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Abstract

Analytical and Numerical Contact Analyses of
Semi-Infinite Media With Patterned and Rough Surfaces

by
Zhong-Qing Gong

Doctor of Philosophy in Engineering—Mechanica Engineering
Universty of Cdifornia, Berkdley

Professor Kyriakos Komvopoulos, Chair

Contact andyses of semi-infinite media with patterned and rough surfaces were
performed in order to examine the effects of surface patterning, frictiona heeting, and
surface cracking on the resulting deformation and stresses in the media. Stress and plagtic
grain results for layered media possessng meandered and snusoidd surface patterns
were compared with those of a layered medium with a smooth (flat) surface and identica
layer thickness and materia properties subjected to the same norma and tangentid
loading. Two- and three-dimensond finite dement results for the contact stress and
deformation fidlds were obtained for paterned media in terms of coefficient of friction,
gphericd  indenter radius, and diding repetitions. In  addition, a fully coupled
thermomechanicd finite dement andyds was caried out to obtan solutions for the
surface temperature digtribution and to ducidate the effect of the Peclet number on the

maximum temperature rise and subsurface pladticity.



In addition to the sudies involving smooth surfaces, a plane-stran modd was
developed for a layered medium in contact with a rough surface characterized by fracta
geometry. A conditutive relation between the mean contact pressure and a representative
dran was obtaned based on finite dement results for a rigid cylindrica asperity in
norma contact with an eagtic layered medium. The red contact area was obtained as a
function of mechanica properties, layer thickness, truncated hdf-contact width, and
aperity radius. These rddaions were incorporated into a numerical dgorithm to
determine the contact pressure profiles and dress dtate based on the didtribution of
agperity microcontacts. Numerica results reveded that crack initiation is more likey to
occur a both the surface and the interface in the case of a giff layer, while they are more
likely to occur at the surface in the case of acompliant layer.

A themomechanica andyss was conducted for semi-infinite dadic <olid in
diding contact with a rough (fracta) surface. The model accounts for effect of thermd
and mechanicd coupling through the normal surface displacement caused by the contact
pressure, shear traction, and thermodagtic digtortion due to frictiona heating. The effect
of frictiond heating on the contact pressure, temperature rise, and dress fidd is examined
in terms of the Peclet number and topography (fractd) parameters.

Surface cracking in a multi-layered medium due to repetitive diding of a rigid
ageity was andyzed usng liner eadic fracture mechanics and the finite eement
method. The dress intengty factor and crack propagation results are presented in terms of
coefficient of friction a the contact region and crack interface and initid crack length.
Numerica results show that the surface crack propagates toward the layer interface a an

angle of ~57 deg. from the origind crack plane, independent of crack growth increment,



in far agreement with experimenta obsarvations. This andyss was extended to surface
cracking in layered media in diding contact with a rough (fractd) surface. The
ggnificance of topography (fractd) parameters on the crack growth behavior is
interpreted in terms of finite dement results for the contact pressure, dtress intendty
factors, and maximum equivalent plastic strain.

The man findings in this dissertation provide indght into the sgnificance of
surface patterning, overcoat properties, frictiond heeating, and surface cracking on the
mechanicd and thermomechanicd behavior of hdf-gpace media with patterned and
rough surfaces. The obtained results advance the current state in contact mechanics of
thin-film mechanical sysems with contact interfaces, such as  microdectromechanical
devices and hard disk drives, and enhance the understanding about the underlying reasons

leading to mechanica failure of contacting surfaces and layered media.

Professor Kyriakos Komvopoulos

Dissartation Chair
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CHAPTER 1

INTRODUCTION

Contact mechanics is a sub-fidd of goplied mechanics that deds with the
deformation, dresses, and frictiond heating of contacting solid bodies. Higoricdly,
contact mechanics evolved from the sudy of Henrich Hertz (1882), who obtained
solutions for the frictionless contact of two eadtic bodies with dlipsoidd profiles. Since
then, progress in contact mechanics resulted in extenson of the Hertz theory to problems
involving contacting bodies of various geometries and different conditutive laws The
incorporation of friction a the interface of contacting bodies led to mechanics sudies of
diding and ralling contact. Furthermore, the interdependence of mechanicd and therma
fidds in the presence of frictiond heating necesstated the development of fully coupled
thermomechanical theories. Progress in contact mechanics has been motivated by
numerous applications where surface interaction affects the operation and durability of
mechanicd systems. From macroscopic diding systems, such as brakes, clutches, and
sedls, to microscopic contact systems, such as microgears and microgrippers in MEMS
and the head-disk interface in hard disk drives, accurate fallure andyss depends strongly
on detaled knowledge of the deformation ad dress fidds, as well as generdtion of
frictiona heet and conduction/dissipation in the interacting bodies.

Coatings are often used to protect components subjected to contact stresses and to
enhance the tribologica performance and functiondity of interacting surfaces. A coating

modifies the contact pressure didtribution a the contact interface. A compliant coating



reduces the contact pressure by spreading the contact area while a iffer coating
produces an opposte effect. Consequently, the coating modifies the dress didtribution
below the contact interface. The enhanced wear resstance of hard protective coatings,
such as ceramics, cemented carbides, and diamond-like carbon, which is due to their high
hardness, greetly affects the rdiability of meny mechanicd sysems Hence, andyss of
the dresses and deformation in layered media due to diding contact is criticd to the
design of various mechanica components.

Contact mechanics of layered media with flat surfaces has been investigated both
analyticdly and numericdly. However, surface features of various length scades play a
ggnificant role in the dadic-plagtic deformation and temperature rise due to frictiond
heeting in layered media For example, peatterned layered media are used in many
leading-edge technologies, such as high-density data storage and magnetic random access
memory media The surface microfestures are typicadly produced by achromatic
interferometric lithography and eectron beam techniques. Contact anadyss of patterned
media with various surface features presents maor difficulties due to the complexity of
the analytical solutions for the surface and subsurface deformation and gtress fidds. Thus,
numerica techniques, such as the finite dement method, must be employed to andyze
contact between solid bodies with real surface topographies.

Engineering surfaces exhibit roughness over a wide range of length scaes thus
resulting in a number of microscopic contact spots, referred to as asperity contacts. The
effect of surface roughness on contact deformation has been the reason for mogt friction
and wear modds. Traditional datistical techniques have been adopted to characterize

rough surfaces by assuming an agperity heght didribution However, because of the



multi-scale nature of surfaces, surface roughness parameters depend strongly on the
sample Sze, indrument resolution, and experimentd filter used to acquire the topography
data. Fractd geometry has been used in contemporary contact mechanics studies to
characterize engineering surfaces in order to avoid the scade-dependence of datistica
models. The fractd description of surfaces provides more insght into the roughness
effect on the deformation and stresses of contacting rough surfaces.

In diding mechanicad systems, friction causes mechanica energy to be disspated
in the foom of heat within the vicinity of the red contact area The frictiond heet
disspated is respongble for the temperature rise at the surface and in the subdrate.
Friciond heating and the reaulting temperaiure rise may dfect dgnificantly the
tribologicd behavior of diding components, especidly a high diding speeds. The
surface temperature rise could be high enough to change the properties of the diding
materids, promote surface oxidation, degrade the lubricant functiondity, and even cause
melting of the solid lubricant or the surface of the interacting materids. The interfacid
temperature rise leads to the development of therma stresses and induces variations in
the real contact area and contact pressure digtribution due to therma expansion. Since
these changes in the contact conditions affect the heat generation rate and heat
conduction across the contact interface, the therma and mechanical stresgstrain fields are
fully coupled and, therefore, must be determined smultaneoudy rather than sequentidly.
Thus, knowledge of the surface temperature and thermodagiic stresses in diding solid
bodies with rough surfaces is essentid in fallure andyss of mechanica systems.

Traditiondly, hard and giff coatings have been used to protect components

subjected to contact stresses and to enhance the wear resstance of interacting surfaces.



The inherent high hardness of these materids is obtained a the expense of low fracture
toughness. Consequently, contact fatigue and/or fracture of hard coatings are dominant
falure mechaniams in many mechanicd sysems subjected to continuous diding contact,
such as gear flanks, bearing surfaces, and head-disk interface in hard disk drives.
Andyss of surface cracking in layered media is necessary in order to fully understand
the underlying mechanisms of wear paticle generaion and overcoat dedamination.
Furthermore, knowledge of the effect of surface cracking on the accumulation of plastic
deformation in the dadic-plagtic subsrate is aso important to the identification of the
failure mechanism(s) in the substrate medium.

From the aforementioned, it is gpparent that contact andyss of layered media
possessing redigic surface topographies presents serious difficulties (both andyticd and
numerical). Therefore, the objective of this dissertation is to provide comprehensve
contact anadlyses of semi-infinite media with patterned and rough surfaces Mechanica
and thermomechanica andyses of homogenous and/or layered media with rough surface
ae peformed andyticdly, while contact andyses of layered media with patterned
aurfaces and surface cracking in eadtic-plagtic layered media are performed with the
finite dement method due to the complexity induced by the surface topography and the
condtitutive relationships

The dissertation has been organized as following. Chapter 2 presents a plane-
dran finite dement andyss of paterned dadic-plagtic layered media that eucidates the
effect of surface geometry on the deformation and dress fidds arisng due to norma and
diding contact. The dgnificance of surface petterning on the deformation behavior is

interpreted in terms of dress and drain results illudraive of the tendency for crack



initigion and plagic deformation in the media Rdations for the contact pressure
concentration factor and onsat of yidding in the first (hard) layer are derived from finite
element results for indented layered media with sinusoidd surface patterns. The contact
andyss of patterned media is extended to a three-dimensonad andyss in Chapter 3 by
introducing an dadic-plagic finite dement modd of a sphere in normd and diding
contact with a layered medium with a patterned surface characterized ty regularly spaced
rectangular pads. Three complete loading cycles, involving indentation, diding, and
unloading of the rigid sphere, are smulated to assess the effect of repeated diding on the
dresses in the firg (hard) layer and plagtic deformation in the underlying (soft) layer.
Thermomechanical diding contact smulaions of an dadic-plagic layered medium with
a patterned surface and an dadtic-plagtic sphere are carried out to examine the effect of
frictiond hegting on the deformation behavior of the medium. The likdihood of thermd
cracking in the wake of microcontacts during diding is interpreted in the context of the
therma tensile stress due to temperature gradients in the layered medium.

Chapter 4 describes a two-dimensond contact modd for layered dagiic media
with rough surfaces characterized by fractd geometry. A finite dement modd of a rigid
cylindrical asperity in norma contact with an dadic layered medium is used to obtain a
conditutive relationship between the mean contact pressure and a representative drain.
The red contact area is found to be a function of mechanica properties, layer thickness,
truncated haf-contact width, and asperity radius. These relationships are incorporated
into a numericd dgorithm to determine the contact pressure profiles and dress dtate
according to the didtribution of asperity contacts. Solutions for the tota contact load and

contact area show the dgnificance of materid properties, layer thickness, and surface



topography on the globa parameters of this contact system. The contact pressure and
locd dress fidds are discussed in teems of the effect of friction coefficient, layer
thickness, and materia properties on the pressure profile, surface stress, interface stress,
von Mises equivaent sress, and maximum principa dress.

Chepter 5 provides a themomechanicd analyss for semi-infinite dagic solid
diding againg a rigid rough surface characterized by fractd geometry. A piecewise
linear didribution of the contact pressure is obtained by superposition of overlapping
triangular pressure dements. The norma surface displacements due to the effects of
contact pressure, shear traction, and thermoelagtic distortion caused by frictionad heeting
are incorporated in the influence coefficients of the mairix inverson method. The effects
of surface topography and interaction between neighboring asperity contacts on the
surface and subsurface temperature rise and dress field of the eadtic semi-infinite solid
are discussed in the context of numerica results. The Sgnificance of frictional heating on
the contact pressure, temperature rise, and stresses is interpreted in terms of the Peclet
number and topography (fractd) parameters. The results provide ingght into the
likdihood for cracking and plagtic flow a the surface due to the combined effects of
mechanical and thermal surface tractions.

In Chapter 6, surface cracking in a multi-layered medium due to diding of a rigid
aeity is examined usng liner dadic fracture mechanics and the finite dement
method. The crack propagation direction is predicted based on the maximum (tendle or
shear) dress intengty factor (SIF) range. The effects of the crack length, diding friction,
and crack-face friction on the SIF and crack propagation direction are discussed in the

context of finite dement solutions Smulation results demondrate the effects of crack



growth in the dadic surface layer on the accumulation of plagtic drain in the eadic-
plagic undelying layer and the dggnificace of crack growth increment on the
propagation path. Based on the obtained results, a generd fatigue approach for surface
cracking is derived for multi-layered media subjected to repetitive diding contact. This
dudy is extended in Chapter 7 to examine surface cracking in a layered medium due to
diding contact with a rough surface. A contact dgorithm is used to determine the critica
segment of the rough surface for fracture andyss. The dgnificance of topography
(fractal) parameters on the crack growth behavior are interpreted in terms of results for
the contact pressure, stress intengity factors, and maximum equivaent plagtic strain.

The dissartaion is concluded in Cheapter 8 by summarizing the main findings of

this research.



CHAPTER 2

EFFECT OF SURFACE PATTERNING
ON CONTACT DEFORMATION
OF ELASTIC-PLASTIC LAYERED MEDIA

2.1 Introduction

Surface layers (overcoats) are often used to protect components subjected to
contact stresses and to enhance the tribologicd performance and functiondity of
interacting surfaces. The contact mechanics literature is rich in both theoreticd and
numerica dadic-plagtic contact andyses of layered media King (1987) anayzed
indentation of elastic layered media and obtained a relation for the effective dadtic
modulus in terms of the layer thickness and dadtic properties of the layer and substrate
materids. O’ Sullivan and King (1988) obtained andyticd solutions for the dress fidd
due to diding of a sohericd indenter on a layered dastic medium. Komvopoulos (1988,
1989) peformed finite dement andyses of norma contact on eagtic and dadic-plagtic
layered media. Tian and Saka (1991) used the finite dement method to sudy diding
contact on an dadic-plagtic two-layer hdf-space. Kra and Komvopoulos (1996, 1997)
obtained finite eement results for the surface and subsurface sress and drain fields
occurring in dadic-plagtic layered media due to indentation and diding contact. A
common objective in these sudies has been the invedtigation of the effects of coefficient
of friction and overcoat thickness and mechanical properties on the contact stress and

deformation fields. However, in dl the previous studies the layered medium was modeled



as a hdf-gpace with a flat surface. Therefore, very little is known about the role of surface
geometry features (patterning) on the eastic-plastic deformation of layered media.

Contact of dadtic bodies possessng smdl-amplitude snusoidd surfaces has been
the centrd theme of severd earlier anadyses on the effect of surface geometry on contact
sresses. Westergaard  (1939) used complex variables in two-dimensond dadicity to
andyze contact between a dnusoidd and a fla surface. Dundurs et d. (1973)
implemented a Fourier analyss in a sress function approach to solve the latter problem.
Elagtic contact andyss of hdf-spaces with two-dimensond, sSnusoidd, isotropic
surfaces is farly cumbersome. Experimenta results suggest tha it is difficult to predict
the shape of microscopic contact areas (Johnson et a., 1985), heresfter referred to as
microcontacts. A change from approximately circular to square-shaped microcontacts
occurred in the gpparent contact region with increesng normd load, leading eventudly to
the development of discontinuous contact zones separated by noncontacting small
circular regions. Johnson et d. (1985) used a numericd method to determine the pressure
digtribution and contact area, and obtained closed-form asymptotic solutions for both
light and heavy loads, which resulted in dmost full contact. Seabra and Berthe (1987)
used a vaiaiond formulaion to sudy normd contact of an infinitdly long wavy cylinder
with a flat plane and reported that both the pressure concentration factor and the change
of the contact area are drong functions of wavelength, amplitude, and normd load. In
addition, the effect of surface roughness on the contact behavior was shown to be
quditativdly smilar to that of surface waviness. Komvopoulos and Choi (1992) andyzed
norma contact of regularly spaced rigid asperities with an dadic hdf-space usng the

finite dement method and obtained results for the maximum contact pressure, normd



load, and subsurface stresses in terms of asperity didtribution and indentation depth.
Undulated (textured) surfaces have been shown to yied low dectrical conduct resistance
(Seka et d., 1984) and low diding friction (Tian et a., 1989) due to the entrgpment of
oxidized wear debris in the surface cavities. Ramachandra and Ovaert (2000) examined
the effect of coating discontinuities on the surface dadtic deformation and stresses, and
observed a dgnificant decrease in pressure sngularities @ coaing discontinuities with
crowned edges.

The previous sudies have provided useful indght into the contact stress and strain
fidds of dadic-plagtic layered media and the role of surface geometry on contact
deformation of homogeneous media However, eadtic-plasic deformation of layered
media with different surface patterns subjected to both normd and tangentid (friction)
surface loadings has not been andyzed to date, probably due to the highly complex
andytica rdations. Therefore, a principa objective of this sudy is to €ucidate the
concomitant effect of surface pattern geometry, coefficient of friction, and normd load
(or indentation depth) on the evolution of deformation and dSresses in dadic-plagtic
layered media This is accomplished by peforming finite dement smulations of norma
and diding contact of a rigid cylindrica asperity on layered media with different surface
patterns and layer materid properties. The finite dement method is suitable for such type
of complex contact problems because andyticd solutions for the surface and subsurface
deformation and dress fidds are extremdy difficult to obtain. Another god of this work
is to derive reaions for the contact pressure concentration factor and the inception of
yidding in the firg (hard) layer of indented layered media possessng snusoidd surface

patterns.
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2.2 M odeling Procedures
2.2.1 Surface Modeling and Finite Element M esh

To examine the effect of the surface pattern geometry on the deformation and
dresses in dadic-plagtic layered media, meandered surfaces consdting of undulations
(pads) of height b and width and laterd spacing a (Fig. 2.1(a)) and sinusoida surfaces of
wavdength | and amplitude d (Fg. 21(b)) were andyzed usng the finite dement
method. The surface pattern shown in Fg. 2.1(a) is typicad of undulated surfaces, used to
minimize friction through the entrapment of wear debris (Tian et d., 1989), and patterned
media for ultra-high density magnetic recording produced by ion beam lithography (Ross,
2001). The wavy surface shown in Fg. 21(b) is dmilar to the topography of
micromachined (lapped) surfaces, where the average grit size and latera spacing control
the amplitude and wavelength of the generated pattern. Different surface patterns were
modeled by varying the dimensonless ratios b/a and d/l . The radius of the rigid asperity
Rwasfixed in dl smulations

Norma and diding contact smulations were performed with the two-dimensond
finite dement mesh shown in Fig. 2.2(b), based on the usud plane srain assumption. The
mesh congds of approximately 10,000 eight-node, isoparametric, quadrilaterd eements
(depending on the modeled surface pattern), and its dimensons ae x/R =24 and y/R =
31 The nodes a the bottom boundary of the mesh were condrained against
disolacement in the y-direction and the nodes a the left boundary againgt displacement in
the x-direction. To accurately determine the contact pressure distribution, contact area,

and dress and drain fields in the highly stressed region adjacent to the contact interface,
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Fig. 21 Schematics of layered media with (@) meandered and (b) sinusoidal surfaces and
pertinent nomenclature of geometry parameters.
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Fig. 22 Finite dement mesh of layered medium with a snusoidd surface: (@) mesh of
first and second layers and (b) mesh of entire layered medium.
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andl square dements of sides equa to 1/32 of the thickness of the first layer were used
to refine the mesh in the vicinity of the surface, as shown in Fg. 2.2(a for a layered
medium with a snusoidd surface pattern. A 3 x 3 integration scheme was used in dl
smulations

Contact between the layered media and the rigid asperity was detected with
gpeciad contact dements. These dements are used to determine contact or separation
between surface noda points of the mesh and the rigid countersurface by measuring the
locd interfacid gap. If the obtained distance is less than a specified tolerance vaue, it is
assumed that contact has been established and the appropriate force (contact pressure) is
applied to the corresponding surface nodes of the mesh. Redative dip (diding) was aso
modeled with the contact dements usng the loca overclosure, i.e, the specified
tolerance for the penetration of nodd points on the mesh surface into the rigid surface.
These kinematic measures were used together with a Lagrange multiplier to modd
surface interaction and, hence, caculate the associsted norma and friction traction at the
nodes of the contact region. Coulomb friction was assumed in dl smulation cases.
According to the adopted friction mode, a shear dress t, develops between the
contacting surfaces upon the occurrence of a very smdl rdative tangentia displacement.
Slip or sick commences when t = mp or t < mp, repectively, where mis the coefficient
of friction, specified for the contact eements, and p is the local contact pressure. Thus,
both norma and tangentid tractions were applied sSmultaneoudy, and the produced

friction force was proportiona to the normal load.
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2.2.2 Material Propertiesand Constitutive M odels

The thickness, h, dastic modulus, E, and yidd srength, sy, of each layer of the
layered media analyzed in this study are given in Table 2.1. These thickness and materid
property vaues are typicd of layers used in magnetic recording rigid disks, i.e, carbon
overcoat (layer 1), CoCrPt magnetic medium (layer 2), CrV underlayer (layer 3), and NiP
electroplated layer (layer 4). The materia properties of layers 1 and 2 were obtained from
nanoindentation experiments performed on carbon-coated rigid disks (Komvopoulos,
2000).

The von Mises yidd criterion was used to check whether yielding occurred a a
materia point. According to this criterion, the yield condition, g, is expressed as

g=J,- k* =0, (2.1

wherek isamaterid congtant and J; is the second deviatoric stress invariant, given by

J, =

N

S,S;. (22)

||
where S, =s; - d;s ,, in which, sjj is the stress tensor, dj; is Kronecker's delta function,

ij¥ m?

and s m, isthe mean octahedral stress (sm = Siil3).

Table 2.1. Thickness and materia properties of layered medium

Medium WR (GE,a) (éga)
Layer 1 0.025 168 13.0
Layer 2 0.078 130 2.67
Layer 3 0.4 140 258
Layer 4 2.6 160 2.67
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For uniaxid dtress gate, the yield criterion can be written as

; 1/2
S, -85 Sijﬁ =s, (2.3

&>
where sy is the von Mises equivalent stress. Plagtic deformation was based on the usud
associated flow rule, assuming negligible plagtic volume change. An updated Lagrangian
formulation was used in dl contact smulations. Each layer was assumed to exhibit

eladtic-perfectly plastic materia behavior. The equivaent plagtic strain, €, is defined as
5 — N\ 2 pd p1l/2
€, = Q,[gdeii e (24)

where W is the drain path. The plagtic flow rule was applied only to yidding material for

which sy = sy. Theusud astic conditutive equationswereused when sy <Sy.

2.2.3 Finite Element Simulations

Quas-ddic diding contact smulations condsing of three sequentid sSteps of
loading, diding, and unloading of a rigid asperity on layered media with different surface
geometries were performed in an incremental fashion. Normd contact (indentetion) was
amulated by advancing the rigid asperity toward the dadic-plastic medium up to a
specified penetration depth, d (or normad load, L). Subsequently, the asperity was
displaced laterdly to a maximum disance, S, of about eght times the haf-contact width
a maximum norma load. The coefficent of friction and norma load were mantained
condant throughout dl smulations. Findly, the asperity was unloaded following the
same deps as for the loading. All amulaions were performed with the multipurpose
finite dement code ABAQUS. A totd of eight diding and four norma contact smulation

cases were examined, i.e, b/a = 0 and d/I = 0 (fla surfaces), b/a = 0.5, 1, and 2
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(meandered surfaces, Table 2.2), and d/I = 0.008, 0.016, and 0.032 (snusoida surfaces,
Table 2.3). The assumed friction coefficient vaues of 0.1 and 05 ae typicd of

boundary-Iubricated and dry (or poorly lubricated) surfaces, respectively.

2.3 Results and Discussion

To ducidate the effect of surface patterning on the contact deformation behavior,

dadic-plagtic finite dement results for the surface and subsurface dresses and drains in

Table 2.2. Siding contact smulations for layered media with meandered surface patterns

bla L/svyiag m SR
0.0 0.57 0.1/0.5 0.5
0.5 0.57 0.1/0.5 0.5
10 0.57 0.1/0.5 0.5
2.0 0.57 0.1/0.5 0.5

Table 23. Siding and normad contact smulations for layered media with snusoida
surface patterns

Siding Indentation
d/l
L/syiao m SR dR m
0.0 0.57 0.1,05 0.5 0.0025-0.015 0.5
0.008 0.57 0.1,05 0.5 0.0025-0.015 0.5
0.016 0.57 0.1,05 0.5 0.0025-0.015 0.5
0.032 0.57 0.1,0.5 0.5 0.0025-0.015 0.5
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layered media with meandered and sinusoidd surface peatterns in diding contact with a
rigid asperity ae presented in this section. For the geometry, materid, and load
parameters conddered in this sudy, deformation was found to occur manly in the firg
two layers. Thus, results illugrating the evolution of dress and deformation in the firgt
(hard/<tiff) and second (soft/compliant) layers of the medium are presented first, followed
by an andyss for the contact pressure concentration factor and a genera yidd criterion

for the first layer of indented layered mediawith snusoidd surfaces.

2.3.1 Siding Contact Smulations
2.3.1.1 Contact Pressure

Figures 2.3 and 24 show contact pressure didtributions on layered media with
meandered and snusoidad surfaces, respectively, obtained for diding digance SR =
0.125, dimensonless norma load L/syiap = 057, and different pattern geometry

parameters b/a and d/l . The x coordinate was normdized by the haf-contact width, ao,
and the contact pressure, p, by the maximum contact pessure, p,, corresponding to a

layered medium with a fla surface and smilar layer thickness and materid properties
subjected to the same loading. The contact pressure of this flat-layered medium is adso
plotted in Fig. 23 p/a = 0) and Fig. 2.4 (d/l = 0) for comparison. The pressure profiles
of the paterned surfaces are didinctly different from those of the flaa surface. Five
microcontacts with pesk pressures occurring a the trailing edges of the pads (with
respect to the direction of diding) can be seen in Fig. 2.3. The loca pressure spikes are
evidently due to the sharp corners of the pads. Comparison of Figs. 2.3(a)-2.3(c) shows

that the pressure spikes intendfy dgnificantly with increesng b/a. The dngularity of the
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Fig. 2.3 Contact pressure profiles of layered media with meandered surfaces (SR = 0.125
and m=0.5): (8 b/a= 0.5, (b) b/a=1, and (c) b/a = 2. (The pressure profile of a layered
medium with aflat surface (b/a = 0) is shown by a discontinuous curve.)
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problem a the shap corners is somewhat mitigated by the immediate yieding of the
corners of the pads, thus bounding the solutions. To check the convergence of the
pressure profiles, a two times finer mesh was used for the pad corners of the meandered
surface with b/a = 0.5. The pesk contact pressure obtained with this refined mesh was
found to differ from the maximum pesk pressure shown in Fig. 2.3(@) by 7.7 percent.
Further mesh refinement was not possible due to convergence problems associated with
excessve distortion of the very small eements &t the pad corners.

The effect of surface texturing (roughening) on the contact pressure distribution
can be interpreted by comparing the pressure profiles obtained for d/I = 0.008, 0.016, and
0.032 and identicd normd load and coefficient of friction (Fig. 24). For the rdativey
rougher surfeces, i.e., d/Il = 0.016 (Fig. 2.4(b)) and d/l = 0.032 (Fig. 2.4(c)), the contact
interface congss of five didinct microcontacts, Imilar to the layered media with
meandered surface patterns (Fig. 2.3). However, pressure spikes do not occur with
snusoidd surfaces. For the smoother surface (d/I = 0.008), the contact pressure varies
less abruptly and the pressure profile is continuous a the center of the contact interface
due to the merger of the three microcontacts in this region. A smilar behavior was
observed in a previous contact andyss of two-dimensond discontinuous coatings
(Ramachandra and Ovaert, 2000). The results shown in Fig. 24 indicate that both the
digribution and the peask vaue of the contact pressure are very sendtive to the surface
pattern geometry, especialy the pesk contact pressure that increases rapidly with

increasing amplitude-to-wavelength ratio.
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Fig. 24 Contact pressure profiles of layered media with snusoidad surfaces @R = 0.125
and m= 0.5): (8 d/I =0.008, (b) d/I =0.016, and (c) d/I = 0.032. (The pressure profile
of alayered medium with aflat surface (d/I = 0) is shown by a discontinuous curve.)

21



2.3.1.2 Surface Stresses

The von Mises equivaent dress is often used to interpret materid falure induced
by lage plasic deformation. However, it is not possble to differentiate between falures
asociated with predominantly compressive and tendile dress dtates based on this yield
criterion. Furthermore, the high materid hardness (or yield strength) is obtained at the
expense of low fracture toughness. Consequently, fracture and delamination of hard and
qiff protective coatings ae the dominant fallure mechanisms in many tribological
contacts. The susceptibility to cracking of rdatvely had and iff coatings strongly
depends on the magnitude of the maximum tendle dress, such as the surface normd
stress Ssxx. Figure 2.5 shows the evolution of syx Stress obtained from the nodes at the
surface of layered media with flat @/ = 0) and rough @/ = 0.008, 0.016, and Q032)
surfaces for m = 0.5. (Stress results in Fig. 25, as wdl as in subsequent figures, are
normdized by the yidd drength sy of correponding layer materid.) Four digtinct
regions of tendle dress occur @ the diding interface of the media having rough surfaces.
Maximum tensle dresses arise a the traling edges of microcontacts within the contact
zone, unlike the smooth (flat) surface, in which the contact dresses are compressve
throughout the contact region. The magnitude of the pesk tendle sxx stress increases with
d/l , indicating that rougher surfaces produce higher surface tensle stresses. For d/l =
0.032, the maximum tensle sy dress a the contact interface is very close to the yidd
drength of the layer materid. Moreover, the significant resdua tensle dress in the wake
of the diding path observed for d/l = 0.032 supports the view that rough surfaces are

generdly more vulnerable to contact fatigue due to repetitive diding.
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Fig. 25 Varidion of sy sress at the surface of layered media with sinusoidd surfaces
(SYR=0.5and m=0.5): (a) d/I =0.008, (b) d/I =0.016, and (c) d/I = 0.032. (The surface
dress digribution for a layered medium with a flaa surface (d/I = 0) is shown by a
discontinuous curve.)
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Since the surface tensle dress syy is the fird principd dress in the layer, it
controls the initiation of transverse surface cracks in the wake of diding microcontacts, a
phenomenon often encountered when rigid indenters are traversed over brittle materids.
Formation of ring cracks on carbon-coated hard disks has been observed in scratching
experiments (Wu, 1991). This type of surface cracking has been the man objective of
severa contact mechanics studies (Keer and Worden, 1990; Keer and Kuo, 1992; Chen et
al., 1991; Bower and Fleck, 1994). Results from these analyses have confirmed that crack
initigtion a the surfaces of homogeneous media commences immediaidy behind the
contact region of the diding indenter, where the tendle stress reaches a maximum.

To evaduate the effect of friction on the propensty for surface cracking, the stress
results shown in Fig. 25 m= 0.5) are compared with those shown in Fig. 2.6 (m= 0.1).
Although the low-friction gmulation results reved a gmilar trend, i.e, pesk tendle
sresses dso aise a the tralling edges of microcontacts within the contact region, the
magnitudes of the maximum tendle dresses are dgnificantly lower than those obtained
for m = 05. Moreover, the resdud dress in the wake of diding is negligibly smdl,
gmilar to tha obtaned with the flat-surface layered medium. This suggests tha the
effect of surface patterning (texturing) on plasic deformation (reflected by the
development of resdud dress) is suppressed when friction a the diding interface is low,
such as in the case of boundary-lubricated surfaces, even for reatively rough surface
topographies (i.e,, high d/l vaues).

To further ducidate the effect of surface patterning on the maximum tensile sress

a the surface, results showing the variaion of the maximum first principd dress a the
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(SR=0.5and m=0.1): (a) d/I =0.008, (b) d/l =0.016, and (c) d/I =0.032. (The surface
dress digtribution for a layered medium with a fla surface (d/I = 0) is shown by a
discontinuous curve.)
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auface of the firg layer, s;™ (which is the surface tensle syx dress in the wake of

diding) with diding digance, SR, for d/l between 0 and 0.032 and m= 0.5 are contrasted
in Ag. 27(8). In dl Imulation cases, the maximum tendle sress increases rapidly with
the initiation of diding, reaching a deady date & a diding digance SR = 0.125, in
agreement  with previous finite dement results (Krd and Komvopoulos, 1996).
Furthermore, increasing the ratio d/l causes the maximum tendle dress in the hard layer
to increase ggnificantly. In fact, for d/l = 0.032, the stress is close to the yield strength of
the layer materia (S, /sy1 ~ 1). As shown in Fig. 2.7(b), tensle stresses occur dso in
the undelying soft layer. While the effect of surface paterning is initidly negligible (SR
< 0.2), a trend smilar to that observed with the hard layer occurs theredfter, i.e, the
maximum firgt principad dress increases with d/l , reeching a Seady dtate vaue when SR
> 0.25. However, comparison of the results shown in Figs. 2.7(a) and 2.7(b) shows that
the maximum tensle dress in the soft layer is much lower than that in the hard layer.
Thus, the hard surface layer protects the underlying soft layer from high tensle stresses,
which would otherwise occur under direct diding contact, decreasing the likelihood for

crack initiation in the soft layer.

2.3.1.3 Evolution of Plagticity in Layered Media

To examine the dependence of pladicity on diding friction, equivdent plastic
grain contours for m= 0.5 and 0.1, d/Il = 0.032, and SR = 0.5 are contrasted in Fig. 2.8.
(Different contour levels are usad to facilitate plotting of the much smdler plastic zones
in Fg. 28(b).) For rdativey high friction fn= 0.5), a continuous plastic zone is produced

in the soft layer, with the maximum plastic dran occurring a the interface with the hard
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layer (Fig. 2.8(8)). Alternatively, for low-friction diding (m= 0.1), a discontinuous plastic
zone exhibiting periodicity smilar to that of the surface pattern evolves in the soft layer
(Fig. 2.8(b)). In addition, the maximum plagtic grain is much lower then thet in the high-
friction case and the hard layer deforms only dadicdly, conversdy to the high-friction
case where very small plastic zones occur a surface pegks (Fig. 2.8(9)).

While the evolution of pladticity in the soft layer br d/I = 0.008 and 0.016 was

found to be quditaiivdy amilar to that shown in Fg. 2.8, the deformation of the hard
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layer demondrated a dependence on the magnitude of d/l . Pastic strain contours
obtained for a layered medium with a snusoidd surface @/ = 0.016) and a flat-surface
layered medium (d/I = 0), i.e, low-roughness and smooth surface, respectively, reveded
the absence of pladic deformation in the hard layer during diding, despite the high
fricion coefficdent (m = 0.5), conversdy to the rough-surface layered medium (Fig.
2.8(@). This is due to the reatively high yidd drength of the hard layer. These results
demondrate the pronounced effects of surface pattern geometry, coefficient of friction,
and materid properties on the development of plagticity in layered media

Figures 2.9(8) and 2.9(b) show the maximum eguivaent plagic stran, €, in
the underlying soft layer of layered media with meandered and snusoidd surface
patterns, respectively, as a function of diding digance SR Reaults for flat-surface
layered media (b/a = 0 and d/I = 0) are dso shown for comparison. The continuous
decrease of the dopes of al drain curves indicates the gpproach to steady-state peak
plagic drains in the range of 0.08-0.15. Nonetheless, the most important result is the
decrease of plagtic grain with increasing ratios b/a and d/I . This is more apparent for the
snusoidd surface patterns producing lower plagtic drains, a consequence of the less
pronounced stress concentration effect in the absence of sharp corners, as in the case of
the meandered surfaces. For ingance, a a diding digance SR = 05, the maximum
plagtic drain in the second layer for d/l = 0.032 is equal to ~60 percent of that obtained
for d/l = 0. This is atributed to the effect of surface patterning on the compliance of the
relatively differ surface layer. Increasing the magnitude of b/a (or d/l ) produces a more

compliant surface layer that can store more dran energy without undergoing plastic
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deformation. Thus the reduced effective diffness of the firgt layer lowers the subsurface
dresses, thereby decreasing the likelihood of plagtic flow in the soft layer. However, as
discussed earlier, increesng d/l leads to a higher maximum firgt principd dress & the
traling edge of the contact region, while increesng b/a promotes the development of
high pressure spikes, therefore indicating a greater likelihood for surface crack initiation
and plagtic flow, respectively. Consequently, an optimum range of d/I (or b/a) must be
determined in order to minimize the probability for surface cracking and subsurface

plastic deformation.

2.3.2 Normal Contact Smulations

In this section, semi-empirical relaions for the contact pressure concentration
factor and the inception of yidding in layered media with snusoidd surface paiterns are
derived from finite dement dmulation results for the contact pressure and deformation

fields resulting from norma contact with arigid asperity.

2.3.2.1 Contact Pressure Concentration Factor

The contact pressure profiles of indented layered media with snusoidd surface
patterns are farly smilar to those for diding contact (Fig. 2.4), except that the profiles
for normal contact are symmetric. The dependence of contact pressure on surface pattern
geometry and indentation depth is of particular interest since it affects the evolution of
pladticity in the layers. The contact pressure concentration factor, Kp, is defined as the
ratio of the maximum contact pressure of the patterned layered medium to that of the flat-
layered medium. Figure 2.10 shows the variaion of K, with indentation depth, d/R, for
different vaues of d/l and m= 0.5. In al cases, K, decreases monotonicaly with

increesing indentation depth (or norma load) and wavelength and increases with
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Fig. 210 Contact pressure concentretion factor K, for layered media with snusoidd
surfaces versus indentation depth d/R (m = 0.5).

increesing amplitude of surface waviness. This trend is in quditative agreement with
results for aplane in contact with awavy cylinder obtained by Sedbra and Berthe (1987).

The following reaion of K, was fitted to the finite element results obtained for
d/l = 0.008 and 0.016. (Data for d/I = 0.032 were not used because plagtic deformation

occurred in some of these smulations.)
d,,, d
K, =CE)* (D)’ (25)
I R
where C = 2.0327, a = 0.4578, and b = -0.1978. The corrdation factor for this fit is equa
to 0.996. The vaues of a and b ae farly close to those of the pressure concentration

factor obtained for a wavy cylinder indenting an elastic homogeneous hdf-space (Seabra

and Berthe, 1987). Since the vaues of the materid parameters and layer thickness used in
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the finite dement analyss affect the magnitudes of the parameters in Eq. (25), the vaues
of C, a, and b are specific to the modeed media. However, the same approach can be
repeated to obtain best-fit values for different materia property and thickness values of
the layers. Hence, the increase of the maximum contact pressure on layered media

possessing sSnusoida surface patterns can be determined from Eq. (2.5).

2.3.2.2Yidd Criterion
Figure 211 shows tha the normdized maximum von Mises equivdent dress in
the first layer of layered media with sinusoidd surface patterns increases with increasing

raios d/ and d/R However, the effect of the pattern geometry is dgnificantly more
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Fig. 211 Maximum von Mises equivdent dress s ;™ in the firgt (hard) layer of layered
mediawith Snusoidd surfaces versus indentation depth d/R (m= 0.5).
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pronounced than that of the indentetion depth (or norma load). For d/l = 0.032, s ;™

resches the yield stress of the layer when d/R=0.01.
Based on the samulation results for d/l = 0.008 and 0.016, a yidd criterion for
layered media with snusoidd surface patterns (d/l > 0) was obtained by fitting to the

finite dement results ardation of the form:

max

Swm

— iggh
=G, () £1L (26)

SYl
Based on an iterative procedure, it was determined that g = 0.5173 and h = 0.2715.
However, because C; is a function of materid properties, finite dement smulations for
layered media with different elagtic properties were performed in order to obtan a

relation for C; in terms of the dagtic modulus of the hard and soft layers. Figure 2.12
shows the variation of s ;™ in the fird layer with indentation depth d/R for different
vaues of the dagtic modulus ratio of the firgt (hard) and second (soft) layers, Ei/Eo, d/l =

0.016, and m= 0.5. These results demongtrate that s ™ increases with both ratios Ei/E;

and d/R After fitting to the finite dement results relaion

1 =286 — 2,0 > (2.7)

it was found that C, = 17.1798 and m = 0.6935. (The correlation factor is equal to 0.998.)
Subgtituting Eg. (2.7) into Eq. (2.6), the generd yield criterion for layered media with

snusoida surfaces can be written as

g ma éE. /(1- n)u" d. . .d
W SR MIE Ay dy gy i >0, 29
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Fig. 212 Maximum von Mises equivaent dress s ™ in the first (hard) layer of layered

media with snusoidd surfaces (d/I = 0.016) versus indentation depth d/R and eastic
modulus ratio of fird-to-second layer E1/E, (m = 0.5).

whereg, h, m, and C; are materid congtants. Based on this yied criterion, the norma
load (indentation depth) at the inception of yidding in the first layer can be predicted for
given materid properties, layer thickness, and amplitude-to-wavelength retio.

To evduae the accuracy of the yidd criterion (Eq. (2.8)), results for the
indentation depth (normal load) at the onset of pladticity in the firs layer caculated from
Eq. (28) are compared in Fig. 2.13 with results determined directly from finite eement
gmulaions. (A comparison of results for d/l = 0.008 was not possble due to the
excessve computation time required to reach yidding in this dmulation case) For d/l =
0.032, yidding is predicted from Eq. (2.8) to initiate & d/R = 0.01, which is equa to the

vaue obtained from the finite dement andyss. To examine the case of d/I = 0.016, the
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Fig. 213 Comparison of empirica and finite dement results for the maximum von Mises
equivdent dress s ;*in the fira (hard) layer of layered media with snusoidd surfaces
versus indentation depth d/R (m= 0.5).

asperity radius was reduced by a factor of 4 in order to reduce the indentation depth (i.e,
computation time) required to initiate yidding. As shown in Fg. 2.13, Eq. (2.8) gives that
yidding in the first layer commences a d/R = 0.038, while the finite dement prediction is
d/R = 0.04, i.e, the difference between the results of the two approaches is 5 percent.
Hence, Eq. (2.8) can be used to determine the load a the onsat of yidding in the firg
layer of patterned layered media in terms of surface geometry parameters and materid

properties.

2.4 Conclusions

A two-dmendond plane-dran finite dement andyss of normd and diding

contact of eadtic-plastic layered media was performed in order to eucidate the effect of
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surface patterning on the resulting deformation behavior. Stress and plagtic dtrain results

for layered media possessng meandered and snusoidal surface patterns were compared

with those of a layered medium with a smooth (flat) surface and identical layer thickness
and materiad properties subjected to the same norma and tangentiad loading. Based on the
presented results and discussion, the following main conclusions can be drawn.

(1) The apparent contact area of layered media with patterned surfaces in contact with a
rigid cylindrical asperity condsts of severa microcontacts exhibiting a trend to merge
with each other with increesng indentation depth (or normd load). During diding,
high pesk pressures occur at the trailling edges of microcontacts in the contact zone.
The maximum contact pressure is a drong function of the pattern geometry.
Significantly higher pesk pressures occur at the sharp edges (stress raisers) of the
meandered surfaces. In contrast, the contact pressure a the microcontacts within the
contact zone of layered media possessing sSnusoida surface patterns increases
smoothly due to the continuity of the surface profile.

(2) The magnitude of the surface tendle dress in the direction of diding provides
informetion about the likelihood for transverse (ring) crack initiation at the surface, in
the wake of diding. The maximum tendle resdud dress on layered media with
snusoidd surface patterns occurs a the tralling edge of the contact region. This
resdua dress is much higher than that obtained with a layered medium having a fla
surface and depends on the pattern geometry and friction coefficient. For patterned
aurfaces exhibiting high amplitude-to-wavedlength ratio and high friction, a sgnificant
tendle resdud dress develops in the wake of diding. This resdud tendle stress may

continue to increese with the accumulation of diding cydes leading to surface
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cracking. Conversdly to the flat surface that yidds a purey compressve dress fidd,
snal regions of tensle sress occur a the contact region of layered media with
snusoidal surface patterns.

(3) The maximum plagic dran due to diding contact decreases with increasing the
amplitude-to-wavelength ratio of the snusoida surface patterns. Patterned surfaces
produce lower plagtic drains and smdler plastic zones than flat surfaces due to the
lower dresses resulting from the increased compliance of the hard fird layer that can
dore dgnificant drain energy without undergoing plastic deformetion. The decreased
surface diffness of the paterned layered media reduces the maximum plagtic drain
and Sze of plagic zone in the undelying soft layer. However, this arises a the
expense of a higher surface tendle dress at the trailing edge of te contact interface,
indicating a grester probability of surface crack initiation for patterned media

(4) Relations for the contact pressure concentration factor and inception of yielding in the
fird layer of indented layered media with snusoidd surface patterns were derived
from finite dement solutions usng a bed-fit gpproach. The contact pressure
concentration factor decreases with increasing indentation depth (norma load) and
wavdength-to-amplitude ratio. The yidd criterion accounts for the effects of meaterid
properties, pattern geometry parameters, and contact load, and is in good agreement
with finite dement predictions Yidding in the firs layer is predominantly controlled

by the geometry of the surface pattern and secondarily by the indentation depth.
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CHAPTER 3

MECHANICAL AND THERMOMECHANICAL
ELASTIC-PLASTIC CONTACT ANALYSIS
OF LAYERED MEDIA WITH PATTERNED SURFACES

3.1 Introduction

An enhancement of the tribologica peformance and functiondity of contacting
surfaces is commonly achieved through depostion of thin surface layers (overcoats)
exhibiting high hardness and low coefficient of friction. Andyss of the dresses and
deformation in layered media due to diding contact is critical to the desgn of various
mechanicd components. The primary objective of previous theoreticd and numericd
andyses has been the examination of the effect of the thickness and mechanica
properties of protective overcoats on the contact stress and drain fieds in the overcoat
and underlying substrate media However, redivey less is known about the role of
surface microfeatures (typicaly produced by lithography and dectron beam techniques)
on the dadic-plagtic deformation and temperature rise due to frictional hedting in layered
media. Patterned layered media are used in many leading-edge technologies, such as
high-dendity data storage (Chou et al., 1996; White et a., 1997) and magnetic random
access memory media (Savaes et d., 1999). Achromatic interferometric lithography has
been used to fabricate arrays of microstructures with spatia periodicity of ~100 nm for
ultra-high density magnetic storage applications (Savas et d., 1999; Farhoud et d., 1998).

Contact of eadic bodies with smdl-amplitude snusoidd surfaces has been

examined in ealy andytica studies in order to determine the effect of surface geometry
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on the contact stresses. Using complex variables, Westergaard (1939) obtained a closed
form solution for the eagtic contact of a snusoidd surface and a smooth plane. Dundurs
e d. (1973) implemented a Fourier andyss in a sress function agpproach to obtan
solutions for the previous contact problem. Johnson et a. (1985) determined the pressure
digtribution and contact area, and derived closed-form asymptotic solutions for both light
and heavy contact loads resulting in amogt full contact. Komvopoulos and Choi (1992)
andyzed norma contact between regularly spaced rigid asperities and an dadic haf-
gace and obtaned finite dement solutions for the maximum contact pressure, norma
load, and subsurface dresses in terms of the asperity distribution and indentation depth.
Ramachandra and Ovaert (2000) examined the stresses produced in  discontinuous
coaings of different profiles and various mechanicd properties of the coating and
substrate materials, and observed a sgnificant decrease of the contact pressure pesks in
the case of discontinuous coatings with crowned edges. Gong and Komvopoulos (2003)
andyzed normd and diding contact of a rigid cylindricd asperity on paterned dadtic-
plagic layered media usng the finite dement method and examined the effect of pattern
geometry on the reaulting deformation and dress fidds. While the maximum plagtic
dran due to diding contact decreased with increesng amplitude-to-wavelength rétio of
gnusoidd surface patterns, the high surface tendle dress a the trailing edge of the
contact region indicated a greater probability for surface cracking in the case of the
patterned medium.

The temperature rise a diding interfaces due to frictiona hedting may affect
ggnificantly  the  tribologica behavior  of  eectromechanica components.

Thermomechanicd andyds of homogeneous hdf-spaces subjected to a fast moving heat
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source have shown tha the surface dress fidd is predominantly compressve (Ju and
Huang, 1982) and tha the maximum therma tendle dress occurs dightly beow the
tralling edge of the contact region (Huang and Ju, 1985) a a depth where the temperature
gradient begins to vanish (Ju and Liu, 1988). This criticd depth depends on the Peclet
number, which is a function of diding speed, contact radius, and materid diffusvity. Ju
and Chen (1984) conducted a thermomechanica contact andysis for layered media under
a moving friction load and a moving heat source and discussed crack initigtion in the
context of the determined sress field. Leroy e a. (1989) derived a two-dimensond
mode for a layered medium subjected to a moving heat source and reported high stresses
in overcoats with thermomechanical properties Sgnificantly different from those of the
substrate materiad. Cho and Komvopoulos (1997) performed a fracture mechanics
andyss of subsurface crack propagation and showed that, dthough frictiond heating
exhibits a negligible effect on the crack propagation direction, it increases the in-plane
crack growth rate and reduces the critical crack length at the onset of out-of-plane growth
a the right crack tip. In a more recent study, Ye and Komvopoulos (2003) developed a
finite dement modd to examine the Smultaneous effects of mechanicd and thermd
surface traction on the deformation of eadtic-plagtic layered media, and interpreted the
propengty for plastic flow and cracking in terms of the thickness and thermd properties
of the layer, normal load, and Peclet number.

Despite important ingght into thermomechanicd contact deformation of eadtic-
plagic media derived from previous sudies, a comprehensve three-dimensiond contact
andyss for dadic-plastic patterned layered media has not been reported yet. Therefore,

the principd objective of this study was to examine the effects of pattern geometry,
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coefficient of friction, indenter sharpness (radius), and diding cycles on the stresses and
drains arisng in layered patterned media subjected to norma and shear (friction) surface
tractions. Another objective was to andyze the effect of frictiond heating on the surface
temperature digtribution and evolution of subsurface plagticity. This was accomplished by
peforming finite dement smulations of norma and diding contact of a sphere on
layered media with patterned surfaces. The finite dement method is suitable for such type
of complex contact problems, for which it is extremdy difficult to obtan andytica
solutions for the surface and subsurface deformation and sress fields. Deformation and
frictional heeting in petterned layered media is discussed in the context of finite eement
results for the contact pressure didribution, subsurface dresysrain  fields, and
temperature rise a the contact surface obtained for different indentation depths,

coefficient of friction, diding cycles, indenter radius, and Peclet number.

3.2 Modeling Procedures

3.2.1 Finite Element M odel

Figure 3.1 shows a three-dimengond finite dement model of a sohere in contact
with an dadic-plagtic layered medium with a patterned surface. Due to symmetry, only
one-hdf of the sphere and layered medium were modeled in order to reduce the
computetion time. The finite dement mesh condds of 25,732 eght-node, linear
interpolation eements having a totd of 33,099 nodes. The normaized mesh dimensons
are x/H = 2.443, y/H = 0.260, and zZH = 1.0, where H is the totd thickness of the mesh.
Four pads of congant height equal to 0.86b, regularly spaced a laterd distances | =
0.714b, where b is the sde of the square pad surfaces, were modeled at the surface of the

finite dement mesh (i.e,, pad spatid periodicity equa to b + 1). In these amulations, the
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gphere was assumed to be rigid with a radius of curvature RIH = 0.763 and 1.526. Sliding
was Smulated by displacing the sphere dong the pogtive x-direction in an incrementd
fashion. The nodes on planes x = 0, y = 0, and z = O were condrained against
disolacement in the x-, y-, and z-direction, respectively.

In the thermomechanicd andyss the length of the finite dement mesh was
reduced to x/H = 1.588 and the number of pads to three due to the excessve computation

time in coupled themad and mechanicd contact andyss. Therefore, the mesh in the

y

Fig. 3.1 Three-dmendond finite demet mesh of a layered medium with a patterned
surface. (Theinsat a the top shows the detail of the refined mesh of each pad.)
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thermomechanicd smulations condsted of 20,995 eight-node, coupled temperature-
displacement finite elements comprisng a total of 27,585 nodes. In addition, the sphere
was assumed to be dadtic-perfectly plastic with a radius of curvature RH = 1.526 and
thermomechanica properties identica to those of the firs layer. The temperaiure at the
nodes of planesy = 0, and x/H = 0 and 1.588 was set equa to 20 °C. Heat conduction was

restricted across the sphere/layered medium contact interface.

3.2.2 Material Propertiesand Constitutive M odels

The normdized thickness, h/H, and dadtic-plastic properties of each layer
materid of the patterned layered medium ae given in Table 3.1. These thickness and
mechanica property vaues are typicd of layers used in magnetic recording rigid disks

conssting of carbon overcoat (layer 1), CoCrPt magnetic medium (layer 2), and CrV

Table 3.1. Thickness and thermomechanical properties of layers in the patterned layered
medium

Medium Layer 1 Layer 2 Layer 3
Thickness (WH) 0.015 0.374 0.611
Elastic modulus (GPa) 168 130 140
Poisson' sratio 0.3 0.3 0.3
Yield strength (GPa) 13 2.67 2.58
Therma expansion (K™% 31° 10° 13 10°® 49° 10°®
Specific heat (JgK) 0.5 0.411 0.438
Conductivity (W/mK) 5.2 105 96.5
Density (kg/nT) 215" 10° 8.9" 10° 7197 10°
Diffusivity (nf/s) 484" 10° 28.7° 10° 30.64° 10°®




underlayer (layer 3) deposited on NiP-coated Al-Mg substrate. The éastic modulus and
yiedld drength of layas 1 and 2 have been delemined from nanoindentation
measurements (Konwvopoulos, 2000). The specific heat, thermd conductivity, and
densty of the first layer are representative of carbon films (Graebner, 1996; Morath et 4.,
1994; Tsa and Bogy, 1987). All other dendty and therma properties were obtained from
tabulated data compiled by Kaye and Laby (1986). The von Mises yield criterion was
used to determine whether yielding occurred at a materid point. Each layer was modeled

as an dadtic- perfectly plastic materid.

3.2.3 Thermal Model

Siding friction a contact interfaces of mechanicad components promotes energy
disspation in the form of heat within the vicinity of the red contact area. The dissipated
frictiond heat is responshble for the temperaiure rise a the contact interface of diding
bodies, causng the development of therma stresses and variations in the red contect area
and contact pressure digribution due to therma expanson. Since these changes in the
contact conditions affect the heat generation rate and heat conduction across the contact
interface, the therma and mechanicd dresysrain fieds are fully coupled and, therefore,
must be deermined sSmultaneoudy raher than sequentidly. In this sudy, the
temperature was integrated using a backward-difference scheme, and the coupled system
was solved using the Newton method. A fully coupled therma-mechanica dtress andysis
automaticaly invokes a nonsymmetic matrix storage and solution scheme to improve the
computationa  efficiency. This is because the diffness matrix is asymmetric due to
friction and the convective term in the conduction-convection equation.

The heat flux dendty due to frictiond heat, q, is given by (Ye and Komvopoulos,

2003)
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q=hnpu, (32
where his the fraction of mechanica work disspated as heat, mis the coefficient of

friction, p is the contact pressure, and u is the diding speed. In the present smulations, it
is assumed that h = 1.0, which is consstent with the concluson of Uetz and Fohl (1978)
that nearly al the energy disspated in a frictiona contact is converted to hest. The
amount of frictiond heat that is ingantaneoudy conducted into each body depends on the
heat partition factor. The heat generated due to subsurface plastic flow is ignored in the
present study as Sgnificantly less than the frictiond heat generated a the contact region
in the case of rdatively high coefficient of friction (eg., m=0.5).

Although the contact interface was modeded to have zero heat capacity, it was
assigned properties for the exchange of heat by conduction and radiation, as in a previous
sudy (Ye and Komvopoulos, 2003). However, heat flux due to radiation was negected
as secondary compared to that due to conduction. The flux densty across the contact

interface (from the sphere to the layered medium), g, is defined as

d. =k, (@:-9,), (3.2)
where g1 and ¢ ae temperatures at surface nodes of the contacting bodies (i.e, the
sphere and patterned layered medium, respectively), and Ky is the gap conductance,
defined as k/Dl, where K is the therma conductivity of the firs layer, and Dl is the sze of
the smallet finite e ement.

The heat flux dendty into each contacting body, g1 and gy, repectively, is given

g, =-q. +fqg

3.3
4=, + (- 1) 3

46



where f is the heat partition factor indicating the fraction of heet disspated into one of the
contecting bodies (sphere). Smulations were peformed for f = 0.5, ie, evenly
digributed heet between the sphere and the layered medium. This is a reasonable
assumption for relaively low Peclet number (eg., Pe £ 1) and thermophysica properties
of the sphere identicd to those of the firs layer. In view of the heat flux due to

conduction across the contact interface, ¢, the heat partition factor in this study differs

from the traditiond heet partition factor.

3.2.4 Finite Element Smulations

Quas-datic contact dImulations comprising three sequentid seps of loading,
diding, and unloading of a sphere on a layered patterned medium were performed in an
incremental fashion. Normd contact (indentation) was smulated by advancing the sphere
toward the dagtic-plastic medium up to a specified indentation depth, d (or normal load).
Subsequently, the sphere was diglaced laterdly to a maximum distance, S, about ten
times the contact radius, while maintaning constant indentation depth d and coefficient
of fricion, m and then unloaded following the same deps as for the loading. All
amulations were peformed with the multipurpose finite dement code ABAQUS. To
dudy the effect of friction on the dresssrain fiedds produced in the layered medium,
friction coefficients equa to 0.1 and 0.5 were used in this study. In addition, repetitive
diding of the sphere was modded in order to investigate the dependence of stress and
plagic dran on diding cydes This is andogous to multiple-asperity diding contacts
encountered with red surfaces. The thermomechanica smulations were peformed for m
= 0.5 and Peclet number equa to 0.09 and 0.9 (Pe = 2ir/a, where r is the contact radius

after indentation, and a isthe thermd diffusivity of the sphere).
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3.3 Results and Discussion

Finite dement solutions for the dresses and drains in an dadtic-plagtic layered
medium due to indentation and diding of a rigid sphere are presented firg in order to
eucidate the ggnificance of surface microgeometry (patterning) on contact deformation
and to edablish a reference for comparison with the results of the thermomechanicd
andyss presented later. The effects of friction coefficient, sohere radius, and diding
cycles are discussed next in terms of results for the contact pressure, contact area,
subsurface dresses, and maximum plagic drain. Ladly, smulation results from a fully
coupled thermomechanicd contact anadyss of an eadic-plagic sphere in normd and
diding contact with an dadic-plastic layered patterned medium are presented to illustrate
the effect of friciond heating on the surface temperaiure rise and subsurface

deformation.

3.3.1 Mechanical Contact Analysis

Figure 3.2 shows the contact pressure digribution (in the plane of symmetry y =
0) a a sngle pad indented by a rigid sphere versus normdized indentation depth, d/R.
Initia contact occurred a the center of the pad (x/b = 0). For shadlow indentations (d/R =
0.0025), the contact pressure digtribution is smilar to the profile predicted by the Hertz
theory. However, increasing the indentation depth (d/R = 0.005 and 0.0075) causes the
maximum contact pressure to shift toward the edge of the contact area (Fig. 3.2(9)).
Further increase of the indentation depth (/R 3 0.01) produces pressure spikes at the
edges of the contact area (Fig. 3.2(b)), consstent with the contact pressure profile

obtained for a layered medium with a meandered surface pattern (Gong and
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Fig. 3.2 Contact pressure digtribution a a single pad in the symmetry plane (y =0) for
different indentation depths. (Initiad contact of the indenting rigid sphere occurs a the
center of the pad surface (x/b = 0).)
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Komvopoulos, 2003). This change of the contact pressure is dtributed to the
development of a plastic zone in the second soft layer (discussed below) and the stress
concentration at the pad corners that is further enhanced by the reativey higher rigidity
of the pad sdes. The asymmetry of the contact pressure profiles a large indentation
depths (i.e, d/R = 0.0125 and 0.015) is due to the constraint of the nodes on plane x/H =
0 agang digplacement in the x-direction. However, this effect is negligible in the results
presented below due to the much smaler indentation depth used in these smulations.

The nomdized maximum von Mises equivdent dress in the firg layer,

Syw /svi, and normalized red contact area, A /A, ae plotted in Figs. 3.3(@) and

3.3(b), respectively, as functions of normdized indentation depth, d/R, where sy, is the
yidd drength of the firdt layer and A, is the pad surface area For reatively shalow
indentations (i.e., partid contact between the spohere and the pad surface), both maximum
Mises dress and contact area increase monotonicaly with indentation depth. For d/R >
0.008, the maximum Mises dress reaches the yidd drength of the layer materid and a
small plastic zone develops adjacent to the contact region. Full contact of the pad with the
sphere occurs when d/R 3 0.1. Thus, dadtic and dadtic-plasic deformation of the pad B
associated with partial and full contact with the sphere, respectively.

The varidion of the maximum contact pressure, pmax, and maximum equivaent

plagtic dran, égw, in the second layer with normdized diding digance, SR, is shown in

Figs. 3.4(a) and 3.4(b), respectively, for m= 0.1 and 0.5. The periodic fluctuation of Pmax

is due to the pattern geometry. The fact that the two peak values of pmax ae farly cose

suggests that interaction between neighboring pads is secondary. The égw dran in the
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Fig. 3.3 (@ Maximum von Mises equivdent dress in the first (hard) layer and (b) red
contact area versus indentation depth.
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second layer increases sgnificantly at the beginning of diding and reaches a Seady date
a a digance of about two times the pad spatia periodicity (SR = 0.48). However, a
longer diding distance is required for the plagtic strain to reach a steady date in the case
of a layered medium with a smooth (flat) surface (Gong and Komvopoulos, 2003). This
difference between patterned and smooth layered media is due to the reduced plastic

deformation in the patterned medium. As shown in Figs. 3.4(a) and 3.4(b), the coefficient
of friction influences profoundly both pmax and ég“"’“in the second layer. Although the
pressure and strain results for m= 0.1 and 0.5 exhibit Smilar trends, much higher pesk
velues of pmax and €™ are produced with the higher coefficient of friction.

Figure 35 shows the evolution of the equivdent plastic dran in the layered
medium with diding distance for m= 0.5 and d/R = 0.005. For pure norma contact (SR
= 0, Fig. 35(8), the maximum plastic strain occurs below the contact interface and the
plagtic zone is confined within the second layer. Sliding of the sphere over the pad edge
(YR = 0.07, Fg. 35(b)) causes the formation of two smdl plastic zones in the second
layer a the lower right corner of the pad due to the stress concentration effect. When the
sphere dides over the next pad @R = 0.12, Fig. 3.5(c)), stress concentration produces a
and| plagic zone in the firg layer a the upper left corner of this pad, and the maximum
plagic srain occurs a the interface of the two layers, smilar to smooth layered media
(Krd and Komvopoulos, 1997). Figures 3.5(d)-3.5(f) show tha the maximum equivaent
plagic grain occurs dways a the interface of the fird and second layers. The close
gmilarity of the plagtic zones in each pad confirms that interaction of the dress fidds of
neighboring pads is negligible and that deformation depends only on the pad geometry

and mechanica properties of each layer materid.
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Fig. 3.5 Contours of equivdent plagic drain in the layered medium for m= 0.5, dR =
0.005, and SR equa to (a) 0, (b) 0.07, (c) 0.12, (d) 0.17, (e) 0.24, and (f) 0.48. (The
arow indicates the direction of the diding rigid sphere)

The dependence of the s ™ in the firg layer and é;“"’x in the second layer on the

distance and cycdles of diding is shown in Fig. 3.6 for m= 0.1 and d/R = 0.005. The close
agreement between the results of the second and third diding cycle suggests thet, for the
gmulated friction coefficient and indentation depth, a Steady-dae dresssran fidd is
reached dfter only two diding cycles The change of s ™ &fter the firgt diding cycde (Fig.
3.6(a) is a consequence of the resdua dsress due to permanent distortion of the pads

encountered during the firg diding cycle. The pegk vdue of e_g‘ax is reached during the

first diding cycle and does not change with additiond diding cydes (Fig. 3.6(b)).
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Fig. 36 (@ Maximum von Mises equivdent dress in the fird (hard) layer and (b)
maximum equivdent plagic drain in the second (soft) layer versus diding distance for

three sequentid diding cycles, m= 0.1, and d/R = 0.005.
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The effect of the sharpness of the rigid sphericd indenter on the normaized s ™

in the firg layer and é,’)“ax in the second layer can be andyzed by comparing the results for
d/R = 0.005 and 0.01 shown in Fig. 3.7. The diding distance S is normdized by the pad
goatia periodicity, b + |. As mentioned in the discusson of Fig. 3.6(8), the periodic
fluctuation of s ™ with diding disance (Fig. 3.7(a)) is due to the pattern geometry.
Sonificantly larger vdues of s ™ in the first (hard) layer (Fig. 3.7(8)) and é,;“a"in the
second (soft) layer (Fig. 3.7(b)) are produced with the relatively shap sphere (d/R =

0.01). The Mises yield condition in the hard layer (s ™ /sy1 = 1.0) is satisfied only in the

case of the sharp sphere. A steady-dtate e g‘ax is obtained in the soft layer after the sphere

dides a distance of about two times the pad spatid periodicity, for both d/R = 0.005 and
0.01. The results shown in Fg. 3.7 illustrate the dependence of pladticity in had
overcoats on the indenter sharpness. Thus, smadl plastic zones may be produced even in
ultrathin surface layers under relatively low contact loads, depending on the range of

amd| wavelengths comprising the surface profile,

3.3.2 Thermomechanical Contact Analysis

Finite dement results from a fully-coupled thermomechanical contact andyss of
an dadic-pefectly plagic sphere (with thermomechanical properties identica to those of
the fis layer) diding over the patterned medium ae presented in Figs 3.8-3.10 to
illugrate the effect of frictiond heating on the surface temperature rise ad plagtic flow in
the soft layer. Temperature and plastic srain results are interpreted in terms of diding

distance and Peclet number. To examine the effect of Peclet number on the temperature
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fidd and deformation behavior of the layered medium, smulation results are presented
for m= 0.5 and Pe = 0.09 and 0.9.

Figure 3.8 shows the evolution of the surface temperature distribution on three
neighboring pads a the plane of symmetry (y = 0) for Pe = 0.09 and d/R = 0.01. The
results are presented as a temperature increese from the room temperature, DT,
normaized by 2da /pku , where T is the average heat flux rate a the contact region (i.e,
totd heat flux divided by the contact area, pr?), and k is the therma conductivity of the

gphere, while the x coordinate is normdized by the contact radius, r. As expected, the
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Fig. 3.8 Surface temperature rise a individua neighboring pads a the plane of symmetry
(y=0) for m=0.5 dR=0.01, Pe=0.09, and SR equa to (a) 0O, (b) 0.07, (c) 0.17, (d)
0.24, (e) 0.31, and (f) 0.48.
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temperature didribution due to norma contact (indentation) of a single pad is symmetric
and its effect on neighboring pads is negligible (Fig. 3.8(@). The smdl temperaiure rise
during indentation is due to the very smal dip a the contact interface. When the sphere
dides over the edge of the left pad (Fig. 3.8(b)), the maximum temperature increases
ggnificantly and shifts toward the tralling edge of the contact region (Fig. 3.8(b)),
demongtrating a pronounced effect of frictiond heating during diding. The maximum
temperature rise a the tralling edge produces a maximum tensle therma dress dightly
below this contact edge, which is consdered to be responsble for therma cracking in the
wake of diding microcontacts. In addition, a noticesble temperature rise occurs a the
front contact edge as soon as the phere establishes contact with the middle pad. This
temperature rise intensifies noticesbly when the sphere dides over the left corner of the
middle pad (Fig. 3.8(c)), evidently due to the high-pressure peak (stress concentration
effect) a the sharp corner of the pad edge. A amilar temperature evolution is observed as
the sphere dides over the middle and right pads (Figs. 3.8(d)-3.8(f)). The close smilarity
of the temperature distributions produced when the sphere is over the center of the middle
and right pads (Figs. 3.8(d) and 3.8(f)) suggests that frictiona heating a each pad is not
affected by the heat flux a neighboring pads. A comparison of the results shown in Fig.
3.8 with those of a smooth layered medium (Ye and Komvopoulos, 2003) shows that in
addition to the discontinuous surface temperature digtribution, less hest accumulation is
encountered in the case of the patterned layered medium.

Figures 3.9(a) and 3.9(b) show the normalized maximum temperature, Tmax, in the

fird and second layers, respectively, as functions of normdized diding disance and
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Peclet number. The maximum temperature in the firs layer occurs a the surface and in
the second layer a the interface with the first layer. The periodic fluctuation of Tmax with
diding distance observed only for Pe = 0.9 suggests that the pattern effect on Tyax in each
layer is pronounced only for the relaively high Peclet number. The marked increase of
Tmax in both layers obtained for Pe = 0.9, especidly a the surface of the firgt layer (Fig.
3.9(@), demondrates tha the temperature fidd in the layered medium is strongly
dependent on the Peclet number. The smilar pesk values of Tyax in Fig. 3.9(@) provide
additiona evidence that interaction of temperature fidds of neighboring pads is
negligible. Furthermore, comparison of the results shown in Figs. 3.9(a) and 3.9(b) for Pe
= 0.9 shows that Tmax in the firs layer is much higher than that in the second layer. In the
diding smulations for m= 0.5 and Pe = 0.9, the highest temperature change in the first
and second layers was found to be equal to ~220 °C and ~50 °C, respectively. These Tmex
values are close to those obtained for a smooth layered medium (Ye and Komvopoulos,
2003), except at the pad corners where Tinax IS @out two times higher due to the pressure
peeks occurring a these locations. Such high surface temperatures may induce thermd
cracking and degrade the mechanica properties of the surface layer.

Figure 3.10 shows the variaion of the maximum equivdent plagic drain in the

second (soft) layer with normdized diding disance and Peclet number for m= 0.5 and
d/R = 0.01. A rapid increase of e_;"a"at the beginning of diding and a Seady date a a
diding digance SR = 0.17 is shown for both Peclet numbers. However, a longer diding
disance for ég‘a" to reech a seady date was found for the smooth layered medium
subjected to thermomechanica loading (Ye and Komvopoulos, 2003). While the effect of

the Peclet number on ég‘ax Is negligible during the initid stage of diding, larger vaues of
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Fig. 310 Maximum equivdent plagic dran in the second (soft) layer versus diding
distance and Peclet number for m= 0.5 and d/R = 0.01.

ég‘ax (~5.7%) were produced with the higher Peclet number a distances SR > 0.17. This

is dtributed to the fact that the surface temperature rise and difference between maximum
surface temperatures for Pe = 0.09 and 0.9 incresse with diding distance until SR > 0.17
(Fig. 39(@). The combined effects of thermd expandon coefficient mismatch and
temperature gradients at the interface (which intengfy with increasing Peclet number) are
responsible for the produced therma dsress that enhances pladticity in the second layer.
Thus, a higher Peclet number results in higher temperature rises at the surface of the hard

layer and larger pladtic drainsin the soft underlayer of the medium.
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3.4 Conclusions

An dadic-plagic finite dement andyss of normd contact (indentation) and
diding of a sohericd indenter on a layered medium with a patterned surface was
peformed in order to sudy the effects of coefficient of friction, sphere radius, and
repetitive diding on the contact stress and deformation fidds. In addition, a fully coupled
thermomechanica finite dement andyss was caried out to obtan solutions for the
surface temperature didribution and to ducidate the effect of Peclet number on the
maximum temperature rise and subsurface pladticity. Based on the presented results and
discussion, the following main conclusions can be drawn.

(1) The maximum contact pressure shifts from the center toward the edge of the contact
region a a criticd indentation depth (/R > 0.005). Pressure spikes occur at the
contact edges in the case of reatively deep indentations (d/R > 0.01). For shdlow
indentations (d/R < 0.01), both the maximum von Mises equivadent dress in the firs
layer and the contact area increase monotonicadly with indentation depth. Yidding in
the firs (hard) layer adjacent to the surface commences when d/R > 0.008, and full
contact of a pad with the sphere occurs a2 d/R > 0.01 when the sphere center is over
the center of the pad surface.

(2) The contact pressure and subsurface dresses and plastic dtrains exhibit  periodic
fluctuations due to the pattern geometry. The gmilarity of the dtress/drain results a
neighboring pads suggests that interaction effects are negligible for the modeed
pattern geometry. High-friction diding (i.e, m = 05) increases dgnificantly the
maximum equivaent plagic drain in the second (soft) layer during the beginning of

diding, leading to a deady date after a diding distance about two times the pad
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gpatiad periodicity. The reduced pladticity in the soft layer of patterned layered media
compared to that of smooth layered media demondrates the beneficid effect of
surface patterning in diding contact.

(3) The steady-date dress/drain fidds produced after the first diding cycle suggest that
deformation in the layered medium is insendtive to subsequent smilar diding cydles.
In low-friction diding, a rddively shap sphericd indenter promotes formation of
small plagtic zonesin the first hard layer at the sharp corners of the pad edges.

(4) Normd contact (indentation) of the sphere with a pad yields a symmetric temperature
digribution and negligible temperature rise a neighboring pads. Siding intengfies
the temperaiure fidd, causng the maximum temperaiure to shift from the center
toward the tralling edge of the contact region. The resulting temperature gradients
leed to the devdopment of a high therma tensle dress dightly beow the traling
edge of the contact region, which is congdered to be responsible for therma cracking
in the wake of diding microcontacts.

(5) The periodic variaion of the maximum temperaiure rise in both the firg and the
second layer with diding distance is due to the pattern geometry. The temperature
fiedd in the layered medium is a drong function of the Peclet number. The smilar
peek vdues of the maximum temperaiure in each layer illudrae that thermd
interaction between neighboring pads is negligible. Increesing the Peclet number
enhances the temperature rise a the surface and the development of therma stresses
in the firs (hard) layer. Moreover, it produces larger plagtic srains in the second
(soft) layer and in amdl regions of the firg layer, in the vicinity of the shap pad

edges.



CHAPTER 4

CONTACT STRESSANALYSISOF LAYERED ELASTIC
SOLID IN CONTACT WITH A ROUGH SURFACE

4.1 Introduction

Surface layers (overcoats) are often used to protect components subjected to
contact sresses and to enhance the tribological performance and functiondity of
interacting surfaces. Applications include cutting tools, pison rings, bearings, and
magnetic data storage. A detailed knowledge of the contact sress dtate generated when
two coated surfaces come into contact is critical to the analyss of friction and wear
mechanisms.

The problem of a layered eastic solid subjected to indentation and diding contact
by a sngle asperity has been andyzed by many researchers. The dadicity theory to
obtain the dress fidd in a layered haf-space under a prescribed axisymmetric contact
pressure profile was initidly developed by Burmigter (1945), and was later extended by
Chen (1971) to a non-axisymmetric contact pressure profile. Chen and Engd (1972)
andyzed a layered hdf-gpace under normd loading usng a least squares approach and
obtained the contact pressure profile for indenters of different geometries. Using Fourier
transforms of the Airy dress function, Gupta e d. (1973) deveoped an andyticd
procedure for computing stress didributions in the layer and the subgtrate of layered
eladtic solids subjected to arbitrary normal and shear contact stresses. Gupta and Waowit
(1974) invedtigated the plane-strain norma contact problem of a layered half-space using

an integrd equation approach and studied the effects of rdaive giffness of the indenter,
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layer, and hdf-space on the contact pressure digtribution under a cylindrica indenter.
King and O Sullivan (1987) invedigated the plane-strain problem of a rigid cylinder
diding over an dadic layered hadf-space in both in-plane and anti-plane (dong the
cylinder axis) directions and obtained the contact pressure profile and stress fields in both
the layer and the hdf-space. This work was extended by O’ Sullivan and King (1988) to
three-dimensond contact stress andyss of a spherica indenter diding over a layered
elagtic medium.

The aorementioned anayticad and numerica sudies assumed that the contacting
surfaces are idedly smooth. However, red surfaces are rough in the microscopic scae
and contact is generaly redricted to a number of microscopic contact regions located
near the peaks of the rough surface. Theoretica treatment of contacting rough surfaces is
difficult due to the randomness of the surface topography. One of the earliest dHatidtica
modds incorporating roughness effects is that of Greenwood and Williamson (1966),
who andyzed dadic contact of two rough surfaces by consdering a flaa surface in
norma contact with an equivaent rough surface comprisng spherical asperities of
congtant radius, equa to the average radius of curvature of the origind asperities. Bush et
a. (1975, 1979), Gibson (1982), and McCool (1986) developed an eastic contact model
that trested asperities as dlipticd paraboloids with randomly oriented dliptical contact
aress. Although these datisticd modds produced smple relationships between the totd
load, therma and electrica contact conductance, and tota contact area, they do not
account for the essentidly multiscae nature of the surface roughness (Greenwood, 1992)
and ignore the interaction between neighboring asperity contacts (Berthe and Vergne,

1987; Goryacheva and Dobychin, 1991; Komvopoulos and Choi, 1992). Because of the
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multiscae roughness of surfaces, surface parameters depend strongly on the sample size,
ingrument resolution, and experimentd filter used to acquire the topography data. For
this reason, fractal geometry (Magumdar and Tien, 1990; Borodich and Onishchenko,
1999) has been used to characterize engineering surfaces so that to overcome the
limitation of scale-dependent Satistical surface parameters. Many contact theories using a
fracta description for the surface topography have been developed to provide the red
contact area, contact load, and interfaciad temperaiure rise due to frictiond heating for
both homogenous hdf-space (Mgumdar and Bhushan, 1991; Bhushan and Mgumdar,
1992; Wang and Komvopoulos, 1994a, 1994b; Yan and Komvopoulos, 1998; Ciavardla
et d. 2000) as well as layered media (Komvopoulos and Ye, 201). The focus in these
sudies has been on globa parameters (i.e, total contact load, rea contact area, €fc.)
based on the assumption that the number and sze of truncated asperities follow a power-
law rdationship (Mandebrot, 1983). However, the locd dress fidd (asperity length
scae) is essentid to the prediction of yieding and potentia surface crack initiation.

The finite dement method is the most commonly used technique to obtan
solutions for the stresses and drains due to various contact loads. Komvopoulos and Ye
(2002) introduced an dadtic-plagtic finite dement modd that accounts for the actud
topographies of magnetic recording head and rigid disk media, characterized by fractd
geometry. However, the necessity for a large number of finite dements in the case of
rough surface contact makes the finite e ement approach impractical.

Therefore, the main objectives of this study are to introduce a comprehensve
contact dress andyss of a layered dadic solid in contact with a rough surface

characterized by fractd geometry. To accomplish this objective, a finite dement modd
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was developed in order to obtain the mean contact pressure and the ratio of truncated-to-
red contact area for a sngle cylindrica asperity indenting an dadic layered medium in
tems of the agpenity radius, hdf-contact width, layer thickness, and mechanicad
properties of the layered medium. The obtained relationships were incorporated into a
numerical agorithm to determine the contact pressure profiles and dress fiedd usng the

digtribution of rea asperity contacts.

4.2 Surface Characterization

Surface topogrephy parameters derived from traditionad datistica theories exhibit
dependencies on the sample length and the indrument resolution limit. Characterization
of the surface topography by fracta geometry (Manddbrot, 1983) provides a means for
overcoming such shortcomings. The surface topography can be represented by a
Weierstrass-Mandelbrot function (Berry and Lewis, 1980) that exhibits continuity, non
differentigbility, and sdf-affinity over a wide range of length scdes and can be written as

(Wang and Komvopoulos, 19944a)

aé_BQ(D'” & cos(2pgd'x/ L)
&g & oo

zZ(X)=L (4.1)

where L is the fractd sample length in the x direction, G is the fractd roughness
parameter that is ndependent of frequency, D (1 < D < 2) is the fractd dimendon that
determines the contribution of high and low frequency components in the surface

function (i.e, high D vaues correspond to smooth surfaces), g (g> 1) is a scding
paameter (typicdly, g = 1.5 (Komvopoulos and Yan, 1997)), and n is a frequency index
with n_, =intflog( L/L,)/logg] representing the upper limit of n, where int[...] denotes

the integer part of the number in the brackets and Ls is the cut-off length. The scae-
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independent fractal parameters G and D can be determined experimentaly from a log-log

plot of the dructure function of the surface profile z(x) versus wavelength (Komvopoulos,

2000).

4.3 Contact Analysis

The two-dimensond plane dran problem of a rigid rough (fractd) surface in
diding contact with an dadic layered medium is shown schematcdly in Fg. 4.1
Coulomb friction (with friction coefficient n) is assumed between the rough surface and
the surface of the layered medium. Therefore, the layered medium is subjected to
digributed norma and tangentid tractions producing a totd normd load P and a tota

tangentia force F = nP.

Fig. 41 Schematic representation of an dadtic layered medium in contact with a rigid
rough surface.
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4.3.1 Congtitutive Relationships

In order to accurately determine the contact forces a asperity contacts between
the layered medium and the rough surface, it is necessry to obtan a dress-dran
conditutive relationship and an expresson for the ratio of truncated-to-red contact area
for the layered dadgtic medium. To accomplish this objective, a finite dement modd of a
rigid cylindrical asperity in norma contact with a layered dastic medium was developed.
The mesh consss of 6,417, eight-node, isoparametric, quadrilateral dements comprisng
a totd of 19,232 nodes. The horizonta and verticd dimensions of the mesh are equd to
24R and 3.1R, respectively, where R is the radius of the rigid asperity. A 3 3 integration
scheme was used for the eight-node eements. The multi-purpose code ABAQUS was
used to peform the finite dement smulations. The subsrate maerid has an dadic
modulus of 114 GPa and Poisson ratio of 0.3. In order to examine the layer diffness
effect on the mean contact pressure and the red contact area, seven different eadtic
modulus vaues were chosen for the layer materid (i.e, E/Es= 8, 4, 2, 1, 0.5, 0.25, 0.125,
where E; and Es are the dagtic moduli for the layer and the subdrate, respectively).

Figure 4.2 shows the normdized mean contact pressure, p,/E,, versus the

representative strain, E.r/E.R, where r is the hdf-contact width and E_ is the

equivaent (effective) dastic modulus of the layered medium given by (King, 1987)

\ 1- n? 1-n? 1-n?
Ee :[(1_ e-at/r—\fa) | +e—at/r—\/ﬁ S + i ]-1’ (42)
E E E

S 1

where a is a geometric factor that depends on the indenter shape and can be determined

numericdly, t is the layer thickness, n is the Poisson ratio, and subscript i denotes the
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Fig. 42 Normdized mean contact pressure versus representative strain for an dadtic
layered medium with different eastic modulus ratio between the layer and the substrate.

indenter material. Based on the least-square fit to the data shown in Fig. 4.2, the mean

contact pressure, pm, can be related to the representative strain by

Pn_P Ee
E. s ER (4.3

Figure 4.3 shows the truncated-to-real contact area ratio, ad¢a, as a function of the
elastic modulus ratio between the layer and the substrate, Ej/Es, and r¢R, where r¢is the
truncated hdf-contact width. When the layer is differ than the substrate E/Es > 1), ada
depends on rdR, expecidly a shdlow indention depths (i.e, smdl r¢R). However, when
the layer is more compliant than the subdtrate (E/Es < 1), the effect of r¢dR on ada is

negligible. Least- square curve fitting of the results shown in Fig. 4.3 yidds
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where a1 = 1.8237,

-0.1072. The reaults
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MERN g
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(R 2

S S

by =0.4353, hy = -0.0766, a, = 1.7314, b, = 0.3939, and h; =

obtained from Eq. (44) ae in good agreement with finite eement

results obtained for different values of E/Es. The corrdation factor for E/Es> 1 and E/Es

< lisequal to 0.998 and 0.992, respectively.
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4.3.2 StressAnalysis

As the rough surface approaches the layered medium, asperity contects are
established over the smulated gpparent contact area. The basic approach for determining
the total deformation force a the contact interface involves the caculaion of the forces
produced a individua asperity contacts and the summation of asperity contact forces
over the entire surface based on the truncation of the rea rough surface. For a truncated
apeity of hdf width r¢, the longest wavedength in the asperity waveform is equd to
2r . It is assumed that the asperity contact force is primarily due to deformation of an

asperity represented by the base wave ength, with the corresponding frequency index,

0 :%’ (45)
and function,
2,0 =G @r)*® cosr). (4.6)

The asperity interference, d, is equa to the peak-to-vdley amplitude of the cosne
function. Hence,

d =2GP D (2r)&P), 4.7)
Since the contact interface is modded by a deformable plane compressed by rigid

cylindrica asperities, the radius of a contact pot is given by

R= “23 , (4.8)

which is based on the fact that the asperity radius is typicaly orders of magnitude grester
than the asperity height and the cosine-shaped asperity is approximated by a circular

profile. Subgtituting Eq. (4.7) into Eq. (4.8) yidds

73



__(a)°
- W y (4.9)

where at=2r¢ is the truncated area of the contact spot. Subgtituting Eqg. (4.9) into Eq.

(4.4) yidds ardationship between the truncated area, a¢ and the real contact ares, a,

1
é E, o, @D
at=g, (=2)"% (8G" ") *ay , (4.10)
é E (

where subscript k is equd to 1 for iff layer E/Es> 1) and 2 for compliant layer E/Es <

1). According to Eq. (4.3), the elagtic force at a contact spot is given by

G(D—l)E* 2
DF, =22 =% (4.11)
(@9
Subdtituting Eq. (4.10) into Eq. (4.11) yields the dastic force at a contact spot,

b

. oo . m € E. , U@ D)%
DFy =pG*VEa" ™" " @, (29 (867 1) g SN A V)

e s u

Because the equivdent dagtic modulus is a function of the red contact width, which is
not known a priori, an iteration procedure was used to determine the equivaent dadtic
modulus and the red contact area in order to satisfy Egs. (4.2) and (4.4). The initid vaue
of the real contact area was assumed to be equa to the truncated area. Using this iteration
scheme, the digtribution of the red contact area and corresponding equivaent dadic
modulus were obtained at each contact spot. Hence, the elastic force a each contact spot
was determined from Eq. (4.12). It is assumed that the contact spots at the interface are
aufficiently gpart from each other such that interactions can be neglected. Consequently,

the total contact force can be obtained as

N .
Fa =& DFy (4.13)

i=1l
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where DF, is the deformation force of the ith asperity contact, and N is the number of

asperity contacts at the interface.

Contact pressure distributions were obtained based on the assumption that the
loca contact pressure is proportiond to the square root of the loca interference. A
piecewise-linear didribution of contact pressure was obtaned by superpostion of

overlapping triangular pressure eements (Johnson, 1985). The pesk vaue of the jth

triangular pressure dement, p/', at the ith asperity microcontact is expressed as

,_ A’ DRy
S . (4.14)
a+d’

j=1

Pi

where d’ is the locd interference at the jth point, M; is the total number of grids a ith
asperity contact, and c is the grid Sze. The advantage of the piecewise-linear didtribution
of the contact pressure is that it produces continuous surface displacements. For fully-
developed diding contact, the contact pressure profile is assumed to be unaffected by the
shear traction. This assumption is reasonable for low-friction diding. The shear traction is

g(x) = np(x) , where misthe coefficient of friction a the interface.

The dress fidd in the layered medium was cadculated by superpostion of the
dress fidds generated by triangular didributions of norma and tangentid tractions at
each contact spot and the stress fidds of dl the contact spots established a the interface.
The approach presented by Gupta @ a. (1973) was used to calculate the stresses in the
layered medium due to the triangular didributions of norma and tangentid tractions.
With reference to the coordinate syslem shown in Fig. 4.4, the stresses and displacements

in the layer are functions of x and z; and in the substrate are functions of x and z. The
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Fig. 44 Description of coordinates for a layered medium subjected to triangular
digtributions of norma and tangentid tractions.

dresses are most conveniently expressed in terms of an Airy dress function, F, which
must satisfy the biharmonic equation N“F =0, and can be differentiated to obtain the
stresses according to

2 2 2
S =ﬂF2 sxx=.”|:2 szx=-ﬂF. (4.15)
qIx 9z 129x

The traction boundary conditions a the layer surface and the interface condition that

displacements and tractions must be continuous are expressed as

sP(x0) =-poA-[{/c), MEc  sP(x0)=0 [§>c

s P(x0)=-qg,1-|4/c), [MEc sP(x0=0, [{>c (416)
s D (x.h) =s 2(x,0) u® (x,h) =u®@(x,0) L
s P(x.h) =s 2 (x,0) w® (x,h) =w® (x,0)
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where superscripts 1 and 2 refer to the layer and the substrate, respectively, and u and w
denote displacements in the x and z directions, respectively. The solution is obtained by

taking the Fourier transform of F with respect to x using the definition
F = (‘fF (x,2)e"*dx. (4.17)

For F to saisfy the bihaomonic equation and to generate finite stresses at infinity, F

must be of the form:

F®=(A+Bz)e M +(C, +Dz)e™

, 4.18
|:_(2) = (AZ + Bzzz)e-lwllz ( )

where F @ and F @ ae solutions of F in the layer and the subgtrate, respectively. The
two boundary and four interface conditions provide a st of sSx coupled equations

including the coefficients in Eq. (4.18) and the Fourier trandforms of the surface traction
digributions, p(x, 2) and q(x, 2. When F is obtained, the stresses can be caculated from

Eq. (4.15) by applying an inverse transformation of F .

Therefore, the stress at apoint A(X, 2) in the layered medium can be written as

N M;-1

s(x2) =3 a5 |ij (x,2), (4.19)

i=1 j=1
where s denotes stress and s|ii represents the stress due to the jth triangular digtributions

of contact pressure and tangentid (friction) tractions at the ith contact spot.

4.4 Results and Discussion

4.4.1 Validation of the Contact Algorithm
To vdidate the andyticd mode of the layered dagtic medium, numericd results

for a homogenous dadic hdf-gpace in normd and diding contact with a rigid cylinder
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are contrasted with theoretica results (Johnson, 1985). The hdf-space has an dadtic
modulus of 114 GPa and Poisson ratio of 0.3. Figure 4.5(8) shows the normalized contact
pressure didribution on the indented homogenous haf-space. The x coordinate was
normdized by the hdf-contact width, ro, and the contact pressure, p, by the maximum
contact pressure, p,. The good agreement between andyticad and theoretica results
confirms the vaidity of the modd and suggests that the assumption that the local contact
pressure is proportiona to the square root of the associated interference is reasonable.
Figure 4.5(b) shows the effect of the dastic modulus ratio on the pressure profile due to
indentaetion of a layered medium by a rigid cylinder. The maximum contact pressure
obtained with the homogenous hdf-space E/Es = 1), p,, ad corresponding haf-contact
width, ro, were used to normdize the pressure and the x coordinate, respectively. As
expected, higher contact pressure and smaler contact area were obtained with iff layers
(BE/Es > 1) and the opposite with compliant layers (E/Es < 1). The contact area and
pressure are quite different from those of the Hertzian profile, especidly when the
difference between E; and Es is large. The contact pressure profiles shown in Fig. 4.5(b)
aredso in good agreement with smilar results by King and O Sulllivan (1987).

The normaized subsurface stresses, Sy, Sz andty (principa shear dress), dong
the axis of symmery of the homogenous hdf-space due to indentation (m= 0) and
normaized surface stresses, Sxx, Sz and ty, due to diding (m= 0.5) of a rigid cylinder are
shown in Figs 4.6(a) and 4.6(b), respectively. The symbols represent numerica results
and the curves theoreticd solutions (Johnson, 1985). The good agreement between

numerical and theoretical dress results demondrates the accuracy of the agorithm and
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Fig. 45 Normalized contact pressure distributions for (@) homogenous and (b) layered
media with different easic modulus ratios of the layer and the subsrate materias
indented by arigid cylinder.
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Fig. 46 (@ Normdized subsurface dresses dong the axis of symmetry and (b)
normdized surface dresses didributions of a layered medium in contact with a rigid
cylinder. (Symbols represent numericd results and lines theoretical solutions (Johnson,

1985).)
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the efficency of the piecewise-linear contact pressure digtributions. Figure 4.6(b) reveds
the occurrence of a maximum surface tendle dress a the traling edge of the contact
region, which is accurately predicted by the agorithm. The results shown in Figs 4.5 and
46 veify the gppropricteness of the present andysds for obtaining solutions for the

surface and subsurface stress due to norma and tangentia surface tractions.

4.4.2 Contact Load and Contact Area

The total contact load and contact area of a rigid rough surface in contact with a
layered dadic hdf-space are presented firs in order to ducidate the dgnificance of
materid properties, layer thickness, and surface topography on the globa parameters of
this contact sysem. The effects of the coefficient of friction, layer thickness, and materia
properties on the pressure profile, surface dress, interface stress, von Mises stress, and
maximum principa stress are discussed next. The substrate has an eastic modulus of 114
GPa and Poisson ratio of 0.3. In dl smulations, the sample length L =5 mmand G =
9.46" 10 nm.

The dgnificance of the fractd dimenson D on the contact load and real contact
area can be interpreted in light of the results shown in Fig. 4.7 for E/Es=2and t =5 nm.
Both the total contact load and the red contact area increase with the maximum surface
interference. Figure 4.7(a) shows that increasing the fractd dimenson D increases the
contect load a larger surface interferences while the oppodte is true a smdler surface
interferences. This is because only one or two asperity contacts are established at smaller
interferences and the rough surface with a smdler D vdue yidds sharper aspeities in

contact, which generate a larger contact load. With the increese of the surface
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Fig. 4.7 Effect of fractd dimenson on (&) contact load and (b) red-to-apparent contact
area ratio versus maximum surface interference for an eadic layered medium (E/Es = 2
andt = 5 nm) indented by arough surface (G = 9.46 = 10 nm).
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interference, the rough surface with the higher D vaue produces more asperity contacts,
thus resulting in a higher contact load with incressng tota red contact area Figure
47() shows that, for fixed fractd roughness and maximum surface interference,
increasing the fracta dimenson increases the red contact area Sgnificantly. This is due
to the fact that higher D values are associated with smoother surface profiles.

Figures 4.8(a) and 4.8(b) show the variations of the total contact load, P, and rea-
to-apparent contact area ratio, A/As, with the maximum surface interference distance,
dmax, ad the dastic modulus rétio, E/Es, for D = 1.44 and t = 5 nm. As expected, both
the total contact load and the red contact area increase with the increase of the maximum
surface interference. For fixed dmax, the total load increases and the contact area decreases
with theincrease of E//Es.

To illugrate the effect of the layer thickness on the contact load and red contact
areg, results for a layered medium with layer thickness t = 5, 10, 20, and 100 nm are
contrasted in Fig. 4.9 for E/Es = 4 and D = 1.44. It can be seen that the effect of the layer
thickness is negligible a smdl surface interfaces (or light contact loads). For diff layer
(B/Es >1) and large surface interference, the contact load increases while the contact area
decreases with the increase of the film thickness This is because the effect of the diff
layer on the contact load and contact area is stronger than that of the subdtrate at a larger
surface interference and grester film thickness. For the specific case of D = 1.44, G =

9.46" 10* nm, and EJ/Es = 4, there is no difference between the media with t = 20 and 100

nmwhen dpmax < 1.5 nm.
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Fig. 4.9 Effect of layer thickness on (8) contact load and (b) red-to-apparent contact area
ratio versus maximum surface interference for an dadic layered medium (E/Es = 4)
indented by arough surface (D = 1.44 and G = 9.46 ~ 10" nm).
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4.4.3 Contact Stresses

A detaled knowledge of the contact dress fidd is essentid to the andlyss of the
mechanisms controlling fracture, fatigue, and wear. The effects of materid properties and
layer thickness on the contact stresses due to norma bading are presented fird, followed
by stress results for smultaneous norma and tangentid contact loadings.

The evolution of contact stresses during indentation can be interpreted in terms of
the maximum von Mises equivdent sresses, s ™, in the layer and the substrate, shown
in Fgs 4.10@ and 4.10(b), respectively, as a function of the maximum surface
interference, dmax, and the eagtic modulus rétio, E/Es. In both layer and substrate, s ™
increases with dmax and Ej/Es. This is expected because higher dmax and E/Es yidd larger
contact loads, as shown in Fig. 4.8(a). For fixed dmax, it is more lkdy to initiate yidding
in the subdrate for a 4iff layer than a compliant layer. This is because the compliant
layer can store more eagtic energy and, consequently, reduce the dress intensty in the
substrate and also due to the significant stress mncentration at the interface in the case of
the diff layer resulting from the larger dastic modulus mismaich. Another important
feature shown in Figs 4.10(@) and 4.10(b) is that for shdlow indentation @max < 1 nm),
sw vaies vey indgnificantly because the effect of the subdrate compliance is
secondary. Reaults (not shown here for brevity) showed that, for the giffer layer E/Es =
4), s~ is more likdy to occur a or near the surface, while for the softer layer E/Es =

0.25), s, is more likely to occur below the surface in the layer and at the interface. It

was dso found that the pogtion of s ™ dhifts from the surface to the interface with the
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increase of dmax, 1.€, light contact loads promote surface yidding, while high contact
loads enhance in yidding at the interface.

Figure 4.11 shows s ;™ in the layer and the subdrate as a function of dmax for
different values of the layer thickness and E//Es = 4. As expected, s ™ increases with the
increases of dmax. The indgnificant differences in s ;™ in the layer for t = 10 and 20 nm
are due to the indgnificant differences in the contact load and contact area, as shown in
Fig. 49. However, Fig. 411(b) shows that s ;™ in the substrate depends strongly on the
layer thickness for smdl interference, i.e, dmax < 1.5 nm. The increase of s ;™ in the

subgtrate with the decease of the layer thickness is attributed to the intendfication of the

sresses extending into the substrate. A comparison of Figs. 4.10 and 4.11 shows an
overdl gdronger effect of E/Es on s, while the effect of the layer thickness is less
pronounced.

Figure 4.12(a) shows s ™ in the layer and the subgtrate as a function of E/Es for
t =5 nm and dna/s = 0.25, where s is the root-mean-square surface roughness.
Siffening of the layer intendfies greatly s ™ in the layer; however, the effect on s ™
in the substrate is less pronounced. A steady dtate s ;™ occurs when E, / E_ 3 3. Figure
4.12(b) shows s ;™ in the layer and the substrate as a function of layer thickness for

dmax/s = 0.25. In the substrate, s ;™ decreases to a steady State with the increase of the

layer thickness. Hence, layer thickness effect on s ;™ in the subgtrate is negligible for

redively thick layers (t > 10 nm). The results for s ™ in the subgrate shown in Figs.
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Fig. 4.12 Effects of (8) dastic modulus ratio and (b) layer thickness on the maximum von
Mises equivaent stresses in the layer and the subdtrate of a layered medium indented by a
rough surface (dmax/s = 0.25, D = 1.34, and G = 9.46 ~ 10 nm).
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4.12(a) and 4.12(b) suggest the existence of critica values of E; and t, above which, the
layer is effective in suppressing the stresses.

Figure 4.13 shows pressure distributions at asperity contacts and associated von
Mises equivaent stress contours for E//Es= 4, 1, and 0.25, D = 1.34, G = 9.46 ~ 10 nm,
and dmax/s = 0.25. The corresponding segments of the rough surface are dso shown at the
top of Fig. 4.13 for reference. A comparison of the contact pressure profiles shown in
Figs. 4.13(a)-4.13(c) shows a drong effect of E/Es on the contact pressure distribution.
Higher pressure pesks and smaler asperity contact areas are produced with the increase
of E/Es This is expected because, a a given dmax Vaue, the contact load increases with
E/Es, as shown in Fig. 4.8. For the differ layer E/Es = 4), the contact interface conssts
of four digtinct contact spots, while for the compliant layer (E/Es = 0.25) there are five
contact spots. The von Mises siress contours show that the subsurface stress field depends
drongly on the éastic modulus ratio E/Es. The von Mises dress contours for E/Es = 4

are confined within the 4iff layer and exhibit sgnificant discontinuities at the interface.
The increase of s, with E/Es is due to the increase of the contact pressure. It is noted
that p™ and s ™ aways occur a the sharper asperity contact. For E/Es = 0.25, the
postion of s * shifts from the surface to the interface due to the increase of the asperity

contact area.

To evduae the effect of friction on the propensty for surface cracking, the

maximum tendle dress s >, a the layer surface as a function of E/Es is shown in Fg.

414 for m= 0.1 and 0.5. For m= 0.1, s ;™ is insengtive to the variation of E/Es
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Fig. 4.13 Pressure didributions a asperity contacts and corresponding contours of von
Mises equivdent dress in an dadic layered medium due to indentation by a rough
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Fg. 414 Maximum surface tendle dress a the surface of a layered medium in diding
contact with a rough surface dme/s = 0.25, D = 1.34, and G = 9.46 ~ 10™* nm) versus
gagtic modulus ratio Ey/Es for m= 0.5 and 0.1.

However, s 77 increases sgnificantly with the increese of E//Es when m= 0.5. The high
vaue of s 7 obtained for E/Es = 4 and m= 0.5 indicates a grester likelihood for surface
cracking. It is well established that s ;™ at the surface and s ™ in the subsurface control

crack initistion. Fgure 4.15 shows didributions of sy a the surface and s, in the

subsurface for E/Es = 4, 1, and 0.25 due to diding of a rough surface © = 1.34 and G =
9.46" 10* nm) for m= 0.5, dmax/s = 0.25, and t = 5 nm. Corresponding segments of the

rough surface are adso provided for reference. The smulation results reved a Smilar
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trend for different E/Es vaues ie, s a the traling edges of asperity contacts.
However, the megnitudes of s for E/Es = 4 ae dgnificantly higher then those
obtained for E/Es = 0.25. The contours of s, , which is the surface tendle sress Sy in
the weke of diding, show tha the differ layer is subjected to Sgnificantly higher tensle
stresses than the compliant layer, conagtent with the conclusion of a previous study (Krd
and Komvopoulos, 1996). Since s,™ occurs dways a the surface, surface cracking is
predominant under diding conditions conducive to high friction coefficients This
phenomenon was confirmed by an earlier fracture andysis (Bower and Fleck, 1994). It
was shown that crack initiation at the surface commences immediatdy behind the contact
region of a diding indenter, where the tendle dress reaches a maximum. Moreover, in
the case of E/Es = 4, there are three smdl regions a the interface where a high tensile
dress is produced. Consequently, for relatively giff layers, crack initiaion is likely to
occur ether a the surface or the interface, while for compliant layers crack initiation is
favored at the surface.

Layer debonding (delamination) depends on the magnitude of the shear dress,
t,, a the interface. Figure 4.16 shows the distribution of t,, at the interface of the
layered medium in diding contact with a rough surface © = 1.34 and G = 9.46" 10 nm)
for E/Es = 4, 1, and 0.25 and m= 0.5. The magnitude of t , depends strongly on E/Es. A
comparison of the shear dress results for different vaues of E/Es shows an increased
propensty for delamination across the interface of the differ layer. The exisence of

sved intefacid locations of high t,, suggests that delamination may occur at severd
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FHg. 4.16 Shear dress didributions at the interface of an dadtic layered medium in diding

contact with a rough surface @max/s = 0.25, D = 1.34, and G = 9.46 ~ 10 nm) for m=
0.5: (a) E/Es= 4, (b) E/Es=1, and (c) E/Es = 0.25.
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locetions @ong the interface. Figure 4.17(a) shows the maximum shear dress, t ., a the
interface as a function of E/Es for m= 0.1 and 0.5. The t ;™ dress increases sgnificantly
with the increase of E//Es when E|/Es < 2, and reaches a steady state when E/Es > 2. The
effect of friction on t 7™ is secondary compared to that of E/Es, conversdy to the s
(Fig. 4.14). The dgnificance of the layer thickness on the maximum interfacid shear
dress can be interpreted in terms of the results shown in Fig. 4.17(b). The magnitude of
t decreases by afactor of 2 to 3, depending on the value of m with the increase of the
layer thickness, reaching a congant vaue when t > 10 nm. This behavior is expected

because the subdrate effect on the dress fidd diminishes with the increases of the layer

thickness. A comparison of the shear stress curves for m= 0.1 and 0.5 shows that the

effect of mon t )™ is secondary compared to the effects of Ei/Esand t.

45 Conclusions

A plane-drain andyticd modd was developed for an dadic layered medium in
diding contact with a rough (fractd) surface. The ggnificance of the materid properties,
layer thickness, and surface topography on globad parameters was examined in the
context of results for the norma load and contact area. The contact pressure and loca
dress fields were interpreted in terms of the effects of the coefficient of friction, layer
thickness, and materia properties on the pressure profile, surface and interface stresses,
maximum principa stress, and von Mises equivaent stress. Based on the obtained results

and discussion, the following main conclusions can be drawn.
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Fig. 4.17 Vaiaion of maximum shear dress a the interface of an dadtic layered medium
in diding contact with a rough surface @max/s = 0.25, D = 1.34, and G = 9.46 ~ 10 nm)
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(1) A conditutive reationship between the mean contact pressure and a representative
drain parameter was derived for an indented eagtic layered medium. The red contact
area of an asperity contact spot was obtained as a function of mechanica properties of
the layered medium, layer thickness, truncated haf- contact width, and asperity radius.

(2) Contact pressure profiles and the dress fidd were determined for the digtribution of
the asperity contacts.

(3) Both the contact load and red contact area increase monotonicaly with the maximum
aurface interference. The effects of the fractd parameter and dastic modulus of the
layer on the contact load and red contact area are dominant, while the effect of the
layer thickness is rdatively small. The contact load increases and the contact area
decreases with the increase of the dastic modulus of the layer. The effect of the layer
thickness is negligible for smdl interference (or light contact loads) and secondary for
relaively large interferences.

(4) The maximum von Mises equivdent dress in both the layer and the subdrate
increeses with the maximum interference and the dastic modulus of the layer. The
maximum von Mises sress occurs aways a the sharper asperity contacts. For a tiff
layer, the maximum von Mises is more likely to occur a or near the surface, while for
a compliant layer it is favored to arise under the surface or a the interface. The
maximum von Mises dress in the subgrate depends strongly on the layer thickness at
smd| interference.

(5) The maximum tendle dress a the surface arises a@ the trailing edges of asperity
contacts and intengfies with the increese of the dagtic modulus of the layer and the

coefficdent of friction. The differ layer is subjected to dgnificantly higher tendle
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dresses than the compliant layer. The pesk vadue of the maximum principad dress
occurs adways a the surface, which indicates that crack initiation at the layer surface
isfavored. However, for tiff layers, crack initiation a the interface is dso possible.

(6) The shear dress a the interface depends strongly on the éastic modulus and the
thickness of the layer. A giff layer enhances the likelihood for interface cracking and
dlamination much more than a compliant layer. The effect of the coefficient of
friction on the interfacia shear dress is secondary compared to the effects of the

elastic modulus and thickness of the layer.
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CHAPTER S

THERMOMECHANICAL ANALYSISOF
SEMI-INFINITE SOLID IN SLIDING CONTACT WITH
A FRACTAL SURFACE

5.1 Introduction

Frictiond heating and asociated temperature rise may dgnificantly affect the
mechanica response of interacting surfaces. Knowledge of thermodadtic stresses in
diding solid bodies is essentid for accurate falure andyds of mechanicd sysems. The
determination of the themad and themodadic fidds in  semi-infinite  homogeneous
media due to different surface heat sources has been the objective of severad past studies.
One of the pioneering early andyses is dtributed to Blok (1937) who examined the flash
temperature and maximum temperature rise a the surface of a semi-infinite eadtic body
due to a uniform square heat source moving at peeds corresponding to high and low
Peclet numbers. Later, Jaeger (1942) extended the previous andyss to the intermediate
regime of Peclet number.

The previous studies edtablished the foundation of both anayticd and numericd
thermomechanical sudies. Based on a Green's function method, Tian and Kennedy
(1994) determined the temperature rise a the surface of a semi-infinite body due to
different moving heat sources. Ju and Huang (1982) peformed a thermomechanica
andyss of homogeneous hdf-spaces exposed to a fast moving heat source and found
predominantly compressive sresses at the surface. Huang and Ju (1985) and Ju and Liu

(1988) observed that the maximum tensle thermd dress occurs dightly below the
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trailling edge of the contact region at a depth controlled by the Peclet number. Leroy et d.
(1989) conducted a two-dimensond andyss of a heat source moving over a layered
medium and reported high dresses in the surface layer when the mismaich between the
layer and subgtrate thermomechanica properties was large. Bryant (1988) used a Fourier
tranformation method to derive thema and thermodadtic solutions for a moving line
heat source, and Ju and Farris (1997) obtained therma and thermodadtic solutions in the
frequency domain for an arbitrary hest source moving over an eéadic haf-space. More
recently, Liu and Wang (2003) invesigated the trandent thermoeastic dress fidds
generated in a hdf-space due to parabolic or irregularly distributed heat source moving at
congtant velocity.

In the previous studies, the a priori assumed digtribution of the heat sources was
decoupled from the mechanica response of the deformed medium. To consder the effect
of frictiond heating on contact deformation, it IS necessty to account for the
concomitant effects of mechanicd and thermd dresses. In view of the complex andytica
relationships in fully coupled thermomechanical contact problems, the mgority of earlier
andyses were based on the finite dement method. Gupta et d. (1993) used a two-
dimensond finite dement modd to sudy rolling and diding contact on a semi-infinite
medium under the assumption of invariant contact pressure. Cho and Komvopoulos
(1997) presented a thermodadtic finite dement andysis of subsurface crack propagetion.
Ye and Komvopoulos (2003) developed a finite dement mode to examine the
smultaneous effects of mechanicad and thermd surface traction on the deformation of
eadic-pladtic layered media. Gong and Komvopoulos (2004a) conducted a fully coupled

finite dement andyds of an dadic-plagtic layered medium with a patterned surface in
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contact with an dadic-plagic sphere. Despite the mathematical complexity of andytica
gpproaches deding with thermomechanica contact problems, some andytical solutions
have aso been obtained for thermoelastic contacts. Azarkhin and Barber (1986) derived
solutions for the trandent thermodadtic Hertz problem usng Green's function and
Fourier transformation techniques, and Lee and Barber (1993) examined the stability of a
brake disk diding between two friction pads and found that the mode with the lowest
criticd speed was adways antisymmetric about the layer mid-plane. Wang and Liu (1999)
and Liu and Wang (2000) introduced a two-dimensond thermoelastic contact mode of
two infinitdy large rough surfaces that accounts for the thermd effect on the mechanicad
respponse, and later extended the previous andyss to a three-dimensond
thermomechanica mode of nortconforming contacts (Liu and Wang, 2001).

Although the previous dudies have provided useful indght into the temperaiure
and thermodadic dress fidds in solids due to moving heat sources or diding rough
aurfaces, andyticd themomechanicd dudies of rough surfaces ducidaing the
dependence of temperature and stress fields on surface topography parameters and Peclet
number have not been reported yet. Therefore, the objective of this study was to develop
a thermomechanica andyss of diding contact between a semi-infinite dadic medium
and a rough (fractd) surface, accounting for the smultaneous effects of thermd and
mechanical deformation. Results are presented for the contact pressure distribution and
surface and subsurface temperaiure and dress fields in terms of Peclet number and
surface topography (fractd) parameters. The significance of mechanica surface traction
and frictiond heeting on the propengty for yidding and cracking a the diding surface

areinterpreted in light of numericd results.
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5.2 Thermomechanical Contact Analysis

Siding friction leads to energy disspation in the form of heat within the vicinity
of the red contact area. The frictional heet disspated in the medium is responsible for the
temperature rise, resulting in the development of therma dresses and variaions in the
red contact area and contact pressure didribution due to thermal expanson. Because
such changes affect heat generation rate and heat conduction across the contact interface,
the therma and mechanicd dress and drain fidds are fully coupled and, therefore, must

be determined smultaneoudy.

5.2.1 Surface Deformation and Temperature Field

Figure 5.1 shows a schematic of a rough, rigid, and adiabatic surface in diding

J\»JW W‘W‘J J\L»r ‘ jv\ v,

E,nr,a, ck

¢
A Semi-infinite Elastic Medium

Fig. 5.1 Schematic representation of a rough (fractd) surface diding over an dadtic semi-
infinite s0lid and pertinent nomendlature.
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contact with a deformable semi-infinite solid possessing a smooth surface. Coulomb
friction is assumed a the diding contact interface. The dasgtic medium is subjected to
norma and tangentid (friction) surface tractions, producing a tota normd load, P, in the
z direction and a totd tangentid load, F = nP, in the x direction, where m is the
coefficient of friction. Frictiond heat generated a each asperity microcontact is
conducted into the eastic medium. Similar to the treatment of Cardaw and Jaeger (1959),
a coordinate system &, y, 2) on the moving rough surface and a @ordinate system (', v/,
Z) on the gationary eastic medium are used in the anadyss. The two coordinate systems
arerelated by

X=x(-Vt z=2z( (5.0
where t is the time, and V is the moving (diding) velocity. The heat flux density due to
frictiona hest, Q, isgiven by

Q=ynpV, (5.2)
where y is the fraction of mechanicd work disspated as heet, and p is the contact
pressure. It is assumed that y = 1.0, i.e, dl the energy dissipated in a frictiond contact is
converted to heat, conssent with the concluson of Uetz and Fohl (1978). Since the
rough surface is assumed to be adiabatic, heat conduction occurs only into the eagtic
medium.

The normal displacement is due to the effects of contact pressure, shear traction,

and thermodadic digortion induced by frictiond heating. Hence, the normd
displacement at the surface, u,, can be expressed as,

u, = U Ul (53)
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where ul', u®, and u] are the normal displacements due to the contact pressure, shear
traction, and frictiond hesting, respectively. Each microcontact area is divided into a
number of smdl segments of equa width, b. A piecewise-lineer didribution of the
contact pressure is obtained by superpostion of overlgpping triangular pressure dements
(Johnson, 1985).

The u' displacement due to the triangular pressure digtribution shown in Fig.

5.2(a) is given by (Johnson, 1985)

. (1-n? pOI X+ bo be ae<oP
uV =2 7 X+b)“In¢ ——+ X- b)In ——-2x Inc== y+C, 54
* =720 ( ) ne g T Bing= =2 Ebz{ 4

where pp is the maximum contact pressure, E and n are the astic modulus and Poisson
ratio of the semi-infinite solid, and C is a condant determined from a reference point
chosen on the z axis a disance d below the surface. The u’ displacement due to the
triangular shear traction distribution shown in Fig. 5.2(a) is obtained as (Johnson, 1985)

(d- n)(1+n) qO

M 8o L e

0f = I(l 2nI)E(1+n)q0 <> b (55)
i (- M)(a+n) g,b <-b
f E 2

where o is the pesk vaue of the shear traction. A triangular digtribution of a heat source
moving from left to right & veocty V is shown in Fig. 5.2(b). For convenience, the

fallowing non-dimensiona parameters are introduced in the analys's,

h==. (5.6)
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Fig. 5.2 Triangular digributions of (@ norma and tangentid tractions and (b) heet
source.
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The themodadic digtortion a the surface due to a moving heat source of triangular

digribution can be obtained by superpostion of the moving line heat source solutions by

Barber (1984). Hence, the u] displacement can be expressed as

i
.:.| X E£-1
i
ul =11 Q- e " ™1,[Pex - h)]dh x31 (5.7)
!
|
I -1EXE1L
|

Tl - Pefx- 1 1 U
i %01(1- h|e "1, Pe(x - h)]dh X +Ex28gn(x)E

where |l is the modified zero-order Bessd function of the firgt kind, sgn(x) is a sgn

functionof x, and | isdefined as

__aQ,@+n)b’

5.8
r kPe (8)

where Q, is the pesk vaue of the heat flux, Pe is the Peclet number (Pe = Vb/2k), and

a,r,c, and k ae the themd expanson, mass dendty, specific heat, and thermd
diffugvity of the semi-infinite solid, respectively.

Therefore, the total surface displacement u, can be obtaned by summing the
displacement components given by Egs. (5.4), (5.5), and (5.7) a each triangular element

and then integrating over dl the asperity microcontacts comprising the red contact ares,

T s () +u]

(], (5.9)

<!)\j Md—l
u(x)=a alu

= j=1

where N is the tota number of asperity microcontacts, M; is the total number of segments

S
z

Jand ul|! ae the norma surface

j
i’u

in the ith asperity microcontact, and u)'
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displacements due to the jth triangular digtributions of contact pressure, shear traction,
and frictiona heat, respectively, at the ith agperity microcontact.

Since Q, and g can be expressed as functions of po, i.e.,

Qo =y MpV, g, =mpy, (5.10)

N
it follows that Eq. (5.9) represents a set of § M, smultaneous equations that can be

i=1
expressed in matrix form,

{U;} ={C{F}, (5.11)
where {U,} is the matrix of norma surface displacements, {P} is the contact pressure
matrix, and {C} is a sgquare and symmetric matrix termed the influence coefficient
matrix. A procedure based on the matrix inverson method, which is smilar to that used
by Baley and Sayles (1991) to determine the subsurface stresses in rough surfaces due to
both norma and tangentid forces, was used to solve Eq. (5.11). Since both the contact
pressure and the red contact area are unknown, the following iteration method was used
to solve Eq. (5.11). Fire, the initid surface displacement matrix {U;} was determined by
truncating the rough surface by a plane to a maximum surface interference, dmax, and the
corresponding contact pressure was caculated from {P} = {C'HU,}. Any triangular
pressure dements exhibiting negative pressure violate the requirement p > 0 and were
removed from the contact regon. Then, the surface displacement was recaculaied using
Eg. (5.11) and any overlgpping points were added to the assumed contact region. With
the new set of contact points, Eq. (5.11) was solved again to obtain the contact pressure
{P}. This iteration procedure was repeated until conditions of postive contact pressure,

no surface penetration, and contact only within the current contact region were satisfied.
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Following an approach smilar to that for a uniform band heat source (Cardaw
and Jaeger, 1959), the temperature rise, DT, due to a heat source of triangular distribution

was found to be

Qb
pk

DT === 3(1- h)e ™ ™K { Pel(x +h)? +2 2J*?}ch, (5.12)

where k is the thermd conductivity of the semi-infinite solid, and Ko is the modified zero-
order Bessdl function of the second kind. Therefore, the temperature rise a a point , 2),
obtained by superimposition, is given by

C')\‘ Md-—l )
DT(x2)=Q 4 DT|i' (x,2), (5.13)

izl j=1
where DT|i"( X,Z) is the temperature rise due to the jth triangular distribution of heat flux
at the ith asperity microcontact.

5.2.2 StressField

The dress fidd in the dagic semi-infinite solid due to contact with the rough
surface can be obtained by superpostion of the stress fields generated by the triangular
disributions of contact pressure, shear traction, and heat flux a each microcontact. The
dresses in the eadic solid due to a moving heat source with triangular didribution shown
in Fg. 52(b) were obtaned in the frequency doman usng <spatid Fourier

trandformation, following an andytica approach smilar to that of Ju and Farris (1997),

Sk = (f_""nT;Ob {[2(b, +bji)sn(w) - wi - wz(b, +bji - Wfi)le™* - (b +wi)e™ ™7 (5 14)
~T E fO . . . - [w|z : i-b)z

s = (1-an)b {[-wi +wz(b, +bji - |W||)]e| 12 4 wig- 02y (5.15)
T — EaT, Lo P - W]z i eld-b)z

S @-mb {[b,i - b, - W|z(b,i - b, +w)le"™ + (b, - a)e } (5.16)
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wherei =+~ 1 , and parameters b, by, by, and T, are defined as

b =V/k (5.17)
w?+w* +w’b?
b, = S (5.18)
b, = 2W (5.19)
20,

¢ _ 21- cos(bw)]
° " bwk(b, - byi)’

(5.20)

The sodid dress fidd due to frictiona heating was obtained by agpplying inverse Fourier

transformation to the numerica solution derived in the frequency domain, i.e,
+Y .
sT(x2)= QS T(w, 2)e™dw, (5.21)

where sT and ST denote therma Stress components in spatiad and frequency domains
respectively.

The above method was vdidaied by comparing numericd results for a moving
line heat source with andyticd solutions from previous sudies. Surface and subsurface
sressesdong x = 0 are shown in Figs. 5.3(@ and 5.3(b), respectively, for a moving line
heat source of energy per unit length per unit time Q located at x = 0. Stresses are
normdized by E'aQ/k, where E' = E/(1-n), and x and z coordinates are normalized by
Ub. Solid lines represent andytica results for surface and subsurface stresses obtained
from the studies of Barber (1984) and Bryant (1988), respectively, and symbols denote
numerica solutions obtained from the present andyss. The good agreement between
numerical and anaytica results for the thermoelastic Stresses demondrates the accuracy

of the present andys's and vaidates the adopted numerica scheme.
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Fig. 5.3 () Surface dress and (b) subsurface stresses dong x = 0 for a moving line heat
source located at x = 0.
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Closed-form solutions for the sresses

possessing triangular didtributions have been obtained by Johnson (1985). Consequently,

the stress at any point (X, z) in the solid can be expressed as

-

s(x2=4 Als "I(x2 s I (x2+s | (x.2).

=l j=1

where s M|/, s°|/, and s 7|

contact pressure, shear traction, and heat flux a the ith asperity microcontact,

respectively.

5.3 Results and Discussion

Numerica results ae presented in this section for a semi-infinite solid with
thermomechanicd properties given in Table 51 (Gong and Komvopoulos, 2004a).

Numericd solutions for a sngle asperity diding over the semi-infinite solid are presented

I are the stresses due to the jth triangular digtributions of

Table 5.1. Thermomechanica properties of semi-infinite solid

Diffusivity, k (mP/s)

Property Magnitude
Elestic modulus, E (GPa) 92
Poisson’sratio, n 0.3
Therma expansion, a (K™ 31" 10°
Specific heet, ¢ (JgK) 0.5
Conductivity, k (W/mK) 0.052, 0.52, 5.2
Density, r (kg/nt) 215" 10°

4.84° (108,107, 10°°)
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fird to vdidate the dgorithm and to establish a reference for comparison with results
obtained with the rough (fractd) surface illudraing the effects of surface topography
and interaction between neighboring asperities on the temperature and dress fields in the
elagic medium. In the smulation results presented below, the tota red contact area was
used to determine the Peclet number, and the segment width in the discretization of the

contact region was fixed a 0.1 nm.

5.3.1 Single Asperity Sliding

Numerica results for a rigid cylindricd asperity are contrasted with andytica
solutions in order to demongrate the accuracy of the agorithm derived from the present
andyss. Figure 54(a) shows the deformed surface of the dastic medium for different
loading conditions and dnax/R = 0.0075, where R is the asperity radius. The x and z
coordinates were normdized by the hdf-contact width due to indentation, ri. Norma
contact yidds a symmetric profile of the deformed surface, while norma and tangentia
traction (n= 0.5) produce pile-up and Snk-in at the rear and front of the contact region,
repectively. Thermoelagtic deformation enhances pile-up a the rear of the contact region
due to the effect of frictiond heating (Pe = 0.05). The good match between the deformed
aurface and the asperity profile over the contact region illustrates the accuracy of the
thermomechanica  contact dgorithm.  Figure 5.4(b) shows the contact pressure
digribution for dmax/R = 0.0075. The contact pressure was normdized by the maximum
contact pressure due to indentation, poi. The curves represent numerica solutions and the
symbols theoretica results (Johnson, 1985). Shear traction produced an asymmetric

contact pressure profile. The peak contact pressure predicted by the theoretica solution
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Fig. 54 Dimendonless (a) surface disgplacement z'r; and (b) contact pressure p/poi
digribution due to different loadings for dadtic semi-infinite solid in contact with a rigid
asperity (dmax/R = 0.0075 and Pe = 0.05).
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and the present analyss occurs a x/ri = 0.092 and 0.088, respectively. The good
agreement between numericd and theoreticad results for the contact pressure didribution
illugtrates the accuracy of the piecewise-linear distribution of the contact pressure profile
obtained by superpostion of overlgoping triangular pressure dements. For fixed surface
interference, frictional hesting increases both the contact area and the contact pressure.
This is expected because frictiond hedting causes themd expanson due to the
development of temperature gradients, which increases both the contact area and the
contact pressure.

Figure 55 shows the vaiation of the surface temperature digtribution with Peclet

d../R=0.0075
m=0.5

DT/(2Q k/pkV)

xIr

Fig. 55 Dimensonless temperature rise DT/(2Q_k /pkV) a the surface of dadic semi-

infinite s0lid due to diding contact with a rigid asperity versus Peclet number (m= 0.5
and dmax/R = 0.0075).
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number for m= 0.5 and dmax/R = 0.0075. In this figure, as well as in subsequent figures,
temperature results are presented in the form of temperature rise above room temperature,

DT, normdized by 2Q.,k /pkV, where Q, is the average heat flux rate a the contact

region (i.e, totd heat flux divided by contact area), and x coordinate is normdized by the
haf-contact width, r. The surface temperature increases sgnificantly with the incresse of
the Peclet number. For Pe < 0.5, the suface temperaure digtribution is symmetric, while
for Pe > 0.5 the maximum surface temperature shifts from the center toward the trailing
edge of the contact region, in agreement with the result of Cardaw and Jeeger (1959) for
a moving heat source and the three-dimensond numericd result of Gong and
Komvopoulos (20048) for a sphericd indenter diding on a hdf-space. Following an
gpproach smilar to that for a uniform heat band source (Cardaw and Jaeger, 1959), the
temperature rise due to a moving heat band dlipticaly digtributed over region - | £ X£1

was obtained as

DT :Q_Olél\ 1- h2e "MK {Pg(x +h)? +z 2]¥%}dh . (5.23)

pk
As shown in Fg. 5.5, the normaized maximum temperature rise for Pe = 10 is equd to
259, which differs only by 0.4% from the theoreticd solution obtained from Eq. (5.23).
This provides additiond confirmation about the accuracy of the present dgorithm. To
examine the dependence of the subsurface temperaiure fidd on the Peclet number,
temperature contours for Pe = 0.05 and 5, m= 0.5, and dmax/R = 0.0075 are contrasted in
Fig. 56. For rdatvely low Peclet number (Pe = 0.05), the temperature fidd is amogt

symmetric with respect to the contact region (Fig. 5.6(8)). However, for redively high
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Fig. 5.6 Contours of dimensonless temperature rise DT/(2Q,k /pkV) in the subsurface
of dadic semi-infinite solid due to diding contact with a rigid asperity (m = 0.5 and
dmax/R=0.0075): (8) Pe=0.05 and (b) Pe=5.
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Peclet number (Pe = 5), the temperature fidd is greatly distorted and the maximum
temperature arises a the trailing edge of the contact region (Fig. 5.6(b)). In addition, the
temperature fidd intengfies sgnificantly with the increase of the Peclet number.

The effect of frictiond heating on the surface dress sy is illustrated in Fig. 5.7 for
m= 0.5 and dmna/R = 0.0075. The surface stress sy« was normdized by the maximum
contact pressure, po, and X coordinate by the haf-contact width in the dagtic analyss, ro.
Frictiond heating yiedds a profound decrease of the surface tensle dress a the traling

edge of the contact region (Pe = 49). Such high Peclet number produces a compressive
Sxx dress in the wake of the contact region, where, in the absence of frictiona hesting,

the dress is tensle (elagtic case). Therefore, surface originating cracks are less likdy to

10
05 A
o0 I
AAA SORAS
MAAAAAAAAAAAAAAAAAABARAAARAST A o000l
o '05 T
£
%
0 -10 Ao 8,
d, /R =0.0075 Y S00sost
15 - A -'
m= 0.5 AA A
a AA
—— i A
20 - Elastic AAAAAAAAAA
---a--- Thermoelastic (Pe = 49)
'25 T T T T T T
-4 -3 -2 -1 0 1 2 3
x/Ir

Fig. 5.7 Dimendonless sx/po dress a the surface of dadtic semi-infinite solid due to
diding contact with a rigd asgpeity (m = 05 and dmna/R = 0.0075). Solid and
discontinuous curves represent elastic and thermoelastic (Pe = 49) results, respectively.
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occur under conditions promoting dgnificant  frictiond heating (eg., high Pedet
number).
Figure 58 shows the effect of frictiona heating on the subsurface von Mises

equivaent gress, sy, for m= 0.5 and dmax/R = 0.0075. (The same stress levels were used

for comparison purposes) The Mises dress was normdized by the maximum contact
pressure, po, and X and z coordinates by the hdf-contact width in the éastic andyss, ro.
Frictiond heating (Pe = 49) intendfies the subsurface dress fidd. This is because the
compressve dress fidd due to frictiond heating enhances sgnificantly the dresses
below the contact region. The results shown in Fig. 58 ae conagent with the finite
element results of Ye and Komvopoulos (2003) that also showed an increase of the Mises

dress due to frictiond heating. The maximum vaue of swu/po in the thermodadic
andysis is equa to 142, which is 48% higher than the vdue obtained from the dadtic
andyss The dimendonless maximum tensle dress, s = / p,, ad maximum von Mises
equivdent dress s /p,, a the suface of the semi-infinite solid are plotted as
functions of Peclet number in Fig. 59 for m= 0.5 and dax/R = 0.0075. It is noted that
s o decreases while s ™ increases with the increese of the Peclet number due to the

ggnificant compressve dress induced by frictiona hedting. Hence, in the case of metds
or polymers and diding conditions favoring high Peclet number, surface pladicity is

more likely to occur than surface cracking.

5.3.2 Rough Surface Siding

Unless otherwise dated, the numericd results for rough-surface diding presented
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Fig. 5.8 Contours of dimensonless von Mises equivaent stress s w/po in the subsurface of
eadic semi-infinite solid due to diding contact with a rigid asperity (m= 0.5 and dmax/R =
0.0075): (a) Pe=0and (b) Pe = 49.
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Fig. 59 Dimendonless maximum tendle dress s ;> /p,and maximum von Mises
equivdent sress s ™ / p,a the surface of dadgic semi-infinite solid in diding contact
with arigid asperity versus Peclet number (m= 0.5 and dinax/R = 0.0075).

in this section are for dmax = 1.5nm, L=5mm, D = 1.44, and G = 9.46 ~ 10" nm. These
vaues of the fracta parameters are typicd of the surface topographies of magnetic
recording heads (Komvopoulos, 2000). Based on the vadue of nmx (=
int{log(L/Ls)/logg]), the number of terms in Eq. (4.1) used to generate the rough surface
was st equa to 15. For generdity, results for the temperature rise are shown in
dimengionless form, DT/(2Qak/pkV).

Figure 5.10 shows the surface deformation of the dasgtic haf-space due to diding
of a rough surface from left to right for different types of loading. Figure 5.10(a) shows

the edablishment of four asperity microcontacts in the contact region. The high
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Fg 510 (@ Deformed surface and (b) portion of interfacia region of dastic semi-
infinite solid subjected to different loadings by a rigid rough (fractd) surface (D = 1.44,
G =9.46" 10*nm, m= 0.5, dma = 1.5 nm, and Pe = 0.06).
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magnification of a region of the surface profile shown in Fig. 510(b) demondrates tha
the deformed surface follows very closdy the contour of the rough surface. The exact
match between the deformed surface of the hdf-gpace and the rough surface illugtrates

the accuracy of the dgorithm. For pure normd indentation (n= 0) the tota contact width

is equa to 23.6 nm, and increases to 28.8 nm with the occurrence of frictional heating (m
= 0.5 and Pe = 0.06). This is a consequence of surface pile-up due to frictiond heating
that increases the red contact area, egpecidly a the tralling contact region where
thermoelagtic distortion is more pronounced.

To illugrate the sgnificance of frictiond heeting on the pressure distributions at
asperity microcontacts, contact pressure profiles are shown in Fig. 5.11 for m= 0.5 and Pe
= 54. The four plots in Fig. 5.11 show contact pressure distributions corresponding to the
four contact regions shown in Fig. 5.10. Numerica results for thermodasiic and dadtic
diding contact are indicated by solid and discontinuous curves, respectively. The contact
pressures and microcontact areas predicted by the thermoeadtic andysis are larger than
those obtained from the dadtic andyss This is mosly pronounced a the fourth asperity
microcontact (region 4) and is atributed to the grester cumulative effect of frictiond
heeting at the trailing contact region.

Figure 512 shows the Peclet number effect on the digribution of dimensonless
surface temperature rise due to diding (m = 0.5). For convenience, the corresponding
regions of the rigid rough surface are dso shown a the top of Fig. 5.12. For low Peclet
number (Pe = 0.06) the temperature a the front of the contact region is quite close to that
encountered in the wake of diding, i.e, the temperature didribution is approximately

symmetric within each microcontact area (Fig. 5.12(a)). However, in the case of
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Fig. 511 Contact pressure profiles on dastic semi-infinite solid in norma contact with a

rigid rough (fractd) surface © = 1.44, G = 9.46 ~ 10* nm, m= 0.5, and dpax = 1.5 nm).
Solid and discontinuous curves represent thermodadtic (Pe = 54) and eadtic results,

respectively.

reaively high Peclet number (Pe = 6), the temperaure rise in the wake of diding is
sgnificantly higher then thet at the contact front (Fig. 5.12(b)), condgtent with the single-
agperity results (Fig. 5.5). In addition, the surface temperature for Pe = 6 is much higher
than that for Pe = 0.06, evidently due to the more pronounced effect of frictiond heating.
For both low and high Peclet numbers, the maximum temperature rise a the surface
occurs a the second microcontact (region 2) due to the correspondingly much larger
contact area (Fig. 5.11). Figure 5.12(b) shows that, contrary to the first and second

microcontacts (regions 1 and 2, respectively), the temperature at the front of the third and
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Fig. 512 Dimensonless temperature rise DT/(2Q_k /pkV) & the surface of eadtic semi-
infinte solid in diding contact with a rigid rough (fractd) surface (D = 1.44, G = 9.46 ~
10"* nm, m= 0.5, and dinax = 1.5 Nm): (8) Pe = 0.06 and (b) Pe = 6.

fourth microcontacts (regions 3 and 4, respectively) does not decrease to zero due to the
more pronounced cumulative therma effect at the trailing contact region.

Contours of normalized temperature rise, DT/(2Qk /pkV), in the subsurface of

the semi-infinite medium for Pe = 0.06 and 6, corresponding to the regions shown in
Figs. 5.11 and 5.12, are contrasted in Fig. 5.13. For both low and high Peclet numbers,
the maximum temperature rise a each microcontact occurs dways a the surface. As
expected, the temperature rises for Pe = 6 are much higher than those for Pe = 0.06. The
appreciably higher temperature gradients produced with the higher Peclet number are
respongble for the increase of the thermodagic surface digtortion and the intengfication
of the therma stress. Comparison of Figs. 5.13(a) and 5.13(b) shows a profound effect of

the Peclet number on the subsurface temperature distribution. The temperature contours

126



//‘\/—\ Region 2 % Regl on 1

4005 4085 4385 4465 4615 4735 5815 5885

Fig. 5.13 Contours of dimensonless temperature rise DT/(2Q_k /pkV') in the subsurface
of dadgic semi-infinite solid in diding contact with a rigid rough (fractd) surface (D =
1.44,G =9.46" 10*nm, m= 0.5, and dmax = 1.5 nm): (&) Pe=0.06 and (b) Pe = 6.

for Pe = 6 are dgnificantly distorted compared to those for Pe = 0.06, which are fairly
symmetric.

The sgnificance of the surface topography on the surface temperature rise can be
interpreted in light of the dimensonless maximum temperature rise, DTmax/(2Qk /pkV),
shown as a function of Pe and D in Fig. 5.14. DTmax increases monotonicaly with the
Peclet number due to the increase of frictional heating at the diding interface. For given
Peclet number and maximum surface interference, DTmax increases with the decrease of

the fractd dimenson. This is due to the dependence of dominant frequencies in the
surface profile on the value of D. Smdler D vaues are associated with rougher surfaces

yieding asperity microcontacts of smdler radius of curvature that produce higher mean
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Fig. 514 Dimensonless maximum temperature rise DTmax/(2Q,k /pkV) a the surface of
dadic semi-infinite solid in diding contact with a rigid rough (fractd) surface versus
Peclet number and fractal dimension (G = 9.46~ 10™* nm, m= 0.5, and dmax = 1.5 nm).

contact pressures and smaler contact areas. For fixed Peclet number, smaler contact
areas imply higher diding speed. Thus, the combination of higher contact pressure and
higher diding speed, obtained with gmall D vaues, enhances frictiond heeting, which, in
turn, leads to the increase in the temperature rise a the surface.

Figure 515 illudrates the effect of frictiona heating on the dress, sy, at the
surface of the semi-infinite medium. Solid curves denote numericd results from the
thermoelagtic andyss (Pe = 54) and discontinuous curves results from the dadtic
andyss Frictiond hedting decreases the tendle dress a the tralling edge of each

microcontact and shifts the location of the maximum tendle dress dightly toward the
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Fig. 515 Stress s, a the surface of eadic semi-infinite solid in diding contact with a

rigid rough (fractal) surface © = 1.44, G = 9.46 ~ 10 nm, m= 0.5, and dmax = 1.5 nm).
Solid and discontinuous curves represent thermoelastic (Pe = 54) and dadtic results,
repectively.

traling contact edge. Agan, the largest differences between thermomechanica and
mechanicd results are encountered in the region with the larget microcontact area
(region 2).

Figure 516 shows contours of von Mises equivdent dress in the subsurface
corresponding to the regions shown in Fig. 5.15. For clarity and comparison purposes,
different contour levels were used for each microcontact stress field. Gmparison of Figs.
5.16(a) and 5.16(b) shows that frictiona hesting increases the Mises dress, especidly
beow the third and fourth microcontacts (regions 3 and 4, respectively) where the

cumulaive effect of frictiond hedting is greaster. The maximum von Mises dress in the
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Fig. 5.16 Contours of von Mises equivdent dress, sy, in the subsurface of dadtic semi-

infinite solid in diding contact with a rigid rough (fractd) surfface © = 1.44, G = 9.46 ~
10"* nm, m= 0.5, and dimax = 1.5 Nm): (8) Pe = 0 and (b) Pe = 54.

thermomechanicd andysis is equd to 7.01 GPa (Fig. 5.16(b)), which is 23% higher than
that in the dadic anadyss (Fig. 5.16(a). The results shown in Fig. 516 ae condstent
with finite dement smulation results of Ye and Komvopoulos (2003) demonstrating that
the maximum Mises dress a& each microcontact occurs dways a the surface for
rlaively high coefficient of friction (eg, m= 0.5) and that frictiond heeting affects the
location of the maximum Mises siress, as shown for the second microcontact in Fig. 5.16.
Figure 517 shows a compaison between the maximum tensle dress a the

surface, s 7, and the maximum von Mises equivdent dress in the subsurface, s v,

XX )

plotted as functions of Peclet number. The s 7 dress increases dightly with the increase
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Fig. 5.17 Maximum tensle surface dress, s 1, and maximum subsurface von Mises

equivalent dress, s ™, for dadic semi-infinite solid in diding contact with a rigid rough
(fractd) surface versus Peclet number (D = 1.44, G =9.46 © 10- 4nm m= 0.5, and dmax =
1.5 nm).

of the Peclet number in the range of Pe < 20 due to the dominant effect of the increasing
mean contact pressure. However, when Pe > 20, s 7™ decreases due to the incresse of the
compressve therma dress, which is enhanced by the interaction of neghboring
microcontacts. The fact that s ;™ increases when Pe > 20 suggedts that the contribution
of thermd dresses is comparable with that of mechanica dresses. The smdl variaions of
s wand s g*when Pe < 20 suggedts thet a relatively low and intermediate values of

Peclet number the dress fidd is dominated by mechanica stresses and, therefore, the
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effect of thermd dresses due to frictiona heeting is secondary under these diding

conditions.

5.4 Conclusions

A thermomechanicd andyss was presented for semi-infinite dagic solid in
diding contact with a rough surface characterized by fractd geometry. The effect of
frictionad hesating on the contact pressure, temperature rise, and dress field was examined
in terms of the Peclet number in light of smulaion results for sngle asperity and rough
aurface diding on the dadgtic medium. Based on the presented results and discussion, the
following main conclusons can be drawn.

(1) For fixed surface interference, frictional heeting increases both the contact area and
the contact pressure. This effect is mostly pronounced at asperity microcontacts at the
tralling edge of the contact interface, where the cumuldive effect of frictiond heating
IS most pronounced.

(2) For low Peclet numbers (eg., Pe < 1), the surface temperature distribution at a single
asperity contact is farly symmetric. However, for reatively high Peclet numbers
(eg., Pe > 25), the peak temperature shifts toward the trailing edge of the contact
region.

(3) The maximum temperature & each microcontact occurs aways a the surface and
increases with the Peclet number. Intengfication of the temperature gradients with the
increase of the Peclet number is responsble for the enhancement of thermodadtic
digortion of the surface and the development of high therma sresses. The increase of

the Peclet number changes dgnificantly the fairly symmetric temperature fiedd beow
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each microcontact obtained with low Peclet numbers (eg., Pe = 0.06). The maximum
temperature rise at the surface increases with the decrease of the fractal dimension.

(4) For low Peclet numbers (Pe < 1), the dress fidd is dominated by the effect of
mechanicad dresses. Frictiond heeting decreases the maximum tensle dresses at the
tralling edges of asperity microcontacts and shifts dightly their locations towards the
trailing contact edge.

(5) The von Misss equivalent dress is drongly affected by frictiona heating, especidly
a microcontact regions close to the tralling contact edge where the highest therma
dresses are produced due to the cumulative heeting effect. High friction (m = 0.5)
increases the maximum Mises stress a each microcontact and shifts its locetion to the
asurface. The increase of the Peclet number promotes surface plastic deformation and

reduces the likelihood for surface cracking.
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CHAPTER 6

SURFACE CRACKING
IN ELASTIC-PLASTIC MULTI-LAYERED MEDIA
DUE TO REPEATED SLIDING CONTACT

6.1 Introduction

Coatings are often used to enhance the tribologica performance and endurance of
various components with contact interfaces. The wear resstance of hard protective
coatings, such as ceramics, cemented carbides, and diamond-like carbon, greetly affects
the rdiability of many mechanica sysems. However, the inherent high hardness of these
materids is obtained a the expense of low fracture toughness. Consequently, contact
faigue and/or fracture of hard overcoas are dominant falure mechanisms in many
mechanicd systems subjected to continuous diding contact, such as gear flanks, bearing
surfaces, and hard disk drives.

Contact anadlysis of layered media subjected to norma and tangentid (friction)
surface tractions has been the objective of numerous past studies. King and O Sulllivan
(1987) invedigated the plane-drain problem of a rigid cylinder diding over an dadtic
layered hdf-space in both in-plane and anti-plane (i.e,, dong the cylinder axis) directions
and found a high tendle dress a the traling edge of the contact region. Krd and
Komvopoulos (1996) performed three-dimendond finite dement smulaions of a rigid
sphericd indenter diding agang an dadic-plastic layered medium and discussed the
likelihood of transverse (ring) crack formation at the surface in the wake of the indenter.

Ring crack formation has been observed on glass dong the weake of a diding conica
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indenter (Lawn, 1992) and on the surface of carbon-coated magnetic rigid disks subjected
to microscratching (Wu, 1991). Gong and Komvopoulos (2003) used the finite eement
method to andyze normd and diding contact of a rigid cylindricd asperity on a patterned
eadic-pladic layered medium. The high surface tendle dress a the tralling edge of the
contact region indicated a grester probability of surface cracking in patterned layered
media compared to smooth-surface media In a three-dimensond thermomechanica
andyss of Gong and Komvopoulos (2004a), a high thermd tensle stress was predicted
dightly below the tralling edge of the contact region, which is consdered to be
respongible for the initiation of therma cracking in the wake of diding microcontacts.

Although the contact dress'drain fidd in layered media has been extensvey
investigeted, fracture mechanics studies are relatively sparse and limited to homogenous
and brittle (dadtic) hdf-gpaces. Severd fracture andyses of homogenous media (Keer
and Worden, 1990; Keer and Kuo, 1992; Chen et a., 1991; Bower and Fleck, 1994) have
shown that crack initiation is favored a the trailing edge of the contact region, where the
maximum tengle dress aises during diding. Beuth and Klingbel (1996) performed a
plane-grain fracture anadysis of an dadic thin film bonded to an dadic-plagtic substrate
and obsarved that subdrate yielding increased the likelihood of film cracking due to the
increese of the energy for crack growth in the film. Oliveira and Bower (1996) studied
fracture and delamination of thin coatings due to contact loading and reported a greater
probability for fracture originating from flaws in the coating than the subdrate or the
interface. 1t was dso found that the fracture load and crack pattern were strongly affected

by the elagtic property mismatch between the layer and the subsirate materias.
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Surface crack growth due to repested diding contact resembles a fatigue process
in which the crack propagation rate is proportiond to a power of the dress intendty
factor (SIF) range, DK. Experiments by Mageed and Pandey (1992) have shown that the
crack propagation direction due to mixed mode cyclic loading can be determined from
the maximum tensle dress criterion, which depends on DK, and DK, . Alfredsson and
Olsson (2000) performed experimentd and numericd sudies of norma contact fatigue
caused by the formation of ring/cone and latera cracks and discovered that surface crack
growth occurred in the direction where the shear SIF was close to zero and that the
propagetion rate was dominated by DK, . Lin and Smith (1999a, 1999b) conducted a
finite dement fatigue anadyss of surface cracked plates and obtained results for the SIF
and fdigue life Ko e d. (2001) studied both experimentdly and andyticdly crack
growth and wear paticle formation on diding sted surfaces and reported that the
andyticd predictions for the wear paticle sze and wear volume were in fair agreement
with experimenta results.

Despite vauable indght into surface cracking in thin coatings obtained from
ealier dudies, vey little is known &bout the effect of plagic deformation in the
underlying materia (layer or subgrate) on the growth direction of surface cracks. In
addition, the effects of friction, initid crack length, and crack growth on the accumulation
of pladicity in the underlying medium have not been conddered in previous fracture
mechanics andyses. Therefore, the objective of this investigation was to andyze surface
cracking in a multi-layered medium due to repetitive diding of a rigid asperity usng the
finite dement method. SIF and crack propagation results are presented in terms of

coefficent of friction & the contact region and crack inteface and initid crack length.
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Another god of this sudy was to develop a fracture mechanics approach tha yields
edimates of contact fatigue life for eadic-plasic multi-layered media undergoing surface

cracking due to repetitive diding contact.

6.2 Modeling Procedures

6.2.1 Problem Definition and Finite Element M odel

Norma and shear tractions produced between contacting rough surfaces are
transmitted through asperity microcontacts with datistical digtributions depending on the
effective surface roughness, norma load, and materid propeties of the interacting
aurfaces. When the average asperity spacing is dgnificantly larger than the mean
microcontact Sze, interaction of the dress/srain fidds of neighboring microcontacts is
secondary (Komvopoulos and Choi, 1992) and the problem is smplified to that of a
gngle aspeity in contact with a layered medium. Figure 6.1 shows schematicaly an
apeity diding over a layered medium contaning a cack of initid length ¢
perpendicular to the free surface of the medium. The postion of the asperity relative to
the crack isdenoted by yp (Fig. 6.1).

Pane-drain diding smulations were performed with a two-dimensond finite
element mesh, such as that shown in Fg. 6.2(a), consiging of approximately 9,000 eght-
node, isoparametric, quadrilateral eements (depending on the initid crack length and
crack propagation path). The horizontal and verticd dimensions of the mesh are equd to
2.4R and 3.1R, respectively, where R is the radius of the rigid asperity (assumed congtant
in dl smulations). The nodes a the bottom boundary of the mesh were condrained
agang displacement in the vertical direction, while the nodes a the left boundary were

condraint agang displacement in the horizontd direction. The mesh was refined a the
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Fig. 6.1 Schemdic of a cylindricd rigid asperity diding over a layered medium with &
crack perpendicular to the free surface.

surface in order to increese the accuracy in the caculation of the contact area and
dresygrain fidd in the highly stressed surface layer. The mesh was further refined
around the crack, as shown in Fig. 6.2(b) for a propagating crack. In the vicinity of the
crack tip, the mesh condsts of 36 eght-node, isoparametric, collapsed quadrilatera
plane-strain dements with their midside nodes adjacent to the crack tip displaced to the
quarter-point distance in order to smulate the square root singularity of the dress fidd at
the crack tip (Henshell and Shaw, 1975; Barsoum, 1976). Since the andyss is based on
linear fracture mechanics, the crack-tip nodes were congrained to move together in order
to prevent crack-tip blunting during crack growth.

Specid contact elements were used to mode contact or separation between
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Fig. 6.2 (@) Finite dement discretization of a multi-layered medium with a surface crack,
and (b) refined mesh in the vicinity of the propagating surface crack.
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asurface nodal points and the surface of the rigid asperity, based on the measurement of
the relative distance of the two surfaces in the normd direction. If the obtained distance
was less than the specified tolerance, it was assumed that contact was established and the
appropriate contact force was applied a the corresponding node. The loca surface
overclosure (i.e, displacement of a noda point a the surface of the deformable medium
into the rigid surface) and rdative dip were obtained a each integration point of the
contact elements. These kinematics were used in conjunction with gppropriaie Lagrange
multiplier techniques to mode surface interaction.

To examine the accuracy of the finite dement modd, especidly the mesh around
the crack tip, the classca problem of an edge-cracked medium subjected to far-fidd
tendon in the direction perpendicular to the crack plane was solved using the finite
element mesh shown in Fg. 6.2. The entire mesh was modeled as a homogeneous eadtic
materid. The vaue of the mode | SIF obtaned from the finite dement anadyds was
found to differ from the andyticd solution (Hertzberg, 1996) by only 2.3 percent,

indicating the suitability of the finite dement modd for fracture andyss.

6.2.2 Material Propertiesand Plagticity Models

The thickness, h, dagtic modulus, E, and yidd strength, sy, of each layer in the
multi-layered medium are given in Table 6.1. These thickness and mechanicd property
vaues are typicd of layers used in magnetic rigid disks condgting of carbon overcoat
(layer 1), CoCrPt magnetic medium (layer 2), CrV underlayer (layer 3), and NiP (layer 4)
electroplated on Al-Mg substrate. The von Mises yield criterion was used to determine
whether yidding occurred & a materid point. In the present modd, the first layer was

assumed to be dadtic, while dl the other layers were modeled as el agtic-perfectly pladtic.
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Table 6.1. Thickness and material properties of each layer in the multi-layered medium

Layer hR E (GPa) sy (GPa)
1 0.025 260 -
2 0.078 130 2.67
3 04 140 2.58
4 2.6 160 2.67

6.2.3 Calculation of Stress|ntensity Factors
In linear eadtic fracture mechanics, the norma and shear stresses at the crack tip
due to diding contact can be expressed in terms of the tensle (mode 1) and shear (mode

II) SIFs, K, and K, , respectively, defined as

K, = Irig(l)ms ) (6.1)
K, = Iri(gg)«/ﬁ 5 (1,0) (6.2)

where r and q are cylindrical polar coordinates and x and y are Cartesan coordinates at
the crack tip (Fig. 6.1). Based on the method proposed by Chan et a. (1970), the

magnitudes of K, and K, were determined from linear extrgpolation of least-square line

fitstothe s, and t, stress data caculated at ten nodes in the vicinity of the crack tip

adong the crack plane (q =0). The accuracy of this method has been evduated in an
ealier finite dement anadyss of Komvopoulos and Cho (1997) deding with subsurface

crack propagation in a half-gpace due to a moving asperity.
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6.2.4 Crack Growth Rate and Fatigue Life
The crack growth rate was assumed to follow a power-law ®ationship (Paris and

Erdogan, 1963)
dc
— = A(DK)"™, 6.3
Y A(DK) (6.3)

where N is the number of loading cycles (representing the number of asperity passes
required for the crack to propagate by an infinitesma distance, dc), and A and m are
meateria constants.

Integration of Eq. (6.3) yidds afatigue life relation,

& de
0 dN =Q ADK)"

\Nf

: (6.4)

where N¢ is the number of fatigue cycles required for the crack to grow from an initid
length ¢ to a length ¢;. Since DK depends on the specific geometry, externd loading, and
crack length, it is not posshble to obtain accurate estimates of fatigue life usng Eq. (6.4).
To drcumvent this difficulty, an Euler integration dgorithm was adopted in the

numerica Smulations,

N, =N +— =011 (6.5)

C,, =C; +Dc , (6.6)

where ¢ is the crack length in the jth crack growth cycle, and Dc is the crack growth

increment, which is congtant in each dmulation. The effect of the crack growth increment

on the crack propagation path is discussed in alater section.
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6.2.5 Smulation of Siding Contact and Crack Growth

Smulations were performed with the finite dement code ABAQUS (verson 5.8).
Each dmulation conssed of three sequentid deps Frs, the rigid asperity was
incrementally advanced into the medium to a specified depth and then displaced
tangentidly over the neighborhood of the surface crack by a distance approximatdy
equd to eght times the hdf-contact width. Findly, the asperity was unloaded following
the same incremental path as for the loading. These smulaion steps were repested in the
same order for severd cycles in order to modd repetitive diding. To examine the
dependence of the SIFs on friction, the coefficient of friction between the surface of the
multi-layered medium and the asperity, m and the crack faces, m, was varied between O
and 0.5. In order to study the effect of the initid crack length on the SIF digtributions and
crack propagetion direction, four initid crack lengths (i.e, c/hp= 0.125, 0.25, 0.5, and
0.875) were used in the finite dement modd. After each loading cycle, the mesh around

the crack tip was modified to account for the growth of the crack by the gspecified
increment in the direction of maximum tensle SIF range, DK™, determined during the

particular loading cycle.

To account for the deformation history effect on the SIF ranges, crack
propagation, and evolution of plagticity in the second layer, the stresssran date in the
multi-layered medium generated dfter a given number of cycles was induded in the
subsequent loading cyde by usng the following method. Frd, diding of the asperity
over the modified mesh was smulated with dl the nodes of the kink faces locked
together. Then, the nodes of the firg kink were unlocked and asperity diding over the

medium was dmulated agan following exactly the same path. This procedure was
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repeated until dl the kinks were unlocked sequentidly. Findly, a new crack growth
increment was Smulaied in the next diding cyde In view of the excessve computationa
time of these crack growth dmulations, only one initid crack length (ci/h; = 0.25), but
different crack growth increments, were modeed in this sudy. A smulaion was
terminated when the crack propagated very close to the interface of the first and second

layers.

6.3 Results and Discussion
6.3.1 Crack Length Effect

To obtain generdized solutions, the SIFs were normdized by 2P/pal’?, where P is
the norma force gpplied by the moving asperity, and a is the corresponding haf-contact
width. In addition, the asperity distance from the crack, Yy, was normdized by the half-
contact width, and the crack length by the thickness of the first layer, h;. Figure 6.3(a)
shows K, a a function of dimensonless agperity postion and crack length for

m=m =0.5. In dl smulation cases, K, assumes nonzero vaues only when the asperity

passes over the crack (y,/a > 0), apparently due to the effect of crack closure that is
enhanced by the predominantly compressve dress fidd ahead of the diding asperity.
When the crack is just behind the trailing contact edge (y./a > 1), K, increases rapidly
to a pesk vaue and then decreases gradualy as the asperity moves further to the right of
the crack. In addition, Fig. 6.3(a) reveds a strong dependence of K, on crack length,
indicating that the longer the crack, the higher the tendle dress a the crack tip.
Moreover, the maximum K, increases with an incresse in crack length and the

corresponding asperity position occurs further to the right of the crack.
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Fig. 6.3 Dimendonless tendle and shear dress intendty factors, K, and K, respectively,
versus dimensonless agperity postion, Yy, /a, and dimensonless crack length, ¢, /h,,
for m=m, =0.5.
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The variation of K, with asperity postion and initid crack length, shown in Fig.
6.3(b), is complex compared to that of K, . Therange of K, increases with crack length;
however, K, decreases rapidly to zero after the asperity passes over the crack (yp/a >

1). When the asperity dides over the crack region, the predominant mode changes from
shear to tensle. However, a comparison of the results shown in Figs. 6.3(Q) and 6.3(b)
shows that DK, is dgnificantly less than DK, , approximately by an order of magnitude.
Hence, because the crack growth rate depends on DK (EQ. (6.3)), it may be inferred that

crack growth is predominantly affected by the tensle mode.

6.3.2 Siding Friction Effect

The dress fidd in the vicinity of the crack tip is drongly affected by the
magnitude of friction trection a the surface. Figure 6.4 shows the variaion of K, and
K, with asperity postion and coefficient of friction a the contact region (m=0.1, 0.25,
and 0.5) for ¢/hy = 0.125 and m = 0. The increase of K, and K|, with friction coefficient
is a consequence of the enhancement of the shear traction at the contact region and the
higher stresses produced a the crack tip. The maximum vaue of K, occurs as soon as
the asperity dides over the crack, while that of K, occurs when the asperity is over the
crack.

Figures 6.5 shows the effect of coefficient of friction between the crack faces on
the varigtion d K, and K, for c/hy = 0.125 and = 0.5. Figure 6.5(8) shows that K,
is not affected by the friction condition a the crack interface. This is expected because

the magnitude of K, is controlled soledy by the sy, sress (Eg. (6.1)), which is not
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agperity/multi-layered medium contact region, m for ¢, /h, =0.125 and m, = 0.
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affected by the shear traction generated between the crack faces. Although the variation
of K, with asperity podtion is quditativdy smilar to that shown in Fig. 64(b),K,
deceases with the increase of crack-face friction, which is opposte from the trend
obtained with the incresse of coefficient of friction a the contact interface. This behavior
is attributed to reduced dip between the crack faces due to the increase of the coefficient
of fricion a the crack interface Thus, crack-face friction promotes shear sStress
relaxation, in agreement with the fracture mechanics andyss of Komvopoulos and Cho
(1997) for subsurface crack growth pardld to the free surface of a homogeneous half-
gpace. Since K, is dgnificantly grester than K, (Figs. 6.4 and 6.5), it may be inferred
that diding friction exhibits a strong effect on the variation of the tendle and shear SIFs,

wheresas the effect of crack-facefriction is reaively secondary.

6.3.3 Crack Growth Direction
The crack growth direction was determined based on the maximum shear or
tendle SIF ranges. The dominance of the shear and tensile modes during crack growth

depends on the maximum vaues of DK, and DK, , where K, and K, ae given by

(Erdogan and Sih, 1963)

Ko(d,Yp /a)=s+/2pr = cosg[ K, cosZE- SK” sinqg] (6.7)
K.(q,y,/a) :srq«/Zpr :cosg[ K, sng+K, (3cosq- 1)] (6.8)

Because of the dependence of K; and K;; on asperity postion (Figs. 6.3-6.5), K, and K,

are functions of yp/a. The maximum tensle and shear SIF ranges, DK™ and DK™,

respectively, are defined as
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DK™ = max| DK ()] = max| K

] (69)

- K
S ,max |q =q s.minjg =q

DK,™ =max[DK, (q)] = max[ K - K ] (6.10)

t ,max |q:q* tmin fo_q*

where subscripts max and min denote maximum and minimum vaues of K, and K, ,

and g* is a given value of q, which varies between —180 and 180 deg. For fixed angle q

and K

s,min|,_,
q_

. were determined at different asperity postions during a

0 Kema
diding cyde Then, the angle q was varied between - 180 and 180 deg. to determine the

maximum vaue of (K - K

_.) , which is used to obtain DK™ . The same

S, max |q=q* s,min 9=q
procedure was used to determine DK,™ . Based on this approach, the crack growth
direction was determined from Egs. (6.7)-(6.10).

Figure 6.6 shows the variation of dimensonless DK, and DK, with angle q and

crack length for m=m =0.5. The increase of DK, and DK, with crack length is a
consequence of the increase of K, with crack length and the rdatively smdl contribution
of Ky (Fig. 6.3). The fact that the maximum vaues of DK are higher than those of DK,
indicates the dominance of the tendle mode in the crack growth process. Moreover, the
maximum vaues of DK, occur a an angle q » 10deg. independent of crack length,
suggesting that crack propagation will occur toward the diding direction. Figure 6.7
shows the initid crack propagation direction, i.e, firs deviation (kink) angle, q;, as a
function of initid crack length for m=m =0.5. The data indicate a greater tendency for

shorter cracks to propagate initidly toward the diding direction than longer cracks.
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initid crack length, ¢, / h,, for m=m, =0.5.

6.3.4 Crack Propagation

To examine the evolution of crack-tip stresses, development of crack growth path,
and accumulation of plagic deformation in the underlying layer, results are presented in
this section for ¢i/hy = 0.25 and m=m, =0.5. Crack propagation was smulated based on
the crack growth direction predicted based on the maximum tensle SIF range, assuming
a certain crack growth increment. As explained in section 2.5, the stress and drain fidds
produced in a given crack growth cycle were updated in the subsequent cycle in order to
smulate continuous crack growth by taking into account the stress/strain history effect.

Figure 6.8 shows the effect of crack growth cycles on the variation of
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Fig. 6.8 Dimendonless tendle and shear dress intendty factors, K, and K, respectively,
versus crack growth cycle and dimensionless asperity postion, y, /a, for c,/h, =0.25,
Dc=h/8,and m=m =05.
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dimendonless K, and K, with dimensonless asperity podtion for Dc=h /8. In each

cycle, the crack propagated by an increment Dc in the direction of DK™ . Figure 6.8(a)

shows that the variation of K, with agperity pogtion is quditetivdly Smilar to that

shown in Fig. 6.3(8). However, crack growth causes the increment of DK, initidly to
increase and then to exhibit smdl fluctuaions with further crack growth, which are
attributed to variations in the crack growth direction as the crack propagates deeper into
the first layer, discussed in detail below. In addition, crack growth produces nonzero K,
vaues even when the asperity is to the left of the crack and causes the maximum vaue of
DK, to occur at a greater distance of the asperity fom the crack. These phenomena are
atributed to the effect of crack face separation (either partid or complete) and the mixed
mode crack growth. As discussed earlier, the appreciably lower vaues of K, , by an
order of magnitude, compared to those of K, (Fig. 6.8(b)) reved a dominant effect of the
tendle mode in crack propagation. Indeed, in al crack growth cycles it was found that

DK™ > DK™ . Table 6.2 gives normdized DK™ in terms of deviation angle a each
crack growth cycle, Dg, totd deviation angle from the initid crack direction
(perpendicular to the surface), rota, and corresponding crack growth cycle. DK™ was
cdculated from the results of K, and K, , shown in Fig. 6.8, usng Egs. (6.7) and (6.9).
The data given in Table 6.2 confirm that crack growth leads to an increase in DK™ and

crack propagation direction at q » 57 deg.

To examine the dependence of the crack growth direction (i.e, direction of

DK ™) on the magnitude of crack growth increment, crack peths obtained for Dc = hy/4,
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Table 6.2. Current crack deviation angle tota deviation angle, and maximum tensle
dress intengty factor range versus crack growth cycle for ¢, /h, =0.25, Dc=h, /8, and

m=m =0.5

Crack growth cycle Dq (deg.) Cotal (deg.) DK™ /(2P/pa"?)
1 11 11 0.5342
2 28 39 0.7462
3 18 57 0.9947
4 -8 49 1.0256
5 8 57 1.1281
6 -8 49 1.1416
7 8 57 1.2397
8 -6 51 1.2778

hy/8, and hy/16, ci/hy = 0.25, and m=m, =0.5 are compared in Fig. 6.9. It is interesting
to note that, after the first or second crack increments, the crack growth paths become
damost padld to each other, showing a common deviation angle from the direction
norma to the free surface of ~57 deg. This suggedts that the crack growth increment does
not affect the crack propagation direction. The obtained crack growth path is consstent
with experimental observations of Ko et d. (2001) according to which, crack growth
commences a an angle of ~30 deg. with respect to the diding direction, i.e,, 60 deg. from
the direction norma to the surface versus 57 deg. predicted in the present sudy.

Moreover, the smulated crack propagation toward the inteface is in quditative
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Fig. 6.9 Smulated crack paths for crack growth increment Dc = hy/4, hy/8, and hy/16,
¢, /h =025,andm=m =0.5.

agreement with numerical results reported by Oliveira and Bower (1996) for fracture of

thin coatings due to contact |oading.

6.3.5 Fatigue Life M odel

The finite dement results presented above can be used in conjunction with the
Euler integration agorithm discussed in section 6.24 to derive a contact fatigue modd.
While in the finite dement smulations the crack grows by an increment Dc in each
asperity passage, in redity crack growth commences after severd asperity passes. To
model this phenomenon using the sSmulation results, it is assumed tha DK™ (either
tensle or shear, depending on which is larger) remains congant during crack propagation
by Dc, and the actud number of asperity passes, i.e, fatigue cycles, is cdculated from EQ.

(6.5). To demondrate this approach, a graphite substrate coated with a pyrolytic carbon

layer was sdected for andyss because it condgts of an eagtic (hard/brittle) carbon layer
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and an dadic-plagtic (soft/ductile) graphite subgtrate. The fatigue properties of pyrolytic
cabon, m=19 and A=1.86" 10 ®*micyde (MPavym)*°, quoted from the study of
Ritchie and Dauskardt (1991), were used in the cdculaions. The normdized number of

fatigue crack growth cycles, N, isgiven by

o A, 2P ¢ Dc/h;
N 0__mN = , 6.11
hl(pal’z) el D;” ( )

where N is obtained from Egs. (6.5) and (6.6), and D, = DK™ (c,)/(2P/pa™?) is the
normaized SIF range. Figure 6.10 shows the variation of normdized crack length, c/hg,

with N* for ¢,/h, =0.25 and Dc=h /8. The very seep dope of the fatigue curve
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Fig. 6.10 Dimendonless crack length, c/hj, versus dimensonless number of estimated
fatigue crack growth cycles, N*, for pyrolytic carbon-coated graphite, c,/h, =0.25,

Dc=h/8,andm=m =0.5.
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obsarved after the fird few crack increments is indicative of the brittle behavior of

pyrolytic carbon.

6.3.6 Evolution of Crack-Tip Stresses

Reaults for the dress fidd a the crack tip, obtained a different stages of the

smulated crack growth process, are presented next for c,/h, =0.25, Dc=h /8, and

m=m, =0.5. Figure 6.11 shows contours of von Mises equivaent dress in the vicinity
of the crack tip produced in the first crack growth cycle. When the crack is adjacent to the
trailing edge of the contact region (y, /a =1.26), it remains fully open (Fig. 6.11(a)) and
the intendfied stresses a the crack tip produce the maximum vaue of K, shown in Fg.

6.3(8). However, when the asperity dides further to the right (y, / a=5.88), the crack
faces move closer to each other (dtress relaxation) and the size of the high-stress region at
the crack tip decreases (Fig. 6.11(b)). This crack behavior is attributed to the high tensle
dress a the tralling edge of the contact region (diding friction effect), which decreases
rgpidly with the increase of the distance from the contact edge. Since the high stresses a
the crack tip occur remote from the interface during the initial stage of crack growth, the
crack-tip stresses do not affect the accumulaion of plagtic deformation in the second
layer during diding contact.

Figure 6.12 shows contours of von Mises equivaent dress in the eighth crack
growth cycle, reveding remarkable changes in the dress fiedd at the crack tip due to the
propagation of the crack close to the interface. Conversdy to the initia stage of crack

growth, Fig. 6.12(a) shows that the crack remains partidly open when it is close to the
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Fig. 6.11 Contours of von Mises equivdent sress, sy, in the vicnity of the crack tip
obtained in the first crack growth cycle for ¢, /h, =0.25, Dc=h /8, m=m =0.5, and

dimensionless asperity postion (8) y, /a=1.26 and (b) y,/a=5.88.
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Fig. 6.12 Contours of von Mises equivdent sress, sy, in the vicinity of the crack tip
obtained in the eighth crack growth cycle for ¢, /h, =0.25, Dc=h /8, m=m =0.5,

and dimens onless asperity postion (8) y, /a=1.26 and (b) y,/a =252,
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trailing edge of the contact region (y, /a =1.26), while Fig. 6.12(b) shows that the crack
opens fully when the asperity moves further to the right (y, / a = 2.52). This behavior is
conddent with the fact that the maximum vaue of K, in this case occurs a

Yo/ a=252 (Fig. 6.8(a)) and is a consequence of the change of the crack propagation
direction. In addition, the high-stress region at the crack tip is very close to the interface,
affecting the stresses in the second layer. The large dress discontinuities at the interface
(Fig. 6.12(b)) are due to the sgnificant dastic modulus mismaich of the two layers. The
intengfication of the dress fidd in the second layer as the crack propagates closer to the
interface affects the deformation in the second layer adjacent to the interface. This

phenomenon is discussed in detail in the following section.

6.3.7 Development of Plagticity in the Second L ayer

The effects of crack length, friction at the contact region and crack interface, and
diding cycles on the deformation of the dadtic-plastic second layer are examined in this
section. It is noted that for the loading conditions and layer materid properties used in
this sudy, the deformation in the third and fourth eadic-plagtic layers is purdy dadtic.

Thus, stress/strain results for these layers are not presented here for the sake of brevity.

Figure 6.13(8) shows the maximum equivdent plasic drain, ég‘ax, in the second
layer versus dimensionless asperity postion and crack length for m=m =0.5. In dl

cases, €, increases as the asperity dides over the multi-layered medium in a smiler

fashion, reaching a steady dae a a disance from the crack gpproximately equd to five

times the hdf-contact width. The results show that the accumulation of plagticity does not
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Fig. 613 Maximum equivdent plasic strain, €, in the dastic-plastic second layer
versus dimensonless asperity podtion, y, /a: (8 c/hy = 0.125, 0.25, 0.5, and 0.875
andm=m, =0.5, and (b) ci/h; = 0.125, m= 0.1, 0.25, and 0.5, and m = 0 and 0.5.
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depend on the (initial) crack length, evidently because the high-gtress fidd at the crack tip
is far away from the interface (when the crack is rdatively short) to affect deformation in
the second layer. Thus, the crack effect on the propendgity for plastic flow in the second
layer is negligible until the crack tip reaches a digance less than h;/8 from the interface,
as shown by the smulation results. The location of é,;“a"in the second layer is dways a
the interface with the first layer bedow the asperity and shifts dong the interface as the
aperity dides over the medium, in agreement with a previous finite dement andyss of
normd and diding contact of a rigid cylindricd asperity on a paterned eadtic-plagtic
layered medium (Gong and Komvopoulos, 2003).

Figure 6.13(b) shows the variaion of ég‘ax in the second layer with dimensonless

asperity pogtion and coefficient of friction at the contact region and crack interface for

c,/h, =0.125. As the asperity dides on the surface of the multi-layered medium,
€, increases monotonicelly, exhibiting a trend similar to that shown in Fig. 6.13(d). As
expected, é;“aximmsifies with the increase of coefficient of friction a the contact region

due to the pronounced effect of the surface shear (friction) traction on the subsurface
gress field. However, the effect of crack-face friction is negligible because it only affects
the dress fidld a the crack tip, which, in this case, is far away from the interface to affect
the stress date in the second layer. Therefore, only friction a the contact region affects
the accumulation of pladticity in the second layer when the crack tip is remote from the
layer interface.

Figure 6.14 shows contours of €, in the second layer obtained in the eighth crack
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Fig. 6.14 Contours of equivdent plastic strain, €, in the dastic-plastic second layer
obtained in the eighth crack growth cycle for ¢, /h, =0.25, Dc=h /8, m=m =0.5,
and dimensonless asperity postion (8) v, /a=1.26 and (b) y,/a=252.
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growth cycle for two asperity postions c,/h, =0.25, Dc=h /8, and m=m =0.5.
When the crack is just behind the trailing edge of the contact region (y, /a =1.26), the
crack is patidly closed and é;“ax arises below the crack tip, adjacent to the interface with
the fird layer (Fig. 6.14(Q)). However, when the asperity moves further away from the
crack (y,/a=252), the crack opens fully, while ég‘a" occurs again below the crack tip
close to the interface (Fig. 6.14(b)). This differs from the results of previous crack growth
cydes showing that €™ shifts dong the interface under the moving asperity. This

finding provides additiond evidence for the effect of crack-tip stresses on the evolution
of pladticity in the second layer.

In the case of multiple asperity contacts, knowledge of the accumulaion of
pladicity in the multi-layered medium is of particular importance. The results of the
present andysis can be used to examine the evolution of plagticity in the second layer due

to multi-asperity contacts with gpacing larger than the average contact width. Figure
6.15(8) shows €™ in the second layer versus dimensionless asperity position for
different crack growth cycles, c,/h, =025, Dc=h /8, adm=m =0.5. A gradud
increase in é;“a‘ occurs when the asperity dides over the medium and with the increase of

crack growth cycles (i.e, crack propagation). The increments of ég‘ax decrease with

increasng crack growth cycles because the crack tip is remote from the interface to affect

the development of plagticity. However, in the eghth crack growth cycle a sharp

increase in ég‘ax is encountered when the asperity dides over the crack due to the smal
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Fig. 6.15 (8 Maximum equivaent plastic srain, €™, in the dastic-plastic second layer
versus dimensonless asperity postion, y, /a, for different sSmulated crack growth
cycles, and (b) incremert of maximum equivaent plasic sran, De;™, in the eastic-
plasic second layer versus number of smulated crack growth cycles, n. (The results
shownin (8) and (b) arefor ¢, /h, =0.25, Dc=h /8, andm=m, =0.5.)
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digance of the high-dtress region a the crack tip from the interface. To better illustrate

the effect of crack-tip stresses on the evolution of plastic deformation in the second layer,

the increment of maximum plagic dran, Dé,;“"’lx is plotted as a function of number of

(mulated) crack growth cycles, n, in Fig. 6.15(b). The decrease of Dé,{,“""X up to the
seventh crack growth cycle reveds the dominant effect of repetitive diding, while the
sharp increase of Dé;,“ax in the eight crack growth cycle, i.e., when the crack propagates

very close to the interface, illudrates the effect of the crack-tip stresses on plagtic flow in
the second layer, within asmdl region close to the interface with the firdt layer.

While the present andyss provides indght into surface cracking in dadtic-plagtic
multi-layered media subjected to cyclic loading, the obtained results can be used to
discuss possble falure mechanisms. For ingtance, when the crack propagates to the
interface, fallure may occur due to ddaminaion dong the wesker interface, resulting in
the formation of a sheet-like wear patide. Assuming that the fatigue life is dominated by
crack growth in the fird layer, i.e, layer debonding occurs rapidly after the crack reaches
the interface, the fracture gpproach presented in this study can be used to estimate the
loading cycles required to form a wear paticle However, in the case of high interfacid
srength, the crack may propagate into the second layer, where it may become inactive or
shear eventudly toward the surface to produce a wear paticle, as in the case of
homogeneous media (Ko e d., 2001), depending on the dtress fidld. Crack growth in the
dadic-plastic second layer can be accomplished with agppropriaie modification of the

finite dement mesh usad in thisandlyss.
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6.4 Conclusions
Surface cracking in a multi-layered medium containing a crack perpendicular to
the free surface due to repetitive diding of a rigid asperity was andyzed usng linear
eadic fracture mechanics and the finite dement method. Based on the presented results
and discussion, the following main conclusions can be drawn from this study.
(1) The ggnificantly higher vaues (by an order of magnitude) of the tensle dress
intengty factor, K,, than those of the shear stress intendty factor, K, , obtained in dl

amulaion cases indicate that surface cracking in the multi-layered medium due to

diding contact is controlled by the tensle fracture mode.

(2) Longer surface cracks produce dggnificantly higher K, vdues and margindly
different K, values Higher friction a the diding contact region increases both K,
and K, donificantly due to the dsrong effect of the surface shear traction on the
crack-tip dresses. The increase of friction a the crack interface promotes stress
relaxation that decreases the magnitude of K, ; however, the effect on K, is
negligible

(3) Based on the maximum tendle dress intendty range, DK™, initid crack growth was

found to occur a an angle of ~10 deg. from the origina crack plane, independent of

intid crack length. Although the crack length effect on the crack growth direction is
negligible, the effect on the magnitudes of DK™ and DK™ is Sgnificart.
(4) After the first few (1-3) crack growth increments, the crack growth paths obtained

with different propagation increments become dmost padld to each other,
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exhibiting a common deviatiion angle from the origind crack plane of ~57 deg., in far
agreement with experimental observations.

(5) Crack growth increases the magnitudes of K, and DK . An gpproach for estimating
the contact fatigue life due to surface crack growth in multi-layered media was
derived from the finite dement results, and its gpplication was demondrated by
fatigue crack growth results obtained for a graphite subgtrate coated with a pyralitic
carbon layer.

(6) The effect of initid crack length on plagic deformation in the dadtic-plastic second
layer is negligible because the crack-tip stresses do not reach the layer interface. The
effect becomes sgnificant only when the crack propagates very close to the interface,
a digance agpproximately less than one-eighth of the firg layer thickness. The
coefficient of friction a the contact (diding) region exhibits a dominant effect on the
plagic srain accumulating in the second layer, while the effect of crack-face friction
isinggnificant.

(7) The maximum plagtic drain in the second layer increases repidly as the crack tip
gpproaches the interface due to the effect of the high-stress field at the crack tip. This
causes the maximum plagtic strain in the second layer to arise dways below the crack
tip adjacent to the interface rather than below the diding asperity, as found for

uncracked dadtic-plagtic layered mediain earlier sudies.
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CHAPTER 7

CONTACT FATIGUE ANALYSIS
OF AN ELASTIC-PLASTIC LAYERED MEDIUM
WITH A SURFACE CRACK IN SLIDING CONTACT
WITH A FRACTAL SURFACE

7.1 Introduction

Layered media ae used in various engineering applications to enhance the
durability and functionality of interacting surfaces. Surface layers exhibiting high
diffness and hardness protect the underlying layers from mechanicd damage due to
contact dresses. Therefore, the deformation and fracture mechanics of surface layers
control the lifetime of mechanicd systems involving contact interfaces. Even though hard
and wear-resgant layers are dedrable for reducing diding wear, the rdaively low
fracture toughness of most hard materids often leads to unexpected contact
fatigueffracture. Thus, underdanding of contact faigue in layered media subjected to
norma and friction surface tractions is criticdl to the endurance of eectromechanica
devices possessing contact interfaces.

In early contact mechanics andyses, information about the underlying reasons for
surface cracking in layered media was extracted from results for the mechanical Stresses
and drans produced from diding contact. King and O Sulllivan (1987) reported a high
tendle dress a the traling edge of a rigid cylinder diding over an dadic layered
medium. Finite dement smulations by Krad and Komvopoulos (1996) confirmed the

development of tensile dresses a the surface of a layered medium, reveding a tendency
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for the formation of transverse surface cracks in the wake of the diding indenter. Gong
and Komvopoulos (2003) performed a finite dement analyss of a rigid sphere diding
over a layered medium with a patterned surface characterized by a high amplitude-to-
waveength ratio and observed the development of a resdud tendle dress in the wake of
diding, which intensified with the increase of the diding cycles

Although contact dress andyss of layered media has attracted the attention of
many researchers, surface contact fatigue and fracture have not been investigated as
thoroughly. In fact, the focus in the mgority of contact fracture studies has been on
homogenous eadic hdf-spaces. Severd fracture andyses of homogenous media (Keer
and Worden, 1990; Chen, Farris and Chandrasekar, 1991; Keer and Kuo, 1992; Bower
and Heck, 1994) have shown that surface cracks initiate in the wake of diding contacts,
where the maximum tensle dress is encountered. However, only a few contact fatigue
dudies of layered media have been conducted to date. Beuth and Klingbel (1996)
performed a plane-drain fracture anadyss of an dadtic thin film under a resdud tensle
dress and reported a grester likedihood for film cracking due to subdrate yielding that
increased the energy avalable for crack growth. Oliveira and Bower (1996) studied
fracture and delamination of thin coatings under contact loads and observed an effect of
the dagic property mismatich between the layer and the substrate materids on the
fracture load and crack path. Lin and Smith (19993, 1999b) developed a finite dement
moded to study surface fatigue crack growth in plates and obtained results for the stress
intengty factor and the faigue life Gong and Komvopoulos (2004b) used the finite
eement method to andyze surface cracking in a layered medium due to contact with a

rigid cylinder and found that surface cracking was dominated by the tendle fracture mode
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and that crack growth occurred toward the layer interface & an angle of 57° from the
norma to the surface.

A mgor amplification in previous sudies was the assumption of idedly smooth
contacting surfaces. However, red surfaces exhibit multi-scde roughness and, thus,
actud contact is confined between surface summits, heresfter referred to as asperity
contacts. Consequently, accurate andysis of surface cracking must include the effect of
the surface topography (roughness) on the crack-tip stresses. To avoid biasng of the
measurement of surface parameters by the sample sze, instrument resolution, and
experimenta filter, fractd geometry (Mandelbrot, 1983) has been adopted to characterize
engineering surfaces (Mgumdar and Tien, 1990; Borodich and Onishchenko, 1999).
Contact theories based on the fractad description of the surface topography have yielded
solutions for the red contact area, contact load, and interfacia temperature rise due to
frictiond heeting for both homogeneous and layered dadic-plagtic media (Mgumdar and
Bhushan, 1991; Wang and Komvopoulos, 1994a, 1994b; Yan and Komvopoulos, 1998;
Ciavardla et a. 2000; Komvopoulos and Ye, 2001). However, a contact fatigue anayss
of (multi)layered dadtic-plagic media in diding contact with a rough (fractd) surface has
not been reported yet. Therefore, the main objective of this sudy was to perform a
contact faigue andyss tha eucidates the role of the surface topography in surface
cracking of dadtic-plagtic (multi)layered media due to diding agang a fractd surface. A
contact dgorithm and dress intendty factor results from preiminary finite dement
smulations were used to determine the critica segment of the fractd surface to be used
in the contact fatigue anadyss. Results for the tendle and shear dress intengity factors and

the crack growth direction and dominant fracture mode are presented below in terms of
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fracta parameters and pogtion of the critical surface segment with respect to the surface

crack.

7.2 Modeling Method
7.2.1 Contact Model and Finite Element Mesh

Figure 7.1 shows a cross-sectiond view of the plane-grain problem andyzed in
this study. A crack of initid length ¢; is modeled perpendicular to the surface of the firgt
layer of thickness h;. The crack-tip Cartesian coordinates are denoted by x and y and the
cylindrica polar coordinates by r and g. A rough (fractd) surface (with a coordinate
sysem (z¢ x(), x(= y) dides over the layered medium from left to right under a load P

goplied at the middle-point of the profile length, which is a a distance yp from the crack.

U X Ii Yp

.

N i :
A \M“'\ ‘M,m‘\\\/\me"*\ ’/Surface Crack
"

Fig. 7.1 Schemdic of a rough surface diding againg a layered medium containing &
crack normal to the surface.

173



Coulomb friction generates a tangentid force F = nP, where m is the coefficient of
friction.

Based on the usud plane drain assumption, quas-ddic diding smulations were
peformed with the two-dimensond finite dement mesh shown in Fg. 7.2(8). The mesh
congsts of approximady 9,000 eight-node, isoparametric, quadrilaterd eements with a
goecified 3 x 3 integration scheme. The exact number of finite dements used in each
smulation depends on the crack growth path. The nodes a the bottom boundary of the
mesh were condrained againg displacement in the x direction and the nodes at the left
boundary againgt displacement in the y direction. The mesh was refined near the surface,
especidly around the crack, in order to accurately determine the red contact area and the
dress and drain fields adjacent to the surface and the crack-tip vicinity, where high drain
gradients occur during diding. The mesh around the crack, shown in Fig. 7.2(b), congsts
of 36 eght-node, isoparametric, collgpsed quadrilatera, plane-drain dements with ther
mid-sde nodes adjacent to the crack tips shifted to the quarter-point distance in order to
smulae the r Y2 singularity of the crack-tip stresses. Since the analysis is based on linear
elagtic fracture mechanics, the crack-tip nodes were constrained to move together in order
to avoid crack-tip blunting in the crack growth smulations.

Contact between the layered medium and the rough surface was modeded by
gpecid contact dements that determine contact or separation between surface nodd
points of the layered medium and the rigid surface by measuring the locad gap. Similar
contact eements were used a the crack faces in order to prevent overlapping of the
dements. A dealed desription of the contact dement kinematics and friction

formulation has been presented in a previous study (Gong and Komvopoulos, 2003).
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Fig. 7.2 Finite dement mesh of a layered medium with a surface crack: (@) mesh of entire
layered medium and (b) detail of the mesh around the grown surface crack.
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7.2.2 Material Propertiesand Plasticity Models

Table 7.1 gives the dagic modulus, E, and yidd drength, sy, of each layer in the
layered medium. The firg layer was modded as an dadic materid, while al the other
layers were modded as dadic-pefectly plagic materids. All layers were assumed to
have a Poisson ratio n = 0.3. The E and sy vdues given in Table 7.1 are typicd of layer
materials used in magnetic recording rigid disks, i.e, carbon overcoat (layer 1), CoCrPt
magnetic medium (layer 2), CrV underlayer (layer 3), and NiP dectroplated layer (layer
4). The von Mises yidd criterion was used to determine whether yielding occurred a a

meaterid point.

7.2.3 Smulation of Siding Contact and Crack Growth

Quas-gaic diding was dmulated in three sequentid deps involving loading,
diding, and unloading of a rigid rough surface on the cracked layered medium in an
incremental fashion. The rough surface was firg digolaced toward the layered medium up

to a specified maximum globa interference, dg, and, subsequently, displaced laterally to a

Table 7.1. Materia properties of layered medium

Medium (GIEa) (é’g 2
Layer 1 260 -

Layer 2 130 2.67
Layer 3 140 2.58
Layer 4 160 2.67

For dl layers, n = 0.3.
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maximum distance equa to about 100 times the initid crack length while maintaning a
condant interference. Findly, the rough surface was unloaded following the same Steps
as for the loading. In dl the smulatiions, the maximum globd interference was fixed, the
coefficients of friction at the contact interface and between the crack faces were set equal
to 0.5, and the initiad crack length was equad to 0.25h;. To invedtigate the effects of
surface topography parameters on the dress intengty factor ranges, dominant fracture
mode, crack growth rate, and evolution of pladticity, Smulations were performed with the
finite ement code ABAQUS for D = 1.24, 1.34, 1.44, 1.54, and 1.64 and G = 9.46 x
10°3,9.46 x 104 and 9.46 x 10> nm. In the fatigue smulations, the mesh around the
crack tip was modified in order to incorporate the crack increment of the previous diding
cycde In addition, the effect of the loading history was conddered by initiating each
diding cycle from the dress/drain date obtaned after the unloading phase of the
previous diding cycde. This was accomplished with a specid crack-growth agorithm,
described in detal in a previous fracture mechanics andyss (Gong and Komvopoulos,

2004D).

7.3 Results and Discussion
7.3.1 Rough Surface Algorithm

Figure 7.3(a) shows a fractd surface generated from Eq. (4.1) for D =144, G =
9.46 x 10% nm, g = 1.5, L = 4379 nm, and Ls = 10 nm. Unless otherwise stated, the
previous parameters describe the fractd surface used to obtain the finite dement results
presented in the following sections. The above vaues of the fracta parameters are

representative of the head-disk interface comprising a smooth carbon-coated hard disk
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Fig. 7.3 Fractd surface profile (generated from Eq. (4.1) for D = 1.44, G = 9.46 x 10*
nm, g = 15, and L = 4379 nm) shown at different scdes. A rigid plane (dashed line)
truncates the surface profile to a certan maximum globd interference, producing two
neighboring contact regions A and B condsing of segments with severd interacting
asperity contacts.

and a rdativey rough AlOs-TiC magnetic recording head (Komvopoulos, 2000). Hence,

the topography of the surface profile shown in Fg. 7.3(a) is essentidly equivdent to that

of the rougher surface of the magnetic head. The dashed line represents a rigid plane that

truncates the fractd surface a a given globd interference. Since modeling of the entire

rough surface is imprecticd, a representative segment of the surface profile was
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determined based on the following procedure. Firdt, the entire rough surface was
truncated by a rigid plane to a specified maximum globd interference in order to
determine the criticd segment(s) to be used in the fracture andyds. Figure 7.3(a) shows
thet the truncation of the surface profile by a rigid plane to an inteference dg = 1 nm
yielded two potentia contact regions (denoted by A and B) conssting of severa contact
segments (Figs. 7.3(b) and 7.3(c), respectively). From these segments, asperity contacts
were encountered only in segments | and Il, shown in Figs 7.3(d) ad 7.3(e),
respectively. Next, prdiminary finite dement smulaions were peaformed with the
identified contact regions in order to sdect the (critical) segment with the highest crack-
tip stresses (for the given vaue of dg). In view of the rdatively large spacing of the

truncation segments a such smal interference, each segment was analyzed separately.

7.3.2 Contact Pressure Distribution

Before proceeding with the andyss of the fatigue results it is indructive to
consder the effect of topography (racta) parameters on the contact pressure, p, in order
to facilitate the interpretation of the crack growth dependence on surface roughness.
Figures 7.4 and 7.5 show pressure profiles at asperity contacts due to diding of a fractd
surface possessing different D and G values, respectively. The results were obtained by
indenting the layered medium to the same globa inteference (dg = 1 nm) and then
displacing the rough surfaces over the layered medium by the same distance yp/c, = 8.
Figure 7.4 shows that, for a given vdue of G, the rea contact area increases and the
maximum contact pressure decreases with the increase of D. Figure 7.5 shows that a

amilar trend occurred with the decrease of G for fixed D. These results can be explained
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Fig. 7.4 Contact pressure profiles on a layered medium due to diding contact with a
fracta surface at distanceyp/c; =8: (8) D = 1.34, (b) D =1.44, and (c) D = 1.54.
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by consgdering the physicd meaning of the fractd parameters D and G. Higher D and
lower G vaues ae asociaed with smoother surfeces, yieding a larger number of
asperity contacts and lower pesk pressures. For relatively smooth surfaces, i.e, D = 1.44
and 154 (Figs. 7.4(b) and 7.4(c), respectively), the interface comprises two contact
regions. In view of the smdl laerd spacing, interaction of the dress fidds of these
neighboring contact regions during diding (Komvopoulos and Choi, 1992) produces
complex variations in the crack-tip stresses. Another important feature is the contact
pressure fluctuations obtained for high D vaues. For ingtance, the contact pressure profile
for D = 1.54 contains severd peaks (Fig. 7.4(c)). Despite the smilar real contact aress,
the surface with D = 1.54 and G = 9.46 x 10 nm (Fig. 7.4(c)) is not equivaent to the
surface with D = 1.44 and G = 9.46 x 10° nm (Fig. 7.5(c)), as evidenced by the higher
pressure peaks shown in Fig. 7.4(c). This is due to the fact that the fractd dimenson D
determines the contribution of high and low frequency components in the surface profile,
while the fractd roughness G does not exhibit this property. However, dthough a rough
surface with a higher D vaue is not equivdent to a surface with alow G vaue, it will be
shown later that these surfaces yied smilar results for the dress intengty factors and

plagtic srain.

7.3.3 Stress Intensity Factors

The maximum dress intensity factor range, DK ™, is the driving force for fatigue
crack growth. The mode | and mode Il dress intensty factors (SIF), K, and K|,
respectively, were used to characterize the dress fidd in the vicinity of the crack tip. In

linear dadtic fracture mechanics, K, and K, are defined as

K, =lim qo[v2prs , (r,q)] (7.1)
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K, =lim,qo[v2prt , (r,q)] . (7.2)

The SIFs were determined from the stresses calculated a ten nodes adjacent to the crack

tip dong the crack plane (q = 0) by linear extrapolation of a least-square line fit through
the SIF data.

Figure 7.6 shows the variaion of K, and K, (normalized by Plpc¥?) with the

postion of surface segment | and Il (Figs. 7.3(d) and 7.3(e), respectively). When segment

| is to the left of the crack, the crack is completely closed due to the predominantly

Segment | Segment |1
@) (b)
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0.08 ;
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Fig. 7.6 Vaiation of dimendonless dress intendty factors due to sequentid diding of
two different surface segments: (a), (b) K, and (c), (d) K, .
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compressive sress field and, therefore, K, assumes vaues close to zero. However, when
the surface segment passes over the crack, K, incresses abruptly to a pesk value and
then decreases gradudly as the surface segment moves further to the right. While the
subsequent passage of segment |l produces a smilar varigion in K, (Fig. 7.6(b)), the
range of K, is dgnificantly lower than that due to segment | (Fig. 7.6(a)). Hence, the
effect of segment | on the magnitude of K, is much more pronounced than that of
segment 1l. Figures 7.6(c) and 7.6(d) show different variations of K, with surface
segment pogtion. It is noted that the shear mode is dominant when the surface ssgment
approaches the crack from the left, and the tendle mode prevails as soon as the surface
segment moves to the right. The normadized DK™ and DK™ due to segment | are
equa to 0.1296 and 0.0629, respectively, while the corresponding vaues for segment Il
are 0.0262 and 0.0490. Hence, the portion of the surface profile from x¢ = 4050 nm to

xC = 4150 nm (segment |, Fig. 7.3(e)), was used in the fatigue crack growth smulations

discussed below.

7.3.4 Fatigue Crack Growth Analysis

Smilaly to previous fracture mechanics andyss (Gong and Komvopoulos,
2004b; Komvopoulos and Cho, 1997), fatigue crack growth was studied in terms of the
maximum shear and/or tensile SIF range. The dominance of the shear and tendle modes

of crack growth depends on the maximum valuesof DK and DK, , defined as

DK™ = max] DK, ()] = mad K ] (7.3)

- K .
s,max|q=q s .min [, ¢

DK,™ =max[ DK, (q)] = max[ K 1, (7.4

- K o
t,max |q:q tamin g =
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where the subscripts max and min denote the maximum and minimum vaues of K, and
K,, determined at a certain position of the diding surface segment, and g~ is a given
vdue of angle g (- 180° = g~ = 180°). In view of the secondary effect of the Smulated
crack increment, Dc, on the growth direction of a surface crack (Gong and Komvopoulos,
2004b), dl the smulations were performed for Dc = h;/8.

Results for the crack growth angle, Dqg, totd devigtion angle, d,,,, ad

DK ™ (= max[ DK™, DK™ ]) a each crack growth cycle are given in Table 7.2. It is

Table 7.2. Crack propagation angles and maximum stress intengity factor range” versus
crack growth cycle

N Dq (deg.) Qo (dET) DK ™ /(2P /pc''?)
1 24 24 0.1597
2 38 62 0.2346
3 -14 48 0.2126
4 18 66 0.2369
5 -21 45 0.2160
6 20 65 0.2333
7 5 70 0.2149
8 4 74 0.2784
9 3 77 0.3225

" Maximum dressintensty factor ranges DK ™ = max[ DK™, DK,™] .
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noted that q,, increases dgnificantly during the firg two cycdes fluctuates in the

following four cycles and increases again in the next three cycles when the crack tip
gpproaches the layer interface. The corresponding crack growth path is shown in Fig. 7.7.
The dmilar result for a smooth (cylindrica) surface diding over the same medium,
obtained in a previous sudy (Gong and Komvopoulos, 2004b), is dso plotted in Fig. 7.7
for comparison. These results are in quditaive agreement with the conclusons of a
fracture andyss of thin coatings subjected to contact loading (Oliveira and Bower,
1996). When crack growth commences remote from the interface, the two crack paths are
nearly pardle to each other. However, when the crack tip is in the proximity of the layer
interface, the two crack paths deviate. In the case of the smooth surface, the crack

propagates toward the interface, while in the case of the rough surface, the crack tends to

Surface

— Rough Surface

————— Smooth Surface
Layer 1

Interface

Fig. 7.7 Crack growth paths in a layered medium due to diding contact with smooth
(cylindricd) and rough (fractal) surfaces.
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grow gpproximately pardld to the interface. This finding reveds a roughness effect on
the evolution of fatigue in the surface layer, i.e,, smooth surfaces are more likey to lead
to delamination of the layer dong the interface as opposed to rough surfaces that promote
delamination within the layer medium.

Figure 7.8(@ shows the normdized maximum dress intendty factor range,

DK™, as a function of crack growth cycles, N. The smilar result for a smooth

(cylindricd) surfece is dso shown for comparison. The generd trend is for DK™ to

intensfy with the increese of N. The difference in the magnitudes of DK™ of the rough
and smooth surfaces is atributed to differences in the interference and surface profile

used in eech amulation. The dominant crack growth mode can be determined from the

magnitudes of the maximum tendle and shear dress intendty factor range, DK™ and
DK™, respectively. Figure 7.8(b) shows the variation of DK™ /DK™ with the crack

growth cycles, N. For the smooth surface case, DK™ /DK™ > 1 throughout crack

growth, indicating the dominance of the tendle fracture mode. However, in the case of
the rough surface, the tendle mode is dominant during the firsg sx cycles, when crack
growth resembles that in the smoothrsurface case (Fig. 7.7), whereas in the subsequent

cycles, when crack advancement occurs dmost pardld to the interface, crack growth is

controlled by the shear mode (DK™ /DK™ <1). A smilar result has been reported for

subsurface crack growth in a homogeneous dadtic hdf-space (Komvopoulos and Cho,
1997).

For the inteference range examined in this dudy, the third and fourth layers
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exhibited purdy dadic deformation. Therefore, for the ske of brevity, subsurface

deformation will be interpreted in light of the evolution of pladicity in the second layer.

Figure 7.9() shows that the maximum plagtic dtrain, é;“ax, in the second layer increases

with accumulating crack growth cyces The increment of é{,“ax a each cycle decreases in

the firg five cycles because the high dresses in the vicinity of the crack tip do not extend
into the second layer. However, notable excursons occurred in the eghth and ninth

cydes, in agreement with the results of a previous study (Gong and Komvopoulos,
2004b). These notable increases in ég“"‘x are due to the superposition effect of the crack-

tip stresses on the stresses in the second layer, in the region adjacent to the interface. The

dependence of pladticity in the second layer on crack growth can be further interpreted by
consdering the variation of the increment of maximum plastic srain, De;™, with the
crack growth cycles, N, due to diding of both rough and smooth surfaces (Fig. 7.9(b)).
For the smooth surface, De_;nax changes dightly with the evolution of crack growth and
increases again when the crack grows in the proximity of the interfface. However, in the
cae of the rough surface, DET;nax decreases monotonicdly until the fifth cycde and

increases gradualy with further crack advancement, despite the fact that the crack path is
dmog padld to the interface. This is atributed to the dgnificant intengfication of the
crack-tip stresses by the diding rough surface. Thus, faster crack growth in the first layer
and more pladticity in the second layer occurred in the diding smulations involving the

rough surface.
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7.3.5 Dependence of Crack Growth on Surface Topography

The effect of the fractd dimenson D on the variaion of K, and K;; with the
postion of the diding fractd surface, ye/c, for fixed G is shown in Figs. 7.10(@) and
7.10(b), respectively. For al D vaues, K| increases rapidly from zero to a pesk vaue
when the rough suface dides over the crack (p/c; = 0), and then decreases gradualy as
the rough surface moves further to the right. The generd trend is for K, to decrease with
the increase of D. This is due to the fact that high D vaues are associated with smooth
aurfaces, which, for a given globd interference, yied lower crack-tip stresses due to the
resulting larger asperity contact areas and smdler loca interferences. The variaion of K,
with yp/c; and D, shown in Fig. 7.10(b), does not reved a specific trend except for a dight
decrease of maximum K;; with the increase of D. The dgnificantly lower magnitudes of
Ky than those of K, confirm that initid crack growth is dominated by the tensle mode, in
agreement with the results shown in Fg. 7.8.

To illudrate the effect of the fractd dimenson on the prevaling fracture mode
during initid crack growth, DK™ /DK™ is plotted as a function of D in Fig. 7.11. The
dominance of the tensle and sher modes is determined by the magnitude of

DK™ /DK™ . The reaults reved a trangtion from shear to tendle crack growth when D

increases in the range of 1.2-1.7. This sems from the fact tha a surface profile
characterized by a high D vaue exhibits a reatively smooth topography. The larger
asperity contact areas and higher surface tractions obtained with smoother surfaces
promote crack opening and, hence, the dominance of the tensle fracture mode. In view of

the results shown in Figs. 7.7, 7.8(b), 7.10, and 7.11, it may be inferred that $noother
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surfaces are more likely to lead to tensle mode-dominated crack growth initidly and
shear mode-dominated crack growth when the crack tip advances in the proximity of the
interface.

To provide further evidence for the effect of surface topography on subsurface
deformation, é,;“a“ in the second layer is plotted as a function of yp/c; for different D

vaues and fixed G in Fig. 7.12. The smoother surface © =1.54) did not produce plastic
deformation. However, the surfaces with D = 1.34 and 1.44 resulted in the accumulation
of pladicity during diding, especidly the rougher surface (D = 1.34) after passng over

the crack /p/ci = 0). The decrease of the plagtic strain with the increase of D is conastent
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Fig. 7.12 Madimum equivdlent plagic stran €™ in the second layer of a layered
medium versus fractd surface postion yp/c for different vaues of fractd dimenson D
and fixed fractd roughness G.

with the results shown in Fg. 7.10, demondrating that the SIFs decresse with the
increase of D (i.e., smoother surface).

The dependence of the SIFs on the fractal roughness G can be sudied in light of
the results shown in Fig. 7.13. The increase of the pesk vdue of K; with the increase of G
(Fig. 7.13() is smilar to that observed with the decrease of D (Fig. 7.10). As mentioned
ealier, this behavior is attributed to the effect of the higher surface roughness associated
with the higher vdue of G. Larger locd interferences are obtained with a rougher surface

due to the smaler asperity contact areas produced, which intensfies the crack-tip
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dresses. The effect of G on the vaiaion of K is less gpparent (Fig. 7.13(b)). A
comparison of Figs. 7.13(8) and 7.13(b) shows that DK, is dgnificantly less than DK,

gmilar to the results shown in Figs 7.6 and 7.10. Therefore, in view of the strong
dependence of the crack growth rate on DK, it may be concluded that initid crack

growth is controlled by the magnitude of DK, , consstent with the results shown in Figs.
7.8(b) and 7.11.

Figure 7.14 shows the dependence of é,;“ax in the second layer on the magnitude
of G for fixed D. The results demonstrate that €, intensifies with the increase of G ina

fashion smilar to that observed with the decrease of D (Fig. 7.12). This is dso in
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Fig. 7.14 Maximum egquivdlent plagic stran € in the second layer of a layered

medium versus fractd surface postion yp/c for different vaues of fracta roughness G
and fixed fractd parameter D.
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agreement with the results presented in Fig. 7.13(a), which show that a higher G vaue
enhances K; due to the surface roughness effect on the crack-tip stresses, as discussed
previoudy. Therefore, from the plastic deformation standpoint, Figs. 7.12 and 7.14
indicate that a surface characterized by a high (low) D vdue is eguivdent to a surface
possessing a low (high) G vaue. For ingance, the surfaces with D = 1.54 and G = 9.46 X

10* nm (Fig. 7.12) and D = 1.44 and G = 9.46 x 10”° nm (Fig. 7.14) resulted in purely
eadic deformation in the second layer. Moreover, Smilar evolutions of é,;“a" were

obtained with surface topographies characterized by fracta parameters D = 1.34 and G =

9.46 x 10" nm (Fig. 7.12) and D = 1.44 and G = 9.46 x 10" nm (Fig. 7.14).

7.4 Conclusions

Contact fatigue in a layered medium containing a crack norma to the surface due
to diding of a rigid rough (fractd) surface was andyzed using linear dadtic fracture
mechanics and the finite dement method. The firg layer was assumed to be eadic while
the other three layers comprising the layered medium were modeed as dadtic-perfectly
plastic. Based on the presented results and discusson, the following main conclusons
can be drawn.

(1) An dgorithm for sdecting the critical segment of the diding rough surface wes
devdoped in order to enhance the computationa efficiency in the finite dement
smulations

(2) The increase of the fractal dimenson and the decrease of the fractd roughness result
in smoother topographies yidding a larger number of interacting asperity contacts

with lower contact pressure distributions.
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(3) The crack paths corresponding to rough and smooth diding surfaces are dmost
pardld to each other when crack growth commences remote from the interface.
However, when the crack tip approaches the interface, the stress field produced by the
rough surface causes the crack to propagate gpproximately pardle to the interface.
Alternatively, in the case of the smooth surface, the crack growth direction is not
affected by the interface. Therefore, the tensle mode controls crack growth in the
case of smooth surfaces, whereas rough surfaces promote a tensile-to-shear mode
trangtion when the crack tip approaches the interface.

(4) The tensle and shear dress intendty factors and plastic drain in the second layer
(adjacent to the interface) increase with the advancement of the crack and the diding
of the rough surface. The accumulation of pladticity in the second layer decreases
during the initid dtage of fatigue crack growth, and increases gradudly as the crack
approaches the layer interface due to the effect of the crack-tip stresses.

(5) The increase of te fractd dimenson and the decrease of the fractal roughness lead to
the decrease of the dtress intengity factors and plastic deformation in the second layer.
This is attributed to the effect of fractd parameters on the asperity contact areas and
associated locd interferences that affect the stresses at the crack tip and the interface.

(6) A trandtion from shear to tendle dominant mode in contact fatigue and a decrease of
plagic deformation in the second layer occur with the increese of the fractd

dimension and the decresase of the fractal roughness.
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CHAPTER 8

CONCLUSIONS

In this dissertation, contact andyses of semi-infinite media with patterned and
rough surfaces were peformed in order to shed light into the effects of surface
paterning, frictional heating, and surface cracking on the resulting deformation and
dresses. In view of the results and discussons presented in previous chapters, the
following main conclusons can be drawn.

Surface patterning has a Sgnificant effect on the contact pressure, surface tendle
dress, surface temperature, and plagic deformation in layered media The maximum
tendle resdud dress in layered media with snusoidd surface petterns occurs & the
tralling edge of the contact region. This resdua sress is much higher than that obtained
with layered media exhibiting flat surfaces and depends on the pattern geometry and
friction coefficent. Petterned surfaces yidd lower plagtic strains and smadler plagtic
zones than flat surfaces due to the lower stresses resulting from the increased compliance
of the top hard layer that can Store dgnificant srain energy without undergoing plagtic
deformation. Nevertheess, this arises a the expense of a higher surface tendle dress a
the trailing edge of the contact interface, therefore indicating a grester probability for
surface crack initiation for patterned media. Periodic variations in the contact pressure,
surface temperature, subsurface stresses, and plastic strain were encountered in the case
of paterned layered media and are atributed to the pattern geometry. The smilar pesk

vdues of the maximum temperaiure in eaech layer illusrate that thermd interaction
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between neighboring pads is negligible. The deady-state stresg/strain fields produced
after the firg diding cycle suggest that deformation in the patterned layered medium is
insengtive to subsequent Smilar diding cycles.

Although the finite dement method is the main numerica technique for obtaining
solutions for the dresses in both homogenous and layered media in diding contact with a
rough surface, requirements for large number of dements make the finite eement
goproach impracticd for anadlyses involving rough surfaces of redively large gpparent
contact areas. For this reason, an andytica procedure was developed that enables the
caculaion of contact dresses in layered eagtic media in contact with a rough surface. A
condtitutive relation between the mean contact pressure and a representative dtrain
parameter was derived for layered media based on finite dement results. The red contact
area was obtained as a function of mechanica properties of the layered medium, layer
thickness, truncated hdf-contact width, and asperity radius. It was shown that much
higher tendle dresses occur in the case of diff layers than compliant layers. Numericd
results reveded that crack initiation is more likely to occur both a the surface and the
interface in the case of the iff layer and only at the surface in the case of the compliant
layer. It was ds0 shown that the differ layer incresses the likeihood for interface
cracking and delamination than the compliant layer.

Knowledge of the surface temperature and thermoelastic stresses in diding solid
bodies with rough surfaces is essentid in falure andyss of mechanicd sysems. A
thermomechanicad contact modd was deveoped for diding contact between a semi-
infinite dagtic medium and a rough (fractd) surface that accounts for the smultaneous

effects of theema and mechanica deformation For fixed surface interference, frictiond
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heeting increases both the contact area and the contact pressure. This effect was found to
be mostly pronounced at asperity microcontacts located at the trailling edge of the contact
interface, where the cumulative effect of frictiond hedting was obsarved to be most
pronounced. It was dso found that the maximum temperature a each microcontact
occurs adways a the surface and increases with the Peclet number. The maximum
temperature rise at the surface increases with the decrease of the fractd dimension.
Intendfication of the temperature gradients with the increese of the Peclet number is
regponsble for the enhancement of thermodagiic digortion a the surface and the
devdlopment of high thermd dresses For low Peclet number, the dress fidd is
dominated by the effect of mechanicd dresses. The von Mises equivdent dress is
grongly affected by frictiona heating, especidly a microcontact regions close to the
trailing contact edge where the highest therma dresses are produced due to the
cumulative hedting effect. The increase of the Peclet number promotes surface plastic
deformation and reduces the likelihood for surface cracking.

Surface cracking in a multi-layered medium containing a crack perpendicular to
the free surface due to repetitive diding of a rigid asperity was analyzed based on linear
eadic fracture mechanics and the finite dement method. The sgnificantly higher vaues
of the tensle dress intensty factor than those of the shear dress intendty factor obtained
in dl smulaion cases indicated that surface cracking in the multi-layered medium due to
diding of a gngle asperity is controlled by the tensle fracture mode. The surface crack
propageated toward the layer interface at an angle of ~57 degrees from the origind crack
plane, independent of the crack growth increment, in far agreement with experimenta

observations. The maximum plagtic drain in the second layer increased rapidly as the
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crack tip approached the interface due to the effect of the high-stress field at the crack tip.
This caused the maximum plagtic drain in the second layer to occur aways below the
crack tip adjacent to the interface rather than below the diding asperity, as found for
uncracked eagtic-plagtic layered media. Finite dement results showed that the coefficient
of friction a the contact (diding) region exhibits a dominant effect on the plagtic drain
accumulating in the second layer, while the effect of crack-face friction is inggnificant.
The andyss of surface cracking in layered media due to sngle asperity diding was
extended to rough-surface diding to ducidate the surface topography effect on the stress
intengty factor and the crack propagation mode. The smulation results show that the
crack propagation mode changes from tendle to shear as the crack tip approaches the
layer interface. At this juncture, the crack tends to grow approximately pardld to the
interface. The dress intendty factors and plastic deformation in the second layer decrease
with the increase of the fractd dimension and/or the decrease of the fractd roughness.
The increase of the fracta dimenson and the decrease of the fractal roughness change the
dominant crack growth mode from sheer to tensle.

In concluson, the results of this research contribute to the advancement of the
sate-of-the-art in contact mechanics of layered media Specificdly, andyticd and
numericd solutions demondrated the role of various important factors, such as surface
patterning, overcoat properties, frictiond heating, and surface cracking, on the
mechanicadl and thermomechanical behavior of hdf-space homogeneous and layered
media with patterned and rough surfaces. The methodologies and modds derived in this

dissertation can be eadly gpplied to a wide range of length scaes, including systems
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operating under conditions leading to surface interactions from the nanoscde to the

macroscae.
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