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Abstract 
 
 

Analytical and Numerical Contact Analyses of 
Semi-Infinite Media With Patterned and Rough Surfaces 

 
by 
 

Zhong-Qing Gong 
 
 

Doctor of Philosophy in Engineering–Mechanical Engineering 
 

University of California, Berkeley 
 

Professor Kyriakos Komvopoulos, Chair 
 
 
 

Contact analyses of semi-infinite media with patterned and rough surfaces were 

performed in order to examine the effects of surface patterning, frictional heating, and 

surface cracking on the resulting deformation and stresses in the media. Stress and plastic 

strain results for layered media possessing meandered and sinusoidal surface patterns 

were compared with those of a layered medium with a smooth (flat) surface and identical 

layer thickness and material properties subjected to the same normal and tangential 

loading. Two- and three-dimensional finite element results for the contact stress and 

deformation fields were obtained for patterned media in terms of coefficient of friction, 

spherical indenter radius, and sliding repetitions. In addition, a fully coupled 

thermomechanical finite element analysis was carried out to obtain solutions for the 

surface temperature distribution and to elucidate the effect of the Peclet number on the 

maximum temperature rise and subsurface plasticity. 
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In addition to the studies involving smooth surfaces, a plane-strain model was 

developed for a layered medium in contact with a rough surface characterized by fractal 

geometry. A constitutive relation between the mean contact pressure and a representative 

strain was obtained based on finite element results for a rigid cylindrical asperity in 

normal contact with an elastic layered medium. The real contact area was obtained as a 

function of mechanical properties, layer thickness, truncated half-contact width, and 

asperity radius. These relations were incorporated into a numerical algorithm to 

determine the contact pressure profiles and stress state based on the distribution of 

asperity microcontacts. Numerical results revealed that crack initiation is more likely to 

occur at both the surface and the interface in the case of a stiff layer, while they are more 

likely to occur at the surface in the case of a compliant layer. 

A thermomechanical analysis was conducted for semi-infinite elastic solid in 

sliding contact with a rough (fractal) surface. The model accounts for effect of thermal 

and mechanical coupling through the normal surface displacement caused by the contact 

pressure, shear traction, and thermoelastic distortion due to frictional heating. The effect 

of frictional heating on the contact pressure, temperature rise, and stress field is examined 

in terms of the Peclet number and topography (fractal) parameters. 

Surface cracking in a multi-layered medium due to repetitive sliding of a rigid 

asperity was analyzed using linear elastic fracture mechanics and the finite element 

method. The stress intensity factor and crack propagation results are presented in terms of 

coefficient of friction at the contact region and crack interface and initial crack length. 

Numerical results show that the surface crack propagates toward the layer interface at an 

angle of ~57 deg. from the original crack plane, independent of crack growth increment, 
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in fair agreement with experimental observations. This analysis was extended to surface 

cracking in layered media in sliding contact with a rough (fractal) surface. The 

significance of topography (fractal) parameters on the crack growth behavior is 

interpreted in terms of finite element results for the contact pressure, stress intensity 

factors, and maximum equivalent plastic strain. 

The main findings in this dissertation provide insight into the significance of 

surface patterning, overcoat properties, frictional heating, and surface cracking on the 

mechanical and thermomechanical behavior of half-space media with patterned and 

rough surfaces. The obtained results advance the current state in contact mechanics of 

thin-film mechanical systems with contact interfaces, such as microelectromechanical 

devices and hard disk drives, and enhance the understanding about the underlying reasons 

leading to mechanical failure of contacting surfaces and layered media. 
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= 6. 

Fig. 5.13 Contours of dimensionless temperature rise ∆T/( kVQa πκ /2 ) in the 
subsurface of elastic semi-infinite solid in sliding contact with a rigid rough 
(fractal) surface (D = 1.44, G = 9.46 × 10-4 nm, µ = 0.5, and δmax = 1.5 nm): 
(a) Pe = 0.06 and (b) Pe = 6. 
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rigid rough (fractal) surface (D = 1.44, G = 9.46 × 10-4 nm, µ = 0.5, and δmax = 
1.5 nm). Solid and discontinuous curves represent thermoelastic (Pe = 54) and 
elastic results, respectively. 
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nm, µ = 0.5, and δmax = 1.5 nm). 
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obtained in the eighth crack growth cycle for 25.0/ 1 =hc i , 8/1hc =∆ , 

5.0== cµµ , and dimensionless asperity position (a) 261.a/yP =  and (b) 
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Fig. 6.13 Maximum equivalent plastic strain, max
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versus dimensionless asperity position, a/yP : (a) ci/h1 = 0.125, 0.25, 0.5, and 
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CHAPTER 1 
 

INTRODUCTION 
 

 

Contact mechanics is a sub-field of applied mechanics that deals with the 

deformation, stresses, and frictional heating of contacting solid bodies. Historically, 

contact mechanics evolved from the study of Heinrich Hertz (1882), who obtained 

solutions for the frictionless contact of two elastic bodies with ellipsoidal profiles. Since 

then, progress in contact mechanics resulted in extension of the Hertz theory to problems 

involving contacting bodies of various geometries and different constitutive laws. The 

incorporation of friction at the interface of contacting bodies led to mechanics studies of 

sliding and rolling contact. Furthermore, the interdependence of mechanical and thermal 

fields in the presence of frictional heating necessitated the development of fully coupled 

thermomechanical theories. Progress in contact mechanics has been motivated by 

numerous applications where surface interaction affects the operation and durability of 

mechanical systems. From macroscopic sliding systems, such as brakes, clutches, and 

seals, to microscopic contact systems, such as microgears and microgrippers in MEMS 

and the head-disk interface in hard disk drives, accurate failure analysis depends strongly 

on detailed knowledge of the deformation and stress fields, as well as generation of 

frictional heat and conduction/dissipation in the interacting bodies.  

Coatings are often used to protect components subjected to contact stresses and to 

enhance the tribological performance and functionality of interacting surfaces. A coating 

modifies the contact pressure distribution at the contact interface. A compliant coating 
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reduces the contact pressure by spreading the contact area while a stiffer coating 

produces an opposite effect. Consequently, the coating modifies the stress distribution 

below the contact interface. The enhanced wear resistance of hard protective coatings, 

such as ceramics, cemented carbides, and diamond-like carbon, which is due to their high 

hardness, greatly affects the reliability of many mechanical systems. Hence, analysis of 

the stresses and deformation in layered media due to sliding contact is critical to the 

design of various mechanical components. 

Contact mechanics of layered media with flat surfaces has been investigated both 

analytically and numerically. However, surface features of various length scales play a 

significant role in the elastic-plastic deformation and temperature rise due to frictional 

heating in layered media. For example, patterned layered media are used in many 

leading-edge technologies, such as high-density data storage and magnetic random access 

memory media. The surface microfeatures are typically produced by achromatic 

interferometric lithography and electron beam techniques. Contact analysis of patterned 

media with various surface features presents major difficulties due to the complexity of 

the analytical solutions for the surface and subsurface deformation and stress fields. Thus, 

numerical techniques, such as the finite element method, must be employed to analyze 

contact between solid bodies with real surface topographies. 

Engineering surfaces exhibit roughness over a wide range of length scales, thus 

resulting in a number of microscopic contact spots, referred to as asperity contacts. The 

effect of surface roughness on contact deformation has been the reason for most friction 

and wear models. Traditional statistical techniques have been adopted to characterize 

rough surfaces by assuming an asperity height distribution. However, because of the 
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multi-scale nature of surfaces, surface roughness parameters depend strongly on the 

sample size, instrument resolution, and experimental filter used to acquire the topography 

data. Fractal geometry has been used in contemporary contact mechanics studies to 

characterize engineering surfaces in order to avoid the scale-dependence of statistical 

models. The fractal description of surfaces provides more insight into the roughness 

effect on the deformation and stresses of contacting rough surfaces. 

In sliding mechanical systems, friction causes mechanical energy to be dissipated 

in the form of heat within the vicinity of the real contact area. The frictional heat 

dissipated is responsible for the temperature rise at the surface and in the substrate. 

Frictional heating and the resulting temperature rise may affect significantly the 

tribological behavior of sliding components, especially at high sliding speeds. The 

surface temperature rise could be high enough to change the properties of the sliding 

materials, promote surface oxidation, degrade the lubricant functionality, and even cause 

melting of the solid lubricant or the surface of the interacting materials. The interfacial 

temperature rise leads to the development of thermal stresses and induces variations in 

the real contact area and contact pressure distribution due to thermal expansion. Since 

these changes in the contact conditions affect the heat generation rate and heat 

conduction across the contact interface, the thermal and mechanical stress/strain fields are 

fully coupled and, therefore, must be determined simultaneously rather than sequentially. 

Thus, knowledge of the surface temperature and thermoelastic stresses in sliding solid 

bodies with rough surfaces is essential in failure analysis of mechanical systems. 

Traditionally, hard and stiff coatings have been used to protect components 

subjected to contact stresses and to enhance the wear resistance of interacting surfaces. 
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The inherent high hardness of these materials is obtained at the expense of low fracture 

toughness. Consequently, contact fatigue and/or fracture of hard coatings are dominant 

failure mechanisms in many mechanical systems subjected to continuous sliding contact, 

such as gear flanks, bearing surfaces, and head-disk interface in hard disk drives. 

Analysis of surface cracking in layered media is necessary in order to fully understand 

the underlying mechanisms of wear particle generation and overcoat delamination. 

Furthermore, knowledge of the effect of surface cracking on the accumulation of plastic 

deformation in the elastic-plastic substrate is also important to the identification of the 

failure mechanism(s) in the substrate medium. 

From the aforementioned, it is apparent that contact analysis of layered media 

possessing realistic surface topographies presents serious difficulties (both analytical and 

numerical). Therefore, the objective of this dissertation is to provide comprehensive 

contact analyses of semi-infinite media with patterned and rough surfaces. Mechanical 

and thermomechanical analyses of homogenous and/or layered media with rough surface 

are performed analytically, while contact analyses of layered media with patterned 

surfaces and surface cracking in elastic-plastic layered media are performed with the 

finite element method due to the complexity induced by the surface topography and the 

constitutive relationships. 

The dissertation has been organized as following. Chapter 2 presents a plane-

strain finite element analysis of patterned elastic-plastic layered media that elucidates the 

effect of surface geometry on the deformation and stress fields arising due to normal and 

sliding contact. The significance of surface patterning on the deformation behavior is 

interpreted in terms of stress and strain results illustrative of the tendency for crack 
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initiation and plastic deformation in the media. Relations for the contact pressure 

concentration factor and onset of yielding in the first (hard) layer are derived from finite 

element results for indented layered media with sinusoidal surface patterns. The contact 

analysis of patterned media is extended to a three-dimensional analysis in Chapter 3 by 

introducing an elastic-plastic finite element model of a sphere in normal and sliding 

contact with a layered medium with a patterned surface characterized by regularly spaced 

rectangular pads. Three complete loading cycles, involving indentation, sliding, and 

unloading of the rigid sphere, are simulated to assess the effect of repeated sliding on the 

stresses in the first (hard) layer and plastic deformation in the underlying (soft) layer. 

Thermomechanical sliding contact simulations of an elastic-plastic layered medium with 

a patterned surface and an elastic-plastic sphere are carried out to examine the effect of 

frictional heating on the deformation behavior of the medium. The likelihood of thermal 

cracking in the wake of microcontacts during sliding is interpreted in the context of the 

thermal tensile stress due to temperature gradients in the layered medium. 

Chapter 4 describes a two-dimensional contact model for layered elastic media 

with rough surfaces characterized by fractal geometry. A finite element model of a rigid 

cylindrical asperity in normal contact with an elastic layered medium is used to obtain a 

constitutive relationship between the mean contact pressure and a representative strain. 

The real contact area is found to be a function of mechanical properties, layer thickness, 

truncated half-contact width, and asperity radius. These relationships are incorporated 

into a numerical algorithm to determine the contact pressure profiles and stress state 

according to the distribution of asperity contacts. Solutions for the total contact load and 

contact area show the significance of material properties, layer thickness, and surface 
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topography on the global parameters of this contact system. The contact pressure and 

local stress fields are discussed in terms of the effect of friction coefficient, layer 

thickness, and material properties on the pressure profile, surface stress, interface stress, 

von Mises equivalent stress, and maximum principal stress. 

Chapter 5 provides a thermomechanical analysis for semi-infinite elastic solid 

sliding against a rigid rough surface characterized by fractal geometry. A piecewise-

linear distribution of the contact pressure is obtained by superposition of overlapping 

triangular pressure elements. The normal surface displacements due to the effects of 

contact pressure, shear traction, and thermoelastic distortion caused by frictional heating 

are incorporated in the influence coefficients of the matrix inversion method. The effects 

of surface topography and interaction between neighboring asperity contacts on the 

surface and subsurface temperature rise and stress field of the elastic semi-infinite solid 

are discussed in the context of numerical results. The significance of frictional heating on 

the contact pressure, temperature rise, and stresses is interpreted in terms of the Peclet 

number and topography (fractal) parameters. The results provide insight into the 

likelihood for cracking and plastic flow at the surface due to the combined effects of 

mechanical and thermal surface tractions. 

In Chapter 6, surface cracking in a multi-layered medium due to sliding of a rigid 

asperity is examined using linear elastic fracture mechanics and the finite element 

method. The crack propagation direction is predicted based on the maximum (tensile or 

shear) stress intensity factor (SIF) range. The effects of the crack length, sliding friction, 

and crack-face friction on the SIF and crack propagation direction are discussed in the 

context of finite element solutions. Simulation results demonstrate the effects of crack 
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growth in the elastic surface layer on the accumulation of plastic strain in the elastic-

plastic underlying layer and the significance of crack growth increment on the 

propagation path. Based on the obtained results, a general fatigue approach for surface 

cracking is derived for multi-layered media subjected to repetitive sliding contact. This 

study is extended in Chapter 7 to examine surface cracking in a layered medium due to 

sliding contact with a rough surface. A contact algorithm is used to determine the critical 

segment of the rough surface for fracture analysis. The significance of topography 

(fractal) parameters on the crack growth behavior are interpreted in terms of results for 

the contact pressure, stress intensity factors, and maximum equivalent plastic strain. 

The dissertation is concluded in Chapter 8 by summarizing the main findings of 

this research. 
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CHAPTER 2 
 

EFFECT OF SURFACE PATTERNING  
ON CONTACT DEFORMATION  

OF ELASTIC-PLASTIC LAYERED MEDIA 
 

 

2.1 Introduction 

Surface layers (overcoats) are often used to protect components subjected to 

contact stresses and to enhance the tribological performance and functionality of 

interacting surfaces. The contact mechanics literature is rich in both theoretical and 

numerical elastic-plastic contact analyses of layered media. King (1987) analyzed 

indentation of elastic layered media and obtained a relation for the effective elastic 

modulus in terms of the layer thickness and elastic properties of the layer and substrate 

materials. O’Sullivan and King (1988) obtained analytical solutions for the stress field 

due to sliding of a spherical indenter on a layered elastic medium. Komvopoulos (1988, 

1989) performed finite element analyses of normal contact on elastic and elastic-plastic 

layered media. Tian and Saka (1991) used the finite element method to study sliding 

contact on an elastic-plastic two-layer half-space. Kral and Komvopoulos (1996, 1997) 

obtained finite element results for the surface and subsurface stress and strain fields 

occurring in elastic-plastic layered media due to indentation and sliding contact. A 

common objective in these studies has been the investigation of the effects of coefficient 

of friction and overcoat thickness and mechanical properties on the contact stress and 

deformation fields. However, in all the previous studies the layered medium was modeled 
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as a half-space with a flat surface. Therefore, very little is known about the role of surface 

geometry features (patterning) on the elastic-plastic deformation of layered media. 

Contact of elastic bodies possessing small-amplitude sinusoidal surfaces has been 

the central theme of several earlier analyses on the effect of surface geometry on contact 

stresses. Westergaard (1939) used complex variables in two-dimensional elasticity to 

analyze contact between a sinusoidal and a flat surface. Dundurs et al. (1973) 

implemented a Fourier analysis in a stress function approach to solve the latter problem. 

Elastic contact analysis of half-spaces with two-dimensional, sinusoidal, isotropic 

surfaces is fairly cumbersome. Experimental results suggest that it is difficult to predict 

the shape of microscopic contact areas (Johnson et al., 1985), hereafter referred to as 

microcontacts. A change from approximately circular to square-shaped microcontacts 

occurred in the apparent contact region with increasing normal load, leading eventually to 

the development of discontinuous contact zones separated by noncontacting small 

circular regions. Johnson et al. (1985) used a numerical method to determine the pressure 

distribution and contact area, and obtained closed-form asymptotic solutions for both 

light and heavy loads, which resulted in almost full contact. Seabra and Berthe (1987) 

used a variational formulation to study normal contact of an infinitely long wavy cylinder 

with a flat plane and reported that both the pressure concentration factor and the change 

of the contact area are strong functions of wavelength, amplitude, and normal load. In 

addition, the effect of surface roughness on the contact behavior was shown to be 

qualitatively similar to that of surface waviness. Komvopoulos and Choi (1992) analyzed 

normal contact of regularly spaced rigid asperities with an elastic half-space using the 

finite element method and obtained results for the maximum contact pressure, normal 
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load, and subsurface stresses in terms of asperity distribution and indentation depth. 

Undulated (textured) surfaces have been shown to yield low electrical conduct resistance 

(Saka et al., 1984) and low sliding friction (Tian et al., 1989) due to the entrapment of 

oxidized wear debris in the surface cavities. Ramachandra and Ovaert (2000) examined 

the effect of coating discontinuities on the surface elastic deformation and stresses, and 

observed a significant decrease in pressure singularities at coating discontinuities with 

crowned edges. 

The previous studies have provided useful insight into the contact stress and strain 

fields of elastic-plastic layered media and the role of surface geometry on contact 

deformation of homogeneous media. However, elastic-plastic deformation of layered 

media with different surface patterns subjected to both normal and tangential (friction) 

surface loadings has not been analyzed to date, probably due to the highly complex 

analytical relations. Therefore, a principal objective of this study is to elucidate the 

concomitant effect of surface pattern geometry, coefficient of friction, and normal load 

(or indentation depth) on the evolution of deformation and stresses in elastic-plastic 

layered media. This is accomplished by performing finite element simulations of normal 

and sliding contact of a rigid cylindrical asperity on layered media with different surface 

patterns and layer material properties. The finite element method is suitable for such type 

of complex contact problems because analytical solutions for the surface and subsurface 

deformation and stress fields are extremely difficult to obtain. Another goal of this work 

is to derive relations for the contact pressure concentration factor and the inception of 

yielding in the first (hard) layer of indented layered media possessing sinusoidal surface 

patterns. 
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2.2 Modeling Procedures 

2.2.1 Surface Modeling and Finite Element Mesh  

To examine the effect of the surface pattern geometry on the deformation and 

stresses in elastic-plastic layered media, meandered surfaces consisting of undulations 

(pads) of height b and width and lateral spacing a (Fig. 2.1(a)) and sinusoidal surfaces of 

wavelength λ and amplitude δ (Fig. 2.1(b)) were analyzed using the finite element 

method. The surface pattern shown in Fig. 2.1(a) is typical of undulated surfaces, used to 

minimize friction through the entrapment of wear debris (Tian et al., 1989), and patterned 

media for ultra-high density magnetic recording produced by ion beam lithography (Ross, 

2001). The wavy surface shown in Fig. 2.1(b) is similar to the topography of 

micromachined (lapped) surfaces, where the average grit size and lateral spacing control 

the amplitude and wavelength of the generated pattern. Different surface patterns were 

modeled by varying the dimensionless ratios b/a and δ/λ. The radius of the rigid asperity 

R was fixed in all simulations. 

Normal and sliding contact simulations were performed with the two-dimensional 

finite element mesh shown in Fig. 2.2(b), based on the usual plane strain assumption. The 

mesh consists of approximately 10,000 eight-node, isoparametric, quadrilateral elements 

(depending on the modeled surface pattern), and its dimensions are x/R = 2.4 and y/R = 

3.1. The nodes at the bottom boundary of the mesh were constrained against 

displacement in the y-direction and the nodes at the left boundary against displacement in 

the x-direction. To accurately determine the contact pressure distribution, contact area, 

and stress and strain fields in the highly stressed region adjacent to the contact interface, 

aaa 
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Fig. 2.1 Schematics of layered media with (a) meandered and (b) sinusoidal surfaces and 
pertinent nomenclature of geometry parameters. 
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Fig. 2.2 Finite element mesh of layered medium with a sinusoidal surface: (a) mesh of 
first and second layers and (b) mesh of entire layered medium.  
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small square elements of sides equal to 1/32 of the thickness of the first layer were used 

to refine the mesh in the vicinity of the surface, as shown in Fig. 2.2(a) for a layered 

medium with a sinusoidal surface pattern. A 3 x 3 integration scheme was used in all 

simulations. 

Contact between the layered media and the rigid asperity was detected with 

special contact elements. These elements are used to determine contact or separation 

between surface nodal points of the mesh and the rigid countersurface by measuring the 

local interfacial gap. If the obtained distance is less than a specified tolerance value, it is 

assumed that contact has been established and the appropriate force (contact pressure) is 

applied to the corresponding surface nodes of the mesh. Relative slip (sliding) was also 

modeled with the contact elements using the local overclosure, i.e., the specified 

tolerance for the penetration of nodal points on the mesh surface into the rigid surface. 

These kinematic measures were used together with a Lagrange multiplier to model 

surface interaction and, hence, calculate the associated normal and friction traction at the 

nodes of the contact region. Coulomb friction was assumed in all simulation cases. 

According to the adopted friction model, a shear stress, τ, develops between the 

contacting surfaces upon the occurrence of a very small relative tangential displacement. 

Slip or stick commences when τ = µ p or τ < µ p, respectively, where µ is the coefficient 

of friction, specified for the contact elements, and p is the local contact pressure. Thus, 

both normal and tangential tractions were applied simultaneously, and the produced 

friction force was proportional to the normal load.  
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2.2.2 Material Properties and Constitutive Models 

The thickness, h, elastic modulus, E, and yield strength, σY, of each layer of the 

layered media analyzed in this study are given in Table 2.1. These thickness and material 

property values are typical of layers used in magnetic recording rigid disks, i.e., carbon 

overcoat (layer 1), CoCrPt magnetic medium (layer 2), CrV underlayer (layer 3), and NiP 

electroplated layer (layer 4). The material properties of layers 1 and 2 were obtained from 

nanoindentation experiments performed on carbon-coated rigid disks (Komvopoulos, 

2000). 

The von Mises yield criterion was used to check whether yielding occurred at a 

material point. According to this criterion, the yield condition, g, is expressed as  

 02
2 =−= kJg , (2.1) 

where k is a material constant and J2 is the second deviatoric stress invariant, given by  

 ijij SSJ
2
1

2 = , (2.2) 

where mijijijS σδσ −= , in which, σij is the stress tensor, δ ij is Kronecker’s delta function, 

and σm is the mean octahedral stress (σm = σii/3).  

Table 2.1. Thickness and material properties of layered medium 

Medium h/R 
E 

(GPa) 
σY 

(GPa) 

Layer 1 0.025 168 13.0 

Layer 2 0.078 130 2.67 

Layer 3 0.4 140 2.58 

Layer 4 2.6 160 2.67 
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For uniaxial stress state, the yield criterion can be written as  

 YijijM SS σσ =



=

2/1

2
3

 (2.3) 

where σM is the von Mises equivalent stress. Plastic deformation was based on the usual 

associated flow rule, assuming negligible plastic volume change. An updated Lagrangian 

formulation was used in all contact simulations. Each layer was assumed to exhibit 

elastic-perfectly plastic material behavior. The equivalent plastic strain, pε , is defined as 

 2/1]
3
2

[ p
ij

p
ijp dd εεε ∫Ω

=  (2.4) 

where Ω is the strain path. The plastic flow rule was applied only to yielding material for 

which σM = σY. The usual elastic constitutive equations were used when σM  < σY. 

2.2.3 Finite Element Simulations 

Quasi-static sliding contact simulations consisting of three sequential steps of 

loading, sliding, and unloading of a rigid asperity on layered media with different surface 

geometries were performed in an incremental fashion. Normal contact (indentation) was 

simulated by advancing the rigid asperity toward the elastic-plastic medium up to a 

specified penetration depth, d (or normal load, L). Subsequently, the asperity was 

displaced laterally to a maximum distance, S, of about eight times the half-contact width 

at maximum normal load. The coefficient of friction and normal load were maintained 

constant throughout all simulations. Finally, the asperity was unloaded following the 

same steps as for the loading. All simulations were performed with the multipurpose 

finite element code ABAQUS. A total of eight sliding and four normal contact simulation 

cases were examined, i.e., b/a = 0 and δ/λ = 0 (flat surfaces), b/a = 0.5, 1, and 2 
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(meandered surfaces, Table 2.2), and δ/λ = 0.008, 0.016, and 0.032 (sinusoidal surfaces, 

Table 2.3). The assumed friction coefficient values of 0.1 and 0.5 are typical of 

boundary-lubricated and dry (or poorly lubricated) surfaces, respectively. 

2.3 Results and Discussion 

To elucidate the effect of surface patterning on the contact deformation behavior, 

elastic-plastic finite element results for the surface and subsurface stresses and strains in 

Table 2.2. Sliding contact simulations for layered media with meandered surface patterns 

b/a L/σY1a0 µ S/R 

0.0 0.57 0.1/0.5 0.5 

0.5 0.57 0.1/0.5 0.5 

1.0 0.57 0.1/0.5 0.5 

2.0 0.57 0.1/0.5 0.5 

 

Table 2.3. Sliding and normal contact simulations for layered media with sinusoidal 
surface patterns 

Sliding Indentation 
δ/λ 

L/σY1a0 µ S/R d/R µ 

0.0 0.57 0.1, 0.5 0.5 0.0025-0.015 0.5 

0.008 0.57 0.1, 0.5 0.5 0.0025-0.015 0.5 

0.016 0.57 0.1, 0.5 0.5 0.0025-0.015 0.5 

0.032 0.57 0.1, 0.5 0.5 0.0025-0.015 0.5 
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layered media with meandered and sinusoidal surface patterns in sliding contact with a 

rigid asperity are presented in this section. For the geometry, material, and load 

parameters considered in this study, deformation was found to occur mainly in the first 

two layers. Thus, results illustrating the evolution of stress and deformation in the first 

(hard/stiff) and second (soft/compliant) layers of the medium are presented first, followed 

by an analysis for the contact pressure concentration factor and a general yield criterion 

for the first layer of indented layered media with sinusoidal surfaces. 

2.3.1 Sliding Contact Simulations 

2.3.1.1 Contact Pressure  

Figures 2.3 and 2.4 show contact pressure distributions on layered media with 

meandered and sinusoidal surfaces, respectively, obtained for sliding distance S/R = 

0.125, dimensionless normal load L/σY1a0 = 0.57, and different pattern geometry 

parameters b/a and δ/λ. The x coordinate was normalized by the half-contact width, a0, 

and the contact pressure, p, by the maximum contact pressure, max
0p , corresponding to a 

layered medium with a flat surface and similar layer thickness and material properties 

subjected to the same loading. The contact pressure of this flat-layered medium is also 

plotted in Fig. 2.3 (b/a = 0) and Fig. 2.4 (δ/λ = 0) for comparison. The pressure profiles 

of the patterned surfaces are distinctly different from those of the flat surface. Five 

microcontacts with peak pressures occurring at the trailing edges of the pads (with 

respect to the direction of sliding) can be seen in Fig. 2.3. The local pressure spikes are 

evidently due to the sharp corners of the pads. Comparison of Figs. 2.3(a)-2.3(c) shows 

that the pressure spikes intensify significantly with increasing b/a. The singularity of the 

aaa 
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Fig. 2.3 Contact pressure profiles of layered media with meandered surfaces (S/R = 0.125 
and µ = 0.5): (a) b/a = 0.5, (b) b/a = 1, and (c) b/a = 2. (The pressure profile of a layered 
medium with a flat surface (b/a = 0) is shown by a discontinuous curve.) 
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problem at the sharp corners is somewhat mitigated by the immediate yielding of the 

corners of the pads, thus bounding the solutions. To check the convergence of the 

pressure profiles, a two times finer mesh was used for the pad corners of the meandered 

surface with b/a = 0.5. The peak contact pressure obtained with this refined mesh was 

found to differ from the maximum peak pressure shown in Fig. 2.3(a) by 7.7 percent. 

Further mesh refinement was not possible due to convergence problems associated with 

excessive distortion of the very small elements at the pad corners. 

The effect of surface texturing (roughening) on the contact pressure distribution 

can be interpreted by comparing the pressure profiles obtained for δ/λ = 0.008, 0.016, and 

0.032 and identical normal load and coefficient of friction (Fig. 2.4). For the relatively 

rougher surfaces, i.e., δ/λ = 0.016 (Fig. 2.4(b)) and δ/λ = 0.032 (Fig. 2.4(c)), the contact 

interface consists of five distinct microcontacts, similar to the layered media with 

meandered surface patterns (Fig. 2.3). However, pressure spikes do not occur with 

sinusoidal surfaces. For the smoother surface (δ/λ = 0.008), the contact pressure varies 

less abruptly and the pressure profile is continuous at the center of the contact interface 

due to the merger of the three microcontacts in this region. A similar behavior was 

observed in a previous contact analysis of two-dimensional discontinuous coatings 

(Ramachandra and Ovaert, 2000). The results shown in Fig. 2.4 indicate that both the 

distribution and the peak value of the contact pressure are very sensitive to the surface 

pattern geometry, especially the peak contact pressure that increases rapidly with 

increasing amplitude-to-wavelength ratio. 
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Fig. 2.4 Contact pressure profiles of layered media with sinusoidal surfaces (S/R = 0.125 
and µ = 0.5): (a) δ/λ = 0.008, (b) δ/λ = 0.016, and (c) δ/λ = 0.032. (The pressure profile 
of a layered medium with a flat surface (δ/λ = 0) is shown by a discontinuous curve.) 
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2.3.1.2 Surface Stresses 

The von Mises equivalent stress is often used to interpret material failure induced 

by large plastic deformation. However, it is not possible to differentiate between failures 

associated with predominantly compressive and tensile stress states based on this yield 

criterion. Furthermore, the high material hardness (or yield strength) is obtained at the 

expense of low fracture toughness. Consequently, fracture and delamination of hard and 

stiff protective coatings are the dominant failure mechanisms in many tribological 

contacts. The susceptibility to cracking of relatively hard and stiff coatings strongly 

depends on the magnitude of the maximum tensile stress, such as the surface normal 

stress σxx. Figure 2.5 shows the evolution of σxx stress obtained from the nodes at the 

surface of layered media with flat (δ/λ = 0) and rough (δ/λ = 0.008, 0.016, and 0.032) 

surfaces for µ = 0.5. (Stress results in Fig. 2.5, as well as in subsequent figures, are 

normalized by the yield strength σY of corresponding layer material.) Four distinct 

regions of tensile stress occur at the sliding interface of the media having rough surfaces. 

Maximum tensile stresses arise at the trailing edges of microcontacts within the contact 

zone, unlike the smooth (flat) surface, in which the contact stresses are compressive 

throughout the contact region. The magnitude of the peak tensile σxx stress increases with 

δ/λ, indicating that rougher surfaces produce higher surface tensile stresses. For δ/λ = 

0.032, the maximum tensile σxx stress at the contact interface is very close to the yield 

strength of the layer material. Moreover, the significant residual tensile stress in the wake 

of the sliding path observed for δ/λ = 0.032 supports the view that rough surfaces are 

generally more vulnerable to contact fatigue due to repetitive sliding. 
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Fig. 2.5 Variation of σxx stress at the surface of layered media with sinusoidal surfaces 
(S/R = 0.5 and µ = 0.5): (a) δ/λ = 0.008, (b) δ/λ = 0.016, and (c) δ/λ = 0.032. (The surface 
stress distribution for a layered medium with a flat surface (δ/λ = 0) is shown by a 
discontinuous curve.) 
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Since the surface tensile stress σxx is the first principal stress in the layer, it 

controls the initiation of transverse surface cracks in the wake of sliding microcontacts, a 

phenomenon often encountered when rigid indenters are traversed over brittle materials. 

Formation of ring cracks on carbon-coated hard disks has been observed in scratching 

experiments (Wu, 1991). This type of surface cracking has been the main objective of 

several contact mechanics studies (Keer and Worden, 1990; Keer and Kuo, 1992; Chen et 

al., 1991; Bower and Fleck, 1994). Results from these analyses have confirmed that crack 

initiation at the surfaces of homogeneous media commences immediately behind the 

contact region of the sliding indenter, where the tensile stress reaches a maximum. 

To evaluate the effect of friction on the propensity for surface cracking, the stress 

results shown in Fig. 2.5 (µ = 0.5) are compared with those shown in Fig. 2.6 (µ = 0.1). 

Although the low-friction simulation results reveal a similar trend, i.e., peak tensile 

stresses also arise at the trailing edges of microcontacts within the contact region, the 

magnitudes of the maximum tensile stresses are significantly lower than those obtained 

for µ = 0.5. Moreover, the residual stress in the wake of sliding is negligibly small, 

similar to that obtained with the flat-surface layered medium. This suggests that the 

effect of surface patterning (texturing) on plastic deformation (reflected by the 

development of residual stress) is suppressed when friction at the sliding interface is low, 

such as in the case of boundary-lubricated surfaces, even for relatively rough surface 

topographies (i.e., high δ/λ values). 

To further elucidate the effect of surface patterning on the maximum tensile stress 

at the surface, results showing the variation of the maximum first principal stress at the 

aaa 
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Fig. 2.6 Variation of σxx stress at the surface of layered media with sinusoidal surfaces 
(S/R = 0.5 and µ = 0.1): (a) δ/λ = 0.008, (b) δ/λ = 0.016, and (c) δ/λ = 0.032. (The surface 
stress distribution for a layered medium with a flat surface (δ/λ = 0) is shown by a 
discontinuous curve.) 
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surface of the first layer, max
1σ  (which is the surface tensile σxx stress in the wake of 

sliding) with sliding distance, S/R, for δ/λ between 0 and 0.032 and µ = 0.5 are contrasted 

in Fig. 2.7(a). In all simulation cases, the maximum tensile stress increases rapidly with 

the initiation of sliding, reaching a steady state at a sliding distance S/R = 0.125, in 

agreement with previous finite element results (Kral and Komvopoulos, 1996). 

Furthermore, increasing the ratio δ/λ causes the maximum tensile stress in the hard layer 

to increase significantly. In fact, for δ/λ = 0.032, the stress is close to the yield strength of 

the layer material ( max
1σ /σY1 ~ 1). As shown in Fig. 2.7(b), tensile stresses occur also in 

the underlying soft layer. While the effect of surface patterning is initially negligible (S/R 

< 0.2), a trend similar to that observed with the hard layer occurs thereafter, i.e., the 

maximum first principal stress increases with δ/λ, reaching a steady state value when S/R 

> 0.25. However, comparison of the results shown in Figs. 2.7(a) and 2.7(b) shows that 

the maximum tensile stress in the soft layer is much lower than that in the hard layer. 

Thus, the hard surface layer protects the underlying soft layer from high tensile stresses, 

which would otherwise occur under direct sliding contact, decreasing the likelihood for 

crack initiation in the soft layer. 

2.3.1.3 Evolution of Plasticity in Layered Media 

To examine the dependence of plasticity on sliding friction, equivalent plastic 

strain contours for µ = 0.5 and 0.1, δ/λ = 0.032, and S/R = 0.5 are contrasted in Fig. 2.8. 

(Different contour levels are used to facilitate plotting of the much smaller plastic zones 

in Fig. 2.8(b).) For relatively high friction (µ = 0.5), a continuous plastic zone is produced 

in the soft layer, with the maximum plastic strain occurring at the interface with the hard 
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Fig. 2.7 Maximum first principal stress max
1σ  versus sliding distance S/R in (a) first (hard) 

layer and (b) second (soft) layer of layered media with flat and sinusoidal surfaces (µ = 
0.5). 
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layer (Fig. 2.8(a)). Alternatively, for low-friction sliding (µ = 0.1), a discontinuous plastic 

zone exhibiting periodicity similar to that of the surface pattern evolves in the soft layer 

(Fig. 2.8(b)). In addition, the maximum plastic strain is much lower than that in the high-

friction case and the hard layer deforms only elastically, conversely to the high-friction 

case where very small plastic zones occur at surface peaks (Fig. 2.8(a)).  

While the evolution of plasticity in the soft layer for δ/λ = 0.008 and 0.016 was 

found to be qualitatively similar to that shown in Fig. 2.8, the deformation of the hard 

Sliding Direction

(b) µ=0.1

(a) µ=0.5
Sliding DirectionSliding DirectionSliding Direction

(b) µ=0.1

(a) µ=0.5

Fig. 2.8 Contours of equivalent plastic strain pε in layered media with sinusoidal surfaces 

(δ/λ = 0.032) for different friction coefficients (S/R = 0.5): (a) µ = 0.5 and (b) µ = 0.1. 
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layer demonstrated a dependence on the magnitude of δ/λ. Plastic strain contours 

obtained for a layered medium with a sinusoidal surface (δ/λ = 0.016) and a flat-surface 

layered medium (δ/λ = 0), i.e., low-roughness and smooth surface, respectively, revealed 

the absence of plastic deformation in the hard layer during sliding, despite the high 

friction coefficient (µ = 0.5), conversely to the rough-surface layered medium (Fig. 

2.8(a)). This is due to the relatively high yield strength of the hard layer. These results 

demonstrate the pronounced effects of surface pattern geometry, coefficient of friction, 

and material properties on the development of plasticity in layered media. 

Figures 2.9(a) and 2.9(b) show the maximum equivalent plastic strain, max
pε , in 

the underlying soft layer of layered media with meandered and sinusoidal surface 

patterns, respectively, as a function of sliding distance S/R. Results for flat-surface 

layered media (b/a = 0 and δ/λ = 0) are also shown for comparison. The continuous 

decrease of the slopes of all strain curves indicates the approach to steady-state peak 

plastic strains in the range of 0.08-0.15. Nonetheless, the most important result is the 

decrease of plastic strain with increasing ratios b/a and δ/λ. This is more apparent for the 

sinusoidal surface patterns producing lower plastic strains, a consequence of the less 

pronounced stress concentration effect in the absence of sharp corners, as in the case of 

the meandered surfaces. For instance, at a sliding distance S/R = 0.5, the maximum 

plastic strain in the second layer for δ/λ = 0.032 is equal to ~60 percent of that obtained 

for δ/λ = 0. This is attributed to the effect of surface patterning on the compliance of the 

relatively stiffer surface layer. Increasing the magnitude of b/a (or δ/λ) produces a more 

compliant surface layer that can store more strain energy without undergoing plastic 
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Fig. 2.9 Maximum plastic strain max
pε in the second (soft) layer of layered media with (a) 

meandered and (b) sinusoidal surfaces versus siding distance S/R (µ = 0.5). (Stress results 
for b/a = 0 and δ/λ = 0 in (a) and (b), respectively, are for a layered medium having a flat 
surface.) 
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deformation. Thus the reduced effective stiffness of the first layer lowers the subsurface 

stresses, thereby decreasing the likelihood of plastic flow in the soft layer. However, as 

discussed earlier, increasing δ/λ leads to a higher maximum first principal stress at the 

trailing edge of the contact region, while increasing b/a promotes the development of 

high pressure spikes, therefore indicating a greater likelihood for surface crack initiation 

and plastic flow, respectively. Consequently, an optimum range of δ/λ (or b/a) must be 

determined in order to minimize the probability for surface cracking and subsurface 

plastic deformation. 

2.3.2 Normal Contact Simulations 

In this section, semi-empirical relations for the contact pressure concentration 

factor and the inception of yielding in layered media with sinusoidal surface patterns are 

derived from finite element simulation results for the contact pressure and deformation 

fields resulting from normal contact with a rigid asperity.  

2.3.2.1 Contact Pressure Concentration Factor 

The contact pressure profiles of indented layered media with sinusoidal surface 

patterns are fairly similar to those for sliding contact (Fig. 2.4), except that the profiles 

for normal contact are symmetric. The dependence of contact pressure on surface pattern 

geometry and indentation depth is of particular interest since it affects the evolution of 

plasticity in the layers. The contact pressure concentration factor, Kp, is defined as the 

ratio of the maximum contact pressure of the patterned layered medium to that of the flat-

layered medium. Figure 2.10 shows the variation of Kp with indentation depth, d/R, for 

different values of δ/λ and µ = 0.5. In all cases, Kp decreases monotonically with 

increasing indentation depth (or normal load) and wavelength and increases with 
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increasing amplitude of surface waviness. This trend is in qualitative agreement with 

results for a plane in contact with a wavy cylinder obtained by Seabra and Berthe (1987). 

The following relation of Kp was fitted to the finite element results obtained for 

δ/λ = 0.008 and 0.016. (Data for δ/λ = 0.032 were not used because plastic deformation 

occurred in some of these simulations.) 

 βα

λ
δ

)()(
R
d

CK p = , (2.5) 

where C = 2.0327, α = 0.4578, and β  = -0.1978. The correlation factor for this fit is equal 

to 0.996. The values of α and β  are fairly close to those of the pressure concentration 

factor obtained for a wavy cylinder indenting an elastic homogeneous half-space (Seabra 

and Berthe, 1987). Since the values of the material parameters and layer thickness used in 
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Fig. 2.10 Contact pressure concentration factor Kp for layered media with sinusoidal 
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the finite element analysis affect the magnitudes of the parameters in Eq. (2.5), the values 

of C, α, and β  are specific to the modeled media. However, the same approach can be 

repeated to obtain best-fit values for different material property and thickness values of 

the layers. Hence, the increase of the maximum contact pressure on layered media 

possessing sinusoidal surface patterns can be determined from Eq. (2.5). 

2.3.2.2 Yield Criterion  

Figure 2.11 shows that the normalized maximum von Mises equivalent stress in 

the first layer of layered media with sinusoidal surface patterns increases with increasing 

ratios δ/λ and d/R. However, the effect of the pattern geometry is significantly more 
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Fig. 2.11 Maximum von Mises equivalent stress max
Mσ in the first (hard) layer of layered 

media with sinusoidal surfaces versus indentation depth d/R (µ = 0.5). 
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pronounced than that of the indentation depth (or normal load). For δ/λ = 0.032, max
Mσ  

reaches the yield stress of the layer when d/R = 0.01. 

Based on the simulation results for δ/λ = 0.008 and 0.016, a yield criterion for 

layered media with sinusoidal surface patterns (δ/λ > 0) was obtained by fitting to the 

finite element results a relation of the form: 

 1)()(1
1

max

≤= ηγ

λ
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σ
σ

R
d

C
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Based on an iterative procedure, it was determined that γ = 0.5173 and η = 0.2715. 

However, because C1 is a function of material properties, finite element simulations for 

layered media with different elastic properties were performed in order to obtain a 

relation for C1 in terms of the elastic modulus of the hard and soft layers. Figure 2.12 

shows the variation of max
Mσ  in the first layer with indentation depth d/R for different 

values of the elastic modulus ratio of the first (hard) and second (soft) layers, E1/E2, δ/λ = 

0.016, and µ = 0.5. These results demonstrate that max
Mσ  increases with both ratios E1/E2 

and d/R. After fitting to the finite element results relation 
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it was found that C2 = 17.1798 and m = 0.6935. (The correlation factor is equal to 0.998.) 

Substituting Eq. (2.7) into Eq. (2.6), the general yield criterion for layered media with 

sinusoidal surfaces can be written as 
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where γ, η, m, and C2 are material constants. Based on this yield criterion, the normal 

load (indentation depth) at the inception of yielding in the first layer can be predicted for 

given material properties, layer thickness, and amplitude-to-wavelength ratio. 

To evaluate the accuracy of the yield criterion (Eq. (2.8)), results for the 

indentation depth (normal load) at the onset of plasticity in the first layer calculated from 

Eq. (2.8) are compared in Fig. 2.13 with results determined directly from finite element 

simulations. (A comparison of results for δ/λ = 0.008 was not possible due to the 

excessive computation time required to reach yielding in this simulation case.) For δ/λ = 

0.032, yielding is predicted from Eq. (2.8) to initiate at d/R = 0.01, which is equal to the 

value obtained from the finite element analysis. To examine the case of δ/λ = 0.016, the 
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Fig. 2.12 Maximum von Mises equivalent stress max
Mσ in the first (hard) layer of layered 

media with sinusoidal surfaces (δ/λ = 0.016) versus indentation depth d/R and elastic 
modulus ratio of first-to-second layer E1/E2 (µ = 0.5). 
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asperity radius was reduced by a factor of 4 in order to reduce the indentation depth (i.e., 

computation time) required to initiate yielding. As shown in Fig. 2.13, Eq. (2.8) gives that 

yielding in the first layer commences at d/R = 0.038, while the finite element prediction is 

d/R = 0.04, i.e., the difference between the results of the two approaches is 5 percent. 

Hence, Eq. (2.8) can be used to determine the load at the onset of yielding in the first 

layer of patterned layered media in terms of surface geometry parameters and material 

properties.  

2.4 Conclusions 

A two-dimensional plane-strain finite element analysis of normal and sliding 

contact of elastic-plastic layered media was performed in order to elucidate the effect of 

δ/λ Analytical FEM 

0.008

0.016

0.032

δ/λδ/λ Analytical Analytical FEM FEM 

0.0080.008

0.0160.016

0.0320.032

σ M
m

ax
/σ

Y
1

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0          0.01               0.02         0.03         0.04             0.05                0.06

d/R

µ = 0.5

 

Fig. 2.13 Comparison of empirical and finite element results for the maximum von Mises 
equivalent stress max

Mσ in the first (hard) layer of layered media with sinusoidal surfaces 
versus indentation depth d/R (µ = 0.5). 
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surface patterning on the resulting deformation behavior. Stress and plastic strain results 

for layered media possessing meandered and sinusoidal surface patterns were compared 

with those of a layered medium with a smooth (flat) surface and identical layer thickness 

and material properties subjected to the same normal and tangential loading. Based on the 

presented results and discussion, the following main conclusions can be drawn. 

(1) The apparent contact area of layered media with patterned surfaces in contact with a 

rigid cylindrical asperity consists of several microcontacts exhibiting a trend to merge 

with each other with increasing indentation depth (or normal load). During sliding, 

high peak pressures occur at the trailing edges of microcontacts in the contact zone. 

The maximum contact pressure is a strong function of the pattern geometry. 

Significantly higher peak pressures occur at the sharp edges (stress raisers) of the 

meandered surfaces. In contrast, the contact pressure at the microcontacts within the 

contact zone of layered media possessing sinusoidal surface patterns increases 

smoothly due to the continuity of the surface profile. 

(2) The magnitude of the surface tensile stress in the direction of sliding provides 

information about the likelihood for transverse (ring) crack initiation at the surface, in 

the wake of sliding. The maximum tensile residual stress on layered media with 

sinusoidal surface patterns occurs at the trailing edge of the contact region. This 

residual stress is much higher than that obtained with a layered medium having a flat 

surface and depends on the pattern geometry and friction coefficient. For patterned 

surfaces exhibiting high amplitude-to-wavelength ratio and high friction, a significant 

tensile residual stress develops in the wake of sliding. This residual tensile stress may 

continue to increase with the accumulation of sliding cycles leading to surface 
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cracking. Conversely to the flat surface that yields a purely compressive stress field, 

small regions of tensile stress occur at the contact region of layered media with 

sinusoidal surface patterns.  

(3) The maximum plastic strain due to sliding contact decreases with increasing the 

amplitude-to-wavelength ratio of the sinusoidal surface patterns. Patterned surfaces 

produce lower plastic strains and smaller plastic zones than flat surfaces due to the 

lower stresses resulting from the increased compliance of the hard first layer that can 

store significant strain energy without undergoing plastic deformation. The decreased 

surface stiffness of the patterned layered media reduces the maximum plastic strain 

and size of plastic zone in the underlying soft layer. However, this arises at the 

expense of a higher surface tensile stress at the trailing edge of the contact interface, 

indicating a greater probability of surface crack initiation for patterned media. 

(4) Relations for the contact pressure concentration factor and inception of yielding in the 

first layer of indented layered media with sinusoidal surface patterns were derived 

from finite element solutions using a best-fit approach. The contact pressure 

concentration factor decreases with increasing indentation depth (normal load) and 

wavelength-to-amplitude ratio. The yield criterion accounts for the effects of material 

properties, pattern geometry parameters, and contact load, and is in good agreement 

with finite element predictions. Yielding in the first layer is predominantly controlled 

by the geometry of the surface pattern and secondarily by the indentation depth. 
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CHAPTER 3 
 

MECHANICAL AND THERMOMECHANICAL  
ELASTIC-PLASTIC CONTACT ANALYSIS  

OF LAYERED MEDIA WITH PATTERNED SURFACES  
 

 

3.1 Introduction 

An enhancement of the tribological performance and functionality of contacting 

surfaces is commonly achieved through deposition of thin surface layers (overcoats) 

exhibiting high hardness and low coefficient of friction. Analysis of the stresses and 

deformation in layered media due to sliding contact is critical to the design of various 

mechanical components. The primary objective of previous theoretical and numerical 

analyses has been the examination of the effect of the thickness and mechanical 

properties of protective overcoats on the contact stress and strain fields in the overcoat 

and underlying substrate media. However, relatively less is known about the role of 

surface microfeatures (typically produced by lithography and electron beam techniques) 

on the elastic-plastic deformation and temperature rise due to frictional heating in layered 

media. Patterned layered media are used in many leading-edge technologies, such as 

high-density data storage (Chou et al., 1996; White et al., 1997) and magnetic random 

access memory media (Savas et al., 1999). Achromatic interferometric lithography has 

been used to fabricate arrays of microstructures with spatial periodicity of ~100 nm for 

ultra-high density magnetic storage applications (Savas et al., 1999; Farhoud et al., 1998). 

Contact of elastic bodies with small-amplitude sinusoidal surfaces has been 

examined in early analytical studies in order to determine the effect of surface geometry 
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on the contact stresses. Using complex variables, Westergaard (1939) obtained a closed 

form solution for the elastic contact of a sinusoidal surface and a smooth plane. Dundurs 

et al. (1973) implemented a Fourier analysis in a stress function approach to obtain 

solutions for the previous contact problem. Johnson et al. (1985) determined the pressure 

distribution and contact area, and derived closed-form asymptotic solutions for both light 

and heavy contact loads resulting in almost full contact. Komvopoulos and Choi (1992) 

analyzed normal contact between regularly spaced rigid asperities and an elastic half-

space and obtained finite element solutions for the maximum contact pressure, normal 

load, and subsurface stresses in terms of the asperity distribution and indentation depth. 

Ramachandra and Ovaert (2000) examined the stresses produced in discontinuous 

coatings of different profiles and various mechanical properties of the coating and 

substrate materials, and observed a significant decrease of the contact pressure peaks in 

the case of discontinuous coatings with crowned edges. Gong and Komvopoulos (2003) 

analyzed normal and sliding contact of a rigid cylindrical asperity on patterned elastic-

plastic layered media using the finite element method and examined the effect of pattern 

geometry on the resulting deformation and stress fields. While the maximum plastic 

strain due to sliding contact decreased with increasing amplitude-to-wavelength ratio of 

sinusoidal surface patterns, the high surface tensile stress at the trailing edge of the 

contact region indicated a greater probability for surface cracking in the case of the 

patterned medium. 

The temperature rise at sliding interfaces due to frictional heating may affect 

significantly the tribological behavior of electromechanical components. 

Thermomechanical analysis of homogeneous half-spaces subjected to a fast moving heat 
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source have shown that the surface stress field is predominantly compressive (Ju and 

Huang, 1982) and that the maximum thermal tensile stress occurs slightly below the 

trailing edge of the contact region (Huang and Ju, 1985) at a depth where the temperature 

gradient begins to vanish (Ju and Liu, 1988). This critical depth depends on the Peclet 

number, which is a function of sliding speed, contact radius, and material diffusivity. Ju 

and Chen (1984) conducted a thermomechanical contact analysis for layered media under 

a moving friction load and a moving heat source and discussed crack initiation in the 

context of the determined stress field. Leroy et al. (1989) derived a two-dimensional 

model for a layered medium subjected to a moving heat source and reported high stresses 

in overcoats with thermomechanical properties significantly different from those of the 

substrate material. Cho and Komvopoulos (1997) performed a fracture mechanics 

analysis of subsurface crack propagation and showed that, although frictional heating 

exhibits a negligible effect on the crack propagation direction, it increases the in-plane 

crack growth rate and reduces the critical crack length at the onset of out-of-plane growth 

at the right crack tip. In a more recent study, Ye and Komvopoulos (2003) developed a 

finite element model to examine the simultaneous effects of mechanical and thermal 

surface traction on the deformation of elastic-plastic layered media, and interpreted the 

propensity for plastic flow and cracking in terms of the thickness and thermal properties 

of the layer, normal load, and Peclet number. 

Despite important insight into thermomechanical contact deformation of elastic-

plastic media derived from previous studies, a comprehensive three-dimensional contact 

analysis for elastic-plastic patterned layered media has not been reported yet. Therefore, 

the principal objective of this study was to examine the effects of pattern geometry, 
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coefficient of friction, indenter sharpness (radius), and sliding cycles on the stresses and 

strains arising in layered patterned media subjected to normal and shear (friction) surface 

tractions. Another objective was to analyze the effect of frictional heating on the surface 

temperature distribution and evolution of subsurface plasticity. This was accomplished by 

performing finite element simulations of normal and sliding contact of a sphere on 

layered media with patterned surfaces. The finite element method is suitable for such type 

of complex contact problems, for which it is extremely difficult to obtain analytical 

solutions for the surface and subsurface deformation and stress fields. Deformation and 

frictional heating in patterned layered media is discussed in the context of finite element 

results for the contact pressure distribution, subsurface stress/strain fields, and 

temperature rise at the contact surface obtained for different indentation depths, 

coefficient of friction, sliding cycles, indenter radius, and Peclet number. 

3.2 Modeling Procedures 

3.2.1 Finite Element Model 

Figure 3.1 shows a three-dimensional finite element model of a sphere in contact 

with an elastic-plastic layered medium with a patterned surface. Due to symmetry, only 

one-half of the sphere and layered medium were modeled in order to reduce the 

computation time. The finite element mesh consists of 25,732 eight-node, linear 

interpolation elements having a total of 33,099 nodes. The normalized mesh dimensions 

are x/H = 2.443, y/H = 0.260, and z/H = 1.0, where H is the total thickness of the mesh. 

Four pads of constant height equal to 0.86b, regularly spaced at lateral distances l = 

0.714b, where b is the side of the square pad surfaces, were modeled at the surface of the 

finite element mesh (i.e., pad spatial periodicity equal to b + l). In these simulations, the 
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sphere was assumed to be rigid with a radius of curvature R/H = 0.763 and 1.526. Sliding 

was simulated by displacing the sphere along the positive x-direction in an incremental 

fashion. The nodes on planes x = 0, y = 0, and z = 0 were constrained against 

displacement in the x-, y-, and z-direction, respectively. 

In the thermomechanical analysis, the length of the finite element mesh was 

reduced to x/H = 1.588 and the number of pads to three due to the excessive computation 

time in coupled thermal and mechanical contact analysis. Therefore, the mesh in the 
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Fig. 3.1 Three-dimensional finite element mesh of a layered medium with a patterned 
surface. (The inset at the top shows the detail of the refined mesh of each pad.) 
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thermomechanical simulations consisted of 20,995 eight-node, coupled temperature-

displacement finite elements comprising a total of 27,585 nodes. In addition, the sphere 

was assumed to be elastic-perfectly plastic with a radius of curvature R/H = 1.526 and 

thermomechanical properties identical to those of the first layer. The temperature at the 

nodes of planes y = 0, and x/H = 0 and 1.588 was set equal to 20 oC. Heat conduction was 

restricted across the sphere/layered medium contact interface. 

3.2.2 Material Properties and Constitutive Models 

The normalized thickness, h/H, and elastic-plastic properties of each layer 

material of the patterned layered medium are given in Table 3.1. These thickness and 

mechanical property values are typical of layers used in magnetic recording rigid disks 

consisting of carbon overcoat (layer 1), CoCrPt magnetic medium (layer 2), and CrV 

Table 3.1. Thickness and thermomechanical properties of layers in the patterned layered 
medium 

Medium Layer 1 Layer 2 Layer 3 

Thickness (h/H) 0.015 0.374 0.611 

Elastic modulus (GPa) 168 130 140 

Poisson’s ratio  0.3 0.3 0.3 

Yield strength (GPa) 13 2.67 2.58 

Thermal expansion (K-1) 3.1 × 10-6 13 × 10-6 4.9 × 10-6 

Specific heat (J/g.K) 0.5 0.411 0.438 

Conductivity (W/m.K) 5.2 105 96.5 

Density (kg/m3) 2.15 × 103 8.9 × 103 7.19 × 103 

Diffusivity (m2/s) 4.84 × 10-6 28.7 × 10-6 30.64 × 10-6 
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underlayer (layer 3) deposited on NiP-coated Al-Mg substrate. The elastic modulus and 

yield strength of layers 1 and 2 have been determined from nanoindentation 

measurements (Komvopoulos, 2000). The specific heat, thermal conductivity, and 

density of the first layer are representative of carbon films (Graebner, 1996; Morath et al., 

1994; Tsai and Bogy, 1987). All other density and thermal properties were obtained from 

tabulated data compiled by Kaye and Laby (1986). The von Mises yield criterion was 

used to determine whether yielding occurred at a material point. Each layer was modeled 

as an elastic-perfectly plastic material.  

3.2.3 Thermal Model 

Sliding friction at contact interfaces of mechanical components promotes energy 

dissipation in the form of heat within the vicinity of the real contact area. The dissipated 

frictional heat is responsible for the temperature rise at the contact interface of sliding 

bodies, causing the development of thermal stresses and variations in the real contact area 

and contact pressure distribution due to thermal expansion. Since these changes in the 

contact conditions affect the heat generation rate and heat conduction across the contact 

interface, the thermal and mechanical stress/strain fields are fully coupled and, therefore, 

must be determined simultaneously rather than sequentially. In this study, the 

temperature was integrated using a backward-difference scheme, and the coupled system 

was solved using the Newton method. A fully coupled thermal-mechanical stress analysis 

automatically invokes a nonsymmetic matrix storage and solution scheme to improve the 

computational efficiency. This is because the stiffness matrix is asymmetric due to 

friction and the convective term in the conduction-convection equation. 

The heat flux density due to frictional heat, q, is given by (Ye and Komvopoulos, 

2003) 
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 υηµpq = , (3.1) 

where η is the fraction of mechanical work dissipated as heat, µ is the coefficient of 

friction, p is the contact pressure, and υ is the sliding speed. In the present simulations, it 

is assumed that η = 1.0, which is consistent with the conclusion of Uetz and Föhl (1978) 

that nearly all the energy dissipated in a frictional contact is converted to heat. The 

amount of frictional heat that is instantaneously conducted into each body depends on the 

heat partition factor. The heat generated due to subsurface plastic flow is ignored in the 

present study as significantly less than the frictional heat generated at the contact region 

in the case of relatively high coefficient of friction (e.g., µ = 0.5). 

Although the contact interface was modeled to have zero heat capacity, it was 

assigned properties for the exchange of heat by conduction and radiation, as in a previous 

study (Ye and Komvopoulos, 2003). However, heat flux due to radiation was neglected 

as secondary compared to that due to conduction. The flux density across the contact 

interface (from the sphere to the layered medium), qc, is defined as 

 )( 21 θθ −= gc kq , (3.2) 

where θ1 and θ2 are temperatures at surface nodes of the contacting bodies (i.e., the 

sphere and patterned layered medium, respectively), and kg is the gap conductance, 

defined as k/∆l, where k is the thermal conductivity of the first layer, and ∆l is the size of 

the smallest finite element. 

The heat flux density into each contacting body, q1 and q2, respectively, is given 

by 
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where f is the heat partition factor indicating the fraction of heat dissipated into one of the 

contacting bodies (sphere). Simulations were performed for f = 0.5, i.e., evenly 

distributed heat between the sphere and the layered medium. This is a reasonable 

assumption for relatively low Peclet number (e.g., Pe ≤ 1) and thermophysical properties 

of the sphere identical to those of the first layer. In view of the heat flux due to 

conduction across the contact interface, cq , the heat partition factor in this study differs 

from the traditional heat partition factor. 

3.2.4 Finite Element Simulations  

Quasi-static contact simulations comprising three sequential steps of loading, 

sliding, and unloading of a sphere on a layered patterned medium were performed in an 

incremental fashion. Normal contact (indentation) was simulated by advancing the sphere 

toward the elastic-plastic medium up to a specified indentation depth, d (or normal load). 

Subsequently, the sphere was displaced laterally to a maximum distance, S, about ten 

times the contact radius, while maintaining constant indentation depth d and coefficient 

of friction, µ, and then unloaded following the same steps as for the loading. All 

simulations were performed with the multipurpose finite element code ABAQUS. To 

study the effect of friction on the stress/strain fields produced in the layered medium, 

friction coefficients equal to 0.1 and 0.5 were used in this study. In addition, repetitive 

sliding of the sphere was modeled in order to investigate the dependence of stress and 

plastic strain on sliding cycles. This is analogous to multiple-asperity sliding contacts 

encountered with real surfaces. The thermomechanical simulations were performed for µ 

= 0.5 and Peclet number equal to 0.09 and 0.9 (Pe = 2υr/α, where r is the contact radius 

after indentation, and α is the thermal diffusivity of the sphere).  
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3.3 Results and Discussion 

Finite element solutions for the stresses and strains in an elastic-plastic layered 

medium due to indentation and sliding of a rigid sphere are presented first in order to 

elucidate the significance of surface microgeometry (patterning) on contact deformation 

and to establish a reference for comparison with the results of the thermomechanical 

analysis presented later. The effects of friction coefficient, sphere radius, and sliding 

cycles are discussed next in terms of results for the contact pressure, contact area, 

subsurface stresses, and maximum plastic strain. Lastly, simulation results from a fully 

coupled thermomechanical contact analysis of an elastic-plastic sphere in normal and 

sliding contact with an elastic-plastic layered patterned medium are presented to illustrate 

the effect of frictional heating on the surface temperature rise and subsurface 

deformation. 

3.3.1 Mechanical Contact Analysis 

Figure 3.2 shows the contact pressure distribution (in the plane of symmetry y = 

0) at a single pad indented by a rigid sphere versus normalized indentation depth, d/R. 

Initial contact occurred at the center of the pad (x/b = 0). For shallow indentations (d/R = 

0.0025), the contact pressure distribution is similar to the profile predicted by the Hertz 

theory. However, increasing the indentation depth (d/R = 0.005 and 0.0075) causes the 

maximum contact pressure to shift toward the edge of the contact area (Fig. 3.2(a)). 

Further increase of the indentation depth (d/R ≥ 0.01) produces pressure spikes at the 

edges of the contact area (Fig. 3.2(b)), consistent with the contact pressure profile 

obtained for a layered medium with a meandered surface pattern (Gong and 
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Fig. 3.2 Contact pressure distribution at a single pad in the symmetry plane (y =0) for 
different indentation depths. (Initial contact of the indenting rigid sphere occurs at the 
center of the pad surface (x/b = 0).) 
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Komvopoulos, 2003). This change of the contact pressure is attributed to the 

development of a plastic zone in the second soft layer (discussed below) and the stress 

concentration at the pad corners that is further enhanced by the relatively higher rigidity 

of the pad sides. The asymmetry of the contact pressure profiles at large indentation 

depths (i.e., d/R = 0.0125 and 0.015) is due to the constraint of the nodes on plane x/H = 

0 against displacement in the x-direction. However, this effect is negligible in the results 

presented below due to the much smaller indentation depth used in these simulations. 

The normalized maximum von Mises equivalent stress in the first layer, 

max
Mσ / σY1, and normalized real contact area, pr AA / , are plotted in Figs. 3.3(a) and 

3.3(b), respectively, as functions of normalized indentation depth, d/R, where σY1 is the 

yield strength of the first layer and Ap is the pad surface area. For relatively shallow 

indentations (i.e., partial contact between the sphere and the pad surface), both maximum 

Mises stress and contact area increase monotonically with indentation depth. For d/R > 

0.008, the maximum Mises stress reaches the yield strength of the layer material and a 

small plastic zone develops adjacent to the contact region. Full contact of the pad with the 

sphere occurs when d/R ≥ 0.1. Thus, elastic and elastic-plastic deformation of the pad is 

associated with partial and full contact with the sphere, respectively. 

The variation of the maximum contact pressure, pmax, and maximum equivalent 

plastic strain, max
pε , in the second layer with normalized sliding distance, S/R, is shown in 

Figs. 3.4(a) and 3.4(b), respectively, for µ = 0.1 and 0.5. The periodic fluctuation of pmax 

is due to the pattern geometry. The fact that the two peak values of pmax are fairly close 

suggests that interaction between neighboring pads is secondary. The max
pε strain in the 
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Fig. 3.3 (a) Maximum von Mises equivalent stress in the first (hard) layer and (b) real 
contact area versus indentation depth. 
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Fig. 3.4 (a) Maximum contact pressure and (b) maximum equivalent plastic strain in the 
second (soft) layer versus sliding distance for µ = 0.1 and 0.5 and d/R = 0.005. 
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second layer increases significantly at the beginning of sliding and reaches a steady state 

at a distance of about two times the pad spatial periodicity (S/R = 0.48). However, a 

longer sliding distance is required for the plastic strain to reach a steady state in the case 

of a layered medium with a smooth (flat) surface (Gong and Komvopoulos, 2003). This 

difference between patterned and smooth layered media is due to the reduced plastic 

deformation in the patterned medium. As shown in Figs. 3.4(a) and 3.4(b), the coefficient 

of friction influences profoundly both pmax and max
pε in the second layer. Although the 

pressure and strain results for µ = 0.1 and 0.5 exhibit similar trends, much higher peak 

values of pmax and max
pε  are produced with the higher coefficient of friction. 

Figure 3.5 shows the evolution of the equivalent plastic strain in the layered 

medium with sliding distance for µ = 0.5 and d/R = 0.005. For pure normal contact (S/R 

= 0, Fig. 3.5(a)), the maximum plastic strain occurs below the contact interface and the 

plastic zone is confined within the second layer. Sliding of the sphere over the pad edge 

(S/R = 0.07, Fig. 3.5(b)) causes the formation of two small plastic zones in the second 

layer at the lower right corner of the pad due to the stress concentration effect. When the 

sphere slides over the next pad (S/R = 0.12, Fig. 3.5(c)), stress concentration produces a 

small plastic zone in the first layer at the upper left corner of this pad, and the maximum 

plastic strain occurs at the interface of the two layers, similar to smooth layered media 

(Kral and Komvopoulos, 1997). Figures 3.5(d)-3.5(f) show that the maximum equivalent 

plastic strain occurs always at the interface of the first and second layers. The close 

similarity of the plastic zones in each pad confirms that interaction of the stress fields of 

neighboring pads is negligible and that deformation depends only on the pad geometry 

and mechanical properties of each layer material. 
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The dependence of the max
Mσ in the first layer and max

pε in the second layer on the 

distance and cycles of sliding is shown in Fig. 3.6 for µ = 0.1 and d/R = 0.005. The close 

agreement between the results of the second and third sliding cycle suggests that, for the 

simulated friction coefficient and indentation depth, a steady-state stress/strain field is 

reached after only two sliding cycles. The change of max
Mσ after the first sliding cycle (Fig. 

3.6(a)) is a consequence of the residual stress due to permanent distortion of the pads 

encountered during the first sliding cycle. The peak value of max
pε is reached during the 

first sliding cycle and does not change with additional sliding cycles (Fig. 3.6(b)). 
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Fig. 3.5 Contours of equivalent plastic strain in the layered medium for µ = 0.5, d/R = 
0.005, and S/R equal to (a) 0, (b) 0.07, (c) 0.12, (d) 0.17, (e) 0.24, and (f) 0.48. (The 
arrow indicates the direction of the sliding rigid sphere.) 
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Fig. 3.6 (a) Maximum von Mises equivalent stress in the first (hard) layer and (b) 
maximum equivalent plastic strain in the second (soft) layer versus sliding distance for 
three sequential sliding cycles, µ = 0.1, and d/R = 0.005. 
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The effect of the sharpness of the rigid spherical indenter on the normalized max
Mσ  

in the first layer and max
pε in the second layer can be analyzed by comparing the results for 

d/R = 0.005 and 0.01 shown in Fig. 3.7. The sliding distance S is normalized by the pad 

spatial periodicity, b + l. As mentioned in the discussion of Fig. 3.6(a), the periodic 

fluctuation of max
Mσ with sliding distance (Fig. 3.7(a)) is due to the pattern geometry. 

Significantly larger values of max
Mσ  in the first (hard) layer (Fig. 3.7(a)) and max

pε in the 

second (soft) layer (Fig. 3.7(b)) are produced with the relatively sharp sphere (d/R = 

0.01). The Mises yield condition in the hard layer ( max
Mσ /σY1 = 1.0) is satisfied only in the 

case of the sharp sphere. A steady-state max
pε  is obtained in the soft layer after the sphere 

slides a distance of about two times the pad spatial periodicity, for both d/R = 0.005 and 

0.01. The results shown in Fig. 3.7 illustrate the dependence of plasticity in hard 

overcoats on the indenter sharpness. Thus, small plastic zones may be produced even in 

ultrathin surface layers under relatively low contact loads, depending on the range of 

small wavelengths comprising the surface profile. 

3.3.2 Thermomechanical Contact Analysis 

Finite element results from a fully-coupled thermomechanical contact analysis of 

an elastic-perfectly plastic sphere (with thermomechanical properties identical to those of 

the fist layer) sliding over the patterned medium are presented in Figs. 3.8-3.10 to 

illustrate the effect of frictional heating on the surface temperature rise and plastic flow in 

the soft layer. Temperature and plastic strain results are interpreted in terms of sliding 

distance and Peclet number. To examine the effect of Peclet number on the temperature 

aaa 
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Fig. 3.7 (a) Maximum von Mises equivalent stress in the first (hard) layer and (b) 
maximum equivalent plastic strain in the second (soft) layer versus sliding distance for µ 
= 0.1 and d/R = 0.005 and 0.01.  
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field and deformation behavior of the layered medium, simulation results are presented 

for µ = 0.5 and Pe = 0.09 and 0.9. 

Figure 3.8 shows the evolution of the surface temperature distribution on three 

neighboring pads at the plane of symmetry (y = 0) for Pe = 0.09 and d/R = 0.01. The 

results are presented as a temperature increase from the room temperature, ∆T, 

normalized by υπα kq /2 , where q  is the average heat flux rate at the contact region (i.e., 

total heat flux divided by the contact area, πr2), and k is the thermal conductivity of the 

sphere, while the x coordinate is normalized by the contact radius, r. As expected, the 
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Fig. 3.8 Surface temperature rise at individual neighboring pads at the plane of symmetry 
(y = 0) for µ = 0.5, d/R = 0.01, Pe = 0.09, and S/R equal to (a) 0, (b) 0.07, (c) 0.17, (d) 
0.24, (e) 0.31, and (f) 0.48. 



 59

temperature distribution due to normal contact (indentation) of a single pad is symmetric 

and its effect on neighboring pads is negligible (Fig. 3.8(a)). The small temperature rise 

during indentation is due to the very small slip at the contact interface. When the sphere 

slides over the edge of the left pad (Fig. 3.8(b)), the maximum temperature increases 

significantly and shifts toward the trailing edge of the contact region (Fig. 3.8(b)), 

demonstrating a pronounced effect of frictional heating during sliding. The maximum 

temperature rise at the trailing edge produces a maximum tensile thermal stress slightly 

below this contact edge, which is considered to be responsible for thermal cracking in the 

wake of sliding microcontacts. In addition, a noticeable temperature rise occurs at the 

front contact edge as soon as the sphere establishes contact with the middle pad. This 

temperature rise intensifies noticeably when the sphere slides over the left corner of the 

middle pad (Fig. 3.8(c)), evidently due to the high-pressure peak (stress concentration 

effect) at the sharp corner of the pad edge. A similar temperature evolution is observed as 

the sphere slides over the middle and right pads (Figs. 3.8(d)-3.8(f)). The close similarity 

of the temperature distributions produced when the sphere is over the center of the middle 

and right pads (Figs. 3.8(d) and 3.8(f)) suggests that frictional heating at each pad is not 

affected by the heat flux at neighboring pads. A comparison of the results shown in Fig. 

3.8 with those of a smooth layered medium (Ye and Komvopoulos, 2003) shows that in 

addition to the discontinuous surface temperature distribution, less heat accumulation is 

encountered in the case of the patterned layered medium. 

Figures 3.9(a) and 3.9(b) show the normalized maximum temperature, Tmax, in the 

first and second layers, respectively, as functions of normalized sliding distance and 

aaaaa 
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Fig. 3.9 Maximum temperature in (a) first (hard) layer and (b) second (soft) layer versus 
sliding distance and Peclet number for µ = 0.5 and d/R = 0.01. 
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Peclet number. The maximum temperature in the first layer occurs at the surface and in 

the second layer at the interface with the first layer. The periodic fluctuation of Tmax with 

sliding distance observed only for Pe = 0.9 suggests that the pattern effect on Tmax in each 

layer is pronounced only for the relatively high Peclet number. The marked increase of 

Tmax in both layers obtained for Pe = 0.9, especially at the surface of the first layer (Fig. 

3.9(a)), demonstrates that the temperature field in the layered medium is strongly 

dependent on the Peclet number. The similar peak values of Tmax in Fig. 3.9(a) provide 

additional evidence that interaction of temperature fields of neighboring pads is 

negligible. Furthermore, comparison of the results shown in Figs. 3.9(a) and 3.9(b) for Pe 

= 0.9 shows that Tmax in the first layer is much higher than that in the second layer. In the 

sliding simulations for µ = 0.5 and Pe = 0.9, the highest temperature change in the first 

and second layers was found to be equal to ~220 oC and ~50 oC, respectively. These Tmax 

values are close to those obtained for a smooth layered medium (Ye and Komvopoulos, 

2003), except at the pad corners where Tmax is about two times higher due to the pressure 

peaks occurring at these locations. Such high surface temperatures may induce thermal 

cracking and degrade the mechanical properties of the surface layer. 

Figure 3.10 shows the variation of the maximum equivalent plastic strain in the 

second (soft) layer with normalized sliding distance and Peclet number for µ = 0.5 and 

d/R = 0.01. A rapid increase of max
pε at the beginning of sliding and a steady state at a 

sliding distance S/R = 0.17 is shown for both Peclet numbers. However, a longer sliding 

distance for max
pε to reach a steady state was found for the smooth layered medium 

subjected to thermomechanical loading (Ye and Komvopoulos, 2003). While the effect of 

the Peclet number on max
pε  is negligible during the initial stage of sliding, larger values of 
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max
pε  (~5.7%) were produced with the higher Peclet number at distances S/R > 0.17. This 

is attributed to the fact that the surface temperature rise and difference between maximum 

surface temperatures for Pe = 0.09 and 0.9 increase with sliding distance until S/R > 0.17 

(Fig. 3.9(a)). The combined effects of thermal expansion coefficient mismatch and 

temperature gradients at the interface (which intensify with increasing Peclet number) are 

responsible for the produced thermal stress that enhances plasticity in the second layer. 

Thus, a higher Peclet number results in higher temperature rises at the surface of the hard 

layer and larger plastic strains in the soft underlayer of the medium. 
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3.4 Conclusions 

An elastic-plastic finite element analysis of normal contact (indentation) and 

sliding of a spherical indenter on a layered medium with a patterned surface was 

performed in order to study the effects of coefficient of friction, sphere radius, and 

repetitive sliding on the contact stress and deformation fields. In addition, a fully coupled 

thermomechanical finite element analysis was carried out to obtain solutions for the 

surface temperature distribution and to elucidate the effect of Peclet number on the 

maximum temperature rise and subsurface plasticity. Based on the presented results and 

discussion, the following main conclusions can be drawn. 

(1) The maximum contact pressure shifts from the center toward the edge of the contact 

region at a critical indentation depth (d/R > 0.005). Pressure spikes occur at the 

contact edges in the case of relatively deep indentations (d/R > 0.01). For shallow 

indentations (d/R < 0.01), both the maximum von Mises equivalent stress in the first 

layer and the contact area increase monotonically with indentation depth. Yielding in 

the first (hard) layer adjacent to the surface commences when d/R > 0.008, and full 

contact of a pad with the sphere occurs at d/R > 0.01 when the sphere center is over 

the center of the pad surface. 

(2) The contact pressure and subsurface stresses and plastic strains exhibit periodic 

fluctuations due to the pattern geometry. The similarity of the stress/strain results at 

neighboring pads suggests that interaction effects are negligible for the modeled 

pattern geometry. High-friction sliding (i.e., µ = 0.5) increases significantly the 

maximum equivalent plastic strain in the second (soft) layer during the beginning of 

sliding, leading to a steady state after a sliding distance about two times the pad 
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spatial periodicity. The reduced plasticity in the soft layer of patterned layered media 

compared to that of smooth layered media demonstrates the beneficial effect of 

surface patterning in sliding contact.  

(3) The steady-state stress/strain fields produced after the first sliding cycle suggest that 

deformation in the layered medium is insensitive to subsequent similar sliding cycles. 

In low-friction sliding, a relatively sharp spherical indenter promotes formation of 

small plastic zones in the first hard layer at the sharp corners of the pad edges. 

(4) Normal contact (indentation) of the sphere with a pad yields a symmetric temperature 

distribution and negligible temperature rise at neighboring pads. Sliding intensifies 

the temperature field, causing the maximum temperature to shift from the center 

toward the trailing edge of the contact region. The resulting temperature gradients 

lead to the development of a high thermal tensile stress slightly below the trailing 

edge of the contact region, which is considered to be responsible for thermal cracking 

in the wake of sliding microcontacts. 

(5) The periodic variation of the maximum temperature rise in both the first and the 

second layer with sliding distance is due to the pattern geometry. The temperature 

field in the layered medium is a strong function of the Peclet number. The similar 

peak values of the maximum temperature in each layer illustrate that thermal 

interaction between neighboring pads is negligible. Increasing the Peclet number 

enhances the temperature rise at the surface and the development of thermal stresses 

in the first (hard) layer. Moreover, it produces larger plastic strains in the second 

(soft) layer and in small regions of the first layer, in the vicinity of the sharp pad 

edges. 
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CHAPTER 4 
 

CONTACT STRESS ANALYSIS OF LAYERED ELASTIC 
SOLID IN CONTACT WITH A ROUGH SURFACE 

 

 

4.1 Introduction 

Surface layers (overcoats) are often used to protect components subjected to 

contact stresses and to enhance the tribological performance and functionality of 

interacting surfaces. Applications include cutting tools, piston rings, bearings, and 

magnetic data storage. A detailed knowledge of the contact stress state generated when 

two coated surfaces come into contact is critical to the analysis of friction and wear 

mechanisms. 

The problem of a layered elastic solid subjected to indentation and sliding contact 

by a single asperity has been analyzed by many researchers. The elasticity theory to 

obtain the stress field in a layered half-space under a prescribed axisymmetric contact 

pressure profile was initially developed by Burmister (1945), and was later extended by 

Chen (1971) to a non-axisymmetric contact pressure profile. Chen and Engel (1972) 

analyzed a layered half-space under normal loading using a least squares approach and 

obtained the contact pressure profile for indenters of different geometries. Using Fourier 

transforms of the Airy stress function, Gupta et al. (1973) developed an analytical 

procedure for computing stress distributions in the layer and the substrate of layered 

elastic solids subjected to arbitrary normal and shear contact stresses. Gupta and Walowit 

(1974) investigated the plane-strain normal contact problem of a layered half-space using 

an integral equation approach and studied the effects of relative stiffness of the indenter, 
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layer, and half-space on the contact pressure distribution under a cylindrical indenter. 

King and O’Sullivan (1987) investigated the plane-strain problem of a rigid cylinder 

sliding over an elastic layered half-space in both in-plane and anti-plane (along the 

cylinder axis) directions and obtained the contact pressure profile and stress fields in both 

the layer and the half-space. This work was extended by O’Sullivan and King (1988) to 

three-dimensional contact stress analysis of a spherical indenter sliding over a layered 

elastic medium. 

The aforementioned analytical and numerical studies assumed that the contacting 

surfaces are ideally smooth. However, real surfaces are rough in the microscopic scale 

and contact is generally restricted to a number of microscopic contact regions located 

near the peaks of the rough surface. Theoretical treatment of contacting rough surfaces is 

difficult due to the randomness of the surface topography. One of the earliest statistical 

models incorporating roughness effects is that of Greenwood and Williamson (1966), 

who analyzed elastic contact of two rough surfaces by considering a flat surface in 

normal contact with an equivalent rough surface comprising spherical asperities of 

constant radius, equal to the average radius of curvature of the original asperities. Bush et 

al. (1975, 1979), Gibson (1982), and McCool (1986) developed an elastic contact model 

that treated asperities as elliptical paraboloids with randomly oriented elliptical contact 

areas. Although these statistical models produced simple relationships between the total 

load, thermal and electrical contact conductance, and total contact area, they do not 

account for the essentially multiscale nature of the surface roughness (Greenwood, 1992) 

and ignore the interaction between neighboring asperity contacts (Berthe and Vergne, 

1987; Goryacheva and Dobychin, 1991; Komvopoulos and Choi, 1992). Because of the 
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multiscale roughness of surfaces, surface parameters depend strongly on the sample size, 

instrument resolution, and experimental filter used to acquire the topography data. For 

this reason, fractal geometry (Majumdar and Tien, 1990; Borodich and Onishchenko, 

1999) has been used to characterize engineering surfaces so that to overcome the 

limitation of scale-dependent statistical surface parameters. Many contact theories using a 

fractal description for the surface topography have been developed to provide the real 

contact area, contact load, and interfacial temperature rise due to frictional heating for 

both homogenous half-space (Majumdar and Bhushan, 1991; Bhushan and Majumdar, 

1992; Wang and Komvopoulos, 1994a, 1994b; Yan and Komvopoulos, 1998; Ciavarella 

et al. 2000) as well as layered media (Komvopoulos and Ye, 2001). The focus in these 

studies has been on global parameters (i.e., total contact load, real contact area, etc.) 

based on the assumption that the number and size of truncated asperities follow a power-

law relationship (Mandelbrot, 1983). However, the local stress field (asperity length 

scale) is essential to the prediction of yielding and potential surface crack initiation. 

The finite element method is the most commonly used technique to obtain 

solutions for the stresses and strains due to various contact loads. Komvopoulos and Ye 

(2002) introduced an elastic-plastic finite element model that accounts for the actual 

topographies of magnetic recording head and rigid disk media, characterized by fractal 

geometry. However, the necessity for a large number of finite elements in the case of 

rough surface contact makes the finite element approach impractical. 

Therefore, the main objectives of this study are to introduce a comprehensive 

contact stress analysis of a layered elastic solid in contact with a rough surface 

characterized by fractal geometry. To accomplish this objective, a finite element model 
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was developed in order to obtain the mean contact pressure and the ratio of truncated-to-

real contact area for a single cylindrical asperity indenting an elastic layered medium in 

terms of the asperity radius, half-contact width, layer thickness, and mechanical 

properties of the layered medium. The obtained relationships were incorporated into a 

numerical algorithm to determine the contact pressure profiles and stress field using the 

distribution of real asperity contacts. 

4.2 Surface Characterization 

Surface topography parameters derived from traditional statistical theories exhibit 

dependencies on the sample length and the instrument resolution limit. Characterization 

of the surface topography by fractal geometry (Mandelbrot, 1983) provides a means for 

overcoming such shortcomings. The surface topography can be represented by a 

Weierstrass-Mandelbrot function (Berry and Lewis, 1980) that exhibits continuity, non-

differentiability, and self-affinity over a wide range of length scales and can be written as 

(Wang and Komvopoulos, 1994a) 
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where L is the fractal sample length in the x direction, G is the fractal roughness 

parameter that is independent of frequency, D (1 < D < 2) is the fractal dimension that 

determines the contribution of high and low frequency components in the surface 

function (i.e., high D values correspond to smooth surfaces), γ (γ > 1) is a scaling 

parameter (typically, γ = 1.5 (Komvopoulos and Yan, 1997)), and n is a frequency index 

with ]log/)/int[log(max γ= sLLn  representing the upper limit of n, where int[…] denotes 

the integer part of the number in the brackets and Ls is the cut-off length. The scale-



 69

independent fractal parameters G and D can be determined experimentally from a log-log 

plot of the structure function of the surface profile z(x) versus wavelength (Komvopoulos, 

2000). 

4.3 Contact Analysis 

The two-dimensional plane strain problem of a rigid rough (fractal) surface in 

sliding contact with an elastic layered medium is shown schematically in Fig. 4.1. 

Coulomb friction (with friction coefficient µ) is assumed between the rough surface and 

the surface of the layered medium. Therefore, the layered medium is subjected to 

distributed normal and tangential tractions producing a total normal load P and a total 

tangential force F = µP. 
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Fig. 4.1 Schematic representation of an elastic layered medium in contact with a rigid 
rough surface. 
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4.3.1 Constitutive Relationships  

In order to accurately determine the contact forces at asperity contacts between 

the layered medium and the rough surface, it is necessary to obtain a stress-strain 

constitutive relationship and an expression for the ratio of truncated-to-real contact area 

for the layered elastic medium. To accomplish this objective, a finite element model of a 

rigid cylindrical asperity in normal contact with a layered elastic medium was developed. 

The mesh consists of 6,417, eight-node, isoparametric, quadrilateral elements comprising 

a total of 19,232 nodes. The horizontal and vertical dimensions of the mesh are equal to 

2.4R and 3.1R, respectively, where R is the radius of the rigid asperity. A 3×3 integration 

scheme was used for the eight-node elements. The multi-purpose code ABAQUS was 

used to perform the finite element simulations. The substrate material has an elastic 

modulus of 114 GPa and Poisson ratio of 0.3. In order to examine the layer stiffness 

effect on the mean contact pressure and the real contact area, seven different elastic 

modulus values were chosen for the layer material (i.e., El/Es = 8, 4, 2, 1, 0.5, 0.25, 0.125, 

where El and Es are the elastic moduli for the layer and the substrate, respectively). 

Figure 4.2 shows the normalized mean contact pressure, sm Ep / , versus the 

representative strain, RErE se /* , where r is the half-contact width and *
eE  is the 

equivalent (effective) elastic modulus of the layered medium given by (King, 1987) 
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where α is a geometric factor that depends on the indenter shape and can be determined 

numerically, t is the layer thickness, ν is the Poisson ratio, and subscript i denotes the 
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indenter material. Based on the least-square fit to the data shown in Fig. 4.2, the mean 

contact pressure, pm, can be related to the representative strain by 

 )(
8

*

RE
rE

E
p

s

e

s

m π
= . (4.3) 

Figure 4.3 shows the truncated-to-real contact area ratio, a′/a, as a function of the 

elastic modulus ratio between the layer and the substrate, El/Es, and r′/R, where r′ is the 

truncated half-contact width. When the layer is stiffer than the substrate (El/Es > 1), a′/a 

depends on r′/R, especially at shallow indention depths (i.e., small r′/R). However, when 

the layer is more compliant than the substrate (El/Es < 1), the effect of r′/R on a′/a is 

negligible. Least-square curve fitting of the results shown in Fig. 4.3 yields 
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Fig. 4.2 Normalized mean contact pressure versus representative strain for an elastic 
layered medium with different elastic modulus ratio between the layer and the substrate. 
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where α1 = 1.8237, β1 = 0.4353, η1 = −0.0766, α2 = 1.7314, β2 = 0.3939, and η2 = 

−0.1072. The results obtained from Eq. (4.4) are in good agreement with finite element 

results obtained for different values of El/Es. The correlation factor for El/Es > 1 and El/Es 

< 1 is equal to 0.998 and 0.992, respectively. 
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Fig. 4.3 Truncated-to-real contact area ratio versus truncated half-contact width-to-
asperity radius ratio for an elastic layered medium with different elastic modulus ratio 
between the layer and the substrate materials. (Symbols represent finite element results 
and the solid lines solutions obtained from Eq. (4.4).) 
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4.3.2 Stress Analysis 

As the rough surface approaches the layered medium, asperity contacts are 

established over the simulated apparent contact area. The basic approach for determining 

the total deformation force at the contact interface involves the calculation of the forces 

produced at individual asperity contacts and the summation of asperity contact forces 

over the entire surface based on the truncation of the real rough surface. For a truncated 

asperity of half width r ′ , the longest wavelength in the asperity waveform is equal to 

2 r ′ . It is assumed that the asperity contact force is primarily due to deformation of an 

asperity represented by the base wavelength, with the corresponding frequency index, 

 
γln

)2/ln( '

0
rL

n = , (4.5) 

and function,  

 )cos()2()(
'

)2(')1(
0 r

x
rGxz DD π−−= . (4.6) 

The asperity interference, δ, is equal to the peak-to-valley amplitude of the cosine 

function. Hence, 

 )2(')1( )2(2 DD rG −−=δ . (4.7) 

Since the contact interface is modeled by a deformable plane compressed by rigid 

cylindrical asperities, the radius of a contact spot is given by  

 
δ2
)( 2r

R
′

= , (4.8) 

which is based on the fact that the asperity radius is typically orders of magnitude greater 

than the asperity height and the cosine-shaped asperity is approximated by a circular 

profile. Substituting Eq. (4.7) into Eq. (4.8) yields 
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where ra ′=′ 2  is the truncated area of the contact spot. Substituting Eq. (4.9) into Eq. 

(4.4) yields a relationship between the truncated area, a′, and the real contact area, a,  
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where subscript k is equal to 1 for stiff layer (El/Es > 1) and 2 for compliant layer (El/Es < 

1). According to Eq. (4.3), the elastic force at a contact spot is given by 
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Substituting Eq. (4.10) into Eq. (4.11) yields the elastic force at a contact spot, 
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Because the equivalent elastic modulus is a function of the real contact width, which is 

not known a priori, an iteration procedure was used to determine the equivalent elastic 

modulus and the real contact area in order to satisfy Eqs. (4.2) and (4.4). The initial value 

of the real contact area was assumed to be equal to the truncated area. Using this iteration 

scheme, the distribution of the real contact area and corresponding equivalent elastic 

modulus were obtained at each contact spot. Hence, the elastic force at each contact spot 

was determined from Eq. (4.12). It is assumed that the contact spots at the interface are 

sufficiently apart from each other such that interactions can be neglected. Consequently, 

the total contact force can be obtained as 

 ∑
=

∆=
N

i

i
dfdf FF

1

, (4.13) 
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where i
dfF∆  is the deformation force of the ith asperity contact, and N is the number of 

asperity contacts at the interface. 

Contact pressure distributions were obtained based on the assumption that the 

local contact pressure is proportional to the square root of the local interference. A 

piecewise-linear distribution of contact pressure was obtained by superposition of 

overlapping triangular pressure elements (Johnson, 1985). The peak value of the jth 

triangular pressure element, j
ip , at the ith asperity microcontact is expressed as 
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where j
iδ  is the local interference at the jth point, Mi is the total number of grids at ith 

asperity contact, and c is the grid size. The advantage of the piecewise-linear distribution 

of the contact pressure is that it produces continuous surface displacements. For fully-

developed sliding contact, the contact pressure profile is assumed to be unaffected by the 

shear traction. This assumption is reasonable for low-friction sliding. The shear traction is 

)()( xpxq µ= , where µ is the coefficient of friction at the interface. 

The stress field in the layered medium was calculated by superposition of the 

stress fields generated by triangular distributions of normal and tangential tractions at 

each contact spot and the stress fields of all the contact spots established at the interface. 

The approach presented by Gupta el al. (1973) was used to calculate the stresses in the 

layered medium due to the triangular distributions of normal and tangential tractions. 

With reference to the coordinate system shown in Fig. 4.4, the stresses and displacements 

in the layer are functions of x and z1 and in the substrate are functions of x and z2. The 
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stresses are most conveniently expressed in terms of an Airy stress function, Φ, which 

must satisfy the biharmonic equation 04 =∇ Φ , and can be differentiated to obtain the 

stresses according to 
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The traction boundary conditions at the layer surface and the interface condition that 

displacements and tractions must be continuous are expressed as 

 

)0,(),()0,(),(

)0,(),()0,(),(

,0)0,(),/1()0,(

,0)0,(),/1()0,(

)2()1()2()1(

)2()1()2()1(

)1(
0

)1(

)1(
0

)1(

xwhxwxhx

xuhxuxhx

cxxcxcxqx

cxxcxcxpx

zzzz

xzxz

xzxz

zzzz

==

==

>=≤−−=

>=≤−−=

σσ

σσ

σσ

σσ

, (4.16) 

x

z

z1

z2

p0

q0

h

c c

Layer (El, νl)

Substrate (Es, νs)

x

z

z1

z2

p0

q0

h

c c

Layer (El, νl)

Substrate (Es, νs)

 

Fig. 4.4 Description of coordinates for a layered medium subjected to triangular 
distributions of normal and tangential tractions. 
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where superscripts 1 and 2 refer to the layer and the substrate, respectively, and u and w 

denote displacements in the x and z directions, respectively. The solution is obtained by 

taking the Fourier transform of Φ with respect to x using the definition 

 dxezx xi∫
+∞

∞−
= ωΦΦ ),( . (4.17) 

For Φ to satisfy the biharmonic equation and to generate finite stresses at infinity, Φ  

must be of the form: 
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where )1(Φ  and )2(Φ  are solutions of Φ  in the layer and the substrate, respectively. The 

two boundary and four interface conditions provide a set of six coupled equations 

including the coefficients in Eq. (4.18) and the Fourier transforms of the surface traction 

distributions, p(x, z) and q(x, z). When Φ  is obtained, the stresses can be calculated from 

Eq. (4.15) by applying an inverse transformation of Φ . 

Therefore, the stress at a point A(x, z) in the layered medium can be written as 
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where σ denotes stress and j
iσ  represents the stress due to the jth triangular distributions 

of contact pressure and tangential (friction) tractions at the ith contact spot. 

4.4 Results and Discussion 

4.4.1 Validation of the Contact Algorithm 

To validate the analytical model of the layered elastic medium, numerical results 

for a homogenous elastic half-space in normal and sliding contact with a rigid cylinder 
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are contrasted with theoretical results (Johnson, 1985). The half-space has an elastic 

modulus of 114 GPa and Poisson ratio of 0.3. Figure 4.5(a) shows the normalized contact 

pressure distribution on the indented homogenous half-space. The x coordinate was 

normalized by the half-contact width, r0, and the contact pressure, p, by the maximum 

contact pressure, 0p . The good agreement between analytical and theoretical results 

confirms the validity of the model and suggests that the assumption that the local contact 

pressure is proportional to the square root of the associated interference is reasonable. 

Figure 4.5(b) shows the effect of the elastic modulus ratio on the pressure profile due to 

indentation of a layered medium by a rigid cylinder. The maximum contact pressure 

obtained with the homogenous half-space (El/Es = 1), 0p , and corresponding half-contact 

width, r0, were used to normalize the pressure and the x coordinate, respectively. As 

expected, higher contact pressure and smaller contact area were obtained with stiff layers 

(El/Es > 1) and the opposite with compliant layers (El/Es < 1). The contact area and 

pressure are quite different from those of the Hertzian profile, especially when the 

difference between El and ES is large. The contact pressure profiles shown in Fig. 4.5(b) 

are also in good agreement with similar results by King and O’Sulllivan (1987). 

The normalized subsurface stresses, σxx, σzz, and τ1 (principal shear stress), along 

the axis of symmetry of the homogenous half-space due to indentation (µ = 0) and 

normalized surface stresses, σxx, σzz, and τxz due to sliding (µ = 0.5) of a rigid cylinder are 

shown in Figs 4.6(a) and 4.6(b), respectively. The symbols represent numerical results 

and the curves theoretical solutions (Johnson, 1985). The good agreement between 

numerical and theoretical stress results demonstrates the accuracy of the algorithm and 

aaa 
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Fig. 4.5 Normalized contact pressure distributions for (a) homogenous and (b) layered 
media with different elastic modulus ratios of the layer and the substrate materials 
indented by a rigid cylinder. 
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Fig. 4.6 (a) Normalized subsurface stresses along the axis of symmetry and (b) 
normalized surface stresses distributions of a layered medium in contact with a rigid 
cylinder. (Symbols represent numerical results and lines theoretical solutions (Johnson, 
1985).) 
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the efficiency of the piecewise-linear contact pressure distributions. Figure 4.6(b) reveals 

the occurrence of a maximum surface tensile stress at the trailing edge of the contact 

region, which is accurately predicted by the algorithm. The results shown in Figs. 4.5 and 

4.6 verify the appropriateness of the present analysis for obtaining solutions for the 

surface and subsurface stress due to normal and tangential surface tractions. 

4.4.2 Contact Load and Contact Area 

The total contact load and contact area of a rigid rough surface in contact with a 

layered elastic half-space are presented first in order to elucidate the significance of 

material properties, layer thickness, and surface topography on the global parameters of 

this contact system. The effects of the coefficient of friction, layer thickness, and material 

properties on the pressure profile, surface stress, interface stress, von Mises stress, and 

maximum principal stress are discussed next. The substrate has an elastic modulus of 114 

GPa and Poisson ratio of 0.3. In all simulations, the sample length L = 5 µm and G = 

9.46×10-4 nm. 

The significance of the fractal dimension D on the contact load and real contact 

area can be interpreted in light of the results shown in Fig. 4.7 for El/Es = 2 and t = 5 nm. 

Both the total contact load and the real contact area increase with the maximum surface 

interference. Figure 4.7(a) shows that increasing the fractal dimension D increases the 

contact load at larger surface interferences while the opposite is true at smaller surface 

interferences. This is because only one or two asperity contacts are established at smaller 

interferences and the rough surface with a smaller D value yields sharper asperities in 

contact, which generate a larger contact load. With the increase of the surface 

aaaaaaaaaaa 
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Fig. 4.7 Effect of fractal dimension on (a) contact load and (b) real-to-apparent contact 
area ratio versus maximum surface interference for an elastic layered medium (El/Es = 2 
and t = 5 nm) indented by a rough surface (G = 9.46 × 10-4 nm).  
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interference, the rough surface with the higher D value produces more asperity contacts, 

thus resulting in a higher contact load with increasing total real contact area. Figure 

4.7(b) shows that, for fixed fractal roughness and maximum surface interference, 

increasing the fractal dimension increases the real contact area significantly. This is due 

to the fact that higher D values are associated with smoother surface profiles. 

Figures 4.8(a) and 4.8(b) show the variations of the total contact load, P, and real-

to-apparent contact area ratio, Ar/Aa, with the maximum surface interference distance, 

δmax, and the elastic modulus ratio, El/Es, for D = 1.44 and t = 5 nm. As expected, both 

the total contact load and the real contact area increase with the increase of the maximum 

surface interference. For fixed δmax, the total load increases and the contact area decreases 

with the increase of El/Es.  

To illustrate the effect of the layer thickness on the contact load and real contact 

area, results for a layered medium with layer thickness t = 5, 10, 20, and 100 nm are 

contrasted in Fig. 4.9 for El/Es = 4 and D = 1.44. It can be seen that the effect of the layer 

thickness is negligible at small surface interfaces (or light contact loads). For stiff layer 

(El/Es >1) and large surface interference, the contact load increases while the contact area 

decreases with the increase of the film thickness. This is because the effect of the stiff 

layer on the contact load and contact area is stronger than that of the substrate at a larger 

surface interference and greater film thickness. For the specific case of D = 1.44, G = 

9.46×10-4 nm, and El/Es = 4, there is no difference between the media with t = 20 and 100 

nm when δmax < 1.5 nm. 
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Fig. 4.8 Effect of elastic modulus ratio on (a) contact load and (b) real-to-apparent 
contact area ratio versus maximum surface interference for an elastic layered medium (t = 
5 nm) indented by a rough surface (D = 1.44 and G = 9.46 × 10-4 nm). 
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Fig. 4.9 Effect of layer thickness on (a) contact load and (b) real-to-apparent contact area 
ratio versus maximum surface interference for an elastic layered medium (El/Es = 4) 
indented by a rough surface (D = 1.44 and G = 9.46 × 10-4 nm). 
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4.4.3 Contact Stresses 

A detailed knowledge of the contact stress field is essential to the analysis of the 

mechanisms controlling fracture, fatigue, and wear. The effects of material properties and 

layer thickness on the contact stresses due to normal loading are presented first, followed 

by stress results for simultaneous normal and tangential contact loadings. 

The evolution of contact stresses during indentation can be interpreted in terms of 

the maximum von Mises equivalent stresses, max
Mσ , in the layer and the substrate, shown 

in Figs. 4.10(a) and 4.10(b), respectively, as a function of the maximum surface 

interference, δmax, and the elastic modulus ratio, El/Es. In both layer and substrate, max
Mσ  

increases with δmax and El/Es. This is expected because higher δmax and El/Es yield larger 

contact loads, as shown in Fig. 4.8(a). For fixed δmax, it is more likely to initiate yielding 

in the substrate for a stiff layer than a compliant layer. This is because the compliant 

layer can store more elastic energy and, consequently, reduce the stress intensity in the 

substrate and also due to the significant stress concentration at the interface in the case of 

the stiff layer resulting from the larger elastic modulus mismatch. Another important 

feature shown in Figs. 4.10(a) and 4.10(b) is that for shallow indentation (δmax < 1 nm), 

max
Mσ  varies very insignificantly because the effect of the substrate compliance is 

secondary. Results (not shown here for brevity) showed that, for the stiffer layer (El/Es = 

4), max
Mσ  is more likely to occur at or near the surface, while for the softer layer (El/Es = 

0.25), max
Mσ  is more likely to occur below the surface in the layer and at the interface. It 

was also found that the position of max
Mσ  shifts from the surface to the interface with the 
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Fig. 4.10 Maximum von Mises equivalent stresses in (a) the layer and (b) the substrate 
versus maximum surface interference for an elastic layered medium indented by a rough 
surface (D = 1.44 and G = 9.46 × 10-4 nm). 
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increase of δmax, i.e., light contact loads promote surface yielding, while high contact 

loads enhance in yielding at the interface. 

Figure 4.11 shows max
Mσ  in the layer and the substrate as a function of δmax for 

different values of the layer thickness and El/Es = 4. As expected, max
Mσ increases with the 

increases of δmax. The insignificant differences in max
Mσ  in the layer for t = 10 and 20 nm 

are due to the insignificant differences in the contact load and contact area, as shown in 

Fig. 4.9. However, Fig. 4.11(b) shows that max
Mσ  in the substrate depends strongly on the 

layer thickness for small interference, i.e., δmax < 1.5 nm. The increase of max
Mσ  in the 

substrate with the decease of the layer thickness is attributed to the intensification of the 

stresses extending into the substrate. A comparison of Figs. 4.10 and 4.11 shows an 

overall stronger effect of El/Es on max
Mσ , while the effect of the layer thickness is less 

pronounced. 

Figure 4.12(a) shows max
Mσ  in the layer and the substrate as a function of El/Es for 

t = 5 nm and δmax/σ = 0.25, where σ is the root-mean-square surface roughness. 

Stiffening of the layer intensifies greatly max
Mσ  in the layer; however, the effect on max

Mσ  

in the substrate is less pronounced. A steady state max
Mσ  occurs when 3/ ≥sl EE . Figure 

4.12(b) shows max
Mσ in the layer and the substrate as a function of layer thickness for 

δmax/σ = 0.25. In the substrate, max
Mσ  decreases to a steady state with the increase of the 

layer thickness. Hence, layer thickness effect on max
Mσ  in the substrate is negligible for 

relatively thick layers (t > 10 nm). The results for max
Mσ  in the substrate shown in Figs. 
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Fig. 4.11 Maximum von Mises equivalent stress in (a) the layer and (b) the substrate 
versus maximum surface interference for an elastic layered medium (El/Es = 4) with 
different layer thickness (t = 5, 10, 20 nm) indented by a rough surface (D = 1.44 and G = 
9.46 × 10-4 nm). 
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Fig. 4.12 Effects of (a) elastic modulus ratio and (b) layer thickness on the maximum von 
Mises equivalent stresses in the layer and the substrate of a layered medium indented by a 
rough surface (δmax/σ = 0.25, D = 1.34, and G = 9.46 × 10-4 nm). 
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4.12(a) and 4.12(b) suggest the existence of critical values of El and t, above which, the 

layer is effective in suppressing the stresses. 

Figure 4.13 shows pressure distributions at asperity contacts and associated von 

Mises equivalent stress contours for El/Es = 4, 1, and 0.25, D = 1.34, G = 9.46 × 10-4 nm, 

and δmax/σ = 0.25. The corresponding segments of the rough surface are also shown at the 

top of Fig. 4.13 for reference. A comparison of the contact pressure profiles shown in 

Figs. 4.13(a)-4.13(c) shows a strong effect of El/Es on the contact pressure distribution. 

Higher pressure peaks and smaller asperity contact areas are produced with the increase 

of El/Es. This is expected because, at a given δmax value, the contact load increases with 

El/Es, as shown in Fig. 4.8. For the stiffer layer (El/Es = 4), the contact interface consists 

of four distinct contact spots, while for the compliant layer (El/Es = 0.25) there are five 

contact spots. The von Mises stress contours show that the subsurface stress field depends 

strongly on the elastic modulus ratio El/Es. The von Mises stress contours for El/Es = 4 

are confined within the stiff layer and exhibit significant discontinuities at the interface. 

The increase of Mσ  with El/Es is due to the increase of the contact pressure. It is noted 

that pmax and max
Mσ  always occur at the sharper asperity contact. For El/Es = 0.25, the 

position of max
Mσ  shifts from the surface to the interface due to the increase of the asperity 

contact area. 

To evaluate the effect of friction on the propensity for surface cracking, the 

maximum tensile stress, max
xxσ , at the layer surface as a function of El/Es is shown in Fig. 

4.14 for µ = 0.1 and 0.5. For µ = 0.1, max
xxσ  is insensitive to the variation of El/Es. 
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Fig. 4.13 Pressure distributions at asperity contacts and corresponding contours of von 
Mises equivalent stress in an elastic layered medium due to indentation by a rough 
surface (δmax/σ = 0.25, D = 1.34, and G = 9.46 × 10-4 nm): (a) El/Es = 4, (b) El/Es = 1, and 
(c) El/Es = 0.25. 
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However, max
xxσ  increases significantly with the increase of El/Es when µ = 0.5. The high 

value of max
xxσ  obtained for El/Es = 4 and µ = 0.5 indicates a greater likelihood for surface 

cracking. It is well established that max
xxσ  at the surface and max

1σ  in the subsurface control 

crack initiation. Figure 4.15 shows distributions of σxx at the surface and 1σ  in the 

subsurface for El/Es = 4, 1, and 0.25 due to sliding of a rough surface (D = 1.34 and G = 

9.46×10-4 nm) for µ = 0.5, δmax/σ = 0.25, and t = 5 nm. Corresponding segments of the 

rough surface are also provided for reference. The simulation results reveal a similar 
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Fig. 4.14 Maximum surface tensile stress at the surface of a layered medium in sliding 
contact with a rough surface (δmax/σ = 0.25, D = 1.34, and G = 9.46 × 10-4 nm) versus 
elastic modulus ratio El/Es for µ = 0.5 and 0.1. 
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Fig. 4.15 Surface stress distributions and contours of maximum principal stress in an 
elastic layered medium in sliding contact with a rough surface (δmax/σ = 0.25, D = 1.34, 
and G = 9.46 × 10-4 nm): (a) El/Es = 4, (b) El/Es = 1, and (c) El/Es = 0.25. 
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trend for different El/Es values, i.e., max
xxσ  at the trailing edges of asperity contacts. 

However, the magnitudes of max
xxσ  for El/Es = 4 are significantly higher than those 

obtained for El/Es = 0.25. The contours of 1σ , which is the surface tensile stress σxx in 

the wake of sliding, show that the stiffer layer is subjected to significantly higher tensile 

stresses than the compliant layer, consistent with the conclusion of a previous study (Kral 

and Komvopoulos, 1996). Since max
1σ  occurs always at the surface, surface cracking is 

predominant under sliding conditions conducive to high friction coefficients. This 

phenomenon was confirmed by an earlier fracture analysis (Bower and Fleck, 1994). It 

was shown that crack initiation at the surface commences immediately behind the contact 

region of a sliding indenter, where the tensile stress reaches a maximum. Moreover, in 

the case of El/Es = 4, there are three small regions at the interface where a high tensile 

stress is produced. Consequently, for relatively stiff layers, crack initiation is likely to 

occur either at the surface or the interface, while for compliant layers crack initiation is 

favored at the surface. 

Layer debonding (delamination) depends on the magnitude of the shear stress, 

xzτ , at the interface. Figure 4.16 shows the distribution of xzτ  at the interface of the 

layered medium in sliding contact with a rough surface (D = 1.34 and G = 9.46×10-4 nm) 

for El/Es = 4, 1, and 0.25 and µ = 0.5. The magnitude of xzτ  depends strongly on El/Es. A 

comparison of the shear stress results for different values of El/Es shows an increased 

propensity for delamination across the interface of the stiffer layer. The existence of 

several interfacial locations of high xzτ  suggests that delamination may occur at several 

aa 



 96

(a)

(b)

(c)

4000    4100   4200    4300    4400   4500    4600   4700    4800

x (nm)

τ x
z
(G

Pa
)

3

0

-3

-6

τ x
z
(G

Pa
)

3

0

-3

-6

τ x
z
(G

Pa
)

3

0

-3

-6

El/Es = 4

El/Es = 1

El/Es = 0.25

(a)

(b)

(c)

4000    4100   4200    4300    4400   4500    4600   4700    4800

x (nm)

τ x
z
(G

Pa
)

3

0

-3

-6

τ x
z
(G

Pa
)

3

0

-3

-6

τ x
z
(G

Pa
)

3

0

-3

-6

El/Es = 4

El/Es = 1

El/Es = 0.25

 
Fig. 4.16 Shear stress distributions at the interface of an elastic layered medium in sliding 
contact with a rough surface (δmax/σ = 0.25, D = 1.34, and G = 9.46 × 10-4 nm) for µ = 
0.5: (a) El/Es = 4, (b) El/Es = 1, and (c) El/Es = 0.25. 
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locations along the interface. Figure 4.17(a) shows the maximum shear stress, max
xzτ , at the 

interface as a function of El/Es for µ = 0.1 and 0.5. The max
xzτ stress increases significantly 

with the increase of El/Es when El/Es < 2, and reaches a steady state when El/Es > 2. The 

effect of friction on max
xzτ  is secondary compared to that of El/Es, conversely to the max

xxσ  

(Fig. 4.14). The significance of the layer thickness on the maximum interfacial shear 

stress can be interpreted in terms of the results shown in Fig. 4.17(b). The magnitude of 

max
xzτ  decreases by a factor of 2 to 3, depending on the value of µ, with the increase of the 

layer thickness, reaching a constant value when t > 10 nm. This behavior is expected 

because the substrate effect on the stress field diminishes with the increases of the layer 

thickness. A comparison of the shear stress curves for µ = 0.1 and 0.5 shows that the 

effect of µ on max
xzτ  is secondary compared to the effects of El/Es and t. 

4.5 Conclusions 

A plane-strain analytical model was developed for an elastic layered medium in 

sliding contact with a rough (fractal) surface. The significance of the material properties, 

layer thickness, and surface topography on global parameters was examined in the 

context of results for the normal load and contact area. The contact pressure and local 

stress fields were interpreted in terms of the effects of the coefficient of friction, layer 

thickness, and material properties on the pressure profile, surface and interface stresses, 

maximum principal stress, and von Mises equivalent stress. Based on the obtained results 

and discussion, the following main conclusions can be drawn. 
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Fig. 4.17 Variation of maximum shear stress at the interface of an elastic layered medium 
in sliding contact with a rough surface (δmax/σ = 0.25, D = 1.34, and G = 9.46 × 10-4 nm) 
for µ = 0.1 and 0.5 and different values of (a) El/Es and (b) t. 
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(1) A constitutive relationship between the mean contact pressure and a representative 

strain parameter was derived for an indented elastic layered medium. The real contact 

area of an asperity contact spot was obtained as a function of mechanical properties of 

the layered medium, layer thickness, truncated half-contact width, and asperity radius. 

(2) Contact pressure profiles and the stress field were determined for the distribution of 

the asperity contacts. 

(3) Both the contact load and real contact area increase monotonically with the maximum 

surface interference. The effects of the fractal parameter and elastic modulus of the 

layer on the contact load and real contact area are dominant, while the effect of the 

layer thickness is relatively small. The contact load increases and the contact area 

decreases with the increase of the elastic modulus of the layer. The effect of the layer 

thickness is negligible for small interference (or light contact loads) and secondary for 

relatively large interferences. 

(4) The maximum von Mises equivalent stress in both the layer and the substrate 

increases with the maximum interference and the elastic modulus of the layer. The 

maximum von Mises stress occurs always at the sharper asperity contacts. For a stiff 

layer, the maximum von Mises is more likely to occur at or near the surface, while for 

a compliant layer it is favored to arise under the surface or at the interface. The 

maximum von Mises stress in the substrate depends strongly on the layer thickness at 

small interference. 

(5) The maximum tensile stress at the surface arises at the trailing edges of asperity 

contacts and intensifies with the increase of the elastic modulus of the layer and the 

coefficient of friction. The stiffer layer is subjected to significantly higher tensile 
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stresses than the compliant layer. The peak value of the maximum principal stress 

occurs always at the surface, which indicates that crack initiation at the layer surface 

is favored. However, for stiff layers, crack initiation at the interface is also possible.  

(6) The shear stress at the interface depends strongly on the elastic modulus and the 

thickness of the layer. A stiff layer enhances the likelihood for interface cracking and 

delamination much more than a compliant layer. The effect of the coefficient of 

friction on the interfacial shear stress is secondary compared to the effects of the 

elastic modulus and thickness of the layer. 



 101

CHAPTER 5 
 

THERMOMECHANICAL ANALYSIS OF  
SEMI-INFINITE SOLID IN SLIDING CONTACT WITH  

A FRACTAL SURFACE 
 

 

5.1 Introduction 

Frictional heating and associated temperature rise may significantly affect the 

mechanical response of interacting surfaces. Knowledge of thermoelastic stresses in 

sliding solid bodies is essential for accurate failure analysis of mechanical systems. The 

determination of the thermal and thermoelastic fields in semi-infinite homogeneous 

media due to different surface heat sources has been the objective of several past studies. 

One of the pioneering early analyses is attributed to Blok (1937) who examined the flash 

temperature and maximum temperature rise at the surface of a semi-infinite elastic body 

due to a uniform square heat source moving at speeds corresponding to high and low 

Peclet numbers. Later, Jaeger (1942) extended the previous analysis to the intermediate 

regime of Peclet number.  

The previous studies established the foundation of both analytical and numerical 

thermomechanical studies. Based on a Green’s function method, Tian and Kennedy 

(1994) determined the temperature rise at the surface of a semi-infinite body due to 

different moving heat sources. Ju and Huang (1982) performed a thermomechanical 

analysis of homogeneous half-spaces exposed to a fast moving heat source and found 

predominantly compressive stresses at the surface. Huang and Ju (1985) and Ju and Liu 

(1988) observed that the maximum tensile thermal stress occurs slightly below the 
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trailing edge of the contact region at a depth controlled by the Peclet number. Leroy et al. 

(1989) conducted a two-dimensional analysis of a heat source moving over a layered 

medium and reported high stresses in the surface layer when the mismatch between the 

layer and substrate thermomechanical properties was large. Bryant (1988) used a Fourier 

transformation method to derive thermal and thermoelastic solutions for a moving line 

heat source, and Ju and Farris (1997) obtained thermal and thermoelastic solutions in the 

frequency domain for an arbitrary heat source moving over an elastic half-space. More 

recently, Liu and Wang (2003) investigated the transient thermoelastic stress fields 

generated in a half-space due to parabolic or irregularly distributed heat source moving at 

constant velocity.  

In the previous studies, the a priori assumed distribution of the heat sources was 

decoupled from the mechanical response of the deformed medium. To consider the effect 

of frictional heating on contact deformation, it is necessary to account for the 

concomitant effects of mechanical and thermal stresses. In view of the complex analytical 

relationships in fully coupled thermomechanical contact problems, the majority of earlier 

analyses were based on the finite element method. Gupta et al. (1993) used a two-

dimensional finite element model to study rolling and sliding contact on a semi-infinite 

medium under the assumption of invariant contact pressure. Cho and Komvopoulos 

(1997) presented a thermoelastic finite element analysis of subsurface crack propagation. 

Ye and Komvopoulos (2003) developed a finite element model to examine the 

simultaneous effects of mechanical and thermal surface traction on the deformation of 

elastic-plastic layered media. Gong and Komvopoulos (2004a) conducted a fully coupled 

finite element analysis of an elastic-plastic layered medium with a patterned surface in 
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contact with an elastic-plastic sphere. Despite the mathematical complexity of analytical 

approaches dealing with thermomechanical contact problems, some analytical solutions 

have also been obtained for thermoelastic contacts. Azarkhin and Barber (1986) derived 

solutions for the transient thermoelastic Hertz problem using Green’s function and 

Fourier transformation techniques, and Lee and Barber (1993) examined the stability of a 

brake disk sliding between two friction pads and found that the mode with the lowest 

critical speed was always antisymmetric about the layer mid-plane. Wang and Liu (1999) 

and Liu and Wang (2000) introduced a two-dimensional thermoelastic contact model of 

two infinitely large rough surfaces that accounts for the thermal effect on the mechanical 

response, and later extended the previous analysis to a three-dimensional 

thermomechanical model of non-conforming contacts (Liu and Wang, 2001). 

Although the previous studies have provided useful insight into the temperature 

and thermoelastic stress fields in solids due to moving heat sources or sliding rough 

surfaces, analytical thermomechanical studies of rough surfaces elucidating the 

dependence of temperature and stress fields on surface topography parameters and Peclet 

number have not been reported yet. Therefore, the objective of this study was to develop 

a thermomechanical analysis of sliding contact between a semi-infinite elastic medium 

and a rough (fractal) surface, accounting for the simultaneous effects of thermal and 

mechanical deformation. Results are presented for the contact pressure distribution and 

surface and subsurface temperature and stress fields in terms of Peclet number and 

surface topography (fractal) parameters. The significance of mechanical surface traction 

and frictional heating on the propensity for yielding and cracking at the sliding surface 

are interpreted in light of numerical results. 
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5.2 Thermomechanical Contact Analysis 

Sliding friction leads to energy dissipation in the form of heat within the vicinity 

of the real contact area. The frictional heat dissipated in the medium is responsible for the 

temperature rise, resulting in the development of thermal stresses and variations in the 

real contact area and contact pressure distribution due to thermal expansion. Because 

such changes affect heat generation rate and heat conduction across the contact interface, 

the thermal and mechanical stress and strain fields are fully coupled and, therefore, must 

be determined simultaneously. 

5.2.1 Surface Deformation and Temperature Field 

Figure 5.1 shows a schematic of a rough, rigid, and adiabatic surface in sliding 

L 
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Fig. 5.1 Schematic representation of a rough (fractal) surface sliding over an elastic semi-
infinite solid and pertinent nomenclature. 
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contact with a deformable semi-infinite solid possessing a smooth surface. Coulomb 

friction is assumed at the sliding contact interface. The elastic medium is subjected to 

normal and tangential (friction) surface tractions, producing a total normal load, P, in the 

z direction and a total tangential load, F = µP, in the x direction, where µ is the 

coefficient of friction. Frictional heat generated at each asperity microcontact is 

conducted into the elastic medium. Similar to the treatment of Carslaw and Jaeger (1959), 

a coordinate system (x, y, z) on the moving rough surface and a coordinate system (x', y', 

z') on the stationary elastic medium are used in the analysis. The two coordinate systems 

are related by  

 zzVtxx ′=−′= , (5.1) 

where t is the time, and V is the moving (sliding) velocity. The heat flux density due to 

frictional heat, Q, is given by 

 pVQ ψµ= , (5.2) 

where ψ is the fraction of mechanical work dissipated as heat, and p is the contact 

pressure. It is assumed that ψ  = 1.0, i.e., all the energy dissipated in a frictional contact is 

converted to heat, consistent with the conclusion of Uetz and Föhl (1978). Since the 

rough surface is assumed to be adiabatic, heat conduction occurs only into the elastic 

medium. 

The normal displacement is due to the effects of contact pressure, shear traction, 

and thermoelastic distortion induced by frictional heating. Hence, the normal 

displacement at the surface, uz, can be expressed as, 

 T
z

S
z

N
zz uuuu ++= , (5.3) 
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where N
zu , S

zu , and T
zu  are the normal displacements due to the contact pressure, shear 

traction, and frictional heating, respectively. Each microcontact area is divided into a 

number of small segments of equal width, b. A piecewise-linear distribution of the 

contact pressure is obtained by superposition of overlapping triangular pressure elements 

(Johnson, 1985). 

The N
zu  displacement due to the triangular pressure distribution shown in Fig. 

5.2(a) is given by (Johnson, 1985) 
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where p0 is the maximum contact pressure, E and ν are the elastic modulus and Poisson 

ratio of the semi-infinite solid, and C is a constant determined from a reference point 

chosen on the z axis at distance d below the surface. The S
zu  displacement due to the 

triangular shear traction distribution shown in Fig. 5.2(a) is obtained as (Johnson, 1985) 
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where q0 is the peak value of the shear traction. A triangular distribution of a heat source 

moving from left to right at velocity V is shown in Fig. 5.2(b). For convenience, the 

following non-dimensional parameters are introduced in the analysis, 

 
b
x

b
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b
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=== ηζξ ,, . (5.6) 
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Fig. 5.2 Triangular distributions of (a) normal and tangential tractions and (b) heat 
source. 
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The thermoelastic distortion at the surface due to a moving heat source of triangular 

distribution can be obtained by superposition of the moving line heat source solutions by 

Barber (1984). Hence, the T
zu  displacement can be expressed as  
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where I0 is the modified zero-order Bessel function of the first kind, sgn(ξ) is a sign 

function of ξ, and λ is defined as 
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−= , (5.8) 

where 0Q  is the peak value of the heat flux, Pe is the Peclet number (Pe = Vb/2κ), and 

α, ρ, c, and κ are the thermal expansion, mass density, specific heat, and thermal 

diffusivity of the semi-infinite solid, respectively. 

Therefore, the total surface displacement uz can be obtained by summing the 

displacement components given by Eqs. (5.4), (5.5), and (5.7) at each triangular element 

and then integrating over all the asperity microcontacts comprising the real contact area, 
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where N is the total number of asperity microcontacts, Mi is the total number of segments 

in the ith asperity microcontact, and j
i

N
zu , j

i
S
zu , and j

i
T
zu  are the normal surface 
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displacements due to the jth triangular distributions of contact pressure, shear traction, 

and frictional heat, respectively, at the ith asperity microcontact. 

Since 0Q  and q0 can be expressed as functions of p0, i.e.,  

 0000 , pqVpQ µψµ == , (5.10) 

it follows that Eq. (5.9) represents a set of ∑
=

N

i
iM

1

 simultaneous equations that can be 

expressed in matrix form, 

 }}{{}{ PCUZ = , (5.11) 

where }{ ZU  is the matrix of normal surface displacements, {P} is the contact pressure 

matrix, and {C} is a square and symmetric matrix termed the influence coefficient 

matrix. A procedure based on the matrix inversion method, which is similar to that used 

by Bailey and Sayles (1991) to determine the subsurface stresses in rough surfaces due to 

both normal and tangential forces, was used to solve Eq. (5.11). Since both the contact 

pressure and the real contact area are unknown, the following iteration method was used 

to solve Eq. (5.11). First, the initial surface displacement matrix {Uz} was determined by 

truncating the rough surface by a plane to a maximum surface interference, δmax, and the 

corresponding contact pressure was calculated from {P} = {C-1}{Uz}. Any triangular 

pressure elements exhibiting negative pressure violate the requirement p > 0 and were 

removed from the contact region. Then, the surface displacement was recalculated using 

Eq. (5.11) and any overlapping points were added to the assumed contact region. With 

the new set of contact points, Eq. (5.11) was solved again to obtain the contact pressure 

{P}. This iteration procedure was repeated until conditions of positive contact pressure, 

no surface penetration, and contact only within the current contact region were satisfied. 
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Following an approach similar to that for a uniform band heat source (Carslaw 

and Jaeger, 1959), the temperature rise, ∆T, due to a heat source of triangular distribution 

was found to be 

 ∫−

+− ++−=∆
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2/122
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T Pe , (5.12) 

where k is the thermal conductivity of the semi-infinite solid, and K0 is the modified zero-

order Bessel function of the second kind. Therefore, the temperature rise at a point (x, z), 

obtained by superimposition, is given by 
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where )z,x(T j
i∆  is the temperature rise due to the jth triangular distribution of heat flux 

at the ith asperity microcontact. 

5.2.2 Stress Field 

The stress field in the elastic semi-infinite solid due to contact with the rough 

surface can be obtained by superposition of the stress fields generated by the triangular 

distributions of contact pressure, shear traction, and heat flux at each microcontact. The 

stresses in the elastic solid due to a moving heat source with triangular distribution shown 

in Fig. 5.2(b) were obtained in the frequency domain using spatial Fourier 

transformation, following an analytical approach similar to that of Ju and Farris (1997), 
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where 1−=i  , and parameters β , b1, b2, and 0T
)

 are defined as 

 κβ /V=  (5.17) 
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The spatial stress field due to frictional heating was obtained by applying inverse Fourier 

transformation to the numerical solution derived in the frequency domain, i.e., 

 ωωσσ ω dezzx xiTT ∫
+∞

∞−
= ),(ˆ),( , (5.21) 

where σΤ and Tσ̂  denote thermal stress components in spatial and frequency domains, 

respectively.  

The above method was validated by comparing numerical results for a moving 

line heat source with analytical solutions from previous studies. Surface and subsurface 

stresses along x = 0 are shown in Figs. 5.3(a) and 5.3(b), respectively, for a moving line 

heat source of energy per unit length per unit time Q located at x = 0. Stresses are 

normalized by E'αQ/k, where E' = E/(1-ν), and x and z coordinates are normalized by 

1/β . Solid lines represent analytical results for surface and subsurface stresses obtained 

from the studies of Barber (1984) and Bryant (1988), respectively, and symbols denote 

numerical solutions obtained from the present analysis. The good agreement between 

numerical and analytical results for the thermoelastic stresses demonstrates the accuracy 

of the present analysis and validates the adopted numerical scheme. 
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Fig. 5.3 (a) Surface stress and (b) subsurface stresses along x = 0 for a moving line heat 
source located at x = 0. 
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Closed-form solutions for the stresses due to normal and shear tractions 

possessing triangular distributions have been obtained by Johnson (1985). Consequently, 

the stress at any point (x, z) in the solid can be expressed as 
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where j
i

Nσ , j
i

Sσ , and j
i

Tσ  are the stresses due to the jth triangular distributions of 

contact pressure, shear traction, and heat flux at the ith asperity microcontact, 

respectively. 

5.3 Results and Discussion 

Numerical results are presented in this section for a semi-infinite solid with 

thermomechanical properties given in Table 5.1 (Gong and Komvopoulos, 2004a). 

Numerical solutions for a single asperity sliding over the semi-infinite solid are presented 

Table 5.1. Thermomechanical properties of semi-infinite solid 

Property Magnitude 

Elastic modulus, E (GPa) 92 

Poisson’s ratio, ν  0.3 

Thermal expansion, α (K-1) 3.1 × 10-6 

Specific heat, c (J/g.K) 0.5 

Conductivity, k (W/m.K) 0.052, 0.52, 5.2 

Density, ρ (kg/m3) 2.15 × 103 

Diffusivity, κ (m2/s) 4.84 × (10-8, 10-7, 10-6)  
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first to validate the algorithm and to establish a reference for comparison with results 

obtained with the rough (fractal) surface, illustrating the effects of surface topography 

and interaction between neighboring asperities on the temperature and stress fields in the 

elastic medium. In the simulation results presented below, the total real contact area was 

used to determine the Peclet number, and the segment width in the discretization of the 

contact region was fixed at 0.1 nm. 

5.3.1 Single Asperity Sliding 

Numerical results for a rigid cylindrical asperity are contrasted with analytical 

solutions in order to demonstrate the accuracy of the algorithm derived from the present 

analysis. Figure 5.4(a) shows the deformed surface of the elastic medium for different 

loading conditions and δmax/R = 0.0075, where R is the asperity radius. The x and z 

coordinates were normalized by the half-contact width due to indentation, ri. Normal 

contact yields a symmetric profile of the deformed surface, while normal and tangential 

traction (µ = 0.5) produce pile-up and sink-in at the rear and front of the contact region, 

respectively. Thermoelastic deformation enhances pile-up at the rear of the contact region 

due to the effect of frictional heating (Pe = 0.05). The good match between the deformed 

surface and the asperity profile over the contact region illustrates the accuracy of the 

thermomechanical contact algorithm. Figure 5.4(b) shows the contact pressure 

distribution for δmax/R = 0.0075. The contact pressure was normalized by the maximum 

contact pressure due to indentation, poi. The curves represent numerical solutions and the 

symbols theoretical results (Johnson, 1985). Shear traction produced an asymmetric 

contact pressure profile. The peak contact pressure predicted by the theoretical solution 

aaa 
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Fig. 5.4 Dimensionless (a) surface displacement z/ri and (b) contact pressure p/p0i 
distribution due to different loadings for elastic semi-infinite solid in contact with a rigid 
asperity (δmax/R = 0.0075 and Pe = 0.05). 
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and the present analysis occurs at x/ri = 0.092 and 0.088, respectively. The good 

agreement between numerical and theoretical results for the contact pressure distribution 

illustrates the accuracy of the piecewise-linear distribution of the contact pressure profile 

obtained by superposition of overlapping triangular pressure elements. For fixed surface 

interference, frictional heating increases both the contact area and the contact pressure. 

This is expected because frictional heating causes thermal expansion due to the 

development of temperature gradients, which increases both the contact area and the 

contact pressure. 

Figure 5.5 shows the variation of the surface temperature distribution with Peclet 
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Fig. 5.5 Dimensionless temperature rise ∆T/( kVQa πκ /2 ) at the surface of elastic semi-
infinite solid due to sliding contact with a rigid asperity versus Peclet number (µ = 0.5 
and δmax/R = 0.0075). 
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number for µ = 0.5 and δmax/R = 0.0075. In this figure, as well as in subsequent figures, 

temperature results are presented in the form of temperature rise above room temperature, 

∆T, normalized by kVQa πκ /2 , where aQ  is the average heat flux rate at the contact 

region (i.e., total heat flux divided by contact area), and x coordinate is normalized by the 

half-contact width, r. The surface temperature increases significantly with the increase of 

the Peclet number. For Pe < 0.5, the surface temperature distribution is symmetric, while 

for Pe > 0.5 the maximum surface temperature shifts from the center toward the trailing 

edge of the contact region, in agreement with the result of Carslaw and Jaeger (1959) for 

a moving heat source and the three-dimensional numerical result of Gong and 

Komvopoulos (2004a) for a spherical indenter sliding on a half-space. Following an 

approach similar to that for a uniform heat band source (Carslaw and Jaeger, 1959), the 

temperature rise due to a moving heat band elliptically distributed over region lxl ≤≤−  

was obtained as 

 ∫−

+− ++−=∆
1

1

2/122
0

)(20 }])[({1 ηζηξη
π

ηξ dPeKe
k
lQ

T Pe . (5.23) 

As shown in Fig. 5.5, the normalized maximum temperature rise for Pe = 10 is equal to 

2.59, which differs only by 0.4% from the theoretical solution obtained from Eq. (5.23). 

This provides additional confirmation about the accuracy of the present algorithm. To 

examine the dependence of the subsurface temperature field on the Peclet number, 

temperature contours for Pe = 0.05 and 5, µ = 0.5, and δmax/R = 0.0075 are contrasted in 

Fig. 5.6. For relatively low Peclet number (Pe = 0.05), the temperature field is almost 

symmetric with respect to the contact region (Fig. 5.6(a)). However, for relatively high 
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Fig. 5.6 Contours of dimensionless temperature rise ∆T/( kVQa πκ /2 ) in the subsurface 
of elastic semi-infinite solid due to sliding contact with a rigid asperity (µ = 0.5 and 
δmax/R = 0.0075): (a) Pe = 0.05 and (b) Pe = 5. 
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Peclet number (Pe = 5), the temperature field is greatly distorted and the maximum 

temperature arises at the trailing edge of the contact region (Fig. 5.6(b)). In addition, the 

temperature field intensifies significantly with the increase of the Peclet number. 

The effect of frictional heating on the surface stress σxx is illustrated in Fig. 5.7 for 

µ = 0.5 and δmax/R = 0.0075. The surface stress σxx was normalized by the maximum 

contact pressure, p0, and x coordinate by the half-contact width in the elastic analysis, r0. 

Frictional heating yields a profound decrease of the surface tensile stress at the trailing 

edge of the contact region (Pe = 49). Such high Peclet number produces a compressive 

σxx stress in the wake of the contact region, where, in the absence of frictional heating, 

the stress is tensile (elastic case). Therefore, surface originating cracks are less likely to 
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Fig. 5.7 Dimensionless σxx/p0 stress at the surface of elastic semi-infinite solid due to 
sliding contact with a rigid asperity (µ = 0.5 and δmax/R = 0.0075). Solid and 
discontinuous curves represent elastic and thermoelastic (Pe = 49) results, respectively. 
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occur under conditions promoting significant frictional heating (e.g., high Peclet 

number). 

Figure 5.8 shows the effect of frictional heating on the subsurface von Mises 

equivalent stress, σM, for µ = 0.5 and δmax/R = 0.0075. (The same stress levels were used 

for comparison purposes.) The Mises stress was normalized by the maximum contact 

pressure, p0, and x and z coordinates by the half-contact width in the elastic analysis, r0. 

Frictional heating (Pe = 49) intensifies the subsurface stress field. This is because the 

compressive stress field due to frictional heating enhances significantly the stresses 

below the contact region. The results shown in Fig. 5.8 are consistent with the finite 

element results of Ye and Komvopoulos (2003) that also showed an increase of the Mises 

stress due to frictional heating. The maximum value of σM/p0 in the thermoelastic 

analysis is equal to 1.42, which is 48% higher than the value obtained from the elastic 

analysis. The dimensionless maximum tensile stress, 0
max / pxxσ , and maximum von Mises 

equivalent stress, 0
max / pMσ , at the surface of the semi-infinite solid are plotted as 

functions of Peclet number in Fig. 5.9 for µ = 0.5 and δmax/R = 0.0075. It is noted that 

max
xxσ  decreases while max

Mσ increases with the increase of the Peclet number due to the 

significant compressive stress induced by frictional heating. Hence, in the case of metals 

or polymers and sliding conditions favoring high Peclet number, surface plasticity is 

more likely to occur than surface cracking. 

5.3.2 Rough Surface Sliding 

Unless otherwise stated, the numerical results for rough-surface sliding presented 
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Fig. 5.8 Contours of dimensionless von Mises equivalent stress σM/p0 in the subsurface of 
elastic semi-infinite solid due to sliding contact with a rigid asperity (µ = 0.5 and δmax/R = 
0.0075): (a) Pe = 0 and (b) Pe = 49. 
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in this section are for δmax = 1.5 nm, L = 5 µm, D = 1.44, and G = 9.46 × 10-4 nm. These 

values of the fractal parameters are typical of the surface topographies of magnetic 

recording heads (Komvopoulos, 2000). Based on the value of nmax (= 

int[log(L/Ls)/logγ]), the number of terms in Eq. (4.1) used to generate the rough surface 

was set equal to 15. For generality, results for the temperature rise are shown in 

dimensionless form, ∆T/(2Qaκ/πkV).  

Figure 5.10 shows the surface deformation of the elastic half-space due to sliding 

of a rough surface from left to right for different types of loading. Figure 5.10(a) shows 

the establishment of four asperity microcontacts in the contact region. The high 
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Fig. 5.9 Dimensionless maximum tensile stress 0
max / pxxσ and maximum von Mises 

equivalent stress 0
max / pMσ at the surface of elastic semi-infinite solid in sliding contact 

with a rigid asperity versus Peclet number (µ = 0.5 and δmax/R = 0.0075). 
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Fig. 5.10 (a) Deformed surface and (b) portion of interfacial region of elastic semi-
infinite solid subjected to different loadings by a rigid rough (fractal) surface (D = 1.44, 
G = 9.46 × 10-4 nm, µ = 0.5, δmax = 1.5 nm, and Pe = 0.06). 
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magnification of a region of the surface profile shown in Fig. 5.10(b) demonstrates that 

the deformed surface follows very closely the contour of the rough surface. The exact 

match between the deformed surface of the half-space and the rough surface illustrates 

the accuracy of the algorithm. For pure normal indentation (µ = 0) the total contact width 

is equal to 23.6 nm, and increases to 28.8 nm with the occurrence of frictional heating (µ 

= 0.5 and Pe = 0.06). This is a consequence of surface pile-up due to frictional heating 

that increases the real contact area, especially at the trailing contact region where 

thermoelastic distortion is more pronounced. 

To illustrate the significance of frictional heating on the pressure distributions at 

asperity microcontacts, contact pressure profiles are shown in Fig. 5.11 for µ = 0.5 and Pe 

= 54. The four plots in Fig. 5.11 show contact pressure distributions corresponding to the 

four contact regions shown in Fig. 5.10. Numerical results for thermoelastic and elastic 

sliding contact are indicated by solid and discontinuous curves, respectively. The contact 

pressures and microcontact areas predicted by the thermoelastic analysis are larger than 

those obtained from the elastic analysis. This is mostly pronounced at the fourth asperity 

microcontact (region 4) and is attributed to the greater cumulative effect of frictional 

heating at the trailing contact region. 

Figure 5.12 shows the Peclet number effect on the distribution of dimensionless 

surface temperature rise due to sliding (µ = 0.5). For convenience, the corresponding 

regions of the rigid rough surface are also shown at the top of Fig. 5.12. For low Peclet 

number (Pe = 0.06) the temperature at the front of the contact region is quite close to that 

encountered in the wake of sliding, i.e., the temperature distribution is approximately 

symmetric within each microcontact area (Fig. 5.12(a)). However, in the case of 
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relatively high Peclet number (Pe = 6), the temperature rise in the wake of sliding is 

significantly higher than that at the contact front (Fig. 5.12(b)), consistent with the single-

asperity results (Fig. 5.5). In addition, the surface temperature for Pe = 6 is much higher 

than that for Pe = 0.06, evidently due to the more pronounced effect of frictional heating. 

For both low and high Peclet numbers, the maximum temperature rise at the surface 

occurs at the second microcontact (region 2) due to the correspondingly much larger 

contact area (Fig. 5.11). Figure 5.12(b) shows that, contrary to the first and second 

microcontacts (regions 1 and 2, respectively), the temperature at the front of the third and 
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Fig. 5.11 Contact pressure profiles on elastic semi-infinite solid in normal contact with a 
rigid rough (fractal) surface (D = 1.44, G = 9.46 × 10-4 nm, µ = 0.5, and δmax = 1.5 nm). 
Solid and discontinuous curves represent thermoelastic (Pe = 54) and elastic results, 
respectively. 
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fourth microcontacts (regions 3 and 4, respectively) does not decrease to zero due to the 

more pronounced cumulative thermal effect at the trailing contact region. 

Contours of normalized temperature rise, ∆T/( kVQa πκ /2 ), in the subsurface of 

the semi-infinite medium for Pe = 0.06 and 6, corresponding to the regions shown in 

Figs. 5.11 and 5.12, are contrasted in Fig. 5.13. For both low and high Peclet numbers, 

the maximum temperature rise at each microcontact occurs always at the surface. As 

expected, the temperature rises for Pe = 6 are much higher than those for Pe = 0.06. The 

appreciably higher temperature gradients produced with the higher Peclet number are 

responsible for the increase of the thermoelastic surface distortion and the intensification 

of the thermal stress. Comparison of Figs. 5.13(a) and 5.13(b) shows a profound effect of 

the Peclet number on the subsurface temperature distribution. The temperature contours 
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Fig. 5.12 Dimensionless temperature rise ∆T/( kVQa πκ /2 ) at the surface of elastic semi-
infinite solid in sliding contact with a rigid rough (fractal) surface (D = 1.44, G = 9.46 ×
10-4 nm, µ = 0.5, and δmax = 1.5 nm): (a) Pe = 0.06 and (b) Pe = 6. 
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for Pe = 6 are significantly distorted compared to those for Pe = 0.06, which are fairly 

symmetric. 

The significance of the surface topography on the surface temperature rise can be 

interpreted in light of the dimensionless maximum temperature rise, ∆Tmax/( kVQa πκ /2 ), 

shown as a function of Pe and D in Fig. 5.14. ∆Tmax increases monotonically with the 

Peclet number due to the increase of frictional heating at the sliding interface. For given 

Peclet number and maximum surface interference, ∆Tmax increases with the decrease of 

the fractal dimension. This is due to the dependence of dominant frequencies in the 

surface profile on the value of D. Smaller D values are associated with rougher surfaces 

yielding asperity microcontacts of smaller radius of curvature that produce higher mean 
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Fig. 5.13 Contours of dimensionless temperature rise ∆T/( kVQa πκ /2 ) in the subsurface 
of elastic semi-infinite solid in sliding contact with a rigid rough (fractal) surface (D = 
1.44, G = 9.46 × 10-4 nm, µ = 0.5, and δmax = 1.5 nm): (a) Pe = 0.06 and (b) Pe = 6. 
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contact pressures and smaller contact areas. For fixed Peclet number, smaller contact 

areas imply higher sliding speed. Thus, the combination of higher contact pressure and 

higher sliding speed, obtained with small D values, enhances frictional heating, which, in 

turn, leads to the increase in the temperature rise at the surface.  

Figure 5.15 illustrates the effect of frictional heating on the stress, σxx, at the 

surface of the semi-infinite medium. Solid curves denote numerical results from the 

thermoelastic analysis (Pe = 54) and discontinuous curves results from the elastic 

analysis. Frictional heating decreases the tensile stress at the trailing edge of each 

microcontact and shifts the location of the maximum tensile stress slightly toward the 
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Fig. 5.14 Dimensionless maximum temperature rise ∆Tmax/( kVQa πκ /2 ) at the surface of 
elastic semi-infinite solid in sliding contact with a rigid rough (fractal) surface versus 
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trailing contact edge. Again, the largest differences between thermomechanical and 

mechanical results are encountered in the region with the largest microcontact area 

(region 2).  

Figure 5.16 shows contours of von Mises equivalent stress in the subsurface 

corresponding to the regions shown in Fig. 5.15. For clarity and comparison purposes, 

different contour levels were used for each microcontact stress field. Comparison of Figs. 

5.16(a) and 5.16(b) shows that frictional heating increases the Mises stress, especially 

below the third and fourth microcontacts (regions 3 and 4, respectively) where the 

cumulative effect of frictional heating is greater. The maximum von Mises stress in the 
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Fig. 5.15 Stress xxσ at the surface of elastic semi-infinite solid in sliding contact with a 
rigid rough (fractal) surface (D = 1.44, G = 9.46 × 10-4 nm, µ = 0.5, and δmax = 1.5 nm). 
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thermomechanical analysis is equal to 7.01 GPa (Fig. 5.16(b)), which is 23% higher than 

that in the elastic analysis (Fig. 5.16(a)). The results shown in Fig. 5.16 are consistent 

with finite element simulation results of Ye and Komvopoulos (2003) demonstrating that 

the maximum Mises stress at each microcontact occurs always at the surface for 

relatively high coefficient of friction (e.g., µ = 0.5) and that frictional heating affects the 

location of the maximum Mises stress, as shown for the second microcontact in Fig. 5.16.  

Figure 5.17 shows a comparison between the maximum tensile stress at the 

surface, max
xxσ , and the maximum von Mises equivalent stress in the subsurface, max

Mσ , 

plotted as functions of Peclet number. The max
xxσ  stress increases slightly with the increase 
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Fig. 5.16 Contours of von Mises equivalent stress, σM, in the subsurface of elastic semi-
infinite solid in sliding contact with a rigid rough (fractal) surface (D = 1.44, G = 9.46 ×
10-4 nm, µ = 0.5, and δmax = 1.5 nm): (a) Pe = 0 and (b) Pe = 54. 
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of the Peclet number in the range of Pe < 20 due to the dominant effect of the increasing 

mean contact pressure. However, when Pe > 20, max
xxσ  decreases due to the increase of the 

compressive thermal stress, which is enhanced by the interaction of neighboring 

microcontacts. The fact that max
Mσ  increases when Pe > 20 suggests that the contribution 

of thermal stresses is comparable with that of mechanical stresses. The small variations of 

max
xxσ and max

Mσ when Pe < 20 suggests that at relatively low and intermediate values of 

Peclet number the stress field is dominated by mechanical stresses and, therefore, the 
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Fig. 5.17 Maximum tensile surface stress, max
xxσ , and maximum subsurface von Mises 

equivalent stress, max
Mσ , for elastic semi-infinite solid in sliding contact with a rigid rough 

(fractal) surface versus Peclet number (D = 1.44, G = 9.46 × 10−4 νµ, µ = 0.5, and δmax = 
1.5 nm). 
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effect of thermal stresses due to frictional heating is secondary under these sliding 

conditions. 

5.4 Conclusions 

A thermomechanical analysis was presented for semi-infinite elastic solid in 

sliding contact with a rough surface characterized by fractal geometry. The effect of 

frictional heating on the contact pressure, temperature rise, and stress field was examined 

in terms of the Peclet number in light of simulation results for single asperity and rough 

surface sliding on the elastic medium. Based on the presented results and discussion, the 

following main conclusions can be drawn. 

(1) For fixed surface interference, frictional heating increases both the contact area and 

the contact pressure. This effect is mostly pronounced at asperity microcontacts at the 

trailing edge of the contact interface, where the cumulative effect of frictional heating 

is most pronounced. 

(2) For low Peclet numbers (e.g., Pe < 1), the surface temperature distribution at a single 

asperity contact is fairly symmetric. However, for relatively high Peclet numbers 

(e.g., Pe > 2.5), the peak temperature shifts toward the trailing edge of the contact 

region.  

(3) The maximum temperature at each microcontact occurs always at the surface and 

increases with the Peclet number. Intensification of the temperature gradients with the 

increase of the Peclet number is responsible for the enhancement of thermoelastic 

distortion of the surface and the development of high thermal stresses. The increase of 

the Peclet number changes significantly the fairly symmetric temperature field below 
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each microcontact obtained with low Peclet numbers (e.g., Pe = 0.06). The maximum 

temperature rise at the surface increases with the decrease of the fractal dimension. 

(4) For low Peclet numbers (Pe < 1), the stress field is dominated by the effect of 

mechanical stresses. Frictional heating decreases the maximum tensile stresses at the 

trailing edges of asperity microcontacts and shifts slightly their locations towards the 

trailing contact edge. 

(5) The von Mises equivalent stress is strongly affected by frictional heating, especially 

at microcontact regions close to the trailing contact edge where the highest thermal 

stresses are produced due to the cumulative heating effect. High friction (µ = 0.5) 

increases the maximum Mises stress at each microcontact and shifts its location to the 

surface. The increase of the Peclet number promotes surface plastic deformation and 

reduces the likelihood for surface cracking. 
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CHAPTER 6 
 

SURFACE CRACKING  
IN ELASTIC-PLASTIC MULTI-LAYERED MEDIA 

DUE TO REPEATED SLIDING CONTACT 
 

 

6.1 Introduction 

Coatings are often used to enhance the tribological performance and endurance of 

various components with contact interfaces. The wear resistance of hard protective 

coatings, such as ceramics, cemented carbides, and diamond-like carbon, greatly affects 

the reliability of many mechanical systems. However, the inherent high hardness of these 

materials is obtained at the expense of low fracture toughness. Consequently, contact 

fatigue and/or fracture of hard overcoats are dominant failure mechanisms in many 

mechanical systems subjected to continuous sliding contact, such as gear flanks, bearing 

surfaces, and hard disk drives. 

Contact analysis of layered media subjected to normal and tangential (friction) 

surface tractions has been the objective of numerous past studies. King and O’Sulllivan 

(1987) investigated the plane-strain problem of a rigid cylinder sliding over an elastic 

layered half-space in both in-plane and anti-plane (i.e., along the cylinder axis) directions 

and found a high tensile stress at the trailing edge of the contact region. Kral and 

Komvopoulos (1996) performed three-dimensional finite element simulations of a rigid 

spherical indenter sliding against an elastic-plastic layered medium and discussed the 

likelihood of transverse (ring) crack formation at the surface in the wake of the indenter. 

Ring crack formation has been observed on glass along the wake of a sliding conical 
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indenter (Lawn, 1992) and on the surface of carbon-coated magnetic rigid disks subjected 

to microscratching (Wu, 1991). Gong and Komvopoulos (2003) used the finite element 

method to analyze normal and sliding contact of a rigid cylindrical asperity on a patterned 

elastic-plastic layered medium. The high surface tensile stress at the trailing edge of the 

contact region indicated a greater probability of surface cracking in patterned layered 

media compared to smooth-surface media. In a three-dimensional thermomechanical 

analysis of Gong and Komvopoulos (2004a), a high thermal tensile stress was predicted 

slightly below the trailing edge of the contact region, which is considered to be 

responsible for the initiation of thermal cracking in the wake of sliding microcontacts. 

Although the contact stress/strain field in layered media has been extensively 

investigated, fracture mechanics studies are relatively sparse and limited to homogenous 

and brittle (elastic) half-spaces. Several fracture analyses of homogenous media (Keer 

and Worden, 1990; Keer and Kuo, 1992; Chen et al., 1991; Bower and Fleck, 1994) have 

shown that crack initiation is favored at the trailing edge of the contact region, where the 

maximum tensile stress arises during sliding. Beuth and Klingbeil (1996) performed a 

plane-strain fracture analysis of an elastic thin film bonded to an elastic-plastic substrate 

and observed that substrate yielding increased the likelihood of film cracking due to the 

increase of the energy for crack growth in the film. Oliveira and Bower (1996) studied 

fracture and delamination of thin coatings due to contact loading and reported a greater 

probability for fracture originating from flaws in the coating than the substrate or the 

interface. It was also found that the fracture load and crack pattern were strongly affected 

by the elastic property mismatch between the layer and the substrate materials. 



 136

Surface crack growth due to repeated sliding contact resembles a fatigue process 

in which the crack propagation rate is proportional to a power of the stress intensity 

factor (SIF) range, ∆K. Experiments by Mageed and Pandey (1992) have shown that the 

crack propagation direction due to mixed mode cyclic loading can be determined from 

the maximum tensile stress criterion, which depends on IK∆  and IIK∆ . Alfredsson and 

Olsson (2000) performed experimental and numerical studies of normal contact fatigue 

caused by the formation of ring/cone and lateral cracks and discovered that surface crack 

growth occurred in the direction where the shear SIF was close to zero and that the 

propagation rate was dominated by IK∆ . Lin and Smith (1999a, 1999b) conducted a 

finite element fatigue analysis of surface cracked plates and obtained results for the SIF 

and fatigue life. Ko et al. (2001) studied both experimentally and analytically crack 

growth and wear particle formation on sliding steel surfaces and reported that the 

analytical predictions for the wear particle size and wear volume were in fair agreement 

with experimental results. 

Despite valuable insight into surface cracking in thin coatings obtained from 

earlier studies, very little is known about the effect of plastic deformation in the 

underlying material (layer or substrate) on the growth direction of surface cracks. In 

addition, the effects of friction, initial crack length, and crack growth on the accumulation 

of plasticity in the underlying medium have not been considered in previous fracture 

mechanics analyses. Therefore, the objective of this investigation was to analyze surface 

cracking in a multi-layered medium due to repetitive sliding of a rigid asperity using the 

finite element method. SIF and crack propagation results are presented in terms of 

coefficient of friction at the contact region and crack interface and initial crack length. 



 137

Another goal of this study was to develop a fracture mechanics approach that yields 

estimates of contact fatigue life for elastic-plastic multi-layered media undergoing surface 

cracking due to repetitive sliding contact. 

6.2 Modeling Procedures 

6.2.1 Problem Definition and Finite Element Model 

Normal and shear tractions produced between contacting rough surfaces are 

transmitted through asperity microcontacts with statistical distributions depending on the 

effective surface roughness, normal load, and material properties of the interacting 

surfaces. When the average asperity spacing is significantly larger than the mean 

microcontact size, interaction of the stress/strain fields of neighboring microcontacts is 

secondary (Komvopoulos and Choi, 1992) and the problem is simplified to that of a 

single asperity in contact with a layered medium. Figure 6.1 shows schematically an 

asperity sliding over a layered medium containing a crack of initial length ci 

perpendicular to the free surface of the medium. The position of the asperity relative to 

the crack is denoted by yP (Fig. 6.1). 

Plane-strain sliding simulations were performed with a two-dimensional finite 

element mesh, such as that shown in Fig. 6.2(a), consisting of approximately 9,000 eight-

node, isoparametric, quadrilateral elements (depending on the initial crack length and 

crack propagation path). The horizontal and vertical dimensions of the mesh are equal to 

2.4R and 3.1R, respectively, where R is the radius of the rigid asperity (assumed constant 

in all simulations). The nodes at the bottom boundary of the mesh were constrained 

against displacement in the vertical direction, while the nodes at the left boundary were 

constraint against displacement in the horizontal direction. The mesh was refined at the 
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surface in order to increase the accuracy in the calculation of the contact area and 

stress/strain field in the highly stressed surface layer. The mesh was further refined 

around the crack, as shown in Fig. 6.2(b) for a propagating crack. In the vicinity of the 

crack tip, the mesh consists of 36 eight-node, isoparametric, collapsed quadrilateral 

plane-strain elements with their midside nodes adjacent to the crack tip displaced to the 

quarter-point distance in order to simulate the square root singularity of the stress field at 

the crack tip (Henshell and Shaw, 1975; Barsoum, 1976). Since the analysis is based on 

linear fracture mechanics, the crack-tip nodes were constrained to move together in order 

to prevent crack-tip blunting during crack growth. 

Special contact elements were used to model contact or separation between 
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Fig. 6.1 Schematic of a cylindrical rigid asperity sliding over a layered medium with a 
crack perpendicular to the free surface. 
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Fig. 6.2 (a) Finite element discretization of a multi-layered medium with a surface crack, 
and (b) refined mesh in the vicinity of the propagating surface crack. 
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surface nodal points and the surface of the rigid asperity, based on the measurement of 

the relative distance of the two surfaces in the normal direction. If the obtained distance 

was less than the specified tolerance, it was assumed that contact was established and the 

appropriate contact force was applied at the corresponding node. The local surface 

overclosure (i.e., displacement of a nodal point at the surface of the deformable medium 

into the rigid surface) and relative slip were obtained at each integration point of the 

contact elements. These kinematics were used in conjunction with appropriate Lagrange 

multiplier techniques to model surface interaction. 

To examine the accuracy of the finite element model, especially the mesh around 

the crack tip, the classical problem of an edge-cracked medium subjected to far-field 

tension in the direction perpendicular to the crack plane was solved using the finite 

element mesh shown in Fig. 6.2. The entire mesh was modeled as a homogeneous elastic 

material. The value of the mode I SIF obtained from the finite element analysis was 

found to differ from the analytical solution (Hertzberg, 1996) by only 2.3 percent, 

indicating the suitability of the finite element model for fracture analysis. 

6.2.2 Material Properties and Plasticity Models 

The thickness, h, elastic modulus, E, and yield strength, σY, of each layer in the 

multi-layered medium are given in Table 6.1. These thickness and mechanical property 

values are typical of layers used in magnetic rigid disks consisting of carbon overcoat 

(layer 1), CoCrPt magnetic medium (layer 2), CrV underlayer (layer 3), and NiP (layer 4) 

electroplated on Al-Mg substrate. The von Mises yield criterion was used to determine 

whether yielding occurred at a material point. In the present model, the first layer was 

assumed to be elastic, while all the other layers were modeled as elastic-perfectly plastic. 
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6.2.3 Calculation of Stress Intensity Factors  

In linear elastic fracture mechanics, the normal and shear stresses at the crack tip 

due to sliding contact can be expressed in terms of the tensile (mode I) and shear (mode 

II) SIFs, IK  and IIK , respectively, defined as 

 ),(2lim
0

θσπ rrK yy
r

I
→

=  (6.1) 

 ),(2lim
0

θτπ rrK xy
r

II
→

= , (6.2) 

where r and θ are cylindrical polar coordinates and x and y are Cartesian coordinates at 

the crack tip (Fig. 6.1). Based on the method proposed by Chan et al. (1970), the 

magnitudes of IK  and IIK  were determined from linear extrapolation of least-square line 

fits to the yyσ  and xyτ  stress data calculated at ten nodes in the vicinity of the crack tip 

along the crack plane ( 0=θ ). The accuracy of this method has been evaluated in an 

earlier finite element analysis of Komvopoulos and Cho (1997) dealing with subsurface 

crack propagation in a half-space due to a moving asperity. 

 

Table 6.1. Thickness and material properties of each layer in the multi-layered medium 

Layer h/R E (GPa) σY (GPa) 

1 0.025 260 - 

2 0.078 130 2.67 

3 0.4 140 2.58 

4 2.6 160 2.67 
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6.2.4 Crack Growth Rate and Fatigue Life 

The crack growth rate was assumed to follow a power-law relationship (Paris and 

Erdogan, 1963) 

 mKA
dN
dc

)(∆= , (6.3) 

where N is the number of loading cycles (representing the number of asperity passes 

required for the crack to propagate by an infinitesimal distance, dc), and A and m are 

material constants. 

Integration of Eq. (6.3) yields a fatigue life relation,  

 ∫ ∫ ∆
=f f

i

N c

c mKA
dc

dN
0 )(

, (6.4) 

where Nf is the number of fatigue cycles required for the crack to grow from an initial 

length ci to a length cf. Since K∆  depends on the specific geometry, external loading, and 

crack length, it is not possible to obtain accurate estimates of fatigue life using Eq. (6.4). 

To circumvent this difficulty, an Euler integration algorithm was adopted in the 

numerical simulations,  

 [ ] rj
cKA
c

NN
m

j
jj ,,1,0

)(
1 L=

∆
∆

+=+  (6.5) 

and 

 ccc jj ∆+=+1 , (6.6) 

where cj is the crack length in the jth crack growth cycle, and c∆ is the crack growth 

increment, which is constant in each simulation. The effect of the crack growth increment 

on the crack propagation path is discussed in a later section. 
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6.2.5 Simulation of Sliding Contact and Crack Growth 

Simulations were performed with the finite element code ABAQUS (version 5.8). 

Each simulation consisted of three sequential steps. First, the rigid asperity was 

incrementally advanced into the medium to a specified depth and then displaced 

tangentially over the neighborhood of the surface crack by a distance approximately 

equal to eight times the half-contact width. Finally, the asperity was unloaded following 

the same incremental path as for the loading. These simulation steps were repeated in the 

same order for several cycles in order to model repetitive sliding. To examine the 

dependence of the SIFs on friction, the coefficient of friction between the surface of the 

multi-layered medium and the asperity, µ, and the crack faces, µc, was varied between 0 

and 0.5. In order to study the effect of the initial crack length on the SIF distributions and 

crack propagation direction, four initial crack lengths (i.e., ci/h1= 0.125, 0.25, 0.5, and 

0.875) were used in the finite element model. After each loading cycle, the mesh around 

the crack tip was modified to account for the growth of the crack by the specified 

increment in the direction of maximum tensile SIF range, max
σK∆ , determined during the 

particular loading cycle.  

To account for the deformation history effect on the SIF ranges, crack 

propagation, and evolution of plasticity in the second layer, the stress/strain state in the 

multi-layered medium generated after a given number of cycles was included in the 

subsequent loading cycle by using the following method. First, sliding of the asperity 

over the modified mesh was simulated with all the nodes of the kink faces locked 

together. Then, the nodes of the first kink were unlocked and asperity sliding over the 

medium was simulated again following exactly the same path. This procedure was 
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repeated until all the kinks were unlocked sequentially. Finally, a new crack growth 

increment was simulated in the next sliding cycle. In view of the excessive computational 

time of these crack growth simulations, only one initial crack length (ci/h1 = 0.25), but 

different crack growth increments, were modeled in this study. A simulation was 

terminated when the crack propagated very close to the interface of the first and second 

layers. 

6.3 Results and Discussion 

6.3.1 Crack Length Effect 

To obtain generalized solutions, the SIFs were normalized by 2P/πa1/2, where P is 

the normal force applied by the moving asperity, and a is the corresponding half-contact 

width. In addition, the asperity distance from the crack, Py , was normalized by the half-

contact width, and the crack length by the thickness of the first layer, h1. Figure 6.3(a) 

shows IK  as a function of dimensionless asperity position and crack length for 

5.0== cµµ . In all simulation cases, IK  assumes nonzero values only when the asperity 

passes over the crack ( Py /a > 0), apparently due to the effect of crack closure that is 

enhanced by the predominantly compressive stress field ahead of the sliding asperity. 

When the crack is just behind the trailing contact edge ( Py /a > 1), IK  increases rapidly 

to a peak value and then decreases gradually as the asperity moves further to the right of 

the crack. In addition, Fig. 6.3(a) reveals a strong dependence of IK  on crack length, 

indicating that the longer the crack, the higher the tensile stress at the crack tip. 

Moreover, the maximum IK  increases with an increase in crack length and the 

corresponding asperity position occurs further to the right of the crack. 
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Fig. 6.3 Dimensionless tensile and shear stress intensity factors, IK  and KII, respectively, 
versus dimensionless asperity position, a/yP , and dimensionless crack length, 1/ hc i , 
for 5.0== cµµ . 

 

 



 146

The variation of IIK  with asperity position and initial crack length, shown in Fig. 

6.3(b), is complex compared to that of IK . The range of IIK  increases with crack length; 

however, IIK  decreases rapidly to zero after the asperity passes over the crack ( Py /a > 

1). When the asperity slides over the crack region, the predominant mode changes from 

shear to tensile. However, a comparison of the results shown in Figs. 6.3(a) and 6.3(b) 

shows that IIK∆  is significantly less than IK∆ , approximately by an order of magnitude. 

Hence, because the crack growth rate depends on K∆ (Eq. (6.3)), it may be inferred that 

crack growth is predominantly affected by the tensile mode.  

6.3.2 Sliding Friction Effect 

The stress field in the vicinity of the crack tip is strongly affected by the 

magnitude of friction traction at the surface. Figure 6.4 shows the variation of IK  and 

IIK  with asperity position and coefficient of friction at the contact region ( 1.0=µ , 0.25, 

and 0.5) for ci/h1 = 0.125 and µc = 0. The increase of IK  and IIK  with friction coefficient 

is a consequence of the enhancement of the shear traction at the contact region and the 

higher stresses produced at the crack tip. The maximum value of IK  occurs as soon as 

the asperity slides over the crack, while that of IIK  occurs when the asperity is over the 

crack. 

Figures 6.5 shows the effect of coefficient of friction between the crack faces on 

the variation of IK  and IIK  for ci/h1 = 0.125 and 5.0=µ . Figure 6.5(a) shows that IK  

is not affected by the friction condition at the crack interface. This is expected because 

the magnitude of IK  is controlled solely by the σyy stress (Eq. (6.1)), which is not 

aaaaaaa 
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Fig. 6.4 Dimensionless tensile and shear stress intensity factors, IK  and KII, respectively, 
versus dimensionless asperity position, a/yP , and friction coefficient at the 
asperity/multi-layered medium contact region, µ, for 125.0/ 1 =hc i  and 0=cµ . 
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Fig. 6.5 Dimensionless tensile and shear stress intensity factors, IK  and KII, respectively, 
versus dimensionless asperity position, a/yP , and crack-face friction coefficient, cµ , for 

125.0/ 1 =hc i  and 5.0=µ . 
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affected by the shear traction generated between the crack faces. Although the variation 

of IIK  with asperity position is qualitatively similar to that shown in Fig. 6.4(b), IIK  

deceases with the increase of crack-face friction, which is opposite from the trend 

obtained with the increase of coefficient of friction at the contact interface. This behavior 

is attributed to reduced slip between the crack faces due to the increase of the coefficient 

of friction at the crack interface. Thus, crack-face friction promotes shear stress 

relaxation, in agreement with the fracture mechanics analysis of Komvopoulos and Cho 

(1997) for subsurface crack growth parallel to the free surface of a homogeneous half-

space. Since IK  is significantly greater than IIK  (Figs. 6.4 and 6.5), it may be inferred 

that sliding friction exhibits a strong effect on the variation of the tensile and shear SIFs, 

whereas the effect of crack-face friction is relatively secondary. 

6.3.3 Crack Growth Direction 

The crack growth direction was determined based on the maximum shear or 

tensile SIF ranges. The dominance of the shear and tensile modes during crack growth 

depends on the maximum values of σK∆  and τK∆ , where σK  and τK  are given by 

(Erdogan and Sih, 1963) 

 ]sinKcosK[cosr)a/y,(K IIIP θ−
θθ

=πσ=θ θσ 2
3

22
2 2  (6.7) 
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θ
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Because of the dependence of KI and KII on asperity position (Figs. 6.3-6.5), σK  and τK  

are functions of yP/a. The maximum tensile and shear SIF ranges, max
σK∆  and max

τK∆ , 

respectively, are defined as  



 150

 ]max[)](max[ ** min,max,
max

θθσθθσσσ θ
==

−=∆=∆ KKKK  (6.9) 

 ]max[)]([max ** min,max,
max

θθτθθτττ θ
==
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where subscripts max and min denote maximum and minimum values of σK  and τK , 

and θ* is a given value of θ , which varies between –180 and 180 deg. For fixed angle θ  

= θ*, *max, θ=θσK  and *min, θ=θσK were determined at different asperity positions during a 

sliding cycle. Then, the angle θ was varied between 180−  and 180 deg. to determine the 

maximum value of )( ** min,max, θ=θσθ=θσ − KK  , which is used to obtain max
σ∆K . The same 

procedure was used to determine max
τK∆ . Based on this approach, the crack growth 

direction was determined from Eqs. (6.7)-(6.10). 

Figure 6.6 shows the variation of dimensionless σK∆  and τK∆  with angle θ and 

crack length for 5.0== cµµ . The increase of σK∆  and τK∆  with crack length is a 

consequence of the increase of KI with crack length and the relatively small contribution 

of KII (Fig. 6.3). The fact that the maximum values of σK∆  are higher than those of τK∆  

indicates the dominance of the tensile mode in the crack growth process. Moreover, the 

maximum values of σK∆  occur at an angle 10≈θ deg. independent of crack length, 

suggesting that crack propagation will occur toward the sliding direction. Figure 6.7 

shows the initial crack propagation direction, i.e., first deviation (kink) angle, θ1, as a 

function of initial crack length for 5.0== cµµ . The data indicate a greater tendency for 

shorter cracks to propagate initially toward the sliding direction than longer cracks. 
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Fig. 6.6 Dimensionless tensile and shear stress intensity factor ranges σK∆  and τK∆ , 
respectively, versus angle measured from the original crack plane, θ, for 5.0== cµµ : 
(a) 125.0/ 1 =hc i and 0.25, and (b) 5.0/ 1 =hc i  and 0.875. 
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6.3.4 Crack Propagation 

To examine the evolution of crack-tip stresses, development of crack growth path, 

and accumulation of plastic deformation in the underlying layer, results are presented in 

this section for ci/h1 = 0.25 and 5.0== cµµ . Crack propagation was simulated based on 

the crack growth direction predicted based on the maximum tensile SIF range, assuming 

a certain crack growth increment. As explained in section 2.5, the stress and strain fields 

produced in a given crack growth cycle were updated in the subsequent cycle in order to 

simulate continuous crack growth by taking into account the stress/strain history effect. 

Figure 6.8 shows the effect of crack growth cycles on the variation of 
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Fig. 6.7 Crack deviation angle in the first crack growth increment, θ1, versus normalized 
initial crack length, 1/ hc i , for 5.0== cµµ . 
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Fig. 6.8 Dimensionless tensile and shear stress intensity factors, IK  and KII, respectively, 
versus crack growth cycle and dimensionless asperity position, a/yP , for 25.0/ 1 =hc i , 

8/1hc =∆ , and 5.0== cµµ . 
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dimensionless IK  and IIK  with dimensionless asperity position for 8/1hc =∆ . In each 

cycle, the crack propagated by an increment ∆c in the direction of max
σK∆ . Figure 6.8(a) 

shows that the variation of IK  with asperity position is qualitatively similar to that 

shown in Fig. 6.3(a). However, crack growth causes the increment of IK∆ initially to 

increase and then to exhibit small fluctuations with further crack growth, which are 

attributed to variations in the crack growth direction as the crack propagates deeper into 

the first layer, discussed in detail below. In addition, crack growth produces nonzero IK  

values even when the asperity is to the left of the crack and causes the maximum value of 

IK∆ to occur at a greater distance of the asperity from the crack. These phenomena are 

attributed to the effect of crack face separation (either partial or complete) and the mixed 

mode crack growth. As discussed earlier, the appreciably lower values of IIK , by an 

order of magnitude, compared to those of IK  (Fig. 6.8(b)) reveal a dominant effect of the 

tensile mode in crack propagation. Indeed, in all crack growth cycles it was found that 

max
σK∆ > max

τK∆ . Table 6.2 gives normalized max
σ∆K  in terms of deviation angle at each 

crack growth cycle, ∆θ, total deviation angle from the initial crack direction 

(perpendicular to the surface), θtotal, and corresponding crack growth cycle. max
σ∆K was 

calculated from the results of IK  and IIK , shown in Fig. 6.8, using Eqs. (6.7) and (6.9). 

The data given in Table 6.2 confirm that crack growth leads to an increase in max
σ∆K and 

crack propagation direction at 57≈θ deg. 

To examine the dependence of the crack growth direction (i.e., direction of 

max
σ∆K ) on the magnitude of crack growth increment, crack paths obtained for ∆c = h1/4, 
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h1/8, and h1/16, ci/h1 = 0.25, and 5.0== cµµ  are compared in Fig. 6.9. It is interesting 

to note that, after the first or second crack increments, the crack growth paths become 

almost parallel to each other, showing a common deviation angle from the direction 

normal to the free surface of ~57 deg. This suggests that the crack growth increment does 

not affect the crack propagation direction. The obtained crack growth path is consistent 

with experimental observations of Ko et al. (2001) according to which, crack growth 

commences at an angle of ~30 deg. with respect to the sliding direction, i.e., 60 deg. from 

the direction normal to the surface versus 57 deg. predicted in the present study. 

Moreover, the simulated crack propagation toward the interface is in qualitative 

Table 6.2. Current crack deviation angle, total deviation angle, and maximum tensile 
stress intensity factor range versus crack growth cycle for 25.0/ 1 =hc i , 8/1hc =∆ , and 

5.0=µ=µ c  

Crack growth cycle  ∆θ (deg.) θtotal(deg.) )/2/( 2/1max aPK π∆ σ  

1 11 11 0.5342 

2 28 39 0.7462 

3 18 57 0.9947 

4 -8 49 1.0256 

5 8 57 1.1281 

6 -8 49 1.1416 

7 8 57 1.2397 

8 -6 51 1.2778 
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agreement with numerical results reported by Oliveira and Bower (1996) for fracture of 

thin coatings due to contact loading. 

6.3.5 Fatigue Life Model  

The finite element results presented above can be used in conjunction with the 

Euler integration algorithm discussed in section 6.2.4 to derive a contact fatigue model. 

While in the finite element simulations the crack grows by an increment ∆c in each 

asperity passage, in reality crack growth commences after several asperity passes. To 

model this phenomenon using the simulation results, it is assumed that ∆Kmax (either 

tensile or shear, depending on which is larger) remains constant during crack propagation 

by ∆c, and the actual number of asperity passes, i.e., fatigue cycles, is calculated from Eq. 

(6.5). To demonstrate this approach, a graphite substrate coated with a pyrolytic carbon 

layer was selected for analysis because it consists of an elastic (hard/brittle) carbon layer 

Layer 1

Surface

Interface

∆c = h1/16
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∆c = h1/8

Layer 2
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Interface
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Fig. 6.9 Simulated crack paths for crack growth increment ∆c = h1/4, h1/8, and h1/16, 
25.0/ 1 =hc i , and 5.0== cµµ . 
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and an elastic-plastic (soft/ductile) graphite substrate. The fatigue properties of pyrolytic 

carbon, 19=m  and 1918 )m(MPa m/cycle1086.1 −−×=A , quoted from the study of 

Ritchie and Dauskardt (1991), were used in the calculations. The normalized number of 

fatigue crack growth cycles, *N , is given by 

 ∑
=

∆
=

π
≡

n

j
m
j

m

D
hc

N
a
P

h
A

N
1

1
2/1

1

* /
)

2
( , (6.11) 

where N is obtained from Eqs. (6.5) and (6.6), and )/2/()( 2/1max aPcKD jj πσ∆=  is the 

normalized SIF range. Figure 6.10 shows the variation of normalized crack length, c/h1, 

with *N  for 25.0/ 1 =hc i  and 8/1hc =∆ . The very steep slope of the fatigue curve 
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Fig. 6.10 Dimensionless crack length, hc / 1, versus dimensionless number of estimated 
fatigue crack growth cycles, N*, for pyrolytic carbon-coated graphite, 25.0/ 1 =hc i , 

8/1hc =∆ , and 5.0== cµµ . 
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observed after the first few crack increments is indicative of the brittle behavior of 

pyrolytic carbon. 

6.3.6 Evolution of Crack-Tip Stresses 

Results for the stress field at the crack tip, obtained at different stages of the 

simulated crack growth process, are presented next for 25.0/ 1 =hc i , 8/1hc =∆ , and 

5.0== cµµ . Figure 6.11 shows contours of von Mises equivalent stress in the vicinity 

of the crack tip produced in the first crack growth cycle. When the crack is adjacent to the 

trailing edge of the contact region ( 261.a/yP = ), it remains fully open (Fig. 6.11(a)) and 

the intensified stresses at the crack tip produce the maximum value of IK  shown in Fig. 

6.3(a). However, when the asperity slides further to the right ( 885.a/yP = ), the crack 

faces move closer to each other (stress relaxation) and the size of the high-stress region at 

the crack tip decreases (Fig. 6.11(b)). This crack behavior is attributed to the high tensile 

stress at the trailing edge of the contact region (sliding friction effect), which decreases 

rapidly with the increase of the distance from the contact edge. Since the high stresses at 

the crack tip occur remote from the interface during the initial stage of crack growth, the 

crack-tip stresses do not affect the accumulation of plastic deformation in the second 

layer during sliding contact. 

Figure 6.12 shows contours of von Mises equivalent stress in the eighth crack 

growth cycle, revealing remarkable changes in the stress field at the crack tip due to the 

propagation of the crack close to the interface. Conversely to the initial stage of crack 

growth, Fig. 6.12(a) shows that the crack remains partially open when it is close to the 

aaa 
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Fig. 6.11 Contours of von Mises equivalent stress, σΜ, in the vicinity of the crack tip 
obtained in the first crack growth cycle for 25.0/ 1 =hc i , 8/1hc =∆ , 5.0== cµµ , and 
dimensionless asperity position (a) 261.a/yP =  and (b) 885.a/yP = .  
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Fig. 6.12 Contours of von Mises equivalent stress, σΜ, in the vicinity of the crack tip 
obtained in the eighth crack growth cycle for 25.0/ 1 =hc i , 8/1hc =∆ , 5.0== cµµ , 
and dimensionless asperity position (a) 261.a/yP =  and (b) 522.a/yP = . 
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trailing edge of the contact region ( 261.a/yP = ), while Fig. 6.12(b) shows that the crack 

opens fully when the asperity moves further to the right ( 522.a/yP = ). This behavior is 

consistent with the fact that the maximum value of IK  in this case occurs at 

522.a/yP =  (Fig. 6.8(a)) and is a consequence of the change of the crack propagation 

direction. In addition, the high-stress region at the crack tip is very close to the interface, 

affecting the stresses in the second layer. The large stress discontinuities at the interface 

(Fig. 6.12(b)) are due to the significant elastic modulus mismatch of the two layers. The 

intensification of the stress field in the second layer as the crack propagates closer to the 

interface affects the deformation in the second layer adjacent to the interface. This 

phenomenon is discussed in detail in the following section.  

6.3.7 Development of Plasticity in the Second Layer 

The effects of crack length, friction at the contact region and crack interface, and 

sliding cycles on the deformation of the elastic-plastic second layer are examined in this 

section. It is noted that for the loading conditions and layer material properties used in 

this study, the deformation in the third and fourth elastic-plastic layers is purely elastic. 

Thus, stress/strain results for these layers are not presented here for the sake of brevity.  

Figure 6.13(a) shows the maximum equivalent plastic strain, max
pε , in the second 

layer versus dimensionless asperity position and crack length for 5.0== cµµ . In all 

cases, max
pε increases as the asperity slides over the multi-layered medium in a similar 

fashion, reaching a steady state at a distance from the crack approximately equal to five 

times the half-contact width. The results show that the accumulation of plasticity does not 

aaa 
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Fig. 6.13 Maximum equivalent plastic strain, max
pε , in the elastic-plastic second layer 

versus dimensionless asperity position, a/yP : (a) ci/h1 = 0.125, 0.25, 0.5, and 0.875 
and 5.0== cµµ , and (b) ci/h1 = 0.125, µ = 0.1, 0.25, and 0.5, and µc = 0 and 0.5. 
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depend on the (initial) crack length, evidently because the high-stress field at the crack tip 

is far away from the interface (when the crack is relatively short) to affect deformation in 

the second layer. Thus, the crack effect on the propensity for plastic flow in the second 

layer is negligible until the crack tip reaches a distance less than h1/8 from the interface, 

as shown by the simulation results. The location of max
pε in the second layer is always at 

the interface with the first layer below the asperity and shifts along the interface as the 

asperity slides over the medium, in agreement with a previous finite element analysis of 

normal and sliding contact of a rigid cylindrical asperity on a patterned elastic-plastic 

layered medium (Gong and Komvopoulos, 2003).   

Figure 6.13(b) shows the variation of max
pε in the second layer with dimensionless 

asperity position and coefficient of friction at the contact region and crack interface for 

125.0/ 1 =hc i . As the asperity slides on the surface of the multi-layered medium, 

max
pε increases monotonically, exhibiting a trend similar to that shown in Fig. 6.13(a). As 

expected, max
pε intensifies with the increase of coefficient of friction at the contact region 

due to the pronounced effect of the surface shear (friction) traction on the subsurface 

stress field. However, the effect of crack-face friction is negligible because it only affects 

the stress field at the crack tip, which, in this case, is far away from the interface to affect 

the stress state in the second layer. Therefore, only friction at the contact region affects 

the accumulation of plasticity in the second layer when the crack tip is remote from the 

layer interface. 

Figure 6.14 shows contours of pε in the second layer obtained in the eighth crack 
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Fig. 6.14 Contours of equivalent plastic strain, pε , in the elastic-plastic second layer 

obtained in the eighth crack growth cycle for 25.0/ 1 =hc i , 8/1hc =∆ , 5.0== cµµ , 
and dimensionless asperity position (a) 261.a/yP =  and (b) 522.a/yP = . 
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growth cycle for two asperity positions, 25.0/ 1 =hc i , 8/1hc =∆ , and 5.0== cµµ . 

When the crack is just behind the trailing edge of the contact region ( 261.a/yP = ), the 

crack is partially closed and max
pε arises below the crack tip, adjacent to the interface with 

the first layer (Fig. 6.14(a)). However, when the asperity moves further away from the 

crack ( 522.a/yP = ), the crack opens fully, while max
pε occurs again below the crack tip 

close to the interface (Fig. 6.14(b)). This differs from the results of previous crack growth 

cycles showing that max
pε shifts along the interface under the moving asperity. This 

finding provides additional evidence for the effect of crack-tip stresses on the evolution 

of plasticity in the second layer. 

In the case of multiple asperity contacts, knowledge of the accumulation of 

plasticity in the multi-layered medium is of particular importance. The results of the 

present analysis can be used to examine the evolution of plasticity in the second layer due 

to multi-asperity contacts with spacing larger than the average contact width. Figure 

6.15(a) shows max
pε in the second layer versus dimensionless asperity position for 

different crack growth cycles, 25.0/ 1 =hc i , 8/1hc =∆ , and 5.0== cµµ . A gradual 

increase in max
pε occurs when the asperity slides over the medium and with the increase of 

crack growth cycles (i.e., crack propagation). The increments of max
pε decrease with 

increasing crack growth cycles because the crack tip is remote from the interface to affect 

the development of plasticity. However, in the eighth crack growth cycle, a sharp 

increase in max
pε is encountered when the asperity slides over the crack due to the small 
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Fig. 6.15 (a) Maximum equivalent plastic strain, max
pε , in the elastic-plastic second layer 

versus dimensionless asperity position, a/yP , for different simulated crack growth 
cycles, and (b) increment of maximum equivalent plastic strain, max

pε∆ , in the elastic-
plastic second layer versus number of simulated crack growth cycles, n. (The results 
shown in (a) and (b) are for 25.0/ 1 =hc i , 8/1hc =∆ , and 5.0== cµµ .) 
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distance of the high-stress region at the crack tip from the interface. To better illustrate 

the effect of crack-tip stresses on the evolution of plastic deformation in the second layer, 

the increment of maximum plastic strain, max
pε∆ , is plotted as a function of number of 

(simulated) crack growth cycles, n, in Fig. 6.15(b). The decrease of max
pε∆  up to the 

seventh crack growth cycle reveals the dominant effect of repetitive sliding, while the 

sharp increase of max
pε∆  in the eight crack growth cycle, i.e., when the crack propagates 

very close to the interface, illustrates the effect of the crack-tip stresses on plastic flow in 

the second layer, within a small region close to the interface with the first layer. 

While the present analysis provides insight into surface cracking in elastic-plastic 

multi-layered media subjected to cyclic loading, the obtained results can be used to 

discuss possible failure mechanisms. For instance, when the crack propagates to the 

interface, failure may occur due to delamination along the weaker interface, resulting in 

the formation of a sheet-like wear particle. Assuming that the fatigue life is dominated by 

crack growth in the first layer, i.e., layer debonding occurs rapidly after the crack reaches 

the interface, the fracture approach presented in this study can be used to estimate the 

loading cycles required to form a wear particle. However, in the case of high interfacial 

strength, the crack may propagate into the second layer, where it may become inactive or 

shear eventually toward the surface to produce a wear particle, as in the case of 

homogeneous media (Ko et al., 2001), depending on the stress field. Crack growth in the 

elastic-plastic second layer can be accomplished with appropriate modification of the 

finite element mesh used in this analysis. 
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6.4 Conclusions 

Surface cracking in a multi-layered medium containing a crack perpendicular to 

the free surface due to repetitive sliding of a rigid asperity was analyzed using linear 

elastic fracture mechanics and the finite element method. Based on the presented results 

and discussion, the following main conclusions can be drawn from this study. 

(1) The significantly higher values (by an order of magnitude) of the tensile stress 

intensity factor, IK , than those of the shear stress intensity factor, IIK , obtained in all 

simulation cases indicate that surface cracking in the multi-layered medium due to 

sliding contact is controlled by the tensile fracture mode.  

(2) Longer surface cracks produce significantly higher IK  values and marginally 

different IIK  values. Higher friction at the sliding contact region increases both IK  

and IIK  significantly due to the strong effect of the surface shear traction on the 

crack-tip stresses. The increase of friction at the crack interface promotes stress 

relaxation that decreases the magnitude of IIK ; however, the effect on IK  is 

negligible. 

(3) Based on the maximum tensile stress intensity range, max
σK∆ , initial crack growth was 

found to occur at an angle of ~10 deg. from the original crack plane, independent of 

initial crack length. Although the crack length effect on the crack growth direction is 

negligible, the effect on the magnitudes of max
σ∆K  and max

τ∆K is significant. 

(4) After the first few (1-3) crack growth increments, the crack growth paths obtained 

with different propagation increments become almost parallel to each other, 
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exhibiting a common deviation angle from the original crack plane of ~57 deg., in fair 

agreement with experimental observations.  

(5) Crack growth increases the magnitudes of IK  and σK∆ . An approach for estimating 

the contact fatigue life due to surface crack growth in multi-layered media was 

derived from the finite element results, and its application was demonstrated by 

fatigue crack growth results obtained for a graphite substrate coated with a pyrolitic 

carbon layer. 

(6) The effect of initial crack length on plastic deformation in the elastic-plastic second 

layer is negligible because the crack-tip stresses do not reach the layer interface. The 

effect becomes significant only when the crack propagates very close to the interface, 

a distance approximately less than one-eighth of the first layer thickness. The 

coefficient of friction at the contact (sliding) region exhibits a dominant effect on the 

plastic strain accumulating in the second layer, while the effect of crack-face friction 

is insignificant. 

(7) The maximum plastic strain in the second layer increases rapidly as the crack tip 

approaches the interface due to the effect of the high-stress field at the crack tip. This 

causes the maximum plastic strain in the second layer to arise always below the crack 

tip adjacent to the interface rather than below the sliding asperity, as found for 

uncracked elastic-plastic layered media in earlier studies. 
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CHAPTER 7 
 

CONTACT FATIGUE ANALYSIS  
OF AN ELASTIC-PLASTIC LAYERED MEDIUM  

WITH A SURFACE CRACK IN SLIDING CONTACT  
WITH A FRACTAL SURFACE 

 

 

7.1 Introduction 

Layered media are used in various engineering applications to enhance the 

durability and functionality of interacting surfaces. Surface layers exhibiting high 

stiffness and hardness protect the underlying layers from mechanical damage due to 

contact stresses. Therefore, the deformation and fracture mechanics of surface layers 

control the lifetime of mechanical systems involving contact interfaces. Even though hard 

and wear-resistant layers are desirable for reducing sliding wear, the relatively low 

fracture toughness of most hard materials often leads to unexpected contact 

fatigue/fracture. Thus, understanding of contact fatigue in layered media subjected to 

normal and friction surface tractions is critical to the endurance of electromechanical 

devices possessing contact interfaces. 

In early contact mechanics analyses, information about the underlying reasons for 

surface cracking in layered media was extracted from results for the mechanical stresses 

and strains produced from sliding contact. King and O’Sulllivan (1987) reported a high 

tensile stress at the trailing edge of a rigid cylinder sliding over an elastic layered 

medium. Finite element simulations by Kral and Komvopoulos (1996) confirmed the 

development of tensile stresses at the surface of a layered medium, revealing a tendency 
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for the formation of transverse surface cracks in the wake of the sliding indenter. Gong 

and Komvopoulos (2003) performed a finite element analysis of a rigid sphere sliding 

over a layered medium with a patterned surface characterized by a high amplitude-to-

wavelength ratio and observed the development of a residual tensile stress in the wake of 

sliding, which intensified with the increase of the sliding cycles. 

Although contact stress analysis of layered media has attracted the attention of 

many researchers, surface contact fatigue and fracture have not been investigated as 

thoroughly. In fact, the focus in the majority of contact fracture studies has been on 

homogenous elastic half-spaces. Several fracture analyses of homogenous media (Keer 

and Worden, 1990; Chen, Farris and Chandrasekar, 1991; Keer and Kuo, 1992; Bower 

and Fleck, 1994) have shown that surface cracks initiate in the wake of sliding contacts, 

where the maximum tensile stress is encountered. However, only a few contact fatigue 

studies of layered media have been conducted to date. Beuth and Klingbeil (1996) 

performed a plane-strain fracture analysis of an elastic thin film under a residual tensile 

stress and reported a greater likelihood for film cracking due to substrate yielding that 

increased the energy available for crack growth. Oliveira and Bower (1996) studied 

fracture and delamination of thin coatings under contact loads and observed an effect of 

the elastic property mismatch between the layer and the substrate materials on the 

fracture load and crack path. Lin and Smith (1999a, 1999b) developed a finite element 

model to study surface fatigue crack growth in plates and obtained results for the stress 

intensity factor and the fatigue life. Gong and Komvopoulos (2004b) used the finite 

element method to analyze surface cracking in a layered medium due to contact with a 

rigid cylinder and found that surface cracking was dominated by the tensile fracture mode 
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and that crack growth occurred toward the layer interface at an angle of 570 from the 

normal to the surface. 

A major simplification in previous studies was the assumption of ideally smooth 

contacting surfaces. However, real surfaces exhibit multi-scale roughness and, thus, 

actual contact is confined between surface summits, hereafter referred to as asperity 

contacts. Consequently, accurate analysis of surface cracking must include the effect of 

the surface topography (roughness) on the crack-tip stresses. To avoid biasing of the 

measurement of surface parameters by the sample size, instrument resolution, and 

experimental filter, fractal geometry (Mandelbrot, 1983) has been adopted to characterize 

engineering surfaces (Majumdar and Tien, 1990; Borodich and Onishchenko, 1999). 

Contact theories based on the fractal description of the surface topography have yielded 

solutions for the real contact area, contact load, and interfacial temperature rise due to 

frictional heating for both homogeneous and layered elastic-plastic media (Majumdar and 

Bhushan, 1991; Wang and Komvopoulos, 1994a, 1994b; Yan and Komvopoulos, 1998; 

Ciavarella et al. 2000; Komvopoulos and Ye, 2001). However, a contact fatigue analysis 

of (multi)layered elastic-plastic media in sliding contact with a rough (fractal) surface has 

not been reported yet. Therefore, the main objective of this study was to perform a 

contact fatigue analysis that elucidates the role of the surface topography in surface 

cracking of elastic-plastic (multi)layered media due to sliding against a fractal surface. A 

contact algorithm and stress intensity factor results from preliminary finite element 

simulations were used to determine the critical segment of the fractal surface to be used 

in the contact fatigue analysis. Results for the tensile and shear stress intensity factors and 

the crack growth direction and dominant fracture mode are presented below in terms of 
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fractal parameters and position of the critical surface segment with respect to the surface 

crack. 

7.2 Modeling Method 

7.2.1 Contact Model and Finite Element Mesh 

Figure 7.1 shows a cross-sectional view of the plane-strain problem analyzed in 

this study. A crack of initial length ci is modeled perpendicular to the surface of the first 

layer of thickness h1. The crack-tip Cartesian coordinates are denoted by x and y and the 

cylindrical polar coordinates by r and θ. A rough (fractal) surface (with a coordinate 

system ( z′ x′ ), x′=  y) slides over the layered medium from left to right under a load P 

applied at the middle-point of the profile length, which is at a distance yP from the crack. 

z

Surface Crack
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Layer 2

h1

ciF = µP y

x

rθ

x'
z'

P yPz

Surface Crack

Layer 1

Layer 2

h1
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x

rθ

x'
z'

P yP

Fig. 7.1 Schematic of a rough surface sliding against a layered medium containing a 
crack normal to the surface. 
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Coulomb friction generates a tangential force F = µP, where µ is the coefficient of 

friction.  

Based on the usual plane strain assumption, quasi-static sliding simulations were 

performed with the two-dimensional finite element mesh shown in Fig. 7.2(a). The mesh 

consists of approximately 9,000 eight-node, isoparametric, quadrilateral elements with a 

specified 3 x 3 integration scheme. The exact number of finite elements used in each 

simulation depends on the crack growth path. The nodes at the bottom boundary of the 

mesh were constrained against displacement in the x direction and the nodes at the left 

boundary against displacement in the y direction. The mesh was refined near the surface, 

especially around the crack, in order to accurately determine the real contact area and the 

stress and strain fields adjacent to the surface and the crack-tip vicinity, where high strain 

gradients occur during sliding. The mesh around the crack, shown in Fig. 7.2(b), consists 

of 36 eight-node, isoparametric, collapsed quadrilateral, plane-strain elements with their 

mid-side nodes adjacent to the crack tips shifted to the quarter-point distance in order to 

simulate the r -1/2 singularity of the crack-tip stresses. Since the analysis is based on linear 

elastic fracture mechanics, the crack-tip nodes were constrained to move together in order 

to avoid crack-tip blunting in the crack growth simulations. 

Contact between the layered medium and the rough surface was modeled by 

special contact elements that determine contact or separation between surface nodal 

points of the layered medium and the rigid surface by measuring the local gap. Similar 

contact elements were used at the crack faces in order to prevent overlapping of the 

elements. A detailed description of the contact element kinematics and friction 

formulation has been presented in a previous study (Gong and Komvopoulos, 2003). 
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Fig. 7.2 Finite element mesh of a layered medium with a surface crack: (a) mesh of entire 
layered medium and (b) detail of the mesh around the grown surface crack. 
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7.2.2 Material Properties and Plasticity Models 

Table 7.1 gives the elastic modulus, E, and yield strength, σY, of each layer in the 

layered medium. The first layer was modeled as an elastic material, while all the other 

layers were modeled as elastic-perfectly plastic materials. All layers were assumed to 

have a Poisson ratio ν = 0.3. The E and σY values given in Table 7.1 are typical of layer 

materials used in magnetic recording rigid disks, i.e., carbon overcoat (layer 1), CoCrPt 

magnetic medium (layer 2), CrV underlayer (layer 3), and NiP electroplated layer (layer 

4). The von Mises yield criterion was used to determine whether yielding occurred at a 

material point. 

7.2.3 Simulation of Sliding Contact and Crack Growth 

Quasi-static sliding was simulated in three sequential steps involving loading, 

sliding, and unloading of a rigid rough surface on the cracked layered medium in an 

incremental fashion. The rough surface was first displaced toward the layered medium up 

to a specified maximum global interference, δg, and, subsequently, displaced laterally to a 

Table 7.1. Material properties of layered medium 

Medium 
E 

(GPa) 
σY 

(Gpa) 

Layer 1 260 - 

Layer 2 130 2.67 

Layer 3 140 2.58 

Layer 4 160 2.67 

 For all layers, ν = 0.3. 
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maximum distance equal to about 100 times the initial crack length while maintaining a 

constant interference. Finally, the rough surface was unloaded following the same steps 

as for the loading. In all the simulations, the maximum global interference was fixed, the 

coefficients of friction at the contact interface and between the crack faces were set equal 

to 0.5, and the initial crack length was equal to 0.25h1. To investigate the effects of 

surface topography parameters on the stress intensity factor ranges, dominant fracture 

mode, crack growth rate, and evolution of plasticity, simulations were performed with the 

finite element code ABAQUS for D = 1.24, 1.34, 1.44, 1.54, and 1.64 and G = 9.46 x 

10−3, 9.46 x 10−4, and 9.46 x 10−5 nm. In the fatigue simulations, the mesh around the 

crack tip was modified in order to incorporate the crack increment of the previous sliding 

cycle. In addition, the effect of the loading history was considered by initiating each 

sliding cycle from the stress/strain state obtained after the unloading phase of the 

previous sliding cycle. This was accomplished with a special crack-growth algorithm, 

described in detail in a previous fracture mechanics analysis (Gong and Komvopoulos, 

2004b). 

7.3 Results and Discussion 

7.3.1 Rough Surface Algorithm 

Figure 7.3(a) shows a fractal surface generated from Eq. (4.1) for D = 1.44, G = 

9.46 x 10-4 nm, γ = 1.5, L = 4379 nm, and Ls = 10 nm. Unless otherwise stated, the 

previous parameters describe the fractal surface used to obtain the finite element results 

presented in the following sections. The above values of the fractal parameters are 

representative of the head-disk interface comprising a smooth carbon-coated hard disk 

aaaaaaa 
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and a relatively rough Al2O3-TiC magnetic recording head (Komvopoulos, 2000). Hence, 

the topography of the surface profile shown in Fig. 7.3(a) is essentially equivalent to that 

of the rougher surface of the magnetic head. The dashed line represents a rigid plane that 

truncates the fractal surface at a given global interference. Since modeling of the entire 

rough surface is impractical, a representative segment of the surface profile was 
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Fig. 7.3 Fractal surface profile (generated from Eq. (4.1) for D = 1.44, G = 9.46 x 10-4 

nm, γ = 1.5, and L = 4379 nm) shown at different scales. A rigid plane (dashed line) 
truncates the surface profile to a certain maximum global interference, producing two 
neighboring contact regions A and B consisting of segments with several interacting 
asperity contacts. 
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determined based on the following procedure. First, the entire rough surface was 

truncated by a rigid plane to a specified maximum global interference in order to 

determine the critical segment(s) to be used in the fracture analysis. Figure 7.3(a) shows 

that the truncation of the surface profile by a rigid plane to an interference δg = 1 nm 

yielded two potential contact regions (denoted by A and B) consisting of several contact 

segments (Figs. 7.3(b) and 7.3(c), respectively). From these segments, asperity contacts 

were encountered only in segments I and II, shown in Figs. 7.3(d) and 7.3(e), 

respectively. Next, preliminary finite element simulations were performed with the 

identified contact regions in order to select the (critical) segment with the highest crack-

tip stresses (for the given value of δg). In view of the relatively large spacing of the 

truncation segments at such small interference, each segment was analyzed separately. 

7.3.2 Contact Pressure Distribution 

Before proceeding with the analysis of the fatigue results, it is instructive to 

consider the effect of topography (fractal) parameters on the contact pressure, p, in order 

to facilitate the interpretation of the crack growth dependence on surface roughness. 

Figures 7.4 and 7.5 show pressure profiles at asperity contacts due to sliding of a fractal 

surface possessing different D and G values, respectively.  The results were obtained by 

indenting the layered medium to the same global interference (δg = 1 nm) and then 

displacing the rough surfaces over the layered medium by the same distance yP/ci = 8. 

Figure 7.4 shows that, for a given value of G, the real contact area increases and the 

maximum contact pressure decreases with the increase of D. Figure 7.5 shows that a 

similar trend occurred with the decrease of G for fixed D. These results can be explained 

aaaaa 
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Fig. 7.4 Contact pressure profiles on a layered medium due to sliding contact with a 
fractal surface at distance yP/ci = 8: (a) D = 1.34, (b) D = 1.44, and (c) D = 1.54. 
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Fig. 7.5 Contact pressure profiles on a layered medium due to sliding contact with a 
fractal surface at distance yP/ci = 8: (a) G = 9.46 x 10-3 nm, (b) G = 9.46 x 10-4 nm, and (c) 
G = 9.46 x 10-5 nm. 
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by considering the physical meaning of the fractal parameters D and G. Higher D and 

lower G values are associated with smoother surfaces, yielding a larger number of 

asperity contacts and lower peak pressures. For relatively smooth surfaces, i.e., D = 1.44 

and 1.54 (Figs. 7.4(b) and 7.4(c), respectively), the interface comprises two contact 

regions. In view of the small lateral spacing, interaction of the stress fields of these 

neighboring contact regions during sliding (Komvopoulos and Choi, 1992) produces 

complex variations in the crack-tip stresses. Another important feature is the contact 

pressure fluctuations obtained for high D values. For instance, the contact pressure profile 

for D = 1.54 contains several peaks (Fig. 7.4(c)). Despite the similar real contact areas, 

the surface with D = 1.54 and G = 9.46 x 10-4 nm (Fig. 7.4(c)) is not equivalent to the 

surface with D = 1.44 and G = 9.46 x 10-5 nm (Fig. 7.5(c)), as evidenced by the higher 

pressure peaks shown in Fig. 7.4(c). This is due to the fact that the fractal dimension D 

determines the contribution of high and low frequency components in the surface profile, 

while the fractal roughness G does not exhibit this property. However, although a rough 

surface with a higher D value is not equivalent to a surface with a low G value, it will be 

shown later that these surfaces yield similar results for the stress intensity factors and 

plastic strain. 

7.3.3 Stress Intensity Factors  

The maximum stress intensity factor range, maxK∆ , is the driving force for fatigue 

crack growth. The mode I and mode II stress intensity factors (SIF), IK  and IIK , 

respectively, were used to characterize the stress field in the vicinity of the crack tip. In 

linear elastic fracture mechanics, IK  and IIK  are defined as 

 )],(2[lim 0 θσπ rrK yyrI →=  (7.1) 
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 )],(2[lim 0 θτπ rrK xyrII →= . (7.2) 

The SIFs were determined from the stresses calculated at ten nodes adjacent to the crack 

tip along the crack plane (θ = 0) by linear extrapolation of a least-square line fit through 

the SIF data. 

Figure 7.6 shows the variation of IK  and IIK  (normalized by 2P/πci
1/2) with the 

position of surface segment I and II (Figs. 7.3(d) and 7.3(e), respectively). When segment 

I is to the left of the crack, the crack is completely closed due to the predominantly 
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Fig. 7.6 Variation of dimensionless stress intensity factors due to sequential sliding of 
two different surface segments: (a), (b) IK  and (c), (d) IIK . 
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compressive stress field and, therefore, IK  assumes values close to zero. However, when 

the surface segment passes over the crack, IK  increases abruptly to a peak value and 

then decreases gradually as the surface segment moves further to the right. While the 

subsequent passage of segment II produces a similar variation in IK  (Fig. 7.6(b)), the 

range of IK  is significantly lower than that due to segment I (Fig. 7.6(a)). Hence, the 

effect of segment I on the magnitude of IK  is much more pronounced than that of 

segment II. Figures 7.6(c) and 7.6(d) show different variations of IIK  with surface 

segment position. It is noted that the shear mode is dominant when the surface segment 

approaches the crack from the left, and the tensile mode prevails as soon as the surface 

segment moves to the right. The normalized max
IK∆  and max

IIK∆  due to segment I are 

equal to 0.1296 and 0.0629, respectively, while the corresponding values for segment II 

are 0.0262 and 0.0490. Hence, the portion of the surface profile from x′  = 4050 nm to 

x′  = 4150 nm (segment I, Fig. 7.3(e)), was used in the fatigue crack growth simulations 

discussed below. 

7.3.4 Fatigue Crack Growth Analysis 

Similarly to previous fracture mechanics analysis (Gong and Komvopoulos, 

2004b; Komvopoulos and Cho, 1997), fatigue crack growth was studied in terms of the 

maximum shear and/or tensile SIF range. The dominance of the shear and tensile modes 

of crack growth depends on the maximum values of σ∆K  and τK∆ , defined as 

 ]max[)](max[ ** min,max,
max

θθσθθσσσ θ
==

−=∆=∆ KKKK  (7.3) 

and 

 ]max[)](max[ ** min,max,
max

θθτθθτττ θ
==

−=∆=∆ KKKK , (7.4) 



 185

where the subscripts max and min denote the maximum and minimum values of σK  and 

τK , determined at a certain position of the sliding surface segment, and *θ  is a given 

value of angle θ  ( 0180−  = *θ  = 1800). In view of the secondary effect of the simulated 

crack increment, ∆c, on the growth direction of a surface crack (Gong and Komvopoulos, 

2004b), all the simulations were performed for ∆c = h1/8. 

Results for the crack growth angle, θ∆ , total deviation angle, totalθ , and 

maxK∆ ( ],max[ maxmax
τσ KK ∆∆= ) at each crack growth cycle are given in Table 7.2. It is 

aaa 

Table 7.2. Crack propagation angles and maximum stress intensity factor range* versus 
crack growth cycle  

N θ∆  (deg.) totalθ  (deg.) )/2/( 2/1max cPK π∆  

1 24 24 0.1597 

2 38 62 0.2346 

3 -14 48 0.2126 

4 18 66 0.2369 

5 -21 45 0.2160 

6 20 65 0.2333 

7 5 70 0.2149 

8 4 74 0.2784 

9 3 77 0.3225 

 * Maximum stress intensity factor range: ],max[ maxmaxmax
τσ KKK ∆∆=∆ . 
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noted that totalθ  increases significantly during the first two cycles, fluctuates in the 

following four cycles, and increases again in the next three cycles when the crack tip 

approaches the layer interface. The corresponding crack growth path is shown in Fig. 7.7. 

The similar result for a smooth (cylindrical) surface sliding over the same medium, 

obtained in a previous study (Gong and Komvopoulos, 2004b), is also plotted in Fig. 7.7 

for comparison. These results are in qualitative agreement with the conclusions of a 

fracture analysis of thin coatings subjected to contact loading (Oliveira and Bower, 

1996). When crack growth commences remote from the interface, the two crack paths are 

nearly parallel to each other. However, when the crack tip is in the proximity of the layer 

interface, the two crack paths deviate. In the case of the smooth surface, the crack 

propagates toward the interface, while in the case of the rough surface, the crack tends to 
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Fig. 7.7 Crack growth paths in a layered medium due to sliding contact with smooth 
(cylindrical) and rough (fractal) surfaces. 
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grow approximately parallel to the interface. This finding reveals a roughness effect on 

the evolution of fatigue in the surface layer, i.e., smooth surfaces are more likely to lead 

to delamination of the layer along the interface as opposed to rough surfaces that promote 

delamination within the layer medium. 

Figure 7.8(a) shows the normalized maximum stress intensity factor range, 

maxK∆ , as a function of crack growth cycles, N. The similar result for a smooth 

(cylindrical) surface is also shown for comparison. The general trend is for maxK∆  to 

intensify with the increase of N. The difference in the magnitudes of maxK∆  of the rough 

and smooth surfaces is attributed to differences in the interference and surface profile 

used in each simulation. The dominant crack growth mode can be determined from the 

magnitudes of the maximum tensile and shear stress intensity factor range, max
σ∆K  and 

max
τ∆K , respectively. Figure 7.8(b) shows the variation of maxmax / τσ ∆∆ KK  with the crack 

growth cycles, N. For the smooth surface case, maxmax / τσ KK ∆∆  > 1 throughout crack 

growth, indicating the dominance of the tensile fracture mode. However, in the case of 

the rough surface, the tensile mode is dominant during the first six cycles, when crack 

growth resembles that in the smooth-surface case (Fig. 7.7), whereas in the subsequent 

cycles, when crack advancement occurs almost parallel to the interface, crack growth is 

controlled by the shear mode ( 1/ maxmax <∆∆ τσ KK ). A similar result has been reported for 

subsurface crack growth in a homogeneous elastic half-space (Komvopoulos and Cho, 

1997). 

For the interference range examined in this study, the third and fourth layers 
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Fig. 7.8 Variation of dimensionless (a) maximum stress intensity factor range maxK∆  (= 
max[ max

σK∆ , max
τK∆ ]) and (b) maxmax / τσ KK ∆∆  with crack growth cycles N. 
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exhibited purely elastic deformation. Therefore, for the sake of brevity, subsurface 

deformation will be interpreted in light of the evolution of plasticity in the second layer. 

Figure 7.9(a) shows that the maximum plastic strain, max
pε , in the second layer increases 

with accumulating crack growth cycles. The increment of max
pε  at each cycle decreases in 

the first five cycles because the high stresses in the vicinity of the crack tip do not extend 

into the second layer. However, notable excursions occurred in the eighth and ninth 

cycles, in agreement with the results of a previous study (Gong and Komvopoulos, 

2004b). These notable increases in max
pε  are due to the superposition effect of the crack-

tip stresses on the stresses in the second layer, in the region adjacent to the interface. The 

dependence of plasticity in the second layer on crack growth can be further interpreted by 

considering the variation of the increment of maximum plastic strain, max
pε∆ , with the 

crack growth cycles, N, due to sliding of both rough and smooth surfaces (Fig. 7.9(b)). 

For the smooth surface, max
pε∆ changes slightly with the evolution of crack growth and 

increases again when the crack grows in the proximity of the interface. However, in the 

case of the rough surface, max
pε∆  decreases monotonically until the fifth cycle and 

increases gradually with further crack advancement, despite the fact that the crack path is 

almost parallel to the interface. This is attributed to the significant intensification of the 

crack-tip stresses by the sliding rough surface. Thus, faster crack growth in the first layer 

and more plasticity in the second layer occurred in the sliding simulations involving the 

rough surface. 
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Fig. 7.9 (a) Maximum equivalent plastic strain max
pε  and (b) increment of maximum 

equivalent plastic strain max
pε∆ in the second layer of a layered medium versus fractal 

surface position yP/ci and crack growth cycles N. 
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7.3.5 Dependence of Crack Growth on Surface Topography 

The effect of the fractal dimension D on the variation of KI and KII with the 

position of the sliding fractal surface, yP/ci, for fixed G is shown in Figs. 7.10(a) and 

7.10(b), respectively. For all D values, KI increases rapidly from zero to a peak value 

when the rough surface slides over the crack (yP/ci ˜ 0), and then decreases gradually as 

the rough surface moves further to the right. The general trend is for KI to decrease with 

the increase of D. This is due to the fact that high D values are associated with smooth 

surfaces, which, for a given global interference, yield lower crack-tip stresses due to the 

resulting larger asperity contact areas and smaller local interferences. The variation of KII 

with yP/ci and D, shown in Fig. 7.10(b), does not reveal a specific trend except for a slight 

decrease of maximum KII with the increase of D. The significantly lower magnitudes of 

KII than those of KI confirm that initial crack growth is dominated by the tensile mode, in 

agreement with the results shown in Fig. 7.8.  

To illustrate the effect of the fractal dimension on the prevailing fracture mode 

during initial crack growth, maxmax / τσ ∆∆ KK  is plotted as a function of D in Fig. 7.11. The 

dominance of the tensile and shear modes is determined by the magnitude of 

maxmax / τσ ∆∆ KK . The results reveal a transition from shear to tensile crack growth when D 

increases in the range of 1.2-1.7. This stems from the fact that a surface profile 

characterized by a high D value exhibits a relatively smooth topography. The larger 

asperity contact areas and higher surface tractions obtained with smoother surfaces 

promote crack opening and, hence, the dominance of the tensile fracture mode. In view of 

the results shown in Figs. 7.7, 7.8(b), 7.10, and 7.11, it may be inferred that smoother 
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Fig. 7.10 Effect of fractal dimension D on dimensionless stress intensity factor (a) IK  
and (b) IIK  versus fractal surface position yP/ci for fixed fractal roughness G. 
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surfaces are more likely to lead to tensile mode-dominated crack growth initially and 

shear mode-dominated crack growth when the crack tip advances in the proximity of the 

interface. 

To provide further evidence for the effect of surface topography on subsurface 

deformation, max
pε  in the second layer is plotted as a function of yp/ci for different D 

values and fixed G in Fig. 7.12. The smoother surface (D =1.54) did not produce plastic 

deformation. However, the surfaces with D = 1.34 and 1.44 resulted in the accumulation 

of plasticity during sliding, especially the rougher surface (D = 1.34) after passing over 

the crack (yp/ci = 0). The decrease of the plastic strain with the increase of D is consistent 
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Fig. 7.11 Variation of maxmax / τσ KK ∆∆  with fractal dimension D for fixed fractal roughness 

G. 
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with the results shown in Fig. 7.10, demonstrating that the SIFs decrease with the 

increase of D (i.e., smoother surface). 

The dependence of the SIFs on the fractal roughness G can be studied in light of 

the results shown in Fig. 7.13. The increase of the peak value of KI with the increase of G 

(Fig. 7.13(a)) is similar to that observed with the decrease of D (Fig. 7.10). As mentioned 

earlier, this behavior is attributed to the effect of the higher surface roughness associated 

with the higher value of G. Larger local interferences are obtained with a rougher surface 

due to the smaller asperity contact areas produced, which intensifies the crack-tip 
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Fig. 7.12 Maximum equivalent plastic strain max
pε in the second layer of a layered 

medium versus fractal surface position yP/ci for different values of fractal dimension D
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Fig. 7.13 Effect of fractal roughness G on dimensionless stress intensity factor (a) IK  
and (b) IIK  versus fractal surface position yP/ci for fixed fractal parameter D. 
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stresses. The effect of G on the variation of KII is less apparent (Fig. 7.13(b)). A 

comparison of Figs. 7.13(a) and 7.13(b) shows that IIK∆  is significantly less than IK∆ , 

similar to the results shown in Figs. 7.6 and 7.10. Therefore, in view of the strong 

dependence of the crack growth rate on K∆ , it may be concluded that initial crack 

growth is controlled by the magnitude of IK∆ , consistent with the results shown in Figs. 

7.8(b) and 7.11. 

Figure 7.14 shows the dependence of max
pε  in the second layer on the magnitude 

of G for fixed D. The results demonstrate that max
pε  intensifies with the increase of G in a 

fashion similar to that observed with the decrease of D (Fig. 7.12). This is also in 

-60               -40                -20                  0                  20                 40    60

yP/ci

0.06

0.05

0.04

0.03

0.02

0.01

0.00

ε p
m

ax

D = 1.44
G = 9.46 x 10-5 nm
G = 9.46 x 10-4 nm
G = 9.46 x 10-3 nm

-60               -40                -20                  0                  20                 40    60

yP/ci

0.06

0.05

0.04

0.03

0.02

0.01

0.00

ε p
m

ax

D = 1.44
G = 9.46 x 10-5 nm
G = 9.46 x 10-4 nm
G = 9.46 x 10-3 nm

Fig. 7.14 Maximum equivalent plastic strain max
pε in the second layer of a layered 

medium versus fractal surface position yP/ci for different values of fractal roughness G
and fixed fractal parameter D. 
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agreement with the results presented in Fig. 7.13(a), which show that a higher G value 

enhances KI due to the surface roughness effect on the crack-tip stresses, as discussed 

previously. Therefore, from the plastic deformation standpoint, Figs. 7.12 and 7.14 

indicate that a surface characterized by a high (low) D value is equivalent to a surface 

possessing a low (high) G value. For instance, the surfaces with D = 1.54 and G = 9.46 x 

10-4 nm (Fig. 7.12) and D = 1.44 and G = 9.46 x 10-5 nm (Fig. 7.14) resulted in purely 

elastic deformation in the second layer. Moreover, similar evolutions of max
pε  were 

obtained with surface topographies characterized by fractal parameters D = 1.34 and G = 

9.46 x 10-4 nm (Fig. 7.12) and D = 1.44 and G = 9.46 x 10-3 nm (Fig. 7.14). 

7.4 Conclusions 

Contact fatigue in a layered medium containing a crack normal to the surface due 

to sliding of a rigid rough (fractal) surface was analyzed using linear elastic fracture 

mechanics and the finite element method. The first layer was assumed to be elastic while 

the other three layers comprising the layered medium were modeled as elastic-perfectly 

plastic. Based on the presented results and discussion, the following main conclusions 

can be drawn. 

(1) An algorithm for selecting the critical segment of the sliding rough surface was 

developed in order to enhance the computational efficiency in the finite element 

simulations.  

(2) The increase of the fractal dimension and the decrease of the fractal roughness result 

in smoother topographies yielding a larger number of interacting asperity contacts 

with lower contact pressure distributions. 
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(3) The crack paths corresponding to rough and smooth sliding surfaces are almost 

parallel to each other when crack growth commences remote from the interface. 

However, when the crack tip approaches the interface, the stress field produced by the 

rough surface causes the crack to propagate approximately parallel to the interface. 

Alternatively, in the case of the smooth surface, the crack growth direction is not 

affected by the interface. Therefore, the tensile mode controls crack growth in the 

case of smooth surfaces, whereas rough surfaces promote a tensile-to-shear mode 

transition when the crack tip approaches the interface.  

(4) The tensile and shear stress intensity factors and plastic strain in the second layer 

(adjacent to the interface) increase with the advancement of the crack and the sliding 

of the rough surface. The accumulation of plasticity in the second layer decreases 

during the initial stage of fatigue crack growth, and increases gradually as the crack 

approaches the layer interface due to the effect of the crack-tip stresses.  

(5) The increase of the fractal dimension and the decrease of the fractal roughness lead to 

the decrease of the stress intensity factors and plastic deformation in the second layer. 

This is attributed to the effect of fractal parameters on the asperity contact areas and 

associated local interferences that affect the stresses at the crack tip and the interface.  

(6) A transition from shear to tensile dominant mode in contact fatigue and a decrease of 

plastic deformation in the second layer occur with the increase of the fractal 

dimension and the decrease of the fractal roughness. 
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CHAPTER 8 
 

CONCLUSIONS 
 

 

In this dissertation, contact analyses of semi-infinite media with patterned and 

rough surfaces were performed in order to shed light into the effects of surface 

patterning, frictional heating, and surface cracking on the resulting deformation and 

stresses. In view of the results and discussions presented in previous chapters, the 

following main conclusions can be drawn. 

Surface patterning has a significant effect on the contact pressure, surface tensile 

stress, surface temperature, and plastic deformation in layered media. The maximum 

tensile residual stress in layered media with sinusoidal surface patterns occurs at the 

trailing edge of the contact region. This residual stress is much higher than that obtained 

with layered media exhibiting flat surfaces and depends on the pattern geometry and 

friction coefficient. Patterned surfaces yield lower plastic strains and smaller plastic 

zones than flat surfaces due to the lower stresses resulting from the increased compliance 

of the top hard layer that can store significant strain energy without undergoing plastic 

deformation. Nevertheless, this arises at the expense of a higher surface tensile stress at 

the trailing edge of the contact interface, therefore indicating a greater probability for 

surface crack initiation for patterned media. Periodic variations in the contact pressure, 

surface temperature, subsurface stresses, and plastic strain were encountered in the case 

of patterned layered media and are attributed to the pattern geometry. The similar peak 

values of the maximum temperature in each layer illustrate that thermal interaction 
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between neighboring pads is negligible. The steady-state stress/strain fields produced 

after the first sliding cycle suggest that deformation in the patterned layered medium is 

insensitive to subsequent similar sliding cycles. 

Although the finite element method is the main numerical technique for obtaining 

solutions for the stresses in both homogenous and layered media in sliding contact with a 

rough surface, requirements for large number of elements make the finite element 

approach impractical for analyses involving rough surfaces of relatively large apparent 

contact areas. For this reason, an analytical procedure was developed that enables the 

calculation of contact stresses in layered elastic media in contact with a rough surface. A 

constitutive relation between the mean contact pressure and a representative strain 

parameter was derived for layered media based on finite element results. The real contact 

area was obtained as a function of mechanical properties of the layered medium, layer 

thickness, truncated half-contact width, and asperity radius. It was shown that much 

higher tensile stresses occur in the case of stiff layers than compliant layers. Numerical 

results revealed that crack initiation is more likely to occur both at the surface and the 

interface in the case of the stiff layer and only at the surface in the case of the compliant 

layer. It was also shown that the stiffer layer increases the likelihood for interface 

cracking and delamination than the compliant layer. 

Knowledge of the surface temperature and thermoelastic stresses in sliding solid 

bodies with rough surfaces is essential in failure analysis of mechanical systems. A 

thermomechanical contact model was developed for sliding contact between a semi-

infinite elastic medium and a rough (fractal) surface that accounts for the simultaneous 

effects of thermal and mechanical deformation. For fixed surface interference, frictional 
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heating increases both the contact area and the contact pressure. This effect was found to 

be mostly pronounced at asperity microcontacts located at the trailing edge of the contact 

interface, where the cumulative effect of frictional heating was observed to be most 

pronounced. It was also found that the maximum temperature at each microcontact 

occurs always at the surface and increases with the Peclet number. The maximum 

temperature rise at the surface increases with the decrease of the fractal dimension. 

Intensification of the temperature gradients with the increase of the Peclet number is 

responsible for the enhancement of thermoelastic distortion at the surface and the 

development of high thermal stresses. For low Peclet number, the stress field is 

dominated by the effect of mechanical stresses. The von Mises equivalent stress is 

strongly affected by frictional heating, especially at microcontact regions close to the 

trailing contact edge where the highest thermal stresses are produced due to the 

cumulative heating effect. The increase of the Peclet number promotes surface plastic 

deformation and reduces the likelihood for surface cracking. 

Surface cracking in a multi-layered medium containing a crack perpendicular to 

the free surface due to repetitive sliding of a rigid asperity was analyzed based on linear 

elastic fracture mechanics and the finite element method. The significantly higher values 

of the tensile stress intensity factor than those of the shear stress intensity factor obtained 

in all simulation cases indicated that surface cracking in the multi-layered medium due to 

sliding of a single asperity is controlled by the tensile fracture mode. The surface crack 

propagated toward the layer interface at an angle of ~57 degrees from the original crack 

plane, independent of the crack growth increment, in fair agreement with experimental 

observations. The maximum plastic strain in the second layer increased rapidly as the 
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crack tip approached the interface due to the effect of the high-stress field at the crack tip. 

This caused the maximum plastic strain in the second layer to occur always below the 

crack tip adjacent to the interface rather than below the sliding asperity, as found for 

uncracked elastic-plastic layered media. Finite element results showed that the coefficient 

of friction at the contact (sliding) region exhibits a dominant effect on the plastic strain 

accumulating in the second layer, while the effect of crack-face friction is insignificant. 

The analysis of surface cracking in layered media due to single asperity sliding was 

extended to rough-surface sliding to elucidate the surface topography effect on the stress 

intensity factor and the crack propagation mode. The simulation results show that the 

crack propagation mode changes from tensile to shear as the crack tip approaches the 

layer interface. At this juncture, the crack tends to grow approximately parallel to the 

interface. The stress intensity factors and plastic deformation in the second layer decrease 

with the increase of the fractal dimension and/or the decrease of the fractal roughness. 

The increase of the fractal dimension and the decrease of the fractal roughness change the 

dominant crack growth mode from shear to tensile. 

In conclusion, the results of this research contribute to the advancement of the 

state-of-the-art in contact mechanics of layered media. Specifically, analytical and 

numerical solutions demonstrated the role of various important factors, such as surface 

patterning, overcoat properties, frictional heating, and surface cracking, on the 

mechanical and thermomechanical behavior of half-space homogeneous and layered 

media with patterned and rough surfaces. The methodologies and models derived in this 

dissertation can be easily applied to a wide range of length scales, including systems 
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operating under conditions leading to surface interactions from the nanoscale to the 

macroscale.  
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