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Abstract

Dynamic Contact and Friction Study of Homogeneous
and Layered Media

by
Jian Yang
Doctor of Philosophy in Engineering—Mechanical Engineering
University of California, Berkeley

Professor Kyriakos Komvopoulos, Chair

The principal objective of this dissertation was to develop both analytical and
finite element models of contact and friction phenomena encountered over a broad range
of length scales, from the atomic level to the macroscopic level. This was accomplished
by developing continuum and discrete material models of the deforming media
(homogeneous or layered) and the use of scale-invariant (fractal) parameters for the
description of the interface topography to preserve self-affinity throughout the range of
lengths where a probabilistic (fractal) approach was employed. The specific
accomplishments of this work are the following.

Dynamic contact and friction analyses of homogeneous and/or layered media
were performed using numerical and analytical methods. The dynamic response of
homogeneous and layered media subjected to contact loads and the dependence of the
coefficient of friction on load, contact geometry, and material parameters were examined.

Most studies were based on continuum mechanics models, while atomic-scale friction



was studied by molecular dynamics simulations, suitable for atomic-/nano-scale
mechanics analysis.

Using the finite element method and a dimensional analysis, dynamic impact of
an elastic homogeneous medium by a rigid sphere (3-D axisymmetric analysis) or
cylinder (2-D plane-strain analysis) moving at a constant speed was studied. The various
waves propagating in the media were considered in the dynamic contact simulations. An
abrupt increase in the mean contact pressure was found at the time of initial contact. The
corresponding initial mean contact pressure was found to be proportional to the
indentation speed. Similar results were obtained for a layered medium within a short
period after initial contact (i.e., small interference), provided the wave fronts were
confined within the first layer, in which case the medium behaves like a homogeneous
one.

Finite element solutions of a multi-layered medium subjected to dynamic contact
loads were also performed for relatively large interferences. The indenter profile was
characterized by either a smooth, cylindrical (chapter 3) or rough, fractal (chapter 4)
surface. The requirement for the finite element mesh size in order to obtain results that
are not biased by the waves reflected from the artificial boundaries of the half-space was
studied. The dependence of the contact force/pressure and subsurface stress/strain fields
on the indentation speed, indenter radius (or radius of curvature of the asperities), and
overcoat thickness is elucidated. The possibility for excessive plastic flow and crack
initiation is examined in terms of the maximum equivalent plastic strain and maximum

tensile (first principal) stress. The effect of the surface-layer thickness and cyclic loading



is also investigated for the case of a multi-layered medium subjected to dynamic contact
with a rough (fractal) surface.

Static friction between rough surfaces was studied based on an analytical
approach. The surface profiles were characterized by fractal geometry, and a theoretical
treatment was developed using a piece-wise power-law size distribution and a normal
slope distribution of the asperity contacts. Normal and friction forces were obtained for
constant interfacial shear strength and negligible interaction between neighboring contact
spots. The variation of the static coefficient of friction with normal load is interpreted in
the context of analytical results. The dependence of the friction coefficient on interfacial
shear strength and surface topography parameters is discussed, and the regime where the
friction coefficient assumes a minimum is determined from simulation results.

Molecular dynamic simulations were performed in order to examine the friction
coefficient dependence on the tip-substrate interference and tip shape and size. For
simplicity, a diamond tip and a face-centered-cubic copper-like substrate were employed.
The friction coefficient was found to be quite sensitive to the tip-substrate interference
for a prismatic flat tip, but relatively insensitive for a pyramidal sharp tip. In addition,
lower friction coefficients were obtained with a larger tip-base area and for edge-front tip
sliding.

The findings of this dissertation provide new insight into the tribological behavior
of homogeneous and multi-layered media. In particular, the dynamic response of
homogeneous and multi-layered media subjected to contact loads, the dependence of the
friction coefficient on surface topography and material properties, and the tip size and

shape effects on atomic-scale friction anisotropy were examined in light of finite element,



analytical, and molecular dynamics results. Most results are relevant to general
engineering components, especially those for multi-layered media are of particular

significance to thin-film media used in hard disk drives.

Professor Kyriakos Komvopoulos

Dissertation Chair
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CHAPTER 1

Introduction

The study of contact and friction of interacting bodies is a traditional field in
continuum mechanics and of critical importance in many engineering applications,
especially those involving components undergoing intimate surface interactions, such as
gears, bearings, breaks, switches, relays, and guidewires. Contact analysis is
advantageous for understanding the tribological behaviors (including wear, friction, and
lubrication) of these components. The first seminal contact analysis of elastic curved
bodies was presented by Hertz in 1882. Since then, significant progress has been
encountered in static contact mechanics for both elastic and elastic-plastic media.
However, mechanics studies of dynamic contact problems are relatively limited and most
of them have been performed in recent years, presumably due to the complexity of
analytical and numerical treatments. Beginning from 1970’s, the emergence of high-
performance computers in conjunction with advances in numerical methods, mainly finite
element method, has provided powerful computational tools for contact studies.
Numerical analyses greatly improved the understanding of the dynamic response of
contacting media including the subsurface stress and strain fields and contact pressure
distribution.

One of the most important findings is that contact loading can produce rather high
stresses in a region near the surface, which may lead to mechanical failure due to

excessive plastic flow, fracture, or cyclic fatigue. Consequently, in modern engineering



applications, hard and tough overcoat layers are generally used to improve the
tribological properties of interacting surfaces and protect the components from excessive
inelastic deformation and cracking. This resulted in the divergence of the research
attention to contact problems involving layered medium. These problems are quite
complex, and analytical solutions are cumbersome to obtain, especially for elastic-plastic
contact behaviors involving both geometry and material nonlinearities.

The problems become even more complex in micro-/nano- scale studies, since all
solid surfaces, no matter how they are formed, are rough, and the roughness effect cannot
be ignored in contact analyses performed at the micro-/nano-scale. Traditionally, rough
surfaces have been characterized by statistical parameters, such as surface height variance,
skewness, and kurtosis. However, a major disadvantage in these approaches is the use of
statistical parameters that are scale-dependent. In recent years, lots of engineering
surfaces have been found to exhibit random and self-affine features. Consequently, in
contemporary contact mechanics analyses, fractal geometry, which is based on scale-
independent parameters, has been used to describe the surface topography.

When two bodies are brought into contact, a finite lateral force is required to
initiate relative motion in the horizontal direction. This is known as friction, which can be
classified into two categories (i.e., dynamic and static friction) depending on whether
relative displacement occurs at the contact interface. This force inhibits the relative
movement between the contacting bodies and is referred to as the friction force. The ratio
of the friction and normal forces is termed the coefficient of friction, and its magnitude
depends on adhesion, surface roughness, deformation, and sliding speed (for dynamic

friction only). Friction behavior is rather complex due to the interdependence of the



previous mechanisms. Only limited analytical models have been implemented, and all
involve major simplifications in the theoretical treatments.

In view of recent advances in nanotechnology, the demand for fundamental
understanding of material behavior at the nanoscale has increased considerably. Since the
scale approaches the dimension of atoms, continuum mechanics cannot be used in
nanoscale mechanical analyses. Molecular dynamics (MD) is a powerful computational
tool for studying nanoscale surface phenomena and instantaneous material properties. It
has been used in nano (atomic)-scale contact and friction analyses with great success and
has led to fundamental understanding of surface interaction at the atomic (molecular)
level.

The objectives of this dissertation were to develop comprehensive dynamic
contact analyses for elastic/elastic-plastic homogeneous and/or multi-layered media using
the finite element method, and to study the micro-, and nano (atomic)-scale friction
behavior of materials by developing a mechanics approach and performing molecular
dynamics simulations. A summary of the content of chapters 2-7 is given in the following
paragraphs.

Chapter 2 presents a finite element analysis of the impact of a rigid
sphere/cylinder moving at a constant velocity on an elastic homogeneous half-space.
Frictionless dynamic contact was modeled with special contact elements at the half-space
surface. A dimensionless parameter, £, was introduced to study the effect of wave
propagation on the deformation behavior. Similar results were obtained for both
axisymmetric (spherical indenter) and plane strain (cylindrical indenter) analysis. It is

shown that, for small surface interference (£ < 1), the front of the faster propagating



dilatational waves extends up to the contact edge, the real contact area is equal to the
truncated area, and the contact pressure distribution is uniform. However, for large
surface interference (£ > 1), the dilatation wave front extends beyond the contact edge,
the real contact area is less than the truncated area, and the contact pressure exhibits a
Hertzian-like distribution. The mean contact pressure increases abruptly at the instant of
initial contact, remains constant for # < 1, and increases gradually for g > 1. Based on
finite element results for the subsurface stress, strain, and velocity fields, a simple
theoretical model that yields approximate closed-form relationships for the mean contact
pressure and Kinetic and strain energies of the half-space was derived for small surface
interference (# < 1), and its validity was confirmed by favor comparisons with finite
element results.

A plane-strain analysis of dynamic indentation of an elastic-plastic multi-layered
medium by a rigid cylinder is presented in chapter 3. Conversely to plane-strain static
contact analysis, the solutions of a dynamic contact analysis within a subsurface domain
adjacent to the contact region are independent of mesh size, provided the mesh
dimensions are sufficiently large such that the propagating waves reflected from the
artificial mesh boundaries do not reach the domain of interest during the analysis.
Simulation results for the normal force, contact pressure distribution, subsurface stresses,
and evolution of plasticity in a multi-layered medium are presented in terms of the speed
and radius of the rigid indenter. The likelihood of mechanical failure due to excessive
plastic deformation and cracking is interpreted in terms of finite element results for the
von Mises equivalent stress, first principal stress, and equivalent plastic strain obtained

for different values of the indenter speed and radius of curvature.



Chapter 4 consists of a finite element analysis of dynamic indentation of an
elastic-plastic multi-layered medium by a rigid, rough surface exhibiting fractal behavior.
Simulation results illustrate the effects of the layer thickness and indentation speed on the
contact load, contact pressure distribution, and subsurface stress and strain fields. The
possibility of elastic shakedown is discussed in terms of the evolution of plasticity in the
multi-layered medium during repeated loading. The finite element analysis provides
insight into the importance of indentation speed, overcoat thickness, and surface
topography on the mechanical response of multi-layered media subjected to dynamic
contact by rough surfaces.

In chapter 5, a theoretical treatment of static friction is developed for rough
surfaces with topographies exhibiting fractal behavior, which is characterized by a piece-
wise power-law size distribution and a normal slope distribution of the asperity contacts.
Solutions for the normal and friction forces are obtained for constant interfacial shear
strength and negligible interaction between neighboring contact spots. The variation of
the static coefficient of friction with normal load is interpreted in the context of analytical
results. For light loads, deformation at contact spots is predominantly plastic and the
friction coefficient decreases with the increase of the normal load. Alternatively, for high
loads, the majority of asperity contacts deform elastically and the friction coefficient
increases with normal load. The dependence of the static coefficient of friction on
interfacial shear strength and surface topography parameters is discussed, and the regime
where the friction coefficient assumes a minimum is determined from simulation results.

Chapter 6 presents molecular dynamics simulations of a diamond tip sliding on a

face-centered-cubic, copper-like substrate, illustrating the friction coefficient dependence



on the tip-substrate interference and tip shape and size. For a prismatic flat tip, the
friction force is mainly due to interactions of atoms at the front face of the tip and
substrate atoms ahead of the tip, while the normal force is due to interactions of atoms on
the flat surface of the tip and substrate atoms under the tip. However, for a pyramidal
sharp tip, both normal and friction forces are mainly due to interactions between atoms at
the front surface of the tip and substrate atoms in the vicinity of the sliding tip.
Consequently, the friction coefficient is either sensitive (prismatic flat tip) or insensitive
(pyramidal sharp tip) to the tip-substrate interference distance. In addition, tip size and
orientation effects on the friction coefficient were observed with the prismatic flat tip.
Lower friction coefficients were obtained with a larger tip-base area and edge-front tip
sliding. Simulation results provide insight into the tip size and shape effects on atomic-
scale friction anisotropy.

Finally, chapter 7 provides a summary of the main findings reported in chapters 2-



CHAPTER 2

| mpact of a Rigid Sphere and Rigid Cylinder on an Elastic
Homogeneous Half-Space

2.1 Introduction

Since the semina elastic contact anaysis of curved bodies presented by Hertz
(1882), significant progress has been encountered in elastostatic contact mechanics
(Johnson, 1985). However, mechanics studies of dynamic contact problems have been
mostly performed in recent years, presumably due to the complexity of analytical
treatments and the intensive numerical calculations requiring powerful computers.
Previous dynamic studies provided insight into the movement and adhesion of impinging
particles and information about the coefficient of restitution and the energy dissipated due
to particle impact. For instance, Brach and Dunn (1992) presented a mathematical study
of the impact and adhesion of microspheres, Wall et a. (1990) measured the kinetic
energy loss for particles impacting a surface, and Rogers and Reed (1984) and Johnson
and Pollock (1994) investigated adhesion effects in the impact of particles and elastic
spheres, respectively. Despite valuable information derived from earlier dynamic studies,
very little is known about the evolution of the subsurface stresses and strains, especially
in the early stage of impact when the indentation depth is small.

Analytical approaches for dynamic contact problems are quite complex and
closed-form solutions are cumbersome. Nevertheless, Bedding and Willis (1973)
obtained analytical solutions for the elastodynamic mixed boundary value problem of an

elastic half-space indented by aconical or wedge-shaped rigid indenter. The same authors
7



also examined the problem of afast moving indenter causing the contact areato expand
faster than the propagating dilatational waves (Bedding and Willis, 1976). Brock (1978)
studied frictionless indentation of an elastic haf-space by an elastic and relatively blunt
punch under the assumption of subcritical and constant growth rate of the contact strip.
Brock and Georgiadis (1994) presented a dynamic analysis of alinear-elastic half-plane
indented by a rapidly moving parabolic or wedge-shaped rigid punch and obtained
numerical results for the tangentia displacement along the interface and the growth rate
of the contact zone.

In addition to analytical methods, numerical and experimental approaches have
also been used to study wave propagation in dynamic contacts and to determine the stress
and strain fields in impacting bodies. Aboudi (1977) presented a two-dimensiona
numerica analysis of dynamic contact between arigid indenter and an elastic half-space,
and derived solutions for a wedge-shaped die and a smooth parabolic punch. Using
dynamic photoelasticity, Shukla and Rossmanith (1986) investigated experimentally
wave propagation across dynamic contacts. Streator (2003) performed a numerical
dynamic analysis of adhesive contact between arigid sphere and an elastic half-space and
observed a non-Hertzian contact pressure distribution with peak pressure significantly
higher than that predicted by the Hertz theory.

Although comprehensive analyses of dynamic contact was performed in previous
studies, subsurface stress and strain solutions for small interferences, i.e., within a short
time after the establishment of contact, have not been reported yet. Hence, the main
objective here is to anayze impact of an elastic half-space by arigid sphere using the

finite element method and to obtain solutions for the contact area, contact pressure, and



subsurface stresses and strains for small surface interferences. Since surface adhesion is
not considered in this analysis, the obtained results are relevant to contact interfaces
characterized by weak adhesion forces (e.g., low surface energy materias and boundary-
lubricated interfaces) and/or macroscopic contacts for which the effect of surface
adhesion forces is secondary. To accomplish the previous objectives, axisymmetric and
plane-strain contact models (i.e., spherical and cylindrica indenter, respectively) were
developed. Approximate relationships for the mean contact pressure and the strain and
kinetic energies of the half-space are derived from adimensiona analysis and an energy-
based analytica approach, respectively. Results from the approximate analysis are
contrasted with finite element solutions in order to evaluate the accuracy of the analytica
relationships and to check the validity of the basic assumptions. It is worthwhile to point
out that the results obtained with axisymmetric and plane-strain models exhibit strong

similarity for small surface interferences.

2.2 Dimensional Impact Analysis

The solutions of dynamic elastic contact problems depend on the elastic modulus,
E, Poisson ratio, v, and density, p, of the half-space. In view of the marginal effect of
friction in norma contact (Komvopoulos, 1988), frictionless impact was modeled for
simplicity. Based on dimensional analysis (Barenblatt, 1987; Cheng and Cheng, 1998), the
mean contact pressure, pm,, can be related to the materia properties (E, v, and p), sphere
(cylinder) radius, R, indentation speed, Vi, and surface interference, 9, i.e,

p,, =d¢(E,v,p,V.,6,R) or p =w(1+2G,v,c,,V,,d,R), where 1 and G are the Lamé

constants (1 = Ev/[(1+v)1—-2v)] and G = E/[2(1+V)]), and ¢, isthe speed of the plane



dilatational wave propagating in the elastic half-space (¢, = [(1 + 2G)/ p["'?). Three of the
governing parameters, A+2G, c,, and R, have independent dimensions. The dimensions of
Pm V, Vi, and o are:

[p.|=12+26G],

v1=la+2G][c. PIRP,

vi]=le. ],

[6]=[RI,

where [..] indicates dimension. Based on the Il-theorem of dimensional analysis

(Barenblatt, 1987), the following relationship was obtained:

p V. 6
m_ 1| —,=,v|. 2.1
A+2G l[cp Rv] (2.1)

A similar relationship was derived for the real contact radius (half contact length),

a,i.e.,

a V. 6

— =11, | —V,=, 2.2
2 [R] 22)

In the following sections, I1; and Iz functions are determined for small surface

interference from finite element results.

2.3 Finite Element M oddl

Wave propagation in elastic media plays an important role in dynamic contact
anaysis. Both bulk and surface waves can propagate in semi-infinite solids. Bulk waves

include dilatationa waves (characterized by a volume change) and shear waves (Pollard,

10



1977). The propagation speeds of plane dilatational and shear waves, c, and cq,

respectively, are related to the material properties of the elastic half-space by

1/2 1/2
[mze] [G]

Cp = and cg=|—| .
P P

For steels and copper, c, is equal to 5900 and 4600 m/s, respectively, while c isequa

to 3200 and 2300 m/s, respectively (Johnson, 1985). Obviously, plane dilatational waves
propagate faster than plane shear waves. In addition, surface waves, such as Rayleigh and
Love waves, may propagate along the free surface of the haf-space. In genera, surface
waves propagate at speeds comparable to those of plane shear waves (Beltzer, 1988).
Figure 2.1 shows schematically global dilatational wave fronts, which are
envelopes of a series of spherica (cylindrical) dilatational wave fronts. These spherical
(cylindrical) wavesiinitiate at surface noda points at the instant of initia contact with the
rigid sphere (cylinder). The newly established contact points become centers of spherical
wave fronts. As shown in Fig. 2.1(a), for small surface interference, the dilatational wave
front is confined below the contact region. Since the displacement at any material point

ahead of the wave front is zero, the contact radius (haf-contact length), a, is equal to the
truncated radius (half-truncated length), a’, which can be approximated by a’ = (2R5)"'?

when << R. A dimensionless parameter, 3, is defined as

1/2
_Cp, Co(20
=Pk~ | 2| 2.3
pei-o( %) @)
where k= a’/R is the tangent slope of the rigid sphere (cylinder) at the edge of the
truncated contact area. When S < 1, the contact area spreads faster than the dilatationa

wave (Fig. 2.1(a)), whereas the opposite occurs when g > 1 (Fig. 2.1(b)), i.e, the

11
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Fig. 2.1 Schematic representation of propagation of dilatation waves in a semi-infinite
half-space due to impact of arigid sphere (cylinder) for (a) small and (b) large surface
interference. The solid curves are envelopes of the spherical wave fronts.

dilatational wave front is no longer confined below the contact region. When 8> 1, the
real contact area is smaller than the truncated contact area due to the downward
movement of the surface in the vicinity of the contact edge. In the specid case of quasi-
static contact (V, —» 0), f — <« and the real contact area is less than the truncated
contact area.

In view of the previous discussion, it may be inferred that a layered medium
impacted by a rigid sphere (cylinder) should yield a behavior similar to that of a

homogeneous medium with materia properties those of the surface layer of the layered

12



medium only during the time that the dilatational wave front resides within the surface
layer. Therefore, the present analysis for small interference distancesis also applicableto
elastic layered media.

Impact simulations were performed with the finite element code ABAQUS. For
increased accuracy and better convergence, the ABAQUS/Standard package (i.e., implicit
integration) rather than the generally faster ABAQUS/Explicit package (i.e., explicit
integration) was used. Contact of the rigid sphere (cylinder) with the elastic
homogeneous half-space was modeled by a rigid surface and specia contact elements,
i.e., first-order, axisymmetric (plane-strain), rigid-surface elements, which are suitable for
modeling contact between axisymmetric (plane-strain) elements and arigid surface. The
contact elements were assigned to acommon reference nodein order to define the motion
of the rigid surface. Impact was modeled by advancing the rigid surface against the
deformable mesh at constant speed using a displacement-control incrementa scheme.
The time increment was automaticaly adjusted in order to satisfy the convergence
requirement. Because of this scheme and the assumption of arigid sphere (cylinder), the
effects of the sphere (cylinder) mass and wave propagation in the sphere medium on the
simulation results were neglected.

The elastic half-space was discretized by four-node, bi-linear, axisymmetric
(plane-strain) elements with a 2 x 2 Gaussian integration scheme. To obtain unbiased
dynamic solutions, a sufficiently large mesh must be used in order for the waves reflected
from the artificial boundaries not to reach the domain of interest during the time of
anaysis. In dynamic contact, the displacement at any materia point ahead of the

dilatationa wave front is equa to zero. Since dilatational waves propagate faster than

13
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Fig. 2.2 Finite element meshes of elastic homogeneous half-space impacted by arigid
sphere (cylinder) used in the (a) small and (b) large surface interference simulations.

shear and surface waves, only the dilatational waves were considered in the
determination of the appropriate mesh size. However, shear and surface waves were
present in the finite element simulations discussed in the following section. Two different

finite element meshes were used to perform impact simulations of small (4 < 1) and large

(8 > 1) surface interferences. Figure 2.2(a) shows the fine mesh used to model a

14



relatively smal domain of the haf-space where impact commences (4 < 1), and Fig.
2.2(b) shows the mesh used to model a much larger domain, which isless refined in the
vicinity of the contact region (# > 1). The nodes on the symmetry axis (r = O for
axisymmetric and x = O for plane-strain anaysis respectively) and the bottom boundary
of the meshes were constrained against displacement in the r (x) and z directions,
respectively, while the nodes of the right boundary of the meshes were allowed to move
freely. In view of the sufficiently large dimensions of the finite el ement meshes shown in

Fig. 2.2, the effect of the boundary conditions on the results was secondary.

2.4 Resultsand Discussion for Axisymmetric Analysis
To enable the interpretation of alarge number of dynamic contact problems with
the same values of important dimensionless parameters, suchas V, = V. /c,, § = §/R,

v, and S, the finite element and analytical resultsdiscussed in this section are presented in
dimensionless form. Unless otherwise stated, the solutions discussed in this section are
for v = 0.3. The dilatational wave front, contact pressure distribution, and subsurface
stress, strain, and velocity fields are interpreted in the context of finite element and

dimensional analysis results.

2.4.1 Dilatational Wave Front and Contact Radius

As mentioned earlier, dilatational waves propagate much faster than shear and
surface waves, and therefore all material points ahead of the dilatational wave front arein
equilibrium. Insight into the dilatational wave front characteristics can be obtained by
examining the displacement contours in the proximity of the contact region. Figure 2.3

shows contours of normalized displacement u/o for different values of S. The
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Fig. 2.3 Contours of dimensionless u, displacement in an elastic homogeneous half-
space impacted by arigid sphere: (8) £= 0.5 (V, =1x 102 and & = 1.25 x 10°) and (b)

B =447 (V. = 1x10%and §= 1 x 10%). The dashed curves are envelopes of the
spherica wave fronts.

discontinuous lines represent envelopes of the spherica wave fronts, as shown in Fig.
2.1. These envel opes enclose the displacement contours obtained from the finite element
analysis. Figure 2.4 presents contours of normalized displacement u,/o, which aso show

that the displacements at materia points ahead of the wave front are essentially zero. It
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Fig. 2.4 Contours of dimensionless u, displacement in an elastic homogeneous half-
space impacted by arigid sphere: (a) #=0.5 (\7i =1x10%and & = 1.25 % 10" and (b)
B =447 (V. =1x 102 and & = 1 x 10%). The dashed curves are envelopes of the
spherica wave fronts.

can be concluded that when the wave front terminates at the contact edge (Figs. 2.3(a)
and 2.4(a)) the real contact areais equal to the truncated area, while when the wave front
spreads outside the contact region (Figs. 2.3(b) and 2.4(b)) the real contact areais less
than the truncated area due to the downward movement of the free surface in the vicinity

of the contact edge. Figure 2.5 shows the real-to-truncated contact radiusratio, a/a’, as a
17
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Fig. 25 Ratio of rea-to-truncated contact radius a/a’ versus S for dimensionless
indentation velocity V, = 2.24 x 10° and 4.48 x 10°.

function of 4. It isnoted that a= a” when f< 1and a<a’” when #> 1. In view of the
close agreement of the results obtained for V., = 4.48 x 10° and 2.24 x 107, it may be

inferred that the area ratio is predominantly affected by A. Therefore, when <1 (i.e,

small surface interference), Eq. (2.2) can be written as

a 25 1/2
()"

The results shown in Figs. 2.3-2.5 demonstrate a dependence of the deformation response

on the magnitude of £.
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Figure 2.6 shows the dimensionless contact pressure, p/(4+2G), for different

0.015

O FEM (4= 0.632) @
_—— Hertz
O. Ol e e T
0.005 r
0 T
0035 Fem (3= 4) .
0.03 O  FEM (£=40) (©)
— Hertz
0.02 1
d
0.01 r
O 1
0 0.5

’

r/a

2.4.2 Contact Pressure

19

Fig. 2.6 Dimensionless contact pressure distribution for (a) £ = 0.632 (\7i =1x10?and
5 =2x10%, (b) =4 (V. =1x10%and § =8x 10™),and (c) B=40 (V, = 1 x 10°

and & =8x 10™%). For each pressure distribution, the Hertzian pressure profile obtained
for the same surface interference is aso shown for comparison.

values of B. For relatively low S (i.e., f = 0.632), the contact pressure is fairly uniform




within the contact region and decreases abruptly at the contact edge (Fig. 2.6(a)). This
pressure distribution is significantly different from that obtained from the Hertz theory,
for the same surface interference. In addition, the real contact radius for dynamic contact,
a=~(2R6)"?, islarger than that predicted by the Hertz theory, a=(R5)"?. Figure 2.6(a)
also shows that the dynamic contact pressure is significantly higher than the static contact
pressure (Hertz). Streator (2003) has reported similar findings for dynamic contact of
adhesive surfaces. However, the contact pressure distribution in that study exhibited
significant fluctuations, presumably due to the adhesive forces at the contact interface,
while the pressure profiles shown in Fig. 2.6 are smooth. For relatively high g (i.e., f=
4), the contact pressure exhibits a Hertzian-like distribution; however, the pressure and
the contact radius are still larger than those obtained from the static analysis (Fig. 2.6(b)).
For very high S (e.g., = 40), the contact pressure distribution isin good agreement with
that predicted by the Hertz theory (Fig. 2.6(c)). Hence, for #>> 1 (i.e., low indentation
speed and/or large surface interference), the dynamic solution approaches the static

solution. Figure 2.7 shows the variation of the normalized mean contact pressure,

pr/(A+2G), with g and \7I . The mean contact pressure increases abruptly at the instant of

contact for both indentation speeds, remains constant for 4 < 1, and increases gradualy
with the increase of fin the range of > 1. Hereafter, the mean contact pressure upon

initial contact will be denoted by pmo. From dimensional analysis (Eq. (2.1)), it is found

that

Pmo  _ 7
phre =11,V v). (2.4)
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Fig. 2.7 Dimensionless mean contact pressure pm versus A for dimensionlessindentation
velocity V, =2.24 x 10° and 4.48 x 10°,

Because Eq. (2.4) is derived for the instant of impact (i.e., 5=O+), I1, isnot afunction
of & . Since p,, is nearly constant for £ <1, in the finite element simulations, p,,, can
be approximated by the value of p,, obtained for smal g vaues (S <1). Figure 2.8
shows the dimensionless mean contact pressure at the instant of impact, pmo/(1+2G), as a

function of \7I for different values of Poisson ratio. The fact that all the results follow

closely the same line with a slope of ~0.97 indicates that pno is explicitly independent of

the Poisson ratio. Therefore,

Pmo__o9w | for 0.1< v<04, (2.5)
A+2G

Since p,, = p,,, When <1 (Fig. 2.7), it follows from Eq. (2.5) that
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Fig. 2.8 Dimensionless mean contact pressure at the instant of initial contact pyo versus
dimensionless indentation vel ocity \7I for different values of Poisson ratio, v.

p ~
—n - 0.97V,, for f< 1. 2.6
A+ 2G | p (2.6)

2.4.3 Subsurface Stress, Strain, and Velocity Fields

Figures 2.9(a) and 2.9(b) show contours of dimensionless stress oz/pmo and strain
gZZ/\Z, respectively, for g = 0.447 (\7i =1x10%and 6=1x 10”). Both oy and &,
decrease abruptly across the wave front. In the region enclosed by the wave front, o and

& are nearly constant and their magnitudes can be approximated by —pmo and -V,

respectively. A similar trend is shown in Fig. 2.10 for the contours of dimensionless

velocity u,/Vi. In the region near the wave front, u,decreases abruptly, while in the

region enclosed by the wave front, u, isuniform and can be approximated by V..
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Fig. 2.9 Contours of dimensionless (8) o stress and (b) & strain in an elastic half-space

impacted by arigid sphere for = 0.447 (\7i =1x10%and 5 = 1x 107).

2.4.4 Approximate T heor etical M odel

An approximate energy-based anaysis of the impacted elastic half-space is
derived in this section for small surface interference (4 < 1). According to the finite
element results (Figs. 2.9 and 2.10), in the region surrounded by the dilatational wave
front, & and U, are approximately equal to —\7i and V;, respectively. Since impact
occursin the zdirection and for small surface interference the waves propagate in asmall

subsurface region adjacent to the contact interface, it may be assumed that, among all the
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Fig. 2.10 Contours of dimensionless U, velocity in an elastic haf-space impacted by &
rigid sphere for #=0.447 (V, = 1x 102 and & = 1x 10°).

strain components, &, exhibits the most significant contribution to the strain energy
stored in the elastic half-space. The validity of the previous assumptions is demonstrated

below. Consequently, if the contribution of all the other strain componentsis neglected as
secondary, the strain energy per unit volume, &g, in the region where wave propagation

occurs can be written as
1 72
e = E(m 2G\V.°. (2.7)
The kinetic energy per unit volumeis given by
e = % PYAS (2.8)

Since ¢, =[(A1+2G)/ p]'?, it can be shown that e = e, . Thetotal volume of the region
where wave propagation occurs, U, can be expressed as U = rz(Rdz - 53/3)/\7i . Thisis
because wave propagation in the z direction occurs at a speed equal to ~1/\7i times the

indentation speed. For & << R, it follows that U = 7R5? /\7i, and the total strain and

kinetic energy of the half-space are given by
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Fig. 2.11 Comparison of finite element method (FEM) results and approximate theory
solutions of (a) dimensionless strain energy Es and (b) dimensionless kinetic energy Ex

of an elastic half-space impacted by arigid sphere versus £ for dimensionlessindentation
velocity V, =1x 107,

E.=E, = %(/u 2GN,2RS5? = %(m 2G)RV°3*. (2.9)

Figure 2.11 shows a comparison between finite element results of tota strain and

kinetic energy for \7I =1 x 10%and analytical results obtained from Eq. (2.9). The good
25



agreement indicates that the assumptions invoked in the approximate theoretical model
are reasonable and that the simple anaysis provides accurate estimates of the total strain
and kinetic energy of the ha f-space for small surface interference.

Based on energy baance considerations, the following relationship must be

satisfied,
de; dE
2nRY) = s <. 2.10
o (20) <[ o+ O @10
Substitution of Eqg. (2.9) in Eg. (2.10) gives,
Pn__v7, (2.11)
A+2G

It is interesting to note that Eq. (2.11) isin good agreement with Egs. (2.5) and (2.6) that

were obtained from the finite element analysis.

2.5 Resultsand Discussion for Plane-Strain Analysis

Finite element solutions for an elastic homogeneous half-space impacted by a
rigid cylinder (i.e., plane-strain analysis) are reported in this section. Strong similarity
between the results of plane-strain and axisymmetric anayses were found for f< 1. The
dynamic contact analysis results were not compared with those of the static anaysis
because the plane-strain displacement field for (quasi-) static contact conditions exhibits
logarithmic singularity (Johnson, 1985) and, hence, it is not possible to compare the
results with those of a dynamic analysis. This will be further discussed in chapter 3

(section 3.2.1).
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Fig. 2.12 Dimensionless contact pressure distribution along the surface of elastic half-
space impacted by arigid cylinder for (a) f = 0.632 (\7i =1x10%and § =2x 10°), (b)
B=4(V, =1x10%and § =8x 104, and (c) f=40(V, =1x 10%and § =8x 10™.

2.5.1 Contact Pressure
The dimensionless contact pressure, p/(A1+2G), for different values of £ is shown

in Fig. 2.12. Similar to axisymmetric analysis, for relatively low 2 (i.e., f = 0.632), the
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Fig. 2.13 Dimensionless mean contact pressure at the instant of initial contact pmp an
obtained for elastic half-space impacted by a rigid cylinder versus dimensionless

indentation velocity \7I for different values of Poisson ratio, v.

contact pressure is fairly uniform within the contact region and decreases abruptly at the
contact edge, and the rea contact radius is approximately equal to the truncated contact
radius (Fig. 2.12(a)). However, for relatively high g values (i.e., # = 4 and 40), the
contact pressure exhibits an elliptic distribution, and the rea contact radius is smaller

than the truncated contact radius (Figs. 2.12(b) and 2.12(c)). Figure 2.13 shows the
dimensionlessinitial mean contact pressure, pmo/(4+2G), as afunction of \7I for different

values of Poisson ratio. All the results follow closely the same line with a slope of ~0.98
indicating that under plane-strain condition, pyo is aso explicitly independent of Poisson

ratio. Therefore, under plane-strain condition:
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_Pro__ 0087 for 0.1< v<04. (2.12)
A+2G

Equation (2.12) isamost identical to Eq. (2.5).
2.5.2 Subsurface Stress, Strain, and Velocity Fields

Figures 2.14(a), 2.14(b) and 2.14(c) show contours of dimensionless stress
Ozl Pro, Strain gZZ/\Z, and velocity u,/V; respectively, for f=0.447 (\7i =1x10%and § =
1 x 10”). All of them decrease abruptly across the wave front. In the region enclosed by

the wave front, o & and U, are nearly constant and their magnitudes can be

approximated by —pmo, —\7i , and V; respectively. Again the close agreement of the results

shown in Figs 2.9 and 2.10 and Fig. 2.14 is noted.

2.5.3 Approximate T heor etical M odel

Similar to the axisymmetric analysis, it is assumed that in the region surrounded
by the dilatational wave front, & and u, are approximately equal to —\7i and V;,
respectively (according to Figs. 2.14), and among all the strain components, &, exhibits

the most significant contribution to the strain energy stored in the elastic half-space.

Consequently, the strain energy per unit volume, eg, in the region where wave

propagation occurs can be written as

1 72
e =§(/1+ 2G\V.°. (2.13)
The kinetic energy per unit volumeis given by

& = %p\/iz- (2.14)
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Fig. 2.14 Contours of dimensionless (8) oz stress, (b) & strain and (c)u, velocity in an
elastic half-space impacted by arigid cylinder for 4= 0.447 (\7i =1x10%and & = 1 x
107).

The total area of the region where wave propagation occurs, A, can be expressed as
A= Rzlarccos(l— 5)—(1— gng_gz)l/ZJ/\Z_ Therefore, the total strain and kinetic
energy of the haf-plane are given by
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E, = E, =%(/1+ZG)\Z R’ [arccos(l— 5)-0- 5)(25—52)”2]. (2.15)

Figure 2.15 shows a comparison between finite element results of total strain and
kinetic energy for \7I =1 x 10?and analytical results obtained from Eq. (2.15). The good
agreement indicates that the above-mentioned assumptions are al so reasonable for plane-
strain analysis.

Based on energy balance considerations, the following relationship must be

satisfied,

(2.16)

P, (2nR3) = [dES dE, j

+
dd  dd

Substitution of Eq. (2.15) in Eq. (2.16) gives,

_ pr;_G Ry 1_% _ (2.17)
+

P
A+2G

Therefore, for & <<1, z\7i , Which isin good agreement with Eq. (2.11).

It is interesting to note that, for small B value (£ < 1), the results obtained for
axisymmetric (spherica indenter) and plane-strain (cylindrical indenter) analysis show
strong resemblance, and the results of normalized contact pressure and subsurface stress,
strain and velocity fields are independent to the indenter’s radius, R, for both analyses,
suggesting that similar results could be obtained for impact between any isotropic elastic
bodies with smooth surfaces.

As mentioned in section 2.3, although the present analyses are for homogeneous

half-space media, the obtained results are also applicable for elastic layered media,
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Fig. 2.15 Comparison of finite element method (FEM) results and approximate theory
solutions of (a) dimensionless strain energy Es and (b) dimensionless kinetic energy Ex
of an elastic half-space impacted by a rigid cylinder versus A for dimensionless

indentation velocity V, = 1 x 102,

provided the dilatational wave front resides within the surface layer during the time of
dynamic analysis. Moreover, the present analysis is suitable for dynamic contacts

characterized by weak adhesion, such as those involving dissimilar materials and
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lubricated interfaces, or macroscopic contacts for which the contribution of surface forces

isnegligible.

2.6 Conclusions
Impact of a rigid sphere or cylinder on elastic homogeneous haf-space was

examined in the context of results from a dimensional analysis and finite element

simulations. A dimensionless parameter, 5, was introduced in order to evaluate the effect
of wave propagation on the deformation response. Finite element results for the contact
radius, contact pressure, and subsurface stress, strain, and velocity fields were interpreted
in terms of indentation speed, surface interference, and Poisson ratio. A generd
relationship for the mean contact pressure was derived for small surface interference (<

1) using dimensiona analysis and finite element results. An approximate theoretical

model that yields accurate solutionsfor the contact pressure and strain and kinetic energy

of the haf-space was derived, and its validity was confirmed by finite element results.

Based on the presented results and discussion, the following main conclusions can be

drawn from this study.

Q) For smdl surface interference (f < 1), the dilatational wave front is confined
within the contact region and the real contact areais equal to the truncated contact
area. However, for relatively large surface interference (4 > 1), the wave front
extends beyond the contact edge and the real contact area is less than the
truncated contact area.

2 The mean contact pressure at the instant of initia contact increases linearly with
the indentation speed. For small surface interference (5 < 1), the contact pressure

distribution is uniform and the mean contact pressure is constant. For large
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3)

(4)

(5)

surface interference (£ > 1), the contact pressure distribution is elliptic and the
mean contact pressure increases gradualy with the surface interference. For
axisymmetric anaysis, when  — « (i.e., very large surface interference and/or
very low indentation speed), the contact pressure distribution approaches the
Hertz solution.

In the small surface interference regime, the stresses, strains, and displacementsin
the subsurface decrease abruptly in the vicinity of the dilatational wane front.
However, the material in the wake of the wave front is subjected to nearly
uniform stress, strain, and velocity fields.

An approximate energy-based analysis was developed for small surface
interferences. Results for the strain and kinetic energy of the half-space and the
mean contact pressure obtained from this anaysis were found to be in good
agreement with finite element results, confirming the validity of the assumptions
in the approximate analysis.

For S < 1, the results for the contact pressure and subsurface stress, strain, and
velocity fields obtained from the axisymmetric (spherica indenter) and plane-
strain (cylindrical indenter) analyses exhibited close similarities. The fact that
these results are independent of the indenter radius in both analyses suggests that
these results are generally applicable for impact between any isotropic elastic

bodies with smooth surfaces.



CHAPTER 3

Dynamic Contact Between an Elastic-Plastic Multi-Layer ed
Medium and a Rigid Cylinder

3.1 Introduction

Hard and tough surface layers are traditionally used in engineering components to
improve the contact fatigue resistance and tribological properties of interacting surfaces
and to protect the substrate from the accumulation of inelastic deformation and cracking.
Fundamental knowledge of the stress and strain fields in layered media subjected to
surface traction is critica to the endurance of electromechanical devices undergoing
repetitive contact, such as relays, switches, vibromotors, and micromirror displays. Early
studies dealing with normal contact of layered media provided anaytical treatments for
the elastic response due to indentation loading. Burmister (1945) obtained solutions for
the stresses and displacements in an elastic single-layered medium subjected to
axisymmetric surface loading. Dhaliwa and Rau (1970) anayzed the axisymmetric
Boussinesq problem of an elastic layer on an elastic foundation. Gupta and Walowit
(1974) developed a plane-strain elastic theory for a layered medium under both normal
and tangential surface loadings, and King and O’ Sullivan (1987) extended the previous
theory to obtain analytical solutions for an elastic layered medium subjected to sliding
contact loading. Brock and Georgiadis (1994) presented a dynamic analysis of a linear-
elastic haf-plane indented by either awedge or a parabolic rigid indenter.

Despite vauable insight into the mechanics of indented media derived from

previous analytical studies, it is difficult to apply the approaches of these works to the
35



analysis of elastic-plastic contact of layered media. Consequently, numerical techniques
based mainly on the finite element method were advanced in order to account for more
complicated contact geometries and more redlistic constitutive laws. One of the first
finite element analysis of elastic-plastic indentation of a layered medium is attributed to
Kennedy and Ling (1974) who investigated the effects of layer thickness, mechanical
properties of the layer and substrate materials, and interfacial contact conditions on the
plastic deformation of the layered medium. Komvopoulos (1989) investigated the plane-
strain problem of a rigid cylinder indenting an elastic-plastic substrate coated with a
harder and stiffer layer using the finite element method. Plastic deformation was found to
initiate at the layer/substrate interface and the contact pressure profile was significantly
flattened with increasing plastic deformation. In a finite element anaysis of an elastic-
plastic layered medium penetrated by an elastic indenter performed by Montmitonnet et
al. (1993) the stress field in the layered medium was interpreted in terms of the layer
thickness, and the highest tensile stress was reported to occur at the surface of the
medium. Kral et al. (1995a, 1995b) presented a finite element contact analysis of a
layered medium, exhibiting either perfectly plastic or isotropic strain hardening post-
yield behavior, which was repeatedly indented by a rigid sphere and interpreted the
propensity for crack initiation during the first indentation cycle in the context of the
obtained finite element results.

More recently, Gan and Ben-Nissan (1997) examined the influence of the
mechanical properties of a ductile substrate coated with a hard layer on the indentation
load and reported a significant effect of the yield strength and strain hardening properties

and a minor effect of the elastic modulus on the applied norma load. Faulkner et al.
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(1998) compared finite element results for an elastic-plastic layered medium in contact
with either arigid or a deformable indenter and observed higher contact pressuresin the
elastic regime and lower peak radial tensile stress in the case of the rigid indenter. Sen et
al. (1998) used the finite element technique to model indentation of an elastic, work
hardening layered medium by an elastic sphere and obtained elastic and elastic-plastic
solutions for the contact pressure distribution. Souza et al. (1999) reported a greater
likelihood for film cracking in systems with elastic-plastic substrates coated with thin
layers of higher elastic modulus. Stephens et a. (2000) obtained finite element results for
the initia yield behavior of a hard coating/soft substrate system subjected to elliptical
normal and friction forces that reveded a significant increase in the durability of the
layered system when the interface possessed graded mechanical properties.

The review of the literature indicates that the mgority of the anaytica and
numerica solutions of various indentation problems involving elastic and elastic-plastic
layered mediahave been restricted to quasi-static contact conditions. Although important
insight into the mechanics of layered media has been derived from these studies, the
obtained solutions might not be applicable to dynamic contact problems, e.g., nano-
/microindentation testing where high adhesion forces (Landman et a., 1990) cause the
indenting tip to “jump” into contact with the sample surface. Streator (2003) performed a
numerical anaysis of dynamic contact between a rigid sphere and an elastic half-space
and reported that the produced maximum compressive force was appreciably higher than
that obtained under quasi-static contact conditions, even for indentation speeds two
orders of magnitude less than the dilatational wave speed. Consequently, the objective of

this chapter was to develop a comprehensive finite element anaysis of dynamic
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indentation of elastic-plastic multi-layered media. According to the discussion in chapter
2, for small interferences (i.e., during the short time period that the dil atational wave front
resides within the surface layer), a layered medium dynamically indented by a rigid
cylinder (or sphere) yields a behavior similar to that of a homogeneous medium with
material properties those of the surface layer of the layered medium. Therefore, the focus
of this chapter is on relatively large interferences such that the dilatational wave front
spreads over layers. In view of the effect of the waves reflected from the mesh
boundaries, the mesh selection for unbiased contact analysis is described first, followed
by finite element results demonstrating the effects of indentation speed and radius of the
rigid cylindrica indenter on the normal force, contact pressure distribution, and
subsurface stress-strain field in amulti-layered medium subjected to dynamic indentation

loading.

3.2 Finite Element Mesh for Dynamic Contact Analysis

As discussed in chapter 2, two types of bulk waves can propagate in infinite
solids: longitudina waves (also known as dilatational waves because they are
characterized by a volume change) and transverse (or shear) waves (Pollard, 1977). In
seismology, these two types of waves are often referred to as P (primary) and S
(secondary) waves, respectively. In isotropic elastic solids, the propagation speed of a

plane dilatationa wave, c,, and a plane shear wave, cs, are given by
co =[(A+2G)/ p]'? and ¢ =(G/p)"?,

where p is the materia density, and 4 and G are the Lamé constants, expressed in terms

of the elastic modulus, E, and Poisson’srétio, v, as
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A=EvI[A+v)A-2v)] ad G = E/[2(1+V)].

It is obvious from the above relations that a plane dilatational wave propagates
much faster than a plane shear wave. In addition to these two types of bulk waves,
surface waves, such as Rayleigh and Love waves, may be encountered in the case of
bounded solids. In general, the propagation speeds of these surface waves are comparable
to those of shear waves (Beltzer, 1988). Therefore, the attention in this anaysis is

restricted to the faster propagating dilatational waves.

3.2.1 Finite Element M esh for Homogeneous M edium.

In static analysis of infinite half-space media subjected to surface (contact) loads,
areference point is needed in order to obtain the displacements due to the singularity of
the displacement field under plane strain conditions (Johnson, 1985). Thisreference point
is usualy selected to be far away from the contact region. Hence, in plane-strain static
contact analyses the solution depends on the location of the reference point. However, in
dynamic contact analyses, if the displacements in a given region occur within a certain
time to, then at afixed point remote from this region a disturbance does not occur before
the arrival of the propagating waves, i.e., the displacement at any materia point ahead of
the wave front is zero (Johnson, 1985). Therefore, in dynamic plane-strain contact
analysis, if the reference point is selected to be sufficiently remote from the contact
region, such that the waves do not reach this point during the analysis, the numerical
results will be independent of the location of the reference point. Figure 3.1 shows

schematically a propagating dilatational wave in a semi-infinite homogeneous solid.
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Fig. 3.1 Schematic representation of wave propagation in a semi-infinite half-space.

Contact is first established at the origin (x = y = 0) at time t,. The discontinuous curve
represents the dilatational wave front at time t;. There is no disturbance in the region
ahead of the wave front (region Il). Thus, choosing any point in region Il as the reference
point yields identica results throughout region | if the anaysis is performed during
period [to, t1]. In finite element anayses, a finite mesh is used to simulate the semi-
infinite half-space. If waves are not generated from the artificial boundaries (i.e., fixed
and/or free boundaries), any mesh larger than region | would produce identical results at
each point of the mesh within a given time period. Furthermore, the simulation results
would be independent of the forces and/or displacements applied to the artificid
boundaries where the waves do not have enough time to propagate. In most applications,
the region of interest is close to the contact interface, where the highest stresses and

strains occur. In this subsurface region, unbiased simulation results can be obtained by
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using a sufficiently large mesh such that the wave(s) reflected from the artificia
boundaries do not reach this region before the analysis has been compl eted.

In view of the previous considerations, finite element simulations of dynamic
contact were performed with the code ABAQUS using the four meshes shown in Fig. 3.2.
For increased accuracy and better convergence, the ABAQUS/Standard package (implicit
integration) rather than the generaly faster ABAQUS/Explicit package (explicit
integration) was used in this anaysis. An elastic homogeneous haf-space indented by a
rigid cylinder at a constant speed of 1 x 10 Cp was modeled in all simulations. The plane
strain condition assumed in this analysis is suitable for surfaces possessing predominant
texture in the direction perpendicular to the xy plane. The obtained results and trends
should exhibit similarities with those of axisymmetric contacts. Special contact elements
were used to model contact between the rigid indenter and the elastic medium. The
dimensions of the four meshes, normalized by the radius of the rigid cylinder, R, were
chosen to be equa to0 6.4 x 6.4, 12.8 x 6.4, 6.4 x 12.8, and 12.8 x 12.8. Because the left
boundary of each mesh is a symmetry axis, the nodes of this boundary (x = 0) were
constrained against displacement in the x-direction. The nodes of the bottom boundary
were constrained against displacement in the y-direction, while the nodes of the right
boundary and the surface were allowed to move freely. The characteristic length of a
mesh, |, is defined as the smallest mesh dimension. Thus, the characteristic length of the
meshes shown in Figs. 3.2(a), 3.2(b), and 3.2(c) is equal to 6.4R and that of the mesh
shown in Fig. 3.2(d) is equal to 12.8R. In the following discussions, " is used to denote
the characteristic length of the i™ mesh. Obviously, Ic® = 1@ =1.® <1.®. Since far-

field propagation of a cylindrica dilatationa wave occurs at a speed comparable to that
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Fig. 3.2 Finite element models used to study the effect of the mesh size on the dynamic
response of an elastic homogeneous half-space indented by arigid cylinder. The mesh
dimensions normalized by the indenter radius are (a) 6.4 x 6.4, (b) 12.8 x 6.4, (c) 6.4 x
12.8, and (d) 12.8 x 12.8.

of aplane dilatational wave, the criticd time for adilatational wave propagating from the
origin (x = y = 0) to the nearest boundary of the meshes shown in Figs. 3.2(a)-3.2(c) can
be estimated from relation tY = I.®/c,. Then, the critical time for awave reflected from
the nearest boundary to reach a point in aregion close to the origin is approximately

equal to 2ty .
42



Figure 3.3 shows the dimensionless contact load, P/ER, and maximum von Mises

stress, o™ /E, in an elastic half-space as functions of dimensionlesstime, t/t'”, from the

onset of indentation, where E is the elastic modulus of the half-space. Since P and o™
are mainly related to the stress field of the subsurface region close to the origin, the
results would be independent of mesh size provided t < 2t;'Y. This is confirmed by the
results shown in Fig. 3.3. Indeed, for t > 2t,?, the solutions begin to deviate. For the
mesh shown in Fig. 3.2(c), the dil atational wave reflected from the free boundary at xR =
6.4 propagated back first, while for the mesh shown in Fig. 3.2(b) the dilatational wave
reflected from the fixed boundary y/R = -6.4 propagated back first. For the mesh shown
in Fig. 3.2(a), the two dilatational waves reflected from the bottom and right boundaries
propagated back to the origin at about the same time. The relatively small discrepancies
in the results for the contact force and Mises stress obtained with the meshes shown in
Figs. 3.2(Q) and 3.2(b) and, similarly, those obtained with the meshes shown in Figs.
3.2(c) and 3.2(d) indicate that the wave reflected from the bottom boundary exhibits a
dominant effect. Both Figs. 3.3(a) and 3.3(b) show that discrepancies in the results
(compared to those obtained with the mesh shown in Fig. 3.2(d)) occur due to the
reflected waves at about the same time for the meshes shown in Figs. 3.2(a) and 3.2(b)
and alittle later for the mesh shown in Fig. 3.2(c). Thisimplies that the critical time of a
mesh (i.e., ty or ~2t if the entire mesh or only a small region of the mesh close to the
origin is of interest, respectively) yields a conservative estimate for the maximum time

for dynamic contact analysis not affected by the reflected wave(s).
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Fig. 3.3 (&) Contact force and (b) maximum von Mises equivalent stress versus time
from the initiation of normal contact for an elastic homogenous half-space indented by &
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rigid cylinder moving at speed V =1 x 10'3cp.

3.2.2 Finite Element M esh for Multi-L ayered M edium.

Similar simulations were performed for an elastic-plastic multi-layered medium

using the meshes shown in Fig. 3.4. The thickness (normalized by the indenter radius)
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Fig. 3.4 Finite element models used to study the effect of the mesh size on the dynamic
response of an elastic-plastic multi-layered medium indented by a rigid cylinder. The
mesh dimensions normalized by the indenter radius are (a) 6.4 x 7.46, (b) 12.8 x 7.46, ()
6.4 x 13.86, and (d) 12.8 x 13.86.

and material properties of the multi-layered medium given in Table 3.1 (Kaye, 1986;

Komvopoulos, 2000) are representative of thin-film rigid disks used in magnetic
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Table3.1. Thicknessand material properties of the el astic-plastic multi-layered

medium subjected to dynamic indentation of arigid cylinder

Medium Normalized Elastic Yield Density
thickness modulus strength
R (GPa) (GPa) (kg/m’)
Layer 1 0.05 168 13.0 2266
Layer 2 0.156 130 2.67 8800
Layer 3 0.8 140 2.58 7000
Layer 4 6.4,12.8,51.2 160 2.67 8000

Sources: Kaye (1986) and Komvopoulos (2000).

recording. The material properties and size of the bottom (fourth) layer are identical to
those of the homogeneous half-space discussed in the previous section. The normalized
(by the indenter radius) dimensions of the meshes shown in Figs. 3.4(a)-3.4(d) are 6.4 x
7.46, 12.8 x 7.46, 6.4 x 13.86, and 12.8 x 13.86, respectively. Since for the load range
anayzed in this analysis the plastic zone is predicted to be very small compared to the
mesh dimensions, the elastic properties of the layered medium control the wave vel ocity.
Figure 3.5(a) shows that the variation of o, in the surface layer with time and the
critical time that the results begin to deviate from those corresponding to the mesh shown
in Fig. 3.4(d) are similar to those obtained for the elastic homogeneous half-space (Fig.
3.3(b)). This suggests that wave propagation in the thick (fourth) layer plays a

predominant role in the stress-strain calculations. Figure 3.5(b) reveal s that the results for

the maximum equivalent plastic strain, £4” , in the second (soft) layer begin to deviate at

approximately the same critical time as that of o™ . This is due to the fact that the
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Fig. 3.5 (a) Maximum von Mises equivaent stress in the surface (hard) layer and (b)
maximum equivaent plastic strain in the second (soft) layer versus time from the
initiation of contact for an elastic-plastic multi-layered medium indented by a rigid

cylinder moving at speed V = 1 x 10°3c%?, where ¢! is the propagation speed of the
plane dilatational waves in the thick substrate (fourth layer).

locations of o™ and e are close to each other and both occur in asubsurface domain

adjacent to the contact region.
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3.3 Dynamic Indentation of an Elastic-Plastic M ulti-Layered M edium

3.3.1 Finite Element M odeling and M aterial Properties of Multi-L ayered M edium.
Dynamic indentation of a multi-layered medium by arigid cylinder was analyzed
with the finite element code ABAQUS/Standard. Contact between the rigid indenter and
the multi-layered medium was modeled with rigid surface and second-order contact
elements, which were assigned a common reference node that defined the motion of the
rigid surface. The rotational and horizonta displacements of the reference node were
fully constrained. Indentation was model ed by advancing the rigid surface profile against
the deformable mesh using a displacement-control incremental scheme. In view of the
marginal effect of friction in normal contact (Komvopoulos, 1988), only frictionless
indentations were considered in this chapter. Because of the displacement-control
simulation scheme and the assumption of rigid indenter, the effect of the indenter mass
on the simulation results was neglected. The multi-layered medium was modeled by
eight-node, bi-quadratic, plane-strain elements. A 3 x 3 Gaussian integration was used in
each element. Because of symmetry and the assumed boundary conditions, only one-half
of the multi-layered medium (Fig. 3.6) was modeled, and the nodes on the symmetry axis
(x = 0) were constrained against displacement in the x-direction. The nodes of the bottom
boundary were constrained against displacement in the y-direction. The mesh near the

surface was refined as shown in Fig. 3.6. The radius of the cylindrical indenter was

selected to be equal to 0.2R, 1.0R, and 2.0R, i.e., normalized indenter radius R =02, 1.0,
and 2.0. Heredfter, al the length parameters are normalized by the intermediate indenter

radius, R, and are presented in dimensionless form. For greater numerical accuracy, the
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Fig. 3.6 Finite element mesh for dynamic contact analysis of an elastic-plastic multi-
layered medium indented by arigid cylinder.

smallest elements adjacent to the surface are squares of sides equal to 0.00625R, i.e., one-
eighth of the thickness of the thinnest layer. This refinement of the mesh is for numerical
purposes and does not imply the use of a continuum description for domains approaching

the lattice dimensions. Therefore, caution should be exercised in selecting the thickness
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of the surface layer. The mesh size (51.2R x 52.26R) was selected such that during the
anaysis the reflected waves did not propagate back to the region of interest. The
normalized thickness and materia properties of the multi-layered medium are given in
Table 3.1. These materia properties are typica of magnetic rigid disks (Komvopoulos,
2000). For simplicity, al layers were assumed to have a Poisson’s ratio equal to 0.3. For
the selected properties, the speed of the plane dilatationa waves in the fourth layer is
about 5189 m/s. Each layer was modeled as an elastic-perfectly plastic materid. The

classical von Misesyield criterion was used throughout the dynamic contact simulations.

3.3.2 Simulation of Dynamic I ndentation.
Dynamic indentation was modeled by applying incrementa displacements to the
rigid surface in acontrolled fashion, which were identical for both |oading and unloading.

The speed of the indenter was constant throughout the loading and unloading simulation
steps. Simulations were performed for indentation speed equal to 1 x 107 ct”, 2 x 10°
¢, and 4x 10 ¢, where ¢! is the propagation speed of the plane dilatational waves
in the thick substrate (fourth layer). Results are presented in terms of dimensionless
indentation speed, V , obtained by dividing the indenter speed by c%”. The maximum
indentation depth was selected to be equal to 0.02R. While the damping effect was
ignored in the simulations of indentation loading and unloading, to obtain solutions for
the residual stress-strain field, dashpot elements were added to the mesh after full

unloading. The damping coefficients of the dashpot elements were arbitrarily selected to

achieve fast equilibrium.
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3.4 Results and Discussion

Finite element solutions for the contact pressure distribution and subsurface stress

and strain fields in the multi-layered medium are presented for different vaues of
normalized indentation depth, & , indentation speed, V , and indenter radius of curvature,

R.The propensity for plastic flow and cracking is interpreted in the context of results for
the maximum von Mises stress, equivalent plastic strain, and maximum tensile stress in

the multi-layered medium during loading and unloading.

3.4.1 Contact Force and Contact Pressure Distribution

Figure 3.7 shows the variation of the contact force, P, with indentation depth, o,
for different values of normalized indentation speed and indenter radius. The contact
force is normalized by the critica load, Py, corresponding to the inception of yielding in

the multi-layered medium due to indentation by arigid cylinder of intermediate radius

(ﬁ = 1.0) penetrating at a relatively high velocity (\7 = 4 x 10°%). Figure 3.7(a) shows
that the contact force increases monotonicaly with indentation depth and speed. In
dynamic norma contact, a fraction of the external work is dissipated in the form of
kinetic energy in the multi-layered medium. Consequently, the energy dissipated in the
deforming medium increases with indentation speed. In addition, larger gradients in the
displacement field occur a higher indentation speeds adjacent to the contact region.
Therefore, the strains and strain energy intensify with the increase of the indentation

speed. Consequently, a higher indentation speed produces a higher contact force for the
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Fig. 3.7 Contact force on elastic-plastic multi-layered medium indented by a rigid
cylinder versus indentation depth for (a) varying indentation speed and constant indenter

radgus ( R = 1.0) and (b) varying indenter radius and constant indentation speed (\7 =4x
107).

same surface penetration distance. Figure 3.7(b) demonstrates that, for a given

indentation depth, a lower contact force is obtained with the sharper indenter, evidently
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Fig. 3.8 Contact pressure distribution on elastic-plastic multi-layered medium indented
by arigid cylinder for (&) varying indentation depth and speed and constant indenter

radius (ﬁ = 1.0) and (b) varying indenter radius and constant indentation depth (5 =
0.02) and speed (V =4 x 10%).

due to the correspondingly smaller contact area.
Figure 3.8 illustrates the dependence of the contact pressure, p, on dimensionless

indentation depth, speed, and radius of the rigid indenter. The contact pressure is
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normalized by the yield strength of the surface layer, oy, and the distance x from the
center of contact (x = 0) by the intermediate indenter radius, R. The effect of the various
dimensionless parameters on the contact pressure distribution can be explained in terms
of the dependence of subsurface plastic deformation on these parameters (discussed in
detail in the following section). As shown in Fig. 3.8(a), increasing the indentation speed
intensifies the contact pressure and increases the contact area, in accord with the contact
force results shown in Fig. 3.7(a). The increase of the maximum contact pressure is a
result of the larger strains occurring in a subsurface region adjacent to the contact
interface, while the increase of the contact (width) area with indentation speed is a
consequence of the slower downward movement of the surface of the deforming multi-
layered medium compared to that of the penetrating indenter. Figure 3.8(b) shows the
effect of the indenter radius on the contact pressure distribution for both constant
indentation depth (5 = 0.02) and speed (\7 = 4 x 10®). As expected, a higher peak
pressure and a smaller contact width were obtained with the sharper indenter. In the case
of the indenter with intermediate radius (ﬁ = 1.0), the peak pressure shifts toward the
contact edge due to the excessive plastic deformation in the soft second layer, conversely
to therelatively blunt ( R = 2.0) and sharp ( R= 0.2) indenters producing a peak pressure
a the center of the contact region. This trend is aso associated with the effect of the
indenter radius on the subsurface stress-strain field. It will be shown later that, due to the
much higher yield strength of the surface layer (Table 3.1), plastic deformation is
encountered only in the second (soft) layer. For the larger indenter radius, the small value
of JIR produces less plastic deformation. Regarding the smaller indenter radius (sharp

indenter), the high ratio of the thickness of the surface layer to the contact width (ti/a > 1)
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promotes the dominance of elastic deformation in the multi-layered medium and, thus,

the peak pressure arises at the center of the contact region.

3.4.2 Subsurface Stresses and Evolution of Plasticity
Contours of normalized von Mises equivaent stress, o/ ovi, in the multi-layered
medium obtained from high-indentation speed (\7 = 4 x 10 simulations with an

indenter of intermediate radius(ﬁ = 1.0) are shown in Fig. 3.9. In this figure, aswell in
subsequent stress (strain) contour figures, stress (strain) contours are shown within the
first two layers, where the higher stresses (strains) occurred in all the simulation cases.

Stress discontinuities arise at the interface due to the material property mismatch between
the first and second layer. For the simulated range of indentation depth (5 < 0.02), the
hard surface layer exhibited purely elastic deformation. For relatively small indentation
depth (5 = 0.0025), o, occurs in the surface layer a a depth approximately equal to
half of the contact width (Fig. 3.9(a)). However, increasing the indentation depth causes
oy to shift toward the interface (Fig. 3.9(b)). After yielding in the soft layer (5 >
0.005), o™ arises aways at the bottom of the hard surface layer near the interface with

the plastically deformed soft layer (Figs. 3.9(b)-3.9(d)).

Figure 3.10 illustrates the effects of indentation speed and indenter radius on the
evolution of o, /oy in the surface layer during the advancement of the rigid indenter

into the multi-layered medium. As expected, the Mises stress intensifies with increasing
indentation depth, indicating a higher likelihood for yielding in the multi-layered

medium, specifically in the soft layer possessing arelatively low yield strength. Thetrend

for o, to increase with indentation speed (Fig. 3.10(a)) is similar to that observed for
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Fig. 3.9 Contours of von Mises equivaent stress in el astic-plastic multi-layered medium
indented by a rigid cylinder of intermediate radius ( R = 1.0) a constant indentation
speed (V =4 x 10°) for indentation depth (a) & = 0.0025, (b) & = 0.0075, (c) & = 0.015,
and (d) & = 0.02.

the contact force (Fig. 3.7(a)). The higher values of o™ produced with the relatively

sharp indenter (Fig. 3.10(b)) are associated with the high values of &R and the more

pronounced bending effect on the deformation of the surface layer.

To further interpret the likelihood of subsurface cracking under both loading and

unloading, contours of the normalized first principal (maximum tensile) stress, ai/ ovi, In
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Fig. 3.10 Maximum von Mises equivaent stressin the surface (hard) layer of an elastic-
plastic multi-layered medium indented by arigid cylinder versus indentation depth for

(& varying indentation speed and constant indenter radius (ﬁ = 1.0) and (b) varying
indenter radius and constant indentation speed (V = 4 x 10).

the multi-layered medium are plotted in Fig. 3.11 for the case of relatively high

indentation speed (\7 = 4 x 10®) and intermediate indenter radius ( R = 1.0). Similar to

the von Mises stress (Fig. 3.9), the maximum tensile stress occurs always in the surface
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Fig. 3.11 Contours of first principa stress in elastic-plastic multi-layered medium
indented by a rigid cylinder of intermediate radius (ﬁ = 1.0) a constant indentation
speed (V =4 x 10°) for indentation depth (a) & = 0.01 (loading), (b) & = 0.02 (loading),
(c) & = 0.01 (partial unloading), and (d) & = O (full unloading).

layer. In particular, during indentation loading the maximum tensile stress arises at the
surface near the contact edge (Figs. 3.11(a) and 11(b)), while during partia unloading
(Fig. 3.11(c)) and full unloading (Fig. 3.11(d)) it occurs below the center of the contact
region a the interface of the two layers. The results presented in Fig. 3.11 suggest a

greater probability for surface and interfacia cracking during indentation loading and
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Fig. 3.12 Maximum tensile (first principal) stressin the surface (hard) layer of an elastic-
plastic multi-layered medium indented by arigid cylinder versusindentation depth for (a)

varying indentation speed and constant indenter radius (ﬁ = 1.0) and (b) varying
indenter radius and constant indentation speed (\7 =4x10%).

unloading, respectively, depending on the fracture strength of the hard surface layer and
the indentation speed and radius of the indenter that affect the magnitude of the

maximum tensile stress. Thisisillustrated in Fig. 3.12 where the maximum tensile (first
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principal) stress, o™, in the surface layer is plotted as a function of indentation depth
for different values of indentation speed and radius of the indenter. The effects of

indentation speed and indenter radius on o™ become significant at acritical indentation
depth & > 0.01. The variation of o™ reveals trends similar to those observed for o™

(Fig. 3.10). As shown in Fig. 3.12(a), o™ in the hard surface layer increases with
indentation speed, suggesting ahigher propensity for cracking in indentation experiments
performed at relatively high loading rates. Cracking may also be promoted in indentation
experiments involving relatively sharp indenters (Fig. 3.12(b)). Thus, caution should be
exercised in nanoindentation hardness tests with thin and hard layers requiring ultra-sharp
indenters to avoid the substrate deformation effect on the measurement of the layer

hardness and el astic modulus.

The evolution of subsurface plasticity in the multi-layered medium may be
studied in terms of the equivaent plastic strain, &g, contours plotted in Fig. 3.13 for
intermediate indenter radius (ﬁ = 1.0), high indentation speed (\7 = 4 x 103, and
different indentation depths. Due to the higher yield strength of the surface layer plastic

deformation is confined only in the soft layer. At relatively small indentation depth (5 =
0.0075), a small plastic zone is produced in the soft layer at the interface with the hard

surface layer below the center of contact (Fig. 3.13(a)). As the indenter advances deeper
into the multi-layered medium (5 = 0.0125), the plastic zone grows downward into the

soft layer, while ez™ continues to occur along the axis of symmetry (Fig. 3.13(b)).

Deeper penetration of the indenter (5 = 0.0175) causes further expansion of the plastic

zone and ashift of £5™ toward the interface with the hard surface layer (Fig. 3.13(c)). At
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Fig. 3.13 Contours of equivalent plastic strain in elastic-plastic multi-layered mediurr
indented by a rigid cylinder of intermediate radius (ﬁ = 1.0) a constant indentatior
speed (V = 4 x 10 for indentation depth (a) & = 0.0075, (b) & = 0.0125, (c) & =
0.0175, and (d) & = 0.02.

even larger indentation depth (5 = 0.02), g5~ commences at the interface of the two
layers at adistance about one-third of the corresponding contact width (Fig. 3.13(d)). The
evolution of 4™ in the present dynamic contact analysis is qualitatively similar to that

observed in quasi-static indentation simul ations of ahomogeneous half-spaceindented by

arigid sphere (Kra et d., 1993).
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Fig. 3.14 Maximum equivaent plastic strain in the second (soft) layer of an elastic-
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indenter radius and constant indentation speed (\7 =4x10%).

To demonstrate the dependence of plasticity in the soft layer on indentation
parameters, results for g™ obtained for different indentation depths during loading and

unloading are plotted in Figs. 3.14 and 3.15, respectively. Increasing the indentation
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Fig. 3.15 Maximum equivaent plastic strain in the second (soft) layer of an elastic-
plastic multi-layered medium indented by a rigid cylinder during unloading versus
indentation depth for varying indentation speed and indenter radius.

speed and the sharpness of the indenter contributes to the premature yielding of the soft
layer. For the range of parameters examined in thisanalysis, the critica indentation depth

at the inception of yielding in the soft layer is predicted to be between 0.004 and 0.011,

depending on the speed and radius of the indenter (Fig. 3.14). The dependence of £ on

indentation parameters (i.e., 5,V,and ﬁ) exhibits trends similar to those observed for
oy (Fig. 3.10) and o™ (Fig. 3.12). Figure 3.15 shows that reyielding during
unloading is controlled by the speed and radius of the indenter. Dynamic unloading from
a maximum depth 5 = 0.02 is shown to be fully elastic for al simulation cases except

for that involving the relatively sharp indenter (ﬁ = 0.2) and higher load/unload speed
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(\7 = 4 x 10™). For this case, additional plastic deformation begins to accumulate in the

soft layer as soon as the indenter is retracted to a depth 5 ~0.01. The region where
reyielding occurs in the soft layer is below the center of contact, close to the interface

with the hard surface layer.

3.4.3 Residual Stress-Strain Field

As mentioned previously, damping was not included in the dynamic simulations
of indentation loading and unloading. Consequently, after dynamic unloading, the multi-
layered medium continued to oscillate without ever reaching equilibrium due to the
reflection of the propagating waves from the boundaries. Therefore, as mentioned in
section 3.2, to enable the analysis of the residua stress-strain field due to dynamic
indentation, dashpot elements were added to the finite element mesh after full unloading.
The damping coefficients of these elements were selected in order for the vibration of the
unloaded medium to decrease within a short time. Since additiona plastic deformation
due to the vibration of the multi-layered medium does not occur, the residual stress-strain

field can be obtained as soon as equilibrium is reached. Contours of residua oy and
£, are shown in Figs. 3.16 and 3.17, respectively, for different values of normalized
indenter radius and indentation speed. The results obtained for the same indenter radius

(ﬁ = 1.0) revea that increasing the indentation speed causes intensification of the
residua stress in the hard surface layer, especidly at the interface with the soft layer
(Figs. 3.16(a)-3.16(c)), and promotes the development of higher residual plastic strains
and a larger plastic zone in the soft layer (Figs. 3.17(a)-3.17(c)) below the center of

contact. A comparison of Figs. 3.16(c) and 3.17(c) with Figs. 3.16(d) and 3.17(d),
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Fig. 3.16 Contours of residua von Mises equivaent stressin elastic-plastic multi-layered
medium indented by a rigid cylinder after full unloading for different values of

indentation speed and indenter radius; (8) V = 1x 10°, R =1.0, (b) V =2x 10° R =
1.0,(c)V =4x10% R=1.0,and (d) V =4x 103 R =0.2.

respectively, shows that the residual stresses and plastic strains in the hard and soft

layers, respectively, increase significantly with the sharpness of the indenter, while the
size of the plastic zone in the soft layer decreases slightly. The development of o™ a

the bottom of the hard layer below the center of contact is attributed to bending of the

elasticaly deformed hard layer as the soft layer flows plastically. The resulting large

stress gradients across the interface are associated with the occurrence of £ in the soft
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Fig. 3.17 Contours of residua equivalent plastic strain in elastic-plastic multi-layered
medium indented by a rigid cylinder after full unloading for different values of

indentation speed and indenter radius; (8) V = 1x 10°, R =1.0,(b) V =2x 10° R =
1.0,(c)V =4x10% R =1.0,and (d) V =4x 103 R =0.2.

layer adjacent to the region of o, a the bottom of the hard surface layer.

The results presented in this chapter demonstrate the effect of indentation depth,
speed, and sharpness of the indenter on the elastic-plastic deformation and likelihood of
cracking in multi-layered elastic-plastic media. The dynamic simulation results cannot be
compared with those of a quasi-static plane strain analysis. This is because the latter

analysis implies infinite simulation time and the results depend on the location of the
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reference point. Alternatively, the dynamic results are obtained for afinite analysis time
and are independent of a reference point. After a sufficiently long time the vibrations in
the layered medium due to the reflected waves will be damped out (if damping is
considered in the analysis) and the dynamic simulation results would approach those of a
guasi-static analysis. To obtain such a comparison, the effects of the reflected waves and
material damping, as well as the dependence of the results on the mesh size and boundary
conditions, must be taken into account. However, thisis beyond the scope of the present
finite element analysis. The findings of this andysis provide explanation to
phenomenological observations of mechanical failure in layered media due to excessive
plastic flow and cracking in indentation experiments (e.g., Alfredsson and Olsson, 2000).
The present finite element model can be easily extended to account for strain hardening

and strain rate sensitivity effects under dynamic contact loading.

3.5 Conclusions

A plane-strain dynamic contact analysis for a multi-layered elastic-plastic
medium indented by arigid cylinder of varying radius of curvature was performed using
the finite element method. Solutions for the contact force, contact pressure, and
subsurface stresses and strains were obtained in terms of penetration depth, indenter
radius, and indentation speed for both loading and unloading. Based on the presented
results and discussion, the following main conclusions can be drawn.

(1) For dynamic contact analysis of semi-infinite half-spaces using the finite element
technique, a sufficiently large mesh is required for the faster propagating
dilatational waves that are reflected from the mesh boundaries not to reach the

region of interest during the anaysis. In this region, the ssimulation results are
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3)

(4)

(5)

independent of mesh dimensions, and specifying a reference point in order to
obtain the displacement field (as in plane-strain quasi-static analyses) is not
necessary.

Wave propagation in the multi-layered medium examined in this anaysis is
dominated by the material properties of the thick substrate (fourth layer) of the
ha f-space medium.

The contact load, contact pressure, and subsurface stresses and plastic strains (both
loading and residual) increase with indentation depth and speed. For the material
properties and indentation parameters examined in thisanalysis, higher indentation
speed leads to premature yielding and plastic zone formation in the second (soft)
layer and higher tensile stresses in the elastically deformed surface (hard) layer.
Smaller critical indentation depth at the inception of yielding, higher peak contact
pressure, lower contact load, and intensified subsurface stress-strain field are
obtained with a sharper indenter. Due to the relatively high yield strength of the
surface layer, the peak value of the maximum von Mises equivalent stress occurs
always in this layer, whereas the peak equivaent plastic strain arises awaysin the
second layer.

Results for the peak values and locations of the maximum von Mises equivalent
stress, first principal stress, and maximum equivaent plastic strain, as well as the
evolution of the plastic zone during indentation loading and unloading, were
obtained in terms of indentation parameters. The finite element solutions provide
insight into the propensity for plastic flow and cracking in dynamically indented

multi-layered media.
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CHAPTER 4

Dynamic Contact Between an Elastic-Plastic Multi-Layer ed
Medium and a Rigid Fractal Surface

4.1 Introduction

The longevity of the protective hard and tough surface layers depends on the
knowledge of the effects of the layer thickness and material properties on the deformation
and stress fields due to surface traction. Contact stress analysis of elastic-layered media
has received considerable research attention in the field of contact mechanics (Burmister
(1945); Dhaliwal et d. (1970); Gupta and Waowit (1974); King and O’ Sullivan (1987)).
With the advent of numerical techniques, such as finite element method, and the increase
of computational capabilities, significant advances in the study of elastic-plastic contact
deformation were also encountered (Kennedy and Ling (1974); Komvopoulos (1989);
Kral et a. (1995a and 1995b); Gan and Ben-Nissan (1997); Sen et d. (1998); Faulkner et
a. (1998)).

The above-mentioned studies dealing with perfectly smooth contact interfaces are
informative of the globa deformation behavior, which is dictated by the macroscopic
shape of the interacting solids. However, the local deformation behavior may differ
significantly due to multi-scale roughness effects. For example, numerical simulations by
Webster and Sayles (1986) have shown that the contact pressure distribution and the
normal load versus rea contact area relationship of rough surfaces markedly deviated
from those of perfectly smooth surfaces. Thus, in order to capture the microscopic

deformation occurring in the vicinities of the asperity contacts, where actual solid-solid
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contact occurs, accurate representation of the surface topography over a wide range of
length scales is essential. The dependence of surface topography parameters, such as
variance, skewness, and kurtosis of the surface height distribution, on the sample size and
resolution limit of the measuring device and the self-affinity behavior of many
engineering surfaces have led to the characterization of the surface topography by fracta
geometry (Mgumdar and Tien, 1990; Maumdar and Bhushan, 1990). Mgumdar and
Bhushan (1991) developed a two-dimensional contact model of rough surfaces described
by fractal geometry, and predicted that all the asperity contacts of arealess than acritical
value deform plastically. Yan and Komvopoulos (1998a) presented a three-dimensional
contact analysis of elastic-plastic fracta surfaces that elucidated the effects of surface
topography parameters and material properties on the evolution of elastic and plastic
deformation at the contact interface. Later, Komvopoulos and Ye (2001) extended the
previous anaysis to include elastic, elastic-plastic, and fully plastic deformation of the
asperity contacts, and obtained results illustrating the dependence of the normal load on
fractal parameters. The same authors used fractal geometry to describe the equivalent
surface topography of the head-disk interface and investigated the evolution of plasticity
and likelihood of crack initiation in the multi-layered hard disk (Komvopoulos and Ye,
2002).

The knowledge derived from previous contact analyses dealing with
homogeneous and layered media possessing either smooth or rough surface topographies
has paved the way toward more accurate modeling of contact deformation. However,
because most of these studies are limited to static or quasi-static contact loads, the

reported solutions may not be applicable to dynamic contacts. For example, Streator
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(2003) used a numerical model to analyze dynamic contact between arigid sphere and an
elastic half-space and found that the maximum contact load was significantly higher than
that for quasi-static contact, even for indentation speeds much less than the speed of the
dilatational waves. In chapter 3, a finite element analysis of dynamic indentation of a
multi-layered medium by a rigid cylinder with a smooth surface profile is reported and
the requirement for the finite element mesh size in order to obtain results that are not
biased by the waves reflected from the artificial boundaries of the half-space is also
discussed. The objective of this chapter is to extend the previous andysis to the more
realistic case of an elastic-plastic layered medium in dynamic contact with a rough
surface characterized by fractal geometry. The effects of the layer thickness and
indentation speed on the contact pressure and subsurface stress/strain fields and the
possibility of elastic shakedown during cyclic indentation are interpreted in the context of

the obtained finite element results.

4.2 Rough-Surface M odel and Finite Element Smulations

4.2.1 Rough-Surface M odel.

For an unbiased description of the surface topography and in order to include
multi-scae length effects in the present analysis, the equivaent surface topography was
characterized by fractal geometry (Mandelbrot, 1967). The traditiona approach in contact
analyses of fractal surfaces is to represent a two-dimensional surface profile, z(x), by an
approximate (truncated) Weierstrass-Mandelbrot function (Berry and Lewis, 1980),

which, for dimensional consistency, can be written as (Wang and Komvopoul os, 1994)
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where x is the horizonta direction, Lx is the fractal sample length, G is the fractal
roughness, D is the fractal dimension (1 < D < 2), ¥ (y> 1) is a scaling parameter
(typicdly, = 1.5 (Yan and Komvopoulos, 1998a)), which controls the relative phase
differences between fractal modes, and M is the highest frequency index, which is related
to the cut-off length, L., and the sample length by M =int[log(L,/L.)/logy].

The rough surface used in the finite element simulations was obtained from Eq.
(4.1) using the fractal parameters of the equivaent surface of an ultra-smooth hard disk
and a carbon-coated slider, D = 1.44 and G = 9.46 x 10™ nm (Komvopoulos, 2000). Since
modeling of the entire surface profile is impractical and computationally prohibitive, a
segment of the profile was selected for dynamic contact analysis based on the procedure
developed in a previous study (Komvopoulos and Ye, 2002). Since al the truncated
segments of a surface profile exhibit self-affinity over ranges that include all the
wavelengths comprising the surface profile (Eg. (4.1)), any segment of length several
orders of magnitude larger than the ssimulated maximum interference should yield a
similar deformation behavior (Komvopoulos and Ye, 2002). The critical surface segment
was determined by truncating the entire surface profile (4379 nm in length) to a
maximum interference of 2 nm. The profile segment determined from this procedure
(Fig. 4.1) is about 100 times larger than the simulated local interference and contains the
largest number of asperity contacts. The dashed line shown in Fig. 4.1 represents the

undeformed surface of the multi-layered medium. The loca interference, 9, is defined as
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Fig. 4.1 Segment of a two-dimensional fracta profile generated from Eq. (1) using D =
1.44, G = 9.46 x 10" nm, y=15, Lx=4379 nm, and L. = 10 nm.

the maximum interference in this segment. The origin of the rough-surface segment is
denoted by xs. The segment length, L, was used to normalize all the length parameters.
More details about the characterization of the surface topography by fractal geometry can
be found in previous publications (Komvopoulos and Ye, 2002; Wang and

Komvopoulos, 1994; Y an and Komvopoulos, 1998a).

4.2.2 Finite element mesh and material properties of the layered medium.

As discussed in chapter 2 and 3, wave propagation plays an important role in
dynamic contact analysis. To avoid the effects of the mesh boundaries on the results,
sufficiently large finite element meshes were used in order for the waves reflected from
the artificial boundaries not to affect the results in the analyzed domain of the multi-
layered medium (chapter 3). However, the effects of the waves reflected from the layer
interfaces were included in the analysis because of their close proximity to the region of

analysis. Figures 4.2(a) and 4.2(b) show the finite element meshes of multi-layered media
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Fig. 4.2 Finite element mesh of a multi-layered medium with a surface-layer thickness
() h, =0.01and (b) h, = 0.025.
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Table4.1. Thickness and material properties of the elastic-plastic multi-layered

medium subjected to dynamic indentation of arigid, rough surface

Layer Normalized Elastic Yield Mass Poisson
thickness modulus strength density ratio
(hL) (GPa) (GPa) (kg/m?)
1 0.01, 0.025 168 13.0 2266 0.3
2 0.078 130 2.67 8800 0.3
3 0.40 140 2.58 7000 0.3
4 25.6 160 2.67 8000 0.3

Sources. Kaye (1986) and Komvopoulos (2000).

with surface-layer thickness equal to 0.01L and 0.025L, consisting of 9270 and 7854
eight-node, bi-quadratic, plane-strain elements with a 3 x 3 Gauss integration scheme,
respectively. For greater numerical accuracy, the near-surface regions of the meshes were
refined with small square elements of size equa to 0.0025L and 0.003125L, i.e., one-
fourth and one-eighth of the thickness of the surface layer in Figs. 4.2(a) and 4.2(b),
respectively. The size of the meshes shown in Figs. 4.2(a) and 4.2(b) are 51.2L x 26.088L
and 51.2L x 26.103L. All the nodes at the bottom boundary were constrained against
displacement in the y direction. In addition, the middle-node at the bottom boundary was
constrained against displacement in the x direction to prevent rigid body rotation. The
normalized thickness and material properties of the multi-layered medium (Kaye, 1986;
Komvopoulos, K., 2000) are listed in Table 4.1. The material properties are typical of

magnetic thin-film disks. A Poisson ratio of 0.3 and el astic-perfectly plastic behavior was
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assumed for all the layers. The classical von Mises yield criterion was used to determine

whether yielding occurred at an integration point at different interferences.

4.2.3 Dynamic Contact Simulations.

Dynamic indentation was simulated in a fashion similar to chapter 3. Contact
between the rough surface and the multi-layered medium was detected by second-order
contact elements assigned to the surface of the deformable medium. In view of the
secondary effect of friction in norma contact (Komvopoulos, 1988), frictionless contact
was assumed in all the simulations. A node with a fixed x coordinate was used to control
the vertica movement of the rough surface. This node was also used as the reference
node of the contact elements. Based on a displacement-controlled scheme, an indentation
cycle was modeled by displacing the rough surface toward the multi-layered medium at a
constant velocity and, upon reaching the set interference, retracting it back to its original
position by following the same steps as for the loading.

Simulations were performed for an indentation load/unload speed between
0.001ct” and 0.004c%?, where c(” is the propagation speed of the plane dilatational
waves in the fourth layer. In the following section, results are presented in terms of
dimensionless indentation speed, V', obtained by dividing the indentation speed by ¢t
Although material damping was ignored in the loading and unloading phases of an
indentation cycle, to determine the residual stresses and strains, dashpot elements were
added to the mesh after the unloading phase of each indentation cycle. The damping
coefficients of the dashpot elements were selected to achieve static equilibrium in a

relatively short computation time. Subsequently, the dashpot elements were removed and

the next indentation cycle was simulated in a manner identical to that of the previous
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cycle. For increased accuracy and expeditious convergence, all the simulations were
performed with the ABAQUS/Standard finite element package (implicit integration)
instead of the generally faster ABAQUS/EXxplicit package (explicit integration). The
typical CPU time for simulating indentation loading (or unloading) with a Pentium Il
550 processor was equal to 13-14 hours, while the CPU time for a complete |oad/unload
indentation cycle, including the time required to achieve equilibrium after full unloading,

was of the order of ~56 hours.

4.3 Results and Discussion

Simulation results for the contact pressure distribution and subsurface stress and
strain fields in the multi-layered medium are presented in this section in terms of
normalized interference, & =J/L , indentation Speed, V=V/L, ad surface-layer
thickness, ﬁl =h, /L. As mentioned earlier, the length of the simulated profile segment,
L, was used to normalize dl the dimensional parameters. The likelihood for plastic
deformation and crack initiation is discussed in terms of the von Mises equivalent stress,
equivaent plastic strain, and first principa (maximum tensile) stress obtained in the
loading and unloading phases of each indentation cycle. The possibility of elastic
shakedown is aso interpreted in the context of the reyielding behavior of the multi-
layered medium due to cyclic indentation. Unless otherwise stated, the results discussed
in the following section are for the loading and unloading phases of a single indentation
cycle. However, it will be shown later that the single-indentation results obtained for the
multi-layered medium with the relatively thicker surface layer (ﬁl = 0.025) are also valid

for cyclic indentation.
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4.3.1 Single I ndentation

4.3.1.1 Contact Force and Pressure Distribution

Figure 4.3 shows the variation of the contact force, P/Py, with the interference,

& , for different values of the indentation speed, V, and surface-layer thickness, h,. The

(critical) contact load at the inception of yielding in the multi-layered medium with the

thinner surface layer (ﬁl = 0.01) for arelatively high indentation speed (\7 = 0.004) is
denoted by Py. In all the simulated cases, the contact force increases monotonically with
the interference. The increase of the contact force with the indentation speed at a given
interference indicates an enhancement of the penetration resistance at high loading rates.
This can be explained by considering the dependence of the energy dissipated in the
multi-layered medium on the indentation speed. In high-speed indentation, a larger
fraction of the external work is converted to kinetic energy, and larger displacement
gradients (i.e., higher strains and strain energy) develop in the vicinities of the asperity
contacts. Consequently, a higher indentation speed produces a larger contact force at a
given interference, in accord with the findings of chapter 3. The close agreement of the
force-interference responses shown in Figs. 4.3(a) and 4.3(b) indicates that, for the ranges
of the varied parameters, the contact force is relatively insensitive to the surface-layer
thickness. This is attributed to the small thickness of the surface layer compared to those
of the underlying layers. Thus, despite the significantly higher elastic modulus and yield
strength of the surface layer, the effect of its mechanical properties on the global dynamic
response of the multi-layered medium is secondary.

Figures 4.4 and 4.5 show the effects of the indentation speed, interference, and
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Fig. 4.3 Contact force versus interference for indentation speed V =0.001, 0.002, and
0.004 and surface layer thickness (a) h, = 0.01 and (b) h, = 0.025.
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Fig. 44 Contact pressure distributions on an elastic-plastic multi-layered medium
indented by a rigid and rough surface for interference 5 = 0005 and different
indentation speed and surface-layer thickness: (a) V = 0.001, h, = 0.01, (b) V = 0.002,

h, =0.01, (c) V =0.004, h, =0.01, and (d) V =0.004, h, = 0.025.
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Fig. 45 Contact pressure distributions on an elastic-plastic multi-layered medium
indented by a rigid, rough surface for interference 5 = 0.01 and different indentation
speed and surface-layer thickness: (a) V = 0.001, ﬁl =0.01, (b) V = 0002, ﬁl = 0.01,
(c) V =0.004, h, =0.01,and (d) V =0.004, h, = 0.025.
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surface-layer thickness on the contact pressure distribution. The contact pressure, p, is
normalized by the yield strength of the surface layer, oy, and the distance from the center
of the modeled surface profile, X - X, by the length of the profile, L. The maximum
contact pressure at each asperity contact intensifies with the increase of the interference.
In addition, Figs. 4.4(a)-4.4(c) and Figs. 4.5(a)-4.5(c) show that, for a fixed interference
and surface-layer thickness, both the real contact area and the maximum contact pressure
increase with the indentation speed and, in the case shown in Fig. 4.4(c), more asperity
contacts are established. These trends provide explanation for the variation of the contact
force with the indentation speed for fixed interference and surface-layer thickness (Fig.
4.3). Moreover, a comparison of Figs. 4.4(c), 4.4(d), 4.5(c), and 4.5(d) shows that the
increase of the surface-layer thickness intensifies the maximum contact pressure and
decreases the real contact area. This is because the effect of the mechanical properties of
the surface layer on the conformity of the multi-layered medium with the rough surface

becomes more pronounced with the increase of the surface-layer thickness.

4.3.1.2 Subsurface Stresses

Figure 4.6 shows contours of normalized von Mises equivalent stress, o/ o1, in
the multi-layered medium with the thinner surface layer (ﬁl = 0.01) for arelatively high

indentation speed (\7 = 0.004). The high-magnification regions show the distribution of
the von Mises stress in the highly stressed near-surface regions. The discontinuities of the
stress contours at the layer interface are due to the mismatch of the material properties of

the two layers. Similar discontinuities can be observed in the stress and strain contours of

similar figures presented in following sections. For a relatively small interference 5=
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Fig. 4.6 Contours of von Mises equivaent stress in an elastic-plastic multi-layered
medium with a surface-layer thickness ﬁl = 0.01 indented by a rigid, rough surface for

indentation speed V = 0.004 and interference €) 5 =0.0005, (b) 5 =0.005, and (©) 5
=0.01.
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0.0005 (Fig. 4.6(8)), o,," occurs in the surface layer below the first established asperity

contact A, and is much higher than that below asperity contact B. New asperity contacts
are produced at larger interferences (Figs. 4.6(b) and 4.6(c)), and the highest von Mises

stresses occur at the bottom of the surface layer, adjacent to the interface with the second
layer. It is noted that o™ in the surface layer is always higher than that in the second
layer. It can be seen that o, below asperity contact B increases faster than that below
asperity contact A due to the grater sharpness of asperity B. For an intermediate

interference (5 = 0.005), the vaues of o™ below asperity A and B are similar.

However, for a large interference (5 = 0.01), o™ occurs below asperity contact B.
Thus, for alarge interference, the sharper asperity B produces a higher o™ stress at the
layer interface (Fig. 4.6(c)), while for a small interference, the blunt asperity A produces
a higher o™ stress in the first layer adjacent to the contact region (Fig. 4.6(a)).
Qualitatively similar results were obtained from the low-speed indentation simulations

(i.e, V= 0.001), though the stresses were generally lower.

Figure 4.7 shows the variation of the normalized maximum von Mises stress,

ow lovy, in the surface layer with the interference for different values of indentation

speed and surface-layer thickness. For both values of the surface-layer thickness, o,
increases with the interference independent of indentation speed. In addition,
oy intensifies with the increase of the indentation speed in a similar fashion as the
contact force (Fig. 4.3). Although the effect of the surface-layer thickness on the

magnitude of o™ is negligible for interferences significantly less than the layer
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Fig. 4.7 Maximum von Mises equivalent stress in the first layer of an elastic-plastic
multi-layered medium indented by a rigid, rough, surface versus interference for
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and (b) h, = 0.025.
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thickness (e.g., 5 <0.0025 << ﬁl), amuch lower o, stress is produced with the thicker
layer at a relatively large interference (e.g., 5 = 0.01). As discussed earlier, this result
can be attributed to the exacerbated influence of the material properties of the surface
layer on the mechanica response of the multi-layered medium when 5 << ﬁl Itisaso
noted that even though the contact pressure may exceed the yield strength of the surface
layer (e.g., Fig. 4.5(d)), the corresponding curve (\7 = 0.004 and ﬁl = 0.025), shown in
Fig. 4.7(b), reveals that the surface layer deforms only elastically.

The likelihood of subsurface crack initiation can be interpreted in terms of the

first principa (maximum tensile) stress, o, . Figure 4.8 shows contours of normalized
first principal stress, o, /oy, , in the first and second layers for different interferences and
high indentation speed. Similar to o, (Fig. 4.6), o™ aways occurs in the surface
layer below the asperity contacts. Therefore, domains around the location of o™ are
shown in Figs. 4.8(a)-4.8(d). For a small interference (5 = 0.00375), o™ arises at the
layer interface below asperity contact A (Fig. 4.8(a)). The increase of the interference
intensifies the tensile stress and shifts the location of o™ at the layer interface below the

sharper asperity B (Figs. 4.8(b) and 4.8(c)). The contours of residual o, stress obtained
after the first indentation cycle (Fig. 4.8(d)) illustrate an enlargement of the interface
regions of tensile stress below the asperity contacts. The contour plots shown in Fig. 4.8
demonstrate a higher probability for crack initiation at the layer interface during the

loading and/or unloading phases of dynamic indentation.
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Fig. 4.8 Contours of first principal stress in the first and second layers of an elastic-
plastic multi-layered medium with a surface-layer thickness h, = 0.01 indented by a

rigid, rough surface for indentation speed V = 0.004 and interference ® 5 = 0.00375,

(b) & =0.0075, (c) & =0.01,and (d) & = O (full unloading).

Figure 4.9 shows the dependence of o™ on the indentation speed and surface-

layer thickness. Although o™ increases primarily with the interference and secondarily
with the indentation speed similar to the o, stress (Fig. 4.7), the effect of the surface-
layer thickness on o™ is more pronounced compared to o, . The markedly higher

tensile stress at the bottom of the thinner (ﬁ1 = 0.01) layer is due to the increase of

bending deformation in the stiff surface layer with the decrease of its thickness, in accord
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with the findings of chapter 3. This reveals a strong dependence of interface delamination

on the thickness and elastic modulus of the surface layer.

4.3.1.3 Subsurface Plasticity.

The equivalent plastic strain can be used to quantify the effect of different
parameters on the development of plasticity in the multi-layered medium. Figure 4.10

shows contours of normalized equivalent plastic strain, &q/é&v2, below asperity contacts A

and B for thin surface layer (ﬁ1 = 0.01) and high indentation speed (\7 =0.004). Because

of the higher yield strength of the surface layer, plasticity occurs only in the second (soft)
layer. Plastic deformation commences at the layer interface below the larger (blunter)
asperity A (Fig. 4.10(a)). The increase of the interference causes the plastic zone to grow
only into the second layer and a new plastic zone to form below the smaller (sharper)
asperity B (Fig. 4.10(b)). The peak vaue of &q in the plastic zone below asperity B
intensifies faster than that in the plastic zone below asperity A due to the greater
sharpness of asperity B. For a larger interference (Fig. 4.10(c)), a new plastic zone

develops at the interface, just below the newly established asperity contact to the left of
asperity A, and 5™ arises in the plastic zone below asperity B. This trend is similar to

that of the von Mises equivalent stress (Fig. 4.6). However, regardless of the interference,
the largest plastic zone always occurs below the relatively blunter asperity A. These
results illustrate the significance of the asperity radius of curvature (sharpness) and

contact size on the evolution of subsurface plasticity.

Figure 4.11 shows the dependence of the maximum equivalent plastic strain,
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Fig. 4.10 Contours of equivalent plastic strain in the first and second layers of an elastic-
plastic multi-layered medium with a surface-layer thickness ﬁl = 0.01 indented by a

rigid, rough surface for indentation speed V = 0.004 and interference €)] 5 = 0.0025,
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Fig. 4.11 Maximum equivaent plastic strain in the second layer of an elastic-plastic
multi-layered medium indented by a rigid rough surface versus interference for

indentation speed V =0.001, 0.002, and 0.004 and surface-layer thickness (@) ﬁl =0.01
and (b) h, = 0.025.
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£q » In the second layer on the indentation speed and surface-layer thickness. The

increase of the indentation speed promotes the initiation of yielding in the second layer
and the development of larger plastic strains at a given interference. A comparison of
Figs. 4.11(a) and 4.11(b) shows that the plastic flow resistance decreases with the
surface-layer thickness. These tendencies are in agreement with those shown in Fig. 4.7.

Figure 4.12 shows contours of residua equivalent plastic strain, &egres, for
different values of indentation speed and surface-layer thickness obtained after the first
indentation cycle. Figures 4.12(a) and 4.12(b) show that, for a fixed surface-layer

thickness, an increase of the indentation load/unload rate leads to the formation of more

max

wres & the interface below

plastic zones with larger plastic strains. While the values of &
asperity contacts A and B are comparable in the low-speed indentation case (Fig.

4.12(a)), a higher £, was produced below the sharper asperity B in the high-speed

eq,res
indentation case (Fig. 4.12(b)). This demonstrates a higher probability for excessive
plastic deformation at the interface below less conforming (sharp) asperity contacts at

high indentation speeds. However, Fig. 4.12(c) shows that fewer and smaller plastic

zones occurred with the thicker surface layer. It is also noted that 47 does not occur in

the plastic zone below the sharper asperity B but in the plastic zone of the relatively blunt
asperity A. Thisisanother illustration of the important role of the surface-layer thickness,
indentation speed, and surface topography (roughness) on the development of subsurface

plasticity in multi-layered media subjected to dynamic contact loads.
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Fig. 4.12 Contours of residua equivalent plastic strain in an elastic-plastic multi-layered
medium indented by a rigid, rough surface for different indentation speed and surface-

layer thickness: (a)V 0.001, h1 0.01, (b)V 0.004, h1 0.01, and (c)V =0.004,
h1 = 0.025.
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4.3.2 Cyclic Indentation

Although damping effects were not considered in the indentation loading and
unloading simulation steps, as mentioned in section 4.2.3, after each indentation cycle,
dashpot elements were added to the finite element mesh in order to obtain results for the
residual stresses and strains. Due to the excessive computation time, only four indentation

cycles were simulated, and the development of plasticity was examined in terms of the

residual equivalent plastic strain. Representative results of 3™ and &xqyres in the second

layer are presented below for different values of indentation speed and surface-layer

thickness.

The maximum equivalent plastic strain, g (maximum 5 = 0.01), and the

maximum residual equivalent plastic strain, £ (after full unloading from 5 = 0.01)

versus indentation cycle are shown in Figs. 4.13(a) and 4.13(b), respectively. A
significant effect of both the surface-layer thickness and the indentation speed on the

accumulation of plastic deformation in the second layer can be observed. In the presence
of a thin surface layer (ﬁ1 = 0.01), plastic deformation in the second layer increases

linearly with the indentation cycles. However, the relatively thick surface layer (ﬁ1 =

0.025) inhibits the cyclic accumulation of plasticity after the first indentation cycle, even

in the high-speed indentation case. This implies that subsequent cyclic indentation up to
the same maximum interference (i.e., 5 = 0.01) yields a purely elastic response,

indicating the occurrence of elastic shakedown. H, the results for ﬁl =0.025, V = 0.004,

and 5 = 0.01 shown in Fig. 4.13 suggest that the single-indentation results for ﬁl =
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Fig. 4.13 (a) The maximum equivalent plastic strain at the maximum interference 5 =
0.01 and (b) maximum residual equivalent plastic strain after full unloading produced in
the second layer of an elastic-plastic multi-layered medium indented by a rigid, rough

surface versus loading cycle for indentation speed V = 0.001, 0.002, and 0.004 and
surface-layer thickness ﬁl =0.01 and 0.025.
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0.025, shown in Figs. 4.3(b), 4.4(d), 4.5(d), 4.7(b), 4.9(b), 4.11(b), and 4.12(c), are also

representative of the cyclic-indentation response of this multi-layered medium for 5 <
0.01. Therefore, a significant enhancement of the contact fatigue life of the multi-layered
medium can be achieved in the presence of a strong and sufficiently thick surface layer

that suppresses the development of high stresses at the interface due to the material
property mismatch of the first and second layers. The contours of &, . shown in Fig.

4.14 provide additional information for the spatial development of plasticity in the multi-
layered medium with the thin surface layer due to cyclic indentation. It is noted that the
accumulation of plastic strain is confined within a small region in the second layer close
to the interface, where the maximum equivalent plastic strain always occurs. It is
interesting to note the accumulation of plastic strain only below the sharper asperity B.
Thus, while the region in the second layer below the blunt asperity A attains elastic
shakedown after one indentation cycle, the region in the second layer below the sharper
asperity B continues to accrue plastic strain. This implies that cyclic indentation may
promote microcrack initiation in the compliant and soft second layer adjacent to the
interface, especially below sharper asperities, eventually leading to delamination of the

stiffer and stronger surface layer.

4.4 Conclusions

Dynamic indentation of an elastic-plastic multi-layered medium by arigid, rough
(fractal) surface was investigated using the finite element method. Based on the presented
results for the contact force, contact pressure distribution, and subsurface stresses and
strains obtained in terms of the surface-layer thickness, indentation speed, and

indentation cycle, the following main conclusions can be drawn.
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Fig. 4.14 Contours of residua equivalent plastic strain in an elastic-plastic multi-layered
medium with surface-layer thickness h, = 0.01 indented by a rigid, rough surface for

indentation speed V =0.004 and maximum interference & = 0.01 obtained after the @
first, (b) second, and (c) fourth loading cycle.
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The number of asperity contacts and the contact load, contact pressure, and
subsurface stresses and plastic strains intensify with the increase of the
interference and/or the indentation speed. For the materia properties, surface
topography (fractal parameters), and ranges of interference and indentation speed
examined in this analysis, the increase of the indentation speed leads to premature
yielding, more plastic zones in the soft, second layer, relatively faster increase of
the maximum equivalent plastic strain below the sharper asperities, and higher
tensile stressesin the elastically deformed surface layer.

The critical interference at the inception of yielding in the soft, second layer
increases and the intensities of the subsurface stresses and strains decrease with
the increase of the thickness of the stiffer and stronger surface layer.

Results for the maximum von Mises equivalent stress, first principal stress, and
maximum equivalent plastic strain show that, under the simulated conditions,
crack initiation and excessive plastic deformation are more likely to occur at the
layer interface below the sharper and/or deeper indenting asperities.

A high indentation speed and a relatively thin surface layer promote cyclic
plasticity in the soft, second layer adjacent to the interface with the hard surface
layer, especially below the sharper asperities. This increases the likelihood for
crack initiation at the interface, where excessive plastic deformation and high
tensile stress are encountered in view of the significant mismatch of the elastic

and plastic properties of the two layers.
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CHAPTERS

A Mechanics Approach to Static Friction of
Elastic-Plastic Fractal Surfaces

5.1 Introduction

Friction plays an important role in many fields of science and technology. The
effect of friction can be either detrimental or beneficia to the performance of various
engineering components and scientific instruments. However, despite numerous
anaytica and experimental studies, fundamental understanding of friction remains
largely elusive, principally due to the lack of adequate mechanics models and unbiased
description of the surface topography over awide range of length scales. Friction depends
on adhesion and deformation mechanisms encountered at asperity contacts where actual
surface interaction occurs. These mechanisms are usudly interdependent and their
dominance is controlled by the external load, elastic-plastic material properties, surface
topography, and interfacial shear strength. The large discrepancies among friction
anayses in the literature are mainly due to superficial treatment of associated contact
mechanics and use of scale-dependent parameters to describe the topographies of the
contacting surfaces.

In early analyses, the contacting solid surfaces were assumed to be perfectly
smooth. However, later studies reveadled that this assumption can lead to an
overestimation of the real contact area by several orders of magnitude (Webster and
Sayles, 1986; Yan and Komvopoulos, 1998a) because of multi-scale roughness effects.

Greenwood and Williamson (1966) developed an asperity-based model (GW model) to
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study contact between nominally flat surfaces. In this model, a rough surface is
represented by a large number of spherical asperities with constant radius of curvature
and norma height distribution. Due to the assumption of constant asperity radius,
analyses based on the original GW model predict elastic (plastic) deformation for smaller
(larger) asperity contacts. In later studies, the GW model was extended to study curved
surfaces (Greenwood and Tripp, 1967) and modified to include the asperity radius as a
variable (Hisakado, 1974). The GW model has also been used in studies deaing with
elastic-plastic contact of rough surfaces (Chang, Etsion and Bogy, 1987) and solid
surface adhesion (Roy Chowdhury and Ghosh, 1994).

In view of the self-affinity property of engineering surfaces, fracta geometry
(Mandelbrot, 1967) was used in contemporary contact mechanics analyses to describe the
surface topography. Since the first studies dealing with surface fracta behavior
(Maumdar and Tien, 1990; Mgumdar and Bhushan, 1990), several contact mechanics
and friction analyses have been proposed for fractal surfaces. Conversely to traditional
characterization of rough surfaces by sca e-dependent parameters, fractal characterization
yields scale-independent parameters over a wide range of length scales where fractal
behavior is observed. It has been proposed that contact of two fractal surfaces can be
represented by an equivaent fractal surface in norma contact with a flat plane
(Maumdar and Tien, 1991). This suggestion has been adopted in most recent contact
analyses of rough surfaces. Based on a contact model of elastic-plastic fractal surfaces,
Magumdar and Bhushan (1991) estimated that plastic deformation occurs at al the
asperity contacts with areas less than a critical vaue, which is contradictory to the

prediction of the original GW model. A similar model was proposed by the same authors
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for elastic-plastic bi-fractal surfaces (Bhushan and Mgumdar, 1992). Sahoo and Roy
Chowdhury used a model of arigid plane in contact with a deformable fractal surface to
investigate normal (1996) and diding (2000) contact of adhesive rough surfaces. Yan and
Komvopoulos (1998a) performed a three-dimensiona contact analysis of elastic-plastic
rough surfaces characterized by a modified two-variable Weierstrass-Mandelbrot (W-M)
function. Using a similar elastic-plastic fractal approach, Komvopoulos and Y an (1998)
investigated adhesion in microelectromechanical systems due to van der Waals,
electrostatic, and capillary forces. More recently, Komvopoulos and Ye (2001) analyzed
elastic-plastic contact of layered media with fractal topographies and derived constitutive
contact relationships from finite element results obtained for homogeneous and layered
media.

In al the previous contact mechanics and adhesion studies, contact of two rough
surfaces was modeled by an equivalent rough surface in contact with a rigid plane.
Although this model greatly simplifies the interfaciad geometry, its legitimacy is
chalenged in friction studies where the contact slope plays an important role in asperity
contact deformation. The objective here is to perform a comprehensive fractal anaysis of
static friction based on an elastic-plastic contact mechanics model that includes both
rough surfaces. Numerical results illustrate the dependence of the static coefficient of

friction on normal load, interfacial shear strength, and fractal parameters.

5.2 Characterization of Rough Surfaces by Fractal Geometry

Fractal geometry was introduced by Mandelbrot (1967) to describe the self-
similarity behavior of the eath’'s coaslines. Self-similarity and self-affinity
characteristics have been observed in various fields of science and engineering, including
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topographies of engineering surfaces and mechanical components (Maumdar and Tien,
1990). For three-dimensional isotropic rough surfaces, a two-dimensional profile
obtained in any direction is a statistically valid representation of the surface (Maumdar
and Bhushan, 1990). A two-dimensional fractal surface profile, z(x), can be represented
by a W-M function that satisfies the properties of continuity, non-differentiability, and

self-affinity (Berry and Lewis, 1980), given by

= A(P-D Z Cos(zzng)/n X’ (5.1)

where A and D are the fractal roughness parameter and fractal dimension of the surface
profile (1 < D < 2), respectively, yis a parameter that determines the relative phase
differences between fractal modes, and n,,, is related to y and the sample length, L, by
y'™ =1/L.

For dimensional consistency, Komvopoulos and Yan (1997a) modified Eqg. (5.1)

to the following truncated W-M function:

G\t cos(277"x/ L
ZW:L({] Z% (5.2)

where G is the same as A in Eq. (5.1). Conversely to Eqg. (5.1), yis a dimensionless
parameter in EqQ. (5.2). Based on surface flatness (in the vicinity of x = 0) and frequency
distribution density arguments, an appropriate value of yequa to 1.5 was proposed in Ref.
19. Equation (5.2) shows that the surface profile is approximated by a finite number

(n,, +1) of frequency components, where n__ is related to the smallest characteristic

length, L,, typically, on the order of the equilibrium atomic distance (Komvopoulos and
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Yan, 1997a), by n_, =In(L/L,)/Iny. Accordingly, the lowest and the highest spatial
frequencies of the surface profile are w, = 1/L and @, = y"™ /L =1/L, , respectively.

The power spectrum function, I5(a)) is the Fourier transformation of the

autocorrelation function of z(x), which is given by (Mgumdar and Tien, 1990)

R L2 (G ° Vi S(w—y" /L)

or equivalently,

- L2 (G\° Ve §(w, — 27p" 1 L)

P(w,)= 7&] ZE) o (5.4)

where ¢ and w, are spatial and circular frequencies, respectively (i.e., @, = 27a).

The height and the slope variances of the surface profile are obtained from the

power spectrum function as following:

Den ~ I_2 G Z(D’l) Nyax 1
(Z)Z = Pc (a)c )dwc = _(_] T 2(2-D)n (55)
(o) Trtaro, (85 3,
and
dZ 2 oy ) a ) G 2(D-1) N 1
— | )= |w,"P.(w)dw, =27 — —— 5.6
<[ de > (;)[I ( c( c) (o ( Lj s }/2(143)” ( )

where o, and w,, arethe lowest and the highest circular frequencies, respectively.
The discrete power spectrum functions given by Egs. (5.3) and (5.4) can be
approximated by the continuous spectrum functions (Berry and Lewis, 1980):

_(a) _ G 2(D-1) 1

2Iny @)’ &0

or
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)2(270) G20 1

P.(w,)= (27 2iny wc(&zo)

(5.8)

Equations (5.7) and (5.8) are derived by averaging I5(a)) and F3C (w,) over a frequency
range Aw and Aw,, respectively (Berry and Lewis, 1980). Therefore, the height and the

slope variances are expressed as.

A fs 1 G*Y| 1 1
(2?) = [P()do, = Wy D) 5 g (5.9)
and

dz\?\ 2= ., 1 GX°Y 2(D-1) 2(D-1)

= = o' P(ow)w. =(27) —— w — . 5.10
<[de > (;)[I c c( c) (o ( ) 4|n}/(D—1)[ h @ ] ( )

It is noted that Eq. (5.10) differs from that given by Maumdar and Tien (1990)

and Majumdar and Bhushan (1990) by a factor of (27:)2 because of an error in their

integration involving the use of the spatial frequency instead of the circular frequency.

The correct derivation of Eq. (5.10) isgiven in Appendix A (Eq. (A8)).

5.3 Contact Mechanicsand Friction Analysis

In al previous contact mechanics studies of fractal surfaces, one of the contacting
surfaces is assumed to be flat and, thus, all the asperity contacts are perpendicular to the
global normal direction (i.e., zero-slope contacts). However, contact of real surfaces
produces asperity contacts that, in general, are not perpendicular to the global normal
direction. Because the contact slope plays an important role in friction and affects the rea
contact area, it is necessary to include the contact slope distribution in the friction
analysis of rough surfaces. A theoretical analysis of static friction, in which both rough

surfaces are characterized by fractal geometry, is developed in this section. In general, the
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two surfaces possess different fractal parameters D and G. Without loss of generality, itis
assumed that D1 < D, where subscripts 1 and 2 are used to distinguish the surfaces, and
the system consisting of two surfaces with the same D parameter (D1 = D) istreated as a

special case.

5.3.1 Contact size distribution.

The contact (normal) load and friction force acting between asperities depend
strongly on the contact size. Predicting the size distribution is fundamenta in contact
mechanics. Mandelbrot (1975, 1983) proposed that the cumulative size distribution of the
earth’s islands follows a power-law relationship. This relationship has been used in
several contact anayses of fractal surfaces (Yan and Komvopoulos, 1998a; Maumdar
and Bhushan, 1990 and 1991; Mgumdar and Tien, 1991; Sahoo and Roy Chowdhury,
1996 and 2000; Komvopoulos and Y an, 1997a and 1998; Komvopoulos and Ye, 2001) in

the form:

N(a) = (ij , (5.11)

a
where N(@) is the number of truncated contacts with areas larger than @', and a] isthe

largest truncated contact area. The size distribution of the truncated contactsis given by

p » \(D+2)/2
n(a) = - &) =3,[a—5] - (5.12)
da 2a | a

Bhushan and Majumdar (1992) extended this power-law relationship to bi-fracta
surfaces. A similar approach is used in the present analysis to derive the size distribution
of the projected areas (on the zero z plane of each surface) of the truncated asperity

contacts.
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Fig. 5.1 Schematic showing the separation distance, d, between two rough surfaces, 1
and 2.

For nominal surface separation equal to d (Fig. 5.1), the rea separation between
two surface profiles z (x) and z,(Xx)is
2(X) =d - (%)~ 2,(X). (5.13)
Since the two surfaces are statistically uncorrelated, the structure function of the surface

separation is given by (Maumdar and Tien, 1991)

S(2) = ((2(x+ A) - 2(x))*) = ((2(x+ 2) ~ Z,())°) + ((Z,(x+ 1)~ 2,(x))*) = S(A) + S,(A),
(5.14)

where A is the correlation length, and its approximate continuous power spectrum

satisfies the relationship:

P(w) = P, (@) + P,(®). (5.15)
Figure 5.2 shows schematically the approximate continuous power spectra of two

surface profiles intersecting at a critical frequency @*. For w < «*, P(w) = E(a))

because P,(w) > P,(w), while for @ > «*, P(w) = P,(w) because P,(w) < P,(w).

Therefore, the equivalent topography of the two-surface system can be characterized by a
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Frequency, @

Fig. 5.2 Schematic log-log plot of approximate continuous power spectra of two fractal
surfaces P,(w) and P,(w) with different fractal dimension (D1 < D) intersecting at a

critical frequency @’ , and power spectrum of the equivalent surface P(w).

single set of fractal parameters in each regime, i.e,, D1 and G:1 (w< ) and D> and G2 (w

> ). Since the spatial frequency and the base wavelength of a truncated contact, 2r/,
where rF’) is the effective radius of the projected area of the truncated contact, are related

by w= ]/ (Zr;) , the spatia frequency is a function of the projected area of the truncated

contact (aj, =zr,°) (Fig. 5.3), i.e,

o(a)) = [ﬁ] . (5.16)

p
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Fig. 5.3 Schematic illustration of the truncation of two asperities on surfacesi and j with
contact angle 6.

In view of Egs. (5.12) and (5.16) and Fig. 5.2, the size distribution of the

projected areas of the truncated contacts can be approximated by

n@) e (@ )", w(a) <o (5.173)
and
n@,)e< (@, ) ™", w@)> . (5.17b)

’

If the largest projected area of the truncated contects, a, , is known, then if

pL
(@), )>w ,
o (D,+2)/2
n(a) = 2| , (5.18)
2a, | &,
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whileif o(a),) <o’

D (& (D +2)/2
n(@,)=—+| - , w(@) <o (5.19a)
2a, | a,
and
o (Dy+2)/2 o (D,+2)/2
n(a)) = 1| 2 o L w@)>o, (5.19b)
2a, | &, a,

where &, is the critical projected area of truncated contact corresponding to the critical
frequency o = [z /(4a, )}'.
The total projected area of truncated contacts, A;, is a function of the largest and

the smallest projected areas of truncated contacts, a;, and a’ (&, = al,>/4), and can

be obtained from the piece-wise power-law size distribution (Egs. (5.18) and (5.19)) by

integration (Komvopoulos and Ye, 2001):

a’pl_
A = jn(a;)a;da; .
K

pS

Using the previous integral relationship and the bisection method, a;, was determined in
termsof A}, D (i=1, 2),a/¢, and &, .
For the specia case of D, =D, , the system of the two contacting surfaces can be

characterized by only one fractal dimension, and the island rule proposed by Mandelbrot

(1975, 1983) can be used directly. For this case, Egs. (5.19a) and (5.19b) are identical.

5.3.2 Contact slopedistribution.

The contact angle, 6 (0 < € <a/2), of a truncated plane is the angle between the
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globa z direction and the norma to the contact plane (Fig. 5.3). For static friction
analysis, if the contact opposes the onset of relative movement, the contact slope is
defined as s = tan@ (positive slope), while if the contacting asperities tend to separate, s=
—tan@ (negative sope). For three-dimensional isotropic surfaces, the contact slope
distribution can be obtained from the secant slope distribution of the truncation line-
segments (Fig. 5.4(a)) of a two-dimensional surface profile with associated fracta
parameters. The probability density function, p(s), of the secant slope of line-segments
with the same projected length, | (I << L), can be determined from numerical simulation.
Figure 5.4(b) shows a comparison between the probability density function obtained from
a simulation and three normal distributions with standard deviations equa to the root-
mean-square (rms) of the secant slope of the smulation data, ogm, and the square root of
the values estimated from Egs. (5.6) and (5.10). In the calculation of the slope variance
using Egs. (5.6) and (5.10), the highest frequency, @, , was replaced by 1/(21). The close
agreement between the distributions shown in Fig. 5.4(b) indicates that the secant slope
of line-segments with the same projected length follows anormal distribution and that the
slope variance can be estimated from Egs. (5.6) or (5.10) by replacing @, with 1/(2!).
This is due to the fact that the tangent slope is a good approximation of the secant dope

for low frequency components (w<1/(21)) and the contribution of high frequency

components (@ >1/(21)) to the secant slope is negligible. Obviously, the expectation of

the secant slope is close to zero because the rough surface is aflat plane at the macroscale.

Thus, the distribution of the secant slope for agiven projected length can be expressed as:
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Fig. 5.4 (@ Schematic showing a line-segment of projected length |, and (b) probability
density function of the secant slope of line-segments with | = 10 nm (obtained from a

two-dimensional fractal surface profilewith L =4379nm, L, =2nm,D =144, and G =
9.46 x 10 nm) and normal distributions with standard deviations equal to the rms of the

secant slope of the simulation data, osm, and the square root of the values estimated from
Egs. (5.6) and (5.10).
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pi(s) = ﬁe‘mﬁ (i=1,2), (5.20)

where o, is obtained from Eq. (5.10), and for | = 2r_, it is given by

O_ZN”_zGiZ(Dfl) 1 2(Di71>_ 1 2(D;-1) o G20 T ‘Di*l)_ 1 2(D;-1)
" Iny (D -1| 2 L Iny (D, -1)|| 164, L

(=1,2). (5.21)

Assuming that the slope distribution, p,,(s), of the truncated contacts with base
wavelength equal to 2rF’) is proportional to the secant slope distribution of each surface
profile, p(s) (i =1, 2), obtained for | = 2r,

P12 (8) o< P,(5) P, (), (5.22)

it can be shown that

1 —(s?120,,°)
P (s) =———e /%), (5.23)
u \N27mo,,
where
1 1 1
s=—t—>. (5.24)

5.3.3 Mechanics and friction models of a single asperity contact.

Consider a truncated contact with projected area a; (Fig. 5.3). The truncated
contect area, &, is related to a;, by a’=a;, /cos@ . The roughness amplitude, J, (i = 1,
2), is a function of the base wavelength 2r; and, hence, a;, (Majumdar and Bhushan,

1991):
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v\ (2-Dy)/2
& =G @)™ =Gi(D‘”[_4ap) | (5.25)
T

In view of Fig. 5.3, the local interference is given by &, ~ &, cosé . For spherical
asperities, the effective radius of the truncated contact is r’ = (a’p/ﬂcose)l’ 2, and the

radius of curvature of the contacting asperity on surfacei, R, can be written as:

R*=(R-&) +* = (R - geos6)f + 2. (5.26)

If 6, << R, Egs. (5.25) and (5.26) yield

(a, )Di /2

R_ p

260 P26 (P D eog?g

(5.27)

According to the Hertz theory, the local normal force, F., of an elastic spherical

contact is given by

E (Y% ap( &, Y 1 1-v2 1-v2 1 1 1
Fl = =1 = d —= Lty 2 =4 (5.28)
3R\ 7 3R | 21cos0

"E' E E, R R R
where a is the real contact area (a=a’/2), and E” and R are the equivalent elastic
modulus and radius of curvature, which are functions of the elastic modulus, E;, Poisson
ratio, v, and radius of curvature, R;, of the asperities (i = 1, 2).

The asperity contacts are assumed to deform either elastically or fully plastically.

To maintain a continuous mean contact pressure, p,,, the criterion for the inception of

fully plastic deformation is expressed as

= 200s0)Y'2 | 260 £ (032G O 5(3-Dy) £(DY25 ()
Pm = 6: = ( 3 ) (a, )(Dll)/Zl + (a, )(Dzl)/22 E'= Hs, (5.29)
p p
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where H, =min(H,,H,) denotes the hardness of the softer surface. Equation (5.29) is
applicable when min(H,,H,) <<max(H,,H,) , i.e, the softer surface deforms

plasticaly, and in the special case of similar surfaces, i.e., H, = H,. This criterion leads

to the following distinction of elastic and fully plastic contacts:

P, = %‘ <H, (elastic contact) (5.308)
and
P, =H. (fully plastic contact). (5.30b)

For fixed @, Eq. (5.29) indicates that a smaller & (or &) yields a higher mean
contact pressure. This implies that asperity contacts with a smaller &, (or &) are more

likely to deform plastically. The local normal force for afully plastic contact is given by
F,=Ha, (5.31)
and the corresponding real contact area can be approximated by the truncated contact
area because for fully plastic contact, a=a’ (Yan and Komvopoulos, 19983).

It is noted that in the present model the direction of the local normal (contact)
load may not be coincident with the global normal direction due to a non-zero contact
slope. However, for perfectly normal contact, the total lateral force is close to zero
because the slope effect is insignificant due to the randomness of the slope distribution.

By definition, the static friction force is equal to the lateral force at the inception
of sliding. Since the normal load and displacement at each asperity contact are affected
by the lateral force, some assumptions are necessary in order to obtain closed-form

solutions for the normal and friction forces between two contacting asperities at the
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Fig. 5.5 Schematics of asperity contacts and associated normal load versus interference
response: (a) both asperities deform elastically and the contact opposes the onset of
relative movement, (b) both asperities deform elastically and tend to separate at the
inception of sliding, (c) at least one asperity deforms plastically and the contact opposes
the onset of relative movement, and (d) at least one asperity deforms plastically and the
asperities tend to separate at the inception of sliding.
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inception of dliding. In the present analysis, the asperity contacts are divided into four
categories, as shown schematically in Fig. 5.5: (a) both asperities deform elastically and
the contact opposes the onset of relative movement, (b) both asperities deform elastically
and tend to separate at the inception of dliding, (c) at least one asperity deforms
plastically and the contact opposes the onset of relative movement, and (d) at least one

asperity deforms plastically and the asperities tend to separate at the inception of sliding.
Depending on the type of contact, the normal force F. may increase (cases (&) and (c)) or

decrease (cases (b) and (d)) due to lateral deformation. If the normal load and the friction
force vary independently, the normal force versus interference response for pure normal
contact loading and unloading can be used to characterize the change in the normal force.
For cases (a—(c), a smal change in the interference produces a small change in the
normal force, while for case (d) even a small change in the interference produces a
significant decrease in the norma force, as shown in the corresponding force-
displacement schematics in Fig. 5.5. It is possible for the normal force to decrease to zero,
in which case the asperities separate. Therefore, a reasonable simplification for the
estimation of the normal force is to assume that in cases (a)-(c) the normal force can be
approximated by that obtained for pure normal contact at the same interference, whereas
in case (d) the normal force is assumed to be zero due to the separation of the asperities.
The friction force at a contact depends on the interfacial shear strength, 7, and
real contact area, a. Experiments have shown that the static friction force in dry contacts
is proportiona to the rea contact area and independent of the normal load (Johnson,
1997). This suggests that the interfacial shear strength is constant and indicative of the

affinity of the contacting surfaces for each other. Constant shear strength is also a
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Direction of relative movement
at the inception of diding

Fig. 5.6 Schematic showing the local forces acting on a single spherical asperity. The
local normal force F. passes through the sphere center, while the local friction force F

is tangent to the circle on y plane, which is parallel to the direction of the relative
movement at the inception of sliding.

reasonable assumption for boundary-lubricated surfaces (Komvopoulos, 1991), in the

absence of significant contact pressure and/or flash temperature changes. Thus, the loca
friction force at a contact, F| , can be expressed as:
F/ =ar. (5.32)
Figure 5.6 shows the normal and friction forces acting between two contacting
spherical asperities with a random spatial engagement. (Only one asperity is shown for
clarity.) The normal force passes through the centers of the spherical asperities, while the
friction force is tangent to the circle on y plane, which is paralel to the direction of
relative movement at the inception of sliding. Both forces depend on angles & (colatitude
angle) and ¢ (azimuthal angle), where ¢ varies in the range of (—4/2, 3712]. For cases (a)
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and (c), #/2<@<3r/2 (positive contact slope), while for cases (b) and (d),
-nl2<@p<nl2 (negative contact slope). Transformation of the local norma and
friction forces to the globa coordinate system yields the following relationships for the

globa normal and friction forces, F’and F?, respectively, at asingle asperity contact:

cos’ @
1-sin*@sin® ¢

1/2
F9=F'cosd+F, {1— } sgn(cosy) (5.339)

and

Fo=—F'sngcosg+F! : Cosd (5.33b)

1-sin’@sin’pl’
Equations (5.33a) and (5.33b) are applicable to asperity contact cases (a)-(c),
while for asperity contact case (d) both forces are equal to zero because the asperities are

assumed to separate at the inception of dliding.

5.3.4 Total normal and friction for ces.

For lightly loaded interfaces, such as those of hard disk drives and
microelectromechanical systems, the real contact areais a small fraction of the apparent
contact area (e.g., less than 1-2 percent), and interaction between neighboring contacts
can be neglected as insignificantly small. Therefore, based on the size and slope
distributions of the asperity contacts and the contact mechanics relationships and friction

model presented in the previous sections, the total normal and friction forcesin the globa
coordinate system, F.* and F;*, respectively, can be determined from the following

integra relationships:

Ay [ oo 37/2
Fot = j { j [% j andq)]Zplz(s)ds}n(a'p)da; (5.343)

0 -rl2

118



and

. A [ oo 1 37/2 , ,
Fot = j { ! [E j/ 2Ff9d¢]2 plz(s)ds}n(ap)dap. (5.34b)

Both forces are averaged in all possible azimutha directions (angle ¢), assuming a
uniform distribution of ¢. Thisimplies that the total forces are obtained by averaging the
local forcesin al possible sliding directions.

Numerical integration of Egs. (5.34a) and (5.34b) yields the tota normal and

friction forces, which are used to obtain the static coefficient of friction, f, defined as

tot
T tot "
I:I"I

f (5.35)

5.4 Results and Discussion

A mechanics approach for analyzing static friction of fracta surfaces was
presented in the previous sections. Because it is not possible to derive closed-form
solutions for the total norma and friction forces (Egs. (5.34a) and (5.34(b)), results for
the static coefficient of friction in terms of normal load, interfacia shear strength, and
fractal parameters were obtained by numerical integration. The results presented below
are for three-dimensional isotropic copper surfaces with E = 129.8 GPa, v = 0.343 (Kaye,
1986), and H = 900 M Pa (= 3S,, where S, isthe yield strength). For isotropic surfaces, the
fractal dimension of the three-dimensional topography, Ds, is related to that of any two-

dimensional surface profile, D, through D, =D +1 (Mgumdar and Bhushan, 1990).

Hence, for consistency, in the numerical results presented below the fracta parameter

values were converted to their corresponding Ds values. Unless otherwise stated, the

results were obtained for 7k = 0.8, where k isthe yield strength in shear (k = Sy/\/I_B ).
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5.4.1 Dependence of Static Coefficient of Friction on Normal L oad.

Before proceeding with the presentation of the results showing the effect of the
normal load on the static coefficient of friction, it is instructive to consider the effects of
surface roughness and norma load on the deformation of the asperity contacts. A
characteristic of fractal surfaces is that small and large asperity contacts undergo plastic
and elastic deformation, respectively (asperity radius effect). In the case of lightly loaded
interfaces, contact occurs at the tips of the asperities, where the local curvature is
controlled by the smaller wavelengths of the surface profile. Consequently, the majority
of the asperity contacts deform plastically. When plastic deformation dominates, F, / F!
= 7Hs (Egs. (5.31) and (5.32)), which is constant for given material properties and
interfacial condition. However, because the variance of the contact slope decreases with
the increase of the projected area of truncated contact, a’p (Eg. (5.21)) and both the
largest and the average projected areas of truncated contacts increase with normal load,
the surface roughness effect becomes less significant with the increase of the normal load.
Thus, the static coefficient of friction decreases as the normal load increases in the low-
load range, where plastic deformation is the dominant mode. At high normal loads,
deformation is controlled by the larger wavelengths of the surface profile, and the
dominant larger asperity contacts undergo elastic deformation. In this case, the datic

coefficient of friction increases with the normal load. This can be attributed to the rapid

increase of F{ /F) =7/p, (Egs. (5.29) and (5.32)) due to the inverse dependence of p,,

on a’p (Eg. (5.29)), while the surface roughness effect becomes less significant, as
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Static Coefficient of Friction

Figure 5.7 shows the dependence of the static coefficient of friction on the normal

0.3

0.2

0.1

0.8
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D,=23D,=25 €)
A
& Dy=Dy,=23 (b)
O Dy=Dg=
| |
109 107 10°

Normal Load (N)

Fig. 5.7 Static coefficient of friction versus normal load for (a) Dg = 2.3 and D = 2.5,
and (b) Dg =Dy =2.3and 25 (L =10 um, L, =2 nm, G; = 2.109 x 10° nm, G, = 1.055
x 10 nm, E = 129.8 GPa, S, = 300 MPa, v=0.343, H = 900 MPa, and 77k = 0.8.)

explained earlier for the low-load range.

load for different values of fractal dimension Ds. Figure 5.7(a) shows that the increase of
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the normal load produces a gradual decrease of the static coefficient of friction up to a
critical load, followed by a gradual increase at higher loads. This trend can be explained
by considering the previous discussion about the normal load dependence of the
dominant deformation mode at the asperity contacts. Hereafter, the critical load
corresponding to the minimum static coefficient of friction will be referred to as the
transition load. In view of the dependence of the coefficient of friction on the dominant
deformation mode, the friction curves shown in Fig. 5.7(b) indicate that, for the simulated
normal load range, plastic and elastic deformation prevailed at the asperity contacts for
Da = De = 2.3 and 2.5, respectively. These results illustrate that, depending on the
topographies of the contacting surfaces, a transition load may not exist within the normal

load range examined.

5.4.2 Dependence of Static Coefficient of Friction on I nterfacial Shear Strength.
Figure 5.8 shows the effect of the interfacial shear strength on the static
coefficient of friction. The cases of 7k = 0.2 and 0.8 are representative of boundary-
lubricated and unlubricated interfaces. As expected, higher interfacial shear strength
resulted in higher static coefficient of friction. For the ssmulated parameters, when plastic
deformation at the asperity contacts dominates (low-load range), the static coefficient of
friction decreases gradually with the increase of the normal load at a rate independent of
the 7k value. However, when elastic deformation dominates (high-load range), the rate at
which the static coefficient of friction increases with the normal load is affected by the

interfacia shear strength.
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Fig. 5.8 Static coefficient of friction versus normal load for 7k = 0.2 and 0.8 (L = 10 um,
L, = 2nm, Dg = 2.3, Dg = 2.5, G; = 2.109 x 10® nm, G, = 1.055 x 10* nm, E = 129.8

GPa, S, = 300 MPa, v=0.343, and H = 900 MPa.)

5.4.3 Dependence of Static Coefficient of Friction on Fractal Dimension.

As discussed earlier, the surface topography plays an important role in friction
because it controls the dominant deformation mode. In this section, the effect of the
fractal dimension on the static coefficient of friction is examined in light of results
obtained for Ds = 2.3, 2.4, and 2.5 and either fixed fractal roughness G (Fig. 5.9) or fixed
height standard deviation (i.e., rms surface roughness) (Fig. 5.10). The results shown in
Fig. 5.9 indicate a decrease of the transition load with the increase of Ds, accompanied by
a significant decrease of the load range where low coefficient of friction is obtained. This

can be explained by considering the effect of Ds on the surface roughness. For fixed G,
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Fig. 5.9 Static coefficient of friction versus norma load for surfaces with fractal
dimension D1 and D, height standard deviation rms; and rms;, and fracta roughness G;

=G,=2.109x 10°nm (L =10 um, L, =2 nm, E = 129.8 GPa, S, = 300 MPa, v = 0.343,
H =900 MPa, and 7k =0.8.)

because, in generdl, Zr; > L, > G, Eq. (5.25) shows that the roughness amplitude

decreases with the increase of Ds, implying an increase in the effective radius of
curvature of the asperities with a given truncated contact area (Eq. (5.26)). Since these
asperity contacts are more likely to deform elastically and, thus, produce a lower mean
contact pressure than plastic contacts, higher static coefficient of friction is produced for
fixed interfacial shear strength, despite the relatively lower height standard deviation
(rms; = rms; = 0.28 nm) of the surfaces with higher Ds.

Figure 5.10 shows the effect of the fractal dimension on the variation of the static

124



O
©

S rms; = rms,=1.9nm
s & Dy =Dg,=23(G,=G,= 3519 x 10% nm)
L:L A Dy =Dg,=24(G,;=G,= 2109 x 10° nm)
S 06 - O Dy =Dg,=25(G,=G,=9.409 x 10 nm)
5
O
i
“é‘) 03 |
2
o]
675 O | |
10° 107 10 103

Normal Load (N)

Fig. 5.10 Static coefficient of friction versus normal load for surfaces with fractal
dimension Dg and D, fractal roughness G; and G, and height standard deviation rms;

=rms;=19nm (L =10 um, L, =2 nm, E=129.8 GPa, S, = 300 MPa, v=0.343, H =
900 MPa, and 7k = 0.8.)

coefficient of friction with normal load for fixed height standard deviation. The fractal
roughness was adjusted according to the value of the fractal dimension in order to obtain
the same height standard deviation in al simulation cases. It can be seen that the
transition load increases and the static coefficient of friction in the high-load range
decreases with the increase of Ds. Hence, low coefficient of friction is obtained over a
larger load range. This effect of the fractal dimension on the static coefficient of friction
IS opposite to that shown in Fig. 5.9, and can be attributed to the dominance of the high-
frequency components (small wavelengths) of the fractal surfaces characterized by a high

Ds value, which increases the number density of small (plastic) asperity contacts under a
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given normal load (Eq. (5.12)). Hence, the decrease of the static coefficient of friction in
the high-load range when Ds increases is due to the increased contribution of the
plastically deformed smaller asperity contacts.

The numerical results presented in this section illustrate the important role of the
normal load, interfacial condition, and surface topography on the static coefficient of
friction and the dominant deformation mode of the asperity contacts. The anaysis is
based on a contact mechanics theory of isotropic rough surfaces developed for (a) piece-
wise power-law contact size distribution, (b) norma contact slope distribution, (c)
negligible asperity interaction, (d) constant interfacial shear strength, and (e) asperity
normal load and contact area (at the inception of sliding) approximately equal to those
obtained from pure normal contact at the same interference (when both asperities deform
elasticaly or the contact opposes the onset of relative movement) or negligible (when at
least one of the asperities deforms plastically and separation tends to occur at the
inception of sliding). The present numerical model is suitable for lightly loaded contact
interfaces, such as those of magnetic storage disk drives and miniaturized
electromechanical devices. The analysis can be extended to include pressure-dependent
interfacial shear strength and modified to yield estimates of the lateral displacement at the
inception of microscopic sliding by including in the contact mechanics model the effect
of asperity bulk deformation on the local slip distance. The new gpproach for estimating
the slope distribution and the modified contact size distribution rule developed in this
chapter can be used in contact analyses dealing with various interfacial phenomena, such

as adhesion and electrical contact resistance between rough surfaces, where accurate
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description of the rea contact area in terms of scale-independent topography parameters

and mechanical properties isimperative.

5.5 Conclusions

A contact mechanics theory of static friction based on a fractal description of the
surface topography and a new approach for estimating the contact slope distribution was
presented for isotropic rough surfaces. A modified contact size distribution, an elastic-
fully plastic agperity contact model, and a simple static friction mechanism were
implemented in the analysis. Numerical results illustrated the dependence of the static
coefficient of friction on normal load, interfacial shear strength, and fractal parameters. In
view of these results, the following conclusions can be drawn.

@ The static coefficient of friction decreases gradually to a minimum and then
increases with the increase of the normal load. The load corresponding to the
minimum static coefficient of friction (transition load) signifies the transition
from plastic to elastic dominant deformation at the asperity contacts. The
magnitude of the transition load depends strongly on the surface topography
through the fractal parameters.

2 The interfacial shear strength exhibits a strong effect on the static coefficient of
friction. Significantly lower friction is obtained with contact interfaces exhibiting
low shear strength. In the low-load range (i.e., below the transition load), the
variation of the static coefficient of friction with the normal load is independent
of interfacia shear strength.

3 For fixed fractal roughness, higher fractal dimension produces higher static
coefficient of friction at relatively high normal loads. However, an opposite trend
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(4)

occurs for fixed height standard deviation. These effects of the surface
topography on the static friction behavior are related to the dominance of elastic
and plastic deformation at the asperity contacts.

The effects of the norma load and fractal parameters on the friction behavior
indicate that the coefficient of friction is not an intrinsic material parameter.
Instead, it represents a global indicator of the relative contributions of elastic and

plastic deformation at the asperity contacts.
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CHAPTER 6

A Molecular Dynamics Analysis of Surface I nterference and
Tip Shape and Size Effects on Atomic-Scale Friction

6.1 Introduction

Recent advances in nanotechnology have increased the demand for fundamental
understanding of material behaviors at the nanoscale. Despite numerous theoretical and
anaytical studies on the mechanical response of solid surfaces subjected to various
contact loads (Johnson, K. L., 1985), the majority of the earlier studies have been based
on continuum mechanics approaches that cannot be applied at the atomic scale.
Molecular dynamics (MD) is a powerful computational method for studying nanoscae
surface phenomena and instantaneous material properties. Landman et a. (1990)
performed MD simulations and atomic force microscopy (AFM) experiments with a
nickel tip indenting a gold substrate and reported a*jump-to-contact” phenomenon as the
tip approached the substrate surface and elongation of a connective neck during the
withdrawal of the tip. MD indentation simulations by Kalman et al. (1993) revealed a
transformation from diamond to amorphous structure in the near-surface region of
crystalline silicon. MD simulations of a copper substrate indented by a rigid tip
performed by Leng et a. (2000) showed that the elastic stress field exhibited similarities
with that predicted by the Hertz theory. Komvopoulos and Yan (1997b) investigated the
dynamic response of meta-like substrates due to single and repeated indentation by
meta-like and diamond-like tips and observed that the deformation behavior of the

metal-like substrate indented by the diamond-like tip resembled cyclic softening. Such
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material behaviors are not observed in macroscopic studies and cannot be analyzed by
continuum mechanics theories.

In addition to the mechanical response of materias at the atomic level, significant
efforts have been devoted to study friction and wear behaviors at the atomic and
molecular levels. Belak and Stowers (1992) developed MD models for indentation and
scratching of a single-crystal copper substrate by a conica diamond tip and estimated the
coefficient of friction to be approximately equal to one. MD simulations by Harrison et
al. (1992) demonstrated directional anisotropy in the friction behavior of sliding diamond
surfaces. In another MD study by Harrison et al. (1993), a weaker friction dependence on
the dliding direction was observed when methyl groups were used to replace some of the
surface hydrogen atoms (Harrison et a., 1993). Zhang and Tanaka (1997) performed
two-dimensionad MD simulations of a cylindrical tip with diamond-like material
properties and crystal structure different from that of diamond interacting with a copper
substrate and reported the occurrence of no-wear, adhesion, plowing, and cutting
deformation regimes. Using a relatively large substrate in order to avoid boundary
effects, the same authors studied two-body and three-body sliding contact between arigid
diamond tip and silicon monocrystals and proposed a new friction law (1998).

MD simulations by Shimizu et a. (1998) reveaed atomic-scale stick-dlip
phenomena similar to those encountered in AFM measurements. Matthey and Hansen
(1998) reported a Coulomb-like friction behavior for granular materials. Tamura et al.
(1999) investigated the behavior of hydrocarbon thin films confined between two solid
surfaces and discovered that slip occurred mainly in the bulk of the films due to the high

affinity of the films for the solid surfaces. Komanduri et al. (2000) studied indentation of
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an Al(001) substrate by an aluminum-like rigid tip and subsequent scratching in the [100]
direction and reported a nearly constant friction coefficient for 5% variation in the D
parameter of the Morse potential. MD simulations by Zhang et a. (2001) demonstrated
that sliding commenced as a result of the simultaneous slip of all contacting atoms when
the (friction) shear stress reached the shear strength of the solid.

The previous studies provide important information about atomic-scae
deformation behavior of different materials due to indentation and/or sliding contact
loadings. However, because of the limited number of atoms (i.e., less than afew thousand)
(Landman et d., 1990; Leng et a., 2000; Komvopoulos and Yan, 1997b; Harrison et al.,
1992; Harrison et d., 1993; Zhang and Tanaka 1997; Shimizu et al., 1998; Matthey and
Hansen, 1998; Tamura et d., 1999; Komanduri et a., 2000; Zhang et al., 2001) and/or
high indentation and sliding speeds (e.g., > 50 m/s) (Kallman et al., 1993; Belak and
Stowers, 1992; Harrison et al., 1992; Harrison et a., 1993; Zhang and Tanaka 1997;
Zhang and Tanaka, 1998; Komanduri et al., 2000) used in earlier MD studies to avoid
prohibitively long computational times, the reported results may have been biased by
boundary and speed effects. Therefore, one of the objectives of this chapter is to evaluate
these effects in the context of MD simulation results obtained for different substrate
dimensions and indentation/sliding speed. Moreover, the review of the literature revealed
significant variations in atomic-scale friction behavior. In some previous studies, friction
anisotropies were associated with the dependence of the normal and friction forces on the
dliding direction and lattice structure. However, comprehensive MD studies elucidating
several important effects, such as those related to the tip shape and size and penetration

depth, on the friction behavior have not been reported yet. Consequently, another
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objective is to develop a three-dimensional MD model of a diamond-like rigid tip
(prismatic or pyramidal) indenting and sliding over a crystalline copper-like substrate.
Simulation results are presented in order to illustrate the dependence of the normal and
friction forces on the tip-substrate interference and the variation of the friction coefficient

with the size, shape, and orientation of the sliding diamond tip.

6.2 Molecular Dynamics Model

Although useful insight into atomic-scale friction of diamond/copper systems has
been obtained from previous two-dimensional MD studies (e.g., Zhang and Tanaka,
1997), three-dimensional MD models yield more realistic deformation behaviors. In this
study, the three-dimensional MD code devel oped by Komvopoulos and Yan (1997b) was
modified according to the objectives of the present analysis. Figure 6.1 shows the initia
atomic configuration used in some simulations. The figure shows a face-centered-cubic
(FCC) copper-like substrate with (001) free surface and a prismatic diamond tip. The
substrate has a size of 24asx 18asx 10as, where as is the substrate |attice dimension, and
consists of 19,037 atoms. To enhance the distinction of each atomic layer, substrate
atoms are shown sequentially in gray and black color. The movement of the atoms on the
vertica and bottom boundaries of the substrate was fully constraint, as shown in Fig
6.2(a), while the movement of all other atoms obeyed Newton's law. The initial positions
of the substrate atoms were set according to the assumed FCC structure, and the initial
velocities of the dynamic atoms were assigned randomly from a finite interval

(Komvopoulos and Yan, 1997b). Numerica integration of the equations of motion was
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Fig. 6.1 (a) Three-dimensional representation and (b) top view of initial atomic
configuration of a 24asx 18as x 10as FCC copper-like substrate and a 3a; x 3a; square-
base prismatic diamond tip used in some simulations. Sliding was smulated along the
[100] direction with the tip edge in the front.

performed with a fifth-order predictor-corrector a gorithm using a constant time step of 2

fs. The forces between the substrate atoms were derived from the Morse potentidl,

V(r) = De?* ") _2Dg ("1 (6.1)
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Fig. 6.2 Schematics showing (@) the boundary conditions (A) used in most simulations

and (b) the periodic boundary conditions (B) used to anayze the effects of boundary
conditions on the simulation results.

where r is the distance between two atoms and D, ro, and o are material parameters

obtained from Torrens (1972). The forces between the tip and the substrate atoms were

determined from the L ennard-Jones potential,

S GRGH
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Lorentz-Berthelot mixing rules were used to estimate the values of eand g, i.e.,

1/2

e=(ge,)* and o=(0,+0,)/2, (6.3)

whereg, and o, are the Lennard-Jones parameters for the diamond tip obtained from

Cheng and Klein (1991), and £,and o, are similar parameters for the copper substrate

obtained by fitting the Lennard-Jones function to a Morse potentia, assuming identica
potential minima and equal zero-potential distances (Komvopoulos and Yan, 1997b). In
view of the significantly higher hardness of diamond than copper, the tip atoms were
fully constraint for ssmplicity. Thus, rigid tips of different shapes and sizes with diamond
atomic configurations were used in the MD simulations.

The nomina tip-substrate interference is defined as the penetration depth of the
tip measured from the origina substrate surface. In the absence of a surface definition at
the atomic scale, the tip and substrate surfaces were represented by lines tangent to
circles centered at surface atoms with radii equal to the theoretical atomic radii, as
proposed by Zhang and Tanaka (1997). Figure 6.3 shows the surface separation and tip-
substrate interference, o, as measured in the present simulations. The side of the square
base of the tip is denoted by w. The convention is that negative separation denotes
positive interference and vice versa.

The MD simulations were performed in three sequential stages. First, the
substrate atoms were alowed to reach equilibrium. This was accomplished in 20,000
steps by preventing the substrate atoms from interacting with any external atoms and
controlling the substrate temperature, To (= 300 K in all simulations) by direct scaling of

the atom velocities (Yan and Komvopoulos, 1998b) and by maintaining the tota kinetic
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Fig. 6.3 Schematics illustrating the measurement of surface separation and tip-substrate
interference for a prismatic diamond tip with square-base width w.

energy of the substrate, Ex, equal to g NKT,, where N is the number of dynamic substrate

atoms, and k is the Boltzmann's constant. After these equilibrium steps, the rigid

diamond tip was displaced toward the substrate at a constant speed up to certain
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Fig. 6.4 Normal force versus dimensionless tip-substrate interference for a FCC copper-
like substrate indented by a 3a; x 3a; square-base prismatic diamond tip: (a) 24asx 18as %
10as substrate with boundary conditions A, (b) 30as x 18as x 10as substrate with
boundary conditions B, and (c) 24asx 18as x 20as substrate with boundary conditions A.
Theinitial atomic configuration for simulation case (a) isshown in Fig. 6.1.
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interference in order to simulate indentation. Finaly, sliding was simulated by displacing
the tip along the [100] direction of the substrate at constant speed and fixed tip-substrate
interference. A therma bath consisting of three atomic layers near the fixed bottom
surface (Fig. 6.2) was used to dissipate the therma energy generated during indentation
and dliding (Yan and Komvopoulos, 1998b). An approach similar to that used in the
equilibrium steps was used to control the temperature in the thermal bath.

To examine the effects of the boundary conditions on the MD results, a 30as x

18as x 10as substrate with periodic boundary conditions (B) (Fig. 6.2(b)) and a thicker
substrate (24as x 18as x 20ag) with boundary conditions (A) (Fig. 6.2(a)) were used to
simulate both indentation and sliding with the prismatic tip shown in Fig. 6.1. The results
were compared to those obtained with the 24as x 18as x 10as substrate (Fig. 6.1) for
boundary conditions A and indentation/sliding speed equa to 5 m/s. Figure 6.4 shows a
close similarity between the normal (indentation) force responses predicted by different

MD models. Table 6.1 illustrates that the average normal and friction forces obtained

Table 6.1. Average normal and friction forces versus substrate size and boundary
conditions for a 3a: x 3a: square-base prismatic diamond tip and
dimensionless tip-substrate interference dlas = 1.44.

Substrate dimensions

Average 24a5x 18as x 10ag 30as x 18as x 10ag 24a5x 18asx 20as
force Boundary ConditionsA  Boundary ConditionsB  Boundary Conditions A
(nN) (Fig. 6.2(a)) (Fig. 6.2(b)) (Fig. 6.2(a))

Normal 34.2 34.0 33.2

Friction 184 179 18.2
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with different substrates and boundary conditions are in good agreement. (The calculation
of the average norma and friction forces will be explained later.) In view of the good
agreement between the results of the previous MD models and in order to enhance the
computational efficiency, al ssimulation results presented in the following section were
obtained with the 24as x 18asx 10as substrate (Fig. 6.1) subjected to boundary conditions
A (Fig. 6.2(a)).

The effect of the sliding speed, V, on the simulaion results was aso evaluated
before proceeding with the main computational study. Figure 6.5 shows the dependence

of the average normal and friction forces on the sliding speed. The normal force does not
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Sliding speed, V (m/s)

Fig. 6.5 Average norma and friction forces versus diding speed for a square-base
prismatic diamond tip sliding on a FCC copper-like substrate and fixed tip-substrate
interference (das = 1.44). The initid atomic configuration and dliding direction are
showninFig. 6.1.
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exhibit a speed dependence (for the ssmulated speed range), while the friction force
beginsto increase when V > 10 m/s. Since alow dliding speed requires significantly more
time steps (for convergence, the time step in the present analysis was set equa to 2 fs) to
simulate a certain sliding distance and, hence, longer computation time, the simulations
discussed in the following section were performed for V = 5 m/s. The MD simulations
were run on Linux servers with Pentium IV 3.06 GHz processors and 512 MB memory.
Depending on the dimensions of the tip and the substrate and the indentation/dliding
speed (e.g., see Fig. 6.5), the computational time varied in the range of 2-100 hours of
CPU time. For example, in the simulations performed with the model shown in Fig. 6.1
and boundary conditions A (Fig. 6.2(a)), the CPU time for indentation/sliding speed

equal to 200 and 1 m/s was approximately equal to 2 and 100 hours, respectively.

6.3 Resultsand Discussion

6.3.1 Square-base prismatic diamond tip

Indentation and sliding results are presented in this section for a FCC copper-like
substrate and a square-base prismatic diamond tip, both possessing {100} contact
surfaces. Sliding was simulated along the [100] direction of the substrate with the tip
edge in the front, as shown in Fig. 6.1(b). In the following figures, either the tip or the
substrate lattice dimension, a; and as, respectively, were used to normalize the length
parameters. Figure 6.4(a) shows the variation of the normal force with the dimensionless
tip-substrate interference, dlas, due to indentation by a prismatic diamond tip with a
bottom surface area equal to 3a;x 3a;. The initia atomic configuration for this simulation
is shown in Fig. 6.1. The high-frequency fluctuations in the force response are due to the

thermal vibration of the substrate atoms. As the tip approaches the substrate surface, a
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negative (attractive) force is produced, which reaches a maximum at &/as = —0.55. This
peak attractive force illustrates a dominant long-range effect of the carbon-copper atomic
forces. When the tip moves closer to the substrate surface, the normal force becomes
positive (repulsive), illustrating a dominant short-range effect of the interatomic forces.
Further advancement of the tip leads to a continuous increase of the repulsive normal
force up to acritical interference (point C) at which, the normal force decreases rapidly
(point D), indicating the occurrence of irreversible deformation characterized by
localized atomic rearrangement and loss of crystallinity. Thereafter, the microstructure
modified in the vicinity of the tip deforms only elastically, and the normal force increases
again up to a new peak value (point E). At this juncture, additional irreversible
deformation occurs, as evidenced from the abrupt decrease of the normal force (point F).
This behavior is similar to that reported by Komvopoulos and Yan (1997b) for a metal-
like substrate indented by arigid tip.

Figure 6.6 shows deformed atomic configurations for &#as = 0.4, 0.65, 0.9, and
1.15 (denoted by 1, 2, 3, and 4, respectively, in Fig. 6.4(a)). To facilitate observation of
the deformation in the atomic layers adjacent to the surface, only atoms between vertica
planes AA” and BB’ (Fig. 6.1(b)) are shown in Fig. 6.6. For clarity, alternating atomic
layers of the substrate are shown in gray and black color, while tip atoms are shown as
smaller spheres. For relatively small interference (Fig. 6.6(a)), the crystal structure of the
substrate is elastically compressed, and, hence, the normal force is mainly due to
interactions between atoms on the flat base of the tip and the first atomic layer of the
substrate. However, at greater interferences (Figs. 6.6(b) and 6.6(c)), the crystal structure

below the contact region is atered permanently, and some atoms of the top atomic layer
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Fig. 6.6 Atomic configurations of a FCC copper-like substrate indented by a square-base
prismatic diamond tip for tip-substrate interference equal to (a) 0.4as, (b) 0.65as, (C)
0.9a,, and (d) 1.15as. Only atoms between vertical planes AA” and BB’ (Fig. 6.1(b)) are

shown for clarity. Theinitial atomic configuration and sliding direction are shown in Fig.
6.1.

are displaced towards the underlying atomic layers. The abrupt decrease of the normal
force (point D in Fig. 6.4(a)) suggests that irreversible deformation occurred at these
interferences. Therefore, the normal force is mainly due to interactions between atoms on
the flat base of the tip and substrate atoms of the second atomic layer. At even larger
interference (Fig. 6.6(d)), the norma force is mainly due to interactions between atoms

on the flat base of the tip and substrate atoms of the third atomic layer.

142



80 - (b)

40 -

40

Normal force (nN)

80 - (d)

40 !

0 | | | | |
0 1 2 3 4 ) 6

Sliding distance (Sa)
Fig. 6.7 Norma force versus dimensionless dliding distance for a square-base prismatic
diamond tip sliding on a FCC copper-like substrate and tip-substrate interference equal to

(& 0.4as, (b) 0.65as, (€) 0.9as, and (d) 1.15as. The initial atomic configuration and sliding
direction are shown in Fig. 6.1.

Figures 6.7 and 6.8 show the variation of the norma and friction forces,
respectively, with the dimensionless dliding distance, Sas, for the previous prismatic tip

dliding along the [100] direction of the FCC substrate. Figures 6.7(a) and 6.7(c) show a

rapid decrease of the normal force with the increase of the dliding distance (d/as= 0.4 and
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Fig. 6.8 Friction force versus dimensionless diding distance for a square-base prismatic
diamond tip sliding on a FCC copper-like substrate and tip-substrate interference equal to

(@ 0.4as, (b) 0.65a, (c) 0.9as, and (d) 1.15as Theinitia atomic configuration and sliding
direction are shown in Fig. 6.1.

0.9), while Figs. 6.7(b) and 6.7(d) illustrate a periodic fluctuation of the normal force
about a constant mean value (dlas = 0.65 and 1.15). Figure 6.8 reveals that a stick-dlip
behavior occurred in al smulation cases. Similar to the normal force, periodic

fluctuation of the friction force occurred after a sliding distance of ~3as. Hence, the
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Fig. 6.9 Atomic configurations of a FCC copper-like substrate due to sliding of a square-
base prismatic diamond tip for a distance of 6as and tip-substrate interference equal to (a)
0.4a, (b) 0.65as, (c) 0.9a, and (d) 1.15as. Only atoms between vertical planes AA” and

BB’ (Fig. 6.1(b)) are shown for clarity. The initial atomic configuration and sliding
direction are shown in Fig. 6.1.

friction coefficient was estimated as the ratio of the average friction and normal forces
calculated in the range of 3 < SYas< 6.

Atomic configurations obtained at the end of sliding of the simulation that yielded
the results shown in Figs. 6.7 and 6.8 are presented in Fig. 6.9. Similar to Fig. 6.6, only
atoms between vertical planes AA” and BB’ (Fig. 6.1(b)) are shown for clarity. For dlas =
0.4 and 0.65, sliding resulted in the removal of atoms only from the first atomic layer

(Figs. 6.9(a) and 6.9(b)). However, for das = 0.9 and 1.15, surface damage was more
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severe and atoms were removed from both first and second atomic layers, hence exposing
the third atomic layer (Figs. 6.9(c) and 6.9(d)). For the prismatic tip shown in Fig. 6.9,
the normal force is mainly due to interactions between atoms on the flat base of the tip
and the exposed atomic layer of the substrate. For das = 0.4 (0.9), the normal force at the
inception of sliding is primarily due to interactions between atoms on the tip base and the
first (second) atomic layer of the substrate. However, a the end of sliding, the norma
force is mainly due to interactions between atoms on the tip base and the second (third)
atomic layer because of the remova of the first (first and second) atomic layer(s),
respectively. Since the tip-substrate interference was maintained constant during sliding,
the normal force decreased during the initial stage of sliding (Figs. 6.7(a) and 6.7(c)) due
to the increase of the distance between tip and substrate atoms resulting from the remova
of the first (second) atomic layer. However, for dlas = 0.65 (1.15), the average normal
force exhibited less variation during sliding (Figs. 6.7(b) and 6.7(d)) because the exposed
atoms resided on the second (third) layer a the inception of diding (due to plastic
deformation of the first (first and second) atomic layer during indentation), and this
atomic layer was not removed during sliding.

Figure 6.10(a) shows the variation of the average norma and friction forces with
the dimensionless tip-substrate interference. As mentioned earlier, the average norma
and friction forces were obtained after sliding by a distance of ~3as. These results provide
explanation for the tip-substrate interference effect on the force variations shown in Figs.
6.7 and 6.8. The saw tooth-like variation of the normal force can be associated with the
remova of different atomic layers. As the tip penetrates the substrate, excessive damage

of the outermost atomic layer occurs and, at some critical interference, the diding tip
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Fig. 6.10 (a) Average norma and friction forces and (b) friction coefficient versus
dimensionless tip-substrate interference for a square-base prismatic diamond tip sliding
on a FCC copper-like substrate. The initial atomic configuration and sliding direction are
showninFig. 6.1.

removes atoms from the damaged layer, exposing the underlying atomic layer. Because
of the fixed interference, the larger average distance between the exposed atomic layer
and the tip base produces a marked decrease in the norma force. This is because the
normal force is mainly due to interactions between atoms on the tip base and atoms on
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the exposed atomic layer. This phenomenon leads to the development of regimes I, II,
and Il in Fig. 6.10(@), in which, the norma force exhibits quditatively similar
fluctuations. Compared to the norma force, a very different trend was obtained with the
friction force (Fig. 6.10(a)). Examination of the atomic configurations obtained at the end
of sliding showed that atoms were not removed from the first atomic layer during sliding
in regime |, while in regimes Il and 111, atoms were removed from the first atomic layer
and both first and second atomic layers, respectively. This explains the step-like increase
of the friction force in regimes Il and Ill and reveals a strong effect of the number of
atomic layers removed during dliding.

Figure 6.10(b) shows the variation of the friction coefficient with the
dimensionless tip-substrate interference. The fluctuations of the friction coefficient in
regimes Il and Il are related to those of the normal force in the same regimes (Fig.
6.10(a)). These friction coefficient variations are attributed to the strong dependence of
the interfacia forces (especialy the normal force) on the distance between atoms on the
tip base and atoms of the substrate atomic layer exposed by the prismatic diamond tip.

To examine the tip size effect on the friction behavior, MD simulations were
performed with a prismatic diamond tip of square-base area between a; x a; and 5a; x 5a;.
Figure 6.11 shows the variation of the friction coefficient with the dimensionless tip-base
size, Wa;, for das= 0.9 and 1.15. In both cases, the friction coefficient decreases with the
increase of the tip-base area. This can be explained by considering the strong dependence
of the normal and friction forces on the number of atoms on the tip base and the substrate
atoms removed by the plowing process, respectively. At the macroscale, these effects are

anaogous to those of the projected norma and plowing tip areas, respectively. For a
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Fig. 6.11 Friction coefficient versus dimensionless tip-base size for edge-front sliding of

a square-base prismatic diamond tip on a FCC copper-like substrate. The initial atomic
configuration of the substrate and diding direction are shown in Fig. 6.1.

given tip-substrate interference, the number of atoms on the tip base increases
guadratically with the increase of the tip-base size, while the number of substrate atoms
removed by the front face of the tip increases linearly. This implies that the increase of
the (plowing) friction force is much slower than that of the norma force. In view of the
relatively weak adhesion of the diamond/copper system, the adhesion force (that depends
strongly on the number of atoms on the tip base) obtained with small prismatic tips is
negligible compared to the friction force. Therefore, the increase of the friction force with
the tip-base size is much slower compared to the normal force, resulting in lower friction
coefficient. The results for d/as = 0.9 and 1.15 show that lower friction coefficients were

produced with the increase of the tip-substrate interference. This is a consequence of the
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strong dependence of the interfacia forces on the tip-substrate atom distance, which

fluctuates due to the removal of atomic layers from the substrate, as discussed previously.

6.3.2 Triangle-base prismatic diamond tip
After discussing the dependence of the friction coefficient on the tip-substrate

interference and tip-base size, the effect of the front face of the tip on the friction

(b)

[001] §
[010] §

© &)

Fig. 6.12 Atomic configurations of a FCC copper-like substrate due to diding of a
triangle-base prismatic diamond tip: (a) and (b) top views of initial atomic configurations
in edge- and plane-front dliding simulations, respectively, and (c) and (d) three-
dimensiona atomic configurations obtained after edge- and plane-front sliding by a
distance of 6asfor fixed tip-substrate interference (&as = 1.15).
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coefficient is examined in this section. Sliding simulations were performed with a
triangle-base prismatic diamond tip consisting of four {100} surfaces and one {110}
surface, and the FCC copper-like substrate used in the previous simulations. The cross
section of the tip is aright isosceles triangle with perpendicular sides equal to 3a;. Sliding
was simulated in the [100] direction with either the symmetric edge or the larger flat
surface of the tip plowing the substrate, as shown in Figs. 6.12(a) and 6.12(b). For
convenience, simulations performed with these tip orientations will be referred to as
edge-front and plane-front dliding, respectively. For a given tip-substrate interference, the
two tip orientations yield identical areas norma to the [100] direction, i.e., identical
plowing surface areas. Figures 6.12(c) and 6.12(d) show three-dimensional atomic
configurations obtained at the end of dliding for das = 1.15. It can be seen that substrate
atoms piled-up ahead of the tip, especialy for plane-front sliding. The increase of the
number of substrate atoms interacting with atoms on the front face of the tip intensified

the friction force. Table 6.2 gives the average normal and friction forces obtained with

Table6.2. Average norma and friction forces versus shape and orientation of the
diamond tip and dimensionless tip-substrate interference das.

Triangle-base prismatic tip Square-base prismatic tip
Edge-front sliding Plane-front sliding Edge-front diding
Tip-substrate Normal Friction Normal Frictio Normal Friction
interference
force force force nforce force force
da (nN) (nN) (nN) (nN) (nN) (nN)
0.65 385 6.5 378 7.6 489 6.7
0.90 221 11.9 21.2 15.1 29.8 12.8
1.15 40.4 12.8 40.2 14.8 53.2 13.2
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Fig. 6.13 Friction coefficient versus dimensionless tip-substrate interference for plane-
and edge-front sliding of a triangle-base prismatic diamond tip on a FCC copper-like
substrate. Top views of initial atomic configurations and the sliding direction are shown
in Figs. 6.12(a) and 6.12(b).

different tip shapes and orientations in terms of the dimensionless tip-substrate
interference. Edge- and plane-front dliding of a triangle-base prismatic tip yielded fairly
similar normal forces. The higher friction forces produced from plane-front sliding than
edge-front sliding suggest higher energy dissipation for plane-front sliding.

Figure 6.13 shows the dependence of the friction coefficient on the dimensionless
tip-substrate interference for plane- and edge-front sliding. As discussed previously, for
fixed interference, edge-front dliding leads to less energy dissipation, and, hence, lower
friction force. The significant variation of the friction coefficient with the tip-substrate
interference illustrates a strong dependence of atomic-scale friction on the effective

distance between atoms on the outermost layers of the tip and the substrate, as discussed
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earlier. Table 6.2 shows that the friction forces due to edge-front sliding of triangle- and
sguare-base prismatic (w = 3a;) tips are in fair agreement. This can be attributed to the
identical plowing surface areas of the tips and suggests that interactions between atoms
on the front face of the tip and substrate atoms dragged by the tip control the magnitude
of the friction force. However, higher normal forces were obtained with the square-base
tip, apparently due to the larger number of atoms on the tip base controlling the

magnitude of the normal force.

6.3.3 Pyramidal diamond tip

To further anayze the friction coefficient dependence on the tip shape,
simulations were performed with a pyramidal diamond tip consisting of {110} side
surfaces and {100} top surface, shown in the inset of Fig. 6.14. The variation of the
normal force with the dimensionless tip-substrate interference reveals significant
differences from the indentation response obtained with a square-base prismatic tip (Fig.
6.4(a)) for the same interference range. First, the peak attractive force encountered when
the tip is in the proximity of the substrate surface is less than that produced with the
prismatic tip (point B in Fig. 6.4(a)). This difference illustrates the significant effect of
the number of tip-base atoms on the magnitude of the normal force. Second, the
interference at the first inception of irreversible deformation due to indentation by the
pyramidal tip (evidenced from the rapid decrease of the norma force) is less than that
observed with the prismatic tip. Third, higher peak forces were obtained with the
prismatic tip at the first inception of irreversible deformation. The spacing of the abrupt
decreases in the norma force is not constant in Fig. 6.14. Due to the sharpness of the

pyramidal tip, abrupt damage of the substrate lattices adjacent to the lateral faces of the
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Fig. 6.14 Normal force versus dimensionless tip-substrate interference for a FCC copper-
like substrate indented by a pyramidal diamond tip. The initial atomic configuration and
sliding direction are shown in the inset of the figure.

tip may occur due to the high stress concentration at the tip apex. Such damage may
involve atoms from several atomic layers.

As observed with the prismatic tip (Fig. 6.10(a)), both normal and friction forces
obtained with the pyramidal tip demonstrated periodic variations after sliding for several
lattice distances. The dependence of the average values of these forces on the
dimensionless tip-substrate interference is shown in Fig. 6.15(a). Both forces exhibit
similar trends; however, the pronounced force fluctuations observed with the prismatic
tip (Fig. 6.10(a)) did not occur with the pyramida tip. The similar trends in the average
force responses seen in Fig. 6.15(a) are due to the fact that the forces produced with the

pyramidal tip are manifestations of interactions between atoms on the side surfaces of the
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Fig. 6.15 (a) Average normd and friction forces and (b) friction coefficient versus
dimensionless tip-substrate interference for edge-front sliding of a pyramidal diamond tip
on aFCC copper-like substrate. The initial atomic configuration and sliding direction are
shown in the inset of Fig. 6.14.

tip and substrate atomsin the tip vicinity. The relatively smooth change of the forces with
increasing interference is associated with the gradualy increasing number of atoms
removed from different atomic layers. As a consequence, the friction coefficient exhibits

less sengitivity to the tip-substrate interference (Fig. 6.15(b)) compared to the prismatic
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tip (Fig. 6.10(b)). Zhang and Tanaka (1997) studied scratching of a copper substrate by a
cylindrical tip with diamond-like material properties and observed that the coefficient of
friction was insensitive to variations in the interference (cutting regime), in accord with
the results shown in Fig. 6.15(b). Since the pyramidal and prismatic tips resemble
plowing at rake angles of -45 and 0’ respectively, it may be postulated that the tip rake
angle may also contribute to the anisotropic friction behavior usually observed at the
atomic level.

The results shown in Figs. 6.10(b), 6.11, 6.13, and 6.15(b) demonstrate the
important effects of the shape, base size, and front face of the tip and the loca
interference on the friction coefficient. Thus, atomic-scale friction anisotropies can be
related to the dependence of lattice deformation on the aforementioned parameters. The
findings of this analysis illustrate that friction at the atomic scale is not an intrinsic
material property, as evidenced by the effects of the tip geometry and tip-substrate
interference on the friction coefficient. Such dependencies may be associated with

friction anisotropies typically encountered at the atomic and molecular levels.

6.4 Conclusions

Molecular dynamics simulations of indentation and sliding were performed with
(rigid) diamond tips of different geometries and a copper-like FCC substrate in order to
examine the effects of the tip-substrate interference and the shape, size, and front face of
the tip on the variation of the friction and normal forces. Based on the presented results

and discussion, the following main conclusions can be drawn.
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Irreversible deformation due to indentation is not a continuous process. The tip
shape and size and the tip-substrate interference control the energy dissipated due
to irreversible deformation of the atomic layers adjacent to the surface.

Both norma and friction forces exhibit periodic fluctuations after dliding for
several lattice distances. The magnitudes of these forces depend on the intensity
of interactions between atoms on the bottom and side surfaces of the tip and
substrate atoms below and ahead of the sliding tip.

For a sguare-base prismatic tip, the spontaneous decrease (increase) of the
average normal (friction) force with increasing interference is due to the removal
of an atomic layer, while for a pyramidd tip, the relatively smooth change of the
average norma and friction forces is a result of the gradually increasing number
of atoms removed from different atomic layers.

The effect of the tip-substrate interference on the friction coefficient depends on
the tip geometry. For the simulated interference range, higher friction sensitivity
on the tip-substrate interference was obtained with a square-base prismatic tip
than apyramidd tip.

The decrease of the friction coefficient with the increase of the base area of the
prismatic tip is due to the stronger dependence of the normal force on the tip-base
size compared to the friction force.

For atriangle-base prismatic tip, the shape of the front face plays a moderate role
on the friction behavior. In general, edge-front sliding yields less energy

dissipation than plane-front sliding and lower friction coefficient.
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CHAPTER 7

Conclusions

Dynamic contact and friction analyses of homogeneous and/or layered media
were performed in this dissertation. The following main conclusions can be drawn from
the presented results and discussion.

Impact of arigid sphere (cylinder) on elastic homogeneous half-space was studied
in chapter 2 usng dimensional anaysis and finite element method. A dimensionless
parameter, £, was introduced to account for the effect of wave propagation on the
deformation response. For small surface interference (4 < 1), the dilatational wave front
is confined within the contact region, and the real contact area is equal to the truncated
contact area. The contact pressure distribution is uniform, and the mean contact pressure
is nearly constant (i.e, insensitive to f). However, for relaively large surface
interference (8 > 1), the wave front extends beyond the contact edge, and the real contact
area is less than the truncated contact area. The contact pressure distribution is elliptic,
and the mean contact pressure increases gradually with the surface interference. For a
spherical indenter (axisymmetric analysis), when g — < (i.e, very large surface
interference and/or very low indentation speed), the contact pressure distribution
approaches the Hertz solution. In the small surface interference regime (4 < 1), the
stresses, strains, and velocities in the subsurface decrease abruptly in the vicinity of the
dilatational wave front, but are nearly uniform in the wake of the wave front. Based on

this observation, an gpproximate energy-based analysis was developed for small surface
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interferences. Its validity was confirmed by the good agreement between the results for
the strain and kinetic energy of the half-space and the mean contact pressure obtained
from this approximate analysis and those obtained from finite element simulations. The
anayses were conducted for both axisymmetric (spherical indenter) and plane strain
(cylindrical indenter) conditions. The strong resemblance of the results obtained from
both analyses for small 3 (5 < 1), together with the fact that the results are independent of
the indenter’s radius for both analyses, suggests that most results (including contact
pressure, subsurface stress, strain and velocity fields and strain and kinetic energy per
unit volume) reported for 4 < 1 are independent of the principa radii of curvature. These
results obtained for elastic homogeneous media are also gpplicable for elastic layered
media (and elastic-plastic layered media if plastic deformation does not occur), provided
the dilatationa wave front resides within the surface layer during the time of dynamic
anaysis (i.e., small surface interference).

Finite element analysis of dynamic indentation of an elastic-plastic multi-layered
medium by arigid cylinder was performed in order to investigate the dynamic response
of layered media for relatively large surface interferences (chapter 3). Sufficiently large
meshes were employed such that the faster propagating dilatational waves reflected from
the mesh boundaries did not reach the region of interest during the analysis. Hence, the
obtained results were independent of mesh size. It was found that the contact load,
contact pressure, and subsurface stresses and plastic strains (both loading and residual)
intensify with the increase of the indentation depth and speed. For the simulated
parameters, higher indentation speed resulted in premature yielding and plastic zone

formation in the second (soft) layer and higher tensile stresses in the elastically deformed
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surface (hard) layer. A sharper indenter produced a smaller critical indentation depth at
the inception of yielding, higher peak contact pressure, lower contact load, and
intensified subsurface stress-strain field. Due to the relatively high yield strength of the
surface layer, the peak value of the maximum von Mises equivaent stress always
occurred in this layer, whereas the peak equivaent plastic strain commenced always in
the second layer. Results for the peak values and locations of the maximum von Mises
equivalent stress, first principa stress, and maximum equivaent plastic strain, as well as
the evolution of the plastic zone during indentation loading and unloading, were obtained
in terms of indentation parameters. These results provide insight into the propensity for
plastic flow and cracking in dynamically indented multi-layered media.

Simulations of a more realistic case involving an elastic-plastic layered medium
in dynamic contact with arough surface characterized by fractal geometry were presented
in chapter 4. An approximate (truncated) Weierstrass-Mandelbrot function was used to
describe the two-dimensiona surface profile. Due to computational limitations, plane-
strain conditions were assumed throughout the analysis. As anticipated, the dependence
of the contact load, contact pressure, and subsurface stresses and plastic strains on
indentation depth and speed was found to be similar to that for the dynamic contact of a
cylindrical indenter, i.e., in both cases the contact |oad, pressure, and subsurface stress
and strains intensified with the increase of the indentation depth and speed. Results for
the maximum von Mises equivalent stress, first principal stress, and maximum equival ent
plastic strain reveaed that, under the ssmulated conditions, crack initiation and excessive
plastic deformation are more likely to occur at the layer interface below the sharper

and/or deeper indenting asperities. It was also shown that a high indentation speed and a
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relatively thin surface layer promote the cyclic accumulation of plasticity in the soft
second layer, especially in the region adjacent to the interface with the hard surface layer.
This implies a higher possibility for crack initiation and delamination in this region,
where excessive plastic deformation occurs due to the significant mismatch of the elastic
and plastic properties of the two layers.

In chapter 5, static friction between rough surfaces was studied using a mechanics
model based on fractal theory. A new approach for estimating the contact slope
distribution and a modified contact size distribution were proposed, and a simplified
mechanics model for contact and friction analysis was implemented. The numerical
results illustrate that the static coefficient of friction decreases initially to a minimum
value and then increases gradually with the increase of the normal load. The interfacial
shear strength exhibits a strong effect on the static coefficient of friction, and
significantly lower friction is produced with interfaces exhibiting low shear strength. At
light loads, the static coefficient of friction decreases at the same rate regardless of the
magnitude of the interfacial shear strength. For fixed fractal roughness, the increase of
the fractal dimension results in higher static coefficient of friction at relatively high
normal loads. However, for surfaces with constant surface height variance, higher fractal
dimension yielded a lower static coefficient of friction at relatively high norma loads.
The dependence of the static coefficient of friction on normal load and topography
parameters was attributed to the transition from predominantly plastic to elastic
deformation of the asperity contacts.

To study the atomic-scale friction behavior, molecular dynamics simulations of

indentation and sliding were performed with (rigid) diamond tips of different geometries
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and a copper-like FCC substrate. Irreversible deformation due to indentation was found
to be a non-continuous process. The energy dissipation due to irreversible deformation of
the atomic layers adjacent to the surface was shown to depend on the tip shape and size
as well as the tip-substrate interference. After dliding for a few lattice distances, both
normal and friction forces exhibited periodic fluctuations, and the friction coefficient was
estimated as the ratio of the average friction and normal forces calculated in this range.
The spontaneous decrease (increase) of the average normal (friction) force with
increasing interference, observed with a square-base prismatic tip, was attributed to the
removal of an atomic layer due to dliding. However, a relatively smooth change of the
average norma and friction forces was observed for a pyramidal tip due to the gradua
increase of the number of atoms removed from different atomic layers. Consequently, it
was concluded that the effect of the tip-substrate interference on the friction coefficient
depends on the tip geometry, and for the simulated interference range, higher friction
sensitivity on the tip-substrate interference was obtained with a square-base prismatic tip
than apyramidal tip. For a prismatic tip, the friction coefficient decreased with increasing
base area because of the stronger dependence of the normal force on the tip-base size
than the friction force. The shape of the front surface of the tip played a moderate role on
the friction behavior. Usualy, edge-front sliding yielded lower friction coefficients than
plane-front sliding due to less energy dissipation.

In summary, this dissertation produced comprehensive anayses for a few contact
and friction problems. The presented results provide basic understanding of the dynamic
response of homogeneous and multi-layered media subjected to contact loads and

elucidate the friction behavior at various scales, from the atomic level to macroscopic
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levels. This study is relevant to various engineering gpplications involving repetitive
contact and friction, such as head-disk interface in computer hard drive and

microelectromechanical systems (e.g. switches, relays, vibromotors, and micromirror

displays).
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APPENDIX A

Helght and Slope Variances of Fractal Surfaces

A two-dimensional fracta surface profile can be represented by a surface function,

Z(x), given by (Mgumdar and Tien, 1990; Maumdar and Bhushan, 1990),

(D-1) cos2ry"x
Z(X) A Z ~ _(2-D)n "
N=Ngn

The power spectrum of z(x), i.e., the Fourier transformation of the autocorrelation

function of z(x), is
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where ¢ and @, are spatia and circular frequencies, respectively. These discrete power

spectrum functions can be approximated by the following continuous functions (Berry

and Lewis, 1980):
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Therefore, the height and slope variances, <(z)2> and <(dz/ dx)2>, respectively, can be
calculated from the power spectrum as following:
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Using the approximate continuous power spectrum functions, the following relationships

for the height and slope variances were obtained:
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It is noted that @, should be used in Eqg. (A8) instead of « that was used by

Magumdar and Tien (1990) and Majumdar and Bhushan (1990). Therefore, the slope
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variance derived from the equation given in these references differs from that given by
Eq. (A8) by afactor of (27)°.

The validity of Egs. (A7) and (A8) can be demonstrated by examining the simple
case of asurface profile represented by asingle cosine term (i.€., Nmax = Nmin = M):

_1) COS27ry"X
2(x) = AP /0Im

For this function, the height and slope variances are given by
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where T =1/ y™ is the period of both z(x) and dz(x)/dx. The above equations are

identical to those obtained from Egs. (A5) and (A6) for the specid case of a surface
profile represented by a single cosine function. Therefore, the circular frequency must be

used in the relationship of the slope variance (Eq. (A8)).
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The principal objective of this dissertation was to develop both analytical and
finite element models of contact and friction phenomena encountered over a broad range
of length scales, from the atomic level to the macroscopic level. This was accomplished
by developing continuum and discrete material models of the deforming media
(homogeneous or layered) and the use of scale-invariant (fractal) parameters for the
description of the interface topography to preserve self-affinity throughout the range of
lengths where a probabilistic (fractal) approach was employed. The specific
accomplishments of this work are the following.

Dynamic contact and friction analyses of homogeneous and/or layered media
were performed using numerical and analytical methods. The dynamic response of
homogeneous and layered media subjected to contact loads and the dependence of the
coefficient of friction on load, contact geometry, and material parameters were examined.

Most studies were based on continuum mechanics models, while atomic-scale friction





was studied by molecular dynamics simulations, suitable for atomic-/nano-scale
mechanics analysis.

Using the finite element method and a dimensional analysis, dynamic impact of
an elastic homogeneous medium by a rigid sphere (3-D axisymmetric analysis) or
cylinder (2-D plane-strain analysis) moving at a constant speed was studied. The various
waves propagating in the media were considered in the dynamic contact simulations. An
abrupt increase in the mean contact pressure was found at the time of initial contact. The
corresponding initial mean contact pressure was found to be proportional to the
indentation speed. Similar results were obtained for a layered medium within a short
period after initial contact (i.e., small interference), provided the wave fronts were
confined within the first layer, in which case the medium behaves like a homogeneous
one.

Finite element solutions of a multi-layered medium subjected to dynamic contact
loads were also performed for relatively large interferences. The indenter profile was
characterized by either a smooth, cylindrical (chapter 3) or rough, fractal (chapter 4)
surface. The requirement for the finite element mesh size in order to obtain results that
are not biased by the waves reflected from the artificial boundaries of the half-space was
studied. The dependence of the contact force/pressure and subsurface stress/strain fields
on the indentation speed, indenter radius (or radius of curvature of the asperities), and
overcoat thickness is elucidated. The possibility for excessive plastic flow and crack
initiation is examined in terms of the maximum equivalent plastic strain and maximum

tensile (first principal) stress. The effect of the surface-layer thickness and cyclic loading





is also investigated for the case of a multi-layered medium subjected to dynamic contact
with a rough (fractal) surface.

Static friction between rough surfaces was studied based on an analytical
approach. The surface profiles were characterized by fractal geometry, and a theoretical
treatment was developed using a piece-wise power-law size distribution and a normal
slope distribution of the asperity contacts. Normal and friction forces were obtained for
constant interfacial shear strength and negligible interaction between neighboring contact
spots. The variation of the static coefficient of friction with normal load is interpreted in
the context of analytical results. The dependence of the friction coefficient on interfacial
shear strength and surface topography parameters is discussed, and the regime where the
friction coefficient assumes a minimum is determined from simulation results.

Molecular dynamic simulations were performed in order to examine the friction
coefficient dependence on the tip-substrate interference and tip shape and size. For
simplicity, a diamond tip and a face-centered-cubic copper-like substrate were employed.
The friction coefficient was found to be quite sensitive to the tip-substrate interference
for a prismatic flat tip, but relatively insensitive for a pyramidal sharp tip. In addition,
lower friction coefficients were obtained with a larger tip-base area and for edge-front tip
sliding.

The findings of this dissertation provide new insight into the tribological behavior
of homogeneous and multi-layered media. In particular, the dynamic response of
homogeneous and multi-layered media subjected to contact loads, the dependence of the
friction coefficient on surface topography and material properties, and the tip size and

shape effects on atomic-scale friction anisotropy were examined in light of finite element,





analytical, and molecular dynamics results. Most results are relevant to general
engineering components, especially those for multi-layered media are of particular

significance to thin-film media used in hard disk drives.

Professor Kyriakos Komvopoulos

Dissertation Chair





