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Abstract

Dual-Stage Servo Control and Active Vibration Compensation in Magnetic Hard

Disk Drives

by

Yunfeng Li

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Roberto Horowitz, Chair

In order to sustain the continuing increase in storage density in magnetic hard disk

drives (HDD), high bandwidth dual-stage actuator servo systems have been developed to

improve the precision of read/write head positioning control. In this dissertation, robust and

adaptive controller design methodologies and algorithms are developed for PZT-actuated

suspension and MEMS microactuator based dual-stage servo systems. Active vibration

control techniques using dual-stage multi-sensing servo systems to compensate for high-

frequency structural vibrations are proposed.

A coupled MIMO plant model of a PZT-actuated suspension dual-stage actuator

is identified using frequency response modal testing. A structured uncertainty model is

established to represent both parametric uncertainty and unmodeled dynamics for robust

control design and analysis. Dual-stage controllers are designed using a decoupled single-
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input single-output (SISO) frequency shaping design technique and multi-variable robust

controller design technique µ-synthesis. Experimental results are presented and compared.

An active vibration damping control scheme of using one PZT element as a vi-

bration sensor and the other one as an actuator is proposed to damp the resonance modes

of the PZT-actuated suspension dual-stage actuator. Vibration damping controller design

using Kalman filter based state feedback control is described. Experimental results are

presented demonstrating the effectiveness of the proposed control scheme in suppressing

airflow excited structural vibrations.

For the controller design of a MEMS microactuator based dual-stage servo sys-

tem, a decoupled design structure with microactuator inner-loop damping and a design

methodology by discrete-time pole placement are proposed. A self-tuning control scheme

is developed to compensate for the variations in the microactuator’s resonance mode. An

adaptive feedforward control technique is also developed for active vibration compensation

using MEMS microactuator dual-stage servo systems. Simulation results are presented to

verify the proposed control schemes.

Professor Roberto Horowitz
Dissertation Committee Chair
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Chapter 1

Introduction

Since the first hard disk drive (HDD) was invented in the 1950s by IBM, disk

drives’ data storage areal density has been following Moore’s law, doubling roughly every

18 months [1] [61]. Higher areal density requires more precise positioning control of the

read/write head. Advanced servo technologies using dual-stage actuators and auxiliary

sensors have been developed in recent years to achieve this objective. This dissertation

focuses on controller design for dual-stage actuator servo systems and active vibration sup-

pression control using auxiliary vibration sensors. In this chapter, an introduction of disk

drive servo mechanics and servo control system is presented. Advanced dual-stage, multi-

sensing servo systems are introduced. Previous research, the motivation and objectives of

this dissertation are presented. Finally, the outline of the dissertation is listed.
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1.1 Disk Drive Servo Control

1.1.1 Disk Drive Structure and Servo Mechanics

A disk drive stores data as magnetic patterns on disk media, which consists of a

thin layer of magnetic materials coated on an aluminum or glass substrate. A data bit’s

value of one or zero is represented by the presence or absence of a magnetic transition

(magnetization reverse), which can be set (written) or detected (read) by the write and

read transducers as they move over it, as shown in Fig. 1.1. The write transducer is a thin-

film coil which magnetizes the polarity of the media when electrical current passes through

it. The read transducer is a magnetoresistive sensor, which changes its resistance with the

change in the magnetic field.

Magnetic film

coil

Disk Motion

slider
MR element 

N     S  S      N  S     N   N     S   N     S
0       1          0           1  

Thin-film 
write element

Figure 1.1: A diagram of read/write transducer and media.

Fig. 1.2 shows a schematic diagram of a disk drive. Data bits are stored in con-

centric circles called tracks on the disk surface. The read/write transducer is fabricated on

the trailing edge of the slider, which flies over the spinning disk on an air-bearing surface

(ABS). The ABS is a thin film of air that is moving at almost the same speed as the disk
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underneath the slider. The slider is designed to have a profiled aerodynamic surface. It is

lifted from the disk by the aerodynamic force of the ABS. A thin flexible structure called

the suspension pushes down the slider to balance the uplifting aerodynamic force. The ABS

has a very stiff dynamic behavior and maintains the slider at a constant flying height of

10-15 nanometers over contours of the disk surface in spite of undulation and roughness.

The smaller the size of the data bit, the lower of the flying height must be.

Voice Coil Motor

Disk

Spindle motor

Head

Data Track

(VCM)

Figure 1.2: A schematic diagram of an HDD. (Courtesy of M. Kobayashi, HITACHI)

Fig. 1.3 shows a schematic diagram of the head-stack and actuator assembly in a

disk drive. It consists of heads/sliders, suspensions, an E-block, a pivot, and a voice-coil

motor (VCM). The suspensions are swaged onto the arms of the E-block, which lies between

the VCM and the suspensions and contains the pivot point. The VCM is a rotary actuator.

It moves the heads over the disks by rotating the E-block about the pivot. Traditional

disk drive servo system is an un-collocated control system due to the existence of multiple

mechanical resonance modes of the E-block and the suspensions, which are located between

the VCM and the head.
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VCM E-Block Suspension

coil

Magnet

Pivot

disk

E-Block Suspension

Head

disk

Figure 1.3: VCM actuator in an HDD.

1.1.2 Track Mis-Registration (TMR)

Because of disk slip, spindle rocking motion, and mechanical vibrations in the disk

and spindle assembly, real data tracks are not perfectly centered ideal circles. The head

itself moves due to various disturbances and mechanical vibrations in the head-stack and

actuator assembly. Track Mis-Registration (TMR) is defined as the offset between the pass

of the read head (read track) and the pass of the write head (written track) [61]. The

definition of TMR has two aspects: write-to-read TMR, defined as the offset between the

read track and the written track, and write-to-write TMR, defined as the difference between

the nominal track pitch and the actual spacing between two adjacent written tracks. Write-

to-read TMR can cause reading of erroneous information, while write-to-write TMR can

cause loss of data due to encroachment of the adjacent tracks.

Neither write-to-read nor write-to-write TMRs can be measured directly. Instead,

they are quantified by the servo TMR. Servo TMR is often simply called TMR and is de-

fined by the statistical distribution of the deviation of the head from the servo track, which
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is called the position error signal (PES). PES is obtained by reading encoded position infor-

mation on the servo track by the head. Assuming that the PES is a Gaussian distribution,

TMR can be represented by three-times standard deviation of the PES, 3σPES .

Servo tracks are pre-written by the servo writer, which uses a laser interferometer

position sensor and a push-pin to accurately control the head position. The position error

introduced during servo writing, or the offset between the servo track and the ideal circle

track, is called written-in TMR. Written-in TMR affects write-to-write TMR by squeezing

adjacent tracks, as illustrated in Fig. 1.4.

Track Squeeze

Servo TMR

Written-in TMR

Actual head pass Servo Track

Ideal center line

Track n

Track n+1

Figure 1.4: Illustration of Track-Mis-Registration

.

TMR can be divided into two main components: repeatable runout (RRO) and

non-repeatable runout (NRRO). RRO is synchronous with spindle rotation. The spectral

components of RRO appear at the spindle rotation frequency and its harmonics. For RRO,

the radial motion at a given location on a track is the same for every revolution of the disk.

The main cause of RRO is disk slip when there is a mismatch between the disk center and

the spindle rotation axis. Written-in TMR is another main source of RRO.
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NRRO is not synchronous with spindle rotation speed. Primary NRRO contribu-

tors include [11], [61]:

• Spindle runout, caused by the spindle bearing, tilting of the spindle, vibrations of the

spindle and disk assembly, etc. Its spectral components are mainly located at low

frequencies.

• Disk flutter, vibrations of the disk excited by air turbulence over its surface. Its

spectral components are mainly located between 400 Hz and 1.5 kHz [36] [17].

• Arm torque disturbances due to airflow and spindle rotation. Runout due to arm

torque disturbances is mainly at low frequency because of the low-pass characteristic

of the actuator dynamics.

• Seek settling runout caused by residual mechanical vibrations and transient response

induced by seek operations.

• Windage, caused by excitation of high frequency structural resonance modes of the

head-stack and actuator assembly by the air turbulence.

• External vibrations and shocks.

• Bias forces due to the flexible cable, pivot friction, and airflow disturbance.

• PES demodulation and quantization noise, DAC quantization noise, etc.

The actual contributions to the NRRO from each of the above sources are related to

a variety of factors, such as form factor, spindle rotation speed, number of disks, application

environment, mechanical and servo designs, etc.
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1.1.3 Position Error Signal (PES)

In order to perform closed-loop servo control, the head position relative to the

track, or the position error signal (PES), must be made available to the control system.

Modern disk drives use an embedded servo-sector method to obtain this signal, in which

the disk surface is divided into data sectors and servo sectors. The servo sectors contain

encoded position information and are patterned as radial spokes, as shown in Fig. 1.5a [29].

A

B

A

Track n

Track n+1

Same output result 
in dead point

Head

a) Servo Sectors b) A-B bursts

Servo sector

Data sector

Figure 1.5: Servo sectors and A/B bursts pattern

.

The encoded position information includes track number, sector number and burst

patterns. Burst patterns are used to derive the PES. Fig. 1.5b shows A/B bursts patterns.

The width of the burst is one track and it is located between the centerlines of adjacent

tracks. The read signal amplitude is proportional to the length of the part of the burst that
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is covered by the head as it flies over. Thus head position can be determined by

PES = w
A−B
A+B

, (1.1)

in which w is the width of the head, and A and B represent the signal magnitudes of A and

B bursts, respectively. When the head is sitting on the center of the data track, PES equals

zero. Since the read element is usually 20-30% narrower than the width of the data track,

there are dead spots when the read element does not cross the centerlines. Modern disk

drives use A/B/C/D four-burst patterns to eliminate dead spots and increase resolution.

Since the servo sectors are located at discrete locations, PES is a sampled digital

signal and the disk drive control system is a digital control system. The sampling frequency

is determined by the disk rotation speed and the number of servo sectors on a track. For

example, a 7200-RPM disk drive with 180 servo sectors has a PES sampling frequency of

21.6 kHz. Given a disk rotation speed, higher PES sampling frequency requires more servo

sectors and reduces storage efficiency.

1.1.4 Servo Control Architecture

A disk drive servo control system has two primary functions: seeking control and

tracking control. In seeking control, the head is moved from track to track as quickly as

possible to locate data. In tracking control, the head is kept as close as possible to the track

center such that data bits can be reliably written or read. Seek time determines how fast

data can be accessed, while tracking accuracy determines how densely data tracks can be

partitioned. Modern disk drive servo control systems use a combination of feedback and

feedforward control to achieve fast seeking and accurate tracking.
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Fig. 1.6 shows a block diagram of the disk drive servo control system. GP (s)

represents the disk drive actuator plant. CFB and CFF are the feedback and feedforward

controllers, respectively. r denotes the reference input, which is zero in track-following mode

and a desired position trajectory in seek mode. dn, df , and dp denote the measurement

noise, the force disturbance, and the position disturbance (due to both track motion and

head motion), respectively. rff is a reference input to the feedforward controller, which can

be predetermined or measured by auxiliary sensors in real-time.

df

CFB

PESr

-
GP

CFF

dpcff

cfb

rff

dn

Figure 1.6: Disk drive servo control architecture.

In track-following mode, the PES can be written as

PES(k) = S(z)GP (z)df (k) + S(z)dp(k) + S(z)dn(k) + CFF (z)rff (k) , (1.2)

where S(z) is the closed-loop sensitivity function defined by

S(z) =
1

1 + CFB(z)GP (z)
. (1.3)

The sensitivity function, also called the error rejection function, is the most basic

function used to specify and evaluate the performance of disk drive servo control systems.

Fig. 1.7 shows the frequency response of a typical sensitivity function. Its unity-gain fre-

quency, at which the magnitude of the sensitivity function is one, is related to the bandwidth

of the control system. Below this frequency, the sensitivity function attenuates disturbances
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and noise. Above this frequency, it amplifies them. Since the major TMR sources are lo-

cated in the low-frequency range, as discussed previously, the most effective way to minimize

the PES and increase the tracking accuracy is to increase the servo control bandwidth. In

general, bandwidth is limited by high-frequency resonance modes of the plant dynamics

and/or the sampling frequency and the computational time delay [57].
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Figure 1.7: Sensitivity function frequency response.

There are several constraints in the feedback controller design. First, if not de-

signed properly, the feedback controller may become unstable in the presence of plant model

variations. There is a tradeoff between achieving better performance and maintaining ro-

bustness of the controller. Increasing the control bandwidth often results in reduced stability

margins.

The second constraint is Bode’s sensitivity integral theorem [6]. It states that for

a continuous-time system, if the loop transfer function is asymptotically stable and has
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relative degree of at least two, then

∫ ∞

0
log |S(jω)|dω = 0 , (1.4)

which means the magnitude of the sensitivity function |S(jω)| cannot be less than one at all

frequencies, and if it has more attenuation in certain frequency region, there must be less

attenuation or larger amplification at other regions. There is a similar sensitivity integral

constraint for discrete-time systems [39].

Feedforward control is very effective in cancelling certain disturbances that can

be either determined a priori or measured in real-time. The main difference of feedforward

control from feedback control is that the input signal to the feedforward controller, rff

in Fig. 1.6, does not depend on the state of the system. One advantage of feedforward

control is that there is no stability issue. The performance of feedforward control is also

not constrained by Bode’s integral theorem. The feedforward controller can be designed to

be a zero-phase error tracking controller (ZPETC) if the plant model is known [56]. When

the plant model is unknown or changes, the feedforward controller is often designed to be

a finite-impulse response (FIR) filter, which can be adaptively tuned.

Feedforward control has been widely used in seek control and cancelling repetitive

runout (RRO). In these two cases, uff can be either predetermined or estimated a priori.

Acceleration feedforward control has been shown to be effective in cancelling external dis-

turbances [59] [58] [47] [46]. In this case, external disturbances are measured in real-time

by an accelerometer attached on the disk drive.
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1.1.5 Storage Density Increase and Advanced Servo Control

Historically, increases in storage density have been achieved by almost equal in-

creases in track density, the number of tracks encircling the disk, and bit density, the number

of bits in each track. This trend is likely to change as storage density approaches the su-

perparamagnetism limitation, which refers to the fact that the time a media grain retains

information against thermal decay is reduced as its dimension shrinks [23] [37]. Increasing

either bit density or track density reduces media grain size. However, higher bit density

also requires reduced magnetic gap spacing, which in turn requires a thinner magnetic

layer. Thus, for the same areal density increase, the media loses more thermal stability by

increasing bit density than by increasing track density. It has been predicted that future

areal storage density increases in HDDs will be achieved mainly through an increase in track

density [23].

Increasing track density requires more precise positioning control of the read/write

head. Advanced research of the HDD industry is now targeting an areal density of one tera-

bit per square inch. For a predicted bit aspect ratio of 4:1, this translates to a linear bit

density of 2M bits per inch (BPI), and a radial track density of 500K tracks per inch (TPI),

which in turn implies a track width of 50 nm. A simple rule of thumb for servo control

design in HDDs is that three-times the statistical standard deviation of the PES should be

less than 1/10 of the track width. Thus, a servo precision of 5 nanometers in the 3σ value

of the PES will be required to achieve such storage density.

Traditional disk drive servo systems utilize a single VCM to move the head and

have some limitations. First, since the VCM/E-block/suspension actuator assembly is large
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and massive as a unit, the speed at which the head can be controlled is limited. Furthermore,

there are multiple mechanical resonance modes in the E-block arms and suspensions which

lie between the VCM and the head. These resonance modes impose a limit to the achievable

control bandwidth. Limited sampling frequency of the PES is another factor affecting

the servo performance. Advanced servo technologies using dual-stage multi-sensing servo

systems have been developed to overcome these limitations.

Besides storage density increases, spindle rotation speed is continuing to increase

in order to achieve shorter latency and faster data transfer rate. Higher rotation speeds

induce larger disturbances and air turbulence. For track densities as high as 500k TPI,

air turbulence excited structural vibrations of the actuator assembly alone are enough to

force the head off-track. These vibrations occur at frequencies higher than the expected

servo control bandwidth and can not be attenuated by the conventional servo systems.

Advanced servo systems using MEMS microsensors and microactuators are being developed

to suppress turbulence excited structural vibrations.

1.2 Dual-Stage Multi-Sensing Servo Systems

1.2.1 Dual-Stage Actuator Servo Systems

One solution to overcoming the limitations of traditional servo system is to comple-

ment the VCM with a smaller, secondary mini/micro-actuator to form a dual-stage actuator

servo system. The second-stage actuator can avoid the excitation of the arm and the sus-

pension resonance modes, bypass the pivot friction, and reduce the driving inertia. The

VCM does low bandwidth course positioning, while the second-stage actuator does high
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bandwidth fine positioning.

Many configurations of dual-stage servo systems have been developed. They can

be categorized into three groups: “actuated suspension”, “actuated slider” and “actuated

head”, by the location the second-stage actuator is placed.

Actuated Suspension

In this approach, two actuators made from piezoelectric materials, such as PZT,

are placed near the root of the suspension. They generate a push-pull action when driven

differentially. A leverage mechanism is used to convert and amplify this small actuation

displacements into large head motion [48] [44] [32] [33] [8]. Fig. 1.8 shows a schematic

diagram of such a device.

Suspension

Base-plate

PZT actuator

Slider

Figure 1.8: A schematic diagram of a PZT-actuated suspension (Courtsy of M. Kobayashi,
HITACHI)

PZT-actuated suspensions can be easily integrated into a traditional single-stage

servo system since the head gimbal assembly (HGA) interfaces are not changed. The major

drawback of this approach is that the PZT actuators can still excite the arm and suspension

resonance modes. Thus, the achievable bandwidth is still limited. Moreover, in order to
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increase the actuation gain from the actuators to the lateral head motion and reduce driving

voltage, PZT-actuated suspensions are usually designed to have a relatively low frequency

sway mode. This makes these suspensions more susceptible to air turbulence excitations

than their conventional counterparts.

The servo performance of actuated suspensions remains limited when compared to

the next two approaches. However, this approach is expected to be the first to be deployed

in commercial disk drives.

Actuated Slider

In this approach, a microactuator is placed between the slider and gimbal to po-

sition the slider/magnetic head. The resulting servo bandwidth of this approach can be

higher than the previous approach because the secondary actuator bypasses the mechan-

ical resonances of the arm and the suspension. This approach uses existing sliders and

microactuators that can be batch fabricated, and thus could be cost effective. However,

the size and mass of the microactuator are significant relative to those of current sliders,

and this may interfere with slider flying stability. Therefore, current suspensions need to

be re-designed to adopt this secondary actuator. Suitable driving forces in this approach

include electrostatic, electromagnetic and piezoelectric [21] [42] [19] [53] [13] [35]. Fig. 1.9

shows a picture of a MEMS electrostatic microactuator and slider mounted on a suspension.

The main advantage of electrostatic microactuators that are designed and fab-

ricated using MEMS technologies is that they have very clean dynamic responses. Thus

dual-stage servo systems based on MEMS microactuator actuated-slider approach poten-
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Microactuator

Slider

Suspension

Figure 1.9: A MEMS electrostatic microactuator and slider mounted a suspension. (Cour-
tesy of L.-S. Fan, IBM)

tially can achieve a much higher bandwidth than those based on actuated-suspension ap-

proach. Another advantage of MEMS microactuators is that capacitive position sensors

can be integrated to the microactuator design. The main drawback of this approach is

the increased complexity in integrating the microactuator with the gimbal and the slider.

To further reduce this assembly task and improve the performance, some researchers have

proposed microactuators that are either integrated with the gimbal structure [42] or the

slider [27].

Actuated Head Elements

In this approach, the microactuator is designed to be an integrated part of the

slider, actuating the magnetic head elements directly with respect to the rest of the slider

body [15] [28] [43]. As these microactuators are very small, they only slightly increase

the slider weight, and are thus capable of working with current suspension assemblies.

Researchers have successfully demonstrated the integrated fabrication process for fabricat-
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ing the electrostatic microactuators and magnetic heads within one piece of ceramic block

(slider). The embedded electrostatic microactuator has its resonance close to 30 kHz and

was able to position the magnetic head relative to the rest of the slider body by 0.5 µm [28]

[43]. However, the integration of slider, actuator, and read/write head remains a challenge.

In this dissertation, we will discuss controller design of PZT-actuated suspension

and MEMS microactuator actuated-slider dual-stage actuator servo systems .

1.2.2 Multi-Sensing Servo Systems

Another technique to overcome the limitations of traditional disk drive servo sys-

tems is multi-sensing servo control by adding auxiliary sensors. Two main applications have

been investigated: resonance control by active damping and external disturbance rejection

by acceleration feedfoward control.

As mentioned earlier, the control bandwidth of traditional single-stage servo sys-

tems is limited by the resonance modes of the head-stack and actuator assembly. By actively

damping these resonance modes, the bandwidth of single-stage actuator servo systems can

be expanded. The assembly butterfly mode is the biggest constraint to the control band-

width because of its large resonance peak and low resonance frequency. Two sensing and

control schemes have been developed for active damping control of the butterfly mode: ac-

celerometers placed at the tip of the E-block arm [31], and strain sensors attached to the

surface of the E-block [25].

Another application of multi-sensing servo is in external disturbance rejection using

acceleration feeforward control [59] [58] [47] [46]. In this case, accelerometers are placed

on the base plate of the disk drive to detect external disturbances. The output of the
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accelerometer is applied to a feedforward controller which controls the actuator to cancel

the effects of external disturbances before they affect the head position.

1.3 Research Objectives

Many controller design methodologies have been developed for dual-stage servo

control systems. They can be largely classified into two categories: those based on decou-

pled or sequential single-input single-output (SISO) design methods, such as master-slave

method, decoupled master-slave method [40], PQ method [51], and parallel design method

[52], and those based on modern optimal control design methods, such as LQG [63], [55],

LQG/LTR [24], [54], H∞ [55], [49], and µ-synthesis [18], etc. A more detailed overview of

these design methodologies is presented in Chapter 3, section 3.1.

Dual-stage actuator servo systems are multi-input multi-output (MIMO) systems.

The servo control design for dual-stage disk drives faces new challenges in terms of plant

dynamics variations and dynamics coupling between the two actuators. However, not much

attention has been paid to these issues in previous work. The first objective of this disser-

tation is to develop new robust and adaptive controller design methodologies for dual-stage

servo control design.

The plant dynamics of dual-stage actuators have unit-to-unit variations due to

manufacturing tolerances in mass production, and they change with operating environment.

Furthermore, there exists significant dynamic coupling in actuated suspension dual-stage

actuators. Classical gain and phase margins computed one-loop-at-a-time cannot fully

characterize and evaluate the stability and performance robustness of the dual-stage servo
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control system since they cannot capture the effects of simultaneous and cross-coupling of

variations. Continuing the work in [18], a truly coupled MIMO plant model with structured

uncertainty was established for a PZT-actuated suspension dual-stage servo system. Robust

control design and analysis based on µ-synthesis and analysis were developed. For controller

design of a MEMS microactuors dual-stage servo system, an adaptive control scheme was

developed to compensate for the variations in microactuator’s resonance mode.

The second objective of this dissertation is to investigate the feasibility and con-

trol schemes of active vibration compensation using dual-stage multi-sensing servo systems

to suppress air turbulence induced structural vibrations (windage). The adoption of dual-

stage servo systems will change the paradigm of the PES spectrum. TMR contribution

from windage vibrations become more important due to the increased attenuation of low-

frequency disturbances and runout by the high bandwidth dual-stage servo system. The

trend of further increasing the TPI and spindle rotation speed may require active compen-

sation of the actuator structural vibrations.

In this dissertation, control schemes of combining dual-stage actuators and multi-

sensing servo systems for active vibration compensation are investigated. Feedback damping

control, which can be applied to actuated-suspension dual-stage servo systems, and feedfor-

ward control, which can be applied to actuated-slider/head dual-stage servo systems, are

proposed to suppress the TMR due to windage vibrations.



20

1.4 Outline of the Dissertation

The dissertation is organized as follows. Chapters 2, 3 and 4 discuss modeling

and controller design of a PZT-actuated suspension dual-stage servo system. Chapter 2

presents modeling of the system. The experimental setup is described. Frequency response

modal testing to establish a coupled MIMO dual-stage plant modal is presented. Chapter

3 focuses on robust track-following controller design. Model uncertainty representations

are described. Design and experimental results of decoupled SISO design and robust µ-

synthesis design are presented and compared. Chapter 4 presents the feedback damping

control of the PZT-actuated suspension dual-stage system using one PZT element on the

PZT-actuated suspension as a vibration sensor.

Chapter 5 discusses adaptive control of MEMS microactuator dual-stage servo

systems. A decoupled design structure with microactuator minor-loop damping and a design

methodology by discrete-time pole placement are proposed. A self-tuning control scheme

is developed to compensate for the variations in the microactuator’s resonance mode. The

formulation of adaptive feedforward control to compensate windage vibrations using MEMS

microactuator is presented. Simulation results are presented to verify the proposed control

schemes.

Chapter 6 concludes the dissertation by summarizing the results and major achieve-

ments. Recommendations of future work are discussed.
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Chapter 2

Modeling of the PZT-Actuated

Suspension Dual-Stage Actuator

This chapter presents the modeling of the PZT-actuated suspension dual-stage

actuator. The basic actuator and sensor equations of the PZT-actuated suspension are

derived. The experimental setup is described. Major vibration modes of the dual-stage

actuator are analyzed. Modal testing to establish a coupled MIMO plant model of the

dual-stage actuator is presented.



22

2.1 Actuator and Sensor Models of the PZT-Actuated Sus-

pension

Constitutive Equations of Piezoelectric Sensors and Actuators

Direct piezoelectric effect refers to the generation of electrical charge on the sur-

faces of a segment of material when a force (stress) is applied. Analogously, converse

piezoelectric effect refers to the change in strain for a free element (or stress for a clamped

element) when an electrical field is applied. Piezoelectric materials can be made as sensors

and actuators using these two effects. The basic electromechanical constitutive equations

of a three-dimensional piezoelectric element can be written as [38]:

D = d ·T+ p ·E , (2.1)

S = s ·T+ d ·E , (2.2)

where

D: electric displacement vector (3 components), Coulomb/m2;

d: piezoelectric coefficients tensor (3rd order, 27 components), Coulomb/Newton;

T: stress tensor (2nd order, 9 components), Newton/m2;

p: permittivity tensor (2nd order, 9 components), Farad/m;

E: electric field intensity vector (3 components), V olt/m;

S: strain tensor (2nd order, 9 components), dimensionless;

s: elastic compliance tensor (4th order, 81 components), m2/Newton.

Eq. (2.1) is referred to as the sensor equation and Eq. (2.2) is referred to as the

actuator equation. They can be simplified using symmetric and isotropic properties of the
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material. In particular, for a one-dimensional sensing/actuation piezoelectric element using

1-direction mechanical and 3-direction electrical relations, as shown in Fig 2.1, Eqs. (2.1)

and (2.2) are simplified to the following scalar equations

D = d31σ + εE , (2.3)

ε =
1

Y
σ + d31E , (2.4)

where σ, ε, and Y are the mechanical stress, strain, and Young’s modulus in the 1-direction,

respectively; E,D and ε are the electric field intensity, electric displacement and permittivity

in the 3-direction, respectively; d31 is the piezoelectric constant relating applied stress in the

1-direction and generated electric displacement in the 3-direction (or equivalently applied

electric field in the 3-direction and generated strain in the 1-direction).
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Figure 2.1: Diagrams of piezoelectric sensor and actuator.

Typical piezoelectric materials used for sensor and actuator applications include

Quartz, PZT (Lead Zirconate-Titanate), ZnO, and PVDF (Poly-Vinylidene Fluoride).
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Piezoelectric Strain Sensors

Piezoelectric films can be used as strain sensors to detect structural vibrations.

Consider a piezoelectric element subjected to applied forces as shown in Fig. 2.1b, from the

sensor equation Eq. (2.3), the electric displacement in the 3-direction is (applied electrical

field E = 0)

D = d31σ = d31Y ε. (2.5)

The generated charge in the 3-direction is

Q =

∫

DdA = d31Y εwl , (2.6)

where w and l are the width and length of the piezoelectric element, respectively.

The piezoelectric element itself is a capacitor with capacitance

CP =
εrεowl

t
, (2.7)

where εr is the dielectric constant in the 3-direction, and ε0 is the free space permittivity.

An equivalent circuit of the piezoelectric sensor can be represented by a voltage source in

series with a capacitor, as shown in Fig. 2.2. The open-circuit output voltage is

Vo =
Q

CP
=
d31Y t

εrεo
ε . (2.8)

The output voltage is linear to the strain with a constant proportional to the thickness of

the piezoelectric element.

The output of a piezoelectric sensor can be amplified by a charge or voltage am-

plifier [41]. Fig. 2.3a shows the circuit of a non-inverting voltage amplifier. The amplifier

output is

Vout =
Q

CP

(

1 +
R2
R1

)

. (2.9)
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Vs Vo

CP

Figure 2.2: Equivalent circuit of the piezoelectric sensor.

To increase the voltage output, the cable should be as short as possible to reduce parasitic

capacitance. Fig. 2.3b shows the circuit of a charge amplifier. The amplifier output is

Vout = −
Q

CF
. (2.10)

The main advantage of the charge amplifier is that the output voltage depends only on

the feedback capacitance, but not the capacitance of the sensor and the cable. Therefore,

longer cables can be used. Both kinds of amplifiers have high-pass characteristics. The time

constant of the voltage amplifier is RCP , while that of the charge amplifier is RCF . [41].

Thus, piezoelectric sensors are usually not suited for sensing static or very low-frequency

signals.

Actuator Model of the PZT-Actuated Suspension

A PZT-actuated suspension uses two PZT elements located between the base plate

and the load beam of the suspension, as shown in Fig. 2.4a. The two PZT elements are

polarized oppositely and connected in parallel. When a voltage is applied to them, one

extends and the other contracts. The push-pull action rotates the load beam about a hinge

and moves the head located at the tip of the load beam. Fig. 2.4b shows a simplified
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Figure 2.3: Piezoelectric sensor amplifiers.

mechanical model for the PZT-actuated suspension with lumped parameters. Structural

damping is neglected in this model.

Hinge

PZT actuator
L

H

Base plate
Load beam

θ

yh

kl

ceq

m

Head

-Fp

yp

xp

gl = L/H

a) Schematic diagram of  PZT actuated suspension b) Simplified mechanical model

Fp

Figure 2.4: Lumped parameter model of the PZT-actuated suspension.

The load beam is modeled to be a mechanical leverage with gain, gl = L/H, and

an equivalent spring kl. ceq denotes the equivalent air damping acting on the slider. Fp

represents the force generated by the PZT actuator. The leverage balance equation gives

Fp = glkl (yp − yh) /2 , (2.11)
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where yh denotes the displacement of the slider, yp denotes the displacement at the end of

the leverage. The equation of motion of the slider is

mÿh = −ceqẏh − kl (yh − yp) , (2.12)

where m denotes the mass of the slider. From Eqs. (2.11) and (2.12), we have the following

transfer functions

Yh(s)

Yp(s)
=

kl
ms2 + ceqs+ kl

(2.13)

Yh(s)

Fp(s)
=

2

gl (ms2 + ceqs)
(2.14)

The applied stress to the PZT element due to the actuation force is

σ = −Fp

wt
, (2.15)

where w and t are the width and thickness of the PZT element, respectively. The strain of

the PZT element equals

ε =
xp
l

=
yp
lgl

, (2.16)

where l is the length of the PZT element. The electrical field intensity given the applied

voltage Va is

E =
Va
t
. (2.17)

Substituting Eqs. (2.13)-(2.17) to the actuator equation Eq. (2.4), we can obtain

the following 2nd-order transfer function from the applied voltage to the head lateral motion

Gp(s) =
Yh(s)

Va(s)
=

2d31gllY wkl
(

2Y wt+ lklg
2
l

)

ms2 +
(

2Y wt+ lklg
2
l

)

ceqs+ 2Y wtkl
. (2.18)

The DC gain relating the applied voltage to the head lateral motion is

gDC = d31gl

(

l

t

)

. (2.19)
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Thus, the longer and thinner the actuator, the larger the DC gain. However, the PZT

actuator must maintain enough stiffness in the out-of-the-plane direction to support the

pre-load of the slider. Thus, its thickness cannot be too small. A multi-layer PZT actuator

can maintain the same out-of-the-plane stiffness, while achieving a larger DC gain (lower

driving voltage).

The actual dynamics of the PZT-actuated suspension are coupled with the reso-

nance modes of the arm and other suspension torsion modes.

Sensor Model of the PZT-Actuated Suspension

The PZT element can also be used as a sensor. There are two PZT elements on

the PZT actuated suspension. It is possible to use one of them as a vibration sensor and the

other as an actuator for vibration damping control. Now consider the model in Fig. 2.4b

but with only one PZT element driving, the actuation force of the actuating PZT element

equals

Fp1 = glkl (yp − yh) + εY wt , (2.20)

where ε is the strain of the sensing PZT element. Note that the strains of the two PZT

elements are equal in magnitude. It can be verified that the transfer function from Va to

yh now becomes half of that when both PZT elements are used for driving. We have

Gp1 =
Yh(s)

Va(s)
=

1

2
Gp . (2.21)

From Eqs. (2.4), (2.12), (2.15), and (2.20), we have

ε(s) =
1

2

(

gl
(

ms2 + ceqs
)

Yh(s) + d31
Va
t

)

=
1

2

(

gl
(

ms2 + ceqs
)

Gp1 +
d31
t

)

Va . (2.22)
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Using Eqs. (2.8), (2.18), (2.21), and (2.22) the transfer function from the driving voltage

Va to the sensing output voltage Vo can be obtained as

Gs(s) =
Vo(s)

Va(s)
=
d31Y t

2εrεo

(

d31gllY wkl
(

ms2 + ceqs
)

(

2Y wt+ lklg
2
l

)

ms2 +
(

2Y wt+ lklg
2
l

)

ceqs+ 2Y wtkl
+
d31
t

)

.

(2.23)

Note that there is a direct feedthrough term from the input to the output.

2.2 Experimental Setup

Fig. 2.5 shows a picture of the experimental setup of the PZT-actuated suspension

dual-stage servo system. It consists of a dual-stage actuator disk drive, a laser Doppler

vibrometer (LDV), a digital signal processor (DSP) board and an amplifier board.

Figure 2.5: Experimental setup.

The PZT-actuated suspension used in our testing was provided by Hutchinson

Technologies, Inc. (HTI) with model number Magnum-5E. It has a stroke limit of ±1µm
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under a driving voltage of ±40V . The PZT-actuated suspension was installed on the top

finger of the E-block in a 7200-RPM disk drive. Head lateral motion was detected by an

LDV. An opening was cut on the side of the disk drive to allow the laser to pass through.

One major disadvantage of using an LDV as a position sensor is that track runout

cannot be measured. Furthermore, the displacement output of the LDV has low-frequency

drifts, mainly below 100 Hz. However, this is generally not a problem for track-following

control testing since the drifts act as low-frequency disturbances and can be compensated

for by the control system. The displacement output gain of the LDV used in the testing is

0.5 µm/V, and it has a resolution of 2 nanometers.

A floating-point DSP board from Texas Instruments (TI), TMS320C6711 DSK,

was used to control the dual-stage servo system. An analog-digital convertor (ADC) daugh-

ter board, THS1408 EVM board, also from TI, was connect to the DSK board through its

daughter board expansion interface. We designed an analog amplifier board, which has the

following components:

• Digital-analog convertor (DAC): TLV5638, 2-channel, 12-bit, 1 µs settling time. It

connects to the DSP board through a serial interface.

• PZT actuator amplifier: the amplifier has a gain of 10, resulting in a maximum driving

voltage of ±20 V.

• VCM current driver: a simple voltage to current amplifier is used to drive the VCM.

It has a gain of 10 mA/V, resulting in a maximum driving current of ±20 mA, which

is large enough for track-following control.

• Piezoelectric sensor amplifier and analog switch: an instrumentation amplifier, AD624
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from Analog Device Inc., is used as a voltage amplifier to the PZT sensor output. An

analog switch, MAX319 from Maxim, is used to multiplex LDV or PZT sensor output

to the ADC board.

2.3 Modal Testing of the PZT-Actuated Suspension Dual-

Stage Actuator

2.3.1 Frequency Response Modal Testing

The PZT-actuated suspension has two PZT elements. Normally, both of them are

used as actuators, and the dual-stage servo system is a dual-input single-output (DISO)

system, as shown in Fig. 2.6a. It is also possible to use just one of them as an actuator, and

use the other one as a sensor. In this case, the dual-stage servo system is a dual-input dual-

output (DIDO) control system, as shown in Fig. 2.6b. In chapter 3, the controller designs

are based on the normal DISO configuration. In chapter 4, the vibration damping control

scheme is based on the DIDO configuration. The modal testing results presented in this

section are based on the DIDO configuration. The DISO plant model is just a sub-system

of the DIDO plant model by eliminating the PZT senor output.

Let u1 and u2 be the inputs to the VCM and the PZT actuator, respectively, and

y1 and y2 be the head displacement output in the radial off-track direction and the PZT

sensor output, respectively. The transfer function from uj to yi, Gij(s), i, j = 1, 2, can be

written as

Gij(s) =
Kij
0

s2
+

N
∑

n=1

ω2nK
ij
n

s2 + 2ζnωns+ ω2n
+ dij , (2.24)
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u1

Dual-Stage
Actuator

y1

u2

u1: VCM actuator control input; y1: head position; 
u2: PZT actuator control input; y2: PZT sensor output;

Dual-Stage
Actuator y2u2

y1

a) Dual-input Single-output (DISO) b) Dual-input Dingle-output (DIDO)

u1

Figure 2.6: DISO and DIDO configurations of the PZT-actuated suspension dual-stage
actuator.

which is the summation of the rigid body mode, a number of structural vibration modes and

a feedthrough term. In Eq. (2.24), N is the total number of vibration modes considered,

ωn and ζn are the natural frequency and the damping ratio of mode n, respectively. K ij
n is

the modal constant of mode n from uj to yi, and dij is the direct feedthrough factor from

uj to yi.

Figs. 2.7-2.10 show the following measured and simulated frequency responses:

a) from VCM input u1 to head displacement y1; b) from PZT actuator input u2 to head

displacement y1; c) from VCM input u1 to PZT sensor output y2; d) from PZT actuator

input u2 to PZT sensor output y2. The solid lines are experimentally measured responses,

while the dashed lines are simulated responses using the identified model.

As shown in these figures, major vibration modes of the PZT-actuated suspension

dual-stage actuator in our setup include the assembly butterfly mode (M1 in the figures), the

suspension sway mode (M2), the suspension 2nd torsion mode (M3), and the suspension

1st torsion mode (M4). Among them, the two most important off-track modes are the

assembly butterfly mode and the suspension sway mode. Fig. 2.11 illustrates the mode
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Figure 2.7: Frequency response from VCM input to head displacement.
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Figure 2.8: Frequency response from PZT actuator input to head displacement.
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Figure 2.9: Frequency response from VCM input to PZT sensor output.
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Figure 2.10: Frequency response from PZT actuator input to PZT sensor output.
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shapes of these two modes. The assembly butterfly mode is generated by the coupling of

in-plane sway modes of the E-block arm and the coil, in which the arm and the coil move

out of the phase with respect to each other around the pivot. The suspension sway mode

is the mode we discussed in section 2.1, in which the load beam and the slider vibrate with

respect to the hinge of the PZT-actuated suspension. It is also called the PZT actuator

mode.

a) Assembly butterfly mode b) Suspension sway mode

Figure 2.11: Illustration of modes shape of assembly butterfly mode and suspension sway
mode.

The torsion modes of the suspension also contribute to head off-track motion.

Fig. 2.12 shows the mode shapes of the 1st, 2nd and 3rd torsion modes, as well as the sway

mode, of Magnum-5E PZT-actuated suspension obtained by finite element analysis [16].

As shown in Fig. 2.7, the frequency response from VCM input u1 to head displace-

ment y1 is dominated by the rigid body mode in the low frequency range and the structural

vibration modes in the high frequency range. Fig. 2.8 shows that the PZT actuator can

excite the VCM actuator butterfly mode through the swage connection with the E-block

arm.

As shown in Figs. 2.9-2.10, the PZT sensor can pick up most of the off-track
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T1   6737 Hz

T3 15739 HzT2   12118 Hz

S 8635 Hz

Figure 2.12: Magnum-5E vibration modes (FEA) (Courtesy of H. Gross, UC, Berkeley).

vibration modes of the head stack and suspension assembly when they are excited by the

control inputs. The PZT sensor does not sense the rigid body mode, as expected. However,

the PZT sensor picks up some non-off-track modes near 3 kHz (M5 and M6 in Figs. 2.9-2.10),

which have little effect on the head off-track motion. These modes are probably related to

the bending modes of the suspension and they are excited by the airflow disturbances in

the out-of-the-plane direction. They act as noise modes to the control system.

2.3.2 Modal Parameters Extraction

The modal parameters, ζn, ωn, A
ij
n , n = 1, ..., N , i, j = 1, 2, in Eq. (2.24) can be

extracted from the measured frequency responses using modal testing techniques, such as

peak-magnitude method or circle-fit method [12]. The peak-magnitude method is a simple

single-degree-of-freedom (SDOF) modal testing method. Assuming the resonance frequen-
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cies of each resonance mode are not closely spaced, and the modes are lightly damped, then

the response near each resonance frequency is dominated by one resonance mode. Thus,

modal parameters can be estimated for that mode by neglecting the effects due to the other

modes.

Three modal parameters need to be estimated for each resonance mode, the natural

frequency ω, the damping factor ζ, and the modal constant K. For a lightly damped

resonance mode, the natural frequency ω is approximately equals to the resonance frequency

ωr,

ω ≈ ωr. (2.25)

The damping ratio can be estimated from the so called “half-power” or “-3dB-magnitude”

points by

ζ ≈ ωa − ωb

2ωr
, (2.26)

where ωa and ωb are the frequencies at which the magnitudes of the frequency response are

1/
√
2 of the peak magnitude at the resonance frequency, as shown in Fig. 2.13a. The modal

constant can then be estimated by

K ≈ 2hrζ , (2.27)

where hr is the magnitude of the frequency response at the resonance frequency.

For modal testing of multiple resonance modes, the modal parameters of the

biggest resonance peak are estimated first. The frequency response of this mode can then be

estimated and subtracted from the overall frequency response. The above process repeats

until all major modes are identified.

The frequency response from the PZT actuator input to the head displacement,
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a) Peak-magnitude modal testing b) Magnitude plot of the PZT actuator

Figure 2.13: Modal testing using the peak-magnitude method.

which is shown in Fig. 2.13b in linear magnitude, is the cleanest of the four measured

responses, and therefore is used to estimate the natural frequencies, ωn, and the damping

factors, ζn, of the resonance modes of the dual-stage actuator. Three modes, the butterfly

mode (M1), the suspension sway mode (M2), and the suspension 2nd torsion mode (M3),

were included in the modal analysis.

From two inputs to two outputs, there are 4 modal constants, K11n ,K
12
n , K21n , and

K22n , for each mode. Note that only three of them are independent. K12n , K21n , and K22n

were estimated by using Eq. (2.27) based on the measured frequency responses in Figs. 2.8-

2.10. K11n can not be directly estimated from the frequency response in Fig. 2.7 due to the

coupling of the rigid body mode. Instead it was calculated by

K11n = K21n ∗K12n /K22n , n = 1, 2, 3. (2.28)

The signs of the modal constants can be determined in two ways: by matching the locations
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of the zeros, or by matching the phase of the frequency responses.

Table 2.1 lists all modal parameters extracted using this method.

Table 2.1: Extracted modal parameters

Parameters Mode 1 Mode 2 Mode 3

natural frequency ωn (Hz) 5900 8400 (FEA: 8635) 11500 (FEA: 12118)

damping factor ζn 0.022 0.023 0.035

modal constant from u1 to y1, K
11
n -0.04 0.0098 0.0048

modal constant from u2 to y1, K
12
n 0.005 0.016 0.003

modal constant from u1 to y2, K
21
n -0.32 0.11 0.08

modal constant from u2 to y2, K
22
n 0.04 0.18 0.05

Finally, the feedthrough term dij can be estimated by matching the DC gains of

the measured frequency responses. The feedthrough terms from u1 and u2 to the head

displacement y1 were found to be zero, d11 = 0, d12 = 0, as expected. There exist di-

rect feedthrough from inputs to the PZT sensor output as discussed in section 2.1. The

feedthrough terms from u1 and u2 to y2 were found to be, d21 = 0.16, d22 = 0.77.

Due to the effects of the flexible printed cable and pivot friction, the rigid body

mode of the VCM can be modeled as a mass-spring-damper system instead of a double

integrator. The natural frequency, damping factor and modal constant were found to be ω0

= 160 Hz, ζ0 = 0.25, and K110 = 3.6e7. The excitation to the rigid body mode by the PZT

actuator is small and can be neglected, thus K120 = 0. The PZT sensor can not sense the

rigid bode mode, thus K210 = K220 = 0.

There are good matches between the experimentally measured frequency responses

(the solid lines in Figs. 2.7-2.10) and the simulated frequency responses of the transfer

functions in Eq. (2.24) using the extracted modal parameters (the dashed lines in Figs. 2.7-

2.10), verifying that the extracted modal parameters are accurate.
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Using the identified modal parameters, the control system can be represented as

either a decoupled SISO or coupled MIMO model for controller designs:

• In the decoupled SISO representation, the VCM and the PZT actuator dynamics are

modeled separately by their transfer functions. The decoupled dual-stage controller

design in Chapter 3 is based on this model.

• In the coupled MIMO representation, the dual-stage actuator is modeled as a true

MIMO system. In Chapter 3, representation of parametric uncertainty of this coupled

MIMO plant model will be discussed. In Chapter 4, the state feedback damping

controller is designed based on a state-space realization of the MIMO plant model.
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Chapter 3

Track-Following Controller Design

of the PZT-Actuated Suspension

Dual-Stage Servo System

This chapter discusses track-following control design for the PZT-actuated sus-

pension dual-stage servo system. The considered plant is dual-input single-output (DISO).

An overview of the dual-stage controller design methodologies and structures is introduced.

Two control designs are presented and compared. The first is designed using decoupled clas-

sical SISO frequency shaping design method. The second is designed using the µ-synthesis

robust controller design method. Modeling and representation of model uncertainties are

presented. The robustness of decoupled SISO design is analyzed using µ-analysis. Experi-

mental results are presented.
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3.1 Overview of Dual-Stage Control Design Methodologies

Various control design architectures and methodologies have been developed for

control design of dual-stage servo systems. They can be largely classified into two categories:

those based on decoupled or sequential single-input single-output (SISO) designs, and those

based on modern optimal design methodologies, such as LQG, LQG/LTR, H∞, and µ-

synthesis.

Two constraints must be considered in the dual-stage servo control design. First,

the contribution from each actuator must be properly allocated. Usually, the first-stage

actuator, or the coarse actuator, has a large moving range, but a low bandwidth, while the

second-stage actuator, or the fine actuator, has a high bandwidth, but small moving range.

Second, the destructive effect, in which the two actuators fight each other by moving in

opposite directions, must be avoided.

3.1.1 Classical SISO Design Methodologies

Several architectures and design methodologies have been proposed to transform

the dual-stage control design problem into a decoupled or sequential multiple SISO compen-

sators design problem, for example, master-slave design, decoupled design [40], PQ method

[51], and parallel design by sequential loop-closing [52]. Fig. 3.1 to Fig. 3.4 show the block

diagrams of dual-stage controller designs using these methods. In these figures, G1 and

G2 represent the coarse actuator (VCM) and fine actuator (microactuator) respectively. x1

denotes the position of the coarse actuator. xr denotes the position of the fine actuator

relative to the coarse actuator. xp denotes the total position output. r denotes the reference
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input (runout), and e denotes the position error, e = r − xp .

Master-slave Design Method

In a traditional master-slave structure, the absolute position error is fed to the

fine actuator, and the output of the fine actuator is fed to the coarse actuator, as shown in

Fig. 3.1. The position error is first compensated by the high bandwidth fine actuator. The

coarse actuator will follow the fine actuator to prevent its saturation.

x1
C1

er

-

+

G1

xp

C2 G2
xr

Figure 3.1: Master-slave design structure.

Decoupled Design Method

Fig. 3.2 shows a decoupled design structure [40], which is similar to the master-

slave structure. A summation of the fine actuator output and the position error, which

equals the position error of the coarse actuator, is fed to the course actuator. A nice feature

of this structure is that the control system is decoupled into two independent control loops,

and the total closed-loop sensitivity function is the product of the sensitivity functions

of each of the control loops. Thus, the two compensators C1 and C2 can be designed

independently. This method is also referred to as decoupled master-slave design method, or

sensitivity function decoupling design method. Details of track-following controller design

using this method will be further discussed in section 3.2.
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xp

C2 G2

+

xr

e1

Figure 3.2: Decoupled control design structure.

Both the master-slave and the decoupled designs use the relative position of the

fine actuator, xr. If a relative position sensor is unavailable, xr can be estimated using a

model of the fine actuator.

PQ Design Method

The PQ method is another innovative design technique for control design of dual-

input, single-output systems [51]. A block diagram of dual-stage controller design using this

method is shown in Fig. 3.3.

x1C1

er

-

+

G1

xp

C2 G2

C0

xr

Figure 3.3: PQ control design structure.

In the PQ design, P is defined by

P =
G1
G2

, (3.1)

and a dual-stage controller can be designed in two steps. The first step involves the design
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of an auxiliary compensator Q for plant P , which is defined by

Q =
C1
C2

. (3.2)

Q is designed to parameterize the relative contribution of the coarse and fine actuators. The

0 dB crossover frequency and phase margin of the open-loop transfer function PQ are the

design parameters in the design of Q. At frequencies below the 0 dB crossover frequency of

PQ, the output is dominated by the coarse actuator, while at frequencies above the 0 dB

crossover frequency, the output is dominated by the fine actuator. At the 0 dB crossover

frequency, the contributions from the two actuators are equal. A large phase margin of PQ

will ensure that the two actuators will not fight each other when their outputs are close in

magnitude, thus avoiding any destructive effects.

The second step in the PQ design methodology is to design a compensator C0 for

SISO plant PQ such that the bandwidth, gain margin, phase margin, and error rejection

requirements of the overall control system are satisfied.

Parallel Design by Sequential Loop Closing

It is also possible to design the dual-stage controller directly using a parallel struc-

ture, as shown in Fig. 3.4, by imposing some design constraints and by sequential loop

closing [52].

The two constraints for parallel design in terms of the open-loop transfer functions

are [52]:

C1(s)G1(s) + C2(s)G2(s)→ C2(s)G2(s), (3.3)
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Figure 3.4: Parallel control design structure.

at high frequencies and

|C1(s)G1(s) + C2(s)G2(s)| À |C2(s)G2(s)|, (3.4)

at low frequencies. The first constraint implies that the open-loop frequency response of the

dual-stage control system at high frequencies approximately equals that of the fine actuator

control loop. Thus, the compensator C2(s) can be first designed independently as a SISO

design problem to satisfy the bandwidth, gain margin, and phase margin requirements of

the dual-stage control system. The second constraint ensures that the fine actuator will

not be saturated. Compensator C1(s) can then be designed for the SISO plant model with

the fine actuator control loop closed, such that the low frequency constraint and overall

stability requirement are satisfied. This model is defined by:

G(s) =
G1(s)

1 + C2(s)G2(s)
. (3.5)

3.1.2 Modern MIMO Design Methodologies

Since the dual-stage actuator servo system is a MIMO system, it is natural to

utilize modern MIMO optimal design methodologies, such as LQG, LQG/LTR, H∞, and

µ-synthesis, to design the dual-stage controller. Usually MIMO optimal designs are based
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on the parallel structure shown in Fig. 3.4, augmented with noise/disturbances models and

other weighting functions to specify the control design performance objectives.

Linear quadratic Gaussian (LQG) control combines a Kalman filter and opti-

mal state feedback control based on the separation principle. However, the Kalman filter

weakens the desirable robustness properties of the optimal state feedback control. Linear

quadratic Gaussian / loop-transfer recovery (LQG/LTR) control recovers robustness by a

Kalman filter redesign process. Dual-stage control designs using LQG and LQG/LTR have

been reported in [63], [55], [24], [54], etc.

The LQG design methodology minimizes the H2 norm of the control system, while

the H∞ design methodology minimizes the H∞ norm of the control system. µ-synthesis

design methodology is based on the H∞ design and accounts for plant model uncertainties

during the controller synthesis process. Dual-stage control designs based on the H∞ and

µ-synthesis design methodologies have been reported in [55], [18], [49], etc. Track-following

controller design using µ-synthesis will be presented in section 3.3.

Other advanced control theories also have been applied to dual-stage servo control

designs, such as sliding mode control [34], neural networks [50], etc.

3.1.3 Disk Drive Servo Control Design Specifications

Traditional robustness and performance specifications of typical disk drive servo

control designs include

• Gain and phase margins: to have enough stability robustness, usually a gain margin

larger than 6 dB and a phase margin larger than 35◦ are required for disk drive servo
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control systems.

• Bandwidth: bandwidth is often characterized by the open-loop gain crossover fre-

quency. For single-stage actuator servo systems, the achievable bandwidth is limited

by high-frequency resonance modes to within about 1 kHz . Dual-stage actuator servo

systems can achieve more than 2 kHz bandwidth.

• Sensitivity function maximum peaking: to minimize the amplification of disturbance/noise

by the servo system, the maximum peak of the sensitivity function is usually required

to be less than 6 dB.

These design specifications can be conveniently checked by examining the Nyquist

plot of the open-loop system as shown in Fig. 3.5
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Figure 3.5: Design specifications using Nyquist plot of the open-loop system.
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To satisfy the phase margin requirement, the Nyquist curve must enter the unit-

circle from the right hand side of the phase margin lines. It cannot enter the disk centered

at (−1, 0) with a radius of 0.5 to satisfy the gain margin and sensitivity function peaking

requirements.
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3.2 Decoupled Dual-Stage Controller Design

The dual-stage controller design that will be discussed in this section is based on

the decoupled master-slave method. It helps us to understand the dual-stage control design

problem and serves as a reference to which the robust µ-synthesis design will be compared.

3.2.1 Decoupled Master-Slave Controller Design Methodology

Fig. 3.6 shows a block diagram of the dual-stage controller design using decoupled

master-slave method. For simplicity, the PZT-actuated suspension will be referred to as

the microactuator (MA) in this dissertation. In Fig. 3.6, GV CM and GMA represent the

VCM and microactuator models, respectively. KV CM and KMA represent the VCM and

microactuator loop controllers, respectively. r denotes the track runout. xp and xv denote

the positions of the head and the VCM, respectively. PES denotes the position error

between the head and the track. RPES denotes the position of the head (microactuator)

relative to the VCM. We have

PES = r − xp = r − xv −RPES (3.6)

VPES xVKVCM

+

RPESPESr

-

+

GVCM

GMA

xP
KMA

gPZT

RPESEST

Figure 3.6: Block diagram of the track-following controller design using decoupled master-
slave method
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The decoupled master-slave control approach utilizes the PES and the RPES

signals to generate the position error of the VCM relative to the track, which will be

labeled as V PES,

V PES = PES +RPES = r − xv, (3.7)

and this signal is fed to the VCM loop compensator to decouple the control system [40].

First lets assume RPES is available. The open-loop transfer function from r to

xp with PES feedback loop open in Fig. 3.6 is

GTO = KV CMGV CM +KMAGMA +KMAGMAKV CMGV CM , (3.8)

and

1 +GTO = (1 +KV CMGV CM )(1 +KMAGMA). (3.9)

The closed-loop sensitivity function from r to PES is

ST =
1

1 +GTO
= SV CMSMA, (3.10)

which equals the product of the VCM and microactuator loop sensitivity functions, SV CM

and SMA, defined by

SV CM =
1

1 +KV CMGV CM
, (3.11)

SMA =
1

1 +KMAGMA
, (3.12)

respectively. It can also be shown that the block diagram in Fig. 3.6 is equivalent to the

block diagram shown in Fig. 3.7. It indicates that the runout r is first attenuated by the

VCM loop and becomes V PES, which is further attenuated by the microactuator loop and

becomes PES.
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Figure 3.7: Equivalent sensitivity function block diagram.

Thus, the dual-stage servo control design can be decoupled into two independent

SISO sensitivity function shaping designs: the VCM loop and the microactuator loop.

Dual-stage system stability is guaranteed if each individual loop is stable. The VCM loop

sensitivity function can be designed using traditional single-stage servo design methodolo-

gies. The microactuator loop sensitivity function is designed to expand the bandwidth of

the overall feedback system and provide additional error rejections.

For most PZT-actuated suspensions, RPES is not available. An estimate of it,

RPESEST , can be obtained by multiplying the PZT control input by the DC gain of

the PZT actuator, gPZT . This estimate is accurate in the low frequency range since the

dynamics of the PZT actuator can be accurately characterized by a pure gain up to about

4 kHz, as shown in Fig. 2.8. Above this frequency, its dynamics are dominated by the

resonance modes. Let ∆GMA denotes the difference between the estimator gPZT and the

actual microactuator model, GMA,

∆GMA = gPZT −GMA . (3.13)

The model error introduces an additional term in the open-loop transfer function in Eq.

(3.8): KMA∆GMAKV CMGV CM . Both KMA and KV CM are designed to have notch filters

at resonance frequencies, where the model error is large. Furthermore, the VCM loop gain
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crossover frequency is designed to be far less than the resonance frequencies. Thus, the

effect of this additional term is small, and the sensitivity function decoupling defined in Eq.

(3.10) can be approximated.

The effects on the stability of the control system by this approximation and when

there is model uncertainty in gPZT will be analyzed using µ-analysis in section 3.3.

3.2.2 Decoupled Dual-Stage Controller Design Results

VCM Loop

The VCM loop compensator, KV CM (s), was designed to be a simple lead-lag

compensator. The lag compensator increases the control gain and error rejection in the low

frequency region. The lead compensator boosts the phase margin at the open-loop gain

crossover frequency. The transfer function of the lead-lag compensator is

Kvll = (
s+ ωb1

s+ ωa1
)(
s+ ωb2

s+ ωa2
) , (3.14)

with corner frequencies chosen to be

ωb1 = 500 ∗ 2π, ωa1 = 10 ∗ 2π ,

ωb2 = 6400 ∗ 2π, ωa2 = 100 ∗ 2π .

A notch filter is cascaded with the lead-lag compensator to attenuate the butterfly

mode (5.9 kHz) and the suspension sway mode (8.4 kHz). The transfer function of the

notch filter is

Kn =

(

s2 + 2ζb1s+ ω21
s2 + 2ζa1s+ ω21

)(

s2 + 2ζb2s+ ω22
s2 + 2ζa2s+ ω22

)

, (3.15)
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where

ωb1 = 5900 ∗ 2π, ζa1 = 0.5 , ζb1 = 0.02 ,

ωb2 = 8400 ∗ 2π, ζa2 = 0.1 , ζb2 = 0.02 .

The overall control loop gain was calculated to have an open-loop gain crossover

frequency of 800 Hz. The sampling frequency of the control system is 25 kHz. The dashed

lines in Figs. 3.8, 3.9, and 3.10 show the Bode plots of the discretized VCM loop controller,

open-loop transfer function, and closed-loop sensitivity function, respectively.

PZT Actuator Loop

The PZT actuator loop compensator, KMA(s), was designed to be a lag com-

pensator cascaded with a notch filter similar to the one defined in Eq. (3.15). Since the

frequency response of the PZT actuator is almost flat in the low frequency range, a lag

compensator is used to provide the control gain for error rejection. The gain crossover

frequency of the PZT actuator loop was designed to be much larger than that of the VCM

loop at 2500 Hz (1/10 of the sampling frequency). The corner frequency of the lag compen-

sator pole was chosen to be at 10 Hz, and the corner frequency of the lag compensator zero

was tuned to be at 2500 Hz to satisfy the overall stability margins and sensitivity function

peaking requirements.

The dotted lines in Figs. 3.8, 3.9, and 3.10 show the Bode plots of the PZT actuator

controller, open-loop transfer function, and closed-loop sensitivity function, respectively.



55

Overall Dual-Stage System

The VCM and PZT actuator loop compensators designed above were used in the

block diagram of the dual-stage control system depicted in Fig. 3.6. The solid lines in

Figs. 3.9 and 3.10 show the Bode plots of the overall open-loop transfer function from r to

xp and the closed-loop sensitivity function, respectively.

Table 3.1 lists the gain margins, phase margins, and gain crossover frequencies of

the VCM loop, PZT actuator loop and overall dual-stage systems.

Table 3.1: Summery of decoupled design results

Gain Margin (dB) Phase Margin (deg) Gain c/o freq. (Hz)

VCM loop 10.9 40.5 800

PZT loop 9.7 66.1 2500

Overall 7.4 50.2 2104

Design Specification 6 35 2000

As can be seen from Fig. 3.9, the overall open-loop frequency response near its

gain crossover frequency is dominated by that of the PZT actuator loop. A simple tuning

process was conducted to satisfy the design specifications by changing the corner frequency

of the zero of the PZT actuator loop lag compensator. Increasing this frequency improves

the overall gain margin, but reduces the phase margin and increases sensitivity function

peaking, and visa versa. It was determined in simulations that an optimal value of this

corner frequency is 2500 Hz to satisfy all the gain margin, phase margin and sensitivity

function peaking requirements. Fig. 3.11 shows the Nyquist plot of the open-loop system.

It is noted that the Nyquist curve is located in the safe region of the Nyquist diagram.

Fig. 3.10 shows the sensitivity function Bode plots of the VCM loop, PZT actuator

loop and overall dual-stage system. The unity-gain frequency of the total sensitivity function
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is 1490 Hz, and the maximum peaking is 5.0 dB occurring at 4760 Hz. The total sensitivity

function of the dual-stage system is approximately the product of the sensitivity functions of

the VCM loop and PZT actuator loop. Large attenuation is obtained in the low frequency

region with both sensitivity functions attenuating error. However, the overall sensitivity

function has less attenuation in the mid-frequency range, from about 700 Hz to about 2

kHz, than that of the PZT actuator loop. This is due to the amplification by the VCM

loop sensitivity function over its unity-gain frequency at about 700 Hz. Relatively poor

mid-frequency error rejection performance is one drawback of the decoupled master-slave

design method.

Fig. 3.12 shows the step response of the dual-stage system. When there is a step

reference input, the PZT actuator responds quickly and jumps to the reference step at first.

The VCM moves at a lower speed following the reference step and the PZT actuator motion.

As the overall position reaches the reference step, the PZT actuator starts to retract slowly

back to the original zero position relative to the VCM.

As mentioned before, the dual-stage control design must avoid destructive motion

where the two actuators fight each other. The control performance in this regard can be

evaluated by checking the phase margin of the PQ transfer function, which is defined as the

ratio of the VCM loop and the microactuator loop open-loop transfer functions. To avoid

destructive motion, the PQ phase margin must be at least 60◦ (larger than 90◦ for best

results). The PQ transfer function of decoupled master-slave structure is

GPQ =
KV CMGV CM (1 +KMAgPZT )

KMAGMA
. (3.16)

Fig. 3.13 shows the Bode plot of this transfer function. The phase margin is
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107◦. Therefore, destructive motion is avoided. The decoupled master-slave control feeds

the output of the microactuator to the VCM loop to follow it. It can inherently prevent

destructive motion of the two actuators. The crossover frequency of the PQ plot is 770 Hz.

Below this frequency, error is mainly compensated for by the VCM. Above this frequency,

it is mainly compensated for by the microactuator.

3.2.3 Experimental Results

The designed controller was implemented using the experimental setup described

in Chapter 2, section 2.2. Fig. 3.14 shows the measured and simulated sensitivity function

Bode plots. Overall, the experimental data agrees well with the simulation data. The

actual sensitivity unity-gain frequency is 1321 Hz (vs. 1490 Hz in the simulation). The

actual sensitivity function maximum peaking is 6.3 dB occurring at 3460 Hz (vs. 5 dB

occurring at 4760 Hz in the simulation).

Fig. 3.15 shows the head off-track motion before and after the controller is applied.

Head off-track motion is 6.1 nm in the 1-σ value when control is applied. Note that because

the head position is measured by an LDV in the experimental testing, this result does

not reflect the effects on the TMR due to track runout. Fig. 3.16 shows the FFT of the

closed-loop head off-track motion. The peak in the 8-9 kHz frequency range is due to the

suspension sway mode vibrations excited by the air turbulence. The FFT in the 3-5 kHz

range is slightly amplified by the control system due to the sensitivity function peaking.

Fig. 3.17 shows the control signals of the VCM and the PZT actuator. Both are

within their saturation limits.
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Figure 3.8: Bode plots of VCM loop and MA loop controllers.

101 102 103 104

−40

−20

0

20

40

60

80

M
ag

ni
tu

de
 (d

B)

Bode Diagram

VCM Loop
MA Loop
Total

101 102 103 104
−600

−500

−400

−300

−200

−100

0

Frequency (Hz)

Ph
as

e 
(d

eg
)

Figure 3.9: Bode plots of the VCM loop, MA loop, and overall open-loop transfer functions.



59

102 103 104
−50

−40

−30

−20

−10

0

10

M
ag

ni
tu

de
 (d

B)

Bode Magnitude Diagram

Frequency (Hz)

VCM Loop
MA Loop
Total

Figure 3.10: Bode plots of VCM loop, MA loop, and overall closed-loop sensitivity functions.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Real Axis

Im
ag

in
ar

y 
A

xi
s

Nyquist Diagram

Figure 3.11: Nyquist diagram of the dual-stage open-loop system.
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Figure 3.17: Control action of the VCM and the PZT actuator.
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3.3 Robust Controller Design and Analysis

The decoupled master-slave method is a simple tool for dual-stage servo control

design. However, dual-stage servo systems are MIMO systems with uncertain dynamics.

Classical gain/phase margins computed one-loop-at-a-time cannot capture the effects of

simultaneous variations in the multiple loops and the cross coupling between them [9]. This

section discusses robust control design and analysis of dual-stage servo control systems

using µ-Synthesis and µ-Analysis. The representation of structured parametric uncertainty

of the PZT-actuated suspension dual-stage system is presented. An overview of structured

singular value robust control theory is introduced. Dual-stage controller design using µ-

synthesis is presented. The design and experimental results are presented and compared

with those obtained using the decoupled master-slave method in the previous section.

3.3.1 Model Uncertainty Representation of the PZT-Actuated Suspen-

sion Dual-Stage Servo System

As presented in Chapter 2, the dual-stage plant model can be represented by the

summation of the rigid body mode and several structural resonance modes. The natural

frequency, damping factor, and the constant of each resonance mode can have some variation

from drive to drive. Furthermore, they can change with ambient temperature and humidity.

As an example, Tab. 3.2 shows the natural frequency and damping factor of two PZT-

actuated suspensions we tested.

For these two test samples, the natural frequency has a 2% variation, and a maxi-

mum 5% deviation from the nominal FEA value. The damping factor has a 28% variation.
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Table 3.2: Parameters variations of two PZT-actuated suspension test samples

test sample 1 test sample 2 Nominal (FEA)

Resonance Freq. (Hz) 8400 8220 8635

Damping Factor 0.023 0.018 -

Besides parameter variations, the plant model can have unmodeled dynamics. For example,

the 1st torsion and 3rd torsion modes of the PZT-actuated suspension are not included in

our model since both of them are small in magnitude and located at high frequencies.

Traditionally, unmodeled dynamics is referred to as unstructured uncertainty,

while parametric variations in plant dynamics is referred to as structured uncertainty [9].

In structured singular value (µ) control theory, both can be represented using a structured

perturbation matrix.

Representing Parametric Uncertainty using Linear Fractional Transformations

(LFT)

The linear fractional transformation (LFT) of the M -∆ interconnect structure

shown in Fig. 3.18a is defined as [5]

FL(M,∆) =M11 +M12∆(I −M22∆)−1M21 . (3.17)

Similarly, when the upper loop of M is closed with ∆ as shown in Fig. 3.18b the LFT is

defined as

FU (M,∆) =M22 +M21∆(I −M11∆)−1M12 . (3.18)

Variation in parameters can be represented by LFTs using real perturbations [5].

Suppose a parameter a has a nominal value of 2 and has a 10% variation (i.e., it takes a
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Figure 3.18: Representing parametric uncertainty using LFT.

value in [1.8-2.2]), it can be written as

a = 2 + 0.1δa , |δa| ≤ 1 . (3.19)

This can be represented by an LFT interconnect shown in Fig. 3.18c. Now check

a = FL

















2 0.1

1 0









, δa









= 2 + 0.1 ∗ δa (1− 0 ∗ δa)−1 ∗ 1

= 2 + 0.1δa

Consider a single resonance mode defined by

G(s) =
b

s2 + a1s+ a0
, (3.20)

in which a0, a1, and b are parameters related to the natural frequency, damping factor,

and modal constant of the mode. An LFT representation of the variations in these three
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parameters is shown in Fig. 3.19, in which the diagonal uncertainty matrix, ∆, is defined as

∆ :=

















δa0

δa1

δb

















. (3.21)

The augmented uncertain system has 4 inputs (u ,wa0 , wa1 , wb) and 4 outputs (y , za0 , za1 , zb.

Inputs (wa0 , wa1 , wb), outputs (za0 , za1 , zb) and ∆ are used to represent the variations in

a0, a1, and b.
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a) Augmented input/output model of an uncertain system b) LFT of the uncertain system

Figure 3.19: Representing parametric uncertainty of a single resonance mode.

A Coupled Dual-Stage Model with Structured Uncertainty

Fig. 3.20 shows a coupled MIMO model of the PZT-actuated suspension dual-

stage actuator, which includes four modes (one pivot friction/flexible cable mode and three

structural vibration modes), as discussed in Chapter 2. The output of the system equals

the superposition of the output of each mode actuated/excited by the VCM and the PZT

actuator. Compared to the dual-stage model by simply adding the transfer functions of
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the VCM and PZT actuator used in the previous design [18], a coupled MIMO model is

a more precise representation of the dynamics of the system. It can capture the effects

of simultaneous parameters variations in both the VCM loop and the PZT actuator loop

for robust control design and analysis. It can also prevent excessive modeling, in which

the order of the dual-stage system is higher than its actual physical order, resulting from

addition of two transfer functions.

This model allows full characterization of parametric uncertainty of the PZT-

actuated suspension dual-stage system. There are four parameters associated with each

mode, and in total there are 16 uncertain parameters. The sizes of perturbations to these

parameters used in our design and analysis are listed in Tab. 3.3

Table 3.3: Perturbations of the uncertain dual-stage actuator model (i = 0, 1, 2, 3)

Parameter Perturbations

Natural frequency (
√
ai0) 10%

Damping factor (ai1) 100%

Modal constant, VCM excitation, (bi1) 10%

Modal constant, PZT excitation, (bi2) 10%

Besides variations in model parameters, there are unmodeled dynamics. A plant

model is usually only characterized up to certain frequency and the dynamic behavior of the

plant beyond that frequency is unknown. Even in the characterized frequency range, some

dynamics are neglected if their effects are small. In our testing, the frequency responses

are measured up to 12 kHz. The suspension 1st torsion mode (at around 7 kHz) and 3rd

torsion mode (at around 15 kHz) are neglected. Unmodeled dynamics can be represented

using multiplicative and additive uncertainty models and complex perturbations, which

represent a ball of all possible plants.
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Figure 3.20: Coupled MIMO model of the PZT-actuated suspension dual-stage system.
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Figure 3.21: Uncertainty plant model of the PZT-actuated suspension dual-stage actuator
with multiplicative, additive and parametric uncertainties.

Fig. 3.21 shows the uncertain plant model of the dual-stage actuator including

multiplicative, additive and parametric uncertainties. P represents the coupled MIMO

plant model depicted in Fig. 3.20, added by 16 parametric uncertainty LFTs. ∆P represents

the parametric uncertainty perturbations, which is a real diagonal matrix. δmv, δav, δmp,

and δap are complex perturbations representing multiplicative and additive uncertainties

from the VCM and PZT actuator inputs, respectively. Define the unmodeled dynamics

uncertainty perturbation matrix by

∆u = diag (δmv, δav, δmp, δap) . (3.22)

Wumv, Wuav, Wump, and Wuap are the corresponding uncertainty weighting func-

tions. Even though they can be chosen as dynamic models, constant weighting functions are

used in our model for simplicity. By absorbing the weighting functions into the augmented

plant model, as shown in the dashed box in Fig. 3.21, multiplicative and additive uncer-

tainties can also be represented in LFT forms. A single structured diagonal perturbation
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matrix defined by

∆ =









∆p 0

0 ∆u









, (3.23)

∆p = diag(δi), δi ∈ R, i = 1 . . . 16 , (3.24)

∆u = diag(δj), δj ∈ C, j = 1 . . . 4 , (3.25)

can be used to represent both parameters variations and unmodeled dynamics of the PZT-

actuated suspension dual-stage actuator model. Note that ∆ is a structured block diagonal

matrix. The elements of ∆ can be real or complex diagonal or full sub-matrices. Compared

to using unstructured full complex matrix to represent uncertainty in traditional robust

control theory, the structured uncertainties representation is more flexible and accurate.

It can represent mixed uncertainties with both real parameters variations and unmodeled

dynamics of each component. The unstructured uncertainty at component level becomes

structured uncertainty at system level. The structured singular value µ is used to analyze

the stability robustness of control systems with structured uncertainties.

3.3.2 Overview of µ-Synthesis and Analysis

In this section, an overview of robust control design and analysis using µ-synthesis

is introduced. For more detail of the theories and proofs of µ-synthesis and analysis, please

refer to [10] [64] [45] [5] [9].
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The Structured Singular Value µ

A general definition of the perturbation matrix ∆ is

∆ ∈∆,where∆ =
{

diag
[

δc1Ic1 , . . . , δ
c
sIcs , δ

r
1Ir1 , . . . , δ

r
pIrp ,∆1, , . . . ,∆F

]}

,

δci ∈ C , δri ∈ R ,∆k ∈ Cmk×mk . (3.26)

The structured singular value µ of the uncertainty M -∆ structure depicted in

Fig. 3.18a is defined as

µ∆(M) :=
1

min{σ̄(∆) : ∆ ∈∆ , det(I −M∆) = 0} , (3.27)

and µ∆(M) := 0 if det(I − M∆) 6= 0 for all ∆ ∈ ∆. Basically, µ is the reciprocal of

the minimum size of ∆ that makes the M -∆ structure become singular. A µ-test in the

frequency domain can be used to analyze the stability robustness of dynamic systems.

Robustness Stability and Performance Analysis using µ

For controller robustness analysis, consider the feedback system depicted in Fig. 3.22,

in which Pa and K represent the augmented nominal plant model and the controller, respec-

tively. Pa includes plant dynamics and LFTs and weighting functions to represent model

uncertainties. The inputs of Pa are the control input u, disturbance d, and uncertainty

perturbation input w. The outputs are the measurement y, performance objective e, and

perturbation output z.
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Figure 3.22: Robust stability and performance analysis using µ.

The augmented plant Pa can be written as

















z

e

y

















=

















P11 P12 P13

P21 P22 P23

P31 P32 P33

































w

d

u

















. (3.28)

The nominal open-loop system when the uncertainty input w and output z are not consid-

ered is GO =









P22 P23

P32 P33









.

For robust stability analysis, the disturbance d and error e are not considered.

The closed-loop system is defined using LFT notation by grouping Pa and K together, as

shown in the dashed box in Fig. 3.22a, as follows

GC = FL

















P11 P13

p31 P33









,K









= P11 + P13K(I − P33K)−1P31 . (3.29)

The robust stability of the closed-loop system GC subjected to structured perturbation
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∆ can be analyzed using a µ-test of the GC-∆ structure in the frequency domain. First,

the frequency response of GC(jω) is calculated. Then, the structured singular value µ is

calculated for GC(jω) at each frequency with respect to the uncertainty structure ∆. The

structured singular value robust stability theorem is as follows [5] [64]:

The system is well-posed and stable for all ∆ ∈ ∆ with ‖∆‖∞ < 1/β if and only

if

sup
ω∈R

µ∆(G(jω)) ≤ β . (3.30)

The theorem says that the peak value of µ of the frequency response of the system determines

the stability robustness of the closed-loop system. The smaller this value, the larger the

size of the perturbation that is needed to make the control system unstable. Typically µ

is required to be less than one since signals are usually normalized. The reciprocal of the

peak value of µ is called the stability margin of multi-variable control systems [9].

Performance robustness in terms of the H∞ norm of the closed-loop system can

also be analyzed using µ by defining an augmented perturbation matrix as

∆P :=























∆ 0

0 ∆F









;∆ ∈∆ ,∆F ∈ Cnd×ne















, (3.31)

in which ∆F is a fictitious complex full-matrix perturbation and has compatible dimensions

with d and e. Robust performance defined in terms of the H∞ norm from disturbance d

to the performance objective e under perturbation ∆, ‖FU (GP ,∆)‖∞, can be checked by a

µ-test in the frequency domain of the Gp-∆P structure shown in Fig. 3.22b. The structured

singular value robust performance theorem is as follows [5] [64]:

The system is well-posed, stable and ‖FU (GP ,∆)‖∞ ≤ β for all ∆ ∈ ∆ with
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‖∆‖∞ < 1/β if and only if

sup
ω∈R

µ∆P
(GP (jω)) ≤ β . (3.32)

The theorem says that the robust performance problem is equivalent to the robust stability

problem with an augmented uncertainty.

The proofs of both theorems can be found in [5] [64].

µ-Synthesis using D-K Iteration

µ-synthesis is a robust optimal controller design technique to minimize the struc-

tured singular value µ. The objective of µ-synthesis is to find a stabilizing controller K

minimizing the peak value of µ of the closed-loop system FL(P,K), i.e.,

min
StabilizingK

max
ω∈R

µ∆(FL(P,K)(jω)) . (3.33)

As it turns out, the calculation of µ is usually very difficult, but the calculations

of an upper and lower bounds on µ are much easier. For the M -∆ structure shown in

Fig. 3.18a, it can be shown that an upper bound of µ∆(M) is the maximum singular value

of an optimally scaled matrix of M [45],

µ∆(M) ≤ inf
D∈D∆

σ̄(DMD−1) , (3.34)

in which D∆ is the set of matrices that have the property that D and ∆ commute, i.e.,

D∆ = ∆D. Using this upper bound, the optimization in Eq. (3.33) can be reformulated as

[5]

min
StabilizingK

min
D(s)∈D∆

‖DFL(P,K)D−1‖∞ , (3.35)



75

in which D(s) is a stable minimum-phase transfer function whose frequency response ap-

proximates the upper bound of µ at each frequency.

D-K iteration is a µ-synthesis tool, which attempts to minimize µ through a two-

step iterative process [5]. The first step of D-K iteration is holding D(s) fixed and solving

the optimization of

min
StabilizingK

‖DFL(P,K)D−1‖∞ . (3.36)

By absorbing the D scalers into an augmented plant, this optimization becomes a standard

H∞ optimization control problem.

The second step of D-K iteration is holding K fixed and finding the optimal scaling

D(s). First, the lowest upper bound of µ is calculated point-wise in the frequency domain

through convex optimization. Then, the optimal frequency-dependent scaling is curve fitted

with a stable, minimum-phase, transfer function D̂(s). The estimated scalers D̂(s) and

D̂(s)−1 will be absorbed into the augmented plant for K optimization in the next iteration.

D-K iteration is the only tool available today to solve robust controller synthe-

sis problems with structured uncertainty, and it has been shown to be effective in many

applications. However it cannot guarantee a global or even local minimum. Sometimes,

the uncertainty and performance weightings need to be modified in order to get a bet-

ter solution. Eventually, the synthesized controllers can be analyzed against the original

uncertainty and performance weightings to evaluate their robustness and performance.
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Figure 3.23: Model with weighted inputs and outputs for µ-synthesis controller design.

3.3.3 Track-Following Controller Design Using µ-Synthesis

In order to perform controller design using µ-synthesis, the model uncertainty is

represented using linear fractional transformations (LFT), and disturbance inputs and er-

ror outputs are weighted to characterize the real plant environment and the performance

requirements. We have discussed the uncertainty representation of the PZT-actuated sus-

pension dual-stage servo system in section 3.3.1. Fig. 3.23 shows a weighted model of the

dual-stage system used for controller synthesis. In Fig. 3.23, Pu represents the coupled dual-

stage plant model with both parametric uncertainty and unmodeled dynamics described in

section 3.3.1.

Disturbance input signals accounted for in the model include the runout r, input

disturbances to the VCM and microactuator, dV CM and dMA, respectively, and the PES

sensor noise nPES . These disturbance signals are generated by passing normalized signals

r, dV CM , dMA, and nPES through weighting functions Wr, WdV CM , WdMA, and WnPES ,
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respectively.

The output signals in the synthesis model are the head position error signal, PES,

the VCM control input uV CM , and the microactuator control input uMA. These signals

are multiplied by scaling factors, WPES , WuV CM , and WuMA ,respectively, to produce the

weighted performance signals PES, uV CM , and uMA.

Given a set of input and output weights and plant uncertainties, if the synthesized

controller achieves

µ ≤ β , (3.37)

the closed-loop transfer function, T , from the normalized disturbances

d =
[

r dV CM dMA nPES

]

(3.38)

to the weighted performance signals

e =
[

PES uMA uV CM

]

(3.39)

will have an infinity norm

‖ T ‖∞≤ β (3.40)

for perturbations

‖ ∆ ‖∞<
1

β
, (3.41)

where ∆ is defined in Eq. (3.23)

The H∞ norm can be interpreted as the RMS gain of the sinusoidal signals. As-

sume that each element di of the disturbance input vector in Eq. (3.38) is a sinusoid of the

form

di(t) = Di sin(ωit+ ψi) , (3.42)
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such that
4
∑

i=1

D2i ≤ 1 . (3.43)

Then the steady state response of output in Eq. (3.39) will also be a sinusoid of the form

ei(t) = Ei sin(ωit+ φi) , (3.44)

and
3
∑

i=1

E2i ≤ β , (3.45)

under the perturbations defined in Eq. (3.41).

The H∞ design can also be interpreted as frequency loop-shaping design using

weighting functions, as described in the next section.

Weighting Functions for µ-Synthesis Design

In our design, the output weights WPES , WuV CM , and WuMA were chosen to

be constant gains, in order to limit the magnitude of the error signals within acceptable

bounds. WPES was chosen to be 1/(10 nm), which implies that the TMR target is 10 nm.

WuV CM and WuMA must be chosen to bound the control input signals to be within their

saturation limits. They both are equal to 1/(2 V), since the DAC outputs saturation limits

are ±2 V.

The input weights, WdV CM and WdMA were chosen to be 2 mV at the DAC

outputs, respectively, and WnPES was chosen to be 2 nm. The runout weight Wr was

chosen in combination with WPES to shape the closed-loop sensitivity function. If the

designed control system achieves a peak µ value of β, we have,

‖WPESSWr‖∞ ≤ β , (3.46)
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where S is the closed-loop sensitivity function from runout r to PES. Define the desired

closed-loop sensitivity function to be

SN =
1

WPESWr
. (3.47)

If β < 1, the magnitude of the Bode plot of S will be bounded below by that of SN .

The performance specifications of the closed-loop sensitivity function used in the

design are

• Maximum peaking less than 6 dB.

• Sensitivity unity-gain frequency larger than 1200 Hz.

• Low frequency attenuation larger than 60 dB

Based on these criteria,Wr was designed to have two poles at 1200∗2π(1±j), and two zeros

at 30 ∗ 2π. The Bode plot of the resulting SN defined in Eq. (3.47) is shown in Fig. 3.24.

3.3.4 Controller Synthesis Results

Controllers were synthesized using D-K iteration of the µ-synthesis Matlab Tool-

box. In order to reduce the order of the synthesized controllers, constant D-scalings were

used during µ upper-bound fittings in the D-K iteration. The synthesized controller is 10th

order. Simulations show its performance is sensitive to further model reduction. Since 10th

order is not particularly high, this synthesized controller was used directly in the simulation

and experimental testing without further model reduction.

As we mentioned earlier, D-K iteration cannot guarantee that the synthesized

controller achieves the minimum structured singular value given the uncertainty and per-
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Figure 3.24: Sensitivity function frequency shaping design.

formance weightings. In our design, we found that the synthesized controller using the

original uncertainty and performance weightings turned out to be very conservative. Af-

ter some trial-and-error, a better design was obtained by relaxing some of the uncertainty

constraints. The synthesized controller was analyzed using the original uncertainty and per-

formance specifications. The results show that it can achieve a much better error rejection

performance with only a small degradation in the robustness.

Fig. 3.25 shows the µ bounds for robust stability and robust performance tests

of the closed-loop system using this controller with respect to the original uncertainty

representations. The robust stability (RS) and robust performance (RP) peak µ values

are, βRS = 0.45 and βRP = 1.26, respectively. Thus, the control system is stable for the

prescribed uncertainties. In the worst case, the magnitude of the sensitivity function of
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the uncertain system is 26% larger than that of the desired nominal sensitivity function.

Fig. 3.26 shows the sensitivity function Bode plot of the nominal system with the synthesized

controller. The unity-gain frequency of the sensitivity function is 1450 Hz (design objective:

larger than 1200 Hz), and the maximum peak is 4.1 dB (design objective: less than 6 dB).

Fig. 3.27 shows the Bode plots of synthesized VCM loop and PZT actuator loop

controllers. µ-synthesis yields an unconventional control design. Notice that neither the

VCM nor the PZT actuator controllers contain a notch filter at the butterfly mode fre-

quency near 6 kHz. As it turns out, the µ-synthesis controllers utilize the dynamic coupling

effects between the VCM and the PZT actuator. As shown in the Bode plots of the open-

loop systems in Fig. 3.28, the VCM and the PZT actuator open-loop transfer functions have

almost the same magnitude, but about 180◦ phase difference near the butterfly mode fre-

quency. It utilizes destructive motion of the two actuators to cancel the resonance mode in

the overall open-loop system. It is a robust design, since the two actuators are exciting the

same resonance mode, and they can still cancel each other even if the resonance frequency

changes.

The crossover frequency, gain margin and phase margin of the overall nominal

open-loop system are 1950 Hz, 8.6 dB, 37.1◦ respectively. Fig. 3.29 shows the Nyquist plot

of the open-loop system. The Nyquist curve is located in the safe region of the diagram.
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3.3.5 Experimental Results and Comparison with the Decoupled Design

Experimental Results

Fig. 3.30 shows the sensitivity functions Bode plots. The solid and dotted lines

are the experimental and the simulation data of µ-synthesis design, respectively. Table 3.4

summarizes the simulation and experimental results:

Table 3.4: Sensitivity function data of µ-synthesis design

Unity-gain Freq. (Hz) Maximum Peaking (dB) Peaking Freq. (Hz)

Design Spec. ≥ 1200 ≤ 6 dB -

Simulation 1450 4.1 -

Experiment 1416 6.9 2260

For comparison purpose, the experimental data of the decoupled design is shown

as the dashed line in the plot. As shown in the plot, the µ-synthesis design has better error
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rejection in the mid-frequency range of 400-1500 Hz. However, it has less attenuation in

the low frequency range below 100 Hz than the decoupled design.

Fig. 3.31 shows the FFT of measured head off-track motion when control is applied.

The solid line is the result using the µ-synthesis controller, while the dotted line is the

result using the decoupled controller designed in section 3.2. The FFT results agree with

the sensitivity function result shown in Fig. 3.30. As shown in the plot, the µ synthesis

controller has larger attenuation of error in the mid-frequency range of about 500-1000 Hz,

but less attenuation of error in the low frequency range. The overall head off-track motion

using µ-synthesis controller is 6.7 nm in the 1-σ value, which is slightly larger than that

when using the decoupled controller. Fig. 3.17 shows the PES and the control signals of

the VCM and the PZT actuator.
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Figure 3.30: Measured sensitivity function Bode plot of the closed-loop system.
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Robustness Analysis of the Decoupled Design

We have mentioned in section 3.2 that there is concern about the robustness of

the decoupled master-slave design for two reasons. First, the position of the PZT actuator

is estimated using its DC gain and the high frequency dynamics of the PZT actuator are

neglected. Second, the actual DC gain of the PZT actuator can be different from the model.

The robustness of the decoupled design can be analyzed using µ. The one-input two-output

controller K used in the µ-analysis in Fig. 3.22 of the decoupled design is

K =









KV CM (1 +KMAgPZT )

KMA









(3.48)

Fig. 3.33 shows the µ bounds for robust stability and robust performance tests of

the uncertainty closed-loop system with the decoupled controller. The robust stability and

robust performance peak µ values are, βRS = 0.81 and βRP = 6.27, respectively. Thus,

the decoupled design can maintain the stability of the control system for the prescribed

uncertainties. However, the stability margin is much smaller than that of the µ-synthesis

design. The performance of the decoupled design could have a large degradation for the

perturbed system.

Comparisons of the Decoupled and the µ-Synthesis Designs

Table 3.5 compares the design and experimental testing results of the decoupled

and the µ-synthesis designs. The bandwidths of the two controllers are very close. Notice

that even though the decoupled design has a larger phase margin than the µ-synthesis design

for the nominal system, its robustness is actually worse in terms of µ for the perturbed

system. The nominal PES performance of the µ-synthesis design is slightly worse than
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Figure 3.33: Robust stability and robust performance µ-plot of the decoupled design.

that of the decoupled design. Both the VCM and the PZT actuator controllers of the

µ-synthesis design are 10th order, while those of the decoupled design are 6th and 5th

orders respectively. Implementation of the µ-synthesis controller requires almost twice the

computation as the controller designed using the decoupled design method.

Table 3.5: Comparison of the decoupled design and the µ-synthesis design

Decoupled Design µ-synthesis Design

Gain margin (dB) 7.4 8.6

Phase margin (◦) 50.2 37.1

Open-loop c/o freq. (Hz) 2104 1950

Sensitivity c/o freq. (Hz) 1361 1419

Sensitivity max peaking (dB) 6.3 6.9

Robust stability µ 0.81 0.45

Robust performance µ 6.27 1.26

Closed-loop head motion (nm) 6.1 6.7

Controller order KV CM : 6th, KPZT : 5th Both 10th
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Chapter 4

Active Damping of the

PZT-Actuated Suspension

Dual-Stage Servo System

High bandwidth dual-stage servo systems can achieve larger attenuation of low-

frequency runout and disturbances. Airflow excited vibrations of high-frequency structural

resonance modes become one of the major limiting factors for achieving higher track densi-

ties of dual-stage servo systems in HDDs. This chapter presents feedback damping control

of the PZT-actuated suspension dual-stage system. The proposed control scheme utilizes

one PZT element on the PZT-actuated suspension as a vibration sensor and the other

PZT element as an actuator to damp the resonance modes of the PZT-actuated suspen-

sion dual-stage actuator. Vibration damping controller design and experimental results are

presented.
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4.1 Active Vibration Compensation using Dual-Stage Multi-

Sensing Servo Systems

Vibration Compensation using Instrumented Suspension

The adoption of dual-stage servo systems will change the PES spectral distribu-

tion. Traditional large TMR contributors of low-frequency runout and disturbances can be

sufficiently attenuated by the high bandwidth dual-stage servo control system. The TMR

contributions due to air turbulence excited high-frequency structural vibrations, and other

wide-band noises and disturbances, now become significant. The characterizations of air-

flow induced structural vibrations have been reported in [62] [30] [16], etc. It is found that

the magnitude of the flow induced vibration is proportional to the square of the flow speed

[62], and the airflow affects head off-track motion mainly by exciting the actuator structural

resonance modes [30] [16].

In current disk drive designs, airflow excited vibrations are mitigated by using

shorter and stiffer suspensions and putting air blocker in the upward-flow direction. As the

track density and spindle rotation speed increase, active compensation of airflow excited

vibrations may be necessary.

The compensation of these high-frequency vibrations requires a very high band-

width and sampling frequency. However, the sampling frequency of the PES is limited

by the number of servo sectors allocated to store position information on a data track.

Multi-sensing servo systems using auxiliary vibration sensors can be used to compensate

airflow excited vibrations. In an instrumented suspension multi-sensing servo system, strain



91

sensors are attached or fabricated on the surface of the suspension to detect its vibration.

The location and orientation of the sensors will be optimized to give the biggest correlation

between the strain sensor output and head off-track motion of the slider due to suspension

vibration. A method to search the optimal sensor location and orientation on the load beam

using finite element analysis has been proposed in [26].

Different control schemes for suspension vibration compensation are needed de-

pending on the type and configuration of dual-stage actuators. The PZT actuators on the

PZT-actuated suspensions are located behind the suspension and can excite the suspension

dynamics. In this case, feedback active damping control can be applied. The MEMS mi-

croactuator of an actuated-slider dual-stage servo system has little effect on the suspension

dynamics. In this case, feedforward control can be used to cancel the TMR induced by

the suspension vibration. Fig. 4.1 illustrates these two control schemes. In this chapter,

feedback damping control of the PZT-actuated suspension dual-stage system is discussed.

Gimbal/
microacutaor

Slider

VCM Actuator

Strain sensor

Slider

PZT actuator

Feedback
Control

VCM Actuator

Feedforward
Control

Strain sensor

a) Feedback damping of actuated 
suspension.  

b) Feedforward vibration compensation 
using actuated slider/head.

Figure 4.1: A schematic diagram of vibration compensation using dual-stage actuators.
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4.1.1 Windage Vibration Sensing using the PZT Sensor

As presented in Chapter 2, the PZT elements on the PZT-actuated suspension

can also be used as vibration sensors. Fig. 4.2 shows the power spectral densities (PSD) of

the head off-track motion (upper half) and the PZT sensor output (lower half) when the

spindle is rotating in a 7200-RPM disk drive, whose model is presented in Chapter 2.
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Figure 4.2: PSDs of the head off-track motion and the PZT sensor output due to airflow
excited vibrations.

As shown in the figure, the major off-track modes excited by air turbulence gen-

erated by disk rotation include the butterfly mode (M1), and the suspension sway mode

(M2), the suspension 1st and 2nd torsion mode (M4 and M3). The PZT sensor is able to

sense the vibrations of modes M2 and M3 when they are excited by airflow disturbances,

but not M1 and M4. Modes M5, M6, and M7 have a large contribution to the PZT sensor

output, yet they have little contribution to the head off-track motion. These modes are
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probably related to the bending modes of the suspension in the out-of-the-plane direction.

The PZT sensor output can be used to implement vibration damping control of the PZT

actuated suspension dual-stage system.

4.2 Controller Design

4.2.1 State Space Model Realization

The two-input two-output control system can be represented using a state space

model based on the transfer functions in Eq. (2.24) and the extracted modal parameters.

The rigid body mode is not observable from the PZT sensor output, and hence not included

in the state space model for vibration damping control design. A state space realization

including the three vibration modes M1, M2, and M3 is:

ẋ = Ax+Bu ,

y = Cx+Du ,

(4.1)

where x = [x1 x2 x3 x4 x5 x6]
T , u = [u1 u2]

T , y = [y1 y2]
T . As defined in Chapter 2, u1 and

u2 represent the inputs to the VCM and the PZT actuator, respectively. y1 and y2 represent

the head displacement output (excluding the rigid body mode) and the PZT sensor output,

respectively. The decoupled state matrices can be written as

A =

















A1 02×2 02×2

02×2 A2 02×2

02×2 02×2 A3

















, B =

















B1

B2

B3

















,

C =









c11 0 c12 0 c13 0

c21 0 c22 0 c23 0









, D =









01×2

D2









,

(4.2)
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where each sub-matrix is expressed as

An =









0 1

an1 an2









, Bn =









0 0

bn1 bn2









,

n = 1, 2, 3.

(4.3)

where

an1 = −ω2n, an2 = −2ζnωn , (4.4)

and by normalizing the PZT sensor output equation with c2n = 1, n = 1, 2, 3, we have

bn1 = K21n , bn2 = K22n ,

c1n = K11n /K
21
n = K12n /K

22
n . (4.5)

4.2.2 Vibration Damping Control Design

Discrete-Time Vibration Damping Control Design

There are two approaches to the control design of sampled-data systems. In the

continuous-time design approach, a controller is first designed in the continuous-time do-

main. Then the discrete-time equivalent of the controller is computed and used in simulation

and testing. In the discrete-time design approach, the system model is first discretized. A

discrete-time controller is then designed directly using the discretized plant model.

When the sampling frequency is high enough (10-times larger than the bandwidth

of the closed-loop system) and the computational-time delay is small, the discrete-time

equivalent is a very good approximation of the continuous-time system [14]. In this case,
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both approaches can be used. However, the discrete-time design approach is more flexible

because it allows the design of multi-rate controllers. This is particularly important for

control design of disk drive systems since the sample frequency is limited. The track-

following control designs presented in Chapter 3 were designed using the continuous-time

design approach because of its simplicity.

For the vibration damping controller design, the effects due to the computational-

time delay are significant because the bandwidth is much higher and the control algorithm

is more complicated. For example, a time delay of 15 µs (actual time delay in our imple-

mentation) can result in a phase loss of 54◦ at 10 kHz crossover frequency. Therefore, the

time delay effects must be considered in the control design process. Even though the time

delay can be approximated by Pade approximation using a continuous-time model, it is

much simpler and more accurate to represent the time delay using a discrete-time model

since the control signal is a constant during a sample interval [4]. Thus, the discrete-time

design approach will be used to design the vibration damping controller. An augmented

plant model with noise modes is first discretized. A discrete-time Kalman estimator is

then designed to estimate the state of the vibration modes, and the state-feedback gain

matrix is designed using discrete-time linear quadratic regulator (DLQR) control to damp

the resonance modes.

Augmented Plant Model for Kalman Filter Design

As shown in Fig. 4.2, modes M5, M6, and M7 have a large contribution to the

PZT sensor output when excited by airflow disturbances, but have little contribution to the

head off-track motion. Moreover, they are either not controllable or weakly controllable by
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the control inputs. Thus, they will be modeled as sensor noise and will be accounted for in

an augmented plant model described by
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(4.6)

where x ∈ R6 represents the state of the three vibration modes to be controlled (M1, M2,

M3); A, B, C1, and C2 are given by Eqs. (4.1)-(4.5); xw ∈ R6 represents the state variables

of the three noise modes (M5, M6, M7); w ∈ R6 is a fictitious white disturbance vector

used to characterize the excitation to each vibration mode by airflow disturbances; Aw is

estimated from the measured PSD in Fig. 4.2; Bw and Cw are normalized.

The discrete-time model of P in Eq. (4.6), with computational-time delay td, can

be written as follows [4]
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Assuming the computational time delay td is smaller than the sampling time Ts, we have

Φ = eATs , (4.8)

Φw = eAwTs , (4.9)

Γ1 =

∫ td

0
eAτBdτ , (4.10)

Γ2 =

∫ Ts

td

eAτBdτ , (4.11)

Γw =

∫ Ts

0
eAwτBwdτ . (4.12)

Kalman filter and DLQR design

A discrete-time Kalman filter with prediction and correction steps was designed

based on the augmented discrete-time plant model defined in Eq. (4.7), to estimate the state

of the vibration modes. The two design parameters of the Kalman filter are the covariance

matrix W of the disturbance vector w and the noise variance V2 of the PZT sensor output

y2. The disturbance covariance matrixW can be estimated from the PSD of the PZT sensor

output (see Fig. 4.2), since the disturbance input matrix Bw and the output matrix Cw

are normalized. The measurement noise variance V2 can be tuned as a design parameter to

set the bandwidth of the observer.

The design of the feedback gain matrix was based on the discretization with com-

putational delay td of the control plant model defined in Eq. (4.1). The feedback damping

controller gain K was generated by a DLQR which minimizes

∑

k

{y21(k) + uT (k)Ru(k)} , (4.13)

where y1 is the head displacement output. The design parameter in the DLQR design is

the control action weight matrix R, which can be tuned to obtain desired system responses.
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Simulation results

As briefly described in the previous section, the choice of the process noise weights

was based on the PSD of the open-loop PZT sensor output. The remaining parameters, the

measurement noise variance V2 and the control action weight matrix R, can be set/tuned

to obtain a desired damped system. A Simulink model was used to tune these parameters,

which also allowed us to test the effects of the computational delay and the noise induced

by the single-precision floating point arithmetic on the damping controller. Figs. 4.3 and

4.4 show the simulation results of the damped transfer functions from the VCM and PZT

actuator to the head displacement, respectively.
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Figure 4.3: Simulated frequency response from the VCM to the head displacement.
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Figure 4.4: Simulated frequency response from the PZT actuator to the head displacement.

4.2.3 Track-Following Control with Active Damping

The proposed overall control structure, which includes a vibration damping control

loop and a track-following control loop, is based on the block diagram shown in Fig. 4.5.

The damping controller is implemented using the PZT sensor output y2, so that its sam-

pling frequency will not be limited by that of the PES. The sampling frequency used for

the damping controller is 50 kHz, while that for the track-following controller is 25 kHz.

The inner-loop vibration damping controller is designed first. Then, the outer-loop track-

following controller is designed based on the damped actuator model. A decoupled control

design similar to the one presented in section 3.2 is used. The gain crossover frequency,

gain margin and phase margin of the open-loop transfer function of the control system are

2425 Hz, 3.4 dB and 37o, respectively.
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Figure 4.5: Overall control structure of track-following control with active damping.

4.3 Experimental Results

First, the inner-loop damping controller was tested. Figs. 4.6 and 4.7 compare

the frequency responses of the damped system to those of the open-loop system, from the

VCM and PZT actuator to the head displacement, respectively. Both the butterfly mode

and the suspension sway mode are attenuated by damping control. Fig. 4.8 shows the

PSD of the head lateral motion measured by the LDV and the HP digital analyzer when

damping control is and is not applied. As shown in the figure, the air turbulence excited

high-frequency structural vibrations are attenuated by damping control. The RMS value of

the PSD from 2 kHz to 14 kHz is reduced by 35% when damping control is applied.

Second, the outer-loop track-following controller with the inner-loop damping con-

trol was tested. Fig. 4.9 shows the FFT of the head-off track motion with track-following

control. The solid line is the result with combined track-following and vibration damping

control. The dashed line is the result of traditional decoupled design presented in Chapter

3, which does not have a damping control loop. With damping control, the high-frequency
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vibrations can be greatly attenuated. The track-following controller with damping control

also has a larger disturbance attenuation in the low-frequency range because of the increased

bandwidth. The standard deviation of the position error of the damping control design is

4.8 nm, while that of the traditional notch filter design is 6.1 nm.

The use of one PZT element as a vibration sensor provides a simple and effective

solution to active vibration control of the PZT-actuated suspension dual-stage servo system.

However, there are also some limitations to this scheme since the PZT element was not

originally designed to be a sensor. It cannot sense some off-track modes, while it picks up

some non-off-track modes. This makes the vibration controller complicated. The damping

controller design can be simplified if an optimally designed vibration sensor is available.
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Figure 4.6: Measured frequency response from the VCM to the head displacement.

5000 6000 7000 8000 9000 10000
−35

−30

−25

−20

−15

−10

−5

0

Frequency (Hz)

M
ag

ni
tu

de
 (d

B
)

Open Loop
Damping Controller

Figure 4.7: Measured frequency response from the PZT actuator to the head displacement.
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Chapter 5

Adaptive Control of the MEMS

Microactuator Dual-Stage Servo

System

MEMS microactuator dual-stage systems using the actuated-slider approach can

achieve higher bandwidth than PZT-actuated suspension dual-stage systems. However, the

resonance frequency of the lightly damped resonance mode of the MEMS microactuator

can have large variations due to fabrication processes. Adaptive control can be used to

enhance the stability and performance robustness of MEMS microactuator dual-stage servo

systems. In this chapter, a self-tuning control scheme to compensate for the variations in

the MEMS microactuator’s resonance mode is presented. Active vibration compensation

using adaptive feedforward control of the MEMS microactuator is proposed.
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5.1 MEMS Microactuator Dual-Stage Actuator Model

5.1.1 Electrostatic MEMS Microactuators

MEMS electrostatic microactuators usually consist of a fixed stator element and a

moving shuttle supported by a flexure. The moving shuttle can be actuated by electrostatic

force generated by applying a voltage difference between the shuttle and stator [21]. There

are two categories of electrostatic microactuators depending on the moving direction of the

shuttle relative to the stator: comb-drive and parallel-plate, as illustrated in Fig. 5.1.

Stator

Shuttle

Parallel-Plates motionComb-drives motion

Spring

h
d x

Spring

Shuttle

Stator

Y

X

Figure 5.1: Electrostatic microactuators: comb-drive vs. parallel-plate

The electrostatic forces of comb-drive and parallel-plate actuators are

Fcomb =
εh

2d
V 2 , (5.1)

Fparallel =
εxh

2d2
V 2 , (5.2)

respectively, where ε is the permittivity of air, x is the overlap between two adjacent plates,

h is the plate thickness and d is the gap between two parallel plates. As indicated in these

equations, the electrostatic force of comb-drive actuators is independent of the displacement

of the moving shuttle, while the electrostatic force of parallel-plate actuators is a nonlinear
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function of its shuttle motion (∝ 1/d2). Control of comb-drive actuators is much easier

since they are linear systems. On the other hand, parallel-plate actuators can generate a

larger force than the comb-drive actuator.

Electrostatic microactuators can also be categorized as rotational and translational

microactuators. When using a translational microactuator in a dual-stage servo system in

hard disk drives, there exists a large force coupling between the VCM and the microactuator.

The acceleration of the VCM translates to an inertial force acting on the microactuator.

This coupling force can be quite large during seek operations since the acceleration of the

VCM can be as large as hundreds of G. The coupling force to a rotational microactuator

from the VCM is much smaller.

Capacitive position sensing can be used to measure the relative position between

the moving shuttle and the fixed stator in electrostatic MEMS microactuators [22], [60].

Shuttle movement causes a capacitance change between the shuttle and the stator. By

measuring the change in capacitance, the shuttle location relative to the stator can be

determined.

In a MEMS microactuator dual-stage system, a slider is attached on top of the

MEMS microactuator. It rotates the slider relative to the suspension in the lateral direction.

Usually folded beams are used as a flexure to support the moving shuttle. The stiffness of

the flexure must be soft in the lateral direction in order to have enough DC gain. On the

other hand, since the slider flies on top of the disk on an air bearing, the microactuator

must support a vertical load with minimum deflection. Thus, the microactuator’s flexure

must be very stiff in the vertical direction, while soft in the lateral direction. Given the
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aspect ratio of the fabrication process, MEMS microactuators used in disk drive dual-stage

servo systems are usually designed to have a nominal resonance frequency of 1-2 kHz to

satisfy these two constraints [22], [13].

The in-plane stiffness of a beam flexure is expressed as

k =
Y hw3

l3
, (5.3)

where Y is Young’s modulus, h, w, l are the height, width, and length of the beam, re-

spectively. The stiffness is a strong function of the beam’s geometric parameters. Thus,

variations in the flexure’s width caused by lithographic misalignments and variations present

in the etching processes will have a large effect on the stiffness of the flexure, (or equiva-

lently the natural frequency of the microactuator’s resonance mode). It is estimated that

the resonance frequency can have as much as ±15% variations from the designed nominal

value.

5.1.2 IBM MEMS Microactuator Model

In this dissertation, the system configuration is based on a comb-drive, rotational

electrostatic MEMS microactuator developed by IBM Almaden Research Center [13]. The

microactuator is fabricated using a high-aspect-ratio etching and electroplating multi-layer

fabrication technology. The process includes high-aspect-ratio Transformer-Coupled Plasma

(TCP) reactive-ion etching (RIE), which achieves a 20:1 height-to-width aspect ratio on 40

µm thick polymers. The etched polymers are in turn used as molds to fabricate, through

a metal electroplating process, high-aspect ratio Invar (a nickel-iron-based alloy) micro-

structures. Fig. 1.9 shows a photograph of such a device mounted on an integrated lead



108

suspension.

The microactuator has a single resonance mode, whose natural frequency was

designed to have a nominal value of 1.5 kHz. The microactuator does not have other

appreciable structural dynamics up to 40 kHz frequency range except this single flexure

resonance mode [13]. Thus, its dynamics can be described by a mass-spring-damper 2nd-

order transfer function

GM (s) =
AM

s2 + 2ζ
MO

ω
MO

s+ ω
MO

2
. (5.4)

Table 5.1 provides values for the parameters in Eq. (5.4) and some other parameters

of the IBM microactuator model.

Table 5.1: IBM’s electrostatic microactuator parameters

Res. Freq. Damping Stroke Acc. Max.
ω

MO
Coeff. ζ

MO
limit Gain AM Voltage

1.5 kHz (±15%) 0.015 ±1 µm 2 G/V ±40 V

5.1.3 Decoupled MEMS Microactuator Dual-Stage Actuator Model

Assuming the VCM as a rigid body, the equations of motion of the dual-stage

system with a rotational microactuator are:

J∗
V θ̈V = τV − JM θ̈M , (5.5)

JM θ̈M +BM θ̇M +KMθM = τM − JM θ̈V , (5.6)

where the equivalent inertia

J∗
V = JV + JM +MM l

2 , (5.7)

and JV and JM are the moments of inertia of the VCM and the microactuator, respectively.

MM is the mass of the microactuator and slider assembly. l is the distance between the mass
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center of the microactuator and the pivot of the VCM. θV and θM are the angular positions

of the VCM and the microactuator relative to the VCM, respectively. τV and τM are the

torques generated by the VCM and the microactuator, respectively. KM and BM are the

stiffness and damping coefficient of the microactuator, respectively. Given the fact that the

inertia of the microactuator is very small compared to that of the VCM ( JM

JV
= 1.1e− 7 for

the model we used), the coupling term JM θ̈M in Eq. (5.5) can be neglected and the motion

of the microactuator can be assumed to have no effect on the motion of the VCM. Eq. (5.6)

can be rewritten as:

J∗
M θ̈M +BM θ̇M +KMθM = τ∗M , (5.8)

where

J∗
M = JM (1− JM

J∗
V

) , τ∗M = τM −
JM
J∗
V

τV . (5.9)

The above equation shows that the motion of the microactuator can be decoupled

from the VCM by feeding τV to the microactuator with a proper gain. As a consequence,

for controller design purposes, the dual-stage system can be approximated by a decoupled

model by adding the outputs of the VCM and the microactuator, as shown in Fig. 5.2.

In Fig. 5.2, GV and GM represent the VCM and microactuator models, respectively. xp

and xv denote the absolute positions of the read/write head and the tip of the suspension

respectively. RPES denotes the position of the microactuator relative to the suspension,

xp = xv +RPES . (5.10)

The following controller designs are based on this decoupled dual-stage model. For
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implementation, the actual control torque to the microactuator is given by

τM = τ∗M +
JM
J∗
V

τV , (5.11)

where τ ∗M and τV are generated from the designed controller.

GV

GM

τV

τ∗
M RPES

xpxV

Figure 5.2: Decoupled MEMS microactuator dual-stage control plant.

5.2 Decoupled Discrete-Time Pole Placement Track-Following

Controller Design

5.2.1 Decoupled Control Design Structure

A block diagram for MIMO decoupling control design is shown in Fig. 5.3.

VPES xV
KV

-

+

RPESPESr

-

+

GV

GM

xP
KM

KRR

1/KRS

GR

Figure 5.3: Decoupled dual-stage control design block diagram.

The part enclosed in the dashed box on the upper-right corner of Fig. 5.3 is the

open-loop system depicted in Fig. 5.2. In Fig. 5.3, r represents the runout, PES is the
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position error signal of the head relative to the data track center (i.e., PES = r−xP ), and

RPES is the position error signal of the head relative to the tip of the suspension (i.e.,

RPES = xP − xv).

As shown in the block diagram, there are three compensators that need to be

designed: the VCM loop compensator KV ; the microactuator PES loop compensator KM ;

and the microactuator RPES inner-loop compensator KMM = KRR/KRS . The microactu-

ator inner-loop compensator is used to damp the microactuator’s flexure resonance mode.

The damped microactuator closed-loop transfer function GR, shown in the lower-middle

dashed box, is defined by

GR =
GM

KRS +GM KRR
. (5.12)

The control structure in Fig. 5.3 uses the same sensitivity function decoupling

technique described in section 3.2. Following the same derivation, the total dual-stage

open-loop transfer function from r to xP , GT , is

GT = KV GV +KM GR +KM GRKV GV . (5.13)

The total closed-loop sensitivity function from r to PES equals the product of the

VCM and microactuator loop sensitivity functions, SV and SM , respectively:

ST =
1

1 +GT
= SV SM , (5.14)

where

SV =
1

1 +KV GV
, SM =

1

1 +KM GR
. (5.15)

The microactuator loop sensitivity function can be designed by a two-step pole

placement design process which will be introduced in the next section.
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5.2.2 Closed-Loop Sensitivity Function Design by Pole Placement

The zero-order-hold (ZOH) discrete-time transfer function of a 2nd-order system,

as shown in Fig. 5.4, can be written as

Go(q
−1) =

q−1Bo(q
−1)

Ao(q−1)
, (5.16)

where q−1 is the one-step delay operator, Bo(q
−1) and Ao(q

−1) are the plant zero and pole

polynomials, respectively.

22 2 ooo

o

ss ωωξ
Α

++ZOH
y(k)u(k)

Figure 5.4: Zero-order-hold of a 2nd-order system.

The closed-loop sensitivity function of the system can be designed by pole place-

ment, solving the following Diophantine equation [4]:

Ac(q
−1) = Ao(q

−1)S(q−1) + q−1Bo(q
−1)R(q−1) , (5.17)

where Ac(q
−1) is the desired closed-loop characteristic polynomial. The discrete-time con-

troller C(q−1) is

C(q−1) =
R(q−1)

S(q−1)
. (5.18)

The closed-loop sensitivity function, GS , is

GS(q
−1) =

1

1 +Go(q−1)C(q−1)
=
Ao(q

−1)S(q−1)

Ac(q−1)
. (5.19)

The open-loop and closed-loop pole polynomials, Ao(q
−1) and Ac(q

−1), determine the shape

of the sensitivity function.
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Ac(q
−1) can be chosen such that the required bandwidth and system response

are satisfied. Usually it is more intuitive to describe it with its continuous-time equivalent

parameters: the damping ratio, ζ, and the natural frequency, ωn. The damping ratio

is directly related to the phase margin of the open-loop transfer function. For a typical

design, it can be chosen to be equal to or greater than 1, in order to ensure adequate phase

margin. ωn is related to the control bandwidth.

5.2.3 Dual-Stage Sensitivity Function Design

The three compensators in the dual-stage servo system depicted in Fig. 5.3 can be

designed by a two-step design process, as illustrated in Fig. 5.5.

0�db

ωVO ωVC

ωMR ωMC

0�db

ωMC

0�db

AS

ωVO ωMR ωVC

Figure 5.5: Illustration of the dual-stage sensitivity function design.

First, the VCM loop compensator, KV , is designed to attain a desired VCM closed-

loop sensitivity, SV , as shown in the top part of Fig. 5.5. Its bandwidth, ω
V C

in Fig. 5.5, is
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generally limited by the E-block and suspension resonance modes.

The second step of the design process involves the design of the microactuator loop

compensators to attain additional attenuation SM , as shown in the middle part of Fig. 5.5.

This step is itself accomplished in two steps. First, the inner RPES loop compensator,

KRR/KRS , is determined to damp the microactuator resonance mode and place the poles

of GR, or equivalently ωMR in Fig. 5.5, at desired locations. The compensator can be

obtained by solving a Diophantine equation by pole placement as described in the previous

subsection. The poles of GR will become the zeros of the microactuator loop sensitivity

function, SM .

Finally, the PES loop compensator, KM , is designed to place the poles, or equiva-

lently ωMC in Fig. 5.5, of the microactuator outer-loop closed-loop sensitivity function SM .

ωMC is mainly limited by the PES sampling frequency and computational time delay since

the microactuator has very clean dynamics up to 40 kHz frequency [57].

The total dual-stage sensitivity function is shown in the bottom part of Fig. 5.5.

For a given ωMC , the additional attenuation AS in the low-frequency region, provided

by the microactuator loop, will be determined by ωMR. In our proposed procedure, the

initial value of ωMR can be chosen to be the same as ωV C . It is then adjusted so that

the desired attenuation and phase margin requirements of the overall dual-stage system

are satisfied. Decreasing ωMR increases the low-frequency attenuation of the closed-loop

sensitivity function ST , but also reduces the phase margin of open-loop transfer function

GT .
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5.2.4 Design and Simulation Results

For comparison purposes, the same VCM model and VCM loop controller design of

the PZT-actuated suspension dual-stage system presented in Chapter 3 were used, and the

PZT actuator loop was replaced by the MEMS microactuator loop. The sampling frequency

is also the same at 25 kHz.

The natural frequency and damping ratio for the microactuator inner-loop pole

placement design were chosen to be ω
MR

= 200 Hz and ζ
MR

= 1, and for the outer-loop

pole placement design chosen to be ω
MC

= 6000 Hz and ζ
MC

= 1 . Fig. 5.6 shows the Bode

plots of the microactuator open-loop transfer function GM , inner RPES loop closed-loop

transfer function GR and outer PES closed-loop sensitivity function SM .

Fig. 5.7 shows the Bode plots of the dual-stage closed-loop sensitivity functions.

Fig. 5.8 shows the Bode plots of the dual-stage open-loop transfer functions. The solid

lines in these two figures are the results of the MEMS microactuator dual-stage system,

while the dashed lines are the results of the PZT-actuated suspension dual-stage system.

MEMS microactuator dual-stage system can achieve a much higher bandwidth than the

PZT-actuated suspension dual-stage system. Table 5.2 compares the design results of these

two kinds of dual-stage servo systems. Fig. 5.9 shows the open-loop Nyquist plot of MEMS

microactuator dual-stage servo system.

Table 5.2: Comparison of control design results of the PZT-actuated suspension and the
MEMS microactuator dual-stage servo systems

PZT-actuated suspension MEMS microactuator

Open-loop gain c/o freq. (Hz) 2104 3780

Gain margin (dB) 7.4 6.4

Phase margin (◦) 50.2 38.3

Sensitivity unity freq. (Hz) 1361 2480

Sensitivity max peaking (dB) 6.3 6.1
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Figure 5.6: Bode plots of the MEMS microactuator open-loop and closed-loop transfer
functions.
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5.3 Self-tuning Control of the MEMS Microactuator

An adaptive control scheme can be combined with the decoupled discrete-time

pole placement design methodology described above to compensate for the variations in the

microactuator’s resonance mode by tuning the microactuator RPES inner-loop compen-

sator.

A block diagram for the microactuator inner-loop self-tuning control is shown in

Fig. 5.10. The parameter adaptation algorithm (PAA) is a direct self-tuning algorithm,

based on the microactuator inner-loop pole placement design.

VPES xV
KV

-

+

RPES

PESr

-

+

GV

GM

xP
KM

KRR

1/KRS

Tuning

uM
uMR

GR

Figure 5.10: Self-tuning control of the microactuator.

Consider the microactuator open-loop transfer function in Eq. 5.16. Since the

microactuator’s resonance mode is lightly damped, the zero of the microactuator’s discrete-

time transfer function is very close to 1 (zo ≈ 1). Thus, it is possible to factor out the

“known” term (1 + zoq
−1) from the Diophantine equation (5.17). The resulting RPES

inner-loop closed-loop dynamics is given by

Ac(q
−1)y(k) = q−1b0(1 + zoq

−1)
[

KRS(q
−1)uM (k) +KRR(q

−1)y(k)
]

,
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where uM is the control input to the microactuator. y denotes the position of the microac-

tuator relative to the VCM, i.e., y = RPES.

Let

S(q−1) = b0KRS(q
−1) = s0 + s1q

−1 , (5.20)

R(q−1) = b0KRR(q
−1) = r0 + r1q

−1 . (5.21)

Define the control parameters vector

θ = [s0 s1 r0 r1]
T , (5.22)

and the regressor vector, φ(k) and the filtered regressor vector, φf (k),

φ(k) = [uM (k) uM (k − 1) y(k) y(k − 1)]T , (5.23)

Ac(q
−1)φf (k) = (1 + zoq

−1)φ(k) . (5.24)

The closed-loop RPES dynamics can be written as

y(k) = θTφf (k − 1) . (5.25)

From Eq. (5.25), the controller parameter vector estimate θ̂(k) = [ŝ0(k) ŝ1(k) r̂0(k) r̂1(k)]
T

can be updated using a standard recursive least squares algorithm (RLS) [3]:

θ̂(k) = θ̂(k − 1) + P (k)φf (k)e
o(k) , (5.26)

eo(k) = y(k)− θ̂T (k − 1)φf (k − 1) , (5.27)

P (k) = P (k − 1)−
P (k − 1)φf (k − 1)φT

f (k − 1)P (k − 1)

1 + φT
f (k − 1)P (k − 1)φf (k − 1)

. (5.28)
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The control law is

Ŝ(k, q−1)uM (k) = ŝ0(k)uMR(k)− R̂(k, q−1) y(k) , (5.29)

with

Ŝ(k, q−1) = ŝ0(k) + ŝ1(k)q
−1 , (5.30)

R̂(k, q−1) = r̂0(k) + r̂1(k)q
−1 , (5.31)

and uMR(k) being the output of the microactuator fixed outer-loop compensatorKM , uM (k)

being the control input to the microactuator.

Fig. 5.11 shows the simulation results of the control parameters estimates using the

RLS algorithm. In the simulation, simulated runout, VCM and MA torque disturbances,

PES and RPES measurement noises were injected into the dual-stage system. A white

noise with RMS value of 10 nm was used for the RPES sensing signal. This noise is mainly

due to thermal noise and feedthrough in the capacitive sensing electronics [60] [22]. The

simulation in Fig. 5.11 is for the case when the real microactuator resonance frequency is

1.2 times its nominal value. The controller parameters converge to their desired values.

Similar responses were obtained when the real resonance frequency is 0.8 times the nominal

value. After the control parameters converge, the closed-loop poles of the RPES inner-

loop transfer function GR converge to the desired nominal values, and nominal stability

and performance can be achieved for the dual-stage control system.
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Figure 5.11: Control parameters adaptation simulation.

5.4 Adaptive Feedforward Vibration Compensation using the

MEMS Microactuator Dual-Stage Servo System

In Chapter 4, vibration compensation using feedback damping control of the PZT-

actuated suspension dual-stage system was discussed. In this section, vibration compensa-

tion using the MEMS microactuator dual-stage servo system is presented. In this case, the

piggy-back MEMS microactuator is positioned at the end of the suspension. Assuming that

the excitation to the suspension resonance modes by the reaction force of the microactua-

tor is negligible, the vibration compensation scheme is a feedforward control scheme. The

feedforward controller uses vibration sensor information and controls the microactuator to

cancel head motion resulting from suspension vibrations.
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5.4.1 Adaptive Feedforward Vibration Compensation

An adaptive feedforward control structure for vibration cancellation using the

microactuator is shown in Fig. 5.12 (dual-stage feedback part is not shown in the figure).

In the figure, w represents the airflow excitation to the suspension. d denotes the head

motion due to suspension vibration, and Gwd is the transfer function from w to d. z

denotes the strain sensor output, and Gwz is the transfer function from w to z. Ideally

we would like z and d to have the biggest possible correlation. However, since z and d are

measured at different locations on the suspension, even though Gwz and Gwd have the same

poles, they usually have different zeros. Therefore, d and z will probably have a dynamic

relationship. Define the transfer function from z to d to be

Gzd =
Gwd

Gwz
. (5.32)

GGWDWD

H

er
d

GGWZWZ

GGMAMA

yuff

z
w

PAAGGMAMA

x e=PES
q-1

ed

Figure 5.12: Adaptive feedforward control for vibration cancellation.

GMA in Fig. 5.12 represents the model of the microactuator. H is the feedforward
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filter, which needs to be designed, in order to cancel d. Intuitively, an expression for H can

be

H = (GMA)
−1Gzd . (5.33)

However, H as given by Eq. (5.33) may not be causal and the transfer function

of Gzd is not precisely known. Furthermore, the strain gauge factor usually is sensitive to

temperature. Thus, the optimal filter H needs to be estimated and tuned using an adaptive

scheme. H can be approximated by a finite impulse response (FIR) filter

H(q−1) = h0 + h1q
−1 + ...+ h−M

M , (5.34)

where q−1 is the one-step delay operator and M is the order of the FIR filter. The output

of the microactuator is

y(k) = GMA(q
−1)uff

= GMA(q
−1)H(q−1)z(k)

= H(q−1)GMA(q
−1)z(k) . (5.35)

Let

x(k) = GMA(q
−1)z(k) , (5.36)

and define the regressor vector,

φ(k) = [x(k)x(k − 1) ... x(k −M)]T , (5.37)

and the FIR tap weight vector,

θ = [h0 h1 ... hM ]T . (5.38)



124

The output equation of the microactuator can be written as

y(k) = θTφ(k) . (5.39)

The vibration compensation error is defined by

ed(k) = y(k) + d(k) . (5.40)

A parameter adaptation algorithm (PAA) can be used to estimate the coefficients

of H(q−1), θ̂, to minimize the mean square value of ed, E[|ed(k)|2]. However, ed is not

available, and the error signal that we have access to is the PES, which can be written as

e(k) = ed(k) + er(k) , (5.41)

where er represents the position error due to other sources, such as runout, after compen-

sated for by the feedback controller. Assuming that d is uncorrelated with er, we have

E[|e(k)|2] = E[|ed(k)|2] + E[|er(k)|2] . (5.42)

Thus, minimizing E[|e(k)|2] is equivalent to minimizing E[|ed(k)|2]. Therefore, the PES, e,

can be used as a corrupted error signal for the PAA, and er acts as a noise to the adaptation

process.

The regressor defined in Eq. (5.36) will be estimated by filtering z with the mi-

croactuator model, ĜMA,

x̂(k) = ĜMA(q
−1)z(k) . (5.43)

In next section, we will discuss how ĜMA can be identified.
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The recursive least squares (RLS) PAA for tuning the tap weights of H is [3]

θ̂(k) = θ̂(k − 1) + P (k)φ(k)e(k − 1) , (5.44)

P (k) = P (k − 1)− P (k − 1)φ(k − 1)φT (k − 1)P (k − 1)

1 + φT (k − 1)P (k − 1)φ(k − 1)
(5.45)

Other simplified algorithms, such as the LMS algorithm, also can be used.

5.4.2 Microactuator Model Identification

The damped microactuator model can be estimated using the self-tuning control

scheme presented in section 5.3. It is also possible to identify the microactuator model

using an off-line identification scheme since the variations in the microactuator’s resonance

frequency are due to the fabrication processes, and usually do not change after the microac-

tuator is fabricated.

The discrete-time transfer function of the microactuator model can be written as

GMA(q
−1) =

q−1Bo(q
−1)

Ao(q−1)
, (5.46)

where Bo(q
−1) and Ao(q

−1) are respectively the microactuator open-loop zero and pole

polynomials:

Bo(q
−1) = b0 + b1q

−1 , (5.47)

Ao(q
−1) = 1 + a1q

−1 + a2q
−1 . (5.48)

Depending on the availability of the RPES signal, different estimation schemes

can be used to identify the model parameters. When the RPES is available, the open-loop

microactuator dynamics can be identified by feeding to the microactuator a white excitation
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input signal. The parameters can be identified directly using the microactuator dynamics

Ao(q
−1)y(k) = q−1Bo(q

−1)uM (k) + w(k) , (5.49)

where uM (k) is the input excitation signal to the microactuator, y(k) is the RPES and

w(k) is the RPES measurement noise.

When the RPES signal is not available and the only measurement is the PES, it

is still possible to identify the microactuator open-loop dynamics by closing the VCM loop

with the PES, and feeding an excitation input signal of sufficiently large magnitude to the

microactuator, as shown in Fig. 5.13.

xVKV

y=PES
r

-

+

GV

GM

xP
uM xM

Figure 5.13: Microactuator model identification without RPES sensing

Defining y(k) to be the PES, we have

y(k) = r(k)−GMuM (k)−KVGV y(k) , (5.50)

where r represents the runout, uM (k) is the input excitation signal to the microactuator,

GM and GV are the transfer functions of the microactuator and the VCM, respectively.

Defining the closed-loop sensitivity transfer function of the VCM,

SV =
1

1 +KVGV
, (5.51)

and defining the filtered excitation to the microactuator by

ufM (k) = −SV uM (k) , (5.52)
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we obtain,

y(k) = GM ufM (k) + SV r(k) . (5.53)

In the above equation, the term SV r(k) represents the PES due to the runout after it has

been rejected by the VCM sensitivity function. It is small as compared to the PES due to

the excitation of the microactuator, since we choose uM to be sufficiently large. Eq. (5.53)

can be rewritten as

Ao(q
−1)y(k) = q−1Bo(q

−1)ufM (k) + C(q−1)w(k) , (5.54)

where Ao, Bo are the microactuator open-loop pole and zero polynomials, which need to

be identified, w(k) is a fictitious white noise, and C(q−1) represents the combined effect

of runout, VCM and microactuator torque disturbances, and the PES measurement noise,

after being rejected by the VCM control loop.

Fig. 5.14 shows the simulated responses of the microactuator parameters estimates

â1, â2, b̂o, b̂1, using the extended recursive least square (ERLS) algorithm [3]. Simulated

runout, VCM and microactuator torque disturbances, PES measurement noise were in-

jected into the dual-stage system in the simulations. The noise model Ĉ(q−1) was chosen

to be fourth order. As shown in Fig. 5.14, the parameters estimates converged to their true

values.

5.4.3 Simulation Results

Simulations were conducted to verify the proposed adaptive feedforward vibration

compensation scheme. The MEMS microactuator dual-stage model and the feedback con-

troller system presented in sections 5.1 and 5.2 are used in the simulations. The windage
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Figure 5.14: Control parameters adaptation responses

disturbance and vibration sensor models were estimated using the experimental data of the

PZT-actuated suspension, as shown in Fig. 4.2.

A 6-tap FIR was used as the feedforward controller in the simulation. The feedfor-

ward control loop runs at 50 kHz, while the track-following control loop and the parameters

adaptation loop run at 25 kHz. Fig. 5.15 shows the FFT of the simulated PES. The solid

and dashed lines are when adaptive feedforward control is and is not applied, respectively.

The PES is reduced by 36% when adaptive feedforward control is applied.

Fig. 5.16 shows the simulated adaptation of the FIR filter tap weights. Notice that

the adaptation convergence is slow. This is because the error signal used in the adaptation

is the PES, which is corrupted by the position error due to other sources. This can be

improved by incorporating an additional plant and noise model identification PAA [46].
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Chapter 6

Conclusions

6.1 Conclusions

In this dissertation, robust and adaptive controller design methodologies and algo-

rithms, and active vibration suppression control techniques were developed for dual-stage

servo systems in hard disk drives.

In the control design of the PZT-actuated suspension dual-stage servo system,

robust control design and analysis methodology using µ-synthesis was developed. A plant

model including dynamic coupling effects of the dual-stage actuator was identified using

modal testing. A structured uncertainty model was established to represent both parametric

uncertainty and unmodeled dynamics of the dual-stage servo system. The use of µ-synthesis

has been shown to be an effective method to design robust optimal dual-stage track-following

controllers. Robustness of the controller designed using the popular decoupled master-slave

method was also analyzed using µ. Even though the stability robustness is achieved for

the decoupled design, there might be a large performance degradation under the worst-case
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perturbation. The µ-synthesis design can achieve almost twice the stability margin of the

decoupled design with only a small nominal performance degradation.

Active damping control of the resonance modes of the PZT-actuated suspension

dual-stage actuator utilizing one PZT element as a vibration sensor was proposed. The vi-

bration damping controller was designed using Kalman filter based state feedback damping

control techniques. The effectiveness of the proposed control scheme in suppressing turbu-

lence excited structural vibrations of the actuator and suspension assembly was experimen-

tally demonstrated. The proposed active damping control technique for the PZT-actuated

suspension dual-stage actuator overcomes the fundamental limitation in its dynamic re-

sponse, and makes it a viable alternative high performance solution to dual-stage actuation

in HDDs. Head off-track motion of less than 5 nanometers in 1-σ value has been achieved

for track-following control with active damping in the experimental testing.

In the controller design of a MEMS microactuator dual-stage servo system, a de-

coupled design structure with microactuator minor-loop damping and a pole placement

design methodology were proposed. The main advantage of the proposed scheme is that it

can be combined with a self-tuning loop to compensate for the variations in the microac-

tuator’s resonance mode. A direct self-tuning control algorithm was developed and the

convergence of control parameters was verified in the simulations. An adaptive feedforward

control scheme was developed to cancel the head off-track motion caused by airflow excited

suspension vibrations using the MEMS microactuator.
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6.2 Future Work

A number of interesting topics related to the research in this dissertation remain

to be explored in the control design of dual-stage multi-sensing servo systems in HDDs.

Mixed H2/H∞ Optimization

Disk drives are stochastic systems and their performance is represented by the

statistical distribution of the PES. Thus, disk drive servo control is an H2 optimal control

problem in terms of achieving the best performance. On the other hand, disk drives are

uncertain dynamic systems with both model parameters variations and unmodeled dynam-

ics. The robust control problem is best formulated and solved using the H∞ control theory.

Robust optimal control of disk drive systems is a mixed H2/H∞ optimization problem,

which has not fully been solved for MIMO output feedback systems. One possible solution

to this problem is using linear matrix inequality (LMI) optimization techniques [7].

One topic of future work is to investigate how to formulate the robust and optimal

dual-stage track-following control and vibration suppression control design problem as a

multi-objective multi-constraint H2/H∞ optimization problem that can be solved using

LMI techniques.

Simultaneous Sensing and Actuation using PZT Actuators

In this dissertation, a vibration damping control scheme using one PZT element as

a sensor and the other as an actuator was proposed. There are two main disadvantages of

this scheme. First, the actuator gain is reduced by half. Second, the sensor output signal is
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corrupted by big contributions from the out-of-the-plane bending modes vibrations. If both

PZT elements are used as sensors, the common-mode component due to bending modes

vibrations can be rejected. As a result, the damping controller design can be simplified and

the performance can be improved.

Thus, investigation of the feasibility of simultaneous sensing and actuation using

both PZT elements is a very interesting research topic. One possible solution is to use a

bridge-matching circuit to pick up the vibration sensing output signal [2].

Sensor Fabrication, System Integration and Control Testing

Adaptive feedforward vibration compensation using the MEMS microactuator was

proposed in this dissertation. There remains a lot of work to be done in sensor fabrication

and system integration to implement such a control scheme. MEMS microactuators and

instrumented suspensions with piezoelectric thin-film vibration sensors are being designed

and fabricated in our research group. New robust, adaptive MIMO control architectures

and algorithms remain to be developed and tested for such a multi-sensing multi-actuation

servo system.
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