing a

better representation of the anisotropy of the flow. ACE1, Flu1 and CFX1 (all using the

Smagorinsky model) show the poorest agreement with the experimental data. In addition

to the magnitude of the cross term of the Reynolds stress, the sign of this term is also

important. The sign of this term (along with the velocity gradient of the mean flow)

determines the production or loss of turbulent kinetic energy (sometimes referred to as

“shear production”). It is important to correctly represent the interaction between the

mean flow and the turbulent field, and ACE2, ACE3, Flu2 and Flu3 are superior to the the

Smagorinsky models in this regard.

4.3.3 Phase Averaged Quantities

In the original work of Lyn and Rodi (1994) phase definitions were based on the peaks

in the pressure signal obtained from a piezoelectric pressure transducer at the center of the

prism sidewall. In our simulations, since the wall region is not computed completely, we

choose not to rely on the peaks in the pressure at one point on the prism side wall. On the

other hand, peaks in the global lift spectrum, which is an integral of the pressure on all the

prism walls, do not directly correspond to a peak in the pressure signal of Lyn and Rodi

(1994). Due to this difficulty in demarcating phases the vertical velocity was used as an

indicator for phase definition. Each shedding cycle was separated into 20 phase bins and
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ensemble averaging was performed. Phase 01 was then assigned to the bin with the most

agreement (with Lyn and Rodi (1994)) in the vertical velocity and all other phases were

numbered successively. In all cases, Phase 01 turned out to be one phase bin beyond the

negative peak in the lift time history. This is roughly consistent with Lyn and Rodi (1994)

since a peak in pressure on the top face of the prism corresponds roughly to a negative

peak in the lift history. Finally, the original idea, that the first half cycle corresponds to an

accelerating free stream (adjacent to the top side wall) and the second half corresponds to

a decelerating free stream, still holds in our simulation phases.

Figures 4.7- 4.12 show the phase averaged streamlines of the flow, depicting Phase 01.

Since the numerous vortices in the near wall region are not captured in the calculations, and

the streamlines are created from interpolated velocity values on a coarse grid, the region

close to the prism walls should be ignored. For reference, corresponding streamline pictures

are also shown for the experimental results of Lyn and Rodi (1994) in Figure 4.13 and the

RANS calculations of Lakehal and Thiele (2001) are shown in Figure 4.14 2. In general

there is very good qualitative agreement of the simulations with the experiments. Similar

figures for Phase 09 are depicted in Figures 4.15- 4.20. The experimental results of Lyn and

Rodi (1994) are shown in Figure 4.21, and the RANS calculations of Lakehal and Thiele

(2001) are in Figure 4.22. The phase sorted data presented here helps in understanding

several features of the flow that cannot be deduced from the time-averaged data only.

One of the attributes of interest in the streamlines for Phase 01 is the location of the

streamline on the top of the prism that separates the shed vortex from the free stream.

This streamline depicts the amount of vertical oscillation of the wake, and a consistent

connection is evident with the RMS of the lift. Larger oscillations of the wake, as in ACE1

(Figure 4.7), lead to larger lift coefficients, while smaller oscillations, as in ACE3 and Flu3

(Figures 4.9 and 4.12), lead to smaller lift coefficients.

Another attribute of interest for Phase 01 is the location of the same streamline below

the prism that does not get entrained in the wake. Again, a correlation is observable

2Although this calculation is not an LES, it is among the few published streamline pictures, and hence
is reproduced here
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between the location of this streamline and the mean drag on the prism. Cases in which

this streamline is closer to the back face of the prism (thus predicting a smaller shed vortex

during Phase 01) correspond to cases with higher mean drag forces (ACE1), while the

reverse is also true (ACE3)

For Phase 09 it appears that the separating streamline below the prism that is not

entrained in the wake is located too far below the prism in ACE1 (Figures 4.15) but too

close to the prism in ACE3 (Figures 4.9). This correlates well with the corresponding lift

coefficients. In general ACE2, Flu2 and Flu3 show the best agreement with the experimental

data.

Figures 4.23 and 4.24 show the variation of the vertical velocity along the centerline,

for phases 01 and 09, respectively. Agreement of the vertical velocity for Phase 01 was used

as a method to sort phases. In the near wake ACE1 clearly predicts more severe values

of vertical velocity (both positive and negative), while ACE3 and Flu3 show much smaller

values. This is consistent with the over- and under- estimation of the oscillations in the

wake for ACE1, and ACE3, Flu3 respectively. ACE2 and Flu2 show excellent agreement

for Phase 01, but by Phase 09 the agreement of Flu2 is much reduced.

In addition to Phases 01 and 09 similar figures are shown for two intermediate phases:

phase 05 and 15 (Figures 4.25 and 4.26). Phases 05 and 15 are among the “accelerating”

and “decelerating” phases, respectively, since the free stream adjacent to the top prism

side walls accelerates during Phase 05 and decelerates during Phase 15. During these

phases also simulations using the Smagorinsky models overpredict the positive and negative

vertical velocities. For these phases the agreement of ACE2 with the experimental data is

remarkably good, while none of the other simulations come within close agreement of the

experiment.

4.4 The Effect of Upwind differencing

It is often claimed that first order upwind differencing (applied to the convective term

in the standard finite volume formulation) produces artificial dissipation which makes it
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unsuitable for large eddy simulation (Mittal and Moin 1997). Two simulations from our

study above (ACE1 and ACE2) were recomputed with the addition of 10% upwinding to

the differencing scheme of the convective terms. In these simulations the final difference is

the sum of 90% contribution from central differencing and 10% contribution from upwind

differencing. It should be noted that this technique of “blending” the original difference

with upwinding is a default setting in the CFD-ACE code.

Table 4.3 shows the change in the global quantities of the flow due to the introduction

of upwinding. Figures 4.27 and 4.28 show the change in the time averaged x-velocity for

ACE1 and ACE2, respectively. Figures 4.29, 4.30 and 4.31, 4.32 show the change in

RMS streamwise and vertical velocity, respectively. For completeness, the streamlines of

the flow for Phase 01 and Phase 09 are shown in Figures 4.33–4.36 and Figures 4.37–4.40,

respectively.

In both cases, on adding upwinding, the Strouhal number is slightly decreased and the

RMS lift coefficient is increased (due to larger oscillations of the wake). Another common

observation is that the initial time required for the start of vortex shedding is increased.

For the simulation ACE1 the length of the recirculation zone is almost unchanged as is

also evident from the streamwise velocity profile in Figure 4.27. The slight increase in lr is

associated with a slight decrease in the mean drag C̄D. The small increase also occurs in

the RMS coefficient of the lift, but the change in the RMS velocity fluctuations is negligible.

Additionally, the streamline pictures show that vertical deflection of the streamlines due to

the formation of the vortex at Phase 01 or 09 is almost negligible.

For the simulation ACE2 the length of the recirculation zone is decreased significantly

(see Figure 4.28), and correspondingly the mean drag coefficient increases. The RMS

streamwise and vertical velocities show considerable increases with the addition of upwind-

ing and this results in the higher RMS lift coefficient. Larger oscillations of the wake are

also evident in the streamline pictures for Phase 01 and Phase 09.

One would expect that for a fixed given inlet kinetic energy the addition of numerical

dissipation would reduce the actual energy of the flow, possibly leading to smaller fluctu-
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ations. However, it is difficult to interpret the above results on the basis of the reduced

kinetic energy of the flow alone, since SGS and viscous dissipation also change when the

spatial features of the flow change. Calculating the SGS and viscous dissipation is not an

easy task in most commercial codes. While estimates of a particular source of dissipation

(e.g. numerical) may be obtained by turning off the other sources (e.g. SGS and viscous),

such estimates cannot be obtained for the entire length of the calculation. In conclusion,

the effect of upwinding on the flow may be summarized as follows:

1. For the Smagorinsky model (ACE1), most features of the flow remain unchanged,

while there was a small increase in the lift coefficient. A possible explanation for this

observation is that the incremental dissipation introduced by the upwinding is very

small compared to the other (SGS, viscous and numerical) forms of dissipation.

2. For the dynamic model (ACE2) there was a significant change in the flow features.

The recirculation zone is shortened, thereby increasing the drag on the prism. The

wake oscillates more vertically, leading to higher RMS lift coefficients.

4.5 Concluding Remarks

In this Chapter the flow across a square prism has been calculated using LES with

three different commercial codes employing 4 SGS models. The results were benchmarked

using the well known test case of Lyn and Rodi (1994). The effect of the addition of upwind

differencing was also studied in two of the simulations. Although the study does not examine

the flows in disk drives several important features of commercial codes that may be used

in that application have been brought to light. The main conclusions drawn through this

investigation are:

1. The Strouhal number is not an indicator of an accurate simulation, since an accurate

Strouhal number does not translate to accuracy in other features of the flow.

2. The dynamic models (ACE2 and Flu2) provide impressive agreement in the recircu-
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lation length and the RMS of the lift coefficient, which are the two most important

global quantities of the flow

3. The dynamic models (especially Flu2) again provide the best agreement in the time

averaged streamwise velocity

4. All simulations tend to over-predict the streamwise velocity fluctuations and under-

predict the vertical velocity fluctuations. Higher velocity fluctuations, especially using

the Smagorinsky model, correlate well with higher lift coefficients

5. When the time dependant data is split into phase bins and ensemble averaged several

features of the flow come to light, e.g. the vertical oscillation of the wake, the size

and position of the shed vortex, etc. In general Flu2 and ACE2 offer the best spatial

prediction of the wake during its different phases. Correlations can be readily made

from the spatial structure of the wake during certain phases, and the global time-

averaged results of lift and drag.

6. The addition of upwind differencing has marginal effects on the simulations using the

Smagorinsky model but more dramatic effects on the simulations using the dynamic

model. In both cases the shedding process is slowed slightly and the oscillation of the

wake is increased, leading to artificially higher lift coefficients.

7. Finally, the overall performance of CFX’s implementation of the Smagorinsky model

is poor compared to CFD-ACE and Fluent. This is a direct indicator of the internal

numerics of the code

In the next Chapter we revert back to disk drive flows and estimate the role of the grid

in the accuracy of solutions. Chapters 5 and 6 also provide crucial validation against two

experimental datasets.
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4.6 Tables

Table 4.1. Global Results

Current Work Re/103 St lr 〈CD〉 CD,RMS 〈CL〉 CL,RMS

ACE1 22 0.132 1.715 2.422 0.211 -0.09 1.578
ACE2 22 0.132 1.515 2.132 0.138 0.006 1.280
ACE3 22 0.130 1.626 2.044 0.123 0.001 1.056
Flu1 22 0.129 1.604 2.309 0.192 0.027 1.142
Flu2 22 0.130 1.404 2.210 0.213 -0.151 1.373
Flu3 22 0.130 1.554 2.260 0.259 -0.050 1.064
CFX1 22 0.130 2.627 1.931 0.125 -0.01 1.201

Experiments

Lee (1975) 176 0.122 - 2.05 0.23 - 1.24
Vickery (1966) 100 0.12 - 2.05 0.17 - 1.323

Lyn and Rodi (1994) 21.4 0.134 1.38 2.14 - - -
Bearman and Obasaju (1982) 22 0.13 - 2.1 - - 1.3275

Norberg (1993) 13 0.13 - 2.16 - - -
McLean and Gartshore (1992) 23 0.13 - - - - 1.3

From Rodi et al. (1997)

IIS-KOBA 22 0.13 1.22 2.04 0.26 -0.3 1.31
UKAHY1 22 0.13 1.32 2.2 0.14 -0.02 1.01
TAMU1 22 0.13 1.15 2.28 0.2 -0.03 1.37

From Voke (1997)

DNS6 22 0.133 - 2.09 0.178 0.005 1.45

3For a smooth stream with low turbulent fluctuations
4The mean drag coefficient was estimated by integrating the momentum flux, based on the mean velocity

profile
5Original value reported was 1.2, after correcting for blockage
6Data based on three shedding cycles only
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Table 4.2. Common Legend for Figures

Simulation Marker

ACE1 ·
ACE2 ◦
ACE3 ×
Flu1 +
Flu2 ∗
Flu3 �
CFX1 O

Experiments of Lyn and Rodi (1994) 2

ACE1 with 10% upwinding .
ACE2 with 10% upwinding /

Table 4.3. The effect of 10% upwind differencing

Case St lr 〈CD〉 CD,RMS 〈CL〉 CL,RMS

ACE1 0.132 1.715 2.422 0.211 -0.09 1.578
ACE1 with upwinding 0.128 1.778 2.391 0.215 -0.089 1.714
ACE2 0.132 1.515 2.132 0.138 0.006 1.280
ACE2 with upwinding 0.127 1.169 2.428 0.225 -0.003 1.711
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4.7 Figures

z

x

Xu d Xd

H
U

Figure 4.1. Model Configuration and Setup

Figure 4.2. Cross Section of the Grid in the x-y plane. The grid is uniform in the axial (z)
direction
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Figure 4.3. Time averaged streamwise velocity,
non-dimensionalized by the free stream velocity
U∞. See Table 4.2 for legend
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Figure 4.4. Time averaged RMS streamwise ve-
locity, non-dimensionalized by the free stream
velocity U∞. This is also the square root of the
(1, 1) normal Reynolds stress. See Table 4.2 for
legend
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Figure 4.5. Time averaged RMS vertical veloc-
ity, non-dimensionalized by the free stream ve-
locity U∞. This is also the square root of the
(2, 2) normal Reynolds stress. See Table 4.2 for
legend
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Figure 4.6. Time averaged cross term (1, 2)
of the Reynolds stress tensor, 〈u′v′〉, non-
dimensionalized by U 2

∞. See Table 4.2 for legend
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Figure 4.7. Streamlines for Phase 01, ACE1 Figure 4.8. Streamlines for Phase 01, ACE2

Figure 4.9. Streamlines for Phase 01, ACE3 Figure 4.10. Streamlines for Phase 01, Flu1
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Figure 4.11. Streamlines for Phase 01, Flu2 Figure 4.12. Streamlines for Phase 01, Flu3

Figure 4.13. Streamlines for Phase 01, Lyn and
Rodi (1994)

Figure 4.14. Streamlines for Phase 01, from
Lakehal and Thiele (2001)
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Figure 4.15. Streamlines for Phase 09, ACE1 Figure 4.16. Streamlines for Phase 09, ACE2

Figure 4.17. Streamlines for Phase 09, ACE3 Figure 4.18. Streamlines for Phase 09, Flu1
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Figure 4.19. Streamlines for Phase 09, Flu2 Figure 4.20. Streamlines for Phase 09, Flu3

Figure 4.21. Streamlines for Phase 09, Lyn and
Rodi (1994)

Figure 4.22. Streamlines for Phase 09, from
Lakehal and Thiele (2001)
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Figure 4.23. Phase averaged vertical velocity
for Phase 01, non-dimensionalized by U∞. See
Table 4.2 for legend
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Figure 4.24. Phase averaged vertical velocity
for Phase 09, non-dimensionalized by U∞. See
Table 4.2 for legend
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Figure 4.25. Phase averaged vertical velocity
for Phase 05, non-dimensionalized by U∞. See
Table 4.2 for legend
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Figure 4.26. Phase averaged vertical velocity
for Phase 15, non-dimensionalized by U∞. See
Table 4.2 for legend
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Figure 4.27. Comparison of time averaged
streamwise velocity between ACE1 and ACE1
with 10% upwind differencing. See Table 4.2 for
legend
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Figure 4.28. Comparison of time averaged
streamwise velocity between ACE2 and ACE2
with 10% upwind differencing. See Table 4.2 for
legend
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Figure 4.29. Comparison of time averaged RMS
streamwise velocity between ACE1 and ACE1
with 10% upwind differencing. See Table 4.2 for
legend
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Figure 4.30. Comparison of time averaged RMS
streamwise velocity between ACE2 and ACE2
with 10% upwind differencing. See Table 4.2 for
legend
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Figure 4.31. Comparison of time averaged RMS
vertical velocity between ACE1 and ACE1 with
10% upwind differencing. See Table 4.2 for leg-
end
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Figure 4.32. Comparison of time averaged RMS
vertical velocity between ACE2 and ACE2 with
10% upwind differencing. See Table 4.2 for leg-
end
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Figure 4.33. Streamlines for Phase 01, ACE1
Figure 4.34. Streamlines for Phase 01, ACE1
with 10% upwinding

Figure 4.35. Streamlines for Phase 01, ACE2
Figure 4.36. Streamlines for Phase 01, ACE2
with 10% upwinding
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Figure 4.37. Streamlines for Phase 09, ACE1
Figure 4.38. Streamlines for Phase 09, ACE1
with 10% upwinding

Figure 4.39. Streamlines for Phase 09, ACE2
Figure 4.40. Streamlines for Phase 09, ACE2
with 10% upwinding
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Chapter 5

Grid Convergence Studies and

Experimental Validation

5.1 Introduction

As mentioned in Chapter 4 in most numerical studies of complex flows such as those in

hard disk drives little attention is paid to reporting the numerical errors and uncertainties

of the results. While it has become relatively easy to calculate such flows using commer-

cial CFD software, the accuracy of these results is questionable at best. In the current

Chapter we hope to shed some light on the sources of discrepancies between numerical and

experimental results on disk drive flows.

Errors (i.e. the difference between the simulation result and the actual physical value)

may be divided into two broad parts: modeling errors and numerical errors. Modeling errors

are due to mathematical assumptions of the physical problem itself; e.g. the assumption

of incompressibility, the application of simplified boundary conditions, the use of a sub-

grid scale turbulence model, the assumption of isothermal flow, etc. Numerical errors are

those due to the technique of solving the mathematical problem; e.g. discretization in space

and time, grid convergence, artificial dissipation and dispersion, truncation of the iteration

process in every time step, computer round off, etc. By providing an estimate for each of
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these sources of errors simulation results may be corrected, and accurate results may be

reported. Estimation of such errors will allow the placement of an accurate “error bar”

on any simulation data reported. While it may be next to impossible to account for all of

these errors this Chapter focuses on determining the error introduced by the grid (i.e. the

discretization error).

In the next Chapter we also consider errors introduced by artificial dissipation.

The specific motivations of this Chapter are as follows:

1. To demonstrate typical grid resolutions needed to obtain solutions in the asymptotic

range.

2. To quantify the numerical errors and uncertainties of disk drive turbulence simulations

that can be computed using current computational resources.

3. To validate our computational results against experimental data sets that investigated

realistic drive configurations, and finally,

4. To provide insights into certain physical aspects of the flow that may not be readily

understood from experiments

In this Chapter we validate our results against the experimental data of Gross (2003),

while in the next Chapter we discuss the results of Barbier (2006).

5.2 Modeling

5.2.1 Experimental Setup

The experimental setup (with which we propose to benchmark our calculations) is de-

scribed in detail in Gross (2003). For clarity a schematic of the setup is shown in Figure 5.1

(reproduced directly from Gross (2003)).

The setup consists of two co-rotating glass disks of 84 mm diameter. The disk spacing

is 2.0 mm and the shroud gap is 1 mm. A single e-block arm of 1.0 mm thickness was
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placed between them without the use of any suspension or slider assembly. The e-block

arm was not actuated but it could be fixed in three positions to experiment with inner- ,

middle- and outer-diameter configurations. Additionally, the thickness of the e-block arm

was also varied from 1.0 to 1.6 mm. A constant-temperature hot-wire anemometer was used

for velocity measurements. The hot-wire probe was oriented axially at the midplane of the

setup, which made it “most sensitive to the in-plane flow speed component”.

It is important to note that in the experimental setup the disks are shrouded for only

250 degrees of their circumferential arc-length. The remaining shroud is cut away to allow

for the insertion of the e-block arm and the hot-wire probe. This region is essentially open

to the atmosphere and poses some difficulty in computational modeling.

5.2.2 Computational Model Setup

Our computational model tries to closely follow the experimental setup of Gross (2003).

The same geometrical dimensions are used for the disks and the e-block arm. The compu-

tational model (without the grid) is shown in Figure 5.2. An isometric wireframe view is

also shown in Figure 5.3, which shows the smaller out-of-plane (z) dimension as compared

to the in-plane (r − φ) dimensions.

The Reynolds number of the flow (again, tip-based) is 5,533. (Based on the outer

radius it is 116,197). In any case the presence of a blunt body obstruction breaks the

azimuthal symmetry and makes the flow turbulent, requiring the use of a turbulence model

for simulation.

Since the computational model used here is different from those in Chapters 2 and 3, the

Kolmogorov’s microscale should be estimated again. This may be done using the Reynolds

number associated with the largest eddies of the flow:

η = l

(
u′l

ν

)−3/4

(5.1)

Here we may estimate the size of the largest eddies (l) to be equal to the disk-to-disk
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thickness, 2mm. And assuming that the velocity associated with the large eddies (u ′) is

10% of the maximum linear disk velocity, the Kolmogorov’s scale (η) is approximated to be

0.0175 mm. This is a valid apriori assumption, based on the experimental data of Gross

(2003). Also, η is in good agreement with earlier estimates of Kazemi (2004) and estimates

in Chapters 2 and 3.

Given the Reynolds number of the flow, the Kolmogorov dissipation scale and the geo-

metric volume of interest, a true direct numerical simulation would require more than 200

Million cells – which is the reason why most flows in disk drives are addressed using LES.

Our simulations were performed using the CFD-ACE code utilizing the Algebraic Dynamic

SGS Model (Germano et al. 1991) (i.e. ACE2 in Chapter 4).

5.2.3 Parametric Grid Generation

To study the grid dependency of our LES solutions, we conducted simulations for several

different grids. To ensure a close geometric relationship between the different grids the

mesh generation was parametrized. The grid was completely generated by specifying the

number of nodes (and their distribution) along the edges. By changing the number of nodes

uniformly (say in geometric progression) very similar (but refined) grids could be generated.

The meshing strategy was to completely specify the grid parameters in the plane of the disks

and then extrude the entire domain axially.

The in-plane region of the grid was divided into four distinct regions (See Figure 5.5

and 5.6):

1. Coarse structured grid: which accounts for a major part of the flow domain and does

not contain any obstructions

2. Fine structured grid in the shroud gap: Here the grid is refined to resolve the stream-

line curvature near the shroud. However, this refinement is only sufficient to resolve

the main features of the flow in the shroud, but not the boundary layer adjacent to

the shroud
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3. Upstream and downstream structured grid refinement: The grid is refined in the

region immediately upstream and downstream of the arm. This allows the accurate

placement of the first node downstream from the solid wall of the arm. This helps

us resolve (or not resolve, depending on the grid) the separated shear layer and the

associated small turbulent structures close to the wall of a blunt body. (See Figure 5.7

for a close up view of this region)

4. Upstream and downstream unstructured grid relaxation: To interface the fine grid

near the arm with the coarser grid in the rest of the domain an unstructured grid was

used. The meshing tool for unstructured grids produces quadrilateral-dominant cells

(90% quads, 10% triangular cells) which very significantly reduces the number of cells

needed compared to a purely triangular mesh (See Figure 5.6 for close up view of this

region)

Our initial attempts at grid dependency studies showed that the solutions changed

quite differently due to in-plane refinement as compared to out-of-plane refinement. For

this reason the grid was refined independently along the two orthogonal directions and

convergence of the solutions is reported accordingly.

5.2.4 Approximations for Boundary Conditions

The boundary conditions for the computational domain are implemented as described

in Chapter 2. However, the original experiments of Gross (2003) are “open” to the at-

mosphere in the region downstream of the arm. Similar boundary conditions are applied

in our computational domain by radially extending the domain 5 mm beyond the shroud.

Atmospheric pressure boundary conditions allowing the inflow and outflow of air are then

applied to the edge of this extended region. If the computational domain had not been

extended atmospheric pressure boundary conditions would have to be applied at the edge

of the rotating disk. This would, however, not be physical since we do not expect the pres-

sure to be atmospheric immediately close to the edge of the disk. By extending the domain
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outwards, a “relaxation zone” is created where the pressure in the drive may adjust to the

ambient conditions.

5.2.5 Initial Conditions and Statistical Steadiness

All of our LES calculations are initialized from steady state k − ε solutions to the flow

field. CFD-ACE uses the original k − ε implementation of Launder and Sharma (1974)

with Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0 and σε = 1.3. Given the empirical

nature of the ε equation and the use of coefficients based on simple turbulent shear flow,

we did not expect the ε solution to be accurate. This is manifested in the high residuals for

the ε variable, which do not reduce even with a very large number of iterations (10,000).

However, velocity and pressure values at various points in the domain remained constant

(within 10% of the mean) after about 250 iterations. Using this as a guideline each k − ε

solution was computed for 2000 iterations, and the resulting solution was used as the initial

conditions for the LES calculation.

From prior experience it is understood that instantaneous solutions of an LES are quite

different (qualitatively) from the steady k− ε solutions. On integration in time the LES so-

lutions change rapidly from the predicted initial conditions and gradually achieve statistical

steadiness. However, since the flow is highly turbulent a local measure of steadiness (e.g.

based on the convergence of the mean velocity at one point) is generally inappropriate, and

a more global metric needs to be defined. For our simulations we compute the (filtered)

kinetic energy and the Windage and use an energy balance argument to claim statistical

steadiness.

To illustrate this technique we consider the following definitions and equations. Let u

be the three-dimensional velocity vector. The kinetic energy of the flow may be defined as:

E(x, t) =
1

2
u · u (5.2)

while the filtered kinetic energy can be obtained by filtering the kinetic energy field,

116



E(x, t) =
1

2
u · u = Ef (x, t) + kR(x, t) (5.3)

where the kinetic energy of the filtered velocity field is defined as,

Ef =
1

2
u · u (5.4)

and the residual kinetic energy is defined as,

kR =
1

2
u · u − 1

2
u · u (5.5)

It is easy to derive the conservation equation (see Pope (2003) or Kundu (1990) ) for Ef ,

which is (also derived as Eqn. 3.7 in Chapter 3),

∂Ef

∂t
+ u · ∇Ef =

∂

∂xi

{
uj

(
2νSij − τR

ij −
p

ρ
δij

)}
− 2νSij Sij + τR

ij Sij (5.6)

where the filtered rate-of-strain tensor is given by,

Sij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(5.7)

and the sub-grid scale (residual) stress tensor τ R
ij is algebraically determined from Sij on

applying the grid and test filters (see Sections 2.5.1- 2.5.3).

Let V (x) be the volume and A (x) be the surface area of our computational domain.

A may be subdivided into, A = Aw + Ad + Ao, where the subscripts refer to stationary

“walls” (both no-slip and symmetry planes), rotating “disks” and flow “outlets”.

Integrating Eqn. 5.6 over V and converting the divergences into surface integrals over

A , we obtain the following energy balance,
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∂

∂t

∫

V

EfdV

︸ ︷︷ ︸
Rate of change of KE

−
∫

Ad

(
2νuj Sij − ujτ

R
ij

)
dA

︸ ︷︷ ︸
Windage

= (5.8)

−
∫

Ao

EfujdA

︸ ︷︷ ︸
Flux of KE

+

∫

Ao

(
2νuj Sij − ujτ

R
ij

)
dA −

∫

Ao

p

ρ
ujdA

︸ ︷︷ ︸
Net work by stresses at outflow

+

∫

V

(
−2νSij Sij + τR

ij Sij

)
dV

︸ ︷︷ ︸
Viscous and SGS dissipation

In this equation, the Flux of kinetic energy is the net kinetic energy produced or de-

stroyed due to the flow of air outside our domain. The Net work by stresses at outflow is

the work done by the surface forces (arising from the shear stress and SGS stress) on the

computational volume at the boundary.

To achieve a statistical steady state it is important that an energetic balance is achieved,

i.e. the energy production and dissipation balance each other, and that the net rate of

change of kinetic energy be small. Since the velocity is solenoidal our calculations are mass

conserving, and we do not expect very large contributions to the kinetic energy from the

outflow/inflow. A dominant balance is therefore expected between the Windage and the

(combined viscous and SGS) dissipation.

Based on the explanation above we computed the kinetic energy and the Windage of

each simulation as the calculation progressed. Statistics of the flow (such as means, r.m.s.

and higher moments) are then calculated only after the kinetic energy has “settled down”,

i.e. did not change by more than 5% of its mean value. This provided a systematic method

for estimating statistics of the flow based on global quantities rather than on a point by

point basis. The initial transients typically lasted for about 2-3 revolutions (1200-1800 time

steps) of the disk. Our calculations continued until 8 revolutions – giving 6 revolutions

(3600 time steps) of useful data.
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5.3 Grid Dependency Studies

Grids in the 0.5 Million cell range, which may be computed on a single desktop machine,

showed very poor convergence and hence the resolution was increased to approximately 2.5

Million cells. Any more refinement would have been impractical as the LES would require

very long computation times. Each of the five simulations reported here was run for 2-3

weeks on a clustered Linux system using 8-32 CPUs to gather data for 8 disk revolutions.

(An example of a parallel domain decomposition is shown in Figure 5.4)

The various grids used in this Chapter (labeled: Grid 1 to Grid 5) are described in

Tables 5.1 and 5.2. Grids 1, 2 and 3 denote increasing z- resolution (i.e out-of plane

resolution), while Grids 4, 2 and 5 represent increasing r − φ (in-plane) resolution. Since

each grid was generated by completely specifying the grid in one r−φ plane, and extruding

it axially, the in-plane and out-of-plane resolutions could be varied independently. The

average resolution of the grid may be computed from the volume or area of the domain

and the number of cells. In these tables representative grid resolutions, h, hz and hrφ are

determined using the following definitions:

h =

(
Volume

N

)1/3

(5.9)

hz =
Axial dimension

Nz
(5.10)

hrφ =

(
In-plane area

Nrφ

)1/2

(5.11)

In presenting the convergence results for two orthogonal directions we often notice that

the two sets of grids (1-2-3 and 4-2-5) are converging to different results when extrapolated

to h = 0. Nevertheless, the actual value of the result at h = 0 is not of much consequence,

since it is significantly affected by several factors other than the grid (as discussed briefly

earlier). However, extrapolated error and the grid convergence index (GCI) are very useful

in quantifying the uncertainty of the results.
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5.3.1 Kinetic Energy and Windage

We start by discussing the convergence of global quantities such as the kinetic energy,

windage and drag on the arm. The windage and the drag on the arm are especially important

to the disk drive community, because they refer to the power required by the motor to run

the disks and the force on the actuator, respectively. These quantities are referred to as

“global” because they are obtained by integration in space, and the integrand is dependant

on the properties of the flow at several locations. Global quantities are expected to show

better behavior in convergence than local estimates, since the integration should smooth

out local errors and present an average estimate of the rates of convergence.

The evolution of the kinetic energy and windage are shown in Figure 5.8. In this Figure

results are presented for the finest grid (Grid 5) and error bars are included based on the

Grid Convergence Index (GCI) of the mean kinetic energy and windage. In obtaining the

GCI we have followed the guidelines of the ‘ASME Journal of Fluids Engineering policy

statement on the control of numerical accuracy’. In this figure and all subsequent figures

of this Chapter error bars are applied to data from the finest grid itself, instead of the

more customary practice of using the extrapolated data. Usually the extrapolated solutions

are close enough to the finest grid calculations to be included in the uncertainty error bars.

Nonetheless, if these computations were to serve as a benchmark for future validation efforts

the fine grid data would be more useful than the extrapolated solutions.

In Figure 5.8 the quantities are non-dimensionalized using the following definitions: Let,

Uo = ΩRo be the disk edge velocity, where Ω is the rotation speed and Ro is the disk outer

radius. Let V be the volume of the domain and the Ad be the area of the disks. Then the

non-dimensional kinetic energy and windage may be defined as,

k∗ =
1
2

∫
V

u · udV

1
2U2

o V
(5.12)

W ∗ =

∫
Ad

(
2νujSij − ujτ

r
ij

)
dA

[
1
2U2

o

]
[Uo] Ad

(5.13)
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In the same Figure 5.8 the third sub-figure shows the rate of change of k∗. Finally, in the

fourth sub-figure the difference between the rate of change of kinetic energy and windage

(i.e. right-hand-side of Eqn 5.8) is plotted, which is mainly the combined viscous, SGS and

numerical dissipation.

From the figure we notice that the rate of change of kinetic energy decreases almost to

zero after about 2 revolutions of the disk. The kinetic energy decays from its steady value,

indicating the k−ε solutions tend to overpredict the kinetic energy of the flow. Interestingly,

the decay in kinetic energy is very close to an exponential function, and a direct comparison

of an exponential curve with the kinetic energy is plotted in Figure 5.9. The rate of decay

was found to have a time constant of 0.737 revolutions, suggesting that the kinetic energy

will achieve 5% of it’s mean value in 2.209 revolutions. In reporting the rest of our results

our statistical averaging is started after the kinetic energy is within 5% of its converged

mean value. In Figure 5.8 this is a little after 2 revolutions. At about 3 revolutions the

change in kinetic energy is less than 1% of the mean.

The error bars in Figure 5.8 are based on the data from Table 5.3 by using the higher

value of GCI. The table also reports the absolute error in the solutions (ea) and the error in

the extrapolated solution (eexp). The GCI is computed separately in the in-plane and the

axial directions and is reported in Table 5.3. Since we are dealing with global quantities

the GCI calculations are based on the global grid size h and not on directional resolutions

such as hz and hrφ. The kinetic energy and windage both show monotonic convergence in

both the z- and r − φ directions. In Table 5.3 the calculated order of convergence ranges

from 1.02 to 2.71, which is in good agreement with the formal order of accuracy, 2. This is

also an indication that the chosen grids are in the asymptotic range. In general, increasing

the resolution causes both the mean kinetic energy and windage to decrease. From this one

may infer that increasing the number of cells allows the resolution of smaller flow structures

associated with smaller kinetic energies. The energy cascade from the larger to the smaller

eddies is thus responsible for lowering the total kinetic energy of the domain. Interestingly,

in case of both the kinetic energy and windage we observe a higher sensitivity to the z-

resolution than the r − φ resolution. This also leads to the result that GCI 23
z > GCI25

rφ,
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which implies a higher uncertainty due to the resolution in the z direction. From Chapter

2 it it known that the velocity profiles in a disk drive are similar to turbulent Couette flow.

Since the principal mechanism for generating kinetic energy is from the rotating disks the

interdisk resolution plays a vital role in the kinetic energy of the flow. The momentum being

“pumped” into the domain is highly dependant on the resolution in the boundary layer. On

the other hand, the in-plane resolution (especially in the wake of the arm) determines the

rate of loss of kinetic energy to the viscous and SGS sinks. The overall result is that the

energetics of the flow domain are more sensitive to the z-resolution than the r−φ resolution

in the range considered.

5.3.2 Off-Track and On-Track Drag

A similar time history of the coefficient of drag, CD, on the actuator is plotted in

Figures 5.10 and 5.11. The time history is shown for the final 6 revolutions of the computa-

tion. The coefficients are further decomposed into Off-Track and On-track directions, where

again, off-Track is the direction perpendicular to the axis of the e-block arm, and On-track

is the direction parallel to the axis of the e-block arm. In computing these coefficients the

projected areas of the arm and the disk edge speed Uo are used.

From Figure 5.10 we observe that CD Off-track is almost twice as large as CD On-track,

which is due to the orientation of the arm in the rotating flow. Figure 5.10 also shows

that increasing the z-resolution increases the mean Off-Track drag but decreases the mean

On-track drag. Interestingly, the RMS values of both the Off-Track and On-track drag

reduce. This suggests that under-resolved simulations, which are dominated by the large

scale motions, tend to over predict the fluctuations of pressure acting on the arm. Increasing

the resolution allows the cascade to (slightly) smaller scales than before, resulting in smaller

fluctuations at the large eddy level.

There is little difference in the convergence results for the z and r − φ directions for

the drag, given in Table 5.3. Our results indicate that the GCI is high (20-30%) for the
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mean and RMS values of drag coefficients. The RMS values of the drag coefficients show

oscillatory convergence in the r − φ direction and hence the GCI is not reported.

The RMS values of the drag coefficient on the arm may be broken down into frequency

components using Parsevals theorem. Information regarding the amount of energy asso-

ciated with different frequency bands is important to the disk drive component designers,

who may then design structures with natural frequencies that do not fall in the heavily

excited bands.

Figures 5.12 and 5.13 show the RMS contribution from different frequency bands to

the Off-Track drag coefficient. Similarly, Figures 5.14 and 5.15 show the RMS contribution

from different frequency bands to the On-Track drag coefficient. Interestingly, some clear

trends are demonstrated: By increasing the resolution, the low frequency contribution (0-1

kHz) decreases, while the higher frequency contribution, especially 1-6 kHz, increases. This

trend is consistently demonstrated in both the z- and r − φ directions; however, as seen in

Figures 5.12 and 5.13, convergence is monotonic in z- but oscillatory in the r−φ direction.

We note that to obtain the resultant RMS due to all frequency bands algebraic addition

is not permitted, but the RMS values should be added geometrically: by summing their

squares and taking the square root.

The Figures 5.12 to 5.15 display an important trend in the frequency components of the

excitation force on the actuator. This data (in the monotonically convergent cases) may be

used to obtain the extrapolated solution and the GCI. It is most useful to directly compare

the extrapolated values with the values from the finest grid (Grid 3), along with the GCI.

This is done in Figure 5.16 for the Off-Track component and Figure 5.17 for the On-Track

component. Again, the figures show very interesting results. Firstly, the difference between

the extrapolated solution and the solution from the finest grid decreases with increasing

frequency. Generally, there is excess energy in the lower frequencies, but less energies in the

higher frequencies. Secondly, the GCI decreases with increasing frequency, indicating that

the LES solutions converge much faster in the higher frequency components. In Figure 5.16

the very high GCI value in the 6-10 kHz range is hard to explain and may be considered
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spurious. The contributions in the 10-50 kHz range are not analyzed for convergence since

the values are very close to each other.

5.4 Experimental Validation

In this section our numerical results are directly compared with the experimental data

of Gross (2003). Two experimental data sets are available: Shown in Figure 5.18 are

measurement locations along a single line in the wake of the arm, and shown in Figure 5.19

is the measurement grid in a broader rectangular area, again downstream of the e-block

arm. The measurement area in Figure 5.19 is referenced by an x-y coordinate system

5.4.1 Measurements along a line

Figure 5.20 shows the mean velocity along the measurement line, Figure 5.21 shows the

RMS velocity and Figure 5.22 shows the turbulence intensity (i.e. the ratio of the RMS

to the mean velocity). In these figures the distance along the measurement line is non-

dimensionalized by the length of the line, so all of the plots range from to 0 to 1. The 0 end

of the plot corresponds to outside edge of the disk, while the 1 end of the plot corresponds

to the inner location (see Figure 5.18) In all of the figures the percentage occurrence of

oscillatory convergence is displayed at the top along with the average order of convergence.

In plotting the error bars on the figures the GCI was determined using the usual formula,

but with the average order pavg, of the method. The error bars were then included in the

figures at ten equispaced locations. In all three figures a higher number of points showed

oscillatory convergence in the r−φ direction than in the z-direction, hence the GCI estimates

are from convergence in the z-direction.

In general there is higher agreement in the mean quantities than in the RMS quantities.

The spatial variation of the mean velocity along the measurement line is in fairly good

agreement with the experimental data. Remarkably, the agreement is very good close to

the outer edge of the disk, where we expect the influence of the outflow boundary condition.

This indicates that the relaxation region included in our simulations provides a good esti-
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mation to the physical outflow boundary. The velocity profiles show a higher local variation

compared to the experimental data – which is smoother. The reason for this may be that

the experimental data is based on readings taken over several minutes (i.e. several thousand

revolutions) while the computational data is averaged for 6 revolutions only. In general, the

percentage of points showing oscillatory convergence is higher for the RMS velocity than

the mean velocity.

It is a general observation that the LES results tend to over predict the RMS fluctuations

of velocity. This is consistent with the drag results outlined previously, and it tends to

corroborate the notion that LES simulations on the current grids tend to under resolve the

smaller scales of motion, leading to higher fluctuations in the large scales. Figure 5.22 shows

the turbulence intensity along the measurement line, which is the ratio of the RMS to the

mean velocities. Again, the turbulence intensity is higher in the simulation as compared to

the experiment, but there is good agreement close to the outflow boundary condition. In

Gross (2003), in addition to the turbulence intensity, the mean and RMS dynamic pressure

head is also reported. These quantities can be easily deduced from the mean and RMS

velocities, hence we do not report them here.

In Figure 5.23 the frequency spectrum of the velocity fluctuations is plotted, which may

be compared with the experimental results in Figure 5.24. Several observations can be made

with regard to Figure 5.23. Firstly, the data is more noisy than the experimental results

because of the limited data set available. Secondly, there are no clear peaks corresponding

to frequency locking. The orientation of the arm in the rotating flow and the complex

geometry of the arm itself, generated a complex wake. The vorticity shed from the arm

organizes itself into eddies behind the arm but this phenomenon is not self-selective of any

frequency. The fluctuations are contained in the low frequencies (0-6 kHz) and are much

smaller at frequencies beyond that. This unsteadiness appears to be mostly random, but

the flow structures that are shed are long lived and coherent. These flow structures are

carried around by the rotating disk and are dissipated in time.
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5.4.2 Measurements on the area

Figures 5.25 and 5.26 show a direct comparison between the LES and experimental

data. Again, the LES results are from Grid 3, and the percentage oscillatory convergence

and average order of accuracy are included on the top of each sub-figure. The error bars on

the LES data are based on the GCI from the average order of accuracy.

In the Figures 5.25 and 5.26 the mean and RMS velocities are plotted as functions of the

y-coordinate (ranging from -6 to 6). Different x-locations (ranging from 2 to 12) are plotted

in different sub-figures. See Figure 5.19 for the location of the x-y coordinate system.

As shown in these figures, there is better agreement in the mean velocities than in the

RMS velocities. The experimental data shows that the mean velocity has a radial gradient

and there is a well defined transition from a smaller velocity to a larger velocity when going

from y = −6 to 6. This is because the flow is blocked immediately downstream of the arm,

and is accelerated in the space between the arm and the hub. The LES data also shows

a similar trend, but the transition is a little further away from the hub. For x = 12 and

x = 10 the magnitudes are in remarkable agreement.

In terms of RMS the experiments show a moderate level of fluctuations in the wake,

and a slight increase in the fluctuations in the region where the mean velocity transitions,

followed by much smaller fluctuations approaching the hub. The LES results, however,

show different qualitative features. They exhibit a higher level of RMS fluctuations and a

significantly higher peak in the flow transition region. Additionally, x = 12, x = 10 and

x = 8 also show peaks in RMS near the hub.

Finally, Figures 5.27 to 5.30 graphically summarize the results in the rectangular mea-

surement area. While Figures 5.27 and 5.28 share the same color scale for the mean velocity,

Figures 5.29 and 5.30 have different color scales for the RMS as denoted. The figures for

mean velocity show the transition of the velocity from the blocked region to the accelerated

region. The experimental figure also shows, by a dotted line, the location of the suspension

slider assembly if it were to be included in the setup. Figures 5.29 and 5.30 show the larger

differences between the RMS fluctuations, as discussed earlier.
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5.4.3 Frequency contribution to RMS

The frequency contribution to the RMS from different frequency bands is now discussed

in detail. Figures 5.31 and 5.32 compare the 0-2 kHz frequency contributions to the RMS,

while Figures 5.33 and 5.34 compare the contributions from 2 to 20 kHz.

In both cases the RMS from the LES is approximately two to three times larger than that

measured in the experiments. While it is unclear what the exact source of the discrepancy

is, it is well known that simulations tend to over predict some components of the RMS

fluctuations. As seen in Chapter 4, the flow across a square cylinder was computed and

streamwise Reynolds stresses (i.e. the streamwise velocity RMS fluctuations) were over

predicted. This over prediction was due to the nature of the SGS model itself and we

may conclude that modeling error contributes significantly to the prediction of the velocity

fluctuations.

Both Figures 5.32 and 5.34 show the clear stream of shed eddies that contribute to higher

fluctuations. The region blocked by the arm has higher fluctuations than the accelerated

flow region. The thesis of Gross (2003) also breaks down the 2-20 kHz contribution to

the RMS in to 2-6, 6-10 and 10-20 kHz bands. Figures 5.35 through 5.40 provide a direct

comparison between the LES and the experiments for these frequency bands. The general

trend is that the LES consistently predicts higher fluctuations compared to the experimental

data in all frequency bands. With increasing grid resolution, both in the r − φ and z-

directions, the 2-6 and 6-10 kHz contribution to the RMS increases, while the 0-2 kHz

contribution decreases. This trend is exactly similar to the trend in the drag coefficients

shown in Figures 5.12-5.15 and is hence not repeated. This leads to the conclusion that when

performing calculations on successively refined grids LES solutions converge to spectral

contents that do not quantitatively agree with the experimental spectra. Thus grid-free

LES solutions can never agree perfectly with experiments, which is most likely due to the

deficiency in the SGS model, as suggested earlier. Other factors such as limited data for

averaging LES solutions, influence of boundary conditions and the uncertainty in the hot-

wire measurement process may also contribute to the discrepancy between the results.
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5.4.4 Length and time scales

The characterization of the turbulent flow is not complete without the specification of

a time scale and a length scale. The integral time scale of the flow may be computed using

the normalized auto-correlation function,

ρ(s) =
1
T

∫ T
0 u′

φ(t)u′
φ(t + s)dt

1
T

∫ T
0 u′2

φ (t)dt
(5.14)

where u′
φ = uφ − 〈uφ〉, according to the Reynolds decomposition.

The integral time scale may be then computed as,

τ =

∫ ∞

0
ρ(s)ds (5.15)

and invoking Taylor’s frozen field hypothesis (see Pope 2003) the integral length scale may

be computed as:

λ = τ〈uφ〉 (5.16)

The integral time scale and length scale are shown in Figures 5.41 and 5.42. The time

scale is non-dimensionalized to represent the number of disk rotations. The time scale is

the largest in the accelerated part of the area and is relatively small in the region of the

wake. This indicates that although the flow is being accelerated in this region, the flow

remains largely laminar and fluctuations are well correlated for almost a whole revolution

of the disk. In the more turbulent wake, the fluctuations flow remain uncorrelated, and the

integral time scales are small. In the laminar region the combined effect of flow acceleration

and larger time scales leads to much larger length scales. The length scales are much smaller

in the wake. This indicates that the largest flow structures in the domain are contained in

the laminar flow region, and the wake is characterized by much smaller flow structures with

shorter life spans.

We also note that most of the eddies in the turbulent wake have a length scale of about

2 mm or less, which is also the disk-to-disk spacing in the model. Hence, estimations of the

Kolmogorov’s microscale based on this estimate is valid, as done previously.
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Finally, the cross term of the (time averaged) Reynolds stress tensor representing 〈ur uφ〉

is plotted in Figure 5.43. It clearly shows a distinct ridge in the stress component in the

region where the flow transitions from the accelerated region to the wake region. This

indicates the region of strong production of turbulence and the region where the turbulent

field is anisotropic. The negative sign of the stress component is typical of a turbulent shear

flow and indicates the production of turbulence from the interaction between the fluctuating

field and the mean field.

5.5 Conclusions

This Chapter has dealt with two crucial aspects of any simulation activity: grid depen-

dency studies and experimental validation. Further comparisons with experiments (that

use a different experimental technique) are done in the next Chapter. To summarize the

main conclusions:

1. Comprehensive grid convergence results have been carried out for flows in hard disk

drives. We found that grids in the 2-2.5 Million cells range (for a 3 inch drive) are

in the asymptotic range. While it is customary to vary the grid uniformly in all

three dimensions and report the convergence, such an effort would have missed the

independent sensitivity and convergence characteristics of the in-plane and out-of-

plane resolutions.

2. In the face of limited computational resources and very long simulation time we have

also outlined a rigorous and novel technique to define the (statistical) steadiness of

the flow. This is based on monitoring the kinetic energy and windage of the flow.

We found that simulations initiated from steady k − ε solutions decay exponentially

to their steady values, which is helpful in deciding an averaging interval for reporting

the statistics of the flow.

3. Our grid convergence results mainly show monotonic convergence in z and oscillatory

convergence in r − φ, with GCI values approximately 20-30 % for most quantities.
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More importantly, we noticed higher sensitivity of the quantities to the z-resolution,

which indicates the importance of resolving the axial dimension adequately for accu-

rate simulation. The simulation results also show that increasing the grid resolution

changes the spectral content of the drag on the arm. Increasing grid resolution de-

creases the 0-1 kHz content while increasing the higher 2-6 kHz spectral content.

Finally, the results of this Chapter can assist disk drive CFD practitioners to estimate

the grid based uncertainty of their simulations and compensate (correct) their results

based on the data presented here.

4. In validating our LES results with the hot wire experiments we found good agreement

in the mean quantities but larger discrepancies in the RMS quantities. Generally,

statistical quantities reported in an LES do not account for the direct influence of

the unresolved scales and hence such comparisons should be made with caution. Our

findings show that LES results tend to over predict the fluctuations in almost all

frequency bands, and the spectra converge to solutions that do not quantitatively

agree with the experiments. While the contribution from the highest frequencies is

very small, (e.g. the contribution of 10-20 kHz range to the RMS is only 0.6%) LES

results still overpredict the amount of fluctuations arising from this frequency band.

We may attribute this discrepancy to both the simulations and experiments – LES

has a tendency to overpredict streamwise fluctuations and underpredict cross-stream

fluctuations (directly from Chapter 4), while hot-wire has a tendency to underpredict

streamwise fluctuations because the hot wire probe has a finite length (0.2 mm, 10%

of the disk-to-disk thickness) and averages the flow velocity over that distance.

The next Chapter is roughly a continuation of this experimental validation effort. How-

ever, instead of performing grid convergence studies again, we test other matters such as

artificial dissipation.
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5.6 Tables

Table 5.1. Grids with variable out-of-plane (z) resolution

Grid Volume Number of Number of Number of h hz hrφ

Name mm3 cells, N out-of-plane in-plane mm mm mm
cells, Nz cells, Nrφ

Grid 1 1.043 × 104 1,101,264 16 68,829 0.2116 0.1250 0.2735
Grid 2 1.043 × 104 1,651,896 24 68,829 0.1848 0.0833 0.2735
Grid 3 1.043 × 104 2,202,528 32 68,829 0.1679 0.0625 0.2735

Table 5.2. Grids with variable in-plane (rφ) resolution

Grid Volume Number of Number of Number of h hz hrφ

Name mm3 cells, N out-of-plane in-plane mm mm mm
cells, Nz cells, Nrφ

Grid 4 1.043 × 104 1,171,632 24 48,818 0.2072 0.0833 0.3248
Grid 2 1.043 × 104 1,651,896 24 68,829 0.1848 0.0833 0.2735
Grid 5 1.043 × 104 2,361,324 24 98,389 0.1640 0.0833 0.2288
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Table 5.3. Grid Convergence results for global quantities

Global Quantity pz e23
a,z e23

ext,z GCI23
z prφ e25

a,rφ e25
ext,rφ GCI25

rφ

(%) (%) (%) (%) (%) (%)

Kinetic Energy Mean 1.85 2.66 15.87 17.12 2.71 2.19 6.09 7.17

Windage Mean 1.45 1.19 8.71 10.01 1.19 1.19 8.54 9.83

Off-track drag Mean 1.56 2.48 13.28 19.15 1.02 2.39 15.63 23.16

RMS 1.09 1.26 12.85 14.23 −

On-track drag Mean 1.74 1.90 11.69 13.09 1.48 5.02 34.93 32.36

RMS 1.74 2.38 15.05 16.35 −
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5.7 Figures

Figure 5.1. Experimental Setup (from
Gross 2003) (diagram is not to scale)

Figure 5.2. Top View of Computational
Model (diagram is to scale)

Figure 5.3. Wireframe Isometric View of
Computational Model

Figure 5.4. Typical domain decomposi-
tion for parallel computation
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Figure 5.5. Top view of the computational grid
(Grid 1 in Table 5.1)

Figure 5.6. Closeup showing regions 1, 3 and 4
(Grid 1 in Table 5.1)

Figure 5.7. Closeup showing region 3 (Grid 1 in Table 5.1)
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Figure 5.8. Global energy-related quantities for Grid 5
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Figure 5.11. Time history of the drag coefficients for Grids 4, 2 and 5.
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Figure 5.12. Contribution to CD Off Track RMS
from different frequency bands, shown for Grids
1, 2 and 3

Figure 5.13. Contribution to CD Off Track RMS
from different frequency bands, shown for Grids
4, 2 and 5

Figure 5.14. Contribution to CD On Track RMS
from different frequency bands, shown for Grids
1, 2 and 3

Figure 5.15. Contribution to CD On Track RMS
from different frequency bands, shown for Grids
4, 2 and 5
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Figure 5.16. Comparison of the RMS contributions to CD Off Track from the finest grid
and the extrapolated contributions. Also shown is the GCI 23

z across different frequency
bands

Figure 5.17. Comparison of the RMS contributions to CD On Track from the finest grid
and the extrapolated contributions. Also shown is the GCI 23

z across different frequency
bands
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Figure 5.18. Location of measurement line for hot-wire experimental data, from Gross
(2003)

Figure 5.19. Location of measurement area for hot-wire experimental data, from Gross
(2003)
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Figure 5.20. Mean flow speed along measurement line. LES data is plotted along with error
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141



0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Distance along measurement line

T
ur

bu
le

nc
e 

In
te

ns
ity

 (
%

)

39% Oscillatory Conv.      P
avg

= 2.89

LES
Experiments
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Figure 5.24. Frequency spectrum of velocity
fluctuations at different measurement locations,
reproduced from Gross (2003)
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Figure 5.27. Mean flow velocity over entire mea-
surement area, from LES

Figure 5.28. Mean flow velocity over entire
measurement area, from experiments of Gross
(2003)

145



24681012
−6

−4

−2

0

2

4

6

x

y

0

0.5

1

1.5

2

2.5

3

3.5

Figure 5.29. RMS flow fluctuations over entire
measurement area, from LES

Figure 5.30. RMS flow fluctuations over entire
measurement area, from experiments of Gross
(2003)
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Figure 5.31. 0-2 kHz contribution to RMS flow
fluctuations, from Gross (2003)
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Figure 5.32. 0-2 kHz contribution to RMS flow
fluctuations, from LES
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Figure 5.33. 2-20 kHz contribution to RMS flow
fluctuations, from Gross (2003)
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Figure 5.34. 2-20 kHz contribution to RMS flow
fluctuations, from LES
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Figure 5.35. 2-6 kHz contribution to RMS flow
fluctuations, from Gross (2003)
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Figure 5.36. 2-6 kHz contribution to RMS flow
fluctuations, from LES
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Figure 5.37. 6-10 kHz contribution to RMS flow
fluctuations, from Gross (2003)
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Figure 5.38. 6-10 kHz contribution to RMS flow
fluctuations, from LES
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Figure 5.39. 10-20 kHz contribution to RMS
flow fluctuations, from Gross (2003)

24681012
−6

−4

−2

0

2

4

6

x

y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 5.40. 10-20 kHz contribution to RMS
flow fluctuations, from LES
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Chapter 6

A Comparison with Experiments

of Barbier (2006)

6.1 Introduction

In the previous Chapter we performed extensive grid convergence studies and validated

our simulation data with the hot-wire experiments of Gross (2003). The general conclusions

were that the uncertainty of the experimental and computational mean flow velocities lie well

within each others range leading to (loosely defined) validation. On the other hand, the RMS

fluctuations of the simulation were larger than the experiments, sometimes by 2-3 times. We

attributed this discrepancy to both the simulations and experiments – LES has a tendency

to overpredict streamwise fluctuations and underpredict cross-stream fluctuations, while

hot-wire measurements have a tendency to underpredict streamwise fluctuations due to the

finite length of the probe. Finally, a major contribution of the Chapter is in understanding

the uncertainty of our simulation work due to the discretization grid.

In this Chapter we compare our simulation results with those from the thesis of Barbier

(2006). These measurements were made primarily using particle-image-velocimetry (PIV),

which is fundamentally different from the hot-wire based experiments of the previous Chap-

ter. We would like to investigate whether better agreement can be found between CFD and
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PIV as compared to CFD and hot-wire anemometry. Moreover, the experiments of Barbier

(2006) are the only other public-domain datasets available for validation – hence to seek

completeness in this dissertation it is a useful exercise to compare our results with theirs.

Ideally such validation efforts should be done in the context of grid convergence studies,

as was done in the last Chapter. However, grid convergence studies for the current case will

not lead to any significantly new results. Instead, the closed computational domain allows

the (approximate) quantification of numerical dissipation, by a novel technique. This is

explained in Sec 6.4.

6.2 Problem Setup

6.2.1 Experimental Setup

A photograph showing the experimental setup of Barbier (2006) is shown in Figure 6.1.

It consists of a twice scaled up (2×) model of a realistic disk drive enclosure. Scaling up

the model allows for smaller rotational speeds in the drive at the same Reynolds number.

The setup consists of two co-rotating disks of 200 mm diameter rotating at speeds between

250 to 3000 RPM. The disk to disk spacing was 4.8 mm. The disks were fully shrouded,

except at the location where the arm is inserted. The disk to shroud gap was 2mm. A

simplified e-block arm and a pair of suspensions form the actuator. The suspensions have

a pair of non-flying sliders attached to their ends. The gap between the slider and the disk

was 0.075 mm – however, this gap was not modeled in the simulations. Instead, the disk to

disk spacing was reduced from 4.8 mm to 4.65 mm. The e-block arm was 2.95 mm thick,

while the suspension was 0.75 mm thick. The overall length of the actuator was 123.8 mm.

For the PIV experiments particles were seeded from a hole near the base of the actuator

(shown in Figure 6.1). Measurements based on the laser sheet were made at several locations

upstream and downstream of the actuator arm.
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6.2.2 Computational Model

Figure 6.2 depicts a schematic of the experimental setup (to the left) along side the

computational model (center). To the right is the domain decomposition used for parallel

computation (using 32 CPUs). The computational model was an exact geometric replica of

the experimental setup. However, the usual simplifying assumptions still apply:

− The shroud gap was modeled as a symmetry plane

− The disks were modeled as rigid rotating walls, with no vibrations or run-outs

− The actuator did not feed back vibrations to the flow

− The sliders were simply supported on the disks, and the fly height gap was not modeled

Two LES calculations were performed. Relevant details of these simulations are given

in Table 6.1. To make a comparison between the experiments and the simulations we chose

two rotational speeds: 3000 RPM, which is the extreme case (i.e. the largest Reynolds

number investigated), and 1500 RPM. Given the large size of the computational domain

(for the 2× model) the average resolution of these simulations are less than those from

the previous Chapter. The finest (average) resolution in Chapter 5 was about 0.165 mm

which is higher than the current resolution by 2-3 times. For this reason, we expect larger

grid-based uncertainty in our results. From Table 6.1 one can readily observe that such

computations take several weeks to run. Increasing the grid size to be able to resolve finer

details would increase the computational cost exponentially.

6.3 Results

In this section two types of results are discussed: velocity profiles at the midplane

between the disks, both upstream and downstream of the arm (for 3000 RPM and 1500

RPM), and frequency spectra at a few locations in the domain (only for the 1500 RPM

case). Experimental data is available for comparison in the former case, while in the latter,

spectra of the turbulent kinetic energy are used to characterize the turbulence in the flow.
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6.3.1 Velocity profiles

The thesis of Barbier (2006) presents PIV data along various chords in the domain.

Generally these chords are referenced with respect to an origin (either O1 or O3). We

begin the discussion by first considering the upstream locations, and then we consider the

downstream ones.

Figure 6.7 shows several quantities plotted along chord O1-Up which is the most

Upstream measurement available. The location of this chord is shown in the bottom left

corner of the figure. In this same figure, five quantities are plotted (and labeled accord-

ingly): mean and RMS of the radial and azimuthal velocities and the time averaged cross

term of the Reynolds stress tensor (〈ur uφ〉). This term is also the covariance between ur(t)

and uφ(t). The mean and RMS velocities are non-dimensionalized by the disk edge velocity,

while the covariance term is non-dimensionalized by the square of the disk edge velocity.

Figure 6.7 (chord O1-Up), Figure 6.8 (chord O1 − 1) and Figure 6.9 (chord O1 − 2)

depict the above quantities upstream of the arm for the 3000 RPM case. Several general

conclusions can be made: We find that there is relatively good agreement in the mean

azimuthal and radial velocities. The agreement is higher farther upstream from the arm,

and decreases as the location comes closer to the arm. Also the agreement of the azimuthal

velocity is better than that of the radial velocity – and this is expected since the rotating

azimuthal flow is the primary streamwise flow, while the radial flow is a secondary cross

stream flow.

In Figure 6.7 (chord O1-Up) we see that the simulation azimuthal velocity goes negative

and asymptotes to zero near the hub. This is an indication of a recirculation zone (also

called circulation bubble), formed due to the adverse pressure gradient due to the arm.

However the experiments do not show this feature, and the velocity smoothly asymptotes

to the velocity of the inner hub. When going from chord O1-Up to chord O1 − 1 this

recirculation zone disappears in the simulations, and the azimuthal velocities agree better

along chord O1 − 1.

Generally our simulations tend to predict higher RMS fluctuations when compared to
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the PIV experiments, as they did in the comparison with the hot wire experiments of the

previous Chapter. In any case there is good agreement of the spatial profiles along all three

of the chords considered. The cross term of the Reynolds stress (as seen in Chapter 4)

is a measure of the anisotropy of the flow. Again, we find reasonable agreement in the

profiles of the experiments and the simulations. At any given location the magnitudes may

relatively differ by large amounts between the simulations and the experiments, but the

general locations of the peaks are well reproduced.

Figures 6.10– 6.12 depict velocity data along three chords with O3 as the origin. Even

though O3 is the origin of the three chords the azimuthal and radial velocities are still in the

global coordinates of the disks (i.e. with O1 as the origin). Figure 6.10 shows data along

chord O3 − 1, which is upstream of the arm. This figure is consistent with the previous

figures in that it shows reasonable agreement upstream of the arm. However, close to O3

there is a larger discrepancy in the mean azimuthal velocity between the experiments and

simulation. Chords O3 − 2 and O3 − 3 (Figures 6.11- 6.12) lie downstream of the arm, and

in both these cases we observe a large discrepancy between the mean azimuthal velocities.

Along chord O3−2 there is reasonable agreement between the RMS profiles, but this is not

the case at Chord O3 − 3.

This implies that considerable differences in the velocities are predicted by the simu-

lation versus those predicted by the experiments, in the wake of the arm. Several reasons

could explain these discrepancies. On the computational side insufficient grid resolution

in the wake could be a potential reason. Since velocity profiles match well upstream, but

do not match well downstream, the grid resolution in the wake may not be fine enough to

resolve the smaller features of the flow. On the experimental side it is well known (and

acknowledged in Barbier (2006)) that due to refraction one cannot maintain a very thin

sheet of laser for PIV measurement. This suggests that the PIV technique may actually

integrate the velocity over a thickness range covering the midplane. And since velocities

are higher closer to the disks this integrated mean velocity is likely to larger than the mean

velocity at the exact mid plane.

Figures 6.13, 6.14 and 6.15 provide data along chords O3 − A, O3 − B and O3 − C,
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respectively, for the 1500 RPM simulation. In this simulation the Reynolds number is

halved as compared to the previous simulation, while the grid resolution is increased by

approximately 20%. For this reason we find very good agreement between the simulations

and the experiments at the upstream chords O3−A and O3−B in all the quantities plotted.

There is good agreement in the magnitudes and signs and also the locations of peaks in the

RMS velocities. However, chord O3 −C still shows a mismatch between the numerical and

experimental values. The agreement in the Reynolds stresses (and the RMS velocities) is

improved as compared to the previous 3000 RPM calculation. This is most likely due to

the higher resolution of the grid in the wake. Again, the mean azimuthal velocity in the

wake is predicted to be smaller by the simulations as compared to the PIV results.

In Figure 6.16 the mean azimuthal velocity is again shown along chord O3 − C for the

1500 RPM simulation. In addition to its value on the midplane we also plot the value of the

azimuthal velocity integrated across a 0.5 mm thick region centered at the midplane. Here

we find that the mean velocity increases (since the velocities nearer the disks are higher),

but the agreement between the simulation results and the PIV does not improve very much.

We therefore conclude that a combination of factors (such as modeling assumptions, grid

resolution, experimental technique) could be the reasons for this discrepancy.

6.3.2 Frequency spectra

In this Section we briefly characterize the turbulence in the flow field using frequency

spectra. Since PIV measurements are generally performed at very low sampling rates ex-

perimental spectra are not available for comparison.

Figure 6.17 shows the frequency spectra of the turbulent kinetic energy at various posi-

tions along chord O3 −A for the 1500 RPM simulation. We notice that the energy content

is higher at both ends of the chord, i.e. near the origin O3, which lies in the wake of the

arm, and near point A, which is at the shroud. Figure 6.18 plots an average of the spectra

depicted in Figure 6.17. Plotted alongside is a line representing the -5/3rd power law. In

Chapter 3 we used Taylor’s hypothesis to plot a similar comparison between the energy
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spectrum and Kolmogorov’s model for the energy cascade. In this case it suffices to directly

compare the frequency spectrum of the turbulent kinetic energy (in Hertz, not wavenum-

bers) with the ideal power law. The average energy spectrum appears to approximate the

-5/3rd power law in the mid-frequency range, indicating the presence of a turbulent energy

cascade.

Figure 6.19 shows a comparison of the spectra between the low velocity and high velocity

regions. At the hub we expect the flow to be less turbulent than at the outer diameter, and

this is clearly demonstrated by the spectra in Figure 6.19. In both spectra there is still a

mid-frequency band that approximates the -5/3rd power law, indicating the presence of a

turbulent cascade.

Finally, Figure 6.20 shows the contribution to the RMS velocity from different frequency

bands, along chord O3 −A. Here contributions are broken up into the following bands: 0-

1 kHz, 1-2 kHz, 2-6 kHz and 6-10 kHz. The figure indicates that a large portion of the

contribution is from the low 0-2 kHz frequency bands; while in the regions of higher RMS

there is a marginal increase in contributions from the 2-6 and 6-10 kHz bands.

A similar analysis is done for the upstream chord O3 − B (1500 RPM) in Figures 6.21

to 6.23. Again, we see a mid range frequency band that displays the power law of the

inertial cascade. And finally, Figures 6.24 to 6.26 present the same data along chord O3−B

(1500 RPM). The chord O3 − B is almost entirely in the wake of the arm. However,

in comparing the energy spectrum from Figure 6.25 with the ones shown previously in

Figures 6.18 and 6.22 we notice that the energy spectrum falls off more rapidly in the wake

than at the upstream locations. The range of frequencies for which the -5/3rd power law

is valid is much smaller, and for frequencies larger than about 1kHz the spectrum decays

faster than the -5/3rd line. This is arguably an indication of excessive SGS dissipation in

the wake and could be the cause of the discrepancies mentioned in the previous section.
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6.4 Tests of Numerical Dissipation

In most commercial codes the grid-based dissipation (i.e. the numerical dissipation) can-

not be quantified easily because the software source code is hidden from the user. However,

using a simple test outlined below it is possible to estimate the grid-based dissipation.

Initially we run an LES case for a sufficiently long duration of time, such that the kinetic

energy and windage are converged to their mean values. At a particular time we turn off

(stop) the disk rotation thereby stopping all energy input into our computational domain.

Since the domain is closed (unlike the the model in the previous Chapter) no kinetic energy

may enter of exit the domain externally.

With a statistical steady rotating flow but a stationary set of disks we run three simu-

lations for a few nominal time steps (say 50):

1. We turn off the SGS dissipation (turn off LES) and set the fluid viscosity to zero.

Hence, any loss of energy is only due to the numerical dissipation

2. Next, we turn on molecular viscosity, but keep SGS dissipation turned off – in this

case, any loss on energy is due to viscous and numerical dissipation

3. Next, we run a full LES with viscous and SGS dissipation – here all three sources of

dissipation cause the energy to decay

Based on the kinetic energy of these three simulations the numerical, SGS and viscous

dissipation may be estimated algebraically. Any of the above simulations may not be run

with a rotating disk, because viscosity is the only mechanism of energy input into the

domain by the rotating disks (Theoretically SGS dissipation goes to zero at the walls).

Such an exercise helps to quantify the relative contribution of each source to the dis-

sipative processes going on in our simulations. Of course, results presented here must be

interpreted with caution. Since the high speed flow in the boundary layer adjacent to the

disk suddenly experiences a stationary wall a large amount of viscous dissipation is expected
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(again, SGS dissipation goes to zero at the wall, cubically). This is indeed the case as seen

in the following paragraphs.

Figure 6.27 shows the contribution to dissipation from different sources as a function of

the number of time steps using the simplified technique outlined above. Our results show

that at the start of this numerical experiment (i.e. the first time step of the stationary disks

simulation), numerical dissipation is approximately 18%. Viscous dissipation is the largest

contributor, approximately, 58%, while SGS dissipation accounts for about 24%.

On intergating the equations in time the viscous dissipation increases (due to the smear-

ing out of the sharpest gradients, associated with the smallest eddies) and numerical dissi-

pation decreases. This leads us to the conclusion that the numerical dissipation is smaller

for low frequency (i.e. low wavenumber modes) structures, for which viscous dissipation in

the primary mode of loss of energy. The SGS dissipation also reduces, again, corrobrating

the fact that the turbulence intensity of the flow reduce as the calculation progresses.

In interpreting these results the observation of large viscous dissipation has been ex-

plained above. In real disk drive computations we expect the viscous dissipation to be

smaller, and the SGS dissipation to be a larger contributor. Nonetheless, we have been

able to quantify the numerical dissipation, which is about 18%. Continuing such calcula-

tions for longer durations is generally not appropriate since the differences between each

simulations widen, and algebraical subtractions of the kinetic energy to determine the three

contributions is no more valid.

6.5 Conclusions

This Chapter compares results from our simulations with the PIV experiments of Barbier

(2006). It is a continuation of our experimental validation effort and seeks to provide the

reader certain confidence in the results we have presented in the other Chapters.

We noticed that upstream of the arm the magnitude of mean velocities and RMS veloc-

ities also agree well with the experimental predictions. The location of the spatial features
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of the RMS velocities (e.g. spikes) also agree well. The cross terms of the Reynolds stress

tensor also compare favorably.

Downstream, both mean radial and azimuthal velocities do not agree very well. Some

possible reasons that we mention, are: a poorly resolved grid which dissipates the smaller

features of the flow (as we saw in the rapidly decaying frequency spectrum), or experimental

inaccuracies introduced by integrating the velocities on the thickness of the measurement

plane.

A simple numerical experiment also helped us to quantify the artificial dissipation intro-

duced the entire grid. It showed that the major contributor (58%) to dissipation is through

direct viscous action (most likely at the rotating disks) while the SGS dissipation accounted

for about 28% of the dissipative process.

In the last 4 Chapters the focus of the work was in demonstrating adequate sophisti-

cation in our simulations. For this reason, we devised and executed rigorous comparisons

of SGS models, commercial CFD codes and validated the simulations against experiments.

The next Chapters 7-9 of this dissertation are more application oriented – Chapter 7 de-

scribes the computation of disk vibrations, while Chapter 8 describes the use of air-flow

mitigation devices. Chapter 9 concludes this dissertation and deliberates a few ideas for

quick and accurate solutions to the TMR problem.
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6.6 Tables

Table 6.1. Relevant simulation data

Simulation 1 Simulation 2

RPM 3000 1500
Reynolds Number 9190.8 4595.4

LES Model Algebraic Dynamic Algebraic Dynamic
Number of cells 1,378,344 2,619,246

Average resolution 0.4848 mm 0.3804 mm
Number of Axial Cells 32 over 4.65 mm 48 over 4.65 mm
Number of Processors 8 32

Time step 1× 10−5 s 5× 10−5 s
Number of Revolutions 6000 steps = 3 revs 4800 steps = 6 revs

Computational Time 28.351 days 23.484 days
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6.7 Figures

Figure 6.1. Photograph showing the experimental setup of Barbier (2006)
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Figure 6.2. Schematic showing the experimental setup (left) the computational domain
(center) and parallel, 32 processor based, domain decomposition (right).

Figure 6.3. Closeup three dimensional view showing the e-block arm, suspensions and
sliders, used in the computational model
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Figure 6.4. Top view of the computational grid used for 1500 RPM simulation

Figure 6.5. Closeup of grid, showing the in-
creased resolution upstream and downstream
of the e-block arm / suspensions. Highlighted
rectangle is shown in Figure 6.6

Figure 6.6. Further closeup of grid, showing
the increased resolution at the slider location
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Figure 6.7. Mean and RMS of ur and uφ, and 〈ur uφ〉 cross term of the Reynolds stress,
shown along highlighted chord (disk speed 3000 RPM)
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Figure 6.8. Mean and RMS of ur and uφ, and 〈ur uφ〉 cross term of the Reynolds stress,
shown along chord O1 − 1 in the bottom left sub-figure (disk speed 3000 RPM)
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Figure 6.9. Mean and RMS of ur and uφ, and 〈ur uφ〉 cross term of the Reynolds stress,
shown along chord O1 − 2 in the bottom left sub-figure (disk speed 3000 RPM)
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Figure 6.10. Mean and RMS of ur and uφ, and 〈ur uφ〉 cross term of the Reynolds stress,
shown along chord O3 − 1 in the bottom left sub-figure (disk speed 3000 RPM)
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Figure 6.11. Mean and RMS of ur and uφ, and 〈ur uφ〉 cross term of the Reynolds stress,
shown along O3 − 2 in the bottom left sub-figure (disk speed 3000 RPM)
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Figure 6.12. Mean and RMS of ur and uφ, and 〈ur uφ〉 cross term of the Reynolds stress,
shown along chord O3 − 3 in the bottom left sub-figure (disk speed 3000 RPM)
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Figure 6.13. Mean and RMS of ur and uφ, and 〈ur uφ〉 cross term of the Reynolds stress,
shown along chord O3 −A in the bottom left sub-figure (disk speed 1500 RPM)
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Figure 6.14. Mean and RMS of ur and uφ, and 〈ur uφ〉 cross term of the Reynolds stress,
shown along chord O3 −B in the bottom left sub-figure (disk speed 1500 RPM)
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Figure 6.15. Mean and RMS of ur and uφ, and 〈ur uφ〉 cross term of the Reynolds stress,
shown along chord O3 − C in the bottom left sub-figure (disk speed 1500 RPM)
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Figure 6.17. Spectrum of turbulent kinetic
energy, along chord O3 −A shown in Fig-
ure 6.15 (disk speed 1500 RPM)

Figure 6.18. Spectrum of turbulent kinetic
energy, averaged over the length of chord
O3 − A shown in Figure 6.15 (disk speed
1500 RPM)

Figure 6.19. Comparison of spectra of
turbulent kinetic energy, between the hub
and the outer radius (disk speed 1500
RPM)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
on

tr
ib

ut
io

n 
to

 R
M

S
0−1 kHz
1−2 kHz
2−6 kHz
6−10 kHz

Figure 6.20. Contribution to RMS of
velocity from different frequency bands,
along chord O3 − A shown in Figure 6.15
(disk speed 1500 RPM)
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Figure 6.21. Spectrum of turbulent kinetic
energy, along chord O3 −B shown in Fig-
ure 6.15 (disk speed 1500 RPM)

Figure 6.22. Spectrum of turbulent kinetic
energy, averaged over the length of chord
O3 − B shown in Figure 6.15 (disk speed
1500 RPM)
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Figure 6.23. Contribution to RMS of velocity from different frequency bands, along chord
O3 −B shown in Figure 6.15 (disk speed 1500 RPM)
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Figure 6.24. Spectrum of turbulent kinetic
energy, along chord O3 −C shown in Fig-
ure 6.15 (disk speed 1500 RPM)

Figure 6.25. Spectrum of turbulent kinetic
energy, averaged over the length of chord
O3 − C shown in Figure 6.15 (disk speed
1500 RPM)
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Figure 6.26. Contribution to RMS of velocity from different frequency bands, along chord
O3 − C shown in Figure 6.15 (disk speed 1500 RPM)
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Figure 6.27. Percentage contribution to dissipation from three sources: Viscous, SGS and
Numerical
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Chapter 7

Computing Disk Vibrations

7.1 Introduction

In this Chapter the effect of the airflow on the rotating disk is examined. The rotating

disk is the principal mechanical component of a hard disk drive, and it’s dynamic stability

in transverse motion is of great importance to the successful operation of the hard drive.

As mentioned in Chapter 1 over the years the need for faster data transfer rates has lead to

an increase in rotational speeds of disk drives. To counter the adverse effects of high speed

rotation disk inertia and stiffness has generally been increasing. However, the dynamic

stability of the disk itself is not the only concern. Due to the non-linear coupled nature

of the head-disk interface transverse vibrations of the disk may cause significant off-track

motions of the read/write head. In more extreme situations, disk vibrations may lead to

the slider crashing on the disk, which results from a breakdown of the air bearing, possibly

damaging the disk and/or the slider and contaminating the drive with wear particles.

Increasing spindle motor speeds have also led to the possibility of disks achieving their

critical speed, which is the minimum rotational speed at which the backward traveling

waves reach zero frequency and become standing waves on the disk. Due to the stationary

forcing of the air bearing slider, such standing waves quickly become resonant, leading to

high amplitude vibrations of the disk. Experimental data shows that current disk drives
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operate at approximately 40-50% of their critical speeds, but increasing drive RPMs and

the need for thinner disks may bring such disks closer to the critical resonance. Disks which

operate in the supercritical speed regime (e.g. floppy disks which are designed to do so)

have the additional risk of undergoing hydrodynamically coupled resonant vibrations called

“flutter”. While this is not a concern for thicker and stiffer hard disks the air flow results

presented in this Chapter may also be used as a model to simulate the aeroelastic vibrations

of floppy disks.

The specific goals of this Chapter are as follows:

1. To study the flow on both sides of a single spinning disk in a fixed hard drive casing,

using LES

2. To characterize the pressure loading on the disk and bring out the essential physical

processes that take place in such flows

3. To develop an efficient and accurate solver to compute the free or forced vibrations of

a spinning disk and to test the solver comprehensively

4. To use the solver to compute the response of the disk to realistic loadings, thus

providing the disk drive research community more realistic simulation results of the

flow-induced disk vibrations

7.1.1 Prior Work

The vibrations and stability of a spinning disk have been studied for almost a century.

There have been significant advances both in the fluid mechanics of flows surrounding

spinning disks and the structural vibrations induced by such flows. A number of authors

have studied the aeroelastic stability (stability to self-excited vibrations) of spinning disks.

For a summary of this research the reader is referenced to citations [1] to [12] in Kang

and Raman (2004). Some investigations have used unenclosed rotating disks while others

have used more realistic enclosed rotating disks. Most of the efforts, however, have used

either ad-hoc rotating damping operators to model the surrounding flow or hydrodynamic
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lubrication theory to model the coupling of the flow with the disk. Generally such models

based on compressible potential flow are suitable for floppy disks or circular saws, where

the air film thickness is small. In hard disk drives, in addition to a large air film thickness

(2-3 times the thickness of the disk), the azimuthal symmetry of the flow is broken by the

presence of the actuator. This obstruction causes rapid unsteady motions in the wake its

sheds, as we saw in Chapter 2. The turbulent wake is transported (and dissipated) with

the rotating disks and comes around to flow over the obstruction again. It is unlikely for

such a complicated turbulent flow to ever be described by an analytical model. Moreover,

given the complicated and frequently changing design of actuator components (such as the

suspension) the only feasible method to compute realistic disk vibrations would be to solve

for the flow in a separate CFD calculation and use the resulting pressure and shear data to

compute the disk vibrations.

For commercially available hard drives experimental results suggest (Fukaya et al. 2002)

that the vibrations of the disk are independent of the instability of the flow. Moreover, in

typical hard disk drives the experimentally measured vibrations of disks (due to all sources)

are less than 0.1% of the width of the entire hard drive enclosure and the maximum linear

speed of disks is approximately 10% of the acoustic speed in air. All this implies that

compressible effects of the flow may be small while the turbulence induced effects on the

disk vibration may be larger.

In general accurate information about disk vibrations computed using CFD based air

pressure data is lacking.

Tatewaki et al. (2001) provides LES results of the a coupled CFD-structural calculation

in which they report the vibrations of the disk with and without a simplified obstruction.

Yuan et al. (2004) computed the flow in a deformed disk enclosed inside a casing, but with

an open shroud. They present results for the pressure and shear forces on the disk in its

deformed umbrella-like shape as a function of the Reynolds number. Unfortunately, their

model did not have any obstruction (e.g. an actuator), and hence it resulted in a completely

different flow field from what is encountered in a disk drive. Also the deflection of the disk
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was unreasonably large: 25% of the width of the entire hard drive enclosure, while it is

typically of the order of 0.1%.

Imai (2001), Chang et al. (2002) and Guo and Chen (2001), provide experimental mea-

surements of disk vibrations. These are then converted to off-track slider motions using the

mode shapes of the disk, and they are correlated with the position error signal.

7.2 Theoretical Background

The equations of transverse motion of a spinning disk are well-known since Lamb and

Southwell (1921). The governing equations may be extended to include the forcing due to

the airflow excitation and the air bearing force due to the slider. These equations are given

by,

ρh
(
w,tt + 2Ωw,tφ + Ω2w,φφ

)
+

Eh3

12(1 − ν2)
∇4w − h

r
(σrrrw,r),r (7.1)

−hσφφ

r2
w,φφ = ∆p +

1

r
δ(r − ξ)δ(φ)fz

Here w is the transverse displacement of a point on the disk, ρ is the density of the

disk material, h is the thickness of the disk, Ω is the speed of rotation of the disk, E and ν

are the Young’s modulus and Poisson’s ratio of the disk material. The slider is modeled to

exert a force fz at a radius of ξ at φ = 0 using the Dirac delta function δ(:). The unsteady

distributed loading due to the airflow is given by ∆p = ∆p(r, φ, t). In polar coordinates,

the biharmonic operator is given by,

∇4 =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2

)2

(7.2)

Eqn. 7.1 assumes that the material of the disk is homogeneous, isotropic and linearly

elastic (Hookean). The transverse displacements of the disk are assumed to be much smaller

than the it’s thickness (w � h) and the stress state of the disk is assumed to be one of

generalized plane stress. Ω is also assumed to be constant. For a derivation of the full non-
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linear equations of motion the reader is referred to Chung et al. (2000). The self adjoint

stiffness operator,

K[w] =
Eh3

12(1 − ν2)
∇4w − h

r
(σrrrw,r),r −

hσφφ

r2
w,φφ (7.3)

models the bending stiffness as well as the stiffness caused by the membrane stress tensor σ.

The diagonal terms of the membrane stress tensor are σrr and σφφ, while the off-diagonal

term σrφ is assumed to be zero, by which we are assuming that the membrane stress in

axisymmetric. The generalized plane stress expressions for the stress components σrr and

σφφ, are,

σrr = c1 +
c2

r2
− 3 + ν

8
r2Ω2 (7.4)

σφφ = c1 −
c2

r2
− 1 + 3ν

8
r2Ω2 (7.5)

The constants c1 and c2 may be determined by the application of boundary conditions.

The most commonly used model is to require that the displacement goes to zero at the

inner clamp and the stresses go to zero at the free outer rim of the disk. (For some other

models we refer the reader to the thesis of D’Angelo (1991)). Finally, the constants may be

evaluated as,

c1 = Ω2

(
1 + ν

8
ρ
(ν − 1)R4

o − (3 + ν)R4
i

(ν − 1)R2
o − (1 + ν)R2

i

)
(7.6)

c2 = Ω2

(
1− ν

8
ρR2

i R
2
o

(1 + ν)R2
o − (3 + ν)R2

i

(ν − 1)R2
o − (1 + ν)R2

i

)
(7.7)

where Ri and Ro denote the inner and outer radii of the disk.

There are four radial boundary conditions associated with Eqn. 7.1. At r = Ri, the

transverse displacement and its rotation (slope) are zero,
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w = 0;
∂w

∂r
= 0 (7.8)

and at r = Ro the radial bending moment and the shear force reaction are zero,

w,rr + ν

(
1

r
w,r +

1

r2
w,φφ

)
= 0; (∇2w),r + (1− ν)

1

r

[(
1

r
w,φ

)

,r

]

,φ

= 0 (7.9)

Note that Eqn. 7.1 does not include any damping terms. Material damping of aluminum

substrates used in hard disks is known to be significant (Kim et al. 2000). Hosaka and

Crandall (1992) modeled this material damping as a term proportional to ∇4w,t. The other

sources of damping are due to the clamping of the disk at its inner radius and the shear

stress due to the drag of the flow on the disk surface. In our simulations each source of

dissipation was not treated separately, but a global dissipation matrix was constructed from

a linear combination of the mass and stiffness matrices (see Section 2.6.1). In supercritical

vibrations of flexible disks certain types of damping (e.g. acoustic damping and material

damping) are known to cause the onset of flutter instabilities in which case different sources

of damping need to be modeled carefully (Kang and Raman 2004). However, for our lower

speed subcritical disks a single proportional damping operator suffices. The amount of

dissipation for a range of frequencies was selected based on the aeroelastic parameters given

in the experimental data of Kim et al. (2000). Typically the first mode of the disk is damped

at about 0.02% of critical damping.

7.3 Numerical Methods

Our calculations were broadly divided into two parts. In the first part we calculated

the flow of air in a simulated hard disk enclosure using CFD-ACE (Dynamic Model) and

recorded the pressure data on the two sides of the disk as functions of time. In the next

part of the calculation we used this time-varying pressure data to compute the vibrations

of the disk using a software program developed in house. The vibrations of the disk were
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not fed back into CFD-ACE; thus the coupling was purely one directional, i.e. from the

flow to the structure.

7.3.1 CFD methods

In our CFD work a single 3.5 inch disk enclosed inside a fixed casing was used. The

model used here was based on the model used in Chapter 2, Figure ?? and was modified to

simulate both sides of a single disk instead of the space between two rotating disks.

Two cases were simulated:

1. Case 1: A single e-block arm, suspension, base plate and slider was used. The slider

was in contact with the disk on the bottom surface only.

2. Case 2: Two e-block arms, suspensions, base plates and sliders were used. The disk

was symmetrically actuated on both of it’s surfaces.

As the simulation model setup has changed when compared to the model in Chapter 2

relevant details of the model geometry are given in Table 7.1. The CFD modeling data is

summarized in Table 7.2, boundary conditions are described in Table 7.3 and finally, the

information regarding the grid is give in Table 7.4. A top view of the grid is also shown

in Figure 7.1. With respect to Figure 7.1 we define a coordinate system, whose origin is

at the center of rotation of the disks. Azimuthal angles are then defined counter-clockwise

with respect to a horizontal line through the origin. Two angular positions are of special

importance: the angle where the shroud separates from its circular shape to accommodate

the actuator (located at about 220 degrees) and the angle where the shroud reattaches itself

closely to the disk periphery (located at about 340 degrees). Figures 7.2 and 7.3 show the

refinement of the grid in the vicinity of the actuator arm. Finally three dimensional outline

views of the models are shown in Figures 7.4 (Case 1) and 7.5 (Case 2). Calculations were

carried out on Linux based clusters, utilizing 64 CPUs at once. In spite of the massive

computational power, our simulations needed to run for several weeks.
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7.3.2 Structural modeling

A finite-difference code based on central differencing was developed to simulate the

vibrating disk. The linearity of Eqn. 7.1 and the periodicity of the azimuthal coordinate

makes it a prime candidate for a hybrid-spectral method. Firstly, the primary variable w

(transverse disk vibration) is Fourier transformed in the periodic direction (φ) resulting in

a PDE of independent variables r and t.

w(r, φ, t) =

N/2∑

m=−N/2+1

ŵ(r, t)eimφ;
∂

∂φ
→ im (7.10)

Transforming Eqn. 7.1, the following equation is obtained,

ρh
(
ŵ,tt + 2imΩŵ,t −m2Ω2ŵ

)
+
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∇̂4ŵ − h

r
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∂
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r2

)2

(7.12)

and ∆p̂ and f̂z are the corresponding transformed pressure differential and slider force on

the disk.

Central differencing is used for the radial direction. The Laplacian operator ∇2w is

treated specially due to the polar coordinate system,

∇2w =
(

∂2

∂r2 + 1
r

∂
∂r − m2

r2

)
w =

(
1
r

∂
∂r

(
r ∂w

∂r

)
− m2w

r2

)
(7.13)

⇒∇2wi ≈ 1
ri

1
∆r2

(
ri+ 1

2

(wi+1 − wi)− ri− 1

2

(wi − wi−1)
)
− m2wi

r2
i

This method is second order consistent and is easy to implement in an implicit time

integration method. The other terms of Eqn. 7.1 are discretized using standard central

differences. Due to the spectral representation of one dimension of the primary variable

derivatives in φ are exact and are computed much faster than conventional finite differences.

Moreover, due to the linearity of the equations the different Fourier modes may be integrated

independent of each other and forward and backward transforms need only be taken for

initializing or post-processing the calculation.
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7.3.3 Treatment of Boundary Conditions

The boundary conditions of Eqns. 7.8 and 7.9 are also discretized using central differ-

encing in the same manner as the governing equation. The governing equation (Eqn. 7.1)

is discretized and solved for on all radial points in the domain. Since the central-difference

stencil consists of 5 points (2 on each side of the central node), the numerical method

requires the solution value at 2 additional points beyond the inner and outer boundaries

of the disk. The addition of these “ghost points” is helpful in maintaining second order

consistency of our method (Thomas 1998). Finally, the solution values at the ghost points

are expressed in terms of solutions in the actual domain by using the discretized boundary

conditions.

7.3.4 Time integration

The well-known first order Newmark algorithm is used for integrating Eqn. 7.1 in time.

Since the method is implicit a linear system needs to be inverted at every time step. How-

ever, since the Fourier modes are decoupled a single global matrix may be constructed for

each mode and inverted only at the start of the calculation. Thereafter the calculation is

progressed by the application of these stored inverted matrices. The principal advantage of

using Newmark method over other conventional ODE integrators is the controllable numer-

ical dissipation. Plots of the spectral radii of various Newmark methods are widely available

(Fung 2003) and the Newmark two parameters (commonly referred to as β and γ) may be

used to dissipate spurious high frequency oscillations in the solutions. Since the dissipation

introduced is only numerical the frequencies of the modes do not shift, as they would when

using a model for the material damping. Unless explicitly noted all of our simulations used

the standard values of β = 0.5 and γ = 0.25 which are non-dissipative.

190



7.4 Validation of the code

Validation of codes is an essential element of the code development process. Before we

used our code to produce and report results the code was put through a series of numerical

tests and benchmarked against some well known data. First, some numerical tests of con-

vergence are presented and then the code is validated against published results, such as for

modal analysis and shock response. The comprehensive test results presented here should

help readers in assessing the simulation numerical uncertainty of our work.

7.4.1 Tests of convergence

By a Taylor series expansion it is easy to see that our discretization scheme is second

order consistent in the radial direction. In addition, the stability properties of the first

order Newmark algorithm are also well known (unconditionally stable for β ≥ 1
2 and γ ≥

1
4

(
1
2 + β

)2
) and carry over directly to our numerical scheme. For this reason we directly

prove the convergence of our code based on numerical experimentation.

Firstly, while keeping the time step constant the radial mesh size is varied. The L2 norm

of the absolute error (denoted by ε, based on the finest radial resolution (1.95 × 10−3)) is

then computed and plotted as a function of the radial mesh size, as shown in Figure 7.8.

The slope of the curve approximated by a linear curve fit is 1.87 which is close to the

theoretical value of 2.0. This confirms that our central differencing scheme is convergent to

second order in the radial direction.

Next, while keeping the radial mesh size constant the time step is varied. While reducing

the size of the time step (∆t) computations are carried out for correspondingly longer

durations and solution values are recorded at 10 well defined points in time. The L2 norm

of the absolute error (again, denoted by ε) is plotted as a function of (∆t) in Figure 7.9.

While the data points do not fit a linear curve perfectly the best curve fit to the data

indicates an order of 0.7, which is close to the theoretical order of 1.0. Again, this proves

that our implementation of the Newmark algorithm is first order convergent.
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7.4.2 Modal Analysis

As a test of validation for our code we compare the modal frequencies obtained from

our finite difference code with previously published theoretical and experimental data and

also results from the commercial code ANSYS.

In the thesis of D’Angelo (1991) a steel disk of outer diameter 356 mm, inner diameter

106.7 mm and thickness 0.775 mm was used to make measurements. Table 7.5 compares the

natural frequencies of the modes of this stationary disk computed using our finite difference

code with the theoretical and experimental prediction of D’Angelo (1991). The modes are

described by a pair of integers (d, c) such that d is the number of nodal diameters and c is

the number of nodal circles. In our simulations the impulse response of the disk was used to

extract the modal frequencies. The theoretical calculations used a spectral Galerkin method

while the the experimental setup used an inductance based Tektronic Modal Analyzer. Also

included in Table 7.5 are the results obtained from the commercial code ANSYS. The results

essentially show that our code can predict the natural frequencies of a stationary disk to

reasonable accuracy. Generally, the discrepancies between our frequencies and the others

increase with the mode number. The maximum difference between our results and the

results across all columns is about 8%.

7.4.3 Shock Response

Our finite-difference simulator can easily simulate the application of a shock to the disk.

Shocks are typically simulated as an acceleration field applied uniformly to the entire disk

in the form of a half sine wave whose amplitude is described in Gs. Figure 7.10 shows the

response of a stationary 1 inch disk to a 200 G amplitude shock applied for 0.5 milliseconds

(wavelength of the sine wave is 1 ms). Both structural and numerical damping were used

in the simulation: the Newmark parameter β was set to 0.55 and γ to 0.3.

The exact same shock condition simulated by a commercial code (ANSYS) is shown in

Figure 7.11 reproduced directly from Bhargava and Bogy (2005). The Figures 7.10 and 7.11

show a very close agreement between our finite difference results and the finite element
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results of ANSYS. Figures 7.12 and 7.13 show the corresponding frequency spectra. The

difference in the dominant frequency (3300 Hz) is approximately 6.06% while the difference

in the next frequency peak (5500 Hz) is approximately 2.7%.

7.4.4 Variation of natural frequencies with RPM

As a final test we demonstrate the ability of the code to predict the dynamics of disks

under rotation. The modal analysis presented in Section 7.4.2 is for a stationary disk. It

is well known that the (non-axisymmetric) disk modes split up into forward and backward

traveling waves under rotation. Theoretically, in the absence of damping the frequencies

increase for forward traveling waves and decrease for backward traveling waves, with a slope

equal to dΩ, where d refers to the number of nodal diameters of the mode. The speed of

rotation at which the backward wave becomes a stationary wave is the called the critical

speed. Beyond the critical RPM frequencies increase again, and the wave is called a reflected

wave.

Figures 7.14-7.21 show the effect of rotation on several modes of the disk. Since the

frequencies of the modes are fairly close to each other it is convenient to study the behavior

of the modes separately. Generally, for a given number of nodal diameters changing the

number of nodal circles changes the frequency considerably, hence modes with the same

number of nodal diameters but different circles are visualized on the same figure. The

frequencies presented here are for a 3.5 inch disk that was used in our CFD simulations.

The modes of the stationary disk computed using ANSYS are given in Table 7.6, and they

compare well with the results presented in this Section. Table 7.6 also gives the theoretical

frequencies of the modes at 10,000 RPM.

As expected, Figure 7.14 shows that the axisymmetric modes (0,0) and (0,1) do not form

forward and backward waves. Figure 7.15 shows the formation of (0, 1)F,B and (1, 1)F,B and

Figure 7.16 shows the formation of (0, 2)F,B and (1, 2)F,B . Interestingly, mode (0, 2)B goes

critical at about 20,000 RPM which is shown more clearly in Figure 7.17. Similarly, (0, 3)B

in Figure 7.18 also goes critical at about 27,000 RPM which is shown in more detail in
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Figure 7.17. Additionally, modes with 4 and 5 nodal diameters are shown in Figures 7.20

and 7.21. None of the remaining higher modes go critical below 30,000 RPM.

7.5 Discussion of CFD results

7.5.1 Characterization of Pressure loading

7.5.2 Mean and RMS values of the pressure loading

We begin by discussing the pressure loading on the disks. Figures 7.22 and 7.23 show

the resultant mean pressure on the disks (averaged over 6 revolutions of the computational

period) for Case 1 and Case 2 respectively. The resultant pressure is calculated as the

sum of the pressure at the top and bottom surfaces of the disk – with positive pressures

acting vertically out of the plane of the paper. Plots depicting the pressure may be non-

dimensionalized by 1
2ρU2

disk(r), but we refrain from doing this since it would be misleading

to compare such pressure coefficients directly. The mean pressure is close to zero for Case 2

in almost all parts of the disk because of the inherent (axial) symmetrical nature of the flow

domain. The slight non-zero pressures at the edge of the disk (especially in the wake) are

probably only numerical artifacts, occurring because the statistics may not have converged

in that region.

The pressure distribution of Case 1 in Figure 7.22 shows some interesting features.

Firstly, the resultant pressure is higher at the inner hub and lower at the outer hub. In

Case 1 the lack of obstruction in the upper portion of the drive creates a strong radial

pressure gradient. However, in the lower part of the model the actuator blocks part of the

flow, which equalizes the radial pressure gradient and increases the pressure upstream of the

arm, especially nearer to the hub. The resulting asymmetry causes higher resultant pressure

at the hub. Closer to the outer periphery the shroud acts as a mechanism to equalize the

pressure between the top and bottom parts of the drive, hence the resultant pressure load

is smaller at the outer edges of the disk. The obstructing actuator creates a stagnating flow
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upstream, which leads to higher upstream pressures. This feature is also clearly manifested

in Figure 7.22.

Figures 7.24 and 7.25 show the RMS of the resultant pressure variation on the disk

surface. The RMS values are much higher at the edge of the disk (especially from the shroud

separation to its reattachment), but the plots have a truncated color scale to accommodate

most of the flow domain. Figures 7.24 and 7.25 show some similar features: 1) Large RMS

pressure fluctuations at the periphery and smaller fluctuations at the inner hub, 2) A sharp

increase in fluctuations at the shroud expansion, 3) Larger fluctuations in the wake formed

behind the arm(s), and 4) Gradual reduction in the fluctuations downstream of the arm.

Overall, the RMS for Case 2 is more than for Case 1 – which is a result of the turbulent

flows on both sides of the disk. Finally, we also note that the presence of the arm causes

a sharp break in axisymmetry, both in the mean and RMS. The loading process is thus

non-uniformly distributed across several spatial scales (and time scales also, as we shall

see) as characteristic of turbulent flows. Hence most analytical models cannot provide an

accurate description of the loading.

7.5.3 Frequency contribution to the RMS

In addition to understanding the mean and RMS of the pressure loading it is important

to understand its spectral content. From Chapters 2 and 5 we know that turbulent flows

in hard drives are composed of a broad range of forcing frequencies, distributed typically

from 0-10 kHz (the distribution is strongly a function of the Reynolds number).

The RMS fluctuations of the pressure broken up into contributions from various fre-

quency bands are shown in Figures 7.26- 7.31 for Case 1 and Figures 7.32- 7.37 for Case 2.

In each figure the RMS pressure fluctuations are plotted as a function of the radius, from

OD to ID. The RMS contribution across different frequency bands may be easily computed

using Parseval’s theorem as done in Chapter 5.

Figure 7.26 shows the fluctuations in the near wake region (326 degrees from the origin).

In this position we notice the high fluctuations in the outer portion of the disk which is
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being impacted by the eddies shed from the arm. These fluctuations are comparable to

the mean value of the pressure itself. The majority contribution to the fluctuations is from

the low frequency components, 0-1 and 1-2 kHz. Towards the ID fluctuations are much

smaller, and are almost solely composed of the low frequency 0-1 kHz forcing. The peak

in RMS is not located at the edge of the disk but at one position before the OD. As the

flow progresses azimuthally the fluctuations on the disk damp out quickly. Figure 7.27

shows the fluctuations at 0 degrees. The RMS values are about half of what they were 34

degrees upstream. This rapid reduction of fluctuations appears across all frequency bands.

As the flow progresses through the rest of the drive the overall fluctuations reduce through

the effects of viscous and SGS dissipation. The effects of the wake appear to move from

the OD to the MD in Figures 7.28 and 7.29, and the fluctuations are almost completely

dissipated by 180 degrees in Figure 7.30. A common observation in Figures 7.28 through

7.30 is the relatively higher RMS at the edge of the disk. The higher RMS values are due

to the turbulent flow in the shroud gap and the resulting forcing has RMS contributions

from higher frequencies, up to 10 kHz. Finally, an interesting consequence of the shroud

expansion is shown in Figure 7.31 at 236 degrees from the origin. The figure shows very

high fluctuations at the outer edge of the disk with significant contributions from 0-1, 1-2

and 2-6 kHz frequencies. Apparently the shroud expansion causes massive flow separation

and generation of turbulence with intensities that are comparable with those in the wake

of the arm.

For completeness, Figures 7.32- 7.37 show the RMS pressure plots for Case 2, for the

same angular positions as in Case 1. The Figures show that Case 2 has slightly higher

fluctuations compared to Case 1 due to the turbulence generated on both sides of the disk.

The Figures for Case 2 demonstrate many of the same qualities as discussed above for Case

1: high RMS fluctuations in the wake, high frequency contributions to fluctuations due to

the flow in the shroud gap and very high RMS due to the shroud expansion.
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7.5.4 Axial flow in the shroud

The RMS of the axial flow in the shroud gap (i.e. the component of the flow perpen-

dicular to the plane of the disks) is shown in Figure 7.38 . For the complete azimuthal

span (0-360) for three different axial positions: z = 3.3 corresponds to the top surface of

the disk, z = 2.8 corresponds to the mid-plane of the disk and z = 2.3 corresponds to the

bottom surface of the disk. The axial velocity is non-dimensionalized, not by the mean

axial velocity but by the disk edge velocity (ΩRo), since the former is close to zero. The

RMS fluctuations of pressure at the same location as Figure 7.38 are shown in Figure 7.39.

The strong correlation between the axial velocity fluctuations and the pressure fluctuations

is clearly evident by comparing Figures 7.38 and 7.39. Finally, a three dimensional view

which shows the locations of the different peaks in the RMS axial velocity fluctuations is

shown in Figure 7.40.

We notice that the fluctuations are fairly constant in the shrouded portion of the drive,

with a very gradual decrease in the amplitude downstream of the wake. The RMS of the

fluctuations is a measure of the amplitude of the waves that the shroud gap can support. In

both cases the RMS amplitude is small; close to 2% of the disk edge velocity. The presence

or absence of an actuator simply does not matter as there is very little difference between

the Cases 1 and 2. In agreement with our previous discussion the shroud expansion causes

very high fluctuations in the axial velocity (seen as the first large spike at about 220 degrees

in Figure 7.38). The axial velocity fluctuates rapidly as the flow approaches and flows over

the arm. The wake is characterized by a single peak immediately downstream of the arm

and several other peaks as the flow gets entrained back into the shrouded portion of the

gap.

Figure 7.40 shows the location of these peaks three dimensionally. Also in Figure 7.40,

at a particular axial location, three curves are drawn spanning the width of the shroud

gap. For both cases one notices that the outermost curve does not show a peak of the

same magnitude as the inner two curves at the shroud expansion. This indicates that the
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high fluctuations associated with the separation are present close to the disk edge only and

apparently die down shortly beyond the disk edge.

7.5.5 Velocity profiles

Much about the flow can be understood by studying the average velocity profiles between

the disk and the stationary casing walls. In Chapter 2 inter-disk velocity profiles were

studied in Section 2.8.2. Figures 7.41 and 7.42 show the time averaged non-dimensional

velocity profile

(
〈uφ〉(r)

Ωr

)
as a function of the axial position between the disks. The central

solid band in the figure represents the disk. The profiles are shown horizontally for different

azimuthal positions (0-320 degrees) and vertically for three radial positions, ID, MD & OD.

Each horizontal box spans the non-dimensional magnitude from 0 to 1, while each vertical

box spans the entire axial length of the domain, as shown: from the bottom cover to the

top cover. Azimuthal positions are measured from the horizontal with respect to the disk

centers, with the actuator being located at about 280 degrees at MD.

In Figure 7.41, which is for Case 1, one immediately observes the asymmetry of the

velocity profiles. As expected velocity profiles below the disk are smaller in magnitude than

those above the disk, which is due to the loss in momentum by flowing over the arm. At

about 240-280 degrees we observe that the flow stagnates in the space below the disk –

which is most likely due to the blocking effects of the actuator. Interestingly, the flow also

stagnates in the space above the disk at the ID position (i.e. close to the hub). Since there

is no arm present in this portion of the drive the only reason for the formation of this re-

circulating flow would be the expanding section of the geometry. To clarify: once the flow

has passed through the shrouded portion of the drive it encounters an expanding section (to

accommodate for the actuator). This expansion causes the flow to reverse direction close

to the hub where the linear velocity of the disk is the smallest. On the bottom side of the

disk the actuator blocks some of the expanded section accelerating the flow slightly – which

results in a higher velocity of the flow at 280-320 degrees.

Velocity profiles for Case 2 in Figure 7.42 are more symmetric than for Case 1. Since
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the geometry, grid and boundary conditions are perfectly mirrored across the midplane

any lack of symmetry can only be attributed to insufficient data in the averaging process.

In general, the velocity profiles look very similar to a turbulent Couette flow. There is

a sharp fall off from the disk velocity in the boundary layer with a large core region of

nearly constant velocity flow followed by a sharp fall off to the stationary wall. It is also

a general observation that the velocity profile is not completely flat in the central core

region. Velocities are slightly higher in the region away from the disk. This can be mainly

attributed to the axial location of the actuator. Referring to Figures 7.6 and 7.7 we see that

the actuator is located closer to the disk than the fixed covers, hence the flow is decelerated

in this region and accelerated closer to the covers. Figure 7.42 also shows the following

features of the flow: 1) The flow stagnates near the hub, upstream of the actuator arm, 2)

The velocity profile is small in the wake of the actuator and becomes fuller as it progresses

azimuthally, 3) From about 80 degrees to about 200 degrees the velocity profiles are very

similar across the ID-MD-OD positions, and 4) Almost all velocity profiles have an inflection

point near the disk

7.5.6 Global Quantities

The non-dimensional kinetic energy (k∗, see Eqn. 5.12) and windage (W ∗, see Eqn. 5.13)

are plotted in Figures 7.43 and 7.44 as a function of the number of disk rotations.

From Figures 7.43 and 7.44 we notice that the kinetic energy in Case 2 is approximately

10% less than Case 1, which may be accounted for by the turbulent loss caused by the

addition of an extra arm. However, the windage loss (i.e. the power required to drive the

disks, or the rate of energy input to our computational domain), is about 2.5% smaller for

Case 2 than for Case 1. This implies that with a slightly smaller rate of energy input the

Case 2 simulation saturates at a lower energy level, indicating the increased presence of

dissipative processes such as vortex shedding and separation.

In reporting the kinetic energy and windage the role of the initial conditions of the

domain has been minimized by starting off both the simulations from a steady k − ε solu-
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tion. Moreover, the figures also show that the quantities achieve steady state in about 4

revolutions of the disk which gives confidence that the simulations have achieved statistical

steadiness on a global level. For this reason all quantities reported previously are only for

the duration spanning of 4 to 10 revolutions of the simulations.

The coefficients of drag on the actuator arm are plotted as a function of time (with

the first 4 revolutions removed) in Figure 7.45, and the corresponding frequency spectra

are plotted in Figure 7.46. The drag and lift coefficients are decomposed into the off-track

direction (CD,off ), the on-track direction (CD,on) and the axial (out-of-plane) direction

(CD,z) using the projected areas of the actuator in those directions and the disk edge speed

Uo = ΩRo. Figures 7.47, 7.48 and 7.49 summarize the statistics of the data in Figure 7.45.

Interestingly, the figures show that the mean off track drag coefficient,CD,off , is higher in

Case 2 than in Case 1, but the trend is opposite for the on-track direction, CD,on. The

additional e-block arm, suspension, base plate and slider in Case 2 increase the off-track

projected area by only 25%, while the on-track projected area is the same. This indicates

that the presence of the symmetric arms in Case 2 modifies the pressure field in the drive,

such that the pressure gradient acting across the arm (in the off-track direction) is increased

while the gradient in the direction of the arm (the on-track direction) is decreased.

7.6 Structural vibrations

Next the vibrations of the disk are calculated using the code previously discussed. The

vibrations are initialized from rest and the pressure loading of the airflow and the slider are

used as forcing functions on the right hand side. An (r,m) grid of 32 × 64 was used, and

the resultant pressure recorded at each of the 2048 nodes was used in the calculation. The

slider was modeled as a point load (delta function) superimposed on the airflow pressure

distribution.

The vibrations of the disk are plotted as a function of time in Figure 7.50 for both Cases

1 and 2. In plotting the displacements of the disk, since the vibrations under the slider are

most important, various points were chosen from ID to OD passing through the location of
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the slider. The 6 sub-figures shown in Figure 7.50 are plotted for points located at 12.5%,

31.25%, 50% (MD), 62.5 %, 81.25% and 100% (OD) of the radial span.

We notice that the vibrations have a positive bias (mean) for Case 1 which is expected,

given the positive mean pressure. The mean vibrations for Case 2 are close to zero. The

vibrations of Case 2 clearly display a fundamental frequency (which from Table 7.6 is at-

tributed to mode (0, 1)B). Case 1 does not clearly display this frequency and is apparently

composed of higher frequency components. The other interesting observation is that the

vibration results appear to be a linear function of the radius; i.e. the sub-figures of Fig-

ure 7.50 appear to be geometrically very similar except for the different scale used to plot

them. This leads to the conclusion that most of the vibration energy is in the modes with

zero nodal circles (c=0). Given that the pressure fluctuations of the flow are mainly in

the low frequencies (0-2kHz) (recall, Figures 7.26- 7.37), such a result is expected, since

the first mode with one nodal circle (c=1) is above 5 kHz, and there are 6 modes of lower

frequency than 5kHz (with their corresponding forward and backward traveling frequencies.

See Table 7.6).

A summary of the vibration results is presented in Figure 7.51. It shows that the disk

has a mean deflection for Case 1, due to the mean pressure bias. The RMS vibrations about

that mean are smaller than those for Case 2, but the resulting motions are larger for Case

1. The mean vibrations for Case 2 should theoretically be zero, indicating that the small

non-zero mean is a result of unconverged statistics. The RMS vibrations for Case 2 are

large, approximately 680 nm. The results presented in Figure 7.51 are in good agreement

with experimental measurements of the disk vibrations given in Imai (2001), Chang et al.

(2002) and Guo and Chen (2001).

Due to the large number of modes in the 0-5Hz range the frequency spectra for the vibra-

tions cannot be easily analyzed visually. It is more useful to understand the contributions

to the RMS from different frequency bands, as done earlier for the pressure fluctuations.

As seen in Figure 7.52, for Case 2, approximately 95% of the vibration energy is in the 0-1

kHz range, which contains the top three modes. A small amount of energy is contained

in the 1-5 kHz range, while there is virtually no contribution above that range. That is
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the reason why the dominant frequency of Case 2 in Figure 7.50 corresponds to the (0, 1)

mode. For Case 1, approximately 20% of the energy is shifted from the 0-1 kHz range to

the 1-5 kHz range. Given the mean deflection of the disk about its equilibrium, energy is

transferred from the (0, 1) mode to higher modes (mode # 4-6) and this results in a smaller

RMS amplitude of vibration.

7.7 Conclusions

This Chapter has described the structural response of the disk itself to the flow that

is generated by its rotation. The Chapter has implicitly utilized several conclusions from

previous Chapters (e.g. grid resolutions from Chapter 5, turbulence model from Chapter 3

and 4). At the same time this Chapter has extended several ideas about the flow that were

first introduced in Chapter 2. To summarize the main conclusions from this Chapter:

1. We have presented a methodology for computing the vibrations of the rotating disk

in a hard disk drive, dealing with much more realistic air flow models than previous

attempts. Given the complicated nature of the flow calculations need to be repeated

for even small changes in the drive configuration, (e.g. movement of the actuator from

ID to OD), which makes a comprehensive investigation of all cases very expensive;

almost impossible. However, we have provided two useful aids in the solution of such

problems. 1) We have characterized the pressure loading in great detail for the two

most commonly occurring cases (sliders flying on one or two sides of the disk) and

2) We have described the numerical methods to accurately compute the flow and the

structural solutions. Finally, we expect that the data presented here will serve as a

useful tool for benchmarking future calculations or experiments

2. In terms of the flow field we found that the mean pressure loading for Case 1 is

asymmetric, arising due to the asymmetry of the geometrical configuration. The RMS

vibrations of Case 2 are higher than those for Case 1, and their spectral distributions

are almost identical. The spectra show most of the energy is in the 0-1 kHz range

and the RMS increases with increasing radius. The wake and the shroud expansion
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show the highest fluctuations. While the formation of the wake behind the arm is

inevitable drive designers should avoid expanding diffuser-like cross-sections which

act as a source of separation and generation of turbulence. We also found that the

fluctuations in the shroud gap corellate very well with the pressure fluctuations – hence

it may be useful to measure the axial flow in the gap (say by PIV) when measurement

of pressure is difficult. Finally, we also note that the velocity profiles between the disk

and the casing resemble turbulent Couette flow, and it may be used to model flows

in other cases.

3. In terms of the disk vibrations we note that 1 mm thick 3.5 inch Aluminum disks

may be susceptible to critical behavior at about 20,000 RPM. Our results do not

take into account changes in the flow field at those speeds and the resulting damping.

Nonetheless, drives that operate in the 20,000-30,000 RPM range may be subject to

these resonances. At 10,000 RPM our results show that for Case 1 the disk undergoes a

mean asymmetric deflection and vibrates at a smaller magnitude in the higher modes.

For Case 2 there is no mean deflection, and the disk primarily vibrates in the lowest

fundamental mode.

4. A direct continuation of this work (which is beyond the scope of this dissertation)

would be to compute the resulting off-track and on-track motions of the slider-head

due to both the air drag and the disk motion. While this is currently unfeasible

in CFD-ACE, given the separation of scales, this could be the subject of another

investigation that accounts for all of the non-linear dynamics of the slider motion.
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7.8 Tables

Table 7.1. Geometry data

Case 1 Case2

Number of disks 1 ←
Number of e-block arms 1 2
Number of base plates 1 2
Number of suspensions 1 2
Number of sliders 1 2
Disk thickness (mm) 1 ←
Disk diameter (mm) 76.2 ←
Width of shroud gap (mm) 1 ←
Length of actuator (mm) 45 ←
Length of e-block arm (mm) 32.5 ←
Length of base plate (mm) 6.5 ←
Length of suspension (mm) 11.1 ←
Thickness of e-block arm (mm) 0.8 ←
Thickness of base plate (mm) 0.3 ←
Thickness of suspension (mm) 0.1 ←
Dimensions of slider (mm) 1 × 0.8 × 0.3 ←
Number of weight saving holes 2 ←
in e-block arm

]
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Table 7.2. CFD modeling information

Governing equations Filtered Navier Stokes equations
Solution algorithm SIMPLEC (Van doormaal and Raithby 1984)
Large eddy simulation model Algebraic dynamic (Germano et al. 1991)
Type of LES filter Top-hat (variable width)
Temporal differencing scheme Crank Nicholson (second order)
Spatial differencing scheme (convective term) Central differencing
Time step (seconds) 1.0× 10−5

Number of time steps 4800
Corresponding number of disk rotations 8
Initial conditions Steady k-ε solution

Table 7.3. Boundary conditions

Disks Rigid rotating walls, no slip
Casing Rigid wall, no slip
Hub/base of e-block arm Fixed (similar to a cantilever)
Slider-disk interface Slider slips on disk

No cells between slider and disk
All structural interfaces Rigidly joined
(e.g. suspension+slider, (i.e. no dimple)
e-block arm+base plate)
All fluid-structure surfaces walls, no slip

Table 7.4. Grid information

Case 1 Case 2

Type of mesh Structured grid mixed with ←
quad-dominant unstructured cells

Number of cells. 4,515,444 4,444,274
Avg. cell vol. (mm3) 5.7338 × 10−3 5.7994 × 10−3

Avg. grid res. (mm) 0.1789 0.1796
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Table 7.5. Comparison of natural frequencies of a stationary disk

Mode Current Work Experiments Theory ANSYS
(Hz) (Hz) % Diff (Hz) % Diff (Hz) % Diff

(0,1) 36 37.19 3.20 39.08 7.88 38.06 5.41
(0,0) 40 38.40 -4.17 39.73 -0.68 38.68 -3.42
(0,2) 46 47.10 2.34 47.46 3.08 46.20 0.44
(0,3) 77 79.78 3.48 79.18 2.75 77.10 0.13
(0,4) 124 133.08 6.82 131.64 5.80 128.30 3.35
(0,5) 189 202.18 6.52 200.16 5.58 195.27 3.21
(1,0) 236 250.18 5.67 254.18 7.15 247.31 4.57
(1,1) 246 262.38 6.24 266.23 7.60 259.00 5.02
(0,6) 269 285.71 5.85 282.68 4.84 276.19 2.60
(1,2) 280 304.79 8.13 303.88 7.86 295.50 5.25
(1,3) 348 374.92 7.18 370.12 5.98 359.53 3.21

Note: Experimental and theoretical data is from D’Angelo (1991)
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Table 7.6. Natural Frequencies and modes of the disk, obtained from ANSYS

Mode No. Frequency Mode (d,c) Forward Mode Backward Mode
(Hz) @ 10K RPM @ 10K RPM

1 781.56 (1,0) 948.23 614.89
2 802.71 (0,0) – –
3 946.65 (2,0) 1279.98 613.32
4 1610.9 (3,0) 2110.90 1110.90
5 2704.4 (4,0) 3371.07 2037.73
6 4126 (5,0) 4959.33 3292.67
7 5104.3 (0,1) – –
8 5355.1 (1,1) 5521.77 5188.43
9 5837.6 (6,0) 6837.60 4837.60
10 6147.3 (2,1) 6480.63 5813.97
11 7552.3 (3,1) 8052.30 7052.30
12 7826.9 (7,0) 8993.57 6660.23
13 9588.1 (4,1) 10254.77 8921.43
14 10090 (8,0) 11423.33 8756.67
15 12194 (5,1) 13027.33 11360.67
16 12624 (9,0) 14124.00 11124.00
17 14773 (0,2) – –
18 15071 (1,2) 15237.67 14904.33
19 15271 (6,1) 16271.00 14271.00
20 15430 (10,0) 17096.67 13763.33
21 15991 (2,2) 16324.33 15657.67
22 17599 (3,2) 18099.00 17099.00
23 18507 (11,0) 20340.33 16673.67
24 18736 (7,1) 19902.67 17569.33
25 19951 (4,2) 20617.67 19284.33
26 21855 (12,0) 23855.00 19855.00
27 22541 (8,1) 23874.33 21207.67
28 23065 (5,2) 23898.33 22231.67
29 25475 (13,0) 27641.67 23308.33
30 26659 (9,1) 28159.00 25159.00
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7.9 Figures

Figure 7.1. Top view of the computational grid
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Figure 7.2. Location of closeup in Figure 7.3
Figure 7.3. A closeup view of the refined grid
upstream and downstream of the actuator

Figure 7.4. Three-dimensional simplified view of
the simulated Case 1. Shown are the disk and
the single arm actuating the lower surface

Figure 7.5. Three-dimensional simplified view of
the simulated Case 2. Shown are the disk and
the arms on both the disk surfaces
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Figure 7.6. Schematic diagram showing cross section of simulation domain for Case 1
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Figure 7.7. Schematic diagram showing cross section of simulation domain for Case 2
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Figure 7.8. Radial convergence: L2 norm of the error (ε) as a function of the radial mesh
size (∆r)
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Figure 7.9. Radial convergence: L2 norm of the error (ε) as a function of the time step
(∆t)

211



0 0.002 0.004 0.006 0.008 0.01
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

D
is

k 
V

ib
ra

tio
n 

(µ
 m

)

Figure 7.10. Response of a disk to 200 G shock
of 0.5 milliseconds. computed using current
code
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Figure 7.11. Response of a disk to 200 G shock
of 0.5 milliseconds. computed using ANSYS
(Bhargava and Bogy 2005)
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Figure 7.12. FFT of disk response to 200 G
shock of 0.5 milliseconds. computed using cur-
rent code
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Figure 7.13. FFT of disk response to 200 G
shock of 0.5 milliseconds. computed using AN-
SYS (Bhargava and Bogy 2005)
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Figure 7.14. Waterfall plot showing the natural
frequencies as a function of RPM. Modes (0,0)
and (1,0)

Figure 7.15. Waterfall plot showing the natural
frequencies as a function of RPM. Modes (0,1)
and (1,1)

Figure 7.16. Waterfall plot showing the natural
frequencies as a function of RPM. Modes (0,2)
and (1,2)

Figure 7.17. Closeup showing the critical behav-
ior of mode (0, 2)R at 20,000 RPM
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Figure 7.18. Waterfall plot showing the natural
frequencies as a function of RPM. Modes (0,3)
and (1,3)

Figure 7.19. Closeup showing the critical behav-
ior of mode (0, 3)R at 27,000 RPM

Figure 7.20. Waterfall plot showing the natural
frequencies as a function of RPM. Modes (0,4),
(1,4) and (2,4)

Figure 7.21. Waterfall plot showing the natural
frequencies as a function of RPM. Modes (0,5),
(1,5), (2,5) and (3,5)
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Figure 7.22. Mean resultant pressure distribu-
tion on the disk, for Case 1

Figure 7.23. Mean resultant pressure distribu-
tion on the disk, for Case 2

Figure 7.24. RMS resultant pressure distribu-
tion on the disk, for Case 1

Figure 7.25. RMS resultant pressure distribu-
tion on the disk, for Case 2
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Figure 7.26. RMS Pressure fluctua-
tions, broken down into contributions
from frequency ranges. For Case 1 at
326 degrees.

Figure 7.27. RMS Pressure fluctua-
tions, for Case 1 at 0 degrees.

Figure 7.28. RMS Pressure fluctua-
tions, for Case 1 at 56 degrees.

Figure 7.29. RMS Pressure fluctua-
tions, for Case 1 at 112 degrees.

Figure 7.30. RMS Pressure fluctua-
tions, for Case 1 at 180 degrees.

Figure 7.31. RMS Pressure fluctua-
tions, for Case 1 at 236 degrees.
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Figure 7.32. RMS Pressure fluctua-
tions, broken down into contributions
from frequency ranges. For Case 2 at
326 degrees.

Figure 7.33. RMS Pressure fluctua-
tions, for Case 2 at 0 degrees.

Figure 7.34. RMS Pressure fluctua-
tions, for Case 2 at 56 degrees.

Figure 7.35. RMS Pressure fluctua-
tions, for Case 2 at 112 degrees.

Figure 7.36. RMS Pressure fluctua-
tions, for Case 2 at 180 degrees.

Figure 7.37. RMS Pressure fluctua-
tions, for Case 2 at 236 degrees.
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Figure 7.38. The RMS of the axial velocity at
the center of the shroud gap, plotted for three
different positions
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Figure 7.39. The RMS of the pressure fluctua-
tions at the center of the shroud gap, plotted for
three different positions
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Figure 7.40. Three dimensional view showing the angular location of axial velocity fluctu-
ations
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Figure 7.43. Non-dimensional kinetic energy
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Figure 7.44. Non-dimensional windage
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Figure 7.45. Time history of variation of coeffi-
cients of drag
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Figure 7.46. FFT of drag coefficients
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Figure 7.47. Summary of statistics for CD,off

Figure 7.48. Summary of statistics for CD,on

Figure 7.49. Summary of statistics for CD,z
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Figure 7.50. Disk vibration results showing the displacement of the disk as a function of
time. Results are shown for points located at 12.5%, 31.25%, 50% (MD), 62.5 %, 81.25%
and 100% (OD)
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Figure 7.52. Contribution to the RMS disk vibrations under the slider from various fre-
quency ranges
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Chapter 8

The Effect of Flow Mitigation

Devices

8.1 Introduction

In this Chapter we study the effect of several “flow mitigation devices” (such as spoilers,

ribs and plates) that are commonly used in disk drive casings. Such modifications (several of

which are listed in the patent literature) have been designed to reduce the effect of the flow

on the TMR. This dissertation does not seek to design such devices that change the flow and

the resulting vibrations. Design influences such as costs, materials and manufacturability

are beyond the scope of this dissertation, but they nevertheless play an important role in

the design process. In this light, the modifications studied here are some of those in current

use in disk drives, and they have been selected for investigation after examining several

disk drives available in the market, in late 2004. The modifications investigated are: M1:

a blocking plate situated between the disks, M2: a spoiler (or deflector) located behind

(downstream of) the actuator arm and M3: a similar deflector upstream of the arm. A

comparison is made between the modifications M1-3 and the original disk drive without

any modification, which we denote as M0.

An interesting finding from the patent literature is the effect of reverse spinning disks.
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Our simulations show that simply reversing the direction of rotation of the disks could

reduce the vibrations of the arm and disk significantly. This is discussed in Section 8.4

8.1.1 Model Setup

The original model (M0) without any modifications simulated in this Chapter is the

same as the one used in Chapter 2, Figure 2.2. A top view of this model ( and the other

geometrical models simulated) are shown as follows, M0 in Figure 8.1, M1 in Figure 8.2,

M2 in Figure 8.3 and M3 in Figure 8.4. The relevant geometrical modifications have been

highlighted for clarity. Geometrical data that is common to all simulations is given in

Table 8.1, while geometrical data specific to each simulation is given in Tables 8.2-8.4.

Numerical modeling information that is common to all simulations is given in Table 8.5 and

boundary conditions are outlined in Table 8.6. Finally, information about the mesh used

in the simulations is given in Table 8.7. The grid used for M0 was the same as that used

in Chapter 2. The grids used for M1-3 were modified accordingly to account for the flow

mitigation devices. The grids were qualitatively very similar and were each generated by

extruding a 2-D grid in the axial direction.

In Table 8.7 the average cell volume is calculated by taking a mean of all the compu-

tational volumes in the simulation domain. The average grid resolution is the cube root of

the average cell volume, which forms a measure of the representative grid size.

8.2 Flow Physics

We start by discussing some physical features of the flow and subsequently describe the

more quantitative results.

8.2.1 Major Flow Features

As we saw in Chapters 2-6, flows in disk drive enclosures are highly unsteady with partly

laminar and partly turbulent regions. Snapshots of the turbulent flow in our simulations

226



are shown in the Figures 8.5 - 8.8. Plotted therein is the axial component of velocity on

the midplane between the disks. Instead of choosing a monotonic scale for plotting this

component of velocity we used a staggered scale (similar to an interference pattern) is used.

This helps in visualizing sharp velocity gradients that characterize the turbulent eddies,

which may not appear in a monotonic scale. However quantitative information about the

velocity magnitude is lost in this presentation mode. Nonetheless, this is acceptable for

now, since we refer to quantitative data in later sections.

As the air flows over the structures forming an obstruction it undergoes separation caus-

ing the formation of vortical structures (see (1) in Figure 8.5). The vortex shedding causes

changes in the circulation around the arm, which causes fluctuation in the drag it experi-

ences. Turbulent eddies formed in the wake of the arm are convected by the mean flow due

to the disk rotation and dissipate by the time they reach an angular position of approxi-

mately 225◦ 1 (see (2) in Figure 8.5). The turbulence intensity of the flow coming towards

the actuator arm is between 15-20% (as later explained by Figure 8.18). At the curved wall

which forms the shroud one observes the presence of one or two toroidal vortices (see (3) in

Figure 8.5). These structures are Göertler-type vortices formed due to three dimensional

instability of the laminar boundary layer as it flows over the concave boundary. Finally, in

the region upstream of the actuator arm, where the enclosure expands to accommodate the

arm, one observes separation of the flow and the formation of a turbulent region. (see (4)

in Figure 8.5)

When compared with M0, M1 shows significant changes in the flow field, which is plotted

in Figure 8.6. The presence of the blocking plate essentially blocks out a significant portion

of the flow, forcing the rest around it. The mean velocity of the flow is reduced because

the blocking plate acts in regions where the linear velocity of the disk is higher. However,

vorticity shedding at the trailing edge of the blocking plate increases the turbulence of the

flow approaching the e-block arm (see (5) in Figure 8.6). Also, one observes the presence of

a region of flow reversal (and stagnation) near the hub. The presence of the blocking plate

1In describing radial and angular locations of our geometry, the origin is taken at the center of rotation
of the disks (as in previous chapters).
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causes an adverse pressure gradient in the air flowing towards it, causing some portions of

the flow to stagnate and reverse direction (see (6) in Figure 8.6).

In simulation M2, plotted in Figure 8.7, the presence of a thick (1.6 mm compared to

a disk-to-disk spacing of 2.2 mm) downstream rib blocks a significant portion of the flow.

At the midplane the mean azimuthal velocity is decreased almost everywhere in the drive.

The presence of the rib causes the flow to stagnate and reverse direction in a significant

portion of the drive (see (7) in Figure 8.7). The rib is a source of vorticity shedding also,

which increases the turbulence intensity of the downstream flow (see (8) in Figure 8.7).

In simulation M3, which is plotted in Figure 8.8, the flow field is similar to M0, except

that the upstream spoiler acts as another source of generation of turbulent eddies. The

eddies shed from the top and bottom edges cause added velocity fluctuations in the upstream

portion of the flow field (see (9) in Figure 8.8). This significantly increases the velocity

fluctuations near base of the e-block arm and the suspension.

8.2.2 Evolution of flow

It is expected that the airflow velocity magnitude is smallest in the wake, and the flow

gains momentum from the rotating disks as it flows around. To gain more insight into this

process we plot the inter-disk velocity profiles at 4 points in the drive. In polar (r (mm), φ)

coordinates, these 4 points are (14.96, 340◦), (14.96, 45◦), (14.96, 135◦), (14.96, 225◦). r =

14.96mm corresponds to 1/3rd the radial span of the disks, chosen so as to not lie within

the blocking plate. The angular positions were chosen so as to not lie in the path of any

modification. Data plotted in each figure is the average velocity profile over 6 revolutions of

the disks. In this Chapter when a direct comparison between simulations is permitted the

results are plotted using a common convention. This convention is explained in the legend

given in Table 8.8.

In Figures 8.9 - 8.12 the azimuthal velocity of the flow is plotted as a function of the

axial z coordinate for the above mentioned 4 points. z = 0 refers to the top of the bottom
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disk, while z = 2.2mm refers to the bottom of the top disk. All figures are plotted to the

same scale for convenience.

It is observed that at 340◦ in the wake M0 shows the fullest profile, implying that the

unmodified flow is the fastest in the wake. The velocity profile for M1 is less full because

of the presence of the blocking plate, while M2 shows a mid span flow reversal in the wake.

The presence of the downstream rib and its corresponding pressure gradient causes the flow

to reverse directions in the wake. Part of the flow closer to the disks flows in the direction

of rotation, while the bulk of the center section flows in the reverse direction.

As the flow moves around to 45◦ the velocity profiles for all the simulations become fuller

due to the diffusion of momentum from the rotating disks. M0, which is the flow without

any obstructions, shows the largest magnitude, while M2 shows the smallest profile. None of

the profiles show flow reversal. The width of the (laminar) boundary layer is approximately

the same in each simulation. M2 shows the largest velocity gradient in the boundary layer.

At 135◦ M0 again shows the fullest profile, and M2 begins to show flow reversal, which

is due to the presence of the downstream spoiler, approximately 180◦ upstream. The profile

for M3 is similar to that for M0, reduced in magnitude by approximately 50%. This is a

direct consequence of the upstream spoiler.

Finally at 225◦ the profiles for M0 and M1 are almost identical, M3 is reduced from

M0 by approximately 50%, while M2 shows flow reversal. This confirms that the presence

of the downstream spoiler causes a significant portion of the flow in the drive to reverse

direction, mostly in the regions close to the hub.

As an aside, it is interesting to note that almost all of the mean velocity profiles plotted

in Figures 8.9 - 8.12 satisfy Fjørtoft’s criteria for instability, which asserts that a necessary

condition for instability of inviscid parallel flows is that Uyy(U − UI) < 0 somewhere in

the flow, where UI is the velocity at the point of inflection of the profile. (For Fjørtoft’s

Theorem see Kundu (1990)). This indicates that the mean flow profile in a disk drive

enclosure (with or without the modifications) does satisfy the necessary condition for being
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linearly unstable in the inviscid limit. The only profiles that are stable are M0 and M3,

both at 135◦.

Figures 8.13-8.16 show the radial velocity as a function of the axial coordinate for the

same 4 points as in Figures 8.9 - 8.12. In each figure one observes a positive spike in radial

velocity immediately adjacent to the disks, as expected, due to the centrifugal effect.

At 340◦ in the wake, the radial velocity profiles are not too different from each other.

They are mainly affected by the constraining geometry of the model, which tends to squeeze

the flow in the radial space between the hub and the shroud. For this reason two peaks in

the radial inflow velocity (i.e. negative radial velocity) are observed for each profile.

At 45◦ the radial velocity of M1 is strongly negative. This is because the blocking plate

tends to bend the streamlines towards the hub. The other profiles show radial outflow, with

M2 showing the largest variation across the inter-disk spacing.

At 135◦ M1 again shows the effect of the blocking plate, while M3 shows the effect of

the upstream spoiler, both of which tend to create radial inflows.

Finally, at 225◦, the presence of the upstream spoiler is clearly evident as indicated by

the strong negative radial velocity profile for M3. On the other hand M1 now shows larger

positive radial velocity, since beyond the trailing edge of the blocking plate lies an expansion

region where the flow can radially spread before approaching the actuator.

8.2.3 Turbulence intensity

Figure 8.17 shows a schematic diagram of the disk drive enclosure with all three modifi-

cations super-imposed. Also shown in this figure are 4 chords running from the inner radius

to the outer radius at angular positions of 340◦: Chord 1; 45◦: Chord 2; 135◦: Chord 3

and 225◦: Chord 4. Plotted in Figures 8.18 - 8.21 are the turbulence intensity (TI) profiles

along these chords. The chord length is non-dimensionalized by the radial span of the disks.

In general one observes that the TI is higher in regions closer to the hub than in regions

near the outer radius. This is because, near the hub, the disk velocities are small, the flow
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tends to reverse direction and hence the RMS fluctuations appear to be a larger fraction of

the mean.

For chord 1 in Figure 8.18 one can clearly observe a single peak in TI due to the wake of

the actuator arm for M0, M1 and M3. TI values are smaller near the outer and inner radii,

hence it appears that a large part of the wake fluctuation is located near midway between

the outer and inner radii. Compared to M0, M1 shows significantly reduced turbulence

intensity. For M2 one observes two peaks, which is due to the vortex shedding occurring

from the top and bottom edges of the downstream spoiler.

M1 shows higher fluctuations in Figures 8.19- 8.21 in regions adjacent to the hub. (In

Figure 8.20 the TI profile for M1 is incomplete due to the blocking plate).

M0 and M3 show remarkably similar TI profiles along each chord, indicating the presence

of the upstream spoiler does not change the turbulent fluctuations along the chords being

considered.

8.3 Velocities and Pressure in the vicinity of the actuator

We now shift our attention from examining the entire flow domain to examining the

region close to the actuator arm. The following results pertain to velocity and pressure data

at a few specific points (ranging from 1-32), which are shown in Figure 8.22. These points

lie close to the face of the actuator at an axial position which is at the center of the solid

structure. Points 4-10 are along the centerline of the e-block arm, while 12-22 are along the

centerline of the lower suspension.

8.3.1 Velocity fluctuations

To begin, we examine the RMS of the in-plane (i.e. in the plane of the disks) velocity

fluctuations. This is plotted in Figure 8.23. RMS fluctuations for M0-M3 have been plotted

on separate figures for clarity.

The figure for M0 shows two distinct peaks near points 5-8. These are the fluctuations
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arising due to the expansion of the shroud just upstream of the e-block arm (See (4) in

Figure 8.5). Two more peaks in fluctuation are observed: at point 18, due to the vorticity

shedding at the slider and at points 21-22, due to the vorticity shedding from the corner of

the base plate.

Comparing this to M1 it appears that M1 is able to dampen the fluctuations near the

slider, but the fluctuations near the e-block arm actually increase. This is indeed a favorable

effect since fluctuations near the e-block arm contribute less to actuator vibrations than

fluctuations near the slider. The added fluctuations near the e-block arm are due to the

vorticity shedding from the edge of the base plate (See (5) in Figure 8.6).

M2 displays less fluctuations near the base of the actuator but increased fluctuations

near the region of the slider. Finally, M3 shows much higher fluctuations at the base of

the actuator (points 1-5 and 29-32) and the base-plate and suspension region (points 10-15)

due to the shedding of vortices from the upstream spoiler.

Further insight into the RMS fluctuations can be gained from the frequency spectra of

the in-plane velocity at each point. This is plotted for M0-M3 in Figures 8.24 - 8.27. The

coloration of each figure corresponds to dB amplitude of the spectrum.

Comparing Figure 8.25 to Figure 8.24 one readily observes that the blocking plate

dampens the power in the spectrum at all locations except the base of the e-block arm.

However, the spectra do not show significant changes near the suspension using any other

modification. In fact, from Figure 8.27, it is evident that the presence of the upstream

spoiler actually increases the fluctuations surrounding the actuator, especially near the

base of the actuator and the leading edge of the suspension.

Plotted in Figure 8.28 are the RMS of the out-of-plane (axial) velocity fluctuations.

The plot for M0 shows two significant peaks – one corresponding to the fluctuations arising

from the expansion of the shroud, and the other corresponding to the vorticity shedding off

the slider edge. The trailing edge of the e-block arm (region 24-30) also shows higher axial

fluctuations.

In the same figure, one observes that the out-of-plane fluctuations near the slider are
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reduced by the presence of the blocking plate, they are favorably reduced almost everywhere

in M2, but are significantly increased in M3. The upstream spoiler contributes to the

significantly high out-of-plane fluctuations near the base of the e-block arm (region 2-5 and

29-32).

Plotted in Figures 8.29 - 8.32 are the corresponding frequency spectra, which provide

more quantitative information regarding the out-of-plane velocity fluctuations. Again the

spectrum for M1 in Figure 8.30 contains significantly less power than the spectrum for M0.

A common observation from these figures is that, when a modification is used to reduce

RMS fluctuations of velocity, higher frequency bands, corresponding to smaller eddies, are

damped out. This implies that the energy content of the smaller eddies is reduced by the use

of modifications like the blocking plate, while the energy content of the larger eddies, which

is determined by the disk spacing and disk speed of rotation, remain relatively unchanged.

8.3.2 Pressure difference across the actuator

From Chapter 2 we known that form drag due to pressure produces forces 2 orders

higher in magnitude than skin friction (viscous) drag. Hence we examine the RMS of

pressure fluctuations along the length of the actuator. Fluctuations in pressure at the

leading or trailing face of the actuator contribute to it’s in-plane motions, while the less

important out-of-plane pressure fluctuations acting on the top and bottom surfaces of the

actuator cause bending in the suspension and e-block arm. We report only the in-plane

pressure fluctuations.

Figure 8.33 is a plot of the RMS of pressure fluctuation for points 1-32. M0 shows two

peaks in the RMS pressure fluctuation, the first is due to the flow separation due to the

shroud expansion, while the next is due to the vorticity shedding from the slider. M1 is

effective in reducing the pressure fluctuations due to the vorticity shedding from the corner

of the base plate. M2 shows much smaller fluctuations near the base of the arm, but the

fluctuations are increased near the suspension and base plates. No clear peaks in RMS are

observed. Finally, M3 shows significantly larger fluctuations at the base of the actuator and
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at the location where the turbulent eddies shed from the upstream spoiler impinge on the

suspension.

Figures 8.34 - 8.37 show the frequency spectra of the pressure fluctuations for M0-

3. When compared to M0, M1 shows reduced frequency content in the higher frequency

bands, indicating that smaller eddies (i.e. eddies of higher frequencies) contribute less

to the pressure fluctuations. This is especially important in the region of the suspension

(between 14-22). Figure 8.36 shows that with the addition of a downstream spoiler the

frequency content of the spectrum is relatively unchanged, except that the amplitude of the

spectrum is overall reduced. This suggests that although the amount of energy in pressure

fluctuations has been reduced the distribution of energy over spatial scales of motion has

remained unchanged. Finally, Figure 8.37 confirms that the upstream spoiler is ineffective

in reducing pressure fluctuations.

8.3.3 Windage

It is expected that the cost of operation of these modifications (primarily the power

required by the motor, i.e. windage) should not be prohibitively high. Plotted in Figure 8.38

is the time history of the windage calculated as a function of the disk revolutions. (To

give the reader a sense of the actual power increase the dimensional windage, W, from

Eqn. 2.32, in watts is plotted). One observes that although the initial conditions were

inaccurate in predicting the windage, it asymptotes to a constant value in approximately 2

disk revolutions.

One also observes that M1, due to its large blocking plate, consumes the most power,

while the windage loss for M2 is also high, given the flow reversal near the hub. This is

expected given that the axial velocity gradients are considerably higher for M1 and M2

compared to M0 and M3 leading to higher shear stresses on the disks. The windage losses

for M0 and M3 are almost identical.
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8.4 Effect of Reverse Spinning disks

In this Section we examine the effect of the disk spinning in the reverse direction on the

forces affecting the arm and disk. Conventionally, disk drives spin counter clockwise when

viewed from top. The original idea behind reverse (clockwise) rotating disks was published

by Zeng and Hirano (2005) and the authors hold a patent for the same.

In their experimental publication (Zeng and Hirano 2005) the authors claim that the

flow induced vibrations of the actuator arm may be reduced by as much as 50% by spinning

the disk in reverse. They also mention that disk vibration is reduced by 30%. To verify

this claim and to provide computational validation of their idea we compute the flow with

reverse spinning disks.

The model used in this Section differs from the four models used in the previous Sections

of this Chapter. M0-3 are all models that compute the flow between two co-rotating disk.

Pressure forces acting at the top and bottom of a single disk are not computed. Hence,

with the intention of computing the vibrations of the disk, the model used in this Section is

the same as that used in the Chapter 7, Case 2. A simplified version of the model is shown

in Figure 7.5 while a schematic diagram showing the cross section of the simulation domain

is shown in Figure 7.7

8.4.1 Flow features

Reversing the direction of rotation changes the flow features to a major extent. In the

conventional direction of rotation the arm is aligned almost orthogonal to the upstream

streamlines. In the reverse direction of rotation the blunt body is much more aligned with

the flow streamlines. Figures 8.39 and 8.40 show instantenous snapshots of the turbu-

lent field in the drive for the conventional and reverse directions of rotation, respectively.

One observes that in the conventional direction of rotation the expanding section (see Sec-

tion 7.5.5) causes the flow to separate at the shroud and near the hub. This turbulent flow

is then diverted back towards the hub by the arm and hence the suspension and slider are

affected by large turbulent forcing. In the reverse direction the arm does not divert the
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flow towards the hub, but instead towards the base of the e-block arm. Turbulent forcing

at this location is not as detrimental as at the suspension and arm – hence we expect the

flow induced vibrations to be smaller in the reverse direction of rotation.

There are two additional observations: 1) The size of the wake is reduced in the case

of reverse direction rotation. Vorticity shed from the arm quickly organizes into turbulent

eddies and these eddies are transported towards the shroud by the spinning disks. 2) In

the reverse direction of rotation there is considerable generation of turbulent structures

upstream of the arm. These are partly generated at the tip of the high speed disk and

partly at the upstream shroud expansion. These structures, however, do not affect the

suspensions or sliders and are transported to the base of the e-block arm.

8.4.2 Drag on the actuator arm

A time history of the coefficients of drag on the arm (in the three directions: off-track,

on-track and z) are shown in Figure 8.41, and the corresponding frequency spectra are shown

Figure 8.42. These coefficients of drag are directly compared to the coefficients evaluated in

Chapter 6, Figure 7.45. The sign of the CD,off and CD,on for the reverse direction is opposite

to that for the conventional direction, hence the absolute values of the drag coefficients are

plotted.

One immediately observes a great reduction in the fluctuation of the forcing with the

reverse direction of disk rotation. The mean values are also shifted, higher in the off-

track direction and lower in the on-track direction. The frequency spectra of Figure 8.42

show a major reduction in spectral content of the flow forcing. The spectra of the two

simulation cases are very similar, except that the reverse direction of rotation is damped

by approximately 5-7dB in the low frequency range, and the higher frequency base-line is

damped by approximately 15dB.

A summary of the mean and RMS of the drag coefficients are shown in Figures 8.43

and 8.44 Our simulations show 58% reduction in the off-track RMS drag coefficient, 82%
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reduction in the on-track RMS drag coefficient and 58% reduction in the drag coefficient in

the z direction.

Finally, we note that these percentages of reduction are generally higher than those

reported in the experiments of Zeng and Hirano (2005). The reason for this is that our

simulations can account for only one source of vibration – flow induced forcing. Other

sources, such as spindle motor vibrations, disk runout or vibrations, rigid body motion of

the actuator due to play at the actuator bearing, etc. (probably) do not vanish by reversing

the direction of rotation and hence contribute equally to the vibrations of the arm. For

this reason experimental studies must witness smaller reductions in actuator vibrations

compared to our simulations.

8.4.3 Pressure forcing on the disk

One of the main motivations for computing the current simulation model (i.e. Case 2

from Chapter 7) versus the ones considered in the previous part of this Chapter was to

be able to report the disk vibrations. The mean and RMS pressure distributions on the

disks rotating in the conventional direction are shown in Figures 8.45 and 8.46, while the

reverse direction are depicted in Figures 8.47 and 8.48. The mean pressure distributions

are similar for both directions of rotation and are generally close to zero. The slight bias

towards positive pressures around the disk is only an indicator of unconverged statistics of

the flow. The RMS fluctuations of the pressure are similar in their magnitude, but the peaks

in fluctuations occur at different locations. In the conventional direction almost all of the

fluctuations are concentrated in the wake of the arm, while some larger peaks are evident

near the shroud expansion. In the reverse direction of rotation large pressure fluctuations

are observed at the edge of the disk, both upstream and downstream of the arm. The

spectral content of the pressure fluctuations (discussed in detail in Section 7.5.3) is very

similar in the two cases (largely because of the same grid and modeling conditions), and

hence it is not discussed here.

Finally, the response of the disk to the pressure forcing is shown in Figure 8.49 for the
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conventional direction and Figure 8.51 for reverse spinning disks. This response has been

calculated using the software code developed by in house and discussed in Chapter 6. In

the mean, both cases show significant deformation to the (1,0) disk mode, which is also

called the potato-chip mode. This mode is the lowest frequency mode and hence has the

most energy stored in it.

The RMS vibrations are essentially axisymmetric and (close to) a linear function of the

radial direction. More importantly the RMS vibrations are smaller in the reverse rotation

case by approximately 35%. This is in good agreement with the data of Zeng and Hirano

(2005).

8.5 Conclusions

This Chapter has been application oriented – we have shifted the focus from the simu-

lation methods to their application to realistic disk drive flows.

The use of flow mitigation devices discussed above generally result in additional points

of vorticity shedding, and depending on where the turbulence intensity is increased in the

drive, this additional turbulence may or may not affect the actuator arm. On the other

hand, M1 and M2 actually decrease the mean velocity of the flow as is demonstrated in

the axial velocity profiles. This reduction in the kinetic energy of the flow (for the same

disk rotation speed) causes reduced velocity fluctuations in the wake and in the regions

immediately close to the actuator arm. Reiterating, in close proximity to the actuator arm,

especially in the region of the base-plate and suspension (See points #11-23 in Figure 8.22)

M1 has the smallest RMS in-plane and out-of-plane velocity fluctuations. M1 and M2 also

have the smallest pressure fluctuations in this region while M3 appears to be a bad candidate

based on all the RMS data presented.

We note that pressure-based loading on the actuator accounts for most of the off-track

vibrations since pressure drag is 2 orders in magnitude larger than viscous drag. From

this metric both M1 and M2 appear to be suitable candidates for reducing flow induced

vibrations. However, we note that velocity fluctuations are also responsible for fluctuation
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of the forces on the actuator, and their effect may not appear directly in the RMS of the

pressure fluctuations, which is a second order statistical moment. Changes in the velocity

field near the arm cause changes in circulation around the arm, which is linearly related to

the loading on the actuator arm. (For the Kutta-Zhukowski theorem, see Kundu (1990))

Taking this into consideration, it appears that M1 is a better candidate than M2 for reducing

flow induced vibrations.

Finally, we also simulated the basic drive configuration with a reverse spinning disk.

This apparently simple modification to the operation of the drive has the potential for very

significant ramifications on the TMR. Our analysis shows that the coefficients of drag on

the arm (only due to the flow) decrease by 50-80% and the vibrations of the disk reduce

by approximately 35%. This simulation also provides computational confirmation of the

experiments of Zeng and Hirano (2005).

The major portion of this dissertation has now been presented in this and the preceding

Chapters. The next and final Chapter will present the concluions.
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8.6 Tables

Table 8.1. Geometry data
Number of disks 2

Number of e-block arms 1

Number of base plates 2

Number of suspensions 2

Number of sliders 2

Spacing between disks (mm) 2.2

Disk diameter (mm) 76.2

Width of shroud gap (mm) 1

Length of actuator (mm) 45

Length of e-block arm (mm) 32.5

Length of base plate (mm) 6.5

Length of suspension (mm) 11.1

Thickness of e-block arm (mm) 0.8

Thickness of base plate (mm) 0.3

Thickness of suspension (mm) 0.1

Dimensions of slider (mm) 1 × 0.8 × 0.3

Number of weight saving holes 2
in e-block arm

Table 8.2. Model specific geometry data, M1
Thickness of blocking plate (mm) 0.8

Angular dimension of blocking plate (degress) 180

Radial dimension of blocking plate (mm) 16.25

Table 8.3. Model specific geometry data, M2
Thickness of downstream spoiler (mm) 1.6

Maximum width of downstream spolier (mm) 2.65

Length of downstream spoiler (mm) 20.75

]
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Table 8.4. Model specific geometry data, M3
Thickness of upstream spoiler (mm) 1.4

Maximum width of upstream spolier (mm) 8

Length of upstream spoiler (mm) 17.5

Table 8.5. CFD modeling information
Governing equations Filtered Navier Stokes equations

Solution algorithm SIMPLEC Van doormaal and Raithby (1984)

Large eddy simulation model Algebraic dynamic Germano et al. (1991)

Type of LES filter Top-hat (variable width)

Temporal differencing scheme Implicit Euler

Spatial differencing scheme (convective term) Central differencing

Time step (seconds) 2.0× 10−5

Number of time steps 2400

Corresponding number of disk rotations 8

Initial conditions Steady k-ε solution

Table 8.6. Boundary conditions
Disks Rigid rotating walls, no slip

Shroud Rigid wall, no slip

Shroud gap Axial symmetry (zero normal gradient)

Other top and bottom surfaces
of computational volume Axial symmetry (zero normal gradient)

Hub/base of e-block arm Fixed (similar to a cantilever)

Slider-disk interface Slider slips on disk
No cells between slider and disk

All structural interfaces Rigidly joined
(e.g. suspension+slider, (i.e. no dimple)
e-block arm+base plate)

All fluid-structure surfaces Coupled for pressure
and shear stress

Table 8.7. Grid information
M0 M1 M2 M3

Type of mesh unstructured, ← ← ←
quad-dominant

Number of vols. 1,025,772 872,284 890,532 895,769

Max. cell vol. (mm3) 8.996 × 10−2 9.521 × 10−2 9.436 × 10−2 9.390 × 10−2

Min. cell vol. (mm3) 3.433 × 10−5 3.315 × 10−5 5.836 × 10−5 6.855 × 10−5

Avg. cell vol. (mm3) 1.179 × 10−2 1.243 × 10−2 1.442 × 10−2 1.571 × 10−2

Avg. grid res. (mm) 0.2276 0.2316 0.2434 0.2504
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Table 8.8. Common Legend for Figures in the paper
M0 Full Line Original Simulation

M1 Dashed Line Blocking Plate

M2 Dotted Line Downstream Spoiler

M3 Dash-Dotted Line Upstream Spoiler
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8.7 Figures

Figure 8.1. Top view of M0: original simulation
Figure 8.2. Top view of M1: blocking plate

Figure 8.3. Top view of M2: downstream spoiler
Figure 8.4. Top view of M3: upstream spoiler

243



Figure 8.5. M0: Snapshot of turbulent
field in the drive. Plot of axial velocity
component on the midplane

Figure 8.6. M1: Snapshot of turbulent
field in the drive. Plot of axial velocity
component on the midplane

Figure 8.7. M2: Snapshot of turbulent
field in the drive. Plot of axial velocity
component on the midplane

Figure 8.8. M3: Snapshot of turbulent
field in the drive. Plot of axial velocity
component on the midplane
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Figure 8.9. Inter-disk azimuthal velocity pro-
file, at 340◦ from origin, i.e. in the wake (See
Table 8.8 for legend)
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Figure 8.10. Inter-disk azimuthal velocity
profile, at 45◦ from origin (See Table 8.8 for
legend)
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Figure 8.11. Inter-disk azimuthal velocity
profile, at 135◦ from origin (See Table 8.8 for
legend)
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Figure 8.12. Inter-disk azimuthal velocity
profile, at 225◦ from origin (See Table 8.8 for
legend)
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Figure 8.13. Inter-disk radial velocity profile,
at 340◦ from origin, i.e. in the wake (See
Table 8.8 for legend)
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Figure 8.14. Inter-disk radial velocity profile,
at 45◦ from origin (See Table 8.8 for legend)
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Figure 8.15. Inter-disk radial velocity profile,
at 135◦ from origin (See Table 8.8 for legend)
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Figure 8.16. Inter-disk radial velocity profile,
at 225◦ from origin (See Table 8.8 for legend)
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Figure 8.17. Chord locations for calculation of turblence intensity
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Figure 8.18. Turbulence Intensity along
chord 1 (See Table 8.8 for legend)
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Figure 8.19. Turbulence Intensity along
chord 2 (See Table 8.8 for legend)
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Figure 8.20. Turbulence Intensity along
chord 3 (See Table 8.8 for legend)
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Figure 8.21. Turbulence Intensity along
chord 4 (See Table 8.8 for legend)
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Figure 8.22. Location of points along actuator face for which velocity and pressure data is
reported
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Figure 8.23. RMS fluctuation of in-plane velocity fluctuations (See Table 8.8 for legend)
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Figure 8.24. M0: Frequency Spectra of in-plane velocity fluctuations for data points 1-32

Figure 8.25. M1: Frequency Spectra of in-plane velocity fluctuations for data points 1-32
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Figure 8.26. M2: Frequency Spectra of in-plane velocity fluctuations for data points 1-32

Figure 8.27. M3: Frequency Spectra of in-plane velocity fluctuations for data points 1-32
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Figure 8.28. RMS fluctuation of out-of-plane velocity fluctuations (See Table 8.8 for legend)
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Figure 8.29. M0: Frequency Spectra of out-of-plane velocity fluctuations for data points
1-32

Figure 8.30. M1: Frequency Spectra of out-of-plane velocity fluctuations for data points
1-32
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Figure 8.31. M2: Frequency Spectra of out-of-plane velocity fluctuations for data points
1-32

Figure 8.32. M3: Frequency Spectra of out-of-plane velocity fluctuations for data points
1-32
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Figure 8.33. RMS fluctuations of Pressure (See Table 8.8 for legend)
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Figure 8.34. M0: Frequency Spectra of pressure fluctuations for data points 1-32

Figure 8.35. M1: Frequency Spectra of pressure fluctuations for data points 1-32
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Figure 8.36. M2: Frequency Spectra of pressure fluctuations for data points 1-32

Figure 8.37. M3: Frequency Spectra of pressure fluctuations for data points 1-32
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Figure 8.38. Windage loss at disks (See Table 8.8 for legend)
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Figure 8.39. Snapshot of turbulent field in
the drive with conventional direction of disk
rotation. Plot of axial velocity component on
a plane passing through the e-block arm.

Figure 8.40. Snapshot of turbulent field in
the drive with reverse direction of disk rota-
tion. Plot of axial velocity component on a
plane passing through the e-block arm.
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Figure 8.41. Time History of the coefficient of drag experienced by the arm, in three
directions: off-track, on-track and z
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Figure 8.42. Frequency spectra of the coefficient of drag experienced by the arm, in three
directions: off-track, on-track and z
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Figure 8.43. Summary of the mean coefficients of drag in the three directions: off-track,
on-track and z
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Figure 8.44. Summary of the rms coefficients of drag in the three directions: off-track,
on-track and z
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Figure 8.45. Resultant mean pressure in Pas-
cals acting on the disks, when spun in the
conventional direction.

Figure 8.46. Resultant rms pressure in Pas-
cals acting on the disks, when spun in the
conventional direction.

Figure 8.47. Resultant mean pressure in Pas-
cals acting on the disks, when spun in the
reverse direction.

Figure 8.48. Resultant rms pressure in Pas-
cals acting on the disks, when spun in the
reverse direction.
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Figure 8.49. Mean disk deflection due to the
airflow pressure, when the disk is spun in the
conventional direction

Figure 8.50. RMS of the disk vibration due
to the airflow pressure, when the disk is spun
in the conventional direction

Figure 8.51. Mean disk deflection due to the
airflow pressure, when the disk is spun in the
reverse direction

Figure 8.52. RMS of the disk vibration due
to the airflow pressure, when the disk is spun
in the reverse direction
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Chapter 9

Conclusion

9.1 Conclusions

At the end of the previous Chapters we have described the conclusions of that Chapter

in detail. In this final Chapter there appears no need to reiterate the conclusions to that

level of detail. Hence only a general discussion of this dissertation follows.

It is probably accurate to say that the work presented in this dissertation has advanced

to some extent the state of the art of disk drive air flow simulations. While it has become

relatively easy to compute such flows using commercial CFD software, demonstrating a

sufficient level of confidence and sophistication in these simulations is not always straight-

forward.

As is evident the work presented in this dissertation has been of three types:

− Solving the actual problem, i.e. computing the flow induced vibrations of the arm –

which is an easy task of only marginal use unless it is defended by rigorous validation

tests

− Testing, validating and developing confidence in our initial results, and

− Applying sophisticated simulation techniques beyond the flow induced vibrations of

the arm, e.g. the vibrations of the disk, the use of reverse spinning disks, etc.
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As we saw in Chapter 2 solving the actual problem of interest is relatively easy given the

ease of use of commercial geometric modeling tools and commercial CFD solvers. It only

requires a basic knowledge of CFD techniques and modern post processing tools are able

to generate detailed plots of almost any desirable quantity. However, in solving the original

problem of interest several questions need to be answered: How should the turbulence in

the drive be modeled? If using LES, which SGS model is the best candidate? Among

the commercial software available (and their in-built SGS models), which one provides the

most accurate results? How do solutions change with the differencing scheme? What grid

sizes should one use for reasonable results; and what is the uncertainty associated with those

grids? What is the magnitude of the artificial dissipation? Chapters 3-6 have answered each

of these questions in depth and will hopefully serve as a useful guide for future researchers

in the field. Chapters 7-8 have focused on the third part of this dissertation: applying the

CFD techniques to some different problems, e.g. disk vibrations, flow mitigation devices

and reverse spinning disks.

9.2 Future Work

Several research directions could serve as possible areas for the continuation and ad-

vancement of this work.

First and foremost, more realistic calculations should be performed to determine the

response of the actuator arm to the flow. For such calculations it is imperative to model

the air bearing separation at the slider using the compressible Reynolds equation and take

into account the various non-linear forces that arise at small separations. Some of these

are: van der Walls forces, meniscus forces, electrostatic forces and contact and impact forces

when the slider (or a portion of the slider) touches the rotating disk. The model should

also include the mechanical and electrostatic properties of the disk and other features such

as the roughness of the disk. And finally, it is vital to include the elastic behavior of the

suspensions, base plates and e-block arm.

As mentioned earlier, the development of such simulation capabilities are beyond the
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scope of this dissertation. Nonetheless, such capabilities have been developed by others

(notably contemporary researchers) and our CFD simulations would serve as a useful dataset

for them. In the discussion that follows, we make use of such a code developed by our

colleague: Vineet Gupta.

The next topic that deserves future attention is the cost of simulation. Throughout

Chapters 3-8 we have mentioned the use of 32 - 128 CPUs in computing these flows to

reasonable accuracy. In spite of this massive resource usage, simulation times for LES

calculations are usually 2-3 weeks. Such large simulation times makes it infeasible (even

impossible) to use CFD as a design tool and considerably limits the use of the CFD results.

As a possible solution to the above problem we propose a novel technique to quickly

approximate certain CFD results without compromising their accuracy. This is presented

in the next Section.

9.3 Use of Models to approximate forcing spectra

9.3.1 Introduction

As mentioned earlier the use of extensive computer resources to compute an LES result

of a single flow field within 2-3 weeks may be impractical. In any case from previous

Chapters we understand that most LES results are inherently accompanied by errors and

uncertainties. Modeling errors such as incompressibility, the SGS model and the boundary

conditions are characteristic of all such computations and are hard to quantify. On the

other hand, numerical errors such as grid discretization, time stepping errors and artificial

dissipation are easier to quantify. We determined that such errors lead to 20-30% uncertainty

in our results. We also realize that compensating for such errors may be infeasible given the

high cost of the current calculations. The question then arises: Is it really worth computing

LES calculations for different flow configurations when the uncertainty of the results is

known and the errors cannot be practically reduced?

Evidently, the flow-induced drag is the most important information to determine the
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response of the actuator to the flow. This flow-induced forcing may be described either in

terms of its statistics in the time domain or its spectrum in the frequency domain. Time

domain signals are hard to characterize since one may only describe statistical moments like

RMS or the fluctuating energy content. On the other hand, the frequency spectra provide

rich information about the energy content at various frequency levels and determine the

amount of energy stored in each vibration mode of the actuator arm. The zero-frequency

DC component of the spectrum is unimportant – it accounts only for the mean displacement

of the arm which can be easily compensated for by the servo control system.

For the reasons discussed above we propose to use a simple model to describe the drag

spectrum. Such a model is completely manufactured based on CFD experience, but as we

will see ahead, it provides a suitable approximation to the final results of a CFD calculation.

9.3.2 Piecewise linear model

Figure 9.1 shows a typical spectrum obtained for the off-track drag coefficient as the

final result of an extensive CFD calculation. As a first approximation, one may think of

fitting a simple piecewise linear model (PLM) to the spectrum as shown by the dotted line

in Figure 9.2. In fitting the PLM to the CFD spectrum we have chosen the lines such that

the area under the curves are equal. This implies that the RMS of the PLM-based and the

CFD-based drag coefficients are equal – which further ensures that the flow-induced energy

transfer to the actuator remains the same.

The question naturally arises as to how well the PLM approximates the CFD-based

spectrum. Figure 9.3 shows a comparison between the off-track vibration results using the

original CFD model and the PLM model (dashed line). These results have been calculated

using the full air-bearing simulation code mentioned above. The results essentially show that

the statistical characteristics of the PLM based forcing are very similar to the CFD-based

forcing. The difference in the RMS of the vibrations is only 3%, while Figure 9.4 shows

that in both cases the sway modes of the actuator are the dominant modes of the response.

This result is encouraging: it implies that as long as the spectral energy is contant, one
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may modify the CFD spectra to a simple linear model and obtain almost the same results.

The difference between the original CFD and PLM based results is so small (3%) that it

appears unnecessary to investigate other model shapes (e.g. parabolic, exponential) that

may approximate the original spectra better.

The next question that arises is of the sensitivity of the results to the forcing model.

It is well known that the air bearing interface is highly non-linear and the dynamics of the

suspension are weakly coupled in all directions. Hence we wish to investigate whether small

changes in the spectra lead to large changes in the vibration results. Figure 9.5 shows five

different PLM spectra (Case 1 to 5) that were investigated as forcing functions in the same

air bearing code mentioned above. Case 1 has the same energy as the CFD spectra. In

the remainder of the Cases, the location of the central point of the linear model is shifted

upwards and downwards by 15 dB and to the left and right by 2 kHz. The different models

considered here contain different amounts of energy and hence we expect differences in the

response of the arm to these Cases.

Figure 9.6 compares the percentage change in RMS of the forcing function due to the

model (in Cases 1-5) versus the percentage change in the RMS of the structural vibrations

in the off-track direction. The chart basically shows that the relationship between the input-

output is fairly linear – with a constant of proportionality between 0.8 and 1.4. This gives

us confidence that under circumstances where the PLM spectra are not accurate in their

total energy content (i.e. RMS), the resulting inaccuracies of the structural vibrations will

not be disproportionately large, in spite of the non-linearities of the head-disk interface.

9.3.3 Parametric Investigation

The feasibility of the PLM approach has been demonstrated above. When using an

energy conserving model, the errors in the final vibrations of the arm are very small –

and the changes in the input spectra are linearly related to changes in the output RMS

vibrations.
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The flow-induced forcing spectra are highly dependant on the particular flow under

consideration. The major parameters that influence the forcing spectra are:

− The Reynolds number of the flow, which is determined by:

– The disk speed of rotation

– The hard drive form factor

– The disk to disk separation

− The geometry of the arm with respect to the flow,

– The actual geometry of the arm (thickness, length, holes)

– The radial position of the arm with respect to the flow

− Other factors, such as:

– Geometry of the disk drive enclosure

– The disk to shroud spacing

– Spoiler devices, filters, desiccants

While it may be very expensive to quantify the effect of each of these parameters on

the forcing spectra, we concentrate our efforts of only two parameters: disk RPM (which

determines the Reynolds number) and radial position of the arm.

For this parametric study we conducted LES calculations of a typical disk drive model

(used in Chapter 2) at three different RPMs (5400, 7200 and 10,000) and three different

radial positions of the arm (ID, MD and OD). The locations of the arm in the different radial

positions is shown in Figure 9.7. The relevant details of the simulations (grid, boundary

and initial conditions) have been described in Chapter 2.

Before we present results of the parametric variation, we would like to outline the

complexity of the task involved. For forces acting on the actuator, there are 6 degrees

of freedom and correspondingly 6 forcing spectra (3 forces, 3 moments). Additionally the

flow induced loading is a function of space and hence the frequency spectra of the loading
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vary along the length of the actuator. Finally, the spectra are heavily dependant on the

parameters outlined above. Hence, it would take a gargantuan effort to investigate the

spectra at all locations of the arm as a function of all parameters in each degree of freedom.

In the following paragraphs we only investigate the trends as a function of two parameters:

RPM and radial location, and it turns out that the trends are faithfully replicated over the

entire length of the actuator.

Figures 9.8 and 9.9 show the variation of the spectra as a function of radial position

and RPM, respectively. The figures show the variation in all degrees of freedom (i.e. forces

and moments in the off-track, on-track and z direction). Remarkably, all the degrees of

freedom show the same trends – i.e. the energy content of the spectra increase by going

from ID to OD and by increasing the RPM. In Figure 9.8 one observes that the spectra for

the forces show a clearer trend than those for the moments. Generally, the moments are

20-40 dB (i.e 1-2 orders of magnitude) smaller than the corresponding forces. The spectra

in Figure 9.9 are truncated at different frequencies because a different time step was used

in each simulation, leading to different sampling frequencies. In each simulation the ratio of

the time step to the RPM was kept constant (2× 10−5 seconds time step for 10,000 RPM).

Interestingly, the same trends shown in Figures 9.8 and 9.9 are evident along the entire

length of the actuator. The location of the forcing in Figures 9.8 and 9.9 have been chosen

at random: Figure 9.8 shows the loads integrated over the suspension, while Figure 9.9

shows the loads integrated over the e-block arm.

The clear manifestation of such trends makes it possible to build PLM based spectra for

each degree of freedom along all positions of the actuator. As an example, linear models are

developed for the two parameters (RPM and radial location) for only a single force acting

at a single location of the arm.

Figure 9.10 shows the variation of the frequency spectra for the force acting on the slider

in the off-track direction, as a function of the radial position of the arm. (As mentioned

above, we are considering a single direction and single location only). The PLM spectra

based on energy conservation are also shown along with the CFD spectra. Finally, the three

model spectra for the three radial positions are shown in Figure 9.11. The trend is very
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clear from the figure. The movement of the three points that define the piecewise linear

model is also clearly visible and may be used for generating (postulating) spectra without

actually performing the corresponding CFD calculation .

Similarly, Figure 9.12 shows the variation of the frequency spectra for the force acting on

the slider in the off-track direction, as a function of the disk RPM. Again, PLM spectra based

on energy conservation are fitted to these spectra and are plotted together in Figure 9.13.

9.3.4 Conclusions

From the Figures 9.11 and 9.13 it may now be possible to construct linear models

to approximate conditions for which no CFD results are available. E.g. it is possible to

approximate the forcing functions at different arm positions simply by linearly interpolating

between the curves of Figure 9.11. On the other hand, different Reynolds number (either

by form factor, disk RPM or disk-to-disk spacing) can be studied by interpolating (or

extrapolating) the curves in Figure 9.13. All such simulations would totally bypass the CFD

part of the solution strategy and hence would result in immense time and cost savings.

All such models are associated with some uncertainty. There could possibly be errors in

the approximating PLMs that differ from the actual CFD results. However, given the clear

trends demonstrated in our simulations, it is unlikely that the models will deviate from the

CFD based results substantially. Moreover, as demonstrated earlier, slight differences in

the energy content of the spectra lead to similarly slight differences in the final vibrations

of the arm (i.e. errors do not blow up). As a final cautionary note: it is worth mentioning

that the models developed here are based on the original CFD models. The errors and

uncertainties of the underlying CFD data are obviously carried over to the PLM spectra.
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9.4 Figures
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Figure 9.1. Typical flow induced forcing spectrum. Obtained for resultant force on the
actuator acting in the off-track direction
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Figure 9.2. A piecewise linear model (PLM) of flow induced forcing spectrum shown along
with the original CFD based spectrum
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Figure 9.3. Comparison of the time history of the off-track vibrations of the slider when
using the original CFD model v/s using the piecewise linear model (PLM)
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Figure 9.7. Computational models used for parametric investigation of radial arm position.
Left: inner diameter (ID), center: middle diameter (MD) and right: outer diameter (OD)
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Figure 9.8. Variation of the spectra in all 6 degrees of freedom with radial position of the
arm. Spectra are for the resultant forces and moments acting on the suspension
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Figure 9.9. Variation of the spectra in all 6 degrees of freedom with disk RPM. Spectra are
for the resultant forces and moments acting on the e-block arm
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Figure 9.10. Variation of the frequency spectrum of the force on the suspension in the
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Figure 9.11. Variation of the PLM spectra due to change in radial position
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