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Abstract 

Dynamic Contact and Friction Study of Homogeneous 
and Layered Media 

by  

Jian Yang 

Doctor of Philosophy in Engineering–Mechanical Engineering 

University of California, Berkeley 

Professor Kyriakos Komvopoulos, Chair 

 

The principal objective of this dissertation was to develop both analytical and 

finite element models of contact and friction phenomena encountered over a broad range 

of length scales, from the atomic level to the macroscopic level. This was accomplished 

by developing continuum and discrete material models of the deforming media 

(homogeneous or layered) and the use of scale-invariant (fractal) parameters for the 

description of the interface topography to preserve self-affinity throughout the range of 

lengths where a probabilistic (fractal) approach was employed. The specific 

accomplishments of this work are the following. 

Dynamic contact and friction analyses of homogeneous and/or layered media 

were performed using numerical and analytical methods. The dynamic response of 

homogeneous and layered media subjected to contact loads and the dependence of the 

coefficient of friction on load, contact geometry, and material parameters were examined. 

Most studies were based on continuum mechanics models, while atomic-scale friction 
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was studied by molecular dynamics simulations, suitable for atomic-/nano-scale 

mechanics analysis. 

Using the finite element method and a dimensional analysis, dynamic impact of 

an elastic homogeneous medium by a rigid sphere (3-D axisymmetric analysis) or 

cylinder (2-D plane-strain analysis) moving at a constant speed was studied. The various 

waves propagating in the media were considered in the dynamic contact simulations. An 

abrupt increase in the mean contact pressure was found at the time of initial contact. The 

corresponding initial mean contact pressure was found to be proportional to the 

indentation speed. Similar results were obtained for a layered medium within a short 

period after initial contact (i.e., small interference), provided the wave fronts were 

confined within the first layer, in which case the medium behaves like a homogeneous 

one. 

Finite element solutions of a multi-layered medium subjected to dynamic contact 

loads were also performed for relatively large interferences. The indenter profile was 

characterized by either a smooth, cylindrical (chapter 3) or rough, fractal (chapter 4) 

surface. The requirement for the finite element mesh size in order to obtain results that 

are not biased by the waves reflected from the artificial boundaries of the half-space was 

studied. The dependence of the contact force/pressure and subsurface stress/strain fields 

on the indentation speed, indenter radius (or radius of curvature of the asperities), and 

overcoat thickness is elucidated. The possibility for excessive plastic flow and crack 

initiation is examined in terms of the maximum equivalent plastic strain and maximum 

tensile (first principal) stress. The effect of the surface-layer thickness and cyclic loading 
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is also investigated for the case of a multi-layered medium subjected to dynamic contact 

with a rough (fractal) surface. 

Static friction between rough surfaces was studied based on an analytical 

approach. The surface profiles were characterized by fractal geometry, and a theoretical 

treatment was developed using a piece-wise power-law size distribution and a normal 

slope distribution of the asperity contacts. Normal and friction forces were obtained for 

constant interfacial shear strength and negligible interaction between neighboring contact 

spots. The variation of the static coefficient of friction with normal load is interpreted in 

the context of analytical results. The dependence of the friction coefficient on interfacial 

shear strength and surface topography parameters is discussed, and the regime where the 

friction coefficient assumes a minimum is determined from simulation results. 

Molecular dynamic simulations were performed in order to examine the friction 

coefficient dependence on the tip-substrate interference and tip shape and size. For 

simplicity, a diamond tip and a face-centered-cubic copper-like substrate were employed. 

The friction coefficient was found to be quite sensitive to the tip-substrate interference 

for a prismatic flat tip, but relatively insensitive for a pyramidal sharp tip. In addition, 

lower friction coefficients were obtained with a larger tip-base area and for edge-front tip 

sliding.  

The findings of this dissertation provide new insight into the tribological behavior 

of homogeneous and multi-layered media. In particular, the dynamic response of 

homogeneous and multi-layered media subjected to contact loads, the dependence of the 

friction coefficient on surface topography and material properties, and the tip size and 

shape effects on atomic-scale friction anisotropy were examined in light of finite element, 
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analytical, and molecular dynamics results. Most results are relevant to general 

engineering components, especially those for multi-layered media are of particular 

significance to thin-film media used in hard disk drives.  

 

 

 

 

 

Professor Kyriakos Komvopoulos 

Dissertation Chair 
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~h  = 0.01, and (d) V~  = 0.004, 
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~h  = 0.025. 
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~h  = 0.01 
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(full unloading). 
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~h  = 0.025. 
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an elastic-plastic, multi-layered medium with a surface-layer thickness 1

~h  = 
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0.01 indented by a rigid, rough surface for indentation speed V~  = 0.004 and 
interference (a) δ~  = 0.0025, (b) δ~  = 0.005, and (c) δ~  = 0.01. 
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multi-layered medium indented by a rigid, rough surface versus interference 
for indentation speed V~  = 0.001, 0.002, and 0.004 and surface-layer 
thickness (a) 1

~h  = 0.01 and (b) 1
~h  = 0.025. 
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layered medium indented by a rigid, rough surface for different indentation 
speed and surface-layer thickness:  (a) V~  = 0.001, 1

~h  = 0.01, (b) V~  = 0.004, 

1
~h  = 0.01, and (c) V~  = 0.004, 1

~h  = 0.025. 

Fig. 4.13 (a) The maximum equivalent plastic strain at the maximum interference δ~  = 
0.01 and (b) maximum residual equivalent plastic strain after full unloading 
produced in the second layer of an elastic-plastic multi-layered medium 
indented by a rigid rough surface versus loading cycle for indentation speed 
V~  = 0.001, 0.002, and 0.004 and surface-layer thickness 1

~h  = 0.01 and 0.025. 

Fig. 4.14 Contours of residual equivalent plastic strain in an elastic-plastic, multi-
layered medium with surface-layer thickness 1

~h  = 0.01 indented by a rigid, 
rough surface for indentation speed V~  = 0.004 and maximum interference δ~  
= 0.01 obtained after the (a) first, (b) second, and (c) fourth indentation cycle. 
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Fig. 5.1 Schematic showing the separation distance, d, between two rough surfaces, 1 
and 2.  

Fig. 5.2 Schematic log-log plot of approximate continuous power spectra of two 
fractal surfaces ( )ω1P  and ( )ω2P  with different fractal dimension (D1 < D2) 
intersecting at a critical frequency *ω , and power spectrum of the equivalent 
surface ( )ωP . 

Fig. 5.3 Schematic illustration of the truncation of two asperities on surfaces i and j 
with contact angle θ.  

Fig. 5.4 (a) Schematic showing a line-segment of projected length l, and (b) 
probability density function of the secant slope of line-segments with l = 10 
nm (obtained from a two-dimensional fractal surface profile with L = 4379 
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nm, 0L  = 2 nm, D = 1.44, and G = 9.46 × 10-4 nm) and normal distributions 
with standard deviations equal to the rms of the secant slope of the simulation 
data, σsim, and the square root of the values estimated from Eqs. (5.6) and 
(5.10). 

Fig. 5.5 Schematics of asperity contacts and associated normal load versus 
interference response: (a) both asperities deform elastically and the contact 
opposes the onset of relative movement, (b) both asperities deform elastically 
and tend to separate at the inception of sliding, (c) at least one asperity 
deforms plastically and the contact opposes the onset of relative movement, 
and (d) at least one asperity deforms plastically and the asperities tend to 
separate at the inception of sliding. 

Fig. 5.6 Schematic showing the local forces acting on a single spherical asperity. The 
local normal force l

nF  passes through the sphere center, while the local 
friction force l

fF  is tangent to the circle on χ plane, which is parallel to the 
direction of the relative movement at the inception of sliding. 

Fig. 5.7 Static coefficient of friction versus normal load for (a) Ds1 = 2.3 and Ds2 = 
2.5, and (b) Ds1 = Ds2 = 2.3 and 2.5 (L = 10 µm, 0L  = 2 nm, G1 = 2.109 × 10-5 
nm, G2 = 1.055 × 10-4 nm, E = 129.8 GPa, Sy = 300 MPa, ν = 0.343, H = 900 
MPa, and τ/k = 0.8.) 

Fig. 5.8 Static coefficient of friction versus normal load for τ/k = 0.2 and 0.8 (L = 10 
µm, 0L  = 2 nm, Ds1 = 2.3, Ds2 = 2.5, G1 = 2.109 × 10-5 nm, G2 = 1.055 × 10-4 
nm, E = 129.8 GPa, Sy = 300 MPa, ν = 0.343, and H = 900 MPa.) 

Fig. 5.9 Static coefficient of friction versus normal load for surfaces with fractal 
dimension Ds1 and Ds2, height standard deviation rms1 and rms2, and fractal 
roughness G1 = G2 = 2.109 × 10-5 nm (L = 10 µm, 0L  = 2 nm, E = 129.8 GPa, 
Sy = 300 MPa, ν = 0.343, H = 900 MPa, and τ/k = 0.8.)  

Fig. 5.10 Static coefficient of friction versus normal load for surfaces with fractal 
dimension Ds1 and Ds2, fractal roughness G1 and G2, and height standard 
deviation rms1 = rms2 = 1.9 nm (L = 10 µm, 0L  = 2 nm, E = 129.8 GPa, Sy = 
300 MPa, ν = 0.343, H = 900 MPa, and τ/k = 0.8.) 

 

Chapter 6 

Fig. 6.1 (a) Three-dimensional representation and (b) top view of initial atomic 
configuration of a 24as × 18as × 10as FCC copper-like substrate and a 3at × 
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3at square-base prismatic diamond tip used in some simulations. Sliding was 
simulated along the [100] direction with the tip edge in the front.  

Fig. 6.2 Schematics showing (a) the boundary conditions (A) used in most simulations 
and (b) the periodic boundary conditions (B) used to analyze the effects of 
boundary conditions on the simulation results. 

Fig. 6.3 Schematics illustrating the measurement of surface separation and tip-
substrate interference for a prismatic diamond tip with square-base width w. 

Fig. 6.4 Normal force versus dimensionless tip-substrate interference for a FCC 
copper-like substrate indented by a 3at × 3at square-base prismatic diamond 
tip: (a) 24as × 18as × 10as substrate with boundary conditions A, (b) 30as × 
18as × 10as substrate with boundary conditions B, and (c) 24as × 18as × 20as 
substrate with boundary conditions A. The initial atomic configuration for 
simulation case (a) is shown in Fig. 6.1. 

Fig. 6.5 Average normal and friction forces versus sliding speed for a square-base 
prismatic diamond tip sliding on a FCC copper-like substrate and fixed tip-
substrate interference (δ/as = 1.44). The initial atomic configuration and 
sliding direction are shown in Fig. 6.1. 

Fig. 6.6 Atomic configurations of a FCC copper-like substrate indented by a square-
base prismatic diamond tip for tip-substrate interference equal to (a) 0.4as, (b) 
0.65as, (c) 0.9as, and (d) 1.15as. Only atoms between vertical planes AA′ and 
BB′ (Fig. 6.1(b)) are shown for clarity. The initial atomic configuration and 
sliding direction are shown in Fig. 6.1. 

Fig. 6.7 Normal force versus dimensionless sliding distance for a square-base 
prismatic diamond tip sliding on a FCC copper-like substrate and tip-
substrate interference equal to (a) 0.4as, (b) 0.65as, (c) 0.9as, and (d) 1.15as. 
The initial atomic configuration and sliding direction are shown in Fig. 6.1. 

Fig. 6.8 Friction force versus dimensionless sliding distance for a square-base 
prismatic diamond tip sliding on a FCC copper-like substrate and tip-
substrate interference equal to (a) 0.4as, (b) 0.65as, (c) 0.9as, and (d) 1.15as. 
The initial atomic configuration and sliding direction are shown in Fig. 6.1. 

Fig. 6.9 Atomic configurations of a FCC copper-like substrate due to sliding of a 
square-base prismatic diamond tip for a distance of 6as and tip-substrate 
interference equal to (a) 0.4as, (b) 0.65as, (c) 0.9as, and (d) 1.15as. Only 
atoms between vertical planes AA′ and BB′ (Fig. 6.1(b)) are shown for clarity. 
The initial atomic configuration and sliding direction are shown in Fig. 6.1. 

Fig. 6.10 (a) Average normal and friction forces and (b) friction coefficient versus 
dimensionless tip-substrate interference for a square-base prismatic diamond 
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tip sliding on a FCC copper-like substrate. The initial atomic configuration 
and sliding direction are shown in Fig. 6.1. 

Fig. 6.11 Friction coefficient versus dimensionless tip-base size for edge-front sliding 
of a square-base prismatic diamond tip on a FCC copper-like substrate. The 
initial atomic configuration of the substrate and sliding direction are shown in 
Fig. 6.1. 

Fig. 6.12 Atomic configurations of a FCC copper-like substrate due to sliding of a 
triangle-base prismatic diamond tip: (a) and (b) top views of initial atomic 
configurations in edge- and plane-front sliding simulations, respectively, and 
(c) and (d) three-dimensional atomic configurations obtained after edge- and 
plane-front sliding by a distance of 6as for fixed tip-substrate interference 
(δ/as = 1.15).  

Fig. 6.13 Friction coefficient versus dimensionless tip-substrate interference for plane- 
and edge-front sliding of a triangle-base prismatic diamond tip on a FCC 
copper-like substrate. Top views of initial atomic configurations and the 
sliding direction are shown in Figs. 6.12(a) and 6.12(b). 

Fig. 6.14 Normal force versus dimensionless tip-substrate interference for a FCC 
copper-like substrate indented by a pyramidal diamond tip. The initial atomic 
configuration and sliding direction are shown in the inset of the figure. 

Fig. 6.15 (a) Average normal and friction forces and (b) friction coefficient versus 
dimensionless tip-substrate interference for edge-front sliding of a pyramidal 
diamond tip on a FCC copper-like substrate. The initial atomic configuration 
and sliding direction are shown in the inset of Fig. 6.14. 
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CHAPTER 1 

Introduction 
 

 

The study of contact and friction of interacting bodies is a traditional field in 

continuum mechanics and of critical importance in many engineering applications, 

especially those involving components undergoing intimate surface interactions, such as 

gears, bearings, breaks, switches, relays, and guidewires. Contact analysis is 

advantageous for understanding the tribological behaviors (including wear, friction, and 

lubrication) of these components. The first seminal contact analysis of elastic curved 

bodies was presented by Hertz in 1882. Since then, significant progress has been 

encountered in static contact mechanics for both elastic and elastic-plastic media. 

However, mechanics studies of dynamic contact problems are relatively limited and most 

of them have been performed in recent years, presumably due to the complexity of 

analytical and numerical treatments. Beginning from 1970’s, the emergence of high-

performance computers in conjunction with advances in numerical methods, mainly finite 

element method, has provided powerful computational tools for contact studies. 

Numerical analyses greatly improved the understanding of the dynamic response of 

contacting media including the subsurface stress and strain fields and contact pressure 

distribution.  

One of the most important findings is that contact loading can produce rather high 

stresses in a region near the surface, which may lead to mechanical failure due to 

excessive plastic flow, fracture, or cyclic fatigue. Consequently, in modern engineering 
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applications, hard and tough overcoat layers are generally used to improve the 

tribological properties of interacting surfaces and protect the components from excessive 

inelastic deformation and cracking. This resulted in the divergence of the research 

attention to contact problems involving layered medium. These problems are quite 

complex, and analytical solutions are cumbersome to obtain, especially for elastic-plastic 

contact behaviors involving both geometry and material nonlinearities.  

The problems become even more complex in micro-/nano- scale studies, since all 

solid surfaces, no matter how they are formed, are rough, and the roughness effect cannot 

be ignored in contact analyses performed at the micro-/nano-scale. Traditionally, rough 

surfaces have been characterized by statistical parameters, such as surface height variance, 

skewness, and kurtosis. However, a major disadvantage in these approaches is the use of 

statistical parameters that are scale-dependent. In recent years, lots of engineering 

surfaces have been found to exhibit random and self-affine features. Consequently, in 

contemporary contact mechanics analyses, fractal geometry, which is based on scale-

independent parameters, has been used to describe the surface topography.  

When two bodies are brought into contact, a finite lateral force is required to 

initiate relative motion in the horizontal direction. This is known as friction, which can be 

classified into two categories (i.e., dynamic and static friction) depending on whether 

relative displacement occurs at the contact interface. This force inhibits the relative 

movement between the contacting bodies and is referred to as the friction force. The ratio 

of the friction and normal forces is termed the coefficient of friction, and its magnitude 

depends on adhesion, surface roughness, deformation, and sliding speed (for dynamic 

friction only). Friction behavior is rather complex due to the interdependence of the 



 3

previous mechanisms. Only limited analytical models have been implemented, and all 

involve major simplifications in the theoretical treatments. 

In view of recent advances in nanotechnology, the demand for fundamental 

understanding of material behavior at the nanoscale has increased considerably. Since the 

scale approaches the dimension of atoms, continuum mechanics cannot be used in 

nanoscale mechanical analyses. Molecular dynamics (MD) is a powerful computational 

tool for studying nanoscale surface phenomena and instantaneous material properties. It 

has been used in nano (atomic)-scale contact and friction analyses with great success and 

has led to fundamental understanding of surface interaction at the atomic (molecular) 

level.  

The objectives of this dissertation were to develop comprehensive dynamic 

contact analyses for elastic/elastic-plastic homogeneous and/or multi-layered media using 

the finite element method, and to study the micro-, and nano (atomic)-scale friction 

behavior of materials by developing a mechanics approach and performing molecular 

dynamics simulations. A summary of the content of chapters 2-7 is given in the following 

paragraphs. 

Chapter 2 presents a finite element analysis of the impact of a rigid 

sphere/cylinder moving at a constant velocity on an elastic homogeneous half-space. 

Frictionless dynamic contact was modeled with special contact elements at the half-space 

surface. A dimensionless parameter, β, was introduced to study the effect of wave 

propagation on the deformation behavior. Similar results were obtained for both 

axisymmetric (spherical indenter) and plane strain (cylindrical indenter) analysis. It is 

shown that, for small surface interference (β ≤ 1), the front of the faster propagating 
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dilatational waves extends up to the contact edge, the real contact area is equal to the 

truncated area, and the contact pressure distribution is uniform. However, for large 

surface interference (β > 1), the dilatation wave front extends beyond the contact edge, 

the real contact area is less than the truncated area, and the contact pressure exhibits a 

Hertzian-like distribution. The mean contact pressure increases abruptly at the instant of 

initial contact, remains constant for β ≤ 1, and increases gradually for β > 1. Based on 

finite element results for the subsurface stress, strain, and velocity fields, a simple 

theoretical model that yields approximate closed-form relationships for the mean contact 

pressure and kinetic and strain energies of the half-space was derived for small surface 

interference (β ≤ 1), and its validity was confirmed by favor comparisons with finite 

element results. 

A plane-strain analysis of dynamic indentation of an elastic-plastic multi-layered 

medium by a rigid cylinder is presented in chapter 3. Conversely to plane-strain static 

contact analysis, the solutions of a dynamic contact analysis within a subsurface domain 

adjacent to the contact region are independent of mesh size, provided the mesh 

dimensions are sufficiently large such that the propagating waves reflected from the 

artificial mesh boundaries do not reach the domain of interest during the analysis. 

Simulation results for the normal force, contact pressure distribution, subsurface stresses, 

and evolution of plasticity in a multi-layered medium are presented in terms of the speed 

and radius of the rigid indenter. The likelihood of mechanical failure due to excessive 

plastic deformation and cracking is interpreted in terms of finite element results for the 

von Mises equivalent stress, first principal stress, and equivalent plastic strain obtained 

for different values of the indenter speed and radius of curvature. 
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Chapter 4 consists of a finite element analysis of dynamic indentation of an 

elastic-plastic multi-layered medium by a rigid, rough surface exhibiting fractal behavior. 

Simulation results illustrate the effects of the layer thickness and indentation speed on the 

contact load, contact pressure distribution, and subsurface stress and strain fields. The 

possibility of elastic shakedown is discussed in terms of the evolution of plasticity in the 

multi-layered medium during repeated loading. The finite element analysis provides 

insight into the importance of indentation speed, overcoat thickness, and surface 

topography on the mechanical response of multi-layered media subjected to dynamic 

contact by rough surfaces.  

In chapter 5, a theoretical treatment of static friction is developed for rough 

surfaces with topographies exhibiting fractal behavior, which is characterized by a piece-

wise power-law size distribution and a normal slope distribution of the asperity contacts. 

Solutions for the normal and friction forces are obtained for constant interfacial shear 

strength and negligible interaction between neighboring contact spots. The variation of 

the static coefficient of friction with normal load is interpreted in the context of analytical 

results. For light loads, deformation at contact spots is predominantly plastic and the 

friction coefficient decreases with the increase of the normal load. Alternatively, for high 

loads, the majority of asperity contacts deform elastically and the friction coefficient 

increases with normal load. The dependence of the static coefficient of friction on 

interfacial shear strength and surface topography parameters is discussed, and the regime 

where the friction coefficient assumes a minimum is determined from simulation results. 

Chapter 6 presents molecular dynamics simulations of a diamond tip sliding on a 

face-centered-cubic, copper-like substrate, illustrating the friction coefficient dependence 
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on the tip-substrate interference and tip shape and size. For a prismatic flat tip, the 

friction force is mainly due to interactions of atoms at the front face of the tip and 

substrate atoms ahead of the tip, while the normal force is due to interactions of atoms on 

the flat surface of the tip and substrate atoms under the tip. However, for a pyramidal 

sharp tip, both normal and friction forces are mainly due to interactions between atoms at 

the front surface of the tip and substrate atoms in the vicinity of the sliding tip. 

Consequently, the friction coefficient is either sensitive (prismatic flat tip) or insensitive 

(pyramidal sharp tip) to the tip-substrate interference distance. In addition, tip size and 

orientation effects on the friction coefficient were observed with the prismatic flat tip. 

Lower friction coefficients were obtained with a larger tip-base area and edge-front tip 

sliding. Simulation results provide insight into the tip size and shape effects on atomic-

scale friction anisotropy. 

Finally, chapter 7 provides a summary of the main findings reported in chapters 2-

6. 
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CHAPTER 2 

Impact of a Rigid Sphere and Rigid Cylinder on an Elastic 
Homogeneous Half-Space  

 

 

2.1  Introduction  

Since the seminal elastic contact analysis of curved bodies presented by Hertz 

(1882), significant progress has been encountered in elastostatic contact mechanics 

(Johnson, 1985). However, mechanics studies of dynamic contact problems have been 

mostly performed in recent years, presumably due to the complexity of analytical 

treatments and the intensive numerical calculations requiring powerful computers. 

Previous dynamic studies provided insight into the movement and adhesion of impinging 

particles and information about the coefficient of restitution and the energy dissipated due 

to particle impact. For instance, Brach and Dunn (1992) presented a mathematical study 

of the impact and adhesion of microspheres, Wall et al. (1990) measured the kinetic 

energy loss for particles impacting a surface, and Rogers and Reed (1984) and Johnson 

and Pollock (1994) investigated adhesion effects in the impact of particles and elastic 

spheres, respectively. Despite valuable information derived from earlier dynamic studies, 

very little is known about the evolution of the subsurface stresses and strains, especially 

in the early stage of impact when the indentation depth is small.  

Analytical approaches for dynamic contact problems are quite complex and 

closed-form solutions are cumbersome. Nevertheless, Bedding and Willis (1973) 

obtained analytical solutions for the elastodynamic mixed boundary value problem of an 

elastic half-space indented by a conical or wedge-shaped rigid indenter. The same authors 
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also examined the problem of a fast moving indenter causing the contact area to expand 

faster than the propagating dilatational waves (Bedding and Willis, 1976). Brock (1978) 

studied frictionless indentation of an elastic half-space by an elastic and relatively blunt 

punch under the assumption of subcritical and constant growth rate of the contact strip. 

Brock and Georgiadis (1994) presented a dynamic analysis of a linear-elastic half-plane 

indented by a rapidly moving parabolic or wedge-shaped rigid punch and obtained 

numerical results for the tangential displacement along the interface and the growth rate 

of the contact zone. 

In addition to analytical methods, numerical and experimental approaches have 

also been used to study wave propagation in dynamic contacts and to determine the stress 

and strain fields in impacting bodies. Aboudi (1977) presented a two-dimensional 

numerical analysis of dynamic contact between a rigid indenter and an elastic half-space, 

and derived solutions for a wedge-shaped die and a smooth parabolic punch. Using 

dynamic photoelasticity, Shukla and Rossmanith (1986) investigated experimentally 

wave propagation across dynamic contacts. Streator (2003) performed a numerical 

dynamic analysis of adhesive contact between a rigid sphere and an elastic half-space and 

observed a non-Hertzian contact pressure distribution with peak pressure significantly 

higher than that predicted by the Hertz theory.  

Although comprehensive analyses of dynamic contact was performed in previous 

studies, subsurface stress and strain solutions for small interferences, i.e., within a short 

time after the establishment of contact, have not been reported yet. Hence, the main 

objective here is to analyze impact of an elastic half-space by a rigid sphere using the 

finite element method and to obtain solutions for the contact area, contact pressure, and 
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subsurface stresses and strains for small surface interferences. Since surface adhesion is 

not considered in this analysis, the obtained results are relevant to contact interfaces 

characterized by weak adhesion forces (e.g., low surface energy materials and boundary-

lubricated interfaces) and/or macroscopic contacts for which the effect of surface 

adhesion forces is secondary. To accomplish the previous objectives, axisymmetric and 

plane-strain contact models (i.e., spherical and cylindrical indenter, respectively) were 

developed. Approximate relationships for the mean contact pressure and the strain and 

kinetic energies of the half-space are derived from a dimensional analysis and an energy-

based analytical approach, respectively. Results from the approximate analysis are 

contrasted with finite element solutions in order to evaluate the accuracy of the analytical 

relationships and to check the validity of the basic assumptions. It is worthwhile to point 

out that the results obtained with axisymmetric and plane-strain models exhibit strong 

similarity for small surface interferences. 

2.2  Dimensional Impact Analysis  

The solutions of dynamic elastic contact problems depend on the elastic modulus, 

E, Poisson ratio, ν, and density, ρ, of the half-space. In view of the marginal effect of 

friction in normal contact (Komvopoulos, 1988), frictionless impact was modeled for 

simplicity. Based on dimensional analysis (Barenblatt, 1987; Cheng and Cheng, 1998), the 

mean contact pressure, pm, can be related to the material properties (E, ν, and ρ), sphere 

(cylinder) radius, R, indentation speed, Vi, and surface interference, δ, i.e., 

( )RVEp im ,,,,, δρνφ=  or ( )RVcGp iPm ,,,,,2 δνλψ += , where λ and G are the Lamé 

constants ( [ ])21)(1(/ νννλ −+= E  and [ ])1(2/ ν+= EG ), and Pc  is the speed of the plane 
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dilatational wave propagating in the elastic half-space ( ( )[ ] 2/1/2 ρλ GcP += ). Three of the 

governing parameters, λ+2G, Pc , and R, have independent dimensions. The dimensions of 

pm, ν, Vi, and δ are: 

[ ] [ ]Gpm 2+= λ ,   

[ ] [ ] [ ] [ ]0002 RcG P+= λν , 

[ ] [ ]Pi cV = , 

[ ] [ ]R=δ , 

where [..] indicates dimension. Based on the Π-theorem of dimensional analysis 

(Barenblatt, 1987), the following relationship was obtained: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Π=

+
νδ

λ
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p
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A similar relationship was derived for the real contact radius (half contact length), 

a, i.e., 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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,,2 Rc

V

R

a

P

i  (2.2) 

In the following sections, Π1 and Π2 functions are determined for small surface 

interference from finite element results. 

2.3  Finite Element Model  

Wave propagation in elastic media plays an important role in dynamic contact 

analysis. Both bulk and surface waves can propagate in semi-infinite solids. Bulk waves 

include dilatational waves (characterized by a volume change) and shear waves (Pollard, 
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1977). The propagation speeds of plane dilatational and shear waves, Pc  and Sc , 

respectively, are related to the material properties of the elastic half-space by 

2/1
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +=
ρ

λ G
cP     and     

2/1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρ
G

cS . 

For steels and copper, Pc  is equal to 5900 and 4600 m/s, respectively, while Sc  is equal 

to 3200 and 2300 m/s, respectively (Johnson, 1985). Obviously, plane dilatational waves 

propagate faster than plane shear waves. In addition, surface waves, such as Rayleigh and 

Love waves, may propagate along the free surface of the half-space. In general, surface 

waves propagate at speeds comparable to those of plane shear waves (Beltzer, 1988). 

Figure 2.1 shows schematically global dilatational wave fronts, which are 

envelopes of a series of spherical (cylindrical) dilatational wave fronts. These spherical 

(cylindrical) waves initiate at surface nodal points at the instant of initial contact with the 

rigid sphere (cylinder). The newly established contact points become centers of spherical 

wave fronts. As shown in Fig. 2.1(a), for small surface interference, the dilatational wave 

front is confined below the contact region. Since the displacement at any material point 

ahead of the wave front is zero, the contact radius (half-contact length), a, is equal to the 

truncated radius (half-truncated length), a′ , which can be approximated by ( ) 2/12 δRa ≈′  

when δ << R. A dimensionless parameter, β, is defined as  

2/1
2

⎟
⎠

⎞
⎜
⎝

⎛≈≡
RV

c
k

V

c

i

P

i

P δβ ,  (2.3) 

where Rak /′≈  is the tangent slope of the rigid sphere (cylinder) at the edge of the 

truncated contact area. When β < 1, the contact area spreads faster than the dilatational 

wave (Fig. 2.1(a)), whereas the opposite occurs when β > 1 (Fig. 2.1(b)), i.e., the 
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dilatational wave front is no longer confined below the contact region. When β > 1, the 

real contact area is smaller than the truncated contact area due to the downward 

movement of the surface in the vicinity of the contact edge. In the special case of quasi-

static contact ( 0→iV ), ∞→β  and the real contact area is less than the truncated 

contact area. 

In view of the previous discussion, it may be inferred that a layered medium 

impacted by a rigid sphere (cylinder) should yield a behavior similar to that of a 

homogeneous medium with material properties those of the surface layer of the layered 

 
 
Fig. 2.1  Schematic representation of propagation of dilatation waves in a semi-infinite 
half-space due to impact of a rigid sphere (cylinder) for (a) small and (b) large surface
interference. The solid curves are envelopes of the spherical wave fronts. 
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medium only during the time that the dilatational wave front resides within the surface 

layer. Therefore, the present analysis for small interference distances is also applicable to 

elastic layered media. 

Impact simulations were performed with the finite element code ABAQUS. For 

increased accuracy and better convergence, the ABAQUS/Standard package (i.e., implicit 

integration) rather than the generally faster ABAQUS/Explicit package (i.e., explicit 

integration) was used. Contact of the rigid sphere (cylinder) with the elastic 

homogeneous half-space was modeled by a rigid surface and special contact elements, 

i.e., first-order, axisymmetric (plane-strain), rigid-surface elements, which are suitable for 

modeling contact between axisymmetric (plane-strain) elements and a rigid surface. The 

contact elements were assigned to a common reference node in order to define the motion 

of the rigid surface. Impact was modeled by advancing the rigid surface against the 

deformable mesh at constant speed using a displacement-control incremental scheme. 

The time increment was automatically adjusted in order to satisfy the convergence 

requirement. Because of this scheme and the assumption of a rigid sphere (cylinder), the 

effects of the sphere (cylinder) mass and wave propagation in the sphere medium on the 

simulation results were neglected. 

The elastic half-space was discretized by four-node, bi-linear, axisymmetric 

(plane-strain) elements with a 2 × 2 Gaussian integration scheme. To obtain unbiased 

dynamic solutions, a sufficiently large mesh must be used in order for the waves reflected 

from the artificial boundaries not to reach the domain of interest during the time of 

analysis. In dynamic contact, the displacement at any material point ahead of the 

dilatational wave front is equal to zero. Since dilatational waves propagate faster than 
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shear and surface waves, only the dilatational waves were considered in the 

determination of the appropriate mesh size. However, shear and surface waves were 

present in the finite element simulations discussed in the following section. Two different 

finite element meshes were used to perform impact simulations of small (β ≤ 1) and large 

(β > 1) surface interferences. Figure 2.2(a) shows the fine mesh used to model a 

(a)

(b)

r

z

r

z

 
 
Fig. 2.2  Finite element meshes of elastic homogeneous half-space impacted by a rigid 
sphere (cylinder) used in the (a) small and (b) large surface interference simulations. 
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relatively small domain of the half-space where impact commences (β ≤ 1), and Fig. 

2.2(b) shows the mesh used to model a much larger domain, which is less refined in the 

vicinity of the contact region (β > 1). The nodes on the symmetry axis (r = 0 for 

axisymmetric and x = 0 for plane-strain analysis respectively) and the bottom boundary 

of the meshes were constrained against displacement in the r (x) and z directions, 

respectively, while the nodes of the right boundary of the meshes were allowed to move 

freely. In view of the sufficiently large dimensions of the finite element meshes shown in 

Fig. 2.2, the effect of the boundary conditions on the results was secondary.  

2.4  Results and Discussion for Axisymmetric Analysis 

To enable the interpretation of a large number of dynamic contact problems with 

the same values of important dimensionless parameters, such as iV
~

 = Pi cV / , δ~  = R/δ , 

ν, and β, the finite element and analytical results discussed in this section are presented in 

dimensionless form. Unless otherwise stated, the solutions discussed in this section are 

for ν = 0.3. The dilatational wave front, contact pressure distribution, and subsurface 

stress, strain, and velocity fields are interpreted in the context of finite element and 

dimensional analysis results.  

2.4.1 Dilatational Wave Front and Contact Radius 

As mentioned earlier, dilatational waves propagate much faster than shear and 

surface waves, and therefore all material points ahead of the dilatational wave front are in 

equilibrium. Insight into the dilatational wave front characteristics can be obtained by 

examining the displacement contours in the proximity of the contact region. Figure 2.3 

shows contours of normalized displacement uz/δ for different values of β. The 
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discontinuous lines represent envelopes of the spherical wave fronts, as shown in Fig. 

2.1. These envelopes enclose the displacement contours obtained from the finite element 

analysis. Figure 2.4 presents contours of normalized displacement ur/δ, which also show 

that the displacements at material points ahead of the wave front are essentially zero. It 

 
 
Fig. 2.3  Contours of dimensionless uz displacement in an elastic homogeneous half-

space impacted by a rigid sphere: (a) β = 0.5 ( iV
~

 = 1 × 10-2 and δ~ = 1.25 × 10-5) and (b) 

β = 4.47 ( iV
~

 = 1 × 10-2 and δ~ = 1 × 10-3). The dashed curves are envelopes of the 
spherical wave fronts. 
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can be concluded that when the wave front terminates at the contact edge (Figs. 2.3(a) 

and 2.4(a)) the real contact area is equal to the truncated area, while when the wave front 

spreads outside the contact region (Figs. 2.3(b) and 2.4(b)) the real contact area is less 

than the truncated area due to the downward movement of the free surface in the vicinity 

of the contact edge. Figure 2.5 shows the real-to-truncated contact radius ratio, a/ a′ , as a 

 
 
Fig. 2.4  Contours of dimensionless ur displacement in an elastic homogeneous half-

space impacted by a rigid sphere: (a) β = 0.5 ( iV
~

 = 1 × 10-2 and δ~ = 1.25 × 10-5) and (b) 

β = 4.47 ( iV
~

 = 1 × 10-2 and δ~ = 1 × 10-3). The dashed curves are envelopes of the 
spherical wave fronts. 
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function of β.  It is noted that a = a′  when β ≤ 1 and a < a′  when β > 1. In view of the 

close agreement of the results obtained for iV
~

 = 4.48 × 10-3 and 2.24 × 10-3, it may be 

inferred that the area ratio is predominantly affected by β. Therefore, when β ≤ 1 (i.e., 

small surface interference), Eq. (2.2) can be written as 

2/1
2

⎟
⎠

⎞
⎜
⎝

⎛≅
RR

a δ
. 

The results shown in Figs. 2.3-2.5 demonstrate a dependence of the deformation response 

on the magnitude of β. 
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′
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Fig. 2.5  Ratio of real-to-truncated contact radius a/ a′  versus β for dimensionless 

indentation velocity iV
~

 = 2.24 × 10-3 and 4.48 × 10-3. 
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2.4.2 Contact Pressure 

Figure 2.6 shows the dimensionless contact pressure, p/(λ+2G), for different 

values of β. For relatively low β (i.e., β = 0.632), the contact pressure is fairly uniform 
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Fig. 2.6  Dimensionless contact pressure distribution for (a) β = 0.632 ( iV
~

 = 1 ×10-2 and 

δ~  = 2 × 10-5), (b) β = 4 ( iV
~

 = 1 × 10-2 and δ~  = 8 × 10-4), and (c) β = 40 ( iV
~

 = 1 × 10-3 

and δ~  = 8 × 10-4). For each pressure distribution, the Hertzian pressure profile obtained 
for the same surface interference is also shown for comparison. 
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within the contact region and decreases abruptly at the contact edge (Fig. 2.6(a)). This 

pressure distribution is significantly different from that obtained from the Hertz theory, 

for the same surface interference. In addition, the real contact radius for dynamic contact, 

( ) 2/12 δRa ≈ , is larger than that predicted by the Hertz theory, ( ) 2/1δRa = . Figure 2.6(a) 

also shows that the dynamic contact pressure is significantly higher than the static contact 

pressure (Hertz). Streator (2003) has reported similar findings for dynamic contact of 

adhesive surfaces. However, the contact pressure distribution in that study exhibited 

significant fluctuations, presumably due to the adhesive forces at the contact interface, 

while the pressure profiles shown in Fig. 2.6 are smooth. For relatively high β (i.e., β = 

4), the contact pressure exhibits a Hertzian-like distribution; however, the pressure and 

the contact radius are still larger than those obtained from the static analysis (Fig. 2.6(b)). 

For very high β (e.g., β = 40), the contact pressure distribution is in good agreement with 

that predicted by the Hertz theory (Fig. 2.6(c)). Hence, for β >> 1 (i.e., low indentation 

speed and/or large surface interference), the dynamic solution approaches the static 

solution. Figure 2.7 shows the variation of the normalized mean contact pressure, 

pm/(λ+2G), with β and iV
~

. The mean contact pressure increases abruptly at the instant of 

contact for both indentation speeds, remains constant for β ≤ 1, and increases gradually 

with the increase of β in the range of β > 1. Hereafter, the mean contact pressure upon 

initial contact will be denoted by pm0. From dimensional analysis (Eq. (2.1)), it is found 

that 

( )ν
λ

,
~

2 3
0

i
m V

G

p Π=
+

.  (2.4) 
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Because Eq. (2.4) is derived for the instant of impact (i.e., 0
~ =δ +), 3Π  is not a function 

of δ~ . Since mp  is nearly constant for 1<β , in the finite element simulations, 0mp  can 

be approximated by the value of mp  obtained for small β values ( 1<β ). Figure 2.8 

shows the dimensionless mean contact pressure at the instant of impact, pm0/(λ+2G), as a 

function of iV
~

 for different values of Poisson ratio. The fact that all the results follow 

closely the same line with a slope of ~0.97 indicates that pm0 is explicitly independent of 

the Poisson ratio. Therefore,  

i
m V

G

p ~
97.0

2
0 ≈

+λ
 ,            for  0.1 ≤ ν ≤ 0.4. (2.5) 

Since 0mm pp ≈  when β ≤ 1 (Fig. 2.7), it follows from Eq. (2.5) that 
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Fig. 2.7  Dimensionless mean contact pressure pm versus β for dimensionless indentation 

velocity iV
~

 = 2.24 × 10-3 and 4.48 × 10-3. 
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i
m V

G

p ~
97.0

2
≈

+λ
,            for β ≤ 1. (2.6) 

2.4.3 Subsurface Stress, Strain, and Velocity Fields 

Figures 2.9(a) and 2.9(b) show contours of dimensionless stress σzz/pm0 and strain 

εzz/ iV
~

, respectively, for β = 0.447 ( iV
~

 = 1 × 10-2 and δ~ = 1 × 10-5). Both σzz and εzz 

decrease abruptly across the wave front. In the region enclosed by the wave front, σzz and 

εzz are nearly constant and their magnitudes can be approximated by –pm0 and – iV
~

, 

respectively. A similar trend is shown in Fig. 2.10 for the contours of dimensionless 

velocity zu& /Vi. In the region near the wave front, zu& decreases abruptly, while in the 

region enclosed by the wave front, zu&  is uniform and can be approximated by Vi.  
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Fig. 2.8  Dimensionless mean contact pressure at the instant of initial contact pm0 versus 

dimensionless indentation velocity iV
~

 for different values of Poisson ratio, ν. 
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2.4.4 Approximate Theoretical Model  

An approximate energy-based analysis of the impacted elastic half-space is 

derived in this section for small surface interference (β ≤ 1). According to the finite 

element results (Figs. 2.9 and 2.10), in the region surrounded by the dilatational wave 

front, εzz and zu&  are approximately equal to iV
~−  and Vi, respectively. Since impact 

occurs in the z direction and for small surface interference the waves propagate in a small 

subsurface region adjacent to the contact interface, it may be assumed that, among all the 

 
 
Fig. 2.9  Contours of dimensionless (a) σzz stress and (b) εzz strain in an elastic half-space 

impacted by a rigid sphere for β = 0.447 ( iV
~

 = 1 × 10-2 and δ~ = 1 × 10-5). 
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strain components, εzz exhibits the most significant contribution to the strain energy 

stored in the elastic half-space. The validity of the previous assumptions is demonstrated 

below. Consequently, if the contribution of all the other strain components is neglected as 

secondary, the strain energy per unit volume, Se , in the region where wave propagation 

occurs can be written as  

( ) 2~
2

2
1

iS VGe += λ . (2.7) 

The kinetic energy per unit volume is given by 

2

2
1

iK Ve ρ= . (2.8) 

Since ( )[ ] 2/1/2 ρλ GcP += , it can be shown that KS ee = . The total volume of the region 

where wave propagation occurs, U, can be expressed as ( ) iVRU
~

/3/32 δδπ −≈ . This is 

because wave propagation in the z direction occurs at a speed equal to ~ iV
~

/1  times the 

indentation speed. For δ << R, it follows that iVRU
~

/2δπ≈ , and the total strain and 

kinetic energy of the half-space are given by 

 
 
Fig. 2.10  Contours of dimensionless zu&  velocity in an elastic half-space impacted by a 

rigid sphere for β = 0.447 ( iV
~

 = 1 × 10-2 and δ~ = 1 × 10-5). 
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( ) 4532 ~
)2(

8
~

2
2
1 βλπδπλ iiKS VRGRVGEE +=+== . (2.9) 

Figure 2.11 shows a comparison between finite element results of total strain and 

kinetic energy for iV
~

 = 1 × 10-2 and analytical results obtained from Eq. (2.9). The good 
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Fig. 2.11  Comparison of finite element method (FEM) results and approximate theory 
solutions of (a) dimensionless strain energy ES and (b) dimensionless kinetic energy EK

of an elastic half-space impacted by a rigid sphere versus β for dimensionless indentation 

velocity iV
~

 = 1 × 10-2. 
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agreement indicates that the assumptions invoked in the approximate theoretical model 

are reasonable and that the simple analysis provides accurate estimates of the total strain 

and kinetic energy of the half-space for small surface interference.   

Based on energy balance considerations, the following relationship must be 

satisfied,  

( ) ⎟
⎠

⎞
⎜
⎝

⎛

δ
+

δ
=δπ

d

dE

d

dE
Rp KS

m 2 . (2.10) 

Substitution of Eq. (2.9) in Eq. (2.10) gives,  

i
m V

G

p ~
2

=
+λ

. (2.11) 

It is interesting to note that Eq. (2.11) is in good agreement with Eqs. (2.5) and (2.6) that 

were obtained from the finite element analysis.  

2.5  Results and Discussion for Plane-Strain Analysis 

Finite element solutions for an elastic homogeneous half-space impacted by a 

rigid cylinder (i.e., plane-strain analysis) are reported in this section. Strong similarity 

between the results of plane-strain and axisymmetric analyses were found for β < 1. The 

dynamic contact analysis results were not compared with those of the static analysis 

because the plane-strain displacement field for (quasi-) static contact conditions exhibits 

logarithmic singularity (Johnson, 1985) and, hence, it is not possible to compare the 

results with those of a dynamic analysis. This will be further discussed in chapter 3 

(section 3.2.1). 
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2.5.1 Contact Pressure 

The dimensionless contact pressure, p/(λ+2G), for different values of β is shown 

in Fig. 2.12. Similar to axisymmetric analysis, for relatively low β (i.e., β = 0.632), the 
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Fig. 2.12  Dimensionless contact pressure distribution along the surface of elastic half-

space impacted by a rigid cylinder for (a) β = 0.632 ( iV
~

 = 1 × 10-2 and δ~  = 2 × 10-5), (b) 

β = 4 ( iV
~

 = 1 × 10-2 and δ~  = 8 × 10-4), and (c) β = 40 ( iV
~

 = 1 × 10-3 and δ~  = 8 × 10-4). 
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contact pressure is fairly uniform within the contact region and decreases abruptly at the 

contact edge, and the real contact radius is approximately equal to the truncated contact 

radius (Fig. 2.12(a)). However, for relatively high β values (i.e., β = 4 and 40), the 

contact pressure exhibits an elliptic distribution, and the real contact radius is smaller 

than the truncated contact radius (Figs. 2.12(b) and 2.12(c)). Figure 2.13 shows the 

dimensionless initial mean contact pressure, pm0/(λ+2G), as a function of iV
~

 for different 

values of Poisson ratio. All the results follow closely the same line with a slope of ~0.98 

indicating that under plane-strain condition, pm0 is also explicitly independent of Poisson 

ratio. Therefore, under plane-strain condition: 
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Fig. 2.13  Dimensionless mean contact pressure at the instant of initial contact pm0 an 
obtained for elastic half-space impacted by a rigid cylinder versus dimensionless 

indentation velocity iV
~

 for different values of Poisson ratio, ν. 
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i
m V

G

p ~
98.0

2
0 ≈

+λ
 ,            for  0.1 ≤ ν ≤ 0.4. (2.12) 

Equation (2.12) is almost identical to Eq. (2.5). 

2.5.2 Subsurface Stress, Strain, and Velocity Fields 

Figures 2.14(a), 2.14(b) and 2.14(c) show contours of dimensionless stress 

σzz/pm0, strain εzz/ iV
~

, and velocity zu& /Vi respectively, for β = 0.447 ( iV
~

 = 1 × 10-2 and δ~ = 

1 × 10-5). All of them decrease abruptly across the wave front. In the region enclosed by 

the wave front, σzz, εzz and zu&  are nearly constant and their magnitudes can be 

approximated by –pm0, – iV
~

, and Vi respectively. Again the close agreement of the results 

shown in Figs 2.9 and 2.10 and Fig. 2.14 is noted.  

2.5.3 Approximate Theoretical Model 

Similar to the axisymmetric analysis, it is assumed that in the region surrounded 

by the dilatational wave front, εzz and zu&  are approximately equal to iV
~−  and Vi, 

respectively (according to Figs. 2.14), and among all the strain components, εzz exhibits 

the most significant contribution to the strain energy stored in the elastic half-space. 

Consequently, the strain energy per unit volume, Se , in the region where wave 

propagation occurs can be written as  

( ) 2~
2

2
1

iS VGe += λ .     (2.13) 

The kinetic energy per unit volume is given by 

2

2
1

iK Ve ρ= . (2.14) 
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The total area of the region where wave propagation occurs, A, can be expressed as 

( ) ( )( )[ ] iVRA
~

/
~~

2
~

1
~

1arccos
2/122 δδδδ −−−−= . Therefore, the total strain and kinetic 

energy of the half-plane are given by 
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Fig. 2.14  Contours of dimensionless (a) σzz stress, (b) εzz strain and (c) zu&  velocity in an 

elastic half-space impacted by a rigid cylinder for β = 0.447 ( iV
~

 = 1 × 10-2 and δ~ = 1 ×
10-5). 
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( ) ( ) ( )( )[ ]2/122 ~~
2

~
1

~
1arccos

~
2

2

1 δδδδλ −−−−+== RVGEE iKS . (2.15) 

Figure 2.15 shows a comparison between finite element results of total strain and 

kinetic energy for iV
~

 = 1 × 10-2 and analytical results obtained from Eq. (2.15). The good 

agreement indicates that the above-mentioned assumptions are also reasonable for plane-

strain analysis.   

Based on energy balance considerations, the following relationship must be 

satisfied,  

( ) ⎟
⎠

⎞
⎜
⎝

⎛

δ
+

δ
=δπ

d

dE

d

dE
Rp KS

m 2 . (2.16) 

Substitution of Eq. (2.15) in Eq. (2.16) gives,  

2

~
1

~
2

δ
λ

−=
+ i

m V
G

p
. (2.17) 

Therefore, for 1
~ <<δ , i

m V
G

p ~
2

≈
+λ

, which is in good agreement with Eq. (2.11). 

It is interesting to note that, for small β value (β ≤ 1), the results obtained for 

axisymmetric (spherical indenter) and plane-strain (cylindrical indenter) analysis show 

strong resemblance, and the results of normalized contact pressure and subsurface stress, 

strain and velocity fields are independent to the indenter’s radius, R, for both analyses, 

suggesting that similar results could be obtained for impact between any isotropic elastic 

bodies with smooth surfaces.  

As mentioned in section 2.3, although the present analyses are for homogeneous 

half-space media, the obtained results are also applicable for elastic layered media, 
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provided the dilatational wave front resides within the surface layer during the time of 

dynamic analysis. Moreover, the present analysis is suitable for dynamic contacts 

characterized by weak adhesion, such as those involving dissimilar materials and 

β
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Fig. 2.15  Comparison of finite element method (FEM) results and approximate theory 
solutions of (a) dimensionless strain energy ES and (b) dimensionless kinetic energy EK 
of an elastic half-space impacted by a rigid cylinder versus β for dimensionless 

indentation velocity iV
~

 = 1 × 10-2. 
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lubricated interfaces, or macroscopic contacts for which the contribution of surface forces 

is negligible.  

2.6  Conclusions 

Impact of a rigid sphere or cylinder on elastic homogeneous half-space was 

examined in the context of results from a dimensional analysis and finite element 

simulations. A dimensionless parameter, β, was introduced in order to evaluate the effect 

of wave propagation on the deformation response. Finite element results for the contact 

radius, contact pressure, and subsurface stress, strain, and velocity fields were interpreted 

in terms of indentation speed, surface interference, and Poisson ratio. A general 

relationship for the mean contact pressure was derived for small surface interference (β ≤ 

1) using dimensional analysis and finite element results. An approximate theoretical 

model that yields accurate solutions for the contact pressure and strain and kinetic energy 

of the half-space was derived, and its validity was confirmed by finite element results. 

Based on the presented results and discussion, the following main conclusions can be 

drawn from this study.  

(1) For small surface interference (β ≤ 1), the dilatational wave front is confined 

within the contact region and the real contact area is equal to the truncated contact 

area. However, for relatively large surface interference (β > 1), the wave front 

extends beyond the contact edge and the real contact area is less than the 

truncated contact area.  

(2) The mean contact pressure at the instant of initial contact increases linearly with 

the indentation speed. For small surface interference (β ≤ 1), the contact pressure 

distribution is uniform and the mean contact pressure is constant. For large 
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surface interference (β > 1), the contact pressure distribution is elliptic and the 

mean contact pressure increases gradually with the surface interference. For 

axisymmetric analysis, when β → ∞ (i.e., very large surface interference and/or 

very low indentation speed), the contact pressure distribution approaches the 

Hertz solution. 

(3) In the small surface interference regime, the stresses, strains, and displacements in 

the subsurface decrease abruptly in the vicinity of the dilatational wane front. 

However, the material in the wake of the wave front is subjected to nearly 

uniform stress, strain, and velocity fields.  

(4) An approximate energy-based analysis was developed for small surface 

interferences. Results for the strain and kinetic energy of the half-space and the 

mean contact pressure obtained from this analysis were found to be in good 

agreement with finite element results, confirming the validity of the assumptions 

in the approximate analysis.  

(5) For β ≤ 1, the results for the contact pressure and subsurface stress, strain, and 

velocity fields obtained from the axisymmetric (spherical indenter) and plane-

strain (cylindrical indenter) analyses exhibited close similarities. The fact that 

these results are independent of the indenter radius in both analyses suggests that 

these results are generally applicable for impact between any isotropic elastic 

bodies with smooth surfaces.  
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CHAPTER 3 

Dynamic Contact Between an Elastic-Plastic Multi-Layered 
Medium and a Rigid Cylinder 

 

 

3.1  Introduction  

Hard and tough surface layers are traditionally used in engineering components to 

improve the contact fatigue resistance and tribological properties of interacting surfaces 

and to protect the substrate from the accumulation of inelastic deformation and cracking. 

Fundamental knowledge of the stress and strain fields in layered media subjected to 

surface traction is critical to the endurance of electromechanical devices undergoing 

repetitive contact, such as relays, switches, vibromotors, and micromirror displays. Early 

studies dealing with normal contact of layered media provided analytical treatments for 

the elastic response due to indentation loading. Burmister (1945) obtained solutions for 

the stresses and displacements in an elastic single-layered medium subjected to 

axisymmetric surface loading. Dhaliwal and Rau (1970) analyzed the axisymmetric 

Boussinesq problem of an elastic layer on an elastic foundation. Gupta and Walowit 

(1974) developed a plane-strain elastic theory for a layered medium under both normal 

and tangential surface loadings, and King and O’Sullivan (1987) extended the previous 

theory to obtain analytical solutions for an elastic layered medium subjected to sliding 

contact loading. Brock and Georgiadis (1994) presented a dynamic analysis of a linear-

elastic half-plane indented by either a wedge or a parabolic rigid indenter. 

Despite valuable insight into the mechanics of indented media derived from 

previous analytical studies, it is difficult to apply the approaches of these works to the 
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analysis of elastic-plastic contact of layered media. Consequently, numerical techniques 

based mainly on the finite element method were advanced in order to account for more 

complicated contact geometries and more realistic constitutive laws. One of the first 

finite element analysis of elastic-plastic indentation of a layered medium is attributed to 

Kennedy and Ling (1974) who investigated the effects of layer thickness, mechanical 

properties of the layer and substrate materials, and interfacial contact conditions on the 

plastic deformation of the layered medium. Komvopoulos (1989) investigated the plane-

strain problem of a rigid cylinder indenting an elastic-plastic substrate coated with a 

harder and stiffer layer using the finite element method. Plastic deformation was found to 

initiate at the layer/substrate interface and the contact pressure profile was significantly 

flattened with increasing plastic deformation. In a finite element analysis of an elastic-

plastic layered medium penetrated by an elastic indenter performed by Montmitonnet et 

al. (1993) the stress field in the layered medium was interpreted in terms of the layer 

thickness, and the highest tensile stress was reported to occur at the surface of the 

medium. Kral et al. (1995a, 1995b) presented a finite element contact analysis of a 

layered medium, exhibiting either perfectly plastic or isotropic strain hardening post-

yield behavior, which was repeatedly indented by a rigid sphere and interpreted the 

propensity for crack initiation during the first indentation cycle in the context of the 

obtained finite element results.   

More recently, Gan and Ben-Nissan (1997) examined the influence of the 

mechanical properties of a ductile substrate coated with a hard layer on the indentation 

load and reported a significant effect of the yield strength and strain hardening properties 

and a minor effect of the elastic modulus on the applied normal load. Faulkner et al. 
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(1998) compared finite element results for an elastic-plastic layered medium in contact 

with either a rigid or a deformable indenter and observed higher contact pressures in the 

elastic regime and lower peak radial tensile stress in the case of the rigid indenter. Sen et 

al. (1998) used the finite element technique to model indentation of an elastic, work 

hardening layered medium by an elastic sphere and obtained elastic and elastic-plastic 

solutions for the contact pressure distribution. Souza et al. (1999) reported a greater 

likelihood for film cracking in systems with elastic-plastic substrates coated with thin 

layers of higher elastic modulus. Stephens et al. (2000) obtained finite element results for 

the initial yield behavior of a hard coating/soft substrate system subjected to elliptical 

normal and friction forces that revealed a significant increase in the durability of the 

layered system when the interface possessed graded mechanical properties. 

The review of the literature indicates that the majority of the analytical and 

numerical solutions of various indentation problems involving elastic and elastic-plastic 

layered media have been restricted to quasi-static contact conditions. Although important 

insight into the mechanics of layered media has been derived from these studies, the 

obtained solutions might not be applicable to dynamic contact problems, e.g., nano-

/microindentation testing where high adhesion forces (Landman et al., 1990) cause the 

indenting tip to “jump” into contact with the sample surface. Streator (2003) performed a 

numerical analysis of dynamic contact between a rigid sphere and an elastic half-space 

and reported that the produced maximum compressive force was appreciably higher than 

that obtained under quasi-static contact conditions, even for indentation speeds two 

orders of magnitude less than the dilatational wave speed. Consequently, the objective of 

this chapter was to develop a comprehensive finite element analysis of dynamic 
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indentation of elastic-plastic multi-layered media. According to the discussion in chapter 

2, for small interferences (i.e., during the short time period that the dilatational wave front 

resides within the surface layer), a layered medium dynamically indented by a rigid 

cylinder (or sphere) yields a behavior similar to that of a homogeneous medium with 

material properties those of the surface layer of the layered medium. Therefore, the focus 

of this chapter is on relatively large interferences such that the dilatational wave front 

spreads over layers. In view of the effect of the waves reflected from the mesh 

boundaries, the mesh selection for unbiased contact analysis is described first, followed 

by finite element results demonstrating the effects of indentation speed and radius of the 

rigid cylindrical indenter on the normal force, contact pressure distribution, and 

subsurface stress-strain field in a multi-layered medium subjected to dynamic indentation 

loading.  

3.2  Finite Element Mesh for Dynamic Contact Analysis 

As discussed in chapter 2, two types of bulk waves can propagate in infinite 

solids: longitudinal waves (also known as dilatational waves because they are 

characterized by a volume change) and transverse (or shear) waves (Pollard, 1977). In 

seismology, these two types of waves are often referred to as P (primary) and S 

(secondary) waves, respectively. In isotropic elastic solids, the propagation speed of a 

plane dilatational wave, cp, and a plane shear wave, cs, are given by 

( )[ ] 2/1/2 ρλ GcP +=     and     ( ) 2/1/ ρGcS = , 

where ρ is the material density, and λ and G are the Lamé constants, expressed in terms 

of the elastic modulus, E, and Poisson’s ratio, ν, as  
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[ ])21)(1(/ νννλ −+= E  and [ ])1(2/ ν+= EG . 

It is obvious from the above relations that a plane dilatational wave propagates 

much faster than a plane shear wave. In addition to these two types of bulk waves, 

surface waves, such as Rayleigh and Love waves, may be encountered in the case of 

bounded solids. In general, the propagation speeds of these surface waves are comparable 

to those of shear waves (Beltzer, 1988). Therefore, the attention in this analysis is 

restricted to the faster propagating dilatational waves. 

3.2.1 Finite Element Mesh for Homogeneous Medium.   

In static analysis of infinite half-space media subjected to surface (contact) loads, 

a reference point is needed in order to obtain the displacements due to the singularity of 

the displacement field under plane strain conditions (Johnson, 1985). This reference point 

is usually selected to be far away from the contact region. Hence, in plane-strain static 

contact analyses the solution depends on the location of the reference point. However, in 

dynamic contact analyses, if the displacements in a given region occur within a certain 

time to, then at a fixed point remote from this region a disturbance does not occur before 

the arrival of the propagating waves, i.e., the displacement at any material point ahead of 

the wave front is zero (Johnson, 1985). Therefore, in dynamic plane-strain contact 

analysis, if the reference point is selected to be sufficiently remote from the contact 

region, such that the waves do not reach this point during the analysis, the numerical 

results will be independent of the location of the reference point. Figure 3.1 shows 

schematically a propagating dilatational wave in a semi-infinite homogeneous solid. 
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Contact is first established at the origin (x = y = 0) at time to. The discontinuous curve 

represents the dilatational wave front at time t1. There is no disturbance in the region 

ahead of the wave front (region II). Thus, choosing any point in region II as the reference 

point yields identical results throughout region I if the analysis is performed during 

period [to, t1]. In finite element analyses, a finite mesh is used to simulate the semi-

infinite half-space. If waves are not generated from the artificial boundaries (i.e., fixed 

and/or free boundaries), any mesh larger than region I would produce identical results at 

each point of the mesh within a given time period. Furthermore, the simulation results 

would be independent of the forces and/or displacements applied to the artificial 

boundaries where the waves do not have enough time to propagate. In most applications, 

the region of interest is close to the contact interface, where the highest stresses and 

strains occur. In this subsurface region, unbiased simulation results can be obtained by 
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Region I

Wave front at t1

Indenter
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Fig. 3.1  Schematic representation of wave propagation in a semi-infinite half-space. 
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using a sufficiently large mesh such that the wave(s) reflected from the artificial 

boundaries do not reach this region before the analysis has been completed.  

In view of the previous considerations, finite element simulations of dynamic 

contact were performed with the code ABAQUS using the four meshes shown in Fig. 3.2. 

For increased accuracy and better convergence, the ABAQUS/Standard package (implicit 

integration) rather than the generally faster ABAQUS/Explicit package (explicit 

integration) was used in this analysis. An elastic homogeneous half-space indented by a 

rigid cylinder at a constant speed of 1 × 10-3 cp was modeled in all simulations. The plane 

strain condition assumed in this analysis is suitable for surfaces possessing predominant 

texture in the direction perpendicular to the xy plane. The obtained results and trends 

should exhibit similarities with those of axisymmetric contacts. Special contact elements 

were used to model contact between the rigid indenter and the elastic medium. The 

dimensions of the four meshes, normalized by the radius of the rigid cylinder, R, were 

chosen to be equal to 6.4 × 6.4, 12.8 × 6.4, 6.4 × 12.8, and 12.8 × 12.8. Because the left 

boundary of each mesh is a symmetry axis, the nodes of this boundary (x = 0) were 

constrained against displacement in the x-direction. The nodes of the bottom boundary 

were constrained against displacement in the y-direction, while the nodes of the right 

boundary and the surface were allowed to move freely. The characteristic length of a 

mesh, lc, is defined as the smallest mesh dimension. Thus, the characteristic length of the 

meshes shown in Figs. 3.2(a), 3.2(b), and 3.2(c) is equal to 6.4R and that of the mesh 

shown in Fig. 3.2(d) is equal to 12.8R. In the following discussions, lc
(i) is used to denote 

the characteristic length of the ith mesh. Obviously, lc
 (1) = lc

 (2) = lc
 (3)  < lc

 (4). Since far-

field propagation of a cylindrical dilatational wave occurs at a speed comparable to that 
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of a plane dilatational wave, the critical time for a dilatational wave propagating from the 

origin (x = y = 0) to the nearest boundary of the meshes shown in Figs. 3.2(a)-3.2(c) can 

be estimated from relation tcr
(1) ≈ lc

 (1)/cp. Then, the critical time for a wave reflected from 

the nearest boundary to reach a point in a region close to the origin is approximately 

equal to 2tcr
(1).  
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Fig. 3.2  Finite element models used to study the effect of the mesh size on the dynamic 
response of an elastic homogeneous half-space indented by a rigid cylinder. The mesh 
dimensions normalized by the indenter radius are (a) 6.4 × 6.4, (b) 12.8 × 6.4, (c) 6.4 ×
12.8, and (d) 12.8 × 12.8. 
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Figure 3.3 shows the dimensionless contact load, P/ER, and maximum von Mises 

stress, max
Mσ /E, in an elastic half-space as functions of dimensionless time, t/tcr

(1), from the 

onset of indentation, where E is the elastic modulus of the half-space. Since P and max
Mσ  

are mainly related to the stress field of the subsurface region close to the origin, the 

results would be independent of mesh size provided t ≤ 2tcr
(1). This is confirmed by the 

results shown in Fig. 3.3. Indeed, for t > 2tcr
(1), the solutions begin to deviate. For the 

mesh shown in Fig. 3.2(c), the dilatational wave reflected from the free boundary at x/R = 

6.4 propagated back first, while for the mesh shown in Fig. 3.2(b) the dilatational wave 

reflected from the fixed boundary y/R = -6.4 propagated back first. For the mesh shown 

in Fig. 3.2(a), the two dilatational waves reflected from the bottom and right boundaries 

propagated back to the origin at about the same time. The relatively small discrepancies 

in the results for the contact force and Mises stress obtained with the meshes shown in 

Figs. 3.2(a) and 3.2(b) and, similarly, those obtained with the meshes shown in Figs. 

3.2(c) and 3.2(d) indicate that the wave reflected from the bottom boundary exhibits a 

dominant effect. Both Figs. 3.3(a) and 3.3(b) show that discrepancies in the results 

(compared to those obtained with the mesh shown in Fig. 3.2(d)) occur due to the 

reflected waves at about the same time for the meshes shown in Figs. 3.2(a) and 3.2(b) 

and a little later for the mesh shown in Fig. 3.2(c). This implies that the critical time of a 

mesh (i.e., tcr or ~2tcr if the entire mesh or only a small region of the mesh close to the 

origin is of interest, respectively) yields a conservative estimate for the maximum time 

for dynamic contact analysis not affected by the reflected wave(s).  
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3.2.2 Finite Element Mesh for Multi-Layered Medium.   

Similar simulations were performed for an elastic-plastic multi-layered medium 

using the meshes shown in Fig. 3.4. The thickness (normalized by the indenter radius) 
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Fig. 3.3  (a) Contact force and (b) maximum von Mises equivalent stress versus time 
from the initiation of normal contact for an elastic homogenous half-space indented by a 
rigid cylinder moving at speed V = 1 × 10-3cp. 
 
 
 



 45

and material properties of the multi-layered medium given in Table 3.1 (Kaye, 1986; 

Komvopoulos, 2000) are representative of thin-film rigid disks used in magnetic 
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Fig. 3.4  Finite element models used to study the effect of the mesh size on the dynamic 
response of an elastic-plastic multi-layered medium indented by a rigid cylinder. The 
mesh dimensions normalized by the indenter radius are (a) 6.4 × 7.46, (b) 12.8 × 7.46, (c) 
6.4 × 13.86, and (d) 12.8 × 13.86. 
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recording. The material properties and size of the bottom (fourth) layer are identical to 

those of the homogeneous half-space discussed in the previous section. The normalized 

(by the indenter radius) dimensions of the meshes shown in Figs. 3.4(a)-3.4(d) are 6.4 × 

7.46, 12.8 × 7.46, 6.4 × 13.86, and 12.8 × 13.86, respectively. Since for the load range 

analyzed in this analysis the plastic zone is predicted to be very small compared to the 

mesh dimensions, the elastic properties of the layered medium control the wave velocity. 

Figure 3.5(a) shows that the variation of max
Mσ in the surface layer with time and the 

critical time that the results begin to deviate from those corresponding to the mesh shown 

in Fig. 3.4(d) are similar to those obtained for the elastic homogeneous half-space (Fig. 

3.3(b)). This suggests that wave propagation in the thick (fourth) layer plays a 

predominant role in the stress-strain calculations. Figure 3.5(b) reveals that the results for 

the maximum equivalent plastic strain, max
eqε , in the second (soft) layer begin to deviate at 

approximately the same critical time as that of max
Mσ . This is due to the fact that the 

Table 3.1. Thickness and material properties of the elastic-plastic multi-layered 

medium subjected to dynamic indentation of a rigid cylinder  

Medium Normalized 
thickness  

(t/R) 

Elastic 
modulus  

(GPa) 

Yield 
strength  

(GPa) 

Density  

(kg/m3) 

Layer 1 0.05 168 13.0 2266 

Layer 2 0.156 130 2.67 8800 

Layer 3 0.8 140 2.58 7000 

Layer 4 6.4, 12.8, 51.2 160 2.67 8000 

           Sources: Kaye (1986) and Komvopoulos (2000). 
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locations of max
Mσ and max

eqε  are close to each other and both occur in a subsurface domain 

adjacent to the contact region.   
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Fig. 3.5  (a) Maximum von Mises equivalent stress in the surface (hard) layer and (b) 
maximum equivalent plastic strain in the second (soft) layer versus time from the 
initiation of contact for an elastic-plastic multi-layered medium indented by a rigid 
cylinder moving at speed V = 1 × 10-3 )4(

Pc , where )4(
Pc  is the propagation speed of the 

plane dilatational waves in the thick substrate (fourth layer). 
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3.3  Dynamic Indentation of an Elastic-Plastic Multi-Layered Medium 

3.3.1 Finite Element Modeling and Material Properties of Multi-Layered Medium.   

Dynamic indentation of a multi-layered medium by a rigid cylinder was analyzed 

with the finite element code ABAQUS/Standard. Contact between the rigid indenter and 

the multi-layered medium was modeled with rigid surface and second-order contact 

elements, which were assigned a common reference node that defined the motion of the 

rigid surface. The rotational and horizontal displacements of the reference node were 

fully constrained. Indentation was modeled by advancing the rigid surface profile against 

the deformable mesh using a displacement-control incremental scheme. In view of the 

marginal effect of friction in normal contact (Komvopoulos, 1988), only frictionless 

indentations were considered in this chapter. Because of the displacement-control 

simulation scheme and the assumption of rigid indenter, the effect of the indenter mass 

on the simulation results was neglected. The multi-layered medium was modeled by 

eight-node, bi-quadratic, plane-strain elements. A 3 × 3 Gaussian integration was used in 

each element. Because of symmetry and the assumed boundary conditions, only one-half 

of the multi-layered medium (Fig. 3.6) was modeled, and the nodes on the symmetry axis 

(x = 0) were constrained against displacement in the x-direction. The nodes of the bottom 

boundary were constrained against displacement in the y-direction. The mesh near the 

surface was refined as shown in Fig. 3.6. The radius of the cylindrical indenter was 

selected to be equal to 0.2R, 1.0R, and 2.0R, i.e., normalized indenter radius R
~

 = 0.2, 1.0, 

and 2.0. Hereafter, all the length parameters are normalized by the intermediate indenter 

radius, R, and are presented in dimensionless form. For greater numerical accuracy, the 
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smallest elements adjacent to the surface are squares of sides equal to 0.00625R, i.e., one-

eighth of the thickness of the thinnest layer. This refinement of the mesh is for numerical 

purposes and does not imply the use of a continuum description for domains approaching 

the lattice dimensions. Therefore, caution should be exercised in selecting the thickness 
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Fig. 3.6  Finite element mesh for dynamic contact analysis of an elastic-plastic multi-
layered medium indented by a rigid cylinder. 
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of the surface layer. The mesh size (51.2R × 52.26R) was selected such that during the 

analysis the reflected waves did not propagate back to the region of interest. The 

normalized thickness and material properties of the multi-layered medium are given in 

Table 3.1. These material properties are typical of magnetic rigid disks (Komvopoulos, 

2000). For simplicity, all layers were assumed to have a Poisson’s ratio equal to 0.3. For 

the selected properties, the speed of the plane dilatational waves in the fourth layer is 

about 5189 m/s. Each layer was modeled as an elastic-perfectly plastic material. The 

classical von Mises yield criterion was used throughout the dynamic contact simulations.  

3.3.2 Simulation of Dynamic Indentation.   

Dynamic indentation was modeled by applying incremental displacements to the 

rigid surface in a controlled fashion, which were identical for both loading and unloading. 

The speed of the indenter was constant throughout the loading and unloading simulation 

steps. Simulations were performed for indentation speed equal to 1 × 10-3 )4(
Pc , 2 × 10-3

 

)4(
Pc , and 4 × 10-3

 )4(
Pc , where )4(

Pc  is the propagation speed of the plane dilatational waves 

in the thick substrate (fourth layer). Results are presented in terms of dimensionless 

indentation speed, V
~

, obtained by dividing the indenter speed by )4(
Pc . The maximum 

indentation depth was selected to be equal to 0.02R. While the damping effect was 

ignored in the simulations of indentation loading and unloading, to obtain solutions for 

the residual stress-strain field, dashpot elements were added to the mesh after full 

unloading. The damping coefficients of the dashpot elements were arbitrarily selected to 

achieve fast equilibrium. 
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3.4  Results and Discussion  

Finite element solutions for the contact pressure distribution and subsurface stress 

and strain fields in the multi-layered medium are presented for different values of 

normalized indentation depth, δ~ , indentation speed, V
~

, and indenter radius of curvature, 

R
~

. The propensity for plastic flow and cracking is interpreted in the context of results for 

the maximum von Mises stress, equivalent plastic strain, and maximum tensile stress in 

the multi-layered medium during loading and unloading.  

3.4.1  Contact Force and Contact Pressure Distribution  

Figure 3.7 shows the variation of the contact force, P, with indentation depth, δ, 

for different values of normalized indentation speed and indenter radius. The contact 

force is normalized by the critical load, PY, corresponding to the inception of yielding in 

the multi-layered medium due to indentation by a rigid cylinder of intermediate radius 

( R
~

 = 1.0) penetrating at a relatively high velocity (V
~

 = 4 × 10-3). Figure 3.7(a) shows 

that the contact force increases monotonically with indentation depth and speed. In 

dynamic normal contact, a fraction of the external work is dissipated in the form of 

kinetic energy in the multi-layered medium. Consequently, the energy dissipated in the 

deforming medium increases with indentation speed. In addition, larger gradients in the 

displacement field occur at higher indentation speeds adjacent to the contact region. 

Therefore, the strains and strain energy intensify with the increase of the indentation 

speed. Consequently, a higher indentation speed produces a higher contact force for the 
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same surface penetration distance. Figure 3.7(b) demonstrates that, for a given 

indentation depth, a lower contact force is obtained with the sharper indenter, evidently
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Fig. 3.7  Contact force on elastic-plastic multi-layered medium indented by a rigid 
cylinder versus indentation depth for (a) varying indentation speed and constant indenter 

radius ( R
~

 = 1.0) and (b) varying indenter radius and constant indentation speed (V
~

 = 4 ×
10-3). 
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 due to the correspondingly smaller contact area.  

Figure 3.8 illustrates the dependence of the contact pressure, p, on dimensionless 

indentation depth, speed, and radius of the rigid indenter. The contact pressure is 
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Fig. 3.8  Contact pressure distribution on elastic-plastic multi-layered medium indented 
by a rigid cylinder for (a) varying indentation depth and speed and constant indenter 

radius ( R
~

 = 1.0) and (b) varying indenter radius and constant indentation depth (δ~ = 

0.02) and speed (V
~

 = 4 × 10-3).   
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normalized by the yield strength of the surface layer, σY1, and the distance x from the 

center of contact (x = 0) by the intermediate indenter radius, R. The effect of the various 

dimensionless parameters on the contact pressure distribution can be explained in terms 

of the dependence of subsurface plastic deformation on these parameters (discussed in 

detail in the following section). As shown in Fig. 3.8(a), increasing the indentation speed 

intensifies the contact pressure and increases the contact area, in accord with the contact 

force results shown in Fig. 3.7(a). The increase of the maximum contact pressure is a 

result of the larger strains occurring in a subsurface region adjacent to the contact 

interface, while the increase of the contact (width) area with indentation speed is a 

consequence of the slower downward movement of the surface of the deforming multi-

layered medium compared to that of the penetrating indenter. Figure 3.8(b) shows the 

effect of the indenter radius on the contact pressure distribution for both constant 

indentation depth (δ~ = 0.02) and speed (V
~

 = 4 × 10-3). As expected, a higher peak 

pressure and a smaller contact width were obtained with the sharper indenter. In the case 

of the indenter with intermediate radius ( R
~

 = 1.0), the peak pressure shifts toward the 

contact edge due to the excessive plastic deformation in the soft second layer, conversely 

to the relatively blunt ( R
~

 = 2.0) and sharp ( R
~

 = 0.2) indenters producing a peak pressure 

at the center of the contact region. This trend is also associated with the effect of the 

indenter radius on the subsurface stress-strain field. It will be shown later that, due to the 

much higher yield strength of the surface layer (Table 3.1), plastic deformation is 

encountered only in the second (soft) layer. For the larger indenter radius, the small value 

of δ/R produces less plastic deformation. Regarding the smaller indenter radius (sharp 

indenter), the high ratio of the thickness of the surface layer to the contact width (t1/a > 1) 
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promotes the dominance of elastic deformation in the multi-layered medium and, thus, 

the peak pressure arises at the center of the contact region. 

3.4.2  Subsurface Stresses and Evolution of Plasticity 

Contours of normalized von Mises equivalent stress, σM/σY1, in the multi-layered 

medium obtained from high-indentation speed (V
~

 = 4 × 10-3) simulations with an 

indenter of intermediate radius ( R
~

 = 1.0) are shown in Fig. 3.9. In this figure, as well in 

subsequent stress (strain) contour figures, stress (strain) contours are shown within the 

first two layers, where the higher stresses (strains) occurred in all the simulation cases. 

Stress discontinuities arise at the interface due to the material property mismatch between 

the first and second layer. For the simulated range of indentation depth (δ~ ≤  0.02), the 

hard surface layer exhibited purely elastic deformation. For relatively small indentation 

depth (δ~ = 0.0025), max
Mσ occurs in the surface layer at a depth approximately equal to 

half of the contact width (Fig. 3.9(a)). However, increasing the indentation depth causes 

max
Mσ to shift toward the interface (Fig. 3.9(b)). After yielding in the soft layer (δ~ > 

0.005), max
Mσ  arises always at the bottom of the hard surface layer near the interface with 

the plastically deformed soft layer (Figs. 3.9(b)-3.9(d)).  

Figure 3.10 illustrates the effects of indentation speed and indenter radius on the 

evolution of max
Mσ /σY1 in the surface layer during the advancement of the rigid indenter 

into the multi-layered medium. As expected, the Mises stress intensifies with increasing 

indentation depth, indicating a higher likelihood for yielding in the multi-layered 

medium, specifically in the soft layer possessing a relatively low yield strength. The trend 

for max
Mσ to increase with indentation speed (Fig. 3.10(a)) is similar to that observed for 
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the contact force (Fig. 3.7(a)). The higher values of max
Mσ produced with the relatively 

sharp indenter (Fig. 3.10(b)) are associated with the high values of δ/R and the more 

pronounced bending effect on the deformation of the surface layer.  

To further interpret the likelihood of subsurface cracking under both loading and 

unloading, contours of the normalized first principal (maximum tensile) stress, σI/σY1, in 

 
 
Fig. 3.9  Contours of von Mises equivalent stress in elastic-plastic multi-layered medium 
indented by a rigid cylinder of intermediate radius ( R

~
 = 1.0) at constant indentation 

speed (V
~

 = 4 × 10-3) for indentation depth (a) δ~ = 0.0025, (b) δ~ = 0.0075, (c) δ~ = 0.015, 

and (d) δ~ = 0.02. 
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the multi-layered medium are plotted in Fig. 3.11 for the case of relatively high 

indentation speed (V
~

 = 4 × 10-3) and intermediate indenter radius ( R
~

 = 1.0). Similar to 

the von Mises stress (Fig. 3.9), the maximum tensile stress occurs always in the surface 
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Fig. 3.10  Maximum von Mises equivalent stress in the surface (hard) layer of an elastic-
plastic multi-layered medium indented by a rigid cylinder versus indentation depth for 
(a) varying indentation speed and constant indenter radius ( R

~
 = 1.0) and (b) varying 

indenter radius and constant indentation speed (V
~

 = 4 × 10-3). 
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layer. In particular, during indentation loading the maximum tensile stress arises at the 

surface near the contact edge (Figs. 3.11(a) and 11(b)), while during partial unloading 

(Fig. 3.11(c)) and full unloading (Fig. 3.11(d)) it occurs below the center of the contact 

region at the interface of the two layers. The results presented in Fig. 3.11 suggest a 

greater probability for surface and interfacial cracking during indentation loading and 

 
 
Fig. 3.11  Contours of first principal stress in elastic-plastic multi-layered medium 
indented by a rigid cylinder of intermediate radius ( R

~
 = 1.0) at constant indentation 

speed (V
~

 = 4 × 10-3) for indentation depth (a) δ~ = 0.01 (loading), (b) δ~ = 0.02 (loading), 

(c) δ~ = 0.01 (partial unloading), and (d) δ~ = 0 (full unloading). 
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unloading, respectively, depending on the fracture strength of the hard surface layer and 

the indentation speed and radius of the indenter that affect the magnitude of the 

maximum tensile stress. This is illustrated in Fig. 3.12 where the maximum tensile (first 
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Fig. 3.12  Maximum tensile (first principal) stress in the surface (hard) layer of an elastic-
plastic multi-layered medium indented by a rigid cylinder versus indentation depth for (a) 
varying indentation speed and constant indenter radius ( R

~
 = 1.0) and (b) varying 

indenter radius and constant indentation speed (V
~

 = 4 × 10-3). 
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principal) stress, max
Iσ , in the surface layer is plotted as a function of indentation depth 

for different values of indentation speed and radius of the indenter. The effects of 

indentation speed and indenter radius on max
Iσ become significant at a critical indentation 

depth δ~ > 0.01. The variation of max
Iσ  reveals trends similar to those observed for max

Mσ  

(Fig. 3.10). As shown in Fig. 3.12(a), max
Iσ  in the hard surface layer increases with 

indentation speed, suggesting a higher propensity for cracking in indentation experiments 

performed at relatively high loading rates. Cracking may also be promoted in indentation 

experiments involving relatively sharp indenters (Fig. 3.12(b)). Thus, caution should be 

exercised in nanoindentation hardness tests with thin and hard layers requiring ultra-sharp 

indenters to avoid the substrate deformation effect on the measurement of the layer 

hardness and elastic modulus. 

The evolution of subsurface plasticity in the multi-layered medium may be 

studied in terms of the equivalent plastic strain, εeq, contours plotted in Fig. 3.13 for 

intermediate indenter radius ( R
~

 = 1.0), high indentation speed (V
~

 = 4 × 10-3), and 

different indentation depths. Due to the higher yield strength of the surface layer plastic 

deformation is confined only in the soft layer. At relatively small indentation depth (δ~ = 

0.0075), a small plastic zone is produced in the soft layer at the interface with the hard 

surface layer below the center of contact (Fig. 3.13(a)). As the indenter advances deeper 

into the multi-layered medium (δ~ = 0.0125), the plastic zone grows downward into the 

soft layer, while max
eqε continues to occur along the axis of symmetry (Fig. 3.13(b)). 

Deeper penetration of the indenter (δ~ = 0.0175) causes further expansion of the plastic 

zone and a shift of max
eqε  toward the interface with the hard surface layer (Fig. 3.13(c)). At 
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even larger indentation depth (δ~ = 0.02), max
eqε  commences at the interface of the two 

layers at a distance about one-third of the corresponding contact width (Fig. 3.13(d)). The 

evolution of max
eqε  in the present dynamic contact analysis is qualitatively similar to that 

observed in quasi-static indentation simulations of a homogeneous half-space indented by 

a rigid sphere (Kral et al., 1993).   

 
 
Fig. 3.13  Contours of equivalent plastic strain in elastic-plastic multi-layered medium
indented by a rigid cylinder of intermediate radius ( R

~
 = 1.0) at constant indentation

speed (V
~

 = 4 × 10-3) for indentation depth (a) δ~ = 0.0075, (b) δ~ = 0.0125, (c) δ~ =

0.0175, and (d) δ~ = 0.02. 
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To demonstrate the dependence of plasticity in the soft layer on indentation 

parameters, results for max
eqε obtained for different indentation depths during loading and 

unloading are plotted in Figs. 3.14 and 3.15, respectively. Increasing the indentation 

M
ax

im
um

 e
qu

iv
al

en
t p

la
st

ic
 s

tr
ai

n,
 ε

m
ax

/ 
ε Y

2

Indentation depth, δ/R

4

3

2

1

0

1.2

0.9

0.6

0.3

0

=4 × 10-3

=2 × 10-3

=1 × 10-3

=2.0

=1.0

=0.2

R
~

R
~

R
~

V
~

V
~

V
~

eq

(a)

(b)

0        0.005   0.01  0.015  0.02 0.025

 
 
Fig. 3.14  Maximum equivalent plastic strain in the second (soft) layer of an elastic-
plastic multi-layered medium indented by a rigid cylinder versus indentation depth for (a) 
varying indentation speed and constant indenter radius ( R

~
 = 1.0) and (b) varying 

indenter radius and constant indentation speed (V
~

 = 4 × 10-3). 
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speed and the sharpness of the indenter contributes to the premature yielding of the soft 

layer. For the range of parameters examined in this analysis, the critical indentation depth 

at the inception of yielding in the soft layer is predicted to be between 0.004 and 0.011, 

depending on the speed and radius of the indenter (Fig. 3.14). The dependence of max
eqε on 

indentation parameters (i.e., δ~ , V
~

, and R
~

) exhibits trends similar to those observed for 

max
Mσ  (Fig. 3.10) and max

Iσ  (Fig. 3.12). Figure 3.15 shows that reyielding during 

unloading is controlled by the speed and radius of the indenter. Dynamic unloading from 

a maximum depth δ~  = 0.02 is shown to be fully elastic for all simulation cases except 

for that involving the relatively sharp indenter ( R
~

 = 0.2) and higher load/unload speed 
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Fig. 3.15  Maximum equivalent plastic strain in the second (soft) layer of an elastic-
plastic multi-layered medium indented by a rigid cylinder during unloading versus 
indentation depth for varying indentation speed and indenter radius. 
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(V
~

 = 4 × 10-3). For this case, additional plastic deformation begins to accumulate in the 

soft layer as soon as the indenter is retracted to a depth δ~  ~ 0.01. The region where 

reyielding occurs in the soft layer is below the center of contact, close to the interface 

with the hard surface layer.  

3.4.3 Residual Stress-Strain Field 

As mentioned previously, damping was not included in the dynamic simulations 

of indentation loading and unloading. Consequently, after dynamic unloading, the multi-

layered medium continued to oscillate without ever reaching equilibrium due to the 

reflection of the propagating waves from the boundaries. Therefore, as mentioned in 

section 3.2, to enable the analysis of the residual stress-strain field due to dynamic 

indentation, dashpot elements were added to the finite element mesh after full unloading. 

The damping coefficients of these elements were selected in order for the vibration of the 

unloaded medium to decrease within a short time. Since additional plastic deformation 

due to the vibration of the multi-layered medium does not occur, the residual stress-strain 

field can be obtained as soon as equilibrium is reached. Contours of residual σM and 

eqε are shown in Figs. 3.16 and 3.17, respectively, for different values of normalized 

indenter radius and indentation speed. The results obtained for the same indenter radius 

( R
~

 = 1.0) reveal that increasing the indentation speed causes intensification of the 

residual stress in the hard surface layer, especially at the interface with the soft layer 

(Figs. 3.16(a)-3.16(c)), and promotes the development of higher residual plastic strains 

and a larger plastic zone in the soft layer (Figs. 3.17(a)-3.17(c)) below the center of 

contact. A comparison of Figs. 3.16(c) and 3.17(c) with Figs. 3.16(d) and 3.17(d), 
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respectively, shows that the residual stresses and plastic strains in the hard and soft 

layers, respectively, increase significantly with the sharpness of the indenter, while the 

size of the plastic zone in the soft layer decreases slightly. The development of max
Mσ at 

the bottom of the hard layer below the center of contact is attributed to bending of the 

elastically deformed hard layer as the soft layer flows plastically. The resulting large 

stress gradients across the interface are associated with the occurrence of max
eqε in the soft 

 
 
Fig. 3.16  Contours of residual von Mises equivalent stress in elastic-plastic multi-layered 
medium indented by a rigid cylinder after full unloading for different values of 

indentation speed and indenter radius: (a) V
~

 = 1 × 10-3, R
~

 = 1.0, (b) V
~

 = 2 × 10-3, R
~

 = 

1.0, (c) V
~

 = 4 × 10-3, R
~

 = 1.0, and (d) V
~

 = 4 × 10-3, R
~

 = 0.2. 
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layer adjacent to the region of max
Mσ at the bottom of the hard surface layer. 

The results presented in this chapter demonstrate the effect of indentation depth, 

speed, and sharpness of the indenter on the elastic-plastic deformation and likelihood of 

cracking in multi-layered elastic-plastic media. The dynamic simulation results cannot be 

compared with those of a quasi-static plane strain analysis. This is because the latter 

analysis implies infinite simulation time and the results depend on the location of the 

 
 
Fig. 3.17  Contours of residual equivalent plastic strain in elastic-plastic multi-layered 
medium indented by a rigid cylinder after full unloading for different values of 

indentation speed and indenter radius: (a) V
~

 = 1 × 10-3, R
~

 = 1.0, (b) V
~

 = 2 × 10-3, R
~

 = 

1.0, (c) V
~

 = 4 × 10-3, R
~

 = 1.0, and (d) V
~

 = 4 × 10-3, R
~

 = 0.2. 
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reference point. Alternatively, the dynamic results are obtained for a finite analysis time 

and are independent of a reference point. After a sufficiently long time the vibrations in 

the layered medium due to the reflected waves will be damped out (if damping is 

considered in the analysis) and the dynamic simulation results would approach those of a 

quasi-static analysis. To obtain such a comparison, the effects of the reflected waves and 

material damping, as well as the dependence of the results on the mesh size and boundary 

conditions, must be taken into account. However, this is beyond the scope of the present 

finite element analysis. The findings of this analysis provide explanation to 

phenomenological observations of mechanical failure in layered media due to excessive 

plastic flow and cracking in indentation experiments (e.g., Alfredsson and Olsson, 2000). 

The present finite element model can be easily extended to account for strain hardening 

and strain rate sensitivity effects under dynamic contact loading. 

3.5  Conclusions 

A plane-strain dynamic contact analysis for a multi-layered elastic-plastic 

medium indented by a rigid cylinder of varying radius of curvature was performed using 

the finite element method. Solutions for the contact force, contact pressure, and 

subsurface stresses and strains were obtained in terms of penetration depth, indenter 

radius, and indentation speed for both loading and unloading. Based on the presented 

results and discussion, the following main conclusions can be drawn. 

(1) For dynamic contact analysis of semi-infinite half-spaces using the finite element 

technique, a sufficiently large mesh is required for the faster propagating 

dilatational waves that are reflected from the mesh boundaries not to reach the 

region of interest during the analysis. In this region, the simulation results are 
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independent of mesh dimensions, and specifying a reference point in order to 

obtain the displacement field (as in plane-strain quasi-static analyses) is not 

necessary. 

(2) Wave propagation in the multi-layered medium examined in this analysis is 

dominated by the material properties of the thick substrate (fourth layer) of the 

half-space medium. 

(3) The contact load, contact pressure, and subsurface stresses and plastic strains (both 

loading and residual) increase with indentation depth and speed. For the material 

properties and indentation parameters examined in this analysis, higher indentation 

speed leads to premature yielding and plastic zone formation in the second (soft) 

layer and higher tensile stresses in the elastically deformed surface (hard) layer.  

(4) Smaller critical indentation depth at the inception of yielding, higher peak contact 

pressure, lower contact load, and intensified subsurface stress-strain field are 

obtained with a sharper indenter. Due to the relatively high yield strength of the 

surface layer, the peak value of the maximum von Mises equivalent stress occurs 

always in this layer, whereas the peak equivalent plastic strain arises always in the 

second layer.   

(5) Results for the peak values and locations of the maximum von Mises equivalent 

stress, first principal stress, and maximum equivalent plastic strain, as well as the 

evolution of the plastic zone during indentation loading and unloading, were 

obtained in terms of indentation parameters. The finite element solutions provide 

insight into the propensity for plastic flow and cracking in dynamically indented 

multi-layered media.  
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CHAPTER 4 

Dynamic Contact Between an Elastic-Plastic Multi-Layered  
Medium and a Rigid Fractal Surface 

 

 

4.1  Introduction  

The longevity of the protective hard and tough surface layers depends on the 

knowledge of the effects of the layer thickness and material properties on the deformation 

and stress fields due to surface traction. Contact stress analysis of elastic-layered media 

has received considerable research attention in the field of contact mechanics (Burmister 

(1945); Dhaliwal et al. (1970); Gupta and Walowit (1974); King and O’Sullivan (1987)). 

With the advent of numerical techniques, such as finite element method, and the increase 

of computational capabilities, significant advances in the study of elastic-plastic contact 

deformation were also encountered (Kennedy and Ling (1974); Komvopoulos (1989); 

Kral et al. (1995a and 1995b); Gan and Ben-Nissan (1997); Sen et al. (1998); Faulkner et 

al. (1998)).  

The above-mentioned studies dealing with perfectly smooth contact interfaces are 

informative of the global deformation behavior, which is dictated by the macroscopic 

shape of the interacting solids. However, the local deformation behavior may differ 

significantly due to multi-scale roughness effects. For example, numerical simulations by 

Webster and Sayles (1986) have shown that the contact pressure distribution and the 

normal load versus real contact area relationship of rough surfaces markedly deviated 

from those of perfectly smooth surfaces. Thus, in order to capture the microscopic 

deformation occurring in the vicinities of the asperity contacts, where actual solid-solid 
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contact occurs, accurate representation of the surface topography over a wide range of 

length scales is essential. The dependence of surface topography parameters, such as 

variance, skewness, and kurtosis of the surface height distribution, on the sample size and 

resolution limit of the measuring device and the self-affinity behavior of many 

engineering surfaces have led to the characterization of the surface topography by fractal 

geometry (Majumdar and Tien, 1990; Majumdar and Bhushan, 1990). Majumdar and 

Bhushan (1991) developed a two-dimensional contact model of rough surfaces described 

by fractal geometry, and predicted that all the asperity contacts of area less than a critical 

value deform plastically. Yan and Komvopoulos (1998a) presented a three-dimensional 

contact analysis of elastic-plastic fractal surfaces that elucidated the effects of surface 

topography parameters and material properties on the evolution of elastic and plastic 

deformation at the contact interface. Later, Komvopoulos and Ye (2001) extended the 

previous analysis to include elastic, elastic-plastic, and fully plastic deformation of the 

asperity contacts, and obtained results illustrating the dependence of the normal load on 

fractal parameters. The same authors used fractal geometry to describe the equivalent 

surface topography of the head-disk interface and investigated the evolution of plasticity 

and likelihood of crack initiation in the multi-layered hard disk (Komvopoulos and Ye, 

2002). 

The knowledge derived from previous contact analyses dealing with 

homogeneous and layered media possessing either smooth or rough surface topographies 

has paved the way toward more accurate modeling of contact deformation. However, 

because most of these studies are limited to static or quasi-static contact loads, the 

reported solutions may not be applicable to dynamic contacts. For example, Streator 
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(2003) used a numerical model to analyze dynamic contact between a rigid sphere and an 

elastic half-space and found that the maximum contact load was significantly higher than 

that for quasi-static contact, even for indentation speeds much less than the speed of the 

dilatational waves. In chapter 3, a finite element analysis of dynamic indentation of a 

multi-layered medium by a rigid cylinder with a smooth surface profile is reported and 

the requirement for the finite element mesh size in order to obtain results that are not 

biased by the waves reflected from the artificial boundaries of the half-space is also 

discussed. The objective of this chapter is to extend the previous analysis to the more 

realistic case of an elastic-plastic layered medium in dynamic contact with a rough 

surface characterized by fractal geometry. The effects of the layer thickness and 

indentation speed on the contact pressure and subsurface stress/strain fields and the 

possibility of elastic shakedown during cyclic indentation are interpreted in the context of 

the obtained finite element results. 

4.2 Rough-Surface Model and Finite Element Simulations 

4.2.1 Rough-Surface Model.   

For an unbiased description of the surface topography and in order to include 

multi-scale length effects in the present analysis, the equivalent surface topography was 

characterized by fractal geometry (Mandelbrot, 1967). The traditional approach in contact 

analyses of fractal surfaces is to represent a two-dimensional surface profile, z(x), by an 

approximate (truncated) Weierstrass-Mandelbrot function (Berry and Lewis, 1980), 

which, for dimensional consistency, can be written as (Wang and Komvopoulos, 1994) 
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where x is the horizontal direction, Lx is the fractal sample length, G is the fractal 

roughness, D is the fractal dimension (1 < D < 2), γ  (γ > 1) is a scaling parameter 

(typically, γ = 1.5 (Yan and Komvopoulos, 1998a)), which controls the relative phase 

differences between fractal modes, and M is the highest frequency index, which is related 

to the cut-off length, cL , and the sample length by ]log)log(int[ γcx LLM = .  

The rough surface used in the finite element simulations was obtained from Eq. 

(4.1) using the fractal parameters of the equivalent surface of an ultra-smooth hard disk 

and a carbon-coated slider, D = 1.44 and G = 9.46 × 10-4 nm (Komvopoulos, 2000). Since 

modeling of the entire surface profile is impractical and computationally prohibitive, a 

segment of the profile was selected for dynamic contact analysis based on the procedure 

developed in a previous study (Komvopoulos and Ye, 2002). Since all the truncated 

segments of a surface profile exhibit self-affinity over ranges that include all the 

wavelengths comprising the surface profile (Eq. (4.1)), any segment of length several 

orders of magnitude larger than the simulated maximum interference should yield a 

similar deformation behavior (Komvopoulos and Ye, 2002). The critical surface segment 

was determined by truncating the entire surface profile (4379 nm in length) to a 

maximum interference of 2 nm. The profile segment determined from this procedure 

(Fig. 4.1) is about 100 times larger than the simulated local interference and contains the 

largest number of asperity contacts. The dashed line shown in Fig. 4.1 represents the 

undeformed surface of the multi-layered medium. The local interference, δ, is defined as 
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the maximum interference in this segment. The origin of the rough-surface segment is 

denoted by xs. The segment length, L, was used to normalize all the length parameters. 

More details about the characterization of the surface topography by fractal geometry can 

be found in previous publications (Komvopoulos and Ye, 2002; Wang and 

Komvopoulos, 1994; Yan and Komvopoulos, 1998a). 

4.2.2 Finite element mesh and material properties of the layered medium.   

As discussed in chapter 2 and 3, wave propagation plays an important role in 

dynamic contact analysis. To avoid the effects of the mesh boundaries on the results, 

sufficiently large finite element meshes were used in order for the waves reflected from 

the artificial boundaries not to affect the results in the analyzed domain of the multi-

layered medium (chapter 3). However, the effects of the waves reflected from the layer 

interfaces were included in the analysis because of their close proximity to the region of 

analysis. Figures 4.2(a) and 4.2(b) show the finite element meshes of multi-layered media 
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Fig. 4.1  Segment of a two-dimensional fractal profile generated from Eq. (1) using D = 
1.44, G = 9.46 × 10

-4
 nm, γ = 1.5, Lx = 4379 nm, and Lc = 10 nm. 
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Fig. 4.2  Finite element mesh of a multi-layered medium with a surface-layer thickness

(a) 1

~
h  = 0.01 and (b) 1

~
h  = 0.025. 
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with surface-layer thickness equal to 0.01L and 0.025L, consisting of 9270 and 7854 

eight-node, bi-quadratic, plane-strain elements with a 3 × 3 Gauss integration scheme, 

respectively. For greater numerical accuracy, the near-surface regions of the meshes were 

refined with small square elements of size equal to 0.0025L and 0.003125L, i.e., one-

fourth and one-eighth of the thickness of the surface layer in Figs. 4.2(a) and 4.2(b), 

respectively. The size of the meshes shown in Figs. 4.2(a) and 4.2(b) are 51.2L × 26.088L 

and 51.2L × 26.103L. All the nodes at the bottom boundary were constrained against 

displacement in the y direction. In addition, the middle-node at the bottom boundary was 

constrained against displacement in the x direction to prevent rigid body rotation. The 

normalized thickness and material properties of the multi-layered medium (Kaye, 1986; 

Komvopoulos, K., 2000) are listed in Table 4.1. The material properties are typical of 

magnetic thin-film disks. A Poisson ratio of 0.3 and elastic-perfectly plastic behavior was 

Table 4.1.  Thickness and material properties of the elastic-plastic multi-layered 

medium subjected to dynamic indentation of a rigid, rough surface 

Layer Normalized 
thickness  

(h/L) 

Elastic 
modulus  

(GPa) 

Yield 
strength  

(GPa) 

Mass 
density  

(kg/m3) 

Poisson 
ratio 

1 0.01, 0.025 168 13.0 2266 0.3 

2 0.078 130 2.67 8800 0.3 

3 0.40 140 2.58 7000 0.3 

4 25.6 160 2.67 8000 0.3 

   Sources: Kaye (1986) and Komvopoulos (2000). 

 
 
 



 76

assumed for all the layers. The classical von Mises yield criterion was used to determine 

whether yielding occurred at an integration point at different interferences. 

4.2.3 Dynamic Contact Simulations.   

Dynamic indentation was simulated in a fashion similar to chapter 3. Contact 

between the rough surface and the multi-layered medium was detected by second-order 

contact elements assigned to the surface of the deformable medium. In view of the 

secondary effect of friction in normal contact (Komvopoulos, 1988), frictionless contact 

was assumed in all the simulations. A node with a fixed x coordinate was used to control 

the vertical movement of the rough surface. This node was also used as the reference 

node of the contact elements. Based on a displacement-controlled scheme, an indentation 

cycle was modeled by displacing the rough surface toward the multi-layered medium at a 

constant velocity and, upon reaching the set interference, retracting it back to its original 

position by following the same steps as for the loading.  

Simulations were performed for an indentation load/unload speed between 

0.001 )4(
Pc  and 0.004 )4(

Pc , where )4(
Pc  is the propagation speed of the plane dilatational 

waves in the fourth layer. In the following section, results are presented in terms of 

dimensionless indentation speed, V
~

, obtained by dividing the indentation speed by )4(
Pc . 

Although material damping was ignored in the loading and unloading phases of an 

indentation cycle, to determine the residual stresses and strains, dashpot elements were 

added to the mesh after the unloading phase of each indentation cycle. The damping 

coefficients of the dashpot elements were selected to achieve static equilibrium in a 

relatively short computation time. Subsequently, the dashpot elements were removed and 

the next indentation cycle was simulated in a manner identical to that of the previous 
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cycle. For increased accuracy and expeditious convergence, all the simulations were 

performed with the ABAQUS/Standard finite element package (implicit integration) 

instead of the generally faster ABAQUS/Explicit package (explicit integration). The 

typical CPU time for simulating indentation loading (or unloading) with a Pentium III 

550 processor was equal to 13-14 hours, while the CPU time for a complete load/unload 

indentation cycle, including the time required to achieve equilibrium after full unloading, 

was of the order of ~56 hours.  

4.3 Results and Discussion 

Simulation results for the contact pressure distribution and subsurface stress and 

strain fields in the multi-layered medium are presented in this section in terms of 

normalized interference, L/
~ δδ = , indentation speed, LVV /

~ = , and surface-layer 

thickness, Lhh /
~

11 = . As mentioned earlier, the length of the simulated profile segment, 

L, was used to normalize all the dimensional parameters. The likelihood for plastic 

deformation and crack initiation is discussed in terms of the von Mises equivalent stress, 

equivalent plastic strain, and first principal (maximum tensile) stress obtained in the 

loading and unloading phases of each indentation cycle. The possibility of elastic 

shakedown is also interpreted in the context of the reyielding behavior of the multi-

layered medium due to cyclic indentation. Unless otherwise stated, the results discussed 

in the following section are for the loading and unloading phases of a single indentation 

cycle. However, it will be shown later that the single-indentation results obtained for the 

multi-layered medium with the relatively thicker surface layer ( 1

~
h  = 0.025) are also valid 

for cyclic indentation. 
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4.3.1 Single Indentation 

4.3.1.1 Contact Force and Pressure Distribution   

Figure 4.3 shows the variation of the contact force, P/PY, with the interference, 

δ~ , for different values of the indentation speed, V
~

, and surface-layer thickness, 1

~
h . The 

(critical) contact load at the inception of yielding in the multi-layered medium with the 

thinner surface layer ( 1

~
h  = 0.01) for a relatively high indentation speed (V

~
 = 0.004) is 

denoted by PY. In all the simulated cases, the contact force increases monotonically with 

the interference. The increase of the contact force with the indentation speed at a given 

interference indicates an enhancement of the penetration resistance at high loading rates. 

This can be explained by considering the dependence of the energy dissipated in the 

multi-layered medium on the indentation speed. In high-speed indentation, a larger 

fraction of the external work is converted to kinetic energy, and larger displacement 

gradients (i.e., higher strains and strain energy) develop in the vicinities of the asperity 

contacts. Consequently, a higher indentation speed produces a larger contact force at a 

given interference, in accord with the findings of chapter 3. The close agreement of the 

force-interference responses shown in Figs. 4.3(a) and 4.3(b) indicates that, for the ranges 

of the varied parameters, the contact force is relatively insensitive to the surface-layer 

thickness. This is attributed to the small thickness of the surface layer compared to those 

of the underlying layers. Thus, despite the significantly higher elastic modulus and yield 

strength of the surface layer, the effect of its mechanical properties on the global dynamic 

response of the multi-layered medium is secondary. 

Figures 4.4 and 4.5 show the effects of the indentation speed, interference, and 
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Fig. 4.3  Contact force versus interference for indentation speed V
~

 = 0.001, 0.002, and 

0.004 and surface layer thickness (a) 1

~
h  = 0.01 and (b) 1

~
h  = 0.025. 

 
 
 



 80

  

C
on

ta
ct

 p
re

ss
ur

e,
 p

/σ
Y1

Distance, (x-xc)/L

(a)

(d)

(c)

(b)

-0.3         -0.15       0           0.15        0.3

1.5

1.0

0.5

0

1.5

1.0

0.5

0

1.5

1.0

0.5

0

1.5

1.0

0.5

0

= 0.001

= 0.01

V
~

1
~
h

= 0.002

= 0.01

V
~

1
~
h

= 0.004

= 0.01

V
~

1
~
h

= 0.004

= 0.025

V
~

1

~
h

δ~ = 0.005

 
 
Fig. 4.4  Contact pressure distributions on an elastic-plastic multi-layered medium 

indented by a rigid and rough surface for interference δ~ = 0.005 and different 

indentation speed and surface-layer thickness: (a) V
~

 = 0.001, 1

~
h  = 0.01, (b) V

~
 = 0.002, 

1

~
h  = 0.01, (c) V

~
 = 0.004, 1

~
h  = 0.01, and (d) V

~
 = 0.004, 1

~
h  = 0.025. 
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Fig. 4.5  Contact pressure distributions on an elastic-plastic multi-layered medium 

indented by a rigid, rough surface for interference δ~ = 0.01 and different indentation 

speed and surface-layer thickness: (a) V
~

 = 0.001, 1

~
h  = 0.01, (b) V

~
 = 0.002, 1

~
h  = 0.01, 

(c) V
~

 = 0.004, 1

~
h  = 0.01, and (d) V

~
 = 0.004, 1

~
h  = 0.025. 
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surface-layer thickness on the contact pressure distribution. The contact pressure, p, is 

normalized by the yield strength of the surface layer, σY1, and the distance from the center 

of the modeled surface profile, x - xc, by the length of the profile, L. The maximum 

contact pressure at each asperity contact intensifies with the increase of the interference. 

In addition, Figs. 4.4(a)-4.4(c) and Figs. 4.5(a)-4.5(c) show that, for a fixed interference 

and surface-layer thickness, both the real contact area and the maximum contact pressure 

increase with the indentation speed and, in the case shown in Fig. 4.4(c), more asperity 

contacts are established. These trends provide explanation for the variation of the contact 

force with the indentation speed for fixed interference and surface-layer thickness (Fig. 

4.3). Moreover, a comparison of Figs. 4.4(c), 4.4(d), 4.5(c), and 4.5(d) shows that the 

increase of the surface-layer thickness intensifies the maximum contact pressure and 

decreases the real contact area. This is because the effect of the mechanical properties of 

the surface layer on the conformity of the multi-layered medium with the rough surface 

becomes more pronounced with the increase of the surface-layer thickness.  

4.3.1.2 Subsurface Stresses   

Figure 4.6 shows contours of normalized von Mises equivalent stress, σM/σY1, in 

the multi-layered medium with the thinner surface layer ( 1

~
h  = 0.01) for a relatively high 

indentation speed (V
~

 = 0.004). The high-magnification regions show the distribution of 

the von Mises stress in the highly stressed near-surface regions. The discontinuities of the 

stress contours at the layer interface are due to the mismatch of the material properties of 

the two layers. Similar discontinuities can be observed in the stress and strain contours of 

similar figures presented in following sections. For a relatively small interference δ~  = 

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa  
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Fig. 4.6  Contours of von Mises equivalent stress in an elastic-plastic multi-layered

medium with a surface-layer thickness 1

~
h  = 0.01 indented by a rigid, rough surface for 

indentation speed V
~

 = 0.004 and interference (a) δ~  = 0.0005, (b) δ~  = 0.005, and (c) δ~
= 0.01. 
 
 
 



 84

0.0005 (Fig. 4.6(a)), max
Mσ  occurs in the surface layer below the first established asperity 

contact A, and is much higher than that below asperity contact B. New asperity contacts 

are produced at larger interferences (Figs. 4.6(b) and 4.6(c)), and the highest von Mises 

stresses occur at the bottom of the surface layer, adjacent to the interface with the second 

layer. It is noted that max
Mσ  in the surface layer is always higher than that in the second 

layer. It can be seen that max
Mσ  below asperity contact B increases faster than that below 

asperity contact A due to the grater sharpness of asperity B. For an intermediate 

interference ( δ~  = 0.005), the values of max
Mσ  below asperity A and B are similar. 

However, for a large interference (δ~  = 0.01), max
Mσ  occurs below asperity contact B. 

Thus, for a large interference, the sharper asperity B produces a higher max
Mσ  stress at the 

layer interface (Fig. 4.6(c)), while for a small interference, the blunt asperity A produces 

a higher max
Mσ  stress in the first layer adjacent to the contact region (Fig. 4.6(a)). 

Qualitatively similar results were obtained from the low-speed indentation simulations 

(i.e., V
~

 = 0.001), though the stresses were generally lower.  

Figure 4.7 shows the variation of the normalized maximum von Mises stress, 

max
Mσ /σY1, in the surface layer with the interference for different values of indentation 

speed and surface-layer thickness. For both values of the surface-layer thickness, max
Mσ  

increases with the interference independent of indentation speed. In addition, 

max
Mσ intensifies with the increase of the indentation speed in a similar fashion as the 

contact force (Fig. 4.3). Although the effect of the surface-layer thickness on the 

magnitude of max
Mσ is negligible for interferences significantly less than the layer 
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Fig. 4.7  Maximum von Mises equivalent stress in the first layer of an elastic-plastic 
multi-layered medium indented by a rigid, rough, surface versus interference for 

indentation speed V
~

 = 0.001, 0.002, and 0.004 and surface-layer thickness (a) 1

~
h  = 0.01 

and (b) 1

~
h  = 0.025. 
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thickness (e.g., δ~  < 0.0025 << 1

~
h ), a much lower max

Mσ stress is produced with the thicker 

layer at a relatively large interference (e.g., δ~  = 0.01). As discussed earlier, this result 

can be attributed to the exacerbated influence of the material properties of the surface 

layer on the mechanical response of the multi-layered medium when δ~  << 1

~
h . It is also 

noted that even though the contact pressure may exceed the yield strength of the surface 

layer (e.g., Fig. 4.5(d)), the corresponding curve (V
~

 = 0.004 and 1

~
h  = 0.025), shown in 

Fig. 4.7(b), reveals that the surface layer deforms only elastically. 

The likelihood of subsurface crack initiation can be interpreted in terms of the 

first principal (maximum tensile) stress, Iσ . Figure 4.8 shows contours of normalized 

first principal stress, 1YI σσ , in the first and second layers for different interferences and 

high indentation speed. Similar to max
Mσ  (Fig. 4.6), max

Iσ  always occurs in the surface 

layer below the asperity contacts. Therefore, domains around the location of max
Iσ are 

shown in Figs. 4.8(a)-4.8(d).  For a small interference (δ~  = 0.00375), max
Iσ  arises at the 

layer interface below asperity contact A (Fig. 4.8(a)). The increase of the interference 

intensifies the tensile stress and shifts the location of max
Iσ at the layer interface below the 

sharper asperity B (Figs. 4.8(b) and 4.8(c)). The contours of residual Iσ  stress obtained 

after the first indentation cycle (Fig. 4.8(d)) illustrate an enlargement of the interface 

regions of tensile stress below the asperity contacts. The contour plots shown in Fig. 4.8 

demonstrate a higher probability for crack initiation at the layer interface during the 

loading and/or unloading phases of dynamic indentation.  
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Figure 4.9 shows the dependence of max
Iσ on the indentation speed and surface-

layer thickness. Although max
Iσ  increases primarily with the interference and secondarily 

with the indentation speed similar to the max
Mσ  stress (Fig. 4.7), the effect of the surface-

layer thickness on max
Iσ  is more pronounced compared to max

Mσ . The markedly higher 

tensile stress at the bottom of the thinner ( 1

~
h  = 0.01) layer is due to the increase of 

bending deformation in the stiff surface layer with the decrease of its thickness, in accord 
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Fig. 4.8  Contours of first principal stress in the first and second layers of an elastic-

plastic multi-layered medium with a surface-layer thickness 1

~
h  = 0.01 indented by a 

rigid, rough surface for indentation speed V
~

 = 0.004 and interference (a) δ~  = 0.00375, 

(b) δ~  = 0.0075, (c) δ~  = 0.01, and (d) δ~  = 0 (full unloading). 
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Fig. 4.9  Maximum first principal stress in the surface layer of an elastic-plastic multi-
layered medium indented by a rigid, rough surface versus interference for indentation 

speed V
~

 = 0.001, 0.002, and 0.004 and surface-layer thickness (a) 1

~
h  = 0.01 and (b) 1

~
h  = 

0.025. 
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with the findings of chapter 3. This reveals a strong dependence of interface delamination 

on the thickness and elastic modulus of the surface layer. 

4.3.1.3 Subsurface Plasticity.  

The equivalent plastic strain can be used to quantify the effect of different 

parameters on the development of plasticity in the multi-layered medium. Figure 4.10 

shows contours of normalized equivalent plastic strain, εeq /εY2, below asperity contacts A 

and B for thin surface layer ( 1

~
h  = 0.01) and high indentation speed (V

~
 = 0.004). Because 

of the higher yield strength of the surface layer, plasticity occurs only in the second (soft) 

layer. Plastic deformation commences at the layer interface below the larger (blunter) 

asperity A (Fig. 4.10(a)). The increase of the interference causes the plastic zone to grow 

only into the second layer and a new plastic zone to form below the smaller (sharper) 

asperity B (Fig. 4.10(b)). The peak value of εeq in the plastic zone below asperity B 

intensifies faster than that in the plastic zone below asperity A due to the greater 

sharpness of asperity B. For a larger interference (Fig. 4.10(c)), a new plastic zone 

develops at the interface, just below the newly established asperity contact to the left of 

asperity A, and max
eqε  arises in the plastic zone below asperity B. This trend is similar to 

that of the von Mises equivalent stress (Fig. 4.6). However, regardless of the interference, 

the largest plastic zone always occurs below the relatively blunter asperity A. These 

results illustrate the significance of the asperity radius of curvature (sharpness) and 

contact size on the evolution of subsurface plasticity. 

Figure 4.11 shows the dependence of the maximum equivalent plastic strain, 
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Fig. 4.10  Contours of equivalent plastic strain in the first and second layers of an elastic-

plastic multi-layered medium with a surface-layer thickness 1

~
h  = 0.01 indented by a 

rigid, rough surface for indentation speed V
~

 = 0.004 and interference (a) δ~  = 0.0025, 

(b) δ~  = 0.005, and (c) δ~  = 0.01. 
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Fig. 4.11  Maximum equivalent plastic strain in the second layer of an elastic-plastic 
multi-layered medium indented by a rigid rough surface versus interference for 

indentation speed V
~

 = 0.001, 0.002, and 0.004 and surface-layer thickness (a) 1

~
h  = 0.01 

and (b) 1

~
h  = 0.025. 
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max
eqε , in the second layer on the indentation speed and surface-layer thickness. The 

increase of the indentation speed promotes the initiation of yielding in the second layer 

and the development of larger plastic strains at a given interference. A comparison of 

Figs. 4.11(a) and 4.11(b) shows that the plastic flow resistance decreases with the 

surface-layer thickness. These tendencies are in agreement with those shown in Fig. 4.7.  

Figure 4.12 shows contours of residual equivalent plastic strain, εeq,res, for 

different values of indentation speed and surface-layer thickness obtained after the first 

indentation cycle. Figures 4.12(a) and 4.12(b) show that, for a fixed surface-layer 

thickness, an increase of the indentation load/unload rate leads to the formation of more 

plastic zones with larger plastic strains. While the values of max
,reseqε at the interface below 

asperity contacts A and B are comparable in the low-speed indentation case (Fig. 

4.12(a)), a higher max
,reseqε was produced below the sharper asperity B in the high-speed 

indentation case (Fig. 4.12(b)). This demonstrates a higher probability for excessive 

plastic deformation at the interface below less conforming (sharp) asperity contacts at 

high indentation speeds. However, Fig. 4.12(c) shows that fewer and smaller plastic 

zones occurred with the thicker surface layer. It is also noted that max
,reseqε does not occur in 

the plastic zone below the sharper asperity B but in the plastic zone of the relatively blunt 

asperity A. This is another illustration of the important role of the surface-layer thickness, 

indentation speed, and surface topography (roughness) on the development of subsurface 

plasticity in multi-layered media subjected to dynamic contact loads. 
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Fig. 4.12  Contours of residual equivalent plastic strain in an elastic-plastic multi-layered
medium indented by a rigid, rough surface for different indentation speed and surface-

layer thickness:  (a) V
~

 = 0.001, 1

~
h  = 0.01, (b) V

~
 = 0.004, 1

~
h  = 0.01, and (c) V

~
 = 0.004, 

1

~
h  = 0.025. 
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4.3.2 Cyclic Indentation 

Although damping effects were not considered in the indentation loading and 

unloading simulation steps, as mentioned in section 4.2.3, after each indentation cycle, 

dashpot elements were added to the finite element mesh in order to obtain results for the 

residual stresses and strains. Due to the excessive computation time, only four indentation 

cycles were simulated, and the development of plasticity was examined in terms of the 

residual equivalent plastic strain. Representative results of max
eqε  and εeq,res in the second 

layer are presented below for different values of indentation speed and surface-layer 

thickness. 

The maximum equivalent plastic strain, max
eqε  (maximum δ~  = 0.01), and the 

maximum residual equivalent plastic strain, max
,reseqε  (after full unloading from δ~  = 0.01) 

versus indentation cycle are shown in Figs. 4.13(a) and 4.13(b), respectively. A 

significant effect of both the surface-layer thickness and the indentation speed on the 

accumulation of plastic deformation in the second layer can be observed. In the presence 

of a thin surface layer ( 1

~
h  = 0.01), plastic deformation in the second layer increases 

linearly with the indentation cycles. However, the relatively thick surface layer ( 1

~
h  = 

0.025) inhibits the cyclic accumulation of plasticity after the first indentation cycle, even 

in the high-speed indentation case. This implies that subsequent cyclic indentation up to 

the same maximum interference (i.e., δ~  = 0.01) yields a purely elastic response, 

indicating the occurrence of elastic shakedown. H, the results for 1

~
h  = 0.025, V

~
 = 0.004, 

and δ~  = 0.01 shown in Fig. 4.13 suggest that the single-indentation results for 1

~
h  = 
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Fig. 4.13  (a) The maximum equivalent plastic strain at the maximum interference δ~  = 
0.01 and (b) maximum residual equivalent plastic strain after full unloading produced in 
the second layer of an elastic-plastic multi-layered medium indented by a rigid, rough 

surface versus loading cycle for indentation speed V
~

 = 0.001, 0.002, and 0.004 and 

surface-layer thickness 1

~
h  = 0.01 and 0.025. 
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0.025, shown in Figs. 4.3(b), 4.4(d), 4.5(d), 4.7(b), 4.9(b), 4.11(b), and 4.12(c), are also 

representative of the cyclic-indentation response of this multi-layered medium for δ~  ≤ 

0.01. Therefore, a significant enhancement of the contact fatigue life of the multi-layered 

medium can be achieved in the presence of a strong and sufficiently thick surface layer 

that suppresses the development of high stresses at the interface due to the material 

property mismatch of the first and second layers. The contours of reseq,ε shown in Fig. 

4.14 provide additional information for the spatial development of plasticity in the multi-

layered medium with the thin surface layer due to cyclic indentation. It is noted that the 

accumulation of plastic strain is confined within a small region in the second layer close 

to the interface, where the maximum equivalent plastic strain always occurs. It is 

interesting to note the accumulation of plastic strain only below the sharper asperity B. 

Thus, while the region in the second layer below the blunt asperity A attains elastic 

shakedown after one indentation cycle, the region in the second layer below the sharper 

asperity B continues to accrue plastic strain. This implies that cyclic indentation may 

promote microcrack initiation in the compliant and soft second layer adjacent to the 

interface, especially below sharper asperities, eventually leading to delamination of the 

stiffer and stronger surface layer. 

4.4 Conclusions 

Dynamic indentation of an elastic-plastic multi-layered medium by a rigid, rough 

(fractal) surface was investigated using the finite element method. Based on the presented 

results for the contact force, contact pressure distribution, and subsurface stresses and 

strains obtained in terms of the surface-layer thickness, indentation speed, and 

indentation cycle, the following main conclusions can be drawn. 
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Fig. 4.14  Contours of residual equivalent plastic strain in an elastic-plastic multi-layered

medium with surface-layer thickness 1

~
h  = 0.01 indented by a rigid, rough surface for 

indentation speed V
~

 = 0.004 and maximum interference δ~  = 0.01 obtained after the (a) 
first, (b) second, and (c) fourth loading cycle. 
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(1) The number of asperity contacts and the contact load, contact pressure, and 

subsurface stresses and plastic strains intensify with the increase of the 

interference and/or the indentation speed. For the material properties, surface 

topography (fractal parameters), and ranges of interference and indentation speed 

examined in this analysis, the increase of the indentation speed leads to premature 

yielding, more plastic zones in the soft, second layer, relatively faster increase of 

the maximum equivalent plastic strain below the sharper asperities, and higher 

tensile stresses in the elastically deformed surface layer.  

(2) The critical interference at the inception of yielding in the soft, second layer 

increases and the intensities of the subsurface stresses and strains decrease with 

the increase of the thickness of the stiffer and stronger surface layer.   

(3) Results for the maximum von Mises equivalent stress, first principal stress, and 

maximum equivalent plastic strain show that, under the simulated conditions, 

crack initiation and excessive plastic deformation are more likely to occur at the 

layer interface below the sharper and/or deeper indenting asperities.  

(4) A high indentation speed and a relatively thin surface layer promote cyclic 

plasticity in the soft, second layer adjacent to the interface with the hard surface 

layer, especially below the sharper asperities. This increases the likelihood for 

crack initiation at the interface, where excessive plastic deformation and high 

tensile stress are encountered in view of the significant mismatch of the elastic 

and plastic properties of the two layers. 
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CHAPTER 5 

A Mechanics Approach to Static Friction of  
Elastic-Plastic Fractal Surfaces  

 

 

5.1  Introduction  

Friction plays an important role in many fields of science and technology. The 

effect of friction can be either detrimental or beneficial to the performance of various 

engineering components and scientific instruments. However, despite numerous 

analytical and experimental studies, fundamental understanding of friction remains 

largely elusive, principally due to the lack of adequate mechanics models and unbiased 

description of the surface topography over a wide range of length scales. Friction depends 

on adhesion and deformation mechanisms encountered at asperity contacts where actual 

surface interaction occurs. These mechanisms are usually interdependent and their 

dominance is controlled by the external load, elastic-plastic material properties, surface 

topography, and interfacial shear strength. The large discrepancies among friction 

analyses in the literature are mainly due to superficial treatment of associated contact 

mechanics and use of scale-dependent parameters to describe the topographies of the 

contacting surfaces.  

In early analyses, the contacting solid surfaces were assumed to be perfectly 

smooth. However, later studies revealed that this assumption can lead to an 

overestimation of the real contact area by several orders of magnitude (Webster and 

Sayles, 1986; Yan and Komvopoulos, 1998a) because of multi-scale roughness effects. 

Greenwood and Williamson (1966) developed an asperity-based model (GW model) to 
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study contact between nominally flat surfaces. In this model, a rough surface is 

represented by a large number of spherical asperities with constant radius of curvature 

and normal height distribution. Due to the assumption of constant asperity radius, 

analyses based on the original GW model predict elastic (plastic) deformation for smaller 

(larger) asperity contacts. In later studies, the GW model was extended to study curved 

surfaces (Greenwood and Tripp, 1967) and modified to include the asperity radius as a 

variable (Hisakado, 1974). The GW model has also been used in studies dealing with 

elastic-plastic contact of rough surfaces (Chang, Etsion and Bogy, 1987) and solid 

surface adhesion (Roy Chowdhury and Ghosh, 1994). 

In view of the self-affinity property of engineering surfaces, fractal geometry 

(Mandelbrot, 1967) was used in contemporary contact mechanics analyses to describe the 

surface topography. Since the first studies dealing with surface fractal behavior 

(Majumdar and Tien, 1990; Majumdar and Bhushan, 1990), several contact mechanics 

and friction analyses have been proposed for fractal surfaces. Conversely to traditional 

characterization of rough surfaces by scale-dependent parameters, fractal characterization 

yields scale-independent parameters over a wide range of length scales where fractal 

behavior is observed. It has been proposed that contact of two fractal surfaces can be 

represented by an equivalent fractal surface in normal contact with a flat plane 

(Majumdar and Tien, 1991). This suggestion has been adopted in most recent contact 

analyses of rough surfaces. Based on a contact model of elastic-plastic fractal surfaces, 

Majumdar and Bhushan (1991) estimated that plastic deformation occurs at all the 

asperity contacts with areas less than a critical value, which is contradictory to the 

prediction of the original GW model. A similar model was proposed by the same authors 
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for elastic-plastic bi-fractal surfaces (Bhushan and Majumdar, 1992). Sahoo and Roy 

Chowdhury used a model of a rigid plane in contact with a deformable fractal surface to 

investigate normal (1996) and sliding (2000) contact of adhesive rough surfaces. Yan and 

Komvopoulos (1998a) performed a three-dimensional contact analysis of elastic-plastic 

rough surfaces characterized by a modified two-variable Weierstrass-Mandelbrot (W-M) 

function. Using a similar elastic-plastic fractal approach, Komvopoulos and Yan (1998) 

investigated adhesion in microelectromechanical systems due to van der Waals, 

electrostatic, and capillary forces. More recently, Komvopoulos and Ye (2001) analyzed 

elastic-plastic contact of layered media with fractal topographies and derived constitutive 

contact relationships from finite element results obtained for homogeneous and layered 

media.  

In all the previous contact mechanics and adhesion studies, contact of two rough 

surfaces was modeled by an equivalent rough surface in contact with a rigid plane. 

Although this model greatly simplifies the interfacial geometry, its legitimacy is 

challenged in friction studies where the contact slope plays an important role in asperity 

contact deformation. The objective here is to perform a comprehensive fractal analysis of 

static friction based on an elastic-plastic contact mechanics model that includes both 

rough surfaces. Numerical results illustrate the dependence of the static coefficient of 

friction on normal load, interfacial shear strength, and fractal parameters.  

5.2  Characterization of Rough Surfaces by Fractal Geometry 

Fractal geometry was introduced by Mandelbrot (1967) to describe the self-

similarity behavior of the earth’s coastlines. Self-similarity and self-affinity 

characteristics have been observed in various fields of science and engineering, including 
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topographies of engineering surfaces and mechanical components (Majumdar and Tien, 

1990). For three-dimensional isotropic rough surfaces, a two-dimensional profile 

obtained in any direction is a statistically valid representation of the surface (Majumdar 

and Bhushan, 1990). A two-dimensional fractal surface profile, z(x), can be represented 

by a W-M function that satisfies the properties of continuity, non-differentiability, and 

self-affinity (Berry and Lewis, 1980), given by 
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where A and D are the fractal roughness parameter and fractal dimension of the surface 

profile (1 < D < 2), respectively, γ is a parameter that determines the relative phase 

differences between fractal modes, and minn  is related to γ and the sample length, L, by 

Ln /1min ≈γ .   

For dimensional consistency, Komvopoulos and Yan (1997a) modified Eq. (5.1) 

to the following truncated W-M function:  
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where G is the same as A in Eq. (5.1). Conversely to Eq. (5.1), γ is a dimensionless 

parameter in Eq. (5.2). Based on surface flatness (in the vicinity of x = 0) and frequency 

distribution density arguments, an appropriate value of γ equal to 1.5 was proposed in Ref. 

19. Equation (5.2) shows that the surface profile is approximated by a finite number 

( 1max +n ) of frequency components, where maxn  is related to the smallest characteristic 

length, 0L , typically, on the order of the equilibrium atomic distance (Komvopoulos and 



 103 

Yan, 1997a), by γln/)/ln( 0max LLn ≈ . Accordingly, the lowest and the highest spatial 

frequencies of the surface profile are lω = 1/L and 01/max LLn
h ≈= γω , respectively. 

The power spectrum function, ( )ωP̂ , is the Fourier transformation of the 

autocorrelation function of z(x), which is given by (Majumdar and Tien, 1990)  
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or equivalently, 
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where ω  and cω  are spatial and circular frequencies, respectively (i.e., cω  = 2πω). 

The height and the slope variances of the surface profile are obtained from the 

power spectrum function as following: 
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where clω  and chω  are the lowest and the highest circular frequencies, respectively. 

The discrete power spectrum functions given by Eqs. (5.3) and (5.4) can be 

approximated by the continuous spectrum  functions (Berry and Lewis, 1980): 
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Equations (5.7) and (5.8) are derived by averaging ( )ωP̂  and ( )ccP ωˆ  over a frequency 

range ω∆  and cω∆ , respectively (Berry and Lewis, 1980). Therefore, the height and the 

slope variances are expressed as: 
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It is noted that Eq. (5.10) differs from that given by Majumdar and Tien (1990) 

and Majumdar and Bhushan (1990) by a factor of ( )22π because of an error in their 

integration involving the use of the spatial frequency instead of the circular frequency. 

The correct derivation of Eq. (5.10) is given in Appendix A (Eq. (A8)). 

5.3  Contact Mechanics and Friction Analysis 

In all previous contact mechanics studies of fractal surfaces, one of the contacting 

surfaces is assumed to be flat and, thus, all the asperity contacts are perpendicular to the 

global normal direction (i.e., zero-slope contacts). However, contact of real surfaces 

produces asperity contacts that, in general, are not perpendicular to the global normal 

direction. Because the contact slope plays an important role in friction and affects the real 

contact area, it is necessary to include the contact slope distribution in the friction 

analysis of rough surfaces. A theoretical analysis of static friction, in which both rough 

surfaces are characterized by fractal geometry, is developed in this section. In general, the 
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two surfaces possess different fractal parameters D and G. Without loss of generality, it is 

assumed that D1 < D2, where subscripts 1 and 2 are used to distinguish the surfaces, and 

the system consisting of two surfaces with the same D parameter (D1 = D2) is treated as a 

special case. 

5.3.1 Contact size distribution.   

The contact (normal) load and friction force acting between asperities depend 

strongly on the contact size. Predicting the size distribution is fundamental in contact 

mechanics. Mandelbrot (1975, 1983) proposed that the cumulative size distribution of the 

earth’s islands follows a power-law relationship. This relationship has been used in 

several contact analyses of fractal surfaces (Yan and Komvopoulos, 1998a; Majumdar 

and Bhushan, 1990 and 1991; Majumdar and Tien, 1991; Sahoo and Roy Chowdhury, 

1996 and 2000; Komvopoulos and Yan, 1997a and 1998; Komvopoulos and Ye, 2001) in 

the form: 
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where )(aN ′  is the number of truncated contacts with areas larger than a′ , and La′  is the 

largest truncated contact area. The size distribution of the truncated contacts is given by 
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Bhushan and Majumdar (1992) extended this power-law relationship to bi-fractal 

surfaces. A similar approach is used in the present analysis to derive the size distribution 

of the projected areas (on the zero z plane of each surface) of the truncated asperity 

contacts.  
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For nominal surface separation equal to d (Fig. 5.1), the real separation between 

two surface profiles )(1 xz  and )(2 xz is   

).()()( 21 xzxzdxz −−=  (5.13) 

Since the two surfaces are statistically uncorrelated, the structure function of the surface 

separation is given by (Majumdar and Tien, 1991)  
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 (5.14) 

where λ is the correlation length, and its approximate continuous power spectrum 

satisfies the relationship: 

).()()( 21 ωωω PPP +=  (5.15) 

Figure 5.2 shows schematically the approximate continuous power spectra of two 

surface profiles intersecting at a critical frequency ω*. For ω < ω*, ( )ωP  ≈ ( )ω1P  

because ( )ω1P > ( )ω2P , while for ω > ω*, ( )ωP  ≈ ( )ω2P  because ( )ω1P < ( )ω2P . 

Therefore, the equivalent topography of the two-surface system can be characterized by a 
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Fig. 5.1  Schematic showing the separation distance, d, between two rough surfaces, 1 
and 2. 
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single set of fractal parameters in each regime, i.e., D1 and G1 (ω < ω*) and D2 and G2 (ω 

> ω*). Since the spatial frequency and the base wavelength of a truncated contact, pr ′2 , 

where pr′  is the effective radius of the projected area of the truncated contact, are related 

by )2(1 pr ′=ω , the spatial frequency is a function of the projected area of the truncated 

contact  ( 2
pp ra ′=′ π ) (Fig. 5.3), i.e., 
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Fig. 5.2  Schematic log-log plot of approximate continuous power spectra of two fractal 
surfaces ( )ω1P  and ( )ω2P  with different fractal dimension (D1 < D2) intersecting at a 

critical frequency *ω , and power spectrum of the equivalent surface ( )ωP . 
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In view of Eqs. (5.12) and (5.16) and Fig. 5.2, the size distribution of the 

projected areas of the truncated contacts can be approximated by  

( ) 2/)2( 1)( +−′∝′ D
pp aan , *)( ωω <′pa  (5.17a) 

and 
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If the largest projected area of the truncated contacts, pLa′ , is known, then if 
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Fig. 5.3  Schematic illustration of the truncation of two asperities on surfaces i and j with 
contact angle θ. 
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while if *)( ωω <′pLa , 
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where *pa′  is the critical projected area of truncated contact corresponding to the critical 

frequency ( )[ ] 2/1
*

* 4/ pa′= πω . 

The total projected area of truncated contacts, PA′ , is a function of the largest and 

the smallest projected areas of truncated contacts, pLa′  and pSa′  ( 4/2
0La pS π=′ ), and can 

be obtained from the piece-wise power-law size distribution (Eqs. (5.18) and (5.19)) by 

integration (Komvopoulos and Ye, 2001): 
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Using the previous integral relationship and the bisection method, pLa′  was determined in 

terms of PA′ , Di (i=1, 2), pSa′ , and *pa′ .  

For the special case of 21 DD = , the system of the two contacting surfaces can be 

characterized by only one fractal dimension, and the island rule proposed by Mandelbrot 

(1975, 1983) can be used directly. For this case, Eqs. (5.19a) and (5.19b) are identical. 

5.3.2 Contact slope distribution.   

The contact angle, θ (0 ≤ θ <π/2), of a truncated plane is the angle between the 

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
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global z direction and the normal to the contact plane (Fig. 5.3). For static friction 

analysis, if the contact opposes the onset of relative movement, the contact slope is 

defined as s = tanθ  (positive slope), while if the contacting asperities tend to separate, s = 

–tanθ (negative slope). For three-dimensional isotropic surfaces, the contact slope 

distribution can be obtained from the secant slope distribution of the truncation line-

segments (Fig. 5.4(a)) of a two-dimensional surface profile with associated fractal 

parameters. The probability density function, p(s), of the secant slope of line-segments 

with the same projected length, l (l << L), can be determined from numerical simulation. 

Figure 5.4(b) shows a comparison between the probability density function obtained from 

a simulation and three normal distributions with standard deviations equal to the root-

mean-square (rms) of the secant slope of the simulation data, σsim, and the square root of 

the values estimated from Eqs. (5.6) and (5.10). In the calculation of the slope variance 

using Eqs. (5.6) and (5.10), the highest frequency, hω , was replaced by ( )l21 . The close 

agreement between the distributions shown in Fig. 5.4(b) indicates that the secant slope 

of line-segments with the same projected length follows a normal distribution and that the 

slope variance can be estimated from Eqs. (5.6) or (5.10) by replacing hω  with ( )l21 .  

This is due to the fact that the tangent slope is a good approximation of the secant slope 

for low frequency components ( ( )l21≤ω ) and the contribution of high frequency 

components ( ( )l21>ω ) to the secant slope is negligible. Obviously, the expectation of 

the secant slope is close to zero because the rough surface is a flat plane at the macroscale. 

Thus, the distribution of the secant slope for a given projected length can be expressed as: 
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Fig. 5.4  (a) Schematic showing a line-segment of projected length l, and (b) probability 
density function of the secant slope of line-segments with l = 10 nm (obtained from a 
two-dimensional fractal surface profile with L = 4379 nm, 0L  = 2 nm, D = 1.44, and G = 

9.46 × 10-4 nm) and normal distributions with standard deviations equal to the rms of the 
secant slope of the simulation data, σsim, and the square root of the values estimated from 
Eqs. (5.6) and (5.10). 
 
 
 



 112 

)2/( 22

2

1
)( is

i

i esp σ

σπ
−=

 
     (i = 1, 2), (5.20) 

where iσ is obtained from Eq. (5.10), and for l = pr ′2 , it is given by 
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Assuming that the slope distribution, )(12 sp , of the truncated contacts with base 

wavelength equal to pr ′2  is proportional to the secant slope distribution of each surface 

profile, )(spi  (i =1, 2), obtained for l = pr ′2 ,  

),()()( 2112 spspsp ∝  (5.22) 

it can be shown that 
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5.3.3 Mechanics and friction models of a single asperity contact.   

Consider a truncated contact with projected area pa′  (Fig. 5.3). The truncated 

contact area, a′ , is related to pa′  by θcospaa ′=′ . The roughness amplitude, iδ  (i = 1, 

2), is a function of the base wavelength pr′2  and, hence, pa′  (Majumdar and Bhushan, 

1991):  
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In view of Fig. 5.3, the local interference is given by θδδ cosii ≈ . For spherical 

asperities, the effective radius of the truncated contact is 2/1)cos/( θπpar ′=′ , and the 

radius of curvature of the contacting asperity on surface i, iR , can be written as:  
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If ii R<<δ , Eqs. (5.25) and (5.26) yield 
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According to the Hertz theory, the local normal force, l
nF , of an elastic spherical 

contact is given by 
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where a is the real contact area )2/( aa ′= , and E′  and R are the equivalent elastic 

modulus and radius of curvature, which are functions of the elastic modulus, Ei, Poisson 

ratio, νi, and radius of curvature, Ri, of the asperities (i = 1, 2). 

The asperity contacts are assumed to deform either elastically or fully plastically. 

To maintain a continuous mean contact pressure, mp , the criterion for the inception of 

fully plastic deformation is expressed as  
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where ),min( 21 HHH s =  denotes the hardness of the softer surface. Equation (5.29) is 

applicable when ),max(),min( 2121 HHHH << , i.e., the softer surface deforms 

plastically, and in the special case of similar surfaces, i.e., 21 HH ≈ . This criterion leads 

to the following distinction of elastic and fully plastic contacts: 

s

l
n

m H
a

F
p <=        (elastic contact) (5.30a) 

and 

sm Hp =                  (fully plastic contact). (5.30b) 

For fixed θ , Eq. (5.29) indicates that a smaller pa′  (or a′ ) yields a higher mean 

contact pressure. This implies that asperity contacts with a smaller pa′  (or a′ ) are more 

likely to deform plastically. The local normal force for a fully plastic contact is given by 

,aHF s
l

n =  (5.31) 

and the corresponding real contact area can be approximated by the truncated contact 

area because for fully plastic contact, aa ′≈  (Yan and Komvopoulos, 1998a).  

It is noted that in the present model the direction of the local normal (contact) 

load may not be coincident with the global normal direction due to a non-zero contact 

slope. However, for perfectly normal contact, the total lateral force is close to zero 

because the slope effect is insignificant due to the randomness of the slope distribution. 

By definition, the static friction force is equal to the lateral force at the inception 

of sliding. Since the normal load and displacement at each asperity contact are affected 

by the lateral force, some assumptions are necessary in order to obtain closed-form 

solutions for the normal and friction forces between two contacting asperities at the 
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Fig. 5.5  Schematics of asperity contacts and associated normal load versus interference 
response: (a) both asperities deform elastically and the contact opposes the onset of 
relative movement, (b) both asperities deform elastically and tend to separate at the 
inception of sliding, (c) at least one asperity deforms plastically and the contact opposes 
the onset of relative movement, and (d) at least one asperity deforms plastically and the 
asperities tend to separate at the inception of sliding. 
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inception of sliding. In the present analysis, the asperity contacts are divided into four 

categories, as shown schematically in Fig. 5.5: (a) both asperities deform elastically and 

the contact opposes the onset of relative movement, (b) both asperities deform elastically 

and tend to separate at the inception of sliding, (c) at least one asperity deforms 

plastically and the contact opposes the onset of relative movement, and (d) at least one 

asperity deforms plastically and the asperities tend to separate at the inception of sliding. 

Depending on the type of contact, the normal force l
nF  may increase (cases (a) and (c)) or 

decrease (cases (b) and (d)) due to lateral deformation. If the normal load and the friction 

force vary independently, the normal force versus interference response for pure normal 

contact loading and unloading can be used to characterize the change in the normal force. 

For cases (a)–(c), a small change in the interference produces a small change in the 

normal force, while for case (d) even a small change in the interference produces a 

significant decrease in the normal force, as shown in the corresponding force-

displacement schematics in Fig. 5.5. It is possible for the normal force to decrease to zero, 

in which case the asperities separate. Therefore, a reasonable simplification for the 

estimation of the normal force is to assume that in cases (a)-(c) the normal force can be 

approximated by that obtained for pure normal contact at the same interference, whereas 

in case (d) the normal force is assumed to be zero due to the separation of the asperities. 

The friction force at a contact depends on the interfacial shear strength, τ , and 

real contact area, a. Experiments have shown that the static friction force in dry contacts 

is proportional to the real contact area and independent of the normal load (Johnson, 

1997). This suggests that the interfacial shear strength is constant and indicative of the 

affinity of the contacting surfaces for each other. Constant shear strength is also a 
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reasonable assumption for boundary-lubricated surfaces (Komvopoulos, 1991), in the 

absence of significant contact pressure and/or flash temperature changes. Thus, the local 

friction force at a contact, l
fF , can be expressed as: 

.τaF l
f =  (5.32) 

Figure 5.6 shows the normal and friction forces acting between two contacting 

spherical asperities with a random spatial engagement. (Only one asperity is shown for 

clarity.) The normal force passes through the centers of the spherical asperities, while the 

friction force is tangent to the circle on χ plane, which is parallel to the direction of 

relative movement at the inception of sliding. Both forces depend on angles θ (colatitude 

angle) and ϕ (azimuthal angle), where ϕ varies in the range of (–π/2, 3π/2]. For cases (a) 
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Fig. 5.6  Schematic showing the local forces acting on a single spherical asperity. The 

local normal force l
nF  passes through the sphere center, while the local friction force l

fF

is tangent to the circle on χ plane, which is parallel to the direction of the relative 
movement at the inception of sliding. 
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and (c), 232 // πϕπ ≤≤  (positive contact slope), while for cases (b) and (d), 

22 // πϕπ <<−  (negative contact slope). Transformation of the local normal and 

friction forces to the global coordinate system yields the following relationships for the 

global normal and friction forces, g
nF and g

fF , respectively, at a single asperity contact: 

( )ϕ
ϕθ

θθ cossgn
sinsin1

cos
1cos

2/1

22

2

⎥
⎦

⎤
⎢
⎣

⎡

−
−+= l

f
l

n
g

n FFF  (5.33a) 

and 

[ ] .
sinsin1

cos
cossin 2/122 ϕθ

θϕθ
−

+−= l
f

l
n

g
f FFF  (5.33b) 

Equations (5.33a) and (5.33b) are applicable to asperity contact cases (a)-(c), 

while for asperity contact case (d) both forces are equal to zero because the asperities are 

assumed to separate at the inception of sliding. 

5.3.4 Total normal and friction forces.  

For lightly loaded interfaces, such as those of hard disk drives and 

microelectromechanical systems, the real contact area is a small fraction of the apparent 

contact area (e.g., less than 1-2 percent), and interaction between neighboring contacts 

can be neglected as insignificantly small. Therefore, based on the size and slope 

distributions of the asperity contacts and the contact mechanics relationships and friction 

model presented in the previous sections, the total normal and friction forces in the global 

coordinate system, tot
nF  and tot

fF , respectively, can be determined from the following 

integral relationships:  
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Both forces are averaged in all possible azimuthal directions (angle ϕ), assuming a 

uniform distribution of ϕ. This implies that the total forces are obtained by averaging the 

local forces in all possible sliding directions.  

Numerical integration of Eqs. (5.34a) and (5.34b) yields the total normal and 

friction forces, which are used to obtain the static coefficient of friction, f, defined as 

tot
n

tot
f

F

F
f = . (5.35) 

5.4  Results and Discussion  

A mechanics approach for analyzing static friction of fractal surfaces was 

presented in the previous sections. Because it is not possible to derive closed-form 

solutions for the total normal and friction forces (Eqs. (5.34a) and (5.34(b)), results for 

the static coefficient of friction in terms of normal load, interfacial shear strength, and 

fractal parameters were obtained by numerical integration. The results presented below 

are for three-dimensional isotropic copper surfaces with E = 129.8 GPa, ν = 0.343 (Kaye, 

1986), and H = 900 MPa (= 3Sy, where Sy is the yield strength). For isotropic surfaces, the 

fractal dimension of the three-dimensional topography, Ds, is related to that of any two-

dimensional surface profile, D, through 1+= DDs  (Majumdar and Bhushan, 1990). 

Hence, for consistency, in the numerical results presented below the fractal parameter 

values were converted to their corresponding Ds values. Unless otherwise stated, the 

results were obtained for τ/k = 0.8, where k is the yield strength in shear (k = Sy/ 3 ).  



 120 

5.4.1 Dependence of Static Coefficient of Friction on Normal Load.   

Before proceeding with the presentation of the results showing the effect of the 

normal load on the static coefficient of friction, it is instructive to consider the effects of 

surface roughness and normal load on the deformation of the asperity contacts. A 

characteristic of fractal surfaces is that small and large asperity contacts undergo plastic 

and elastic deformation, respectively (asperity radius effect). In the case of lightly loaded 

interfaces, contact occurs at the tips of the asperities, where the local curvature is 

controlled by the smaller wavelengths of the surface profile. Consequently, the majority 

of the asperity contacts deform plastically. When plastic deformation dominates, l
n

l
f FF  

= τ/Hs (Eqs. (5.31) and (5.32)), which is constant for given material properties and 

interfacial condition. However, because the variance of the contact slope decreases with 

the increase of the projected area of truncated contact, pa′  (Eq. (5.21)) and both the 

largest and the average projected areas of truncated contacts increase with normal load, 

the surface roughness effect becomes less significant with the increase of the normal load. 

Thus, the static coefficient of friction decreases as the normal load increases in the low-

load range, where plastic deformation is the dominant mode. At high normal loads, 

deformation is controlled by the larger wavelengths of the surface profile, and the 

dominant larger asperity contacts undergo elastic deformation. In this case, the static 

coefficient of friction increases with the normal load. This can be attributed to the rapid 

increase of m
l

n
l
f pFF τ=  (Eqs. (5.29) and (5.32)) due to the inverse dependence of mp  

on pa′  (Eq. (5.29)), while the surface roughness effect becomes less significant, as 
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explained earlier for the low-load range.  

Figure 5.7 shows the dependence of the static coefficient of friction on the normal 

load for different values of fractal dimension Ds. Figure 5.7(a) shows that the increase of 
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Fig. 5.7  Static coefficient of friction versus normal load for (a) Ds1 = 2.3 and Ds2 = 2.5, 
and (b) Ds1 = Ds2 = 2.3 and 2.5 (L = 10 µm, 0L  = 2 nm, G1 = 2.109 × 10-5 nm, G2 = 1.055 

× 10-4 nm, E = 129.8 GPa, Sy = 300 MPa, ν = 0.343, H = 900 MPa, and τ/k = 0.8.) 
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the normal load produces a gradual decrease of the static coefficient of friction up to a 

critical load, followed by a gradual increase at higher loads. This trend can be explained 

by considering the previous discussion about the normal load dependence of the 

dominant deformation mode at the asperity contacts. Hereafter, the critical load 

corresponding to the minimum static coefficient of friction will be referred to as the 

transition load. In view of the dependence of the coefficient of friction on the dominant 

deformation mode, the friction curves shown in Fig. 5.7(b) indicate that, for the simulated 

normal load range, plastic and elastic deformation prevailed at the asperity contacts for 

Ds1 = Ds2 = 2.3 and 2.5, respectively. These results illustrate that, depending on the 

topographies of the contacting surfaces, a transition load may not exist within the normal 

load range examined. 

5.4.2 Dependence of Static Coefficient of Friction on Interfacial Shear Strength.   

Figure 5.8 shows the effect of the interfacial shear strength on the static 

coefficient of friction. The cases of τ/k = 0.2 and 0.8 are representative of boundary-

lubricated and unlubricated interfaces. As expected, higher interfacial shear strength 

resulted in higher static coefficient of friction. For the simulated parameters, when plastic 

deformation at the asperity contacts dominates (low-load range), the static coefficient of 

friction decreases gradually with the increase of the normal load at a rate independent of 

the τ/k value. However, when elastic deformation dominates (high-load range), the rate at 

which the static coefficient of friction increases with the normal load is affected by the 

interfacial shear strength.  
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5.4.3 Dependence of Static Coefficient of Friction on Fractal Dimension.   

As discussed earlier, the surface topography plays an important role in friction 

because it controls the dominant deformation mode. In this section, the effect of the 

fractal dimension on the static coefficient of friction is examined in light of results 

obtained for Ds = 2.3, 2.4, and 2.5 and either fixed fractal roughness G (Fig. 5.9) or fixed 

height standard deviation (i.e., rms surface roughness) (Fig. 5.10). The results shown in 

Fig. 5.9 indicate a decrease of the transition load with the increase of Ds, accompanied by 

a significant decrease of the load range where low coefficient of friction is obtained. This 

can be explained by considering the effect of Ds on the surface roughness. For fixed G, 
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Fig. 5.8  Static coefficient of friction versus normal load for τ/k = 0.2 and 0.8 (L = 10 µm,

0L  = 2 nm, Ds1 = 2.3, Ds2 = 2.5, G1 = 2.109 × 10-5 nm, G2 = 1.055 × 10-4 nm, E = 129.8 

GPa, Sy = 300 MPa, ν = 0.343, and H = 900 MPa.) 
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because, in general, pr ′2  ≥ 0L  > G, Eq. (5.25) shows that the roughness amplitude 

decreases with the increase of Ds, implying an increase in the effective radius of 

curvature of the asperities with a given truncated contact area (Eq. (5.26)). Since these 

asperity contacts are more likely to deform elastically and, thus, produce a lower mean 

contact pressure than plastic contacts, higher static coefficient of friction is produced for 

fixed interfacial shear strength, despite the relatively lower height standard deviation 

(rms1 = rms2 = 0.28 nm) of the surfaces with higher Ds. 

Figure 5.10 shows the effect of the fractal dimension on the variation of the static 
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Fig. 5.9  Static coefficient of friction versus normal load for surfaces with fractal 
dimension Ds1 and Ds2, height standard deviation rms1 and rms2, and fractal roughness G1

= G2 = 2.109 × 10-5 nm (L = 10 µm, 0L  = 2 nm, E = 129.8 GPa, Sy = 300 MPa, ν = 0.343, 

H = 900 MPa, and τ/k = 0.8.) 
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coefficient of friction with normal load for fixed height standard deviation. The fractal 

roughness was adjusted according to the value of the fractal dimension in order to obtain 

the same height standard deviation in all simulation cases. It can be seen that the 

transition load increases and the static coefficient of friction in the high-load range 

decreases with the increase of Ds. Hence, low coefficient of friction is obtained over a 

larger load range. This effect of the fractal dimension on the static coefficient of friction 

is opposite to that shown in Fig. 5.9, and can be attributed to the dominance of the high-

frequency components (small wavelengths) of the fractal surfaces characterized by a high 

Ds value, which increases the number density of small (plastic) asperity contacts under a 
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Fig. 5.10  Static coefficient of friction versus normal load for surfaces with fractal 
dimension Ds1 and Ds2, fractal roughness G1 and G2, and height standard deviation rms1

= rms2 = 1.9 nm (L = 10 µm, 0L  = 2 nm, E = 129.8 GPa, Sy = 300 MPa, ν = 0.343, H = 

900 MPa, and τ/k = 0.8.) 
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given normal load (Eq. (5.12)). Hence, the decrease of the static coefficient of friction in 

the high-load range when Ds increases is due to the increased contribution of the 

plastically deformed smaller asperity contacts. 

The numerical results presented in this section illustrate the important role of the 

normal load, interfacial condition, and surface topography on the static coefficient of 

friction and the dominant deformation mode of the asperity contacts. The analysis is 

based on a contact mechanics theory of isotropic rough surfaces developed for (a) piece-

wise power-law contact size distribution, (b) normal contact slope distribution, (c) 

negligible asperity interaction, (d) constant interfacial shear strength, and (e) asperity 

normal load and contact area (at the inception of sliding) approximately equal to those 

obtained from pure normal contact at the same interference (when both asperities deform 

elastically or the contact opposes the onset of relative movement) or negligible (when at 

least one of the asperities deforms plastically and separation tends to occur at the 

inception of sliding). The present numerical model is suitable for lightly loaded contact 

interfaces, such as those of magnetic storage disk drives and miniaturized 

electromechanical devices. The analysis can be extended to include pressure-dependent 

interfacial shear strength and modified to yield estimates of the lateral displacement at the 

inception of microscopic sliding by including in the contact mechanics model the effect 

of asperity bulk deformation on the local slip distance. The new approach for estimating 

the slope distribution and the modified contact size distribution rule developed in this 

chapter can be used in contact analyses dealing with various interfacial phenomena, such 

as adhesion and electrical contact resistance between rough surfaces, where accurate 
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description of the real contact area in terms of scale-independent topography parameters 

and mechanical properties is imperative.  

5.5  Conclusions 

A contact mechanics theory of static friction based on a fractal description of the 

surface topography and a new approach for estimating the contact slope distribution was 

presented for isotropic rough surfaces. A modified contact size distribution, an elastic-

fully plastic asperity contact model, and a simple static friction mechanism were 

implemented in the analysis. Numerical results illustrated the dependence of the static 

coefficient of friction on normal load, interfacial shear strength, and fractal parameters. In 

view of these results, the following conclusions can be drawn. 

(1) The static coefficient of friction decreases gradually to a minimum and then 

increases with the increase of the normal load. The load corresponding to the 

minimum static coefficient of friction (transition load) signifies the transition 

from plastic to elastic dominant deformation at the asperity contacts. The 

magnitude of the transition load depends strongly on the surface topography 

through the fractal parameters. 

(2) The interfacial shear strength exhibits a strong effect on the static coefficient of 

friction. Significantly lower friction is obtained with contact interfaces exhibiting 

low shear strength. In the low-load range (i.e., below the transition load), the 

variation of the static coefficient of friction with the normal load is independent 

of interfacial shear strength. 

(3) For fixed fractal roughness, higher fractal dimension produces higher static 

coefficient of friction at relatively high normal loads. However, an opposite trend 
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occurs for fixed height standard deviation. These effects of the surface 

topography on the static friction behavior are related to the dominance of elastic 

and plastic deformation at the asperity contacts. 

(4) The effects of the normal load and fractal parameters on the friction behavior 

indicate that the coefficient of friction is not an intrinsic material parameter. 

Instead, it represents a global indicator of the relative contributions of elastic and 

plastic deformation at the asperity contacts.   
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CHAPTER 6 

A Molecular Dynamics Analysis of Surface Interference and 
Tip Shape and Size Effects on Atomic-Scale Friction  

 

 

6.1  Introduction 

Recent advances in nanotechnology have increased the demand for fundamental 

understanding of material behaviors at the nanoscale. Despite numerous theoretical and 

analytical studies on the mechanical response of solid surfaces subjected to various 

contact loads (Johnson, K. L., 1985), the majority of the earlier studies have been based 

on continuum mechanics approaches that cannot be applied at the atomic scale. 

Molecular dynamics (MD) is a powerful computational method for studying nanoscale 

surface phenomena and instantaneous material properties. Landman et al. (1990) 

performed MD simulations and atomic force microscopy (AFM) experiments with a 

nickel tip indenting a gold substrate and reported a “jump-to-contact” phenomenon as the 

tip approached the substrate surface and elongation of a connective neck during the 

withdrawal of the tip. MD indentation simulations by Kallman et al. (1993) revealed a 

transformation from diamond to amorphous structure in the near-surface region of 

crystalline silicon. MD simulations of a copper substrate indented by a rigid tip 

performed by Leng et al. (2000) showed that the elastic stress field exhibited similarities 

with that predicted by the Hertz theory. Komvopoulos and Yan (1997b) investigated the 

dynamic response of metal-like substrates due to single and repeated indentation by 

metal-like and diamond-like tips and observed that the deformation behavior of the 

metal-like substrate indented by the diamond-like tip resembled cyclic softening. Such 
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material behaviors are not observed in macroscopic studies and cannot be analyzed by 

continuum mechanics theories. 

In addition to the mechanical response of materials at the atomic level, significant 

efforts have been devoted to study friction and wear behaviors at the atomic and 

molecular levels. Belak and Stowers (1992) developed MD models for indentation and 

scratching of a single-crystal copper substrate by a conical diamond tip and estimated the 

coefficient of friction to be approximately equal to one. MD simulations by Harrison et 

al. (1992) demonstrated directional anisotropy in the friction behavior of sliding diamond 

surfaces. In another MD study by Harrison et al. (1993), a weaker friction dependence on 

the sliding direction was observed when methyl groups were used to replace some of the 

surface hydrogen atoms (Harrison et al., 1993). Zhang and Tanaka (1997) performed 

two-dimensional MD simulations of a cylindrical tip with diamond-like material 

properties and crystal structure different from that of diamond interacting with a copper 

substrate and reported the occurrence of no-wear, adhesion, plowing, and cutting 

deformation regimes. Using a relatively large substrate in order to avoid boundary 

effects, the same authors studied two-body and three-body sliding contact between a rigid 

diamond tip and silicon monocrystals and proposed a new friction law (1998).  

MD simulations by Shimizu et al. (1998) revealed atomic-scale stick-slip 

phenomena similar to those encountered in AFM measurements. Matthey and Hansen 

(1998) reported a Coulomb-like friction behavior for granular materials. Tamura et al. 

(1999) investigated the behavior of hydrocarbon thin films confined between two solid 

surfaces and discovered that slip occurred mainly in the bulk of the films due to the high 

affinity of the films for the solid surfaces. Komanduri et al. (2000) studied indentation of 
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an Al(001) substrate by an aluminum-like rigid tip and subsequent scratching in the [100] 

direction and reported a nearly constant friction coefficient for 5% variation in the D 

parameter of the Morse potential. MD simulations by Zhang et al. (2001) demonstrated 

that sliding commenced as a result of the simultaneous slip of all contacting atoms when 

the (friction) shear stress reached the shear strength of the solid. 

The previous studies provide important information about atomic-scale 

deformation behavior of different materials due to indentation and/or sliding contact 

loadings. However, because of the limited number of atoms (i.e., less than a few thousand) 

(Landman et al., 1990; Leng et al., 2000; Komvopoulos and Yan, 1997b; Harrison et al., 

1992; Harrison et al., 1993; Zhang and Tanaka 1997; Shimizu et al., 1998; Matthey and 

Hansen, 1998; Tamura et al., 1999; Komanduri et al., 2000; Zhang et al., 2001) and/or 

high indentation and sliding speeds (e.g., ≥ 50 m/s) (Kallman et al., 1993; Belak and 

Stowers, 1992; Harrison et al., 1992; Harrison et al., 1993; Zhang and Tanaka 1997; 

Zhang and Tanaka, 1998; Komanduri et al., 2000) used in earlier MD studies to avoid 

prohibitively long computational times, the reported results may have been biased by 

boundary and speed effects. Therefore, one of the objectives of this chapter is to evaluate 

these effects in the context of MD simulation results obtained for different substrate 

dimensions and indentation/sliding speed. Moreover, the review of the literature revealed 

significant variations in atomic-scale friction behavior. In some previous studies, friction 

anisotropies were associated with the dependence of the normal and friction forces on the 

sliding direction and lattice structure. However, comprehensive MD studies elucidating 

several important effects, such as those related to the tip shape and size and penetration 

depth, on the friction behavior have not been reported yet. Consequently, another 
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objective is to develop a three-dimensional MD model of a diamond-like rigid tip 

(prismatic or pyramidal) indenting and sliding over a crystalline copper-like substrate. 

Simulation results are presented in order to illustrate the dependence of the normal and 

friction forces on the tip-substrate interference and the variation of the friction coefficient 

with the size, shape, and orientation of the sliding diamond tip. 

6.2 Molecular Dynamics Model  

Although useful insight into atomic-scale friction of diamond/copper systems has 

been obtained from previous two-dimensional MD studies (e.g., Zhang and Tanaka, 

1997), three-dimensional MD models yield more realistic deformation behaviors. In this 

study, the three-dimensional MD code developed by Komvopoulos and Yan (1997b) was 

modified according to the objectives of the present analysis. Figure 6.1 shows the initial 

atomic configuration used in some simulations. The figure shows a face-centered-cubic 

(FCC) copper-like substrate with (001) free surface and a prismatic diamond tip. The 

substrate has a size of 24as × 18as × 10as, where as is the substrate lattice dimension, and 

consists of 19,037 atoms. To enhance the distinction of each atomic layer, substrate 

atoms are shown sequentially in gray and black color. The movement of the atoms on the 

vertical and bottom boundaries of the substrate was fully constraint, as shown in Fig 

6.2(a), while the movement of all other atoms obeyed Newton’s law. The initial positions 

of the substrate atoms were set according to the assumed FCC structure, and the initial 

velocities of the dynamic atoms were assigned randomly from a finite interval 

(Komvopoulos and Yan, 1997b). Numerical integration of the equations of motion was 
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performed with a fifth-order predictor-corrector algorithm using a constant time step of 2 

fs. The forces between the substrate atoms were derived from the Morse potential, 

)()(2 00 2)( rrrr DeDerV −−−− −= αα , (6.1) 

 
 
Fig. 6.1  (a) Three-dimensional representation and (b) top view of initial atomic 
configuration of a 24as × 18as × 10as FCC copper-like substrate and a 3at × 3at square-
base prismatic diamond tip used in some simulations. Sliding was simulated along the 
[100] direction with the tip edge in the front. 
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where r is the distance between two atoms and D, r0, and α are material parameters 

obtained from Torrens (1972). The forces between the tip and the substrate atoms were 

determined from the Lennard-Jones potential,  
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Fig. 6.2  Schematics showing (a) the boundary conditions (A) used in most simulations 
and (b) the periodic boundary conditions (B) used to analyze the effects of boundary 
conditions on the simulation results. 
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Lorentz-Berthelot mixing rules were used to estimate the values of ε and σ, i.e., 

( ) 2/1
stεεε =  and ( ) 2/st σσσ += , (6.3) 

where tε  and tσ  are the Lennard-Jones parameters for the diamond tip obtained from 

Cheng and Klein (1991), and sε and sσ  are similar parameters for the copper substrate 

obtained by fitting the Lennard-Jones function to a Morse potential, assuming identical 

potential minima and equal zero-potential distances (Komvopoulos and Yan, 1997b). In 

view of the significantly higher hardness of diamond than copper, the tip atoms were 

fully constraint for simplicity. Thus, rigid tips of different shapes and sizes with diamond 

atomic configurations were used in the MD simulations. 

The nominal tip-substrate interference is defined as the penetration depth of the 

tip measured from the original substrate surface. In the absence of a surface definition at 

the atomic scale, the tip and substrate surfaces were represented by lines tangent to 

circles centered at surface atoms with radii equal to the theoretical atomic radii, as 

proposed by Zhang and Tanaka (1997). Figure 6.3 shows the surface separation and tip-

substrate interference, δ, as measured in the present simulations. The side of the square 

base of the tip is denoted by w. The convention is that negative separation denotes 

positive interference and vice versa. 

The MD simulations were performed in three sequential stages. First, the 

substrate atoms were allowed to reach equilibrium. This was accomplished in 20,000 

steps by preventing the substrate atoms from interacting with any external atoms and 

controlling the substrate temperature, T0 (= 300 K in all simulations) by direct scaling of 

the atom velocities (Yan and Komvopoulos, 1998b) and by maintaining the total kinetic 
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energy of the substrate, EK, equal to 02
3

NkT , where N is the number of dynamic substrate 

atoms, and k is the Boltzmann’s constant. After these equilibrium steps, the rigid 

diamond tip was displaced toward the substrate at a constant speed up to certain 

Surface 
separation

Tip-substrate 
interference

w

 
 
Fig. 6.3  Schematics illustrating the measurement of surface separation and tip-substrate 
interference for a prismatic diamond tip with square-base width w. 
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Fig. 6.4  Normal force versus dimensionless tip-substrate interference for a FCC copper-
like substrate indented by a 3at × 3at square-base prismatic diamond tip: (a) 24as × 18as ×
10as substrate with boundary conditions A, (b) 30as × 18as × 10as substrate with 
boundary conditions B, and (c) 24as × 18as × 20as substrate with boundary conditions A. 
The initial atomic configuration for simulation case (a) is shown in Fig. 6.1. 
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interference in order to simulate indentation. Finally, sliding was simulated by displacing 

the tip along the [100] direction of the substrate at constant speed and fixed tip-substrate 

interference. A thermal bath consisting of three atomic layers near the fixed bottom 

surface (Fig. 6.2) was used to dissipate the thermal energy generated during indentation 

and sliding (Yan and Komvopoulos, 1998b). An approach similar to that used in the 

equilibrium steps was used to control the temperature in the thermal bath. 

To examine the effects of the boundary conditions on the MD results, a 30as × 

18as × 10as substrate with periodic boundary conditions (B) (Fig. 6.2(b)) and a thicker 

substrate (24as × 18as × 20as) with boundary conditions (A) (Fig. 6.2(a)) were used to 

simulate both indentation and sliding with the prismatic tip shown in Fig. 6.1. The results 

were compared to those obtained with the 24as × 18as × 10as substrate (Fig. 6.1) for 

boundary conditions A and indentation/sliding speed equal to 5 m/s. Figure 6.4 shows a 

close similarity between the normal (indentation) force responses predicted by different 

MD models. Table 6.1 illustrates that the average normal and friction forces obtained 

 

Table 6.1.  Average normal and friction forces versus substrate size and boundary 
conditions for a 3at × 3at square-base prismatic diamond tip and 
dimensionless tip-substrate interference δ/as = 1.44.  

 
24as × 18as × 10as 

Substrate dimensions 
30as × 18as × 10as 

 
24as × 18as × 20as 

 

Average 

force 

(nN) 
Boundary Conditions A 

(Fig. 6.2(a)) 
Boundary Conditions B 

(Fig. 6.2(b)) 
Boundary Conditions A 

(Fig. 6.2(a)) 

Normal 34.2 34.0 33.2 

Friction 18.4 17.9 18.2 
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with different substrates and boundary conditions are in good agreement. (The calculation 

of the average normal and friction forces will be explained later.) In view of the good 

agreement between the results of the previous MD models and in order to enhance the 

computational efficiency, all simulation results presented in the following section were 

obtained with the 24as × 18as × 10as substrate (Fig. 6.1) subjected to boundary conditions 

A (Fig. 6.2(a)). 

The effect of the sliding speed, V, on the simulation results was also evaluated 

before proceeding with the main computational study. Figure 6.5 shows the dependence 

of the average normal and friction forces on the sliding speed. The normal force does not 
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Fig. 6.5  Average normal and friction forces versus sliding speed for a square-base 
prismatic diamond tip sliding on a FCC copper-like substrate and fixed tip-substrate 
interference (δ/as = 1.44). The initial atomic configuration and sliding direction are 
shown in Fig. 6.1. 
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exhibit a speed dependence (for the simulated speed range), while the friction force 

begins to increase when V > 10 m/s. Since a low sliding speed requires significantly more 

time steps (for convergence, the time step in the present analysis was set equal to 2 fs) to 

simulate a certain sliding distance and, hence, longer computation time, the simulations 

discussed in the following section were performed for V = 5 m/s. The MD simulations 

were run on Linux servers with Pentium IV 3.06 GHz processors and 512 MB memory. 

Depending on the dimensions of the tip and the substrate and the indentation/sliding 

speed (e.g., see Fig. 6.5), the computational time varied in the range of 2-100 hours of 

CPU time. For example, in the simulations performed with the model shown in Fig. 6.1 

and boundary conditions A (Fig. 6.2(a)), the CPU time for indentation/sliding speed 

equal to 200 and 1 m/s was approximately equal to 2 and 100 hours, respectively. 

6.3  Results and Discussion 

6.3.1 Square-base prismatic diamond tip  

Indentation and sliding results are presented in this section for a FCC copper-like 

substrate and a square-base prismatic diamond tip, both possessing {100} contact 

surfaces. Sliding was simulated along the [100] direction of the substrate with the tip 

edge in the front, as shown in Fig. 6.1(b). In the following figures, either the tip or the 

substrate lattice dimension, at and as, respectively, were used to normalize the length 

parameters. Figure 6.4(a) shows the variation of the normal force with the dimensionless 

tip-substrate interference, δ/as, due to indentation by a prismatic diamond tip with a 

bottom surface area equal to 3at × 3at. The initial atomic configuration for this simulation 

is shown in Fig. 6.1. The high-frequency fluctuations in the force response are due to the 

thermal vibration of the substrate atoms. As the tip approaches the substrate surface, a 
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negative (attractive) force is produced, which reaches a maximum at δ/as = –0.55. This 

peak attractive force illustrates a dominant long-range effect of the carbon-copper atomic 

forces. When the tip moves closer to the substrate surface, the normal force becomes 

positive (repulsive), illustrating a dominant short-range effect of the interatomic forces. 

Further advancement of the tip leads to a continuous increase of the repulsive normal 

force up to a critical interference (point C) at which, the normal force decreases rapidly 

(point D), indicating the occurrence of irreversible deformation characterized by 

localized atomic rearrangement and loss of crystallinity. Thereafter, the microstructure 

modified in the vicinity of the tip deforms only elastically, and the normal force increases 

again up to a new peak value (point E). At this juncture, additional irreversible 

deformation occurs, as evidenced from the abrupt decrease of the normal force (point F). 

This behavior is similar to that reported by Komvopoulos and Yan (1997b) for a metal-

like substrate indented by a rigid tip.  

Figure 6.6 shows deformed atomic configurations for δ/as = 0.4, 0.65, 0.9, and 

1.15 (denoted by 1, 2, 3, and 4, respectively, in Fig. 6.4(a)). To facilitate observation of 

the deformation in the atomic layers adjacent to the surface, only atoms between vertical 

planes AA′ and BB′ (Fig. 6.1(b)) are shown in Fig. 6.6. For clarity, alternating atomic 

layers of the substrate are shown in gray and black color, while tip atoms are shown as 

smaller spheres. For relatively small interference (Fig. 6.6(a)), the crystal structure of the 

substrate is elastically compressed, and, hence, the normal force is mainly due to 

interactions between atoms on the flat base of the tip and the first atomic layer of the 

substrate. However, at greater interferences (Figs. 6.6(b) and 6.6(c)), the crystal structure 

below the contact region is altered permanently, and some atoms of the top atomic layer 
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are displaced towards the underlying atomic layers. The abrupt decrease of the normal 

force (point D in Fig. 6.4(a)) suggests that irreversible deformation occurred at these 

interferences. Therefore, the normal force is mainly due to interactions between atoms on 

the flat base of the tip and substrate atoms of the second atomic layer. At even larger 

interference (Fig. 6.6(d)), the normal force is mainly due to interactions between atoms 

on the flat base of the tip and substrate atoms of the third atomic layer. 

(a) (b)

(c) (d)

[100]

[001]

 
 
Fig. 6.6  Atomic configurations of a FCC copper-like substrate indented by a square-base 
prismatic diamond tip for tip-substrate interference equal to (a) 0.4as, (b) 0.65as, (c) 
0.9as, and (d) 1.15as. Only atoms between vertical planes AA′ and BB′ (Fig. 6.1(b)) are 
shown for clarity. The initial atomic configuration and sliding direction are shown in Fig. 
6.1. 
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 Figures 6.7 and 6.8 show the variation of the normal and friction forces, 

respectively, with the dimensionless sliding distance, S/as, for the previous prismatic tip 

sliding along the [100] direction of the FCC substrate. Figures 6.7(a) and 6.7(c) show a 

rapid decrease of the normal force with the increase of the sliding distance (δ/as = 0.4 and 

Sliding distance (S/as)

N
or

m
al

 f
or

ce
 (

nN
)

0            1            2            3            4           5            6 

80

40

0

80

40

0

80

40

0

80

40

0

(a)

(b)

(c)

(d)

 
 
Fig. 6.7  Normal force versus dimensionless sliding distance for a square-base prismatic 
diamond tip sliding on a FCC copper-like substrate and tip-substrate interference equal to 
(a) 0.4as, (b) 0.65as, (c) 0.9as, and (d) 1.15as. The initial atomic configuration and sliding 
direction are shown in Fig. 6.1. 
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0.9), while Figs. 6.7(b) and 6.7(d) illustrate a periodic fluctuation of the normal force 

about a constant mean value (δ/as = 0.65 and 1.15). Figure 6.8 reveals that a stick-slip 

behavior occurred in all simulation cases. Similar to the normal force, periodic 

fluctuation of the friction force occurred after a sliding distance of ~3as. Hence, the 
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Fig. 6.8  Friction force versus dimensionless sliding distance for a square-base prismatic 
diamond tip sliding on a FCC copper-like substrate and tip-substrate interference equal to 
(a) 0.4as, (b) 0.65as, (c) 0.9as, and (d) 1.15as. The initial atomic configuration and sliding 
direction are shown in Fig. 6.1. 
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friction coefficient was estimated as the ratio of the average friction and normal forces 

calculated in the range of 3 < S/as < 6.  

Atomic configurations obtained at the end of sliding of the simulation that yielded 

the results shown in Figs. 6.7 and 6.8 are presented in Fig. 6.9. Similar to Fig. 6.6, only 

atoms between vertical planes AA′ and BB′ (Fig. 6.1(b)) are shown for clarity. For δ/as = 

0.4 and 0.65, sliding resulted in the removal of atoms only from the first atomic layer 

(Figs. 6.9(a) and 6.9(b)). However, for δ/as = 0.9 and 1.15, surface damage was more 

(a) (b)

(c) (d)

[100]

[001]

 
 
Fig. 6.9  Atomic configurations of a FCC copper-like substrate due to sliding of a square-
base prismatic diamond tip for a distance of 6as and tip-substrate interference equal to (a) 
0.4as, (b) 0.65as, (c) 0.9as, and (d) 1.15as. Only atoms between vertical planes AA′ and 
BB′ (Fig. 6.1(b)) are shown for clarity. The initial atomic configuration and sliding 
direction are shown in Fig. 6.1. 
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severe and atoms were removed from both first and second atomic layers, hence exposing 

the third atomic layer (Figs. 6.9(c) and 6.9(d)). For the prismatic tip shown in Fig. 6.9, 

the normal force is mainly due to interactions between atoms on the flat base of the tip 

and the exposed atomic layer of the substrate. For δ/as = 0.4 (0.9), the normal force at the 

inception of sliding is primarily due to interactions between atoms on the tip base and the 

first (second) atomic layer of the substrate. However, at the end of sliding, the normal 

force is mainly due to interactions between atoms on the tip base and the second (third) 

atomic layer because of the removal of the first (first and second) atomic layer(s), 

respectively. Since the tip-substrate interference was maintained constant during sliding, 

the normal force decreased during the initial stage of sliding (Figs. 6.7(a) and 6.7(c)) due 

to the increase of the distance between tip and substrate atoms resulting from the removal 

of the first (second) atomic layer. However, for δ/as = 0.65 (1.15), the average normal 

force exhibited less variation during sliding (Figs. 6.7(b) and 6.7(d)) because the exposed 

atoms resided on the second (third) layer at the inception of sliding (due to plastic 

deformation of the first (first and second) atomic layer during indentation), and this 

atomic layer was not removed during sliding. 

Figure 6.10(a) shows the variation of the average normal and friction forces with 

the dimensionless tip-substrate interference. As mentioned earlier, the average normal 

and friction forces were obtained after sliding by a distance of ~3as. These results provide 

explanation for the tip-substrate interference effect on the force variations shown in Figs. 

6.7 and 6.8. The saw tooth-like variation of the normal force can be associated with the 

removal of different atomic layers. As the tip penetrates the substrate, excessive damage 

of the outermost atomic layer occurs and, at some critical interference, the sliding tip 
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removes atoms from the damaged layer, exposing the underlying atomic layer. Because 

of the fixed interference, the larger average distance between the exposed atomic layer 

and the tip base produces a marked decrease in the normal force. This is because the 

normal force is mainly due to interactions between atoms on the tip base and atoms on 
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Fig. 6.10  (a) Average normal and friction forces and (b) friction coefficient versus 
dimensionless tip-substrate interference for a square-base prismatic diamond tip sliding 
on a FCC copper-like substrate. The initial atomic configuration and sliding direction are 
shown in Fig. 6.1. 
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the exposed atomic layer. This phenomenon leads to the development of regimes I, II, 

and III in Fig. 6.10(a), in which, the normal force exhibits qualitatively similar 

fluctuations. Compared to the normal force, a very different trend was obtained with the 

friction force (Fig. 6.10(a)). Examination of the atomic configurations obtained at the end 

of sliding showed that atoms were not removed from the first atomic layer during sliding 

in regime I, while in regimes II and III, atoms were removed from the first atomic layer 

and both first and second atomic layers, respectively. This explains the step-like increase 

of the friction force in regimes II and III and reveals a strong effect of the number of 

atomic layers removed during sliding. 

Figure 6.10(b) shows the variation of the friction coefficient with the 

dimensionless tip-substrate interference. The fluctuations of the friction coefficient in 

regimes II and III are related to those of the normal force in the same regimes (Fig. 

6.10(a)). These friction coefficient variations are attributed to the strong dependence of 

the interfacial forces (especially the normal force) on the distance between atoms on the 

tip base and atoms of the substrate atomic layer exposed by the prismatic diamond tip.  

To examine the tip size effect on the friction behavior, MD simulations were 

performed with a prismatic diamond tip of square-base area between at × at and 5at × 5at. 

Figure 6.11 shows the variation of the friction coefficient with the dimensionless tip-base 

size, w/at, for δ/as = 0.9 and 1.15. In both cases, the friction coefficient decreases with the 

increase of the tip-base area. This can be explained by considering the strong dependence 

of the normal and friction forces on the number of atoms on the tip base and the substrate 

atoms removed by the plowing process, respectively. At the macroscale, these effects are 

analogous to those of the projected normal and plowing tip areas, respectively. For a
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given tip-substrate interference, the number of atoms on the tip base increases 

quadratically with the increase of the tip-base size, while the number of substrate atoms 

removed by the front face of the tip increases linearly. This implies that the increase of 

the (plowing) friction force is much slower than that of the normal force. In view of the 

relatively weak adhesion of the diamond/copper system, the adhesion force (that depends 

strongly on the number of atoms on the tip base) obtained with small prismatic tips is 

negligible compared to the friction force. Therefore, the increase of the friction force with 

the tip-base size is much slower compared to the normal force, resulting in lower friction 

coefficient. The results for δ/as = 0.9 and 1.15 show that lower friction coefficients were 

produced with the increase of the tip-substrate interference. This is a consequence of the 
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Fig. 6.11  Friction coefficient versus dimensionless tip-base size for edge-front sliding of 
a square-base prismatic diamond tip on a FCC copper-like substrate. The initial atomic 
configuration of the substrate and sliding direction are shown in Fig. 6.1. 
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strong dependence of the interfacial forces on the tip-substrate atom distance, which 

fluctuates due to the removal of atomic layers from the substrate, as discussed previously.  

6.3.2 Triangle-base prismatic diamond tip 

After discussing the dependence of the friction coefficient on the tip-substrate 

interference and tip-base size, the effect of the front face of the tip on the friction
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Fig. 6.12  Atomic configurations of a FCC copper-like substrate due to sliding of a 
triangle-base prismatic diamond tip: (a) and (b) top views of initial atomic configurations 
in edge- and plane-front sliding simulations, respectively, and (c) and (d) three-
dimensional atomic configurations obtained after edge- and plane-front sliding by a 
distance of 6as for fixed tip-substrate interference (δ/as = 1.15). 
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coefficient is examined in this section. Sliding simulations were performed with a 

triangle-base prismatic diamond tip consisting of four {100} surfaces and one {110} 

surface, and the FCC copper-like substrate used in the previous simulations. The cross 

section of the tip is a right isosceles triangle with perpendicular sides equal to 3at. Sliding 

was simulated in the [100] direction with either the symmetric edge or the larger flat 

surface of the tip plowing the substrate, as shown in Figs. 6.12(a) and 6.12(b). For 

convenience, simulations performed with these tip orientations will be referred to as 

edge-front and plane-front sliding, respectively. For a given tip-substrate interference, the 

two tip orientations yield identical areas normal to the [100] direction, i.e., identical 

plowing surface areas. Figures 6.12(c) and 6.12(d) show three-dimensional atomic 

configurations obtained at the end of sliding for δ/as = 1.15. It can be seen that substrate 

atoms piled-up ahead of the tip, especially for plane-front sliding. The increase of the 

number of substrate atoms interacting with atoms on the front face of the tip intensified 

the friction force. Table 6.2 gives the average normal and friction forces obtained with 

 

Table 6.2.  Average normal and friction forces versus shape and orientation of the 
diamond tip and dimensionless tip-substrate interference δ/as.  

Triangle-base prismatic tip 

Edge-front sliding          Plane-front sliding 

Square-base prismatic tip  

Edge-front sliding 
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0.65 38.5 6.5 37.8 7.6 48.9 6.7 

0.90 22.1 11.9 21.2 15.1 29.8 12.8 

1.15 40.4 12.8 40.2 14.8 53.2 13.2 

 



 152 

different tip shapes and orientations in terms of the dimensionless tip-substrate 

interference. Edge- and plane-front sliding of a triangle-base prismatic tip yielded fairly 

similar normal forces. The higher friction forces produced from plane-front sliding than 

edge-front sliding suggest higher energy dissipation for plane-front sliding.  

Figure 6.13 shows the dependence of the friction coefficient on the dimensionless 

tip-substrate interference for plane- and edge-front sliding. As discussed previously, for 

fixed interference, edge-front sliding leads to less energy dissipation, and, hence, lower 

friction force. The significant variation of the friction coefficient with the tip-substrate 

interference illustrates a strong dependence of atomic-scale friction on the effective 

distance between atoms on the outermost layers of the tip and the substrate, as discussed 
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Fig. 6.13  Friction coefficient versus dimensionless tip-substrate interference for plane-
and edge-front sliding of a triangle-base prismatic diamond tip on a FCC copper-like 
substrate. Top views of initial atomic configurations and the sliding direction are shown 
in Figs. 6.12(a) and 6.12(b). 
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earlier. Table 6.2 shows that the friction forces due to edge-front sliding of triangle- and 

square-base prismatic (w = 3at) tips are in fair agreement. This can be attributed to the 

identical plowing surface areas of the tips and suggests that interactions between atoms 

on the front face of the tip and substrate atoms dragged by the tip control the magnitude 

of the friction force. However, higher normal forces were obtained with the square-base 

tip, apparently due to the larger number of atoms on the tip base controlling the 

magnitude of the normal force.  

6.3.3 Pyramidal diamond tip 

To further analyze the friction coefficient dependence on the tip shape, 

simulations were performed with a pyramidal diamond tip consisting of {110} side 

surfaces and {100} top surface, shown in the inset of Fig. 6.14. The variation of the 

normal force with the dimensionless tip-substrate interference reveals significant 

differences from the indentation response obtained with a square-base prismatic tip (Fig. 

6.4(a)) for the same interference range. First, the peak attractive force encountered when 

the tip is in the proximity of the substrate surface is less than that produced with the 

prismatic tip (point B in Fig. 6.4(a)). This difference illustrates the significant effect of 

the number of tip-base atoms on the magnitude of the normal force. Second, the 

interference at the first inception of irreversible deformation due to indentation by the 

pyramidal tip (evidenced from the rapid decrease of the normal force) is less than that 

observed with the prismatic tip. Third, higher peak forces were obtained with the 

prismatic tip at the first inception of irreversible deformation. The spacing of the abrupt 

decreases in the normal force is not constant in Fig. 6.14. Due to the sharpness of the 

pyramidal tip, abrupt damage of the substrate lattices adjacent to the lateral faces of the 
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tip may occur due to the high stress concentration at the tip apex. Such damage may 

involve atoms from several atomic layers. 

As observed with the prismatic tip (Fig. 6.10(a)), both normal and friction forces 

obtained with the pyramidal tip demonstrated periodic variations after sliding for several 

lattice distances. The dependence of the average values of these forces on the 

dimensionless tip-substrate interference is shown in Fig. 6.15(a). Both forces exhibit 

similar trends; however, the pronounced force fluctuations observed with the prismatic 

tip (Fig. 6.10(a)) did not occur with the pyramidal tip. The similar trends in the average 

force responses seen in Fig. 6.15(a) are due to the fact that the forces produced with the 

pyramidal tip are manifestations of interactions between atoms on the side surfaces of the 

 
 
Fig. 6.14  Normal force versus dimensionless tip-substrate interference for a FCC copper-
like substrate indented by a pyramidal diamond tip. The initial atomic configuration and 
sliding direction are shown in the inset of the figure. 
 
 
 



 155 

tip and substrate atoms in the tip vicinity. The relatively smooth change of the forces with 

increasing interference is associated with the gradually increasing number of atoms 

removed from different atomic layers. As a consequence, the friction coefficient exhibits 

less sensitivity to the tip-substrate interference (Fig. 6.15(b)) compared to the prismatic 
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Fig. 6.15  (a) Average normal and friction forces and (b) friction coefficient versus 
dimensionless tip-substrate interference for edge-front sliding of a pyramidal diamond tip 
on a FCC copper-like substrate. The initial atomic configuration and sliding direction are 
shown in the inset of Fig. 6.14. 
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tip (Fig. 6.10(b)). Zhang and Tanaka (1997) studied scratching of a copper substrate by a 

cylindrical tip with diamond-like material properties and observed that the coefficient of 

friction was insensitive to variations in the interference (cutting regime), in accord with 

the results shown in Fig. 6.15(b). Since the pyramidal and prismatic tips resemble 

plowing at rake angles of -45° and 0°, respectively, it may be postulated that the tip rake 

angle may also contribute to the anisotropic friction behavior usually observed at the 

atomic level.  

The results shown in Figs. 6.10(b), 6.11, 6.13, and 6.15(b) demonstrate the 

important effects of the shape, base size, and front face of the tip and the local 

interference on the friction coefficient. Thus, atomic-scale friction anisotropies can be 

related to the dependence of lattice deformation on the aforementioned parameters. The 

findings of this analysis illustrate that friction at the atomic scale is not an intrinsic 

material property, as evidenced by the effects of the tip geometry and tip-substrate 

interference on the friction coefficient. Such dependencies may be associated with 

friction anisotropies typically encountered at the atomic and molecular levels. 

6.4  Conclusions 

Molecular dynamics simulations of indentation and sliding were performed with 

(rigid) diamond tips of different geometries and a copper-like FCC substrate in order to 

examine the effects of the tip-substrate interference and the shape, size, and front face of 

the tip on the variation of the friction and normal forces. Based on the presented results 

and discussion, the following main conclusions can be drawn.  
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(1)   Irreversible deformation due to indentation is not a continuous process. The tip 

shape and size and the tip-substrate interference control the energy dissipated due 

to irreversible deformation of the atomic layers adjacent to the surface.  

(2)   Both normal and friction forces exhibit periodic fluctuations after sliding for 

several lattice distances. The magnitudes of these forces depend on the intensity 

of interactions between atoms on the bottom and side surfaces of the tip and 

substrate atoms below and ahead of the sliding tip.  

(3)   For a square-base prismatic tip, the spontaneous decrease (increase) of the 

average normal (friction) force with increasing interference is due to the removal 

of an atomic layer, while for a pyramidal tip, the relatively smooth change of the 

average normal and friction forces is a result of the gradually increasing number 

of atoms removed from different atomic layers. 

(4)   The effect of the tip-substrate interference on the friction coefficient depends on 

the tip geometry. For the simulated interference range, higher friction sensitivity 

on the tip-substrate interference was obtained with a square-base prismatic tip 

than a pyramidal tip.  

(5)   The decrease of the friction coefficient with the increase of the base area of the 

prismatic tip is due to the stronger dependence of the normal force on the tip-base 

size compared to the friction force.  

(6)   For a triangle-base prismatic tip, the shape of the front face plays a moderate role 

on the friction behavior. In general, edge-front sliding yields less energy 

dissipation than plane-front sliding and lower friction coefficient.  
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CHAPTER 7 

Conclusions  
 

 

Dynamic contact and friction analyses of homogeneous and/or layered media 

were performed in this dissertation. The following main conclusions can be drawn from 

the presented results and discussion. 

Impact of a rigid sphere (cylinder) on elastic homogeneous half-space was studied 

in chapter 2 using dimensional analysis and finite element method. A dimensionless 

parameter, β, was introduced to account for the effect of wave propagation on the 

deformation response. For small surface interference (β ≤ 1), the dilatational wave front 

is confined within the contact region, and the real contact area is equal to the truncated 

contact area. The contact pressure distribution is uniform, and the mean contact pressure 

is nearly constant (i.e., insensitive to β). However, for relatively large surface 

interference (β > 1), the wave front extends beyond the contact edge, and the real contact 

area is less than the truncated contact area. The contact pressure distribution is elliptic, 

and the mean contact pressure increases gradually with the surface interference. For a 

spherical indenter (axisymmetric analysis), when β → ∞ (i.e., very large surface 

interference and/or very low indentation speed), the contact pressure distribution 

approaches the Hertz solution. In the small surface interference regime (β ≤ 1), the 

stresses, strains, and velocities in the subsurface decrease abruptly in the vicinity of the 

dilatational wave front, but are nearly uniform in the wake of the wave front. Based on 

this observation, an approximate energy-based analysis was developed for small surface 
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interferences. Its validity was confirmed by the good agreement between the results for 

the strain and kinetic energy of the half-space and the mean contact pressure obtained 

from this approximate analysis and those obtained from finite element simulations. The 

analyses were conducted for both axisymmetric (spherical indenter) and plane strain 

(cylindrical indenter) conditions. The strong resemblance of the results obtained from 

both analyses for small β (β ≤ 1), together with the fact that the results are independent of 

the indenter’s radius for both analyses, suggests that most results (including contact 

pressure, subsurface stress, strain and velocity fields and strain and kinetic energy per 

unit volume) reported for β ≤ 1 are independent of the principal radii of curvature. These 

results obtained for elastic homogeneous media are also applicable for elastic layered 

media (and elastic-plastic layered media if plastic deformation does not occur), provided 

the dilatational wave front resides within the surface layer during the time of dynamic 

analysis (i.e., small surface interference).  

Finite element analysis of dynamic indentation of an elastic-plastic multi-layered 

medium by a rigid cylinder was performed in order to investigate the dynamic response 

of layered media for relatively large surface interferences (chapter 3). Sufficiently large 

meshes were employed such that the faster propagating dilatational waves reflected from 

the mesh boundaries did not reach the region of interest during the analysis. Hence, the 

obtained results were independent of mesh size. It was found that the contact load, 

contact pressure, and subsurface stresses and plastic strains (both loading and residual) 

intensify with the increase of the indentation depth and speed. For the simulated 

parameters, higher indentation speed resulted in premature yielding and plastic zone 

formation in the second (soft) layer and higher tensile stresses in the elastically deformed 
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surface (hard) layer. A sharper indenter produced a smaller critical indentation depth at 

the inception of yielding, higher peak contact pressure, lower contact load, and 

intensified subsurface stress-strain field. Due to the relatively high yield strength of the 

surface layer, the peak value of the maximum von Mises equivalent stress always 

occurred in this layer, whereas the peak equivalent plastic strain commenced always in 

the second layer. Results for the peak values and locations of the maximum von Mises 

equivalent stress, first principal stress, and maximum equivalent plastic strain, as well as 

the evolution of the plastic zone during indentation loading and unloading, were obtained 

in terms of indentation parameters. These results provide insight into the propensity for 

plastic flow and cracking in dynamically indented multi-layered media.  

Simulations of a more realistic case involving an elastic-plastic layered medium 

in dynamic contact with a rough surface characterized by fractal geometry were presented 

in chapter 4. An approximate (truncated) Weierstrass-Mandelbrot function was used to 

describe the two-dimensional surface profile. Due to computational limitations, plane-

strain conditions were assumed throughout the analysis. As anticipated, the dependence 

of the contact load, contact pressure, and subsurface stresses and plastic strains on 

indentation depth and speed was found to be similar to that for the dynamic contact of a 

cylindrical indenter, i.e., in both cases the contact load, pressure, and subsurface stress 

and strains intensified with the increase of the indentation depth and speed. Results for 

the maximum von Mises equivalent stress, first principal stress, and maximum equivalent 

plastic strain revealed that, under the simulated conditions, crack initiation and excessive 

plastic deformation are more likely to occur at the layer interface below the sharper 

and/or deeper indenting asperities. It was also shown that a high indentation speed and a 
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relatively thin surface layer promote the cyclic accumulation of plasticity in the soft 

second layer, especially in the region adjacent to the interface with the hard surface layer. 

This implies a higher possibility for crack initiation and delamination in this region, 

where excessive plastic deformation occurs due to the significant mismatch of the elastic 

and plastic properties of the two layers. 

In chapter 5, static friction between rough surfaces was studied using a mechanics 

model based on fractal theory. A new approach for estimating the contact slope 

distribution and a modified contact size distribution were proposed, and a simplified 

mechanics model for contact and friction analysis was implemented. The numerical 

results illustrate that the static coefficient of friction decreases initially to a minimum 

value and then increases gradually with the increase of the normal load. The interfacial 

shear strength exhibits a strong effect on the static coefficient of friction, and 

significantly lower friction is produced with interfaces exhibiting low shear strength. At 

light loads, the static coefficient of friction decreases at the same rate regardless of the 

magnitude of the interfacial shear strength. For fixed fractal roughness, the increase of 

the fractal dimension results in higher static coefficient of friction at relatively high 

normal loads. However, for surfaces with constant surface height variance, higher fractal 

dimension yielded a lower static coefficient of friction at relatively high normal loads. 

The dependence of the static coefficient of friction on normal load and topography 

parameters was attributed to the transition from predominantly plastic to elastic 

deformation of the asperity contacts. 

To study the atomic-scale friction behavior, molecular dynamics simulations of 

indentation and sliding were performed with (rigid) diamond tips of different geometries 
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and a copper-like FCC substrate. Irreversible deformation due to indentation was found 

to be a non-continuous process. The energy dissipation due to irreversible deformation of 

the atomic layers adjacent to the surface was shown to depend on the tip shape and size 

as well as the tip-substrate interference. After sliding for a few lattice distances, both 

normal and friction forces exhibited periodic fluctuations, and the friction coefficient was 

estimated as the ratio of the average friction and normal forces calculated in this range. 

The spontaneous decrease (increase) of the average normal (friction) force with 

increasing interference, observed with a square-base prismatic tip, was attributed to the 

removal of an atomic layer due to sliding. However, a relatively smooth change of the 

average normal and friction forces was observed for a pyramidal tip due to the gradual 

increase of the number of atoms removed from different atomic layers. Consequently, it 

was concluded that the effect of the tip-substrate interference on the friction coefficient 

depends on the tip geometry, and for the simulated interference range, higher friction 

sensitivity on the tip-substrate interference was obtained with a square-base prismatic tip 

than a pyramidal tip. For a prismatic tip, the friction coefficient decreased with increasing 

base area because of the stronger dependence of the normal force on the tip-base size 

than the friction force. The shape of the front surface of the tip played a moderate role on 

the friction behavior. Usually, edge-front sliding yielded lower friction coefficients than 

plane-front sliding due to less energy dissipation. 

In summary, this dissertation produced comprehensive analyses for a few contact 

and friction problems. The presented results provide basic understanding of the dynamic 

response of homogeneous and multi-layered media subjected to contact loads and 

elucidate the friction behavior at various scales, from the atomic level to macroscopic 
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levels. This study is relevant to various engineering applications involving repetitive 

contact and friction, such as head-disk interface in computer hard drive and 

microelectromechanical systems (e.g. switches, relays, vibromotors, and micromirror 

displays).  
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APPENDIX A 

Height and Slope Variances of Fractal Surfaces 
 

 

A two-dimensional fractal surface profile can be represented by a surface function, 

z(x), given by (Majumdar and Tien, 1990; Majumdar and Bhushan, 1990), 
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where ω  and cω  are spatial and circular frequencies, respectively. These discrete power 

spectrum functions can be approximated by the following continuous functions (Berry 

and Lewis, 1980):  
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Therefore, the height and slope variances, ( )2z  and ( )2dxdz , respectively, can be 

calculated from the power spectrum as following:  
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Using the approximate continuous power spectrum functions, the following relationships 

for the height and slope variances were obtained: 
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and 
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It is noted that cω  should be used in Eq. (A8) instead of ω  that was used by 

Majumdar and Tien (1990) and Majumdar and Bhushan (1990). Therefore, the slope 
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variance derived from the equation given in these references differs from that given by 

Eq. (A8) by a factor of ( )22π . 

The validity of Eqs. (A7) and (A8) can be demonstrated by examining the simple 

case of a surface profile represented by a single cosine term (i.e., nmax = nmin = m): 
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For this function, the height and slope variances are given by  
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where m/T γ1=  is the period of both )(xz  and dxxdz /)( . The above equations are 

identical to those obtained from Eqs. (A5) and (A6) for the special case of a surface 

profile represented by a single cosine function. Therefore, the circular frequency must be 

used in the relationship of the slope variance (Eq. (A8)). 
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The principal objective of this dissertation was to develop both analytical and 


finite element models of contact and friction phenomena encountered over a broad range 


of length scales, from the atomic level to the macroscopic level. This was accomplished 


by developing continuum and discrete material models of the deforming media 


(homogeneous or layered) and the use of scale-invariant (fractal) parameters for the 


description of the interface topography to preserve self-affinity throughout the range of 


lengths where a probabilistic (fractal) approach was employed. The specific 


accomplishments of this work are the following. 


Dynamic contact and friction analyses of homogeneous and/or layered media 


were performed using numerical and analytical methods. The dynamic response of 


homogeneous and layered media subjected to contact loads and the dependence of the 


coefficient of friction on load, contact geometry, and material parameters were examined. 


Most studies were based on continuum mechanics models, while atomic-scale friction 







 2


was studied by molecular dynamics simulations, suitable for atomic-/nano-scale 


mechanics analysis. 


Using the finite element method and a dimensional analysis, dynamic impact of 


an elastic homogeneous medium by a rigid sphere (3-D axisymmetric analysis) or 


cylinder (2-D plane-strain analysis) moving at a constant speed was studied. The various 


waves propagating in the media were considered in the dynamic contact simulations. An 


abrupt increase in the mean contact pressure was found at the time of initial contact. The 


corresponding initial mean contact pressure was found to be proportional to the 


indentation speed. Similar results were obtained for a layered medium within a short 


period after initial contact (i.e., small interference), provided the wave fronts were 


confined within the first layer, in which case the medium behaves like a homogeneous 


one. 


Finite element solutions of a multi-layered medium subjected to dynamic contact 


loads were also performed for relatively large interferences. The indenter profile was 


characterized by either a smooth, cylindrical (chapter 3) or rough, fractal (chapter 4) 


surface. The requirement for the finite element mesh size in order to obtain results that 


are not biased by the waves reflected from the artificial boundaries of the half-space was 


studied. The dependence of the contact force/pressure and subsurface stress/strain fields 


on the indentation speed, indenter radius (or radius of curvature of the asperities), and 


overcoat thickness is elucidated. The possibility for excessive plastic flow and crack 


initiation is examined in terms of the maximum equivalent plastic strain and maximum 


tensile (first principal) stress. The effect of the surface-layer thickness and cyclic loading 
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is also investigated for the case of a multi-layered medium subjected to dynamic contact 


with a rough (fractal) surface. 


Static friction between rough surfaces was studied based on an analytical 


approach. The surface profiles were characterized by fractal geometry, and a theoretical 


treatment was developed using a piece-wise power-law size distribution and a normal 


slope distribution of the asperity contacts. Normal and friction forces were obtained for 


constant interfacial shear strength and negligible interaction between neighboring contact 


spots. The variation of the static coefficient of friction with normal load is interpreted in 


the context of analytical results. The dependence of the friction coefficient on interfacial 


shear strength and surface topography parameters is discussed, and the regime where the 


friction coefficient assumes a minimum is determined from simulation results. 


Molecular dynamic simulations were performed in order to examine the friction 


coefficient dependence on the tip-substrate interference and tip shape and size. For 


simplicity, a diamond tip and a face-centered-cubic copper-like substrate were employed. 


The friction coefficient was found to be quite sensitive to the tip-substrate interference 


for a prismatic flat tip, but relatively insensitive for a pyramidal sharp tip. In addition, 


lower friction coefficients were obtained with a larger tip-base area and for edge-front tip 


sliding.  


The findings of this dissertation provide new insight into the tribological behavior 


of homogeneous and multi-layered media. In particular, the dynamic response of 


homogeneous and multi-layered media subjected to contact loads, the dependence of the 


friction coefficient on surface topography and material properties, and the tip size and 


shape effects on atomic-scale friction anisotropy were examined in light of finite element, 
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analytical, and molecular dynamics results. Most results are relevant to general 


engineering components, especially those for multi-layered media are of particular 


significance to thin-film media used in hard disk drives.  
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