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Abstract 

Head-Disk Interface Dynamics of Ultra-Low Flying Air Bearing Sliders  

for Hard-Disk Drive Applications 

by 

Brian Hayes Thornton 

Doctor of Philosophy in Engineering - Mechanical Engineering 

University of California, Berkeley 

Professor David B. Bogy, Chair 

 

The dynamics associated with the head-disk interface (HDI) in hard-disk drives are 

studied for ultra-high magnetic recording areal densities. Slider dynamics and flying-

height modulation (FHM) are studied both experimentally and by simulation. The 

experimental results are explained by modeling and simulation to understand and control 

FHM through design guidelines.  

 

For a steady-proximity flying interface (occasional contacts between the slider and disk) 

the FHM is composed primarily of repeatable motions induced by the disk morphology. 

This FHM consists of three frequency regimes, which can be characterized as (1) 

geometric, (2) dynamic, and (3) zero response FHM. The geometric FHM is the major 

contributor for certain combinations of sliders and disks, and it is studied in detail in 

order to understand its cause and to minimize the effects of this component. 

 
A comparative study of the dynamic performance of sliders as a function of form-factor 

(size) revealed counter intuitive results. It was previously believed that as the form-factor 
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decreased, the FHM and dynamic performance would improve. However, in this work we 

found that this conventional understanding is not always the case.  As the form-factor 

decreases, the air bearing stiffness usually decreases and the geometric FHM is not 

necessarily minimized.  

 

As the slider transitions from steady-proximity to unsteady-proximity, a certain nonlinear 

characteristic of the air bearing slider system becomes more pronounced. This 

nonlinearity is studied using joint-time frequency analysis in which a highly non-

stationary response causes unusual complexities in understanding the system’s behavior 

in the frequency domain. Also, the cause of an observed “snapping” effect from steady-

proximity to unsteady-proximity is explained by incorporating near-contact triggered 

adhesion forces between the slider and disk through modeling. The experimental results 

showing this “snapping” effect as well as the presence of an observed flying-height 

hysteresis can be explained by inclusion of these adhesion forces.  These results suggest 

that there is a lower limit of the flying-height below which a slider cannot fly stable. This 

lower FH limit may preclude the use of traditional air bearing sliders for areal densities 

greater than 1 Tbit/in2, and it is likely to require special designs of the slider’s air bearing 

surface to reach 1 Tbit/in2. 

 

 
 
 
_________________________ 
Professor David B. Bogy 
Dissertation Chair  
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CHAPTER 1 

INTRODUCTION 

1.1  Magnetic Recording Hard-Disk Drives 

Magnetic recording technology has evolved to become the most common means of 

storing information. In this digital world, the endless appetite for storage capacity has 

driven magnetic recording technology over many technical hurdles. This demand for 

greater capacity has caused the magnetic areal recording density versus time to follow a 

schedule known in the integrated circuit world as Moore’s Law, which states that the 

number of transistors (or magnetic bits for magnetic recording) per unit area will double 

annually. In fact, magnetic areal densities have increased at a rate of greater than 60 % 

annually in the late 90’s, thereby exceeding Moore’s Law. Along with the magnetic areal 

density, the data transfer rate has also increased dramatically. This rapid increase in 

densities and data transfer rates has been enabled by several technological advances in 

magnetics, mechanics, tribology, and several other areas of research. 

 

The fundamental basis of magnetic recording hard-disk drives has changed very little 

since its introduction in 1957 by IBM. However, since 1957 the drives’ physical size has 

gone from that of a room to something that is handheld, and the cost has gone from 

$35,000/Mbit to under $0.01/Mbit. Figure 1.1 shows a picture of a modern hard-disk 

drive with its cover off exposing the components. The information is written onto co-

rotating disks by a read/write transducer that is located at the end of a suspension 

mounted on a rotary actuator. The combination of the spinning disks and the rotary voice 

coil motor actuator allows the read/write transducers to rapidly scan the entire surface of 
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the disk as seen in Fig. 1.2. In order for the magnetic areal density to increase, the area of 

the magnetic bit has to shrink. The areal density is a product of the track density and the 

linear bit density as shown in Fig. 1.3. Data is written on circular tracks at fixed disk radii 

in the form of small domains (bits) of like polarized magnetic grains. Increasing the 

magnetic areal density requires packing the bits closer together in both the 

circumferential and radial directions, and a fundamental “paramagnetic” limit at which 

the bits will demagnetized their neighbors is expected to be reached soon for 

conventional longitudinal recording. 

 

A density of 100 Gbit/in2 has already been demonstrated, and the quest for 1 Tbit/in2 is 

now the goal of academic and industry researchers [4]. Organizations such as the 

Information Storage Industry Consortium  (INSIC) conducts research in media and heads 

(magnetics), signal processing, servo, and tribology with all groups having a common 

goal of reaching 1 Tbit/in2 [5].  

 

1.2  Mechanics of the head-disk interface 

In striving for the densities of 1 Tbit/in2, we are expecting severe challenges in designing 

the interface between the read/write transducer and the magnetic media disk or the head-

disk interface (HDI). According to the Wallace spacing loss equation, the magnetic signal 

decreases exponentially as the distance increases between the magnetic media and the 

transducer [6]. Thus, the lowest signal-to-noise ratio (SNR) would be obtained at a 

spacing of zero. However, to achieve a tribologically reliable interface, the spacing has to 

be greater than zero. Over the years the way to achieve a reliable interface, both 
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tribologically and magnetically, has been to control the transducer-disk spacing by use of 

an air bearing slider resulting in a “flying” transducer. For a given magnetic areal density, 

a corresponding spacing is found from modeling and experimentation to be a complex 

function of several physical parameters and as the areal densities increase, the 

corresponding head to media spacing must decrease [7]. For areal densities of 3, 35.3, 

and 130 Gbit/in2, the corresponding physical spacing has been 38, 10, and 5 nm, 

respectively [8]. It is projected that in order to achieve 1 Tbit/in2, a magnetic spacing of 

6.5 nm will be required [7]. Allocated to this magnetic spacing budget are the thicknesses 

of the protective overcoats on the disk and transducer surfaces (1 nm each) and 1 nm of 

lubricant over the disk surface. The protective overcoats are necessary to provide wear 

resistance and more importantly corrosion protection of the magnetic media and 

transducer. The lubrication layer also provides wear resistance and durability. These 

protective overcoats and the lubricant have been crucial in the development of a reliable 

HDI, however, for the 1 Tbit/in2 system this leaves only 3.5 nm of physical spacing or 

flying-height (FH) between the transducer and the lubricant/disk surface.  

 

The motion of the transducer relative to the disk surface is composed of two components; 

in-plane and out-of-plane or off-track vibrations and flying-height modulation (FHM), 

respectively. For large off-track motions, the transducer can read/write the wrong data 

thereby creating errors. Also, for large FHM, the magnetic readback signal fluctuates and 

can result in a “write or read skip” due to a loss of signal also causing errors. Both of 

these fluctuations must been controlled: off-track to within ±12 % of the track width and 

FHM to within ±10%, corresponding to several nanometers and several angstroms, 
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respectively. Off-track motion has been controlled by single or dual stage actuator(s) 

while FH and FHM has been controlled passively. With these tolerances becoming 

tighter in both the off-track and FHM directions and with the excitation levels increasing 

due to the disk rotation speed increasing to 20,000 RPM, the control of the HDI 

fluctuations is becoming more difficult and more important.   

 

1.3  Air-bearing sliders 

The FH has been controlled passively through self-acting air bearing sliders such as the 

example shown in Fig. 1.4. The air bearing slider body size has changed over the years 

from the full size slider (4.1 × 3.2 × 0.85 mm) to the current “pico” sliders (1.25 × 1.00 × 

0.3 mm) and the experimental “femto” sliders (0.85 × 0.70 × 0.23 mm ). The air bearing 

surface (ABS) is a patterned surface that comes within proximity of the disk surface. A 

thin film magnetic transducer is deposited onto the trailing edge of the slider body. The 

relative motion between the “stationary” slider mounted on the end of the suspension and 

the rotating disk generates a thin air film bearing (gas lubrication). The slider body is 

supported by the gimbal and suspension that is swaged onto the actuator arm. The 

suspension acts as a flexible support in the out-of-plane direction, which allows the slider 

to follow the disk runout and distortions. The gimbal acts as a flexible support of the 

slider to the suspension and the dimple acts as a point load on the slider. The suspension 

supplies a load (“gram-load”) through the dimple to the slider, which is counter balanced 

by the air bearing pressure force. Static equilibrium is obtained when the forces and 

moments acting on the slider from the suspension and gimbal balance those generated by 

the thin air film bearing. For the ABS shown in Fig. 1.4, the equilibrium pressure field 
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generated by the relative air flow is obtained numerically by the generalized Reynolds 

equation. The “flying” slider body has similar degrees-of-freedom as an airplane: 

vertical, pitch and roll. The flying attitude and characteristics of the slider are complex 

functions of many parameters including the gram-load, shape of the ABS, and relative 

velocity. The shape and design of the ABS has changed drastically over the years from 

simple mechanically machined positive pressure taper-flat designs to complicated plasma 

etched sub-ambient pressure designs as shown in Fig. 1.5. As seen in Fig. 1.1, the pivot 

point of the actuator and the spinning axis of the disks are fixed. Therefore, as the slider 

is actuated from the inner diameter (ID) to the outer diameter (OD) of the disk, the 

relative velocity and the relative air flow direction (skew angle) changes. These changes 

cause the slider’s flying characteristics to vary as the slider seeks from ID to OD.  

 

The most important criteria for ABS slider design is the static performance. The static 

performance criteria consist of constant FH at the transducer from ID to OD considering 

manufacturing tolerances and other factors such as altitude insensitivity. It is also 

desirable for the transducer FH to be coincident with the minimum FH, but unfortunately, 

the transducer FH is generally a couple of nanometers higher than the minimum FH due 

to the flying attitude of the slider and the ABS design. A static optimization of the ABS 

will yield near constant FH from ID to OD, but contains no information on the dynamic 

performance of the HDI.  

 

In the past, a purely static design of the ABS was sufficient when flying at spacings 

greater than 30 nm, however, when flying in the sub- 10 nm regime, the dynamics must 
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be taken more into account. Even though the disk morphologies have become extremely 

smooth for “super-smooth” media (< 0.5 nm RMS), for low flying sliders, the 

morphology becomes comparable to the FH. This is analogous to an airplane flying over 

the desert floor at 20 ft opposed to 2 ft features that appear smooth at 20 ft will appear as 

large bumps and/or obstacles at 2 ft. With smaller allowable perturbations from steady-

state, higher level of excitations, and additional forces that are no longer negligible 

subjected to the slider, the understanding of the HDI dynamics is becoming a crucial 

aspect in developing a reliable HDI.   

 

1.4  Objective 

The objective of this research is to investigate the out-of-plane (FHM) dynamics and the 

HDI stability associated with ultra-low flying air bearing sliders. Emphasis is placed on 

understanding and controlling HDI dynamics with design guidelines to achieve stable and 

reliable ultra-low FH’s. Both experimental and numerical modeling was used to study 

and verify the findings and results presented in this dissertation.  

 

1.5 Dissertation outline  

This dissertation is divided into seven chapters. The first chapter is an introduction to 

magnetic hard-disk drive technology, the HDI, and the motivation for the research 

presented. The technical material is categorized into two parts associated with the 

transition as FH is lowered to achieve higher magnetic areal densities. The first part, 

consisting of chapters 2 - 4, is concerned with the dynamics associated with a purely 

“flying” slider interface without contact. The second part, chapters 5 and 6, is concerned 
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with the transition between a purely “flying” interface to a “partial-contact” or a “stable” 

to “unstable” interface. These two categories are common of what occurs as the FH is 

lowered from sub- 10 nm to sub- 5 nm, or in moving from 100 Gbit/in2 to 1 Tb/in2 

applications, respectively.  

 

Chapter 2 presents the development of an experimental apparatus and procedure to 

measure sub- nm FHM and verification of the system by simulation. Also, a case study is 

included to show the effect of disk morphology on FHM. Chapter 3 presents an 

investigation of the effect of ABS design and flying attitude on the geometric FHM. 

Chapter 4 contains a comparative study of the dynamic performance as a function of 

slider form-factor. Chapter 5 is concerned with an investigation of the nonlinear effect of 

the HDI as the slider transitions from steady-proximity to unsteady-proximity. Chapter 6 

presents an investigation of the HDI instability caused by adhesion forces between the 

slider and disk. Finally, chapter 7 presents the conclusions of this dissertation.  
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Fig. 1.1. Picture of a hard-disk drive [1].  
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Read/write transducer

 

Fig. 1.2. Seeking motion of the actuator and the spinning disks allow the transducer 
(head) to cover the entire surface of the disks containing the magnetic bits or information 
[2], [3].  

 

 

Figure 1.3. Magnetic areal recording density is the product of the linear density and the 
track density [3]. 
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Sub-ambient pressure pocket

Magnetic read/write transducer

 

Fig. 1.4. Air bearing surface design and the pressure distribution generated over the 
surface by the relative motion between the spinning disk and the “stationary” slider. 
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Fig. 1.5. (left) Simple taper-flat positive pressure ABS design and (right) complex sub-
ambient pressure ABS design. 
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CHAPTER 2 
 

THE EFFECTS OF DISK MORPHOLOGY ON FLYING-HEIGHT 

MODULATION: EXPERIMENT AND SIMULATION 
 

Abstract 
 

The effect of morphology on flying height modulation (FHM) of a sub-10 nm flying air 

bearing slider was studied for three different disks by experiment and simulation. The 

experimental measurement methods are discussed and a new single beam laser Doppler 

vibrometer (LDV) measurement method, which yielded the highest resolution with a 2 

µm beam spot size, was introduced. Analysis was performed in three different frequency 

bandwidths – a geometric FHM from 10 kHz to 100 kHz, a dynamically excited FHM 

from 100 kHz to 500 kHz and the third band, being negligible compared to the other two 

bands, above 500 kHz. Transfer function analysis was carried out to investigate the FHM 

in the lowest frequency band. FHM in the first band was shown to be caused primarily by 

a phase shift between the sliders’ response and the disks’ morphology and secondarily by 

decreasing slider motion with decreasing morphology wavelength, which correlates well 

with the research presented in Chapter 3. For two of the disks investigated, the FHM due 

to the disks’ morphology showed air bearing excitation that resulted in an intolerable 

level of FHM. However, for one of the disks studied, the FHM was as low as the disk 

morphology for wavelengths of 2 mm and less, which was within tolerable limits. It is 

concluded that when designing a disk for low FHM, it is not sufficient to characterize the 

quality of a disk by a single number such as roughness or waviness. Proper design and 

optimization of both the disk and air bearing slider results in FHM that is lower than the 

disks’ morphology.  
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2.1 Introduction 

 

With flying-heights (FH) decreasing as magnetic areal density increases a better 

understanding of the dynamics at the head-disk interface (HDI) is required. There are 

numerous parameters, the effects of some of which are still unknown, that affect the 

tribological and magnetic performance at the HDI. The condition of “steady-proximity” 

flying, or flying without contact, over an actual magnetic disk at sub-10 nm FH is not yet 

completely understood. But understanding the dynamics of the slider due to the disk 

morphology is required for the design of a stable HDI. The physical spacing requirement 

for 100 Gbit/in2 data density is only 6 nm at the transducer location [11]-[12]. Also, 

reliable reading and writing of magnetic data requires that the transducer location on the 

slider fluctuate by no more than ±10 % of the nominal FH, which means ±0.6 nm [12]. 

An accurate method for measuring FHM due to repeatable events such as disk 

morphology and other motions of the disk was proposed previously by Zeng, Thornton, 

Bogy, and Bhatia [9].  

 

We applied the LDV to measure FHM in a manner similar to that proposed by Zeng et al. 

with a slight modification [9]. The modification entailed a single or absolute 

measurement of the disk and slider with a smaller, 2 µm, beam diameter in order to 

improve spatial resolution. It was found that not only was a higher resolution obtained, 

but also we were better able to directly compare experimental and simulation results. In 

this way we investigated three different “super-smooth” disks with an air bearing slider 

that was designed for 100 Gbit/in2 applications. By keeping the other experimental 

conditions constant, we compared the FHM of the three disks experimentally and by 
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simulation. Excellent agreement between the experimental and simulation results was 

found. Analysis of the data was broken into three distinct frequency bandwidths: Band I: 

10 kHz to 100 kHz, Band II: 100 kHz to 500 kHz, and Band III: greater than 500 kHz. It 

was shown that the FHM amplitude in Band I, which was found to be the geometric 

FHM, was on the same order as the disk morphology. The FHM in Band II was found to 

be dominated by the dynamics of the air bearing slider. It was shown that for a certain 

level of disk morphology, the air bearing was excited to an intolerable level of FHM. In 

Band III, it was found that the slider had essentially zero absolute motion as the disk 

morphology passed underneath. However, the FHM in Band III could be neglected as 

compared to that in Bands I and II due to the low amplitude of the disk roughness at such 

high frequencies. From this study, we conclude that many factors need to be taken into 

consideration when designing a “steady” flying slider and a reliable HDI. With proper 

design of both the air bearing surface (ABS) and the disk, small fluctuations in the FH 

can be obtained yielding a more reliable HDI at sub-10 nm spacing, and these 

fluctuations can be held within ±10 %.  

 

2.2 Experimental setup 

 

The experimental results shown in this chapter were obtained using a modification of the 

experimental setup explained in detail by Zeng et al. [9]. A Thôt Technologies platform 

with the flyability option was the basic test stand. We used a Polytec LDV with a 

highpass filter set at 20 kHz for triggering at a small radial scratch on the outer diameter 

of the disk. This ensures accurate triggering for averaging the measurement. A Polytec 

512 LDV with a highpass filter at 5kHz was used for the actual measurement of the disk 
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and slider motion. Data acquisition was accomplished using a LeCroy oscilloscope 

sampled at 5 MHz and averaged 500 times. All data post-processing was carried out 

using Matlab. This general testing platform has shown at least 95 % repeatability for 

measurements on the nanometer scale [9].  

 

FHM consists of two components – the repeatable and non-repeatable fluctuations. The 

repeatable fluctuations can be caused by the disk morphology and other repeatable 

events. The non-repeatable fluctuations can be caused by aerodynamically excited disk 

flutter and suspension vibrations. However, if an extremely low noise LDV signal is 

obtained measuring the slider flying in steady-proximity (i.e., no contact), the sliders 

motion is repeatable as shown in Fig. 2.1 in the bandwidth of 10 kHz – 2 MHz. The high 

amplitude, low frequency components are almost identical after averaging 500 times with 

the only difference in the low amplitude, high frequency noise. Therefore, in this 

bandwidth, the sliders motion due to the disks morphology is almost all repeatable.  

 

2.2.1 Single LDV beam measurement technique 

Instead of using a LDV differential beam measurement as in Zeng et al. [9], we used a 

single LDV beam for absolute motion measurement with a beam spot size of 

approximately 2 µm. However, this can only be accomplished using the velocity output 

mode of the LDV. The necessary dynamic resolution would be lost if the displacement 

mode of the LDV were utilized.   
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As a disk spins, its morphology, clamping distortions, warpage, and other repeatable 

motions, as viewed by a stationary slider, can be decomposed into an infinite sum of 

sinusoids having different amplitudes, Ai, frequencies, ωi, and phases, φi: 
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            (2.1) 

 
The velocity, v(t) of this displacement is: 
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Displacement can be recovered by numerical integration of the velocity. Generally, for 

“super-smooth” disks, the amplitudes of the components decay exponentially as the 

frequency increases. If the displacement output mode were used with the LDV, the low 

frequency content of the disk morphology would overwhelm the higher frequency 

content, yielding low resolution across the bandwidth. The amplitudes of the velocity 

components are Aiωi which can be thought of as an exponentially decaying function, 

A(ω), multiplied by linear increasing ω.  This helps maintain a higher resolution across 

the wide bandwidth of interest.  

 

Several comparisons between differential and single beam measurements and different 

beam spot sizes were completed. Beam spot sizes of approximately 20 µm, 10 µm, and 2 

µm were used. However, for the differential dual beam measurement, one of the beams 

could be no smaller than 20 µm due to the optics arrangement on the tester. For a given 

sampling frequency, fs, the spatial resolution of the disk is v/fs, where v is the relative 

linear velocity between the slider and the disk. For the test case presented in this chapter 

with fs equal to 5 MHz, the spatial resolution was 3.7 µm/sample. If the beam spot size 
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were greater than the spatial resolution, the disk morphology resolution would be lost. 

Figure 2.2 shows time domain plots of the FHM and Table 2.1 contains peak-to-peak and 

3σ values of the FHM for different measurement methods of the same HDI system. 

Differential or dual beam and single beam measurements of the FHM for beam sizes of 

10 µm and 2 µm are shown (recall that in the dual beam measurement one beam was 20 

µm). The 20 µm beam was the limiting factor of resolution for the dual beam method. It 

can be seen that the peak-to-peak and standard deviation values increase slightly as the 

beam size decreases. This is due to the ability to capture more high frequency 

components or very small wavelength features on the disk surface. By using the single 

beam or absolute measurement not only was higher resolution obtained but also a better 

understanding could be inferred from the results, as will be seen later in the chapter. This 

measurement technique provides the absolute motion of the disk surface under the slider 

as well as the absolute motion of the slider. By subtraction of these measurements the 

FHM can be obtained. 

 

2.2.2 Effects of disk morphology on FHM 

A comparison of three different “super-smooth” disks under the same experimental 

conditions with the same slider was conducted. Skew angle was set to zero. The linear 

velocity of 18.7 m/s was chosen to be 1-2 m/s faster than that associated with the first 

signs of contact, determined by the LDV velocity response of the slider, between the 

roughest disk and the slider. When the frequency content of the signal contains torsion 

and/or bending modes of the slider body, at 1.25 MHz and 1.65 MHz, respectively, it is 

assumed that contact has occurred. Even though the nominal FH of the slider was the 
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same for all three disks, the clearances over the high spots and asperities of the disks 

were different. The slider under investigation was a pico negative-pressure symmetric 

design with a 1.5 gm preload and with the ABS shown in Fig. 2.3.  

 

The transducer FH at the test conditions was approximately 9 nm. The slider chosen for 

the experiment had good agreement in its attitude parameters (FH, pitch and roll) 

between measurements on a Phase Metrics Dynamic Flying-Height Tester and simulation 

using the Computer Mechanics Laboratory (CML) Air Bearing Design Code. The LDV 

beam was positioned on the slider body adjacent to the transducer to obtain the FHM at 

the transducer location for comparison between experiment and simulation. The band of 

the digital filter was 10 kHz to 2 MHz.  

 

2.3 Experimental results 

The three disks investigated, disks A, B, and C, are labeled in decreasing order of 

waviness and roughness. Figure 2.4 shows the frequency content of the disk 

morphologies from 10 kHz to 2 MHz plotted in nanometers on log-linear axes. When 

investigating FHM due to disk morphology, we must consider the spectral content of the 

entire bandwidth. Disks A and B had glass substrates and disk C had an aluminum 

substrate. As can be seen from Fig. 2.4, the manufacturing processes and substrates can 

have an effect on surface characteristics.  Figure 2.5 shows the frequency content of the 

FHM obtained from the three different disks. By comparing Fig. 2.3 to Fig. 2.4, we 

observe that the FHM for disk C appears to be the same as the disk morphology. Also, 

comparison of the results for disks A and B shows excitations of the air bearing modes at 
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approximately 160 kHz and 320 kHz, which causes large fluctuations.  

   

2.4 Comparison: experiment and simulation 

Simulations were performed using the CML Dynamic Air Bearing Simulator. The 

measured disk morphologies were used as the input data for the disk surface topographies 

for the simulator. This one-dimensional measurement was extended radially across the 

disk surface in the simulation, as a rough approximation of the two-dimensional 

morphology. For this specific case where the ABS is symmetric, the transducer is at the 

center of the trailing edge, and the skew is zero degrees, the error from this 

approximation is expected to be minimized.  

 

Figure 2.6 shows the experimentally measured disk morphology of disk C that was used 

in the simulation. The comparison between the FHM from experiment and simulation for 

disk C is shown in Fig. 2.7, where excellent agreement is seen. Similar results were 

obtained for the other two disks. A summary of the results for all three disks is shown in 

Table 2.2. The percentages shown in Table 2.2 are the peak-to-peak FHM normalized by 

the nominal FH, which for this case was 9 nm. Also, shown in Table 2.2 are the 3σ 

values of the FHM found experimentally, which were close to those values found by 

simulation. Excellent correlation of experiment and simulation was found in both the 

time and frequency domain comparisons. From Table 2.2, it can be seen that for disk C 

the FHM stays within the tolerable range of ±10 %, being ±5.8 % and ±7.35 % for the 

experiment and simulation, respectively. However, disks A and B exceed this criteria 

markedly being ±37 % and ±20.2 % for the experimental results, respectively. 
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2.5 Discussion 

The three disks under investigation have very different morphologies, as seen from Fig. 

2.4. The effect of the morphology on FHM can now be analyzed using both the 

experimental and simulation results. We analyzed the data in three distinct frequency 

bandwidths: Band I: 10 kHz < f < 100 kHz, Band II: 100 kHz < f < 500 kHz, and Band 

III: f > 500 kHz, where f is frequency. The experimentally determined standard deviations 

(σ) of the disk morphologies and FHM’s are shown in each frequency band for all three 

disks in Fig. 2.8. Figure 2.9 presents the ratio of the standard deviation of the FHM to the 

standard deviation of the disk morphology, broken into Bands I, II, and III for disks A, B, 

and C. The ratios in Fig. 2.9 are outputs (FHM) divided be the inputs (disk morphology) 

showing the “gain” of the system in the different frequency bands for the three disks. 

 

Band I corresponds to the geometric FHM which is studied extensively in Chapters 3 and 

4. Geometric FHM occurs at frequencies below the modal frequencies of the air bearing 

slider that are determined by the geometry of the ABS, pressure profile underneath the 

ABS and the disk morphology. This is a complicated function and for this particular 

ABS, the geometric FHM was on the same order as the disk morphology in Band I as will 

be shown in Chapter 3. As seen from Figs. 2.8 and 2.9, this holds true for all three disks 

investigated.  

 

Band II spans the modal frequencies of the air bearing slider. If we consider the air film 

and slider to be a linear system for small perturbations (which is not true for large 



 21

perturbations) under the condition of “steady” flying, the air bearing modal frequencies 

for the ABS under investigation fall within Band II. So in Band II, the disk morphologies 

excite this dynamical system and cause a resonance type FHM. Two modes are excited 

when the slider flies over disks A and B. The differences in the frequency peaks in Fig. 

2.5 for disks A and B have to do with the differences in the clearance between the disk 

and the slider. For disk A the clearance was less than for disk B, causing a greater air 

bearing modal stiffness. These two modes are the first and second pitch modes of the air 

bearing. The roll mode does not contribute to FHM at the transducer due to the symmetry 

of the ABS and the transducer location. From Figs. 2.5, 2.8, 2.9, and Table 2.2 it is 

apparent that for disks A and B there was an excessive level of excitation of the air 

bearing, causing FHM. However, for disk C, the disk morphology is so low in amplitude 

that the air bearing was not excited, and it actually shows a FHM that is lower in 

amplitude than the disk morphology in Band II. From Fig. 2.9, the gain of the FHM to the 

disk displacement was more than 2 for disks A and B, but it was only approximately 1 for 

disk C. From Fig. 2.4, it can be seen that in Band II, the FHM amplitude for disk C 

decreases with frequency much faster than for the other two disks. The results show how 

sensitive the FHM is to air bearing excitation. Different air bearing slider designs will 

have different threshold values for excitation due to the disk morphology. 

 

Band III covers the high frequency range in which the disk morphology passes 

underneath the slider without causing any significant absolute motion. It is also seen from 

Figs. 2.4 and 2.8, that the amplitudes of the disk morphologies in Band III were 

negligible for all three disks, compared to those in Bands I and II.   
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2.5.1 Explanation of band I 

Even in HDI’s where the air bearing dynamics are not excited (i.e. the case for disk C, 

see Fig. 2.8), there may still be a high level of FHM due to the geometric effect 

mentioned earlier. This effect will be explained in detail in the numerical simulation 

investigations presented in Chapter 3. As will be shown, the geometric effect is due to a 

phase shift between the disk surface topography and the response at the transducer 

location on the slider and also a decrease in the absolute motion of the slider as the 

wavelength on the disk decreases. This will be shown numerically using a sinusoidal 

waviness on the disk with various wavelengths but not for an actual disk surface that is 

composed of an infinite number of sinusoids over all frequencies, as seen in Eq. (2.1). If 

we use transfer function analysis to decompose the ratio of the output (slider motion) to 

the input (disk surface motion) into amplitude and phase verses frequency we can 

compare the experiment and simulation for the response to an actual disk. We used the 

Welch's averaged periodogram numerical method for estimating the transfer function 

between the disk and the slider motions with the aid of Matlab. Figures 2.10 and 2.11 

show the estimated transfer functions for the experimental and simulation results for both 

amplitude and phase. Instead of plotting the transfer function verses frequency, f, it was 

plotted verses wavelength, λ, on the disk: λ = v/f. From Fig. 2.11, it will be seen that the 

phase relationship of the ratio of slider motion to that of the disk, for both the 

experimental and simulation, is similar to what we find in Chapter 3. Similarly, from Fig. 

2.10 it can be seen that the amplitude of the absolute motion of the slider decreases as the 

disk waviness wavelength decreases. Both of these effects combined cause the geometric 



 23

FHM, but the phase shift is the primary cause and the decrease in the slider vibration 

amplitude is a secondary cause [10].  

 

2.5.2 Case study 

FHM for 10 different disks designed for sub- 20 nm FH interfaces were measured. These 

disks varied in manufacture, substrate, carbon overcoat, lubricant, and other variables, 

hence, there morphologies varied substantially. The peak-to-peak and 3σ disk topography 

values for the 10 disks are shown in Fig. 2.12 in the bandwidth of 10 kHz – 2 MHz, 

ranging from “roughest” to “smoothest”. If FHM fluctuations are required to be held to 

within ±10 % of the FH, > ±2 nm of allowable FHM is required. Comparing this criteria 

to the peak-to-peak values shown in Fig. 2.12 we see that disks 1 – 6 do not meet this 

requirement. If the design FH were 10 nm, only disk 10 would meet the requirement of 

FHM less than ±10 % of the FH. Also, it is interesting to notice that the FHM is 

approximately in one-to-one correlation with the disk topographies; however, this may 

not always be the case. 

 

2.6 Summary and conclusion 

In this study, we modified an existing experimental method to measure the FHM and 

obtained an increase in resolution, more insight into the mechanics, and as a result we 

were able to make direct comparisons between experiment and simulation. Different 

LDV beam sizes were used and compared, showing that the highest resolution was 

obtained with the single beam measurement using the smallest beam size of 2 µm. Slider 

vibration measurements taken while flying in “steady-proximity” showed that the 
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fluctuations were primarily composed of repeatable motion, hence, they were caused by 

the disk morphology. Experiments were conducted to obtain the FHM over three 

different disks. Using the measured disk topographies we obtained a direct comparison 

between experiment and simulation that showed excellent correlation. The FHM was 

analyzed using the experiments and simulations in the time and frequency domains. 

Three distinct frequency bandwidths were used to analyze of the effect of disk 

morphology on FHM. Band I: 10 kHz < f < 100 kHz was the band of the geometric FHM. 

Additional analysis in this bandwidth using transfer function analysis correlated the 

results obtained here with the findings of Chapter 3. The geometric FHM amplitude for 

the particular system studied was on the same order as the disk morphology. However, 

depending on the slider ABS design and the disk morphology, this geometric FHM may 

be greater or less than the disk morphology [10]. The FHM in frequency Band II: 100 

kHz < f < 500 kHz was influenced by the dynamics of the air bearing. If the disk 

morphology amplitude in Band II is low enough, excitation of the air bearing does not 

contribute to the FHM due to the disk morphology. The FHM in frequency Band III: 500 

kHz < f < 2 MHz was so low that it could be neglected compared to that in Bands I and 

II. It is obvious that a single number characterization of roughness or waviness is not 

sufficient to determine the quality of a disk with respect to FHM. We have shown that, 

for the particular slider used with disk C, the FHM amplitude is on the order of the disk 

morphology. However, optimization can be achieved with both the ABS design and the 

disk morphology to obtain an even lower FHM. A case study was carried out measuring 

the FHM of 10 different disks manufactured for sub- 20 nm interfaces. The results 

showed that a majority of the disks did not meet the requirement due to the disks 
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morphology inducing large FHM. Also, with the correlation realized here between 

experiment and simulation, simulations can now be used as a design tool. New ABS 

designs can be modeled and simulated for FHM due to disk morphology prior to 

manufacturing. 
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Dual Beam 

(10µ m beam 

size)

Dual Beam 

(2µ m beam 

size)

Single Beam 

(10 µ m beam 

size)

Single Beam 

(2 µ m beam 

size)

Peak-to-Peak 

FHM [nm]
1.72 1.93 1.93 2.05

3σ  [nm] 0.78 0.82 0.82 0.87

 

Table 2.1.  Peak-to-peak and 3σ values of FHM for different measurement methods. 

 

Disk A Disk B Disk C

Experimental FHMp-p/FHnom 74% 40.4% 11.6%

Simulation FHMp-p/FHnom 60% 38% 14.7%

Experimental 3σ  [nm] 5.04 2.43 0.81

 

Table 2.2.  The ratio of FHM peak-to-peak to the nominal FH for disks A, B, and C found 
experimentally and by simulation.  Also, 3σ of FHM found experimentally. 
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Fig. 2.1. Frequency content of the measured slider vibration in steady-proximity averaged 
1 and 500 times. 
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Fig. 2.2.  FHM comparison between dual beam and single beam LDV measurements. 
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Fig. 2.3: 100 Gbit/in2 ABS design. 
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Fig. 2.4. Power spectral density of disks A, B and C morphologies as seen from a 
stationary point as the disk rotates. 
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Fig. 2.5.  Power spectral density of the FHM at the transducer location for disks A, B, and 
C. 

 
 

-1

-0.5

0

0.5

1

0 .001 0 .0015 0 .002

Time [sec]

D
is

p
la

c
e

m
e

n
t 

[n
m

]

 

Fig. 2.6.  Measured disk morphology of disk C used in the simulation. 
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Fig. 2.7.  Comparison of experiment and simulation of the FHM for disk C. 
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Fig. 2.8.  Standard deviation of disk morphologies and FHM for disks A, B and C broken 
into the three Bands; Band I: 10kHz-100kHz, Band II: 100kHz-500kHz and Band III: 
>500kHz.  
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Fig. 2.9. Ratio of the standard deviation of FHM to the disk morphology broken into 
different Bands for disks A, B, and C. 
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Fig. 2.10.  Amplitude ratio of the slider to the disk displacement as a function of 
wavelength on the disk morphology. 
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Fig. 2.11. Phase shift between the sliders displacement to that of the disk. 
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Fig. 2.12. Peak-to-Peak and 3σ measured values of the (a) disk topography and (b) the 
corresponding FHM for 10 different disks. 
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CHAPTER 3 
 

FLYING HEIGHT MODULATION DUE TO DISK WAVINESS OF SUB- 5 
NM FLYING HEIGHT AIR BEARING SLIDERS 

 

Abstract 

Two new air bearing slider designs are presented for storage densities greater than 100 

Gb/in2 in hard disk drive (HDD) applications. Their dynamic frequencies and mode 

shapes are characterized, and they are used to study the flying height modulation (FHM) 

over wavy disks due to geometric effects as opposed to dynamic effects. It is found that 

low pitch designs experience large FHM at wavelengths on the order of the length of the 

sliders to one-eighth the length of the sliders due to a complex phase shift in the sliders 

trailing edge response as compared to the disk waviness. FHM due to disk waviness 

wavelengths from 2 mm to 0.16 mm was found to be a function of the sliders’ attitude 

(pitch angle) and the air bearing surface (ABS) geometry (pressure distribution over the 

ABS). The results presented suggest that the pitch should be greater than 100 µrad for the 

ABS designs presented and attention needs to be focused on the ABS design and disk 

morphology to avoid unacceptable FHM. A new ABS design was introduced to illustrate 

the results of the geometric FHM showing an 83% decrease in geometric FHM. The 

FHM due to geometric effects of the slider designs studied in this chapter could possibly 

be predicted by the disk morphology alone.  

 

3.1 Introduction 

As HDD storage densities approach 100 Gb/in2 the flying height (FH) of the air bearing 

sliders must be reduced to 6 nm or less. Since all disks have some roughness and 
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waviness it is impossible to completely eliminate variations of the FH about its mean 

value. But it is desirable to limit this variation to no more than ±10 % of the mean FH 

[11]-[13]. 

 

Previous research has shown that FHM has different causes depending on the wavelength 

of the disk roughness relative to the length of the slider. For long wavelengths the FHM 

is proportional to the square of the length of the slider, a purely geometric effect. As the 

roughness wavelength approaches zero the slider flies about the mean surface and the 

FHM equals the disk waviness. For some intermediate wavelengths of waviness an air 

bearing resonance may be excited and the FHM depends on the dynamics of the 

mechanical system [14]. 

 

To minimize the long wavelength FHM a shorter slider is obviously needed. Other design 

features determine the air bearing modal parameters, such as FH, static attitude, and ABS 

design that determine air bearing stiffness and damping. 

 

It is usually believed that femto sliders will be favored over the most commonly used 

pico sliders of current HDDs. This chapter investigates the relative performance of a 

particular pico slider designed for 5 nm FH, suitable for 100 Gb/in2 applications, and a 

similar femto 3.5 nm FH slider, expected to be required for 1 Tb/in2 densities [11]-[13]. 

First we present the ABS designs for the two sliders and indicate their uniformity of FH 

over the track range from inner diameter (ID) to outer diameter (OD) of the disk. Then 

we present their characterization, showing their air bearing frequencies and vibration 
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modes, as well as their damping characteristics. With these results as a basis we 

investigate the FHM for given waviness wavelengths of the disk. As expected, we find 

that for long wavelengths the FHM of the femto slider is about half that of the pico slider, 

and it is negligible for both sliders for a peak-to-peak waviness amplitude of 2 nm. As the 

disk wavelengths are reduced from 4 mm to 0.156 mm, it is found that the FHM of the 

femto slider actually exceeds that of the pico slider. This unexpected phenomenon is not 

associated with resonance but is found to result from the sliders’ pitch and an associated 

phase lag between the dynamic response of the slider at the transducer point and the disk 

waviness. The primary finding of this work is that the FHM for some slider designs, 

especially certain five-pad, sub-ambient pressure designs with a center rear pad, will be 

unacceptably large if the pitch is too low. For low pitch the rear center pad does not 

generate a pressure leg, and only the aft portions of the side rails support the slider. For 

high pitch the rear center pad also provides comparable pressure, thereby producing the 

third leg of support for the slider. It was found that the FHM due to disk waviness with 

length on the order of the sliders’ body length (1.5 mm to 0.156 mm) is a function of the 

sliders’ attitude and the ABS design and not the length of the overall sliders’ body. It is 

found that the geometric FHM can possibly be predicted by the disk morphology alone. 

To illustrate these findings, a femto ABS design is presented to minimize the FHM due to 

disk waviness, and it shows an 83% decrease in geometric FHM. Geometric FHM can be 

extremely significant, showing a maximum of 3.5 nm peak-to-peak for a disk waviness 

amplitude of only 2 nm peak-to-peak. Only by proper design of an ABS and disk 

morphology can tolerable levels of FHM be obtained. 
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3.2 Pico and femto designs 

The pico slider was designed for 5 nm FH for use in 100 Gb/in2 HDD while the femto 

slider was designed for 3.5 nm FH for use in 1 Tb/in2 HDD. Both sliders use basically the 

same design, a wrap around front rail that surrounds three sides of a sub-ambient region 

and a trailing center pad for mounting the transducer and controlling the flying height of 

the transducer. Figures 3.1 and 3.2 show the designs of the two sliders. There are three 

step levels on both sliders, the no-etch level of the primary air bearing surfaces, the 300 

nm etch regions adjacent to the rails, and the 2.5 µm base level of the sliders. Tables 3.1 

and 3.2 also indicate the FH profile as a function of radial position and the associated 

skew. The pre-load for the pico slider is 1.5 gm, while it is 1.0 gm for the femto slider. 

Notice that the pitch of the pico slider is 120 µrad while it is only 55 µrad for the femto at 

a radius of 15 mm; the skew is zero degrees and the spindle rotational speed is 7200 

RPM. These values of pitch, radius, skew and RPM are noted because those ID 

conditions were used in the following analysis.  

 

These sliders were characterized by use of the CML Parameter Identification Program, 

and the results are shown in Figs. 3.3 and 3.4 [15]. It is seen that the three air bearing 

modes are quite decoupled, as indicated by the perpendicularity of the nodal lines. Also 

we see that the two lowest mode frequencies are similar for the two sliders, around 110 

and 180 kHz, while the highest mode frequencies are different by about 100 kHz, the 

femto slider frequency being about 380 kHz versus 280 kHz for the pico slider. 
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3.3 Dynamic simulation of the FHM 

The CML Dynamic Simulator Program was used to calculate the responses of the two 

sliders to disks of various waviness. In all cases the peak-to-peak amplitude of the 

waviness was 2 nm, and the wavelengths were chosen between 12 mm and 0.1 mm. 

Figure 3.5 shows the FHM for the two sliders for a waviness wavelength of 2.5 mm, 

which is obtained by subtracting the disk waviness from the sliders’ displacement at the 

transducer. Here we see that the pico slider has a peak-to-peak FHM of about 0.4 nm, 

while it is about 0.27 nm for the femto slider. Similar calculations were made for several 

different wavelengths, and the resulting peak-to-peak FHM’s are plotted for all of these 

wavelengths for both sliders in Fig. 3.6. As expected the FHM of the femto slider remains 

below that for the pico slider for wavelengths greater than about 1.5 mm.  But for shorter 

wavelengths the modulation of the femto slider is much greater than it is for the pico 

slider, reaching a value of almost 3.5 nm at the wavelength of about 0.3 mm. This is an 

unexpected result. Notice that since the air bearing resonance frequencies are all above 

100 kHz, and this value occurs for wavelengths less than 0.1 mm for 7200 RPM this 

strong response cannot be associated with a resonance phenomenon. Further studies are 

required to reveal the cause of this phenomenon. 

 

Figure 3.7 shows the disk waviness and the pico slider’s response to a 0.625 mm 

wavelength waviness for two different slider designs that have the same 5 nm flying 

height, but with different values of pitch. These slider designs are only slightly different; 

having the load point moved slightly aft/forward and the suspension load slightly 

reduced/increased for the higher/lower pitch slider. However, the ABS design was 
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unchanged. Two things are observed from this figure: first it is seen that the sliders’ 

responses are phase shifted from the disk waviness; second we see that the amount of 

phase shift is much greater for the low pitch slider than it is for the higher pitch slider. 

Also it is apparent that the FHM, which is the difference between these two curves, 

increases with the phase shift. Just envision a case where the phase shift is 180 degrees as 

opposed to a case where it is 0 degrees. Figure 3.8 shows the FHM, absolute slider 

displacement and phase shift as a function of pitch over a disk waviness wavelength of 

0.625 mm for similar 5 nm FH pico sliders. The sliders’ response amplitudes are rather 

insensitive to the pitch, but the phase shift and hence the FHM monotonically increase as 

the pitch is decreased. Since the original femto slider had much lower pitch than the pico 

slider the large difference in the FHM for short wavelengths shown in Fig. 3.6 is 

evidently due to this phase-lag-pitch relation. Indeed, Fig. 3.9 shows the dependence of 

the FHM, absolute slider displacement and phase shift over a disk waviness wavelength 

of 0.625 mm for the femto sliders, and it is seen to be quite similar to that in Fig. 3.8 for 

the pico slider. 

 

3.4 Explanation of the phase-lag-pitch relationship 

It has been shown that the increase in FHM with decreasing waviness wavelength is 

related to an increase in a phase lag between the sliders’ response and the disk waviness, 

which in turn is related to a decrease in the sliders’ pitch. The original femto slider had 

much lower pitch than the pico slider and that accounts for the larger FHM of the femto 

slider in Fig. 3.6. It remains to explain why this phase difference becomes pronounced at 

shorter wavelengths and why this is related to pitch. 
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Figure 3.10 shows a sequence of pressure profiles for the original low pitch femto slider 

calculated at different locations of the transducer on the waviness phase. (1) is at the 

waviness trough, (2) is at the waviness mean height on an increasing slope, (3) is at the 

waviness peak, and (4) is again at the waviness mean height, but on a decreasing slope. 

While these profiles have some minor differences, the main observation is their similarity 

and the fact that the central trailing pad provides very little support to this low pitch 

slider. The slider is almost entirely supported by the small regions at the rear of the side 

pressure pads, giving it essentially a two-point support at some distance from the trailing 

edge where the transducer is located. When the disk rises and falls, because of its 

waviness, the slider responds near these two support points in phase with the disk, while 

the transducer is cantilevered a certain distance behind, leading to the phase shift. At 

some location on the slider, there exists a line which we call the “zero phase line” where 

forward of the line exists a phase lead and aft of this line exists a phase lag (i.e. the 

transducer location). For some simple slider designs, the “zero phase line” exists at the 

center of pressure of the ABS. Unfortunately this is not true for all slider designs 

including those presented in this chapter. Figure 3.11 shows the sequence of pressure 

profiles for the high pitch femto slider. Here we see that the center trailing edge has 

relatively high pressure, and therefore this slider is supported by three pressure points, 

one at the center trailing edge, where the transducer is located. Therefore the “zero phase 

line” shifts aft and causes the phase shift to be much less. 
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Figure 3.12 shows that the distance, l, between the trailing edge of the side rails and the 

trailing edge of the center pad (transducer location) is about 0.15 mm for both the pico 

and femto sliders.  When the waviness wavelength is 0.625 mm, l is about 0.25 of the 

waviness wavelength, so the transducer phase lag is about 90 degrees as shown in Fig. 

3.13. This also can be seen in Figs. 3.8 and 3.9 for the pico and femto sliders. As the 

pitch decreases, the phase angle approaches a maximum of approximately 90 degrees. 

When the waviness wavelength is 0.325 mm the transducer phase lag is almost 180 

degrees. This can be seen for the femto slider in Fig. 3.14. Similarly, as the pitch 

decreases, the phase approaches 180 degrees. This case of 180 degrees phase shift is the 

worst-case situation with the FHM becoming maximum due solely to the subtraction of a 

sine and cosine wave.  

 

Thus, the slider should have sufficient pitch to give it a three-point support rather than a 

two-point support. On the other hand, if the pitch is increased too much the slider will 

have only a one-point support at the center trailing edge. Clearly this would not be a 

stable design.  

 

3.5 Comparison of pico and femto sliders with similar specification 

Finally, Fig. 3.15 shows a more meaningful comparison between the pico and femto 

slider designs. Both sliders were slightly redesigned to have the same flying height of 4 

nm and they have similar pitch angles: the pico slider has 116 µrad pitch and the femto 

slider has 121 µrad pitch. However, there are slight differences in these ABS designs – 

the femto slider is not merely a scaled down version of the pico slider. Here we see the 
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more expected behavior. For waviness wavelengths between 6 mm and 1 mm the FHM 

of the pico slider is roughly twice that for the femto slider. Between the wavelengths of 

1.5 mm to 0.156 mm for both the pico and femto sliders’, the geometric FHM amplitude 

increases to about 2 to 2.25 nm peak-to-peak for a disk waviness amplitude of 2 nm peak-

to-peak. The femto slider shows slightly worse FHM performance attributed to the 

differences in the ABS designs and how the pressure profile is distributed. For the femto 

slider, the “zero phase line” is farther forward on the slider body compared to the pico 

slider causing worse FHM performance.  

 

Figures 3.16 and 3.17 show FHM, absolute slider displacement, and phase lag as a 

function of disk waviness wavelengths for the redesigned pico and femto sliders.  An 

important difference between these plots is that the FHM decreases and the phase angle 

approaches zero at a disk waviness wavelength of 0.156 mm for the femto slider. Figures 

3.18 and 3.19 show the results from the CML Parameter Identification Program for the 

redesigned femto and pico sliders. The redesigned femto slider’s air bearing mode 

stiffnesses are lower than those of the original design while the redesigned pico slider is 

stiffer than the original. We also see that the redesigned femto slider’s pitch resonant 

mode is approximately 65 kHz. At a disk waviness wavelength of 0.156 mm, this pitch 

mode is excited, allowing the slider to pivot and permitting the transducer to follow the 

disk without a phase shift. It should be noted that the emphasis in this chapter is on 

geometric effects of disk waviness on FHM. This resonance phenomenon is a dynamic 

effect. 
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Another contributor to FHM due to a geometric effect is the decreasing amplitude of the 

absolute displacement of the slider for waviness wavelengths below 2 mm as seen in 

Figs. 3.16 and 3.17. This is caused by the relationship between the distance from the 

trailing edge of the side rails to the trailing edge of the center pad (i.e. the distance 

between the high pressure points, l) and the disk waviness wavelength. If we assume a 

simple geometric model as shown in Fig. 3.20, for small disk waviness wavelengths, the 

curvature is too large for the three-support points (high pressure points) of the slider to 

follow the disk exactly. The analytical solution for the absolute slider displacement is: 

  Sabs=A(1+cos(lπ/λ))   for λ ≥ l                      (3.1) 

Where l is the distance shown in Fig. 3.12, λ is the waviness wavelength, and A is the 

sinusoidal amplitude of the waviness. Figure 3.21 shows how the absolute displacement 

of the slider (Sabs) changes with A = 1 nm as wavelength is varied. This relationship 

follows the trend seen for both the pico and femto sliders from simulations, as seen in 

Figs. 3.16 and 3.17. However, this geometric effect of the sliders’ displacement on the 

FHM is a secondary effect compared to the phase shift. 

 

For both the pico and femto sliders the FHM for a waviness wavelength of 0.208 mm and 

varying amplitude from 0.2 nm to 3 nm (peak-to-peak) were simulated to find the 

dependence of FHM on amplitude of the disk waviness. Figure 3.22 shows how FHM 

changes with disk waviness amplitude.  For both the pico and femto sliders, the 

relationship is linear with an approximate slope of one (i.e. for this particular waviness 

wavelength the FHM amplitude is that of the disk). Therefore, FHM due to this geometric 

effect is also a function of the disk morphology amplitude. For the particular ABS 
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designs studied in this chapter, the geometric FHM can be predicted by the disk 

morphology. For waviness wavelengths from 0.5 mm to 0.16 mm the FHM is 

approximately the disk morphology and for higher wavelengths, the FHM decreases 

exponentially.  

 

3.6 ABS design for minimizing FHM due to geometric effects 

From the work presented here we conclude that certain design parameters need to be 

taken into consideration when designing an air bearing slider for low FHM. Firstly, the 

“zero phase line” should be as close to the transducer as possible. Unfortunately, this is a 

very difficult design condition due to the transducers location and the dynamic stability 

of the slider. The best that can be done is to concentrate a high pressure point at the 

transducer location with very low pressures everywhere else on the ABS. This will move 

the “zero phase line” closer to the transducer thereby decreasing the parameter l. 

Secondly, the distance between the high pressure points, l, needs to be decreased as much 

as possible. This ensures the secondary cause of FHM will be minimized as seen from 

Eq. (3.1).  

 

Modifications were made to the femto slider design to obtain a very high pressure point 

near the transducer with a pitch of 450 µrad. However, after analyzing the slider from a 

dynamics point of view, the air bearing resonant frequencies were found to be far to low 

and the stability was drastically compromised.  
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A new femto ABS was designed with the above parameters considered. The ABS design 

and pressure profile are shown in Fig. 3.23. The air bearing was not very stiff in the roll 

and the pitch degrees of freedom (43 kHz and 62 kHz, respectively), however it was stiff 

enough to show large improvements with respect to FHM. The pitch was 190 µrads with 

a 5 nm FH at the transducer. Figure 3.24 shows how the slider’s absolute displacement, 

phase, and FHM change as a function of disk waviness wavelength, similar to Figs. 3.16 

and 3.17. At a waviness wavelength of 0.2 mm, the pitch mode is excited; hence the 

geometric effect is overcome by the dynamics of the slider. As the waviness wavelength 

decreases from 10 mm to 0.25 mm, a slight phase shift and decrease in slider amplitude 

occurs because the pressure profile is not a perfect high pressure point – the pressure 

profile has some distribution across the entire ABS. However, the small phase shift is at 

most 8 degrees and with the slight decrease in slider amplitude, the phase and amplitude 

changes are much smaller than those of the original femto design as seen in Fig 3.6.  In 

comparing this redesigned femto slider’s FHM to that of the original femto slider shown 

in Fig. 3.6, we find there is an 83% decrease in FHM. The redesigned femto slider has 

very low pitch and roll stiffness, which could possibly compromise flyability, however 

this ABS design is an extreme example to show how important ABS design is for 

reducing the geometric FHM. 

 

3.7 Summary and conclusions 

We examined the FHM of a 5 nm pico slider design and a 3.5 nm femto slider design for 

disks with 2 nm peak-to-peak waviness amplitude, and as a function of waviness 

wavelength. The expectation was that the femto slider should have less FHM than the 
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pico slider, because it has long been known that for wavelengths somewhat larger than 

the slider length, the FHM is proportional to the square of the length of the slider. It was 

found that this was indeed the case for wavelengths longer than the slider, but when the 

wavelength was reduced to about the sliders’ length the FHM of the femto slider was 

much greater than that of the pico slider. After examining the characteristics of the sliders 

it was found that the primary reason for the large FHM of the femto slider was its low 

pitch, which caused its pressure support points to be at the trailing edges of the side rails, 

about 0.15 mm forward of the transducer. It was also observed that the large FHM results 

from a phase shift between the sliders’ response and the disk waviness, which is itself a 

result of the low pitch and forward pressure points. The phenomenon occurred for both 

the femto slider and the pico slider. 

 

It can be concluded that, for the five-rail negative pressure sliders under consideration, 

the pitch should be higher than about 100 µrads to avoid large FHM. The pitch should 

probably be lower than about 250 µrads to avoid too much load being carried by the 

single trailing center pad, which would be inherently unstable. 

 

In comparing redesigned pico and femto sliders with the same target FH and comparable 

pitch, we showed that the pico slider has roughly twice the FHM in the 6 mm to 1.5 mm 

waviness range. However, for waviness between 1.5 mm to 0.156 mm both the pico and 

femto sliders have similar high levels of FHM due to their similarities in ABS designs 

(i.e. pressure distribution). We concluded that a femto design has lower FHM due to disk 

waviness for wavelengths greater than 1.5 mm. However, for waviness wavelengths 
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below 1.5 mm and above the dynamic resonant modes of the air bearing, FHM is not 

primarily a function of the sliders overall length but is more a function of sliders’ attitude 

and the ABS design. It is possible to predict FHM due to this geometric effect by 

considering only the disk morphology. An extreme femto slider was designed to 

minimizing the geometric FHM based on the findings in this chapter taken into account. 

Results showed an 83% decrease in FHM when compared to the original femto slider 

design. Therefore, these results can be used in designing better ABS’s and disks for ultra-

low FH sliders. In order to decrease FHM due to disk waviness for wavelengths below 

1.5 mm, attention needs to be focused on slider attitude, ABS design, and disk 

morphology. 
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5.05-1.2215

4.939.123

5.0517.3931

Flying Height (nm)Skew (deg.)Radial Position (mm)

5.05-1.2215

4.939.123

5.0517.3931

Flying Height (nm)Skew (deg.)Radial Position (mm)

Table 3.1.  Flying height profile of the pico slider as a function of radial position and 
skew. 

3.51-1.2215

3.549.123

3.4917.3931

Flying Height (nm)Skew (deg.)Radial Position (mm)

3.51-1.2215

3.549.123

3.4917.3931

Flying Height (nm)Skew (deg.)Radial Position (mm)

Table 3.2.  Flying height profile of the femto slider as a function of radial position and 
skew. 
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Fig. 3.1.  ABS of the 5 nm pico slider. 

 
 
 
 
 
 
 
 
 

 

Fig. 3.2.  ABS of the 3.5 nm femto slider. 
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Fig. 3.4.  Dynamic characteristics of the femto slider. 

Fig. 3.3. Dynamic characteristics of the pico slider. 
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A) Pico Slider
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B) Femto Slider
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Fig. 3.5.  FHM for the (A) Pico and (B) Femto sliders for the 2.5 mm disk waviness 
wavelength. 

Fig. 3.6.  FHM (peak-to-peak) as a function of waviness wavelength for the pico and 
femto sliders. 
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Fig. 3.7.  Comparison of the slider motion and the disk waviness, showing a phase 
difference in the two for different values of pitch. 

Fig. 3.8.  FHM, absolute slider motion, and phase shift as a function of pitch of the 5 
nm FH pico sliders for a waviness wavelength of 0.625 mm. 
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Fig. 3.9.  FHM, absolute slider motion, and phase shift as a function of pitch of the 3.5 
nm FH femto sliders for a waviness wavelength of 0.625 mm. 
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Fig. 3.10.  Sequence of pressure profiles for the low pitch femto slider at different disk 
waviness phase locations.  The trailing edge is in a waviness trough in (1), at the mean in 
(2), at a waviness peak in (3) and again at the mean in (4). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1) (2) 

(3) (4) 
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Fig. 3.11. Sequence of pressure profiles for the high pitch femto slider at different disk 
waviness phase locations.  The trailing edge is in a waviness trough in (1), at the mean in 
(2), at a waviness peak in (3) and again at the mean in (4). 

 
 
 
 
 
 
 

(1) (2) 

(3) (4) 
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Fig. 3.12. The distance between the trailing edge of the side rails and the trailing edge of 
the center rail is about 0.15 mm for both the pico and femto slider designs. 

 
Fig. 3.13. The low pitch slider has pressure points at the trailing edge of the outer rails, 
which are about 0.15 mm from the transducer.  When the waviness wavelength is 0.625 
mm, or about ¼ wavelength, the transducer phase lag is about 90 degrees.  When the 
waviness wavelength is 0.325 mm the transducer phase lag is almost 180 degrees. 
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Fig. 3.14. FHM, absolute slider motion, and phase shift as a function of pitch of the 
3.5 nm FH femto sliders for a waviness wavelength of 0.325 mm. 

Fig. 3.15. FH modulation as a function of waviness wavelength for the 
redesigned pico and femto sliders. 
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Fig. 3.16. FHM, absolute slider motion, and phase shift as a function of 
waviness wavelength for the 4 nm FH pico slider. 

Fig. 3.17. FHM, absolute slider motion, and phase shift as a function of waviness 
wavelength for the 4 nm FH femto slider. 
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Fig. 3.18. Dynamic characteristics of the redesigned pico slider. 

 

 

 

Fig. 3.19. Dynamic characteristics of the redesigned femto slider. 
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Fig. 3.20.  Geometric model for showing how absolute slider motion changes with 
waviness wavelength. 

 
 

 

Fig. 3.21.  Absolute slider motion as a function of waviness wavelength found from 
the geometric model.  

Sabs 
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Fig. 3.22.  FHM of the pico and femto sliders as a function of waviness amplitude at a 
waviness wavelength of 0.208 mm. 
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Fig. 3.23. ABS design of the redesigned femto slider and the pressure profile associated 
with this slider. 

 

 

Fig. 3.24.  FHM, Slider Displacement and phase angle as a function of disk waviness 
wavelength for the redesigned femto slider. 
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CHAPTER 4 
 

A NUMERICAL STUDY OF AIR-BEARING SLIDER FORM-FACTORS 

 

Abstract 

This chapter presents a numerical study comparing the performance of air bearing slider 

form-factors. The air bearing slider and air bearing surface (ABS) design has gone 

through large changes in recent years in order to achieve the performance required by 

lower flying heights. In the past, improvements have been achieved by scaling down the 

form-factors of air bearing sliders. The pico form-factor (1.25 × 1 mm) has been 

successfully used for several generations of products and the question arises – should the 

form-factor be scaled down further? The dynamic characteristics and flying-height 

modulation (FHM) performance of two different ABS designs in the pico and femto (0.82 

× 0.66 mm) form-factors were numerically investigated. It was found that for the smaller 

form-factor designs, greater damping of the air bearing film and slider body system was 

achieved but with an undesirable decrease in modal frequencies. However, depending on 

the ABS design, beneficial dynamic properties can be achieved by scaling down the 

form-factor from pico to femto. Maximizing the total air bearing force (the sum of 

negative and positive) with a design featuring a large number of transverse pressure 

gradients can obtain high stiffness and damping. Geometric FHM was also investigated 

using both sinusoidal disk waviness and an actual measured disk topography. It was 

found that the FHM depends not only on the form-factor, but also on the ABS design. For 

long disk waviness wavelengths (longer than the slider body length, L), the FHM is 

proportional to Lβ where β was found to be between 2.6 and 4; hence FHM is dependent 
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on form-factor. For short disk waviness wavelengths, the FHM is a function of the ABS 

design and flying attitude and not the form-factor. A disk waviness wavelength of 3 mm 

demarks the transition above which the FHM is a function of form-factor and below 

which the FHM is a function of the ABS design, and the superposition of these two 

effects compose the geometric FHM. Simulations with an actual measured disk 

topography showed that the femto form-factor exhibited 22% - 32% less FHM than the 

pico form-factor for a similar design. However, by changing the ABS design, 35% - 40 % 

less FHM was achievable within the same form-factor. By scaling down a pico slider to a 

femto slider, we do not necessarily achieve enhanced overall performance. Significant 

performance improvements in the pico form-factor can be attained if the ABS is properly 

designed. However, in designing a dynamically stable and low FHM air bearing slider a 

femto slider ultimately yields better performance when care is taken in designing the 

ABS.   

 

4.1 Introduction 

In the evolution of hard disk drives, there has been a steady trend toward miniaturization 

of the drives as well as all its components. This miniaturization is motivated by several 

considerations such as economics, higher areal magnetic densities, access time and data 

rate, physical space requirements, and new applications other than computer data storage. 

While the general design of the mechanical components of disk drives has remained 

relatively fixed, the air bearing slider design has gone through substantial changes. The 

slider housing the read/write transducer has evolved from a large aluminum externally 

pressurized hydrostatic slider in 1957 with head/media spacing of 20 µm to today’s 
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complex self-acting ceramic pico (30%: 1.25 mm × 1 mm) air bearing sliders flying at 

sub-20 nm over the media [6]. The need for more complex air bearing designs stems from 

the higher bit areal densities requiring a smaller gap, or flying-height (FH) between the 

transducer and magnetic media. In turn, this has increased the need for a better 

understanding of the head-disk interface. Shrinking the air bearing slider form-factor has 

produced many benefits both in cost and in performance. As the FHs approach the sub-5 

nm range the question naturally arises: is it time to scale the form-factor down once again 

too keep up with the rapidly increasing performance criteria?   

 

For a recording density of 1 Tbit/in2, it is projected that the FH will be 3.5 nm [7]. In 

order for a reliable head-disk interface to be maintained, contacts between the slider and 

disk and fluctuations in FH need to be held to a minimum. Therefore, the dynamic 

performance of air bearing sliders is becoming of increasing importance. At such low 

FH’s, intermittent contacts between the slider and the disk are unavoidable. The more 

stable the air bearing slider, the less damage will occur and the faster the slider will settle 

back to its steady-state flying condition once disturbed. Important characteristic 

parameters controlling the stability are the air bearing modal frequencies and damping 

ratios. The higher the frequencies and damping ratios, the more stable the interface. The 

spacing fluctuations between the transducer and disk, or FHM, also needs to be held to a 

minimum.  A large fraction of the FHM is the so-called “geometric” FHM [10], [14], 

[16].  This FHM occurs due to disk waviness and micro-waviness with significant 

amplitude in the wavelength range from approximately 8 mm down to the wavelength 

corresponding to the first air bearing natural frequency – on the order of several hundred 
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microns [10].  It has been shown for disk waviness wavelengths much longer than the 

slider body length, L, that the geometric FHM scales proportionally to the square of the 

slider body length [14].  Also, from more recent studies, in the waviness wavelength 

regime where the wavelength is comparable to the slider body length, this geometric 

FHM becomes a very complex function of the ABS geometry and attitude and not the 

slider’s length [10].   

 

In order for manufacturers to decrease the slider form-factor, the benefits must outweigh 

the costs involved.  A study is presented here comparing the dynamic and FHM 

performance as a function of form-factor and ABS design for two sizes of air bearing 

sliders.  

 

4.2 Air bearing designs 

In this chapter we investigated two ABS designs of different rail complexity. The first 

design, depicted in Fig. 4.1a, is a five-pad sub-ambient pressure design labeled ABS I.  

The second and more complicated design is a sub-ambient pressure design shown in Fig. 

4.1b labeled ABS II. The transducer is located near the center of the trailing edge of the 

slider body. ABS I was designed with the following considerations: (1) high stiffness, (2) 

constant roll angle from inner diameter (ID) to outer diameter (OD), and (3) ease of 

manufacturing. ABS II was designed with the following considerations: (1) low 

geometric FHM, (2) high damping, and (3) relatively high stiffness. The simulations were 

preformed at 7200 RPM, disk radial position of 16.25 mm, and skew angle of zero 

degrees.  Each of the two designs were scaled for pico (30%: 1.25 X 1 mm) and femto 
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(20%: 0.82 X 0.66 mm) form-factors. In changing the form-factor, the geometry of the 

rails, recess heights, crown, and camber of the ABS’s were scaled proportionally as seen 

in Table 4.1.  The additional features on the leading edge of ABS II protrude 40 nm from 

the ABS. These additional features serve to increase damping (as will be discussed) and 

could be manufactured similar to diamond-like carbon pads used on padded “stiction-

free” sliders. For this study the FH at the transducer was kept approximately the same for 

all designs, but due to the highly non-linear nature of the generalized Reynolds equations, 

the gram-load could not simply be scaled down proportionally, as seen in Table 4.1. The 

static attitude of each ABS is also shown in Table 4.1. ABS I and ABS II were designed 

for transducer FHs of 7 nm and 5 nm, respectively for 100 Gbit/in2 and greater areal 

recording density applications. Figures 4.2a and 4.2b show the pressure profiles with the 

pressure values normalized by the ambient pressure generated under the ABS I and ABS 

II sliders in the pico form-factor, respectively.  For each slider design, the pressure profile 

geometry remained relatively constant, independent of form-factor with differences only 

in the amplitudes of pressure. The high pressure generated at the side rails of ABS I help 

achieve high stiffness (especially in the roll motion) and constant roll angle from ID to 

OD. The features on the trailing edge pad of ABS II help generate high pressure near the 

transducer location decreasing the geometric FHM and the large number of pressure 

gradients generated on the leading edge pads increase the air film damping [10], [17].  

 

4.3 Dynamic system properties of the air bearing slider 

The air bearing film and slider body form a complex coupled non-linear dynamic system.  

By using the CML Dynamic Air Bearing Simulator, which solves the generalized 
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Reynolds equations coupled with the dynamics of the slider body and a lumped 

parameter suspension, we are able to simulate the dynamic response of the slider for 

various inputs.  For small perturbations about the slider’s steady flying attitude the non-

linearities are small and linear modal analysis can be used to obtain the modal parameters 

of the air bearing slider system.  This system is modeled as a three degree-of-freedom 

(DOF) system – the vertical, pitch and roll motions.  By simulating the response of the 

slider to initial velocities in all three DOFs, we can estimate the impulse response 

functions and perform modal analysis to obtain the modal masses, stiffnesses, damping 

ratios and nodal lines [17].  The modal frequencies and damping ratios are shown in Figs. 

4.3 and 4.4 for the ABS I and ABS II designs, respectively, for the two form-factors 

investigated.  Modes 1, 2 and 3 correspond to the three coupled modes generally called 

pitch, roll, and vertical or first-pitch, roll and second-pitch.  For the ABS I designs, 

modes 1, 2 and 3 correspond to the first-pitch, roll, and second-pitch, respectively.  For 

ABS II, modes 1, 2, and 3 correspond to roll, first-pitch and second-pitch, respectively. 

The modal parameters are dependent on the pressure profile generated under the ABS 

and the size and mass of the slider body.  The nodal lines or mode shapes remain 

relatively fixed for each design regardless of form-factor as expected by the relatively 

constant pressure profiles generated by each design in the two form-factors. However, the 

modal stiffnesses and damping ratios changed quite significantly with form-factor, as 

seen in Figs. 4.3 and 4.4, due to several effects.  

 

As the sliders decrease in size, all three modal frequencies of both slider designs 

decrease. This result my seem counter-intuitive initially due to the smaller mass of the 
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smaller form-factor (i.e. the modal frequency ω i ≅ (ki/mi)^0.5), however the stiffness 

decreases significantly more than the mass causing the modal frequencies to ultimately 

decrease with decreasing form-factor.  

 

There are two effects that cause the stiffness to decrease as slider size decreases. As the 

form-factor decreases, so does the bearing load capacity – the ability of the air bearing to 

create positive and negative forces. For a decrease in length dimension by 33 % (pico to 

femto) the ABS area decreases by 56 %. The forces generated by the air film are related 

to the area that the air pressure acts over; hence by decreasing the area, we also decrease 

the bearing load capacity. ABS I decreases its load capacity by 60 % and 58 % to produce 

positive and negative force, respectively as seen in Table 4.1. Similarly, ABS II decreases 

its load capacity by 48 % and 53 % to produce positive and negative force, respectively. 

The ability of a slider design to retain load capacity while reducing the form-factor helps 

it to maintain a stiff air bearing film. Scaling the form-factor from pico to femto causes 

total force (positive force + | negative force |) to decrease by 59% and 51% for ABS I and 

ABS II, respectively.  The ability of ABS II to retain a larger percentage of the total force 

helps it retain its stiffness as the form-factor is decreased.   

 

Peak pressures generated by the air bearing can also have an effect on air bearing 

stiffness. The higher a pressure peak, the stiffer the local area will be. ABS I contains 

three high pressure points – one at the trailing edge pad and two on the side rails 

demarked in Fig. 4.2 as locations A and B. These three locations can be viewed as three 

stiff distributed springs over the local areas of the pads. When the form-factor decreases 
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from pico to femto, the overall effectiveness of these three springs decreases as the peak 

pressures decrease (see Table 4.2). However, ABS II has only one high pressure point 

located on the trailing edge pad as seen in Fig. 4.2, and as the form-factor decreases from 

pico to femto, the peak pressure actually increases. This increase in peak pressure helps 

to maintain the stiffness of ABS II in the femto form-factor. This is most effective in 

retaining the stiffness of the pitch modes exhibiting a decrease of only 4.6 % in stiffness 

for ABS II when it is scaled down from pico to femto as compared to a 30.4 % decrease 

in stiffness of ABS I.  The three high pressure points on ABS I provide the characteristic 

high stiffness, especially in the roll direction, however, when it is scaled down from pico 

to femto, the peak pressures at all three points decrease, hence causing a decrease in all 

three modal frequencies.  

 

Desirable higher damping ratios were obtained with the femto form-factor as compared to 

the pico form-factor for both ABS designs. It has been shown previously that the stiffer 

the air bearing film, the smaller the damping will be (achieved through the transverse 

viscous shearing [17]-[20]). This holds true for ABS I and ABS II – the femto form-

factors have lower stiffnesses than the pico, and hence, higher damping ratios. ABS I had 

an increase in damping ratios of 1 % to 28 % while ABS II had an increase in damping 

ratios by at least 30% when scaling the form-factors from pico to femto. Textured ABS 

designs and disks have been studied and have been shown to enhance the damping 

characteristics of the air film [17], [18], [21]. The extra pads that are located on top of the 

leading edge surface of ABS II cause multiple pressure gradients designed to increase 

damping. From the modal analysis results, it is seen that in comparing the pico form-
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factors, ABS II exhibits an increase of 21 %, 428 %, and 195 % in damping ratios over 

ABS I for the pitch, roll, and vertical modes, respectively. Similarly, in comparing the 

femto form-factors, ABS II exhibited 26 %, 480 %, and 346 % increase in damping ratios 

over ABS I of the pitch, roll, and vertical modes, respectively. 

 

4.4 Air bearing flying-height modulation  

It has been shown in the previous two chapters that geometric FHM due to disk waviness 

and micro-waviness can be comparable to the FH.  It also has been known for some time 

that for waviness wavelengths much longer than the sliders overall body length the FHM 

scales proportionally to the square of the slider’s length [14].  However, when the 

waviness wavelength approaches the sliders length, we showed in Chapter 3 that the 

FHM is a complex function of the ABS design, and it is independent of the overall length 

of the slider.  In order to assess how each ABS design and form-factor is affected by disk 

waviness, we performed simulations using a modeled sinusoidal disk waviness, d(x), for 

which the wavelengths, λ, ranged from 20 mm to 0.3125 mm: 

    





= xAxd

λ
π2

sin)(              (4.1) 

In this wavelength range, the dynamic resonant modes of the air bearings are not excited 

and the FHM is a result of geometric effects and not dynamics.  The results of the 

simulations are shown in Figs. 4.5 and 4.6.  These figures show amplitude ratios of the 

FHM peak-to-peak (FHMp-p) over the disk waviness amplitude peak-to-peak (DISKp-p), 

or the “gain” as a function of disk waviness wavelength on a log-log scale.  These results 

are similar to those presented in Chapter 3.  The predicted behavior is present, with low 

gain for disk waviness wavelengths much longer than the slider body length, and with the 
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gain exponentially increasing as the wavelength approaches the slider body length.  It is 

also seen, for long wavelengths, that the larger form-factors exhibit larger gain.  

However, as the wavelength decreases, the gain becomes dependent on the ABS design 

and independent of form-factor.  This can be seen more clearly in Fig. 4.7 where the data 

plotted in Figs. 4.5 and 4.6 are plotted on the same plot on a linear-linear scale. There 

appears to be a transition waviness wavelength (depicted in Fig. 4.7) at approximately 3 

mm – above which the FHM is dependent on the form-factor and below which the FHM 

is dependent on the ABS design. This dependence on geometry (sliders length and/or 

ABS design) can been seen in Figs. 4.8 and 4.9.  These figures show the form-factor 

FHM ratios or gains ( ) ( )( )picofemto FHMgainFHMgain  for the same design plotted as a 

function of waviness wavelength.  It can bee seen from Figs. 4.8 and 4.9 that in the 

waviness wavelength range of 7.5 mm to 20 mm the curve is constant. Below 7.5 mm the 

curves transition and increase to 100 % and beyond as the waviness wavelengths 

approach 0.3125 mm.  

 

For ABS I and ABS II the average values of the form-factor FHM ratios from waviness 

wavelength 7.5 mm to 20 mm are 52 % and 29 %, respectively. In this region, the FHM 

can be explained by Zhu’s work showing that the FHM is proportional to the square of 

the slider length and the combined curvature of the slider and disk [14]: 

     ZLFHM ′′∝ 2          (4.2) 

From this formulation, the form-factor FHM ratios should be: 
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where Lp and Lf are the lengths of the pico and femto sliders, respectively and pZ ′′  and 

fZ ′′ are the curvatures of the pico and femto sliders, respectively, calculated from the 

crown, Z, of the sliders: 
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x
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where R is the maximum value of crown shown in Table 4.1 and x is in the length 

direction of the slider. However, Zhu’s formulation was for a simple taper-flat positive 

pressure slider and further simplified assuming a constant distributed pressure along the 

rails. The ABS designs evaluated in this study are much more complex, and it is found 

that for waviness wavelengths greater than 7.5 mm, the form-factor FHM ratios scale as 

L2.6 and L4 for ABS I and ABS II, respectively. 

 

Below waviness wavelengths of 7.5 mm another mechanism causes geometric FHM. It 

was shown in Chapter 3 that this geometric FHM is dependent on the ABS design and 

flying attitude (specifically the pressure profile), and the waviness wavelength. This 

geometric FHM is primarily due to a phase shift between the slider’s response at the 

transducer and the disk, φ, and secondarily due to an amplitude change, B. In this 

waviness wavelength range, 0.3125 mm to 7.5 mm, the slider’s displacement can be 

written as: 

    





 += φ

λ
π

xBxs
2

sin)(         (4.5) 

In order to calculate the FHM gain, we subtract the disk’s displacement in Eq. (4.1) from 

the slider’s displacement in Eq. (4.5) and normalized by the disk’s amplitude: 
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This geometric FHM is the difference of two sinusoids with the same frequency but with 

different amplitude and a phase shift. This is illustrated in Fig. 4.10 which shows the disk 

and slider displacements for ABS I in the pico form-factor for a disk waviness 

wavelength of 0.625 mm. The normalized amplitude, AB , and the phase shift, φ, are 

known to be dependent on a characteristic length, l, which is dependent on the ABS 

design and pressure profile rather than the slider’s body length as was shown in Chapter 

3. As the waviness wavelength decreases from 7.5 mm to 0.3125 mm, the form-factor 

FHM ratios for both ABS I and ABS II approach 100 %, showing that both form-factors 

exhibit similar levels of geometric FHM.    

 

Clearly, for long waviness wavelengths, the ABS designs in the smaller form-factors out 

perform the larger form-factors. However, the FHM gain for long waviness wavelengths 

is extremely small, so the contribution to FHM is small. As the waviness wavelengths 

approach the length of the sliders, the amplitude ratios in Figs. 4.8 and 4.9 reach 

approximately 100%, showing FHM in this waviness wavelength range is independent of 

form-factor.  By comparing ABS I to ABS II in Fig. 4.7, we see that the ABS II design 

exhibits approximately 50% less maximum FHM gain than the ABS I design for 

wavelengths in the vicinity of the slider body length for both form-factors. This result 

shows that ABS II is much less susceptible to geometric FHM than ABS I.  Figures 4.8 

and 4.9 are informative in comparing the ratio of FHMp-p / DISKp-p between form-factors 

of the same ABS designs, however it is useful to understand how this translates to FHM 

for an actual disk topography. 
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When the disk rotates, the disk’s out-of-plane motion is composed of clamping 

distortions, disk flutter, and disk morphology, including waviness, micro-waviness and 

roughness in order of low to high frequency or long to short wavelength.  For a typical 

“super-smooth” disk used in sub-10 nm FH applications, the out-of-plane displacement 

amplitudes decrease approximately exponentially as frequency increases or as 

wavelength decreases.   Figures 4.11 and 4.12 show the FHM ratios for the ABS designs 

in the pico and femto form-factors and a measured typical “super-smooth” disk 

topography as a function of waviness wavelength.  The disk displacement amplitudes 

were measured with a laser Doppler vibrometer and include wavelengths from 20 mm 

down to 0.3125 mm.  To obtain the corresponding FHM, the disk amplitude was 

multiplied by the FHM ratio in Figs. 4.11 and 4.12.  As shown in Figs. 4.11 and 4.12 the 

disk amplitudes follow approximately an exponentially increasing function of waviness 

wavelength and the FHM ratio is approximately an exponentially decaying function of 

waviness wavelength.  However, the FHM ratio curve decays faster than the disk 

function curve increases, so that when these two curves are combined to get FHM, the 

shorter waviness wavelengths influence the FHM more than the longer wavelengths. 

 

In order to quantitatively compare the ABS designs and form-factors, we performed 

simulations using the measured disk topography. These simulation results are 

summarized in Table 4.3, which includes peak-to-peak and standard deviation (σ) of the 

FHM for ABS I and ABS II for the pico and femto form-factors.  ABS I exhibited 22% 

less FHM for the femto than for the pico form-factor.  Similarly, ABS II exhibited 32% 
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less FHM for the femto than for the pico form-factor.  Comparing only form-factors with 

the same ABS design, we see a significant decrease in FHM for the smaller form-factor.  

However, in cross-comparing ABS designs, ABS II is found to have 35%-40% less FHM 

than ABS I with the same form-factor.  Additionally, ABS II in the pico form-factor 

exhibited 22% less FHM than ABS I in the femto form-factor.   

 

4.5 Discussion    

By changing the form-factor of ABS designs and holding the design constant, we studied 

form-factor effects on dynamic and FHM performance.  From the dynamic system 

properties, it is observed that, in general, the air bearing stiffnesses detrimentally 

decrease while the damping ratios beneficially increase as the form-factor is scaled from 

pico to femto. However, it is seen that these modal parameters determining the dynamic 

stability of the system do not scale proportionally with form-factor and are highly 

dependent on ABS design. The dynamic performance of ABS II is better than that of 

ABS I for two reasons. Firstly, it has the ability to maintain its stiffness by retaining a 

larger percentage of its bearing load capacity and by creating a higher peak pressure as 

the form-factor is scaled down from pico to femto. Secondly, the large number of 

transverse pressure contours on ABS II makes it highly damped compared to ABS I in 

both form-factors. Overall, a design’s dynamic properties may not be enhanced by simply 

decreasing the form-factor. However with the proper design, both the modal stiffness and 

damping ratios can remain large leading to a dynamically more robust air bearing slider.   

 



 78 

Another extremely important performance consideration is FHM. The largest contributor 

to FHM can be the geometric FHM, which is due to the disk morphology and other out-

of-plane disk motions.  The FHM ratios for the designs investigated were lower in 

amplitude for the smaller form-factor sliders for waviness wavelengths much longer than 

the slider body length.  The femto form-factors exhibited 50% - 80% less FHM for long 

waviness wavelengths than the pico form-factor.  However, as the disk waviness 

wavelength approach the slider body length, the FHM ratio becomes dependent on the 

ABS design and independent of form-factor.  The ABS I design exhibited a gain in FHM 

ratio, approaching 100% and even slightly above 100%, for waviness wavelengths 

around the slider body length.  However, for ABS II, a maximum FHM ratio of 50% was 

attained, half as much when compared to ABS I – regardless of form-factor.    

 

To quantitatively compare form-factors and cross compare ABS designs, we conducted 

simulations using an actual measured disk topography.  In comparing FHM for the same 

design, it was found that the smaller femto form-factor exhibited 22% - 32% less FHM 

than the larger pico form-factor.  However, when cross comparing ABS designs, an even 

larger decrease in FHM was observed.  The ABS II design demonstrated 35% - 40% less 

FHM compared to the ABS I design for both form-factors, pico and femto.  Additionally, 

it was found that the pico form-factor of the ABS II design showed 22% less FHM 

compared to the femto form-factor of the ABS I design.    
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4.6 Conclusion 

By comparing the dynamic and FHM performance of pico and femto form-factor air 

bearing sliders designed for 100 Gbit/in2 applications, it was found that the smaller form-

factor exhibited an overall enhancement in performance when the ABS is properly 

designed. A beneficial increase in damping ratios and a detrimental decrease in modal 

stiffnesses was observed when scaling the form-factor from pico to femto. However, it 

was seen that if the ABS is designed to retain a larger percentage of its bearing load 

capacity and can maintain high peak pressure(s), the stiffness is not compromised 

dramatically by scaling down the form-factor. Also, a large number of transverse pressure 

gradients are extremely effective in increasing damping, and they further increase 

damping when the form-factor is scaled from pico to femto. FHM due to geometry is 

composed of the superposition of two effects dependent on the overall length of the slider 

for long disk waviness wavelengths and dependent on the ABS design for shorter disk 

waviness wavelengths. For long waviness wavelengths, FHM was shown to be dependent 

on the sliders body length: proportional to L2.6 and L4 for ABS I and ABS II, respectively. 

For shorter waviness wavelengths, FHM was shown to be dependent on the ABS design 

and a phase shift between the slider’s response at the transducer and the disk as well as an 

amplitude change in the slider’s displacement. These two effects are demarked by a 

transition disk waviness wavelength of approximately 3 mm. By comparing femto to pico 

form-factors, it is seen that the femto exhibited lower FHM for waviness wavelengths 

greater than the sliders body length, however, it demonstrated similar levels of FHM for 

waviness wavelengths less than the sliders body length. By cross comparing ABS 

designs, it was found that significant improvements in FHM performance can also be 



 80 

attained by changing the ABS design and not decreasing the form factor.  Simulations 

were performed using an actual measured disk topography which showed a decrease of 

22 % to 32 % in FHM by scaling down the form-factor from pico to femto. However, by 

cross-comparing ABS designs, ABS II exhibited much less FHM even in comparing ABS 

II in the pico form-factor to ABS I in the femto form-factor. It is concluded that by 

simply scaling down the form-factor, enhanced performance is not always attained. 

However if special care is taken in the design of the ABS in order to maintain stiffness, 

increase damping and decrease geometric FHM, major improvements can be attained.  

Ultimately, to achieve the greatest performance, a smaller form-factor should be used 

with special care taken in the ABS design.   
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     Air Bearing Design
ABS I ABS II

Form-Factor Pico Femto Pico Femto
Gram-Load [gm] 1.50 0.70 1.90 0.75

Positive Force [gm] 4.76 2.00 4.83 2.28
Negative Force [gm] -3.26 -1.30 -2.93 -1.53

Pitch [µµrad] 123.50 142.70 95.60 101.50
Roll [µµrad] -1.58 -1.43 -5.08 -2.97

Transducer FH [nm] 7.0 7.3 4.8 4.9

Crown [nm] 25.4 16.9 25.4 16.9
Camber [nm] 2.5 1.7 2.5 1.7

Base Recess [um] 2.5 1.7 2.5 1.7
Step Recess [um] 0.3 0.2 0.3 0.2

Table 4.1. Air bearing specifications and static flying attitude solution. 

     Air Bearing Design
ABS I ABS II

Form-Factor Pico Femto Pico Femto

Normalized Peak 
Pressure (location A)

3.70 3.15 10.75 12.62

Normalized Peak 
Pressure (location B)

5.84 5.04 N/A N/A

Table 4.2. Normalized peak pressures at locations A and B demarked in Fig 2 for 
ABS I and ABS II in the pico and femto form-factors. 
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Table 4.3. FHM results from simulations with actual measured disk topography for 
ABS I and II in pico and femto form-factors. 

Air Bearing Design

ABS I ABS II ABS II / ABS I [%]

Femto Peak-to-Peak [nm] 1.52 0.90 59%
Femto σ [nm] 0.23 0.15 63%

Pico Peak-to-Peak [nm] 2.04 1.33 65%
Pico σ [nm] 0.30 0.18 61%

Femto/Pico (Peak-to Peak) 74% 81%
Femto/Pico (σ) 78% 68%
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Fig. 4.1. Air bearing surface designs: (a) ABS I and (b) ABS II. 
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Fig. 4.2. Pressure profile generated by (a) ABS I, and (b) ABS II. 
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Air Bearing Modal Parameters for ABS I Design
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Fig. 4.3. Modal frequencies and damping ratios of the ABS I designs for the pico and 
femto form-factors. 

Fig. 4.4. Modal frequencies and damping ratios of the ABS II designs for the pico 
and femto form-factors. 

Air Bearing Modal Parameters for ABS II Design
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FHM Ratio for ABS I Sliders as a Function of Waviness 
Wavelength 

(Form-Factors: Pico and Femto)
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Fig. 4.5. FHM ratio or gain for the ABS I design ABS’s as a function of disk 
waviness wavelength. 

FHM Ratio for ABS II as a Function of Waviness 
Wavelength 
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Fig. 4.6. FHM ratio or gain for the ABS II design ABS’s as a function of disk 
waviness wavelength. 
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FHM Ratio for ABS I and ABS II as a Function of 
Waviness Wavelength 
(Form-Factors: Pico and Femto)
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Fig. 4.7. FHM ratio or gain for the ABS I and ABS II ABS’s as a function of disk 
waviness wavelength. 
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FHM Ratio of Slider Form-Factors for ABS I Design
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Fig. 4.8. The ratio of FHM ratios of the slider form-factors for the ABS I designs. 

FHM Ratio of Slider Form-Factors for ABS II Design
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Fig. 4.9. The ratio of FHM ratios of the slider form-factors for the ABS II designs. 
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Fig. 4.10. Disk and slider displacement for ABS I in the pico form-factor for a 
disk waviness wavelength of 0.625 mm. 
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Slider Design FHM Comparison for the Pico Form-Factor

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20
Wavelength [mm]

F
H

M
 R

a
tio

ABS I Pico FHM (AMP RATIO)
ABS II Pico FHM (AMP RATIO)
Disk Amplitude [nm]

Fig. 4.11. Slider design comparison of the FHM ratios for the pico form-factor 
with a measured disk topography overlaid. 

Slider Design FHM Comparison for the Femto Form-Factor
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Fig. 4.12. Slider design comparison of the FHM ratios for the femto form-factor 
with a measured disk topography overlaid. 
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CHAPTER 5 
 

NON-LINEAR ASPECTS OF AIR BEARING MODELING AND DYNAMIC 

SPACING MODULATION IN SUB 5 NM AIR BEARINGS FOR HARD DISK 

DRIVES 
 

 
Abstract 

 

A new analytical model and method of analysis are proposed for understanding the 

dynamical behavior of ultra-low flying height air bearing sliders in proximity based on 

non-linear dynamics.  It was found that for sub-5 nm flying height air bearing sliders, the 

non-linear effects cannot be neglected. These non-linear effects cause a slider’s response 

to become highly non-stationary; making frequency domain analysis by fast Fourier 

transforms (FFT) an insufficient means of analysis. Joint time-frequency analysis was 

applied for accurately analyzing the non-stationary slider responses and to verify the non-

linear nature of the air bearing for both experimental and simulation results. One degree-

of-freedom (DOF) and 2DOF non-linear lumped parameter models were proposed 

showing the effect of non-linearities on the FFT representations of air bearing slider 

responses. The 2DOF model was used to further investigate the non-linear coupling 

effect, and it showed high correlation with experimental results from two different slider 

designs when they operated in unsteady-proximity conditions. These findings suggest 

that the non-linearities of the air bearing slider must be considered when modeling slider-

disk interface dynamics. Also, complex frequency domain representations of slider 

responses in proximity can be explained by the non-linear nature of the air bearing slider 

without contact between the slider and disk contrary to what has been previously 

proposed by other models.  
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5.1 Introduction 

With areal recording densities increasing in hard disk drives, the physical spacing 

between the transducer housed on an air bearing slider and the disk media will have to 

decrease and will require a spacing of 3.5 nm for recording densities of 1 Tb/in2 [7]. In 

order to achieve a reliable interface, both magnetically and tribologically, the interactions 

between the slider and disk must be controlled. With advanced “super-smooth” disk 

media, it is possible to obtain flying heights (FHs) of sub-5 nm. As a slider’s FH decrease 

to within the glide-height of the disk, a transition between steady flying (i.e. no contact) 

on a hydrodynamic air bearing film to intermittent contact is observed. This transition 

region is of interest because the steady-state FH in the sub-5 nm range is near or within 

this regime and many new phenomena have been observed in these systems.  

 

The air bearing slider system dynamics can be modeled as a three degree-of-freedom 

(DOF) system – describing pitch, roll, and vertical motions. The dynamics of the system 

can be analyzed by simulation or experiment to obtain linearized mode shapes, modal 

frequencies, and damping ratios [17], [21]. The air bearing slider system is by no means 

linear. However, linear approaches such as linear modal analysis are accurate for steady 

flying conditions or small perturbations about the steady-state. If the slider is dynamically 

excited, the response should be a linear combination of the three vibrational modes, and 

the frequency domain analysis should reveal three or less resonance peaks. However, as 

the FH decreases, the slider’s dynamic response is observed to become more complex in 

the frequency domain. Harrision et al. attributed air bearing harmonics to wave truncation 
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due to contact, and Knigge et al. attributed air bearing harmonics to a non-linear model 

due to contact with a thickly lubricated disk [22], [23]. However, we have observed even 

more complex slider responses when flying within “unsteady” proximity without 

measurable contact. 

 

A new analytical model and method of analysis are proposed for understanding the 

dynamical behavior of ultra-low FH air bearing sliders in proximity with the disk based 

on non-linear dynamics. Very few published works have acknowledged the presence or 

even the effect of air bearing film non-linearities. Knigge et al. and Menon et al. used 

joint-time frequency analysis (JTFA) to study the time-frequency evolution of a slider’s 

response to a bump impact [23]-[25]. Sheng et al. introduced a non-linear model for the 

air bearing film and stated that as the slider’s response increases in amplitude, the 

resonance frequency decreases [26]. However, non-linear dynamics is generally more 

complicated than what is described by their analysis and the idea of a single resonance 

frequency ceases to exist for non-linear systems.  

 

The modal stiffness of the “vertical” resonance mode (i.e. generally called the second-

pitch mode) is found to exponentially increase as the FH decreases. This exponentially 

increasing stiffness is a predicted result from the generalized Reynolds equation 

governing the pressure field between the air bearing surface (ABS) and the disk. For sub-

5 nm FHs and relatively large perturbations or flying-height modulation (FHM), the air 

bearing slider’s response is no longer stationary in time, and frequency domain analysis 

using the Fast Fourier transform (FFT) becomes insufficient. JTFA is used here with 
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experimental and simulation data to show that the slider’s response is a non-stationary – 

frequency modulated response. Simple 1DOF and 2DOF non-linear lumped parameter 

models are used to reinforce the findings by JTFA, and the effects of slider response 

amplitude (i.e. the level of non-linearity) and non-linear coupling were studied.  

 

5.2 Preliminaries 

5.2.1 Experimental procedure 

The experimental data presented are from both sliders A and B shown in Fig. 5.1. The 

sliders’ responses were measured near the pole-tip (PT) location, which is near the 

trailing edge center (TEC) of the slider body. These measurements were made with a 

laser Doppler vibrometer (LDV) measuring velocity, which was numerically integrated to 

obtain displacement. The bandwidth of interest is from 10 kHz to 2 MHz. The test 

conditions for both experimental and simulation investigations were at the zero-skew 

radial position.  

 

5.2.2 Experimental results 

Figures 5.2a and 5.2b show the frequency domain responses of sliders A and B calculated 

by FFT analysis averaged 64 times in the frequency domain. Figure 5.2a indicates slider 

A transitions from steady-proximity to unsteady-proximity as the linear velocity is 

lowered from 3.8 m/s to 3.6 m/s, and then it further transitions to intermittent contact as 

the linear velocity is lowered to 3.3 m/s. Figure 5.2b shows a similar transition for slider 

B. The PT FH for these sliders at the test conditions are within the glide height of the disk 

– approximately 3-4 nm. Torsion and bending modes of the slider body at 1.25 MHz and 
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1.6 MHz, respectively, are evidence of contact. Within the region labeled unsteady-

proximity, there was no sign of measurable contact. When the sliders fly in steady-

proximity, 2-3 air bearing resonance modes are excited at low amplitudes – 112 kHz and 

240 kHz for slider A and 167 kHz and 225 kHz for slider B. However, as soon as the 

sliders transition to unsteady-proximity, many “resonance” peaks appear in the 

bandwidth of 10 kHz to 1 MHz. The frequency domain response of slider A appears to 

have a fundamental resonance mode, fo, at 292 kHz and sub- and super-harmonics at nfo 

(n=1,2,3,…) and (mfo)/2 (m=1,3,5,…). Slider B exhibits similar behavior, however, the 

multiple modes do not show up at simple multiples of a fundamental mode. This region 

of unsteady-proximity is of interest and is the regime that will be focused upon for the 

following analysis.  

 

5.3 Air bearing slider dynamics 

5.3.1 Governing equations 

An air bearing slider’s dynamic response is obtained by simultaneously solving the 

generalized Reynolds equation to attain the pressure distribution over the ABS and the 

equations of motion describing the rigid body motion of the slider body: 
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where p is pressure, h is the local slider-disk spacing, µ is the viscosity of the air, Q is the 

flow factor, and U and V are the relative velocities in the x and y directions between the 

slider and disk in Eq. (5.1). In Eq. (5.2), pa is the ambient pressure, and xg and yg are the 

positions of the slider’s center of gravity. Fs, Msθ, and Msφ are the force and moments 

applied by the suspension in the z, θ, and φ directions. Iθ and Iφ are the slider’s moments 

of inertia and m is the slider’s mass. Satisfying these equations simultaneously results in 

the slider’s dynamic response in the vertical (z), pitch (θ) and roll (φ) DOF’s to various 

inputs. The above equations are based on an assumption of no contact between the slider 

and disk and are dependent on all the design parameters and flying attitude, and they are 

highly coupled and non-linear. The CML Dynamic Simulator was developed to 

numerically solve this set of equations. For small perturbations, the system of equations 

can be accurately modeled by techniques such as linear modal analysis or perturbation 

methods [17]. However, when perturbations from steady-state become relatively large, 

the non-linearities of the equations of motion cannot be ignored.  

 

5.3.2 Non-linear modal coefficients 

For simplicity we only address the non-linear nature of the “vertical” mode’s stiffness. 

Although all the modal parameters are non-linear to some degree, the stiffness of the 

“vertical” mode is the most non-linear one for sub- 5 nm FHs. The “vertical” mode’s 

stiffness was mapped out as a function of FH by adjusting the pre-load value to vary the 

FH, and then linear modal analysis was preformed with extremely small perturbations to 

attenuate any non-linear effects. Figure 5.3 is a plot of the stiffness as a function of FH at 

the PT for the ABS shown in Fig. 5.1a. This slider has a FH of 4 nm at a linear disk 
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velocity of 3.8 m/s under the simulation conditions. A power law curve fit can be applied 

to the results giving a stiffness, k(FHPT), in units of MN/m as a function of FH at the PT, 

(FHPT) in units of nm: 

   k(FHPT) = β(FHPT)α          (5.3) 

For slider A, the coefficients β and α are determined to be 5.1 and –0.480, respectively. 

Two important aspects of the non-linear nature of the air bearing film are: (1) as the FH 

decreases, the stiffness increases exponentially, and (2) the lower the FH, the greater non-

linear effects become from small perturbations. By only mapping out the “vertical” 

stiffness as a function of FH we find that the stiffness is highly non-linear, especially for 

low FHs.  

 

When large FHM occurs, the “vertical” stiffness of the air bearing slider should change 

instantaneously according to Fig. 5.3. There no longer exists a single resonance 

frequency for the “vertical” mode and the larger the amplitude of the slider’s response, 

the more non-stationary the signal becomes, hence the more difficult frequency domain 

analysis becomes with the FFT. 

 

5.4 Joint-time frequency analysis (JTFA) 

In order to accurately represent the frequency content of a signal by FFT analysis, we 

must assume the signal is stationary or wide-sense stationary. The FFT representation, 

X(f), of a signal, x(t), can be written mathematically as: 

  ∫
+∞
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A signal is stationary if it can be written as a discrete sum of sinusoids: 

   [ ]∑
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According to Fig. 5.3, the slider’s response can be approximately represented as a 

discrete single resonance frequency in Eq. (5.5) and assumed to be wide-sense stationary 

only if: (1) the FH is not below approximately 5 nm, and (2) the perturbations about the 

steady FH remain relatively small. However, if these conditions are violated, the response 

of the slider will be highly non-stationary due to the time varying, continuously 

frequency modulated content of the signal according to Eq. (5.3), and then the response 

can no longer be accurately represented by FFT analysis. 

 

JTFA has been studied extensively in signal processing to analyze non-stationary signals. 

More recently it has been introduced in analyzing slider responses to bump impacts [23]-

[25]. These studies have acknowledged the presence of a non-linear air bearing effect, 

however, they explain and represent the non-linear aspects of the air bearing without a 

physically and theoretically accurate explanation.  

 

A different explanation is adopted here based on the linear reassigned Gabor method 

[27], [28]. The Gabor representation can be expressed discretely by: 

 [ ] [ ] [ ]∑ −−=
k

mki
x enkhkxhmnG π2*;,          (5.6) 

where n and m represent the time-frequency plane and h is a Guassian window for 

localization of the signal in time. This windowing function is defined over an interval of 

time, and the frequency content is calculated at the center of the window. JTFA can be 

extremely powerful in representing non-stationary signals, however, its effectiveness is 
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subject to interpretation. An example of its misrepresentation can be seen in Figs. 5.4 and 

5.5. This numerically generated signal is sinusoidally frequency modulated between 0.05 

Hz and 0.1 Hz at a period of 51.2 s as seen in the time domain plot in Fig. 5.4a and the 

time-frequency plot in Fig. 5.4b. Due to the non-stationary nature of this signal, the FFT 

representation is insufficient in representing the frequency content as seen in Fig. 5.4c. 

The JTF representations are shown in Fig. 5.5. The differences between these two 

representations are caused by the different windowing function lengths. The longer the 

window, the less localized is the captured frequency content. It is seen that one needs a 

window smaller than the period of the modulated signal in order to accurately represent 

the frequency content of the signal by JTFA.  

 

The JTF representations of the responses of sliders A and B in unsteady-proximity are 

shown in Fig. 5.6. It is seen that the responses are non-stationary with frequency content 

continuously modulated as a function of amplitude or FHM. As the sliders fly lower, the 

frequency (i.e. stiffness) increases approximately according to the power law shown in 

Fig. 5.3. Slider B exhibits a slightly more complex signal in both the JTF and FFT 

representations compared to slider A. The cause of the multiple peaks in the FFT analysis 

is seen to be a product of the misrepresentation of the non-stationary signal. The 

following two non-linear lumped parameter models are used to further investigate the 

non-linear effects. 
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5.5 Non-linear lumped parameter air bearing slider models 

5.5.1 1DOF model 

A 1DOF model of the air bearing slider is inaccurate for modeling air bearing slider 

dynamics. However, it can be useful to provide a basic understanding of the non-linear 

effects. A schematic of the system is shown in Fig. 5.7, and the equation of motion for 

unforced free vibration can be written as: 

( ) 0=++ zzkzczm &&&                  (5.7) 

where c is the damping constant, z is the FH with a zero mean (z = FH – steady state FH), 

and k(z) is given by Eq. (5.3). The CML Dynamic Simulator can be constrained to a 

1DOF system by increasing Iθ and Iφ to prohibit the slider’s pitch and roll. Both the 

1DOF model and the constrained CML Simulator were then used to simulate an impulse 

response of the slider in the vertical direction with a large initial perturbation chosen to 

provide a minimum FH of approximately 1 nm. The FFT was then taken of the response, 

and it is shown in Fig. 5.8 with the frequency axis normalized to the linearized resonance 

frequency, fo. A non-symmetric fundamental mode appears near fo, and higher harmonics 

also result from the non-linear stiffness. High correlation is found between the 1DOF 

model and the constrained CML Simulator simulations. Figure 5.9 shows the effect of the 

initial amplitude on the FFT representation of the 1DOF model. For a small initial 

perturbation (0.01 nm), the system behaves linearly showing a single resonance peak. As 

the initial amplitude is increased, it becomes progressively more difficult to interpret the 

FFT representation. JTFA can be used to show that this complexity is simply due to a 

modulated frequency response of the slider. Figures 5.10a and 5.10b show the response 
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and JTF representations due to a large impulse as simulated by the 1DOF model. Figure 

5.10a uses a relatively long window length, h, while Fig. 5.10b has a relatively short 

window length. Figure 5.10b accurately represents the frequency content of the signal 

while Fig. 5.10a does not. Figure 5.10a is similar to what has been seen by others [23], 

[26]. Initially, the response amplitude is large and the JTF plot reveals a lower 

fundamental frequency and harmonics. As the response amplitude decays, the harmonics 

disappear the fundamental frequency increases to the linear system’s resonance 

frequency. This apparent decrease in the fundamental frequency is an artifact of 

averaging the non-stationary signal over too long a time period by FFT analysis. This can 

be seen in Fig. 5.11, which presents the FFT of the response of the undamped 1DOF as 

the response amplitude increases. Another observation from Fig. 5.11 is the widening of 

the fundamental peak as the amplitude increases, leading to an interpretation that greater 

damping is obtained for larger response amplitudes. However, this is again an artifact, or 

misrepresentation obtained by viewing the non-stationary signal with an FFT.    

 

This 1DOF model and the constrained CML Simulator show complexities of the slider’s 

response when viewed by the FFT are due to the non-linear nature of the air bearing, and 

they can be explained by only considering the “vertical” mode’s non-linear stiffness. 

However, this model does not explain the sub- and super-harmonics seen experimentally 

at mfo/2 (m=1,3,5,…) with slider A and the additional peaks with slider B. 
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5.5.2 2DOF model 

A 1DOF model over simplifies the dynamics of the air bearing slider system at the PT 

location. If we assume that the ABS designs are symmetric and the test condition is at 0o 

skew, the roll nodal line will pass extremely close to the PT location, and therefore the 

roll mode will not contribute to the response. However, there will then be two pitch 

modes, both of which will contribute to the slider’s response at the PT location. This can 

be modeled by a 2DOF model as shown in Fig. 5.12. The equations of motion of this 

model for unforced free vibration can be written as: 

 ( )[ ] [ ] ( )[ ] [ ] 0,, 21212121 =−⋅−−⋅−+⋅++⋅+ cclkzklcczkzkzzm θθθθ &&&&  

 ( )[ ] [ ] ( )[ ] [ ] 0,, 21
2

21
2

2121 =+⋅++⋅+−⋅−−⋅− cclkzklcczlkzklzI θθθθθθ &&&&      (5.8) 

where k1(z,θ) and c1 are the stiffness and damping coefficients at the TE of the slider 

body. Similarly, k2 and c2 are the stiffness and damping coefficients at the leading edge 

(LE) of the slider body. The only non-linear element of this system is the TE spring, 

characterized by k1(z,θ), which is a function of both z and θ: 

   ( ) ( )αθβθ ⋅−⋅= lzzk ,1          (5.9) 

Since the PT response will be a combination of both pitch modes, which contain the non-

linear spring, both modes will be non-linear and coupled. The stiffness values, k2 and the 

linearized value of k1 were selected so as to obtain the same linearized modal frequencies 

of the first and second pitch modes as seen in slider A. The ratio of the linearized second 

pitch mode resonance frequency (f2) to the linearized first pitch mode resonance 

frequency (f1) is defined by R=f2/f1. For this particular ABS design, R ≈ 2.2. The damping 

coefficients were chosen to fit the CML Simulator data. This 2DOF model can be 

compared to the CML Simulator by looking at an impulse response of the slider. Here, 
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the CML Simulator is no longer constrained as in the previous section. The results are 

shown in Fig. 5.13 in both the time and frequency (FFT) domains. The frequency axis is 

normalized by f2, which is defined to be the fundamental frequency, fo = f2. There is a 

high correlation between the 2DOF model and the CML Simulator. These results show a 

complicated slider response representation by the FFT. This 2DOF exhibits all the sub- 

and super-harmonics at nfo (n=1,2,3,…) and at (mfo)/2 (m=1,3,5,…) as seen 

experimentally for slider A. The FFT also exhibits a split peak around f1 due to the non-

linear coupling between the two modes. Figure 5.14 shows the amplitude effect on both 

the impulse response and the undamped response. As the amplitude increases the degree 

of non-linearity increases, causing the FFT representation to become less representative 

of the system’s response.  

 

Also, the resonance frequency ratio, R, has a drastic effect on the slider’s response as 

represented by FFT analysis. Figure 5.15 shows impulse responses for several values of R 

varying from 1.7 to 3. In most cases the FFT exhibits several peaks extending high above 

the fundamental frequency, fo and, in some cases, below f1. Figures 5.16a and 5.16b show 

the JTF representations of the responses for R equal to 2.4 and 1.7, respectively. Here it is 

clearly seen that the frequency signature in the JTF representation changes drastically by 

varying R. The response of slider A is closely represented by the results shown in Fig. 

5.16a with R ≈ 2.2 and the response of slider B closely resembles the results shown in 

Fig. 5.16b with R ≈ 1.35 as can be seen by comparing these figures to Figs. 5.6a and 5.6b. 
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5.6 Discussion 

When air bearing sliders transition between steady flying to intermittent contact, an 

unsteady-proximity regime exists where complexities of the slider’s response are seen in 

the frequency domain. In this regime, the non-linearities of the air bearing slider system, 

according to the generalized Reynolds equation, are not negligible. In fact, the “vertical” 

resonance mode of an air bearing exponentially increases as FH decreases. This non-

linearity causes the slider’s response to be non-stationary in time and the larger the 

perturbations are from steady-state flying and the lower the FH, the more pronounced this 

effect becomes. FFT analysis is a satisfactory means for analyzing the frequency content 

of stationary or wide-sense stationary signals, however it becomes increasingly more 

difficult to interpret FFT results the more non-stationary the signal becomes.    

 

Linear reassigned Gabor JTFA was used to represent the sliders’ responses obtained from 

both experimental and simulation results. JTFA was used to show that the sliders’ 

responses were non-stationary and demonstrated that the complexity seen by FFT 

analysis was due to non-linearities.  

 

1DOF and 2DOF non-linear lumped parameter models were introduced to further study 

the effects of the non-linearities. The 1DOF model was verified by comparing the 

response to a constrained model simulated by the CML Simulator. This model only 

simulated the vertical motions of the air bearing slider while constraining the pitch and 

roll motions. These models were used to show that super-harmonics of the fundamental 
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linearized resonance frequency were caused by the non-linear stiffening of the air bearing 

slider system. Also, the level of non-linearity was studied to understand the evolution of a 

linear to a highly non-linear system and the associated complexities with FFT analysis. 

This 1DOF model gave a basic understanding of the non-linear effect; however, it was 

inadequate for completely explaining the experimental results.  

 

A 2DOF model was introduced to more accurately model a slider’s response, and it was 

verified with the CML Simulator. The results show that both pitch modes become non-

linearly coupled, causing extreme complexities by FFT analysis.  This model explained 

the sub- and super-harmonics seen experimentally for slider A. Similar to the 1DOF 

model, the level of non-linearity was again studied to observe the evolution of a linear to 

a highly non-linear system and the associated complexities with FFT analysis. By 

changing the linearized modal parameters, specifically the resonance frequency ratio, R, 

we observed drastic differences in the slider’s FFT frequency content. For some values of 

R the non-linear response did not resemble the linear response by FFT analysis but 

showed results  similar to those of the experimental response for slider B. 

 

5.7 Conclusion 

These findings suggest that the non-linearities of the air bearing slider system cannot be 

ignored for sub-5 nm FH sliders and must be considered when modeling slider-disk 

interface dynamics. When a slider is within proximity of a disk the complexities of the 

slider’s response can be explained by the non-stationary response, and FFT analysis 

becomes an inadequate means for frequency domain analysis. A method such as JTFA 
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must be used to accurately analyze the non-linear, non-stationary response of a slider 

when it is in the state of unsteady-proximity. Contact between the slider and disk can 

cause complexities of the slider’s response due to the additional boundary conditions 

when viewed in the frequency domain, however, it is seen that contact is not a necessary 

condition for producing this phenomenon. 
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Fig. 5.1. ABS pictures of (a) slider A and (b) slider B. 

 
 
 

(a) (b) 
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Fig. 5.2. Frequency domain averaged slider velocity response for (a) slider A and (b) 
slider B transitioning from steady proximity to unsteady proximity and intermittent 
contact. 
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Fig. 5.3. Non-linear “vertical” air bearing stiffness as a function of FH at the PT. 
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Fig. 5.4. Numerically generated sinusoidally frequency modulated signal shown in the (a) 
time-amplitude, (b) time-frequency, and the (c) frequency (FFT) domains. 
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Fig. 5.5. JTF representations of the numerically generated sinusoidally frequency 
modulated signal with (a) a relatively long and (b) a relatively short windowing function. 
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Fig. 5.6. JTF representations of (a) slider A and (b) slider B in unsteady proximity 
experimentally measured. 

(a) 

(b) 
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Fig. 5.7. 1DOF model schematic. 

 

 

Fig. 5.8. The FFT’s of slider A’s impulse response simulated by the SDOF model and the 
constrained CML Simulator.  
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Fig. 5.9. The effect of amplitude (i.e. effect of the level of non-linearity) on the FFT 
representation of an impulse response simulated by the 1DOF model.  
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Fig. 5.10. JTF representations of a large impulse response simulated by the 1DOF model 
with (a) a relatively long windowing function and (b) with a relatively short windowing 
function. 
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Fig. 5.11. Effect of amplitude (i.e. level of non-linearity) on the FFT representation of the 
undamped response of 1DOF model.  

 

 

Fig. 5.12. 2DOF model schematic. 
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Fig. 5.13. Impulse response of slider A simulated by the 2DOF model and the CML 
Simulator shown in the (a) time and (b) frequency (FFT) domains. 
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Fig. 5.14. Effect of amplitude (i.e. level of non-linearity) on the FFT representation of an 
(a) impulse and (b) undamped responses of the 2DOF model.  
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Fig. 5.15. The effect of non-linear coupling the FFT domain by varying R: (a) R=1.7, (b) 
R=1.8, (c) R=1.9, and (d) R=3. 
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Fig. 5.16. JTF representations of the 2DOF model with (a) R=2.4 and (b) R=1.7. 
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CHAPTER 6 
 

 HEAD-DISK INTERFACE DYNAMIC INSTABILITY DUE TO 

INTERMOLECULAR FORCES 
 
 

Abstract 
 

This chapter presents a nonlinear dynamic analysis of the head-disk interface by 

including intermolecular adhesion forces for sub- 5 nm flying air bearing sliders. 

Experimental evidence shows that one of the major roadblocks in achieving ultra-low 

flying-heights is the stability of the head-disk interface. It is found that the inclusion of 

intermolecular forces between the slider and disk in modeling the head-disk interface 

leads to dynamic instability of the slider. It is shown by a bifurcation diagram that a slider 

can easily be forced into unstable, high amplitude oscillations. It is also shown that the 

experimentally observed spin-down – spin-up flying-height hysteresis, intermittent flying 

instability, and “snapping” from stable to unstable proximity can be explained by the 

inclusion of the intermolecular forces. A parametric study is conducted showing the 

dependence of stability/instability on the variables. By understanding the effect each 

parameter has on stability, we can achieve air bearing surface and disk morphology 

system design guidelines. From this study it is found that the head-disk interface can 

become unstable due to intermolecular forces below a flying-height of about 6 nm.  

However, from the results of the parametric study, it is shown that a head-disk interface 

can be designed such that it maximizes stability, although the instability cannot be 

attenuated completely. By minimizing the intermolecular adhesion forces and the flying-

height modulation, and by maximizing the air bearing stiffness and damping, we achieve 
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maximum stability. Also, it is found that the stiffening effect of the air bearing film 

increases the stability. The implications of this study are that the head-disk interface 

stability is dramatically compromised in the sub- 6 nm flying-height regime and that the 

glide-height of “super-smooth” disks will not only be a function of the disk’s morphology 

but also the intermolecular adhesion force induced instability of the slider. 

 

6.1 Introduction 

In order to achieve a magnetic recording areal density of 1 Tbit/in2 it is expected that the 

physical spacing between the media and transducer or flying-height (FH) will have to be 

3.5 nm [7]. For a head-disk interface (HDI) to perform reliably, both tribologically and 

magnetically, the fluctuations in the FH must be held to a minimum. One of the 

roadblocks thus far for realizing a 3.5 nm FH is the dynamic stability of the HDI. We 

showed experimentally in Chapter 5 that a slider can transition from stable to unstable 

proximity flying by decreasing the FH only slightly. Also, it has been widely observed 

that a slider’s touchdown and takeoff FH’s are not equal. This “snapping” effect between 

stability and instability and the difference in a slider’s touchdown and takeoff FH’s are 

evidence of a complicated dynamical system when operating in the sub- 6 nm FH regime. 

As the slider to disk spacing is decreased, the interface surface interactions are evidently 

no longer negligible. Two adhesion models have been proposed to account for the 

interactions between the slider and the disk: one is based on lubricant interacting with the 

slider causing a meniscus force and the other is based on intermolecular forces between 

the two intimate surfaces.  
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Previous publications have studied the effects of lubricant on HDI stability and flying 

characteristics [30] - [33]. Kato et. al. used an equilibrium meniscus force model in 

simulations to account for the dynamic slider-lubricant interactions [31] - [33]. However, 

their use of this meniscus force model neglects some very important assumptions of the 

model: extremely thin liquid lubricant film thickness (≈ 15 Å) and the kinetic formation 

of a meniscus. Generally, lubricant is highly bonded to the disk surface, thus only a 

fraction of the lubricant layer is available to behave as a liquid in the formation of a 

meniscus making a meniscus more energetically difficult to form. Also, on the time scale 

of interest for “bouncing” or unstable proximity of the air bearing slider, the liquid 

volume required to form the meniscus does not have time to be transported and is far 

from the equilibrium state described by a kinetic meniscus formation model [34].    

 

Intermolecular adhesion forces can be extremely large when two very flat surfaces come 

within proximity. In fact, it has been shown that intermolecular adhesion forces are the 

mechanism that allows gecko lizards to “stick” on molecularly smooth surfaces [35]. 

Therefore, when flying an extremely smooth air bearing slider over a “super-smooth” 

disk at ultra-low FH’s, intermolecular forces must be accounted for. Thus far, 

publications investigating the effect of intermolecular forces on the HDI have been based 

on static analysis [36] - [38]. It has been shown that for air bearing sliders flying in the 

sub- 5 nm regime, intermolecular forces can become important and cause a significant 

decrease in static FH [36]. However, the implications of intermolecular forces on the 

dynamic stability of the HDI have not been published.  
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In this chapter we present some experimental evidence of the abrupt stable to unstable 

flying transition and the FH hysteresis, which are measures of instability for the HDI. We 

also show that even for non-lubricated disks HDI instability occurs, suggesting this 

phenomenon is more likely to be caused by intermolecular forces than by meniscus 

forces. By accounting for the intermolecular forces through a Lennard-Jones potential 

and representing the HDI by a lumped parameter one degree-of-freedom (1DOF) model, 

we show that the system becomes highly nonlinear in the proximity region. It is shown 

that the dynamics of this nonlinear system are extremely complicated and can even be 

chaotically unstable. From a nonlinear dynamics analysis with nominal values and from a 

parametric study, the variables implicating the HDI stability/instability are discussed, 

including design guidelines to minimize HDI instability due to intermolecular forces.  

 

6.2 Experimental results 

It has been observed that when the FH of a slider is gradually reduced to within proximity 

of an extremely “super-smooth” disk the slider can be easily set into unstable high 

amplitude oscillations. Figure 6.1a shows the absolute displacement of the trailing edge 

center of slider 2 shown in Fig. 6.2 flying in proximity of the disk at linear velocities of 

3.6, 3.4 and 3.2 m/s. This result is measured by a laser Doppler vibrometer (LDV) in the 

bandwidth of 10kHz – 2 MHz. It is seen that the slider transitions abruptly from stable to 

intermittently unstable and then further to indefinitely unstable as the velocity is lowered 

slightly. The high amplitude oscillations of the slider appear to be self-excited as opposed 

to asperity contact induced. This “snapping” effect from stable to unstable suggests 

complex dynamics of the HDI system. 
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It has been widely observed that as a slider is forced into and back out of contact by 

decreasing and increasing disk speed or pressure a FH hysteresis is present (i.e., 

touchdown FH ≠  takeoff FH) [39]. Experiments investigating HDI instabilities as a 

function of the FH were conducted on a TTi T1000 spinstand for various sliders and 

disks while controlling the FH with the spindle speed of the disk. The sliders instability 

and contact was initially measured by both LDV and an acoustic emission (AE) sensor, 

however, the LDV was found to be much more sensitive than the AE sensor. Therefore, 

the sliders vertical motion was measured by a LDV and highpass filtered at 60 kHz to 

obtain air bearing resonance vibration and slider body vibration modes to detect unsteady 

proximity and contact, respectively. This signal was then acquired through a RMS circuit 

sampled at 4 kHz. A typical FH hysteresis can be seen in Fig. 6.1b, which shows the 

sliders RMS vertical velocity as the disk spindle RPM is lowered until the slider comes 

into unsteady proximity and/or contact with the disk (touchdown) and then the disk 

spindle RPM is increased and the slider ceases to contact and flies in steady proximity 

over the disk (takeoff). It has been observed that the touchdown RPM is lower than the 

takeoff RPM or the touchdown height (TDH) is less than the takeoff height (TOH). This 

difference in RPM or FH is what constitutes this hysteresis (TOH - TDH). Several sets of 

experiments were conducted using four different sub-ambient pressure pico sliders and a 

set of disks with varying lubricant thickness. The four air bearing surfaces (ABS) are 

shown in Fig. 6.2. Two types of disks were used in this experiment: B2 with Ra = 0.3 nm 

and B4 with Ra = 0.2 nm both with glide-heights of 2.5 to 4 nm. The disks were all 

processed in exactly the same manner with the only variation being the lubricant 
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thickness: 0 (not lubricated), 8, 12, 16 and 20 Å. The lubricant is  a perfluoropolyether 

(PFPE) with a high bonding ability to the disk of approximately 80%. For every test, new 

samples were used so as to not affect the experimental results by lubricant pickup on the 

slider, wear and other factors. Figures 6.3 through 6.6 summarize the experimental results 

for sliders 1 – 4. The bar graphs show the touchdown, takeoff, and hysteresis RPM’s as a 

function of lubricant thickness. It is interesting to notice that for all of the lubricant 

thicknesses tested, there is no trend in the FH hysteresis as a function of lubricant 

thickness. What is common among all the tests is that a FH hysteresis is present for all 

disks and sliders tested including the non-lubricated disks and that the takeoff RPM was 

always higher than the touchdown RPM. This FH hysteresis can be used as a measure of 

instability of the HDI. For example, take the case of slider 3 flying over the disk with 0 Å 

of lubricant (see Fig. 6.5). If the slider is flying at any speed between 3500 RPM 

(touchdown) and 8000 RPM (takeoff) the slider has the ability to become unstable and 

remain unstable until the RPM is increased beyond the 8000 RPM (takeoff). Also, the 

intensity of the sliders vibration can be measured from the RMS value of the LDV signal. 

For sliders 1 – 3, the intensity of vibration saturated the data acquisition system. 

However, slider 4 exhibited very low vibration amplitude, as seen in Fig. 6.7 compared to 

the other sliders. The main difference between sliders 1 –3 and 4 is the small diamond-

like carbon pads distributed across the entire ABS. These small pads on slider 4 decrease 

the actual proximity/contact area substantially and lead to less adhesion force, which 

could explain the results seen in Fig. 6.7. Also, the sliders vibration amplitude in Fig. 

6.1b is asymmetric, showing that the maximum slider vibration does not occur when the 

RPM is the lowest.     
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Both the “snapping” effect from steady to unsteady proximity flying and the presence of 

a FH hysteresis are new phenomena not well understood. By simulating a quasi-static FH 

and the touchdown-takeoff process, accounting for all of the forces shown in the free-

body diagram in Fig. 6.8, we would not predict this “snapping” effect from stable to 

unstable proximity or the FH hysteresis. Therefore to explain the above experimental 

observations, it appears that additional forces at the HDI can no longer be neglected for 

such low FH’s.  

 

6.3 Adhesion forces at the HDI 

With FHs decreasing and the probability of contact increasing, a better understanding of 

the interface interactions are becoming more important in developing a reliable HDI. 

Also, with the intimate surfaces of the slider and disk becoming extremely smooth (i.e., 

close to atomically smooth) and with the presence of a thin layer of lubricant on the disk 

surface, the interface interactions become very complicated. Generally the interface is a 

diamond-like carbon (DLC) coated slider surface – the air – a lubricant interface during 

flying, and a DLC coated slider surface – lubricant surface interface during contact. If the 

disk is not lubricated, the interface would include the DLC coated disk instead of the 

lubricant layer. The source and nature of the interface forces acting between the slider 

and the disk can be very complicated. Such forces can be generated through electrostatic 

charging, tribocharging, and adhesion. In this chapter we will only consider adhesion 

forces acting at the interface.  
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At least two types of adhesion forces can be generated at the HDI: capillary (meniscus) 

and intermolecular. In order for meniscus forces to be generated, a liquid layer must be 

present at the interface. In the case of the HDI, the liquid layer would consist of primarily 

the mobile lubricant and possibly a very thin condensed water vapor layer. Also, the 

formation of a meniscus force is kinetic, hence, highly time dependent [34]. It has been 

shown through experiments and simulation that the meniscus force is negligible when the 

slider and lubricant are in contact over a short enough time period and increases to a 

steady-state value over a time period on the order of minutes [34], [40]. Under dynamic 

instability of the slider, it can be seen from Fig. 6.1a that the slider is in contact with the 

lubricant layer for less than 800 ns; far too short to form a measurable meniscus force as 

predicted from a kinetic meniscus formation model and previous experimental results. 

Also, for the high velocity vibration of the slider under unstable proximity, it is still 

unknown if the lubricant behaves as a liquid or a solid when the slider impacts the 

lubricant. Our experimental results agree with the above analysis. If meniscus forces were 

partially the cause of the additional interface forces, then we would expect the FH 

hysteresis to increase as the lubricant thickness increases, and little or no FH hysteresis 

should exist for an interface without lubricant. Our experimental results shown in Figs. 

6.3 – 6.6, show no clear trend in the FH hysterisis with increasing lubricant thickness and 

that a FH hysterisis is present even for an interface without lubricant.  

 

Meniscus forces and/or other lubricant interactions could possibly cause new dynamic 

HDI phenomena; however, the above experimental results showed very little correlation 

between a meniscus force effect and instability. For the following analysis the 
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contribution of adhesion due to meniscus formation under the unsteady proximity regime 

seems unlikely and adhesion due to intermolecular forces, which is time independent for 

unsteady proximity of the HDI, is considered to be the sole contributor to adhesion. To 

get an idea of the magnitude of the adhesion force generated by intermolecular forces we 

focus on a particular system. For a flat area, As = 15,000 µm2 (approximate area of the 

alumina at the trailing edge of slider 2) placed parallel to a flat disk surface, the van der 

Waals intermolecular adhesion force as a function of separation distance, D, is [41] 

  sA
D

A
F ⋅








= 36π
          (6.1) 

where A is the Hamaker constant assumed to have a value in the range of 0.4×10-19 -

4×10-19 J for condensed phases across air or vacuum [41]. Figure 6.9 shows the adhesion 

force as a function of separation distance for the range of Hamaker constants given 

above. It is seen that at a separation distance of 3 nm, the adhesion force can range from 

0.12 – 1.2 gm, which is quite significant at the HDI. This example does not take into 

account the slider’s attitude, crown, camber and twist or roughness effects. In the 

following analysis we account for the slider geometry parameters and will comment on 

the effect of slider/disk roughness in the discussion section. 

 

6.4 Head-disk interface model 

6.4.1 Modeling intermolecular forces 

For modeling of the intermolecular forces, we adopted the method of Lin and Bogy who 

implemented an additional force into the CML Static Air Bearing Simulation Code via 

the Lennard-Jones potential [36]. The Hamaker constant, A, was taken to be 10-19 J and 

the repulsion constant, B, was taken to be 10-76 Jm6. This method takes the slider air 
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bearing geometry and flying attitude into account, however, it assumes mathematically 

smooth surfaces. The fixed attitude solution is found by fixing the attitude of the slider 

(FH, pitch, and roll) and solving for the forces acting on the slider. When the forces and 

moments acting on the slider equal those of the suspension, the static solution is obtained. 

Figure 6.10a shows the resultant intermolecular force acting on the pico size ABS shown 

in Fig. 6.2 (slider 2) as a function of minimum FH for a roll angle of 1.5 µrad and pitch 

angle of 40 µrad; similar to the conditions under which slider 2 exhibits unstable 

proximity. It is seen that as the FH decreases, an attractive force becomes present around 

5 nm and by further decreasing the FH, a strong repulsive force becomes present, as 

expected. The Lennard-Jones model does not allow for physical contact between the 

slider and disk. The Lennard-Jones modeled force becomes unbounded as the spacing 

goes to zero due to the repulsion term to simply model physical contact. This 

simplification in the repulsion term modeling physical contact will be commented on in 

the discussion section. However, it will be shown that even though the Lennard-Jones 

repulsion and physical contact are modeled differently, they predict similar dynamic 

instability results. 

 

6.4.2 Static force analysis 

Figure 6.10b shows the resultant force exerted on the slider as a function of minimum FH 

for the fixed attitude solution. The force consists of the positive and negative (sub-

ambient) air bearing forces and the adhesion and repulsion forces from the Lennard-Jones 

potential. When the intermolecular forces are accounted for there can exist up to three 

equilibria – two stable and one unstable. It is seen that for small perturbations about the 
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nominal FH solution of 7 nm, the solution is stable. However, at 2.8 nm, there exists an 

unstable equilibrium and another stable equilibrium at 0.2 nm. These additional equilibria 

suggest a very complicated nonlinear system, which is the focus of the following 

dynamic analysis. 

 

6.4.3 Nonlinear one degree-of-freedom HDI model 

In order to simplify the HDI for the following analysis, we used the simple lumped 

parameter 1DOF model depicted in Fig. 6.11. In this model, the air bearing slider system 

is modeled with a nonlinear spring, k(s), mass, m, and proportional damping, c. The 

nonlinear air bearing stiffness is a function of the slider – disk spacing, s, and takes the 

power-hardening form 

    
αβ ssk ⋅=)(               (6.2) 

where α and β are constants found by matching with the CML dynamic simulation code 

as was shown in Chapter 5. The air bearing force can be found from 

  ( ) ( ) ( ) xdxFHxskxF ssab ⋅−+⋅−=⋅−= αβ        (6.3) 

where FHss is the steady-state FH without accounting for the intermolecular force and x is 

the slider’s absolute displacement: x = s + d –FHss. The disk topography, d(t), can be 

modeled in various ways; as a numerically generated random wavy surface, a harmonic 

excitation, or using an experimentally measured disk topography. The intermolecular 

force, FvdW, acting on the slider takes the form 
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where A´ and B´ are constants found from curve fitting plots similar to Fig. 6.10a where 

the first term is the attraction force and the second term is the repulsion force. The 

equation of motion for this system can be written in terms of the sliders absolute 

displacement, x 

( ) ( ) 0=−−+−++ dcdkFxFkxcxm VdWVdW
&&&&          (6.5) 

Due to the intermolecular force in Eq. (6.4) and the nonlinear spring stiffness in Eq. (6.3), 

Eq. (6.5) becomes highly nonlinear, and due to the addition of the intermolecular force, 

the solution is not simple. 

 

6.5 Head-disk interface nonlinear analysis 

6.5.1 Stability 

Stability of the HDI model can be analyzed by considering the energy of the system. If 

we assume no forcing, d(t) = 0, and no damping, c = 0, the system is conservative and a 

potential energy method can be used to show equilibria and local stability. The potential 

energy of the system, Usys, is comprised of the potential energy of the air bearing spring, 

Uab, and the potential energy of the intermolecular force, UvdW, derived from the Lennard-

Jones potential. These conservative forces are related to their potential energies through 

   ( )
x

U
xF

∂
∂

−=               

(6.6) 

The total potential energy can be found by integrating the air bearing force, Fab, and the 

intermolecular force, FvdW 
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The criteria for equilibrium, *
ix , is satisfied when the system’s potential reaches an 

inflection point 

    0=
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and the equilibrium point is stable if the potential evaluated at equilibrium is a local 

minimum 
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and is unstable if the potential evaluated at equilibrium is a local maximum 
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For the nominal coefficients used, as shown in Table 6.1, equilibria and stability as a 

function of FHss can be obtained. Figure 6.12 shows the potential energies of the air 

bearing, the Lennard-Jones potential and the total system potential at FHss = 7.75 nm as a 

function of spacing. It is seen that when the air bearing and the Lennard-Jones potentials 

are added, the system has one equilibrium, FHeq, and it is stable, where FHeq = xi
*+FHss. 

In Fig. 6.13, the total potentials for FHss = 7.75, 5.75, 4.75, and 1.25 nm are shown as a 

function of spacing. It is seen, at FHss of 7.75 nm, one stable equilibrium exists at FHeq = 

7.75 nm. At FHss = 5.75 nm, there exists two stable and one unstable equilibria at FHeq = 
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5.75, 0.35, and 0.7 nm, respectively. At FHss = 1.25 nm, the air bearing is overcome by 

the intermolecular force and only one stable equilibrium exists, FHeq = 0.25 nm. The 

equilibria and stability as a function of FHss can be summarized in the bifurcation plot 

shown in Fig. 6.14. It is seen that when FHss is greater than 6.3 nm only one equilibrium 

exists, x1
*, the nominal FH solution. Between FHss of 1.35 nm and 6.3 nm, three 

equilibria exist – two stable, x1
* and x3

* and one unstable, x2
*. At FHss of 1.35 nm, only 

one stable equilibrium exists, x3
*. The regime where the three equilibria exist is of utmost 

interest – both theoretically and for practical application. 

 

Between FHss of 1.35 nm and 6.3 nm in Fig. 6.14 three equilibria exist and within this 

regime the potential energy takes on a special form generally called a “double-well” or 

“two-well” potential. Double-well potential systems have been studied for the past two 

decades in the field of nonlinear dynamics [42] - [45]. Many systems have exhibited 

double-well potentials with very interesting dynamics, from mechanical systems to super 

conductivity. Within this regime, the dynamics of the system are extremely complex and 

can even be chaotic [42] - [45]. A detailed nonlinear dynamics analysis of this system 

investigating periodic solutions, limit cycles, and transitions to chaos are interesting to 

study, however, the practical issues associated with the HDI would be over shadowed in 

such a complete study. The details concerning the HDI stability and instability are of 

more interests to us here, and they are discussed in detail.  
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6.5.2 Unforced system 

This system is considered to be unforced when the disk forcing is zero, d(t) = 0 (e.g. for a 

perfectly smooth disk surface). From the bifurcation plot in Fig. 6.14 we observe one 

very important characteristic of the unforced system. This observation can be explained 

by a touchdown (TD) – takeoff (TO) simulation by decreasing and then increasing the 

FHss. From Fig. 6.14, the FHeq’s can be found as a function of FHss as the FHss is 

lowered from 10 nm to 1 nm and then increased back to 10 nm. As the FHss is decreased 

from 10 nm to 1.35 nm, the equilibrium follows the nominal solution, x1
* (a-b). However, 

at the FHss of 1.35 nm, the air bearing is overcome by the intermolecular force and the 

nominal solution is annihilated by x2
* and the slider “snaps” down to the other stable 

equilibrium, x3
* (b-c). Upon increasing the FHss back to 10 nm, the equilibrium solution 

will remain along x3
* until it is annihilated by x2

*, at a FHss of 6.3 nm (d-e). At FHss = 6.3 

nm the equilibrium solution “snaps” from x3
* to x1

*, back to the nominal solution (e-f). 

This is illustrated in Fig. 6.15, which depicts an unforced TD – TO simulation showing 

the slider remaining “stuck” on the disk until the FHss reaches 6.3 nm. The difference 

between the FHss at which the slider becomes “stuck” while decreasing the FHss and 

where the slider becomes “unstuck” while increasing the FHss is the unforced “FH 

hysteresis”. It is seen that for the unforced system the FH hysteresis is bound by the 

regime were multiple equilibria exist – namely the three equilibria, x1
*,  x2

*, and x3
*.  

 

Figure 6.16 shows a sketch of the energy surface in state-space (x  versus x& ) and the 

trajectories projected onto the state-space within the regime where the multiple equilibria 

exist, 1.35 < FHss < 6.3 nm. Since the unforced and undamped system is conservative, the 
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systems trajectory remains on a level contour of the energy surface. Depending on the 

initial conditions the system will behave differently. In Fig. 6.16b, it is seen that for a 

relatively low energy state, E < E2, with initial conditions near x3
* or x1

*, the slider 

oscillates about x3
* or x1

*, respectively, with small amplitudes. However, if enough initial 

energy is applied, E > E2 the system remains in high amplitude oscillations about both x1
* 

and x3
*. The energy state that separates the oscillations about x1

* or x3
* and oscillations 

about both x1
* and x3

*, E2, is defined as the homoclinic orbit or separatrix shown in Fig. 

6.16. By adding damping, c, the systems trajectory would end up spiraling down into 

either x1
* or x3

* depending on the initial conditions as seen in Fig. 6.17. Two sets of initial 

conditions were chosen to illustrate the sensitivity to initial conditions: (FH , velocity) = 

(6.3 nm , -0.3945 mm/s) and (FH , velocity) = (6.3 nm , -0.394 mm/s). It is seen that one 

of the trajectories spirals into x1
* and the other spirals into x3

*. The dynamics associated 

with the unforced system are rather simple as described above. However, once this type 

of system is forced, the sliders response becomes very nontrivial and highly 

unpredictable. 

 

6.5.3 Forced system 

Forced double-well potential systems have been found to exhibit strange attractors 

causing chaos and sensitivity to initial conditions; however, the important result for the 

HDI can be summarized as follows [42]-[45]. As long as the model of the HDI exhibits a 

double-well potential the forced solution can be periodic, non-periodic, or chaotic for 

simple harmonic forcing. The homoclinic energy level separating oscillations about x1
* or 

x3
* and x1

* and x3
* can no longer be used to approximately predict the slider’s response.  
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That is, for the nominal parameters used, this system can exhibit non-predictable chaotic 

dynamics between FHss of 1.35 nm and 6.3 nm. The slider motion is defined as stable if 

it oscillates about the x1
* equilibrium and unstable of all other motions.  This choice of 

terminology describes the nominal flying condition as stable and large chaotic slider 

oscillations as unstable. 

 

6.5.3.1 Touchdown – takeoff simulations   

The topography of a disk is composed of harmonic and non-harmonic content at all 

wavelengths or frequencies as the disk spins. Figure 6.18 shows the experimentally 

measured frequency spectral contents of two disk’s morphology as seen by the slider as 

the disk spins. Both disks are “super-smooth” media, however, it is seen that disk A is 

smoother than disk B across the entire spectral band. Figure 6.19 shows a TD – TO 

numerical simulation that is similar to that shown in Fig. 6.15, however the system is now 

forced with the measured disk topography from disk A. It is found that while decreasing 

FHss the slider “snaps” from stable motions about x1
* into chaotic high amplitude 

oscillations. Upon increasing FHss, stable slider motion is resumed about x1
*, exhibiting a 

FH hysteresis. Because this system exhibits strange attractors in the sub- 6 nm FH 

regime, the characteristics of the chaotic slider motion are highly dependent on the disk 

forcing. However, for all disk topographies investigated an unstable motion exhibiting a 

FH hysteresis was always present due to the intermolecular force. By qualitatively 

comparing the experimental result in Fig. 6.1b with the simulation results in Fig. 6.19 we 

see that the maximum amplitude of vibration does not occur at the lowest FHss, but rather 

it occurs after the minimum FHss has been reached and increases with increasing FHss.    
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6.5.3.2 Transition between stable and unstable flying 

Experimentally it was shown that by changing the FH only slightly the transition between 

stable and intermittent unstable flying was abrupt (see Fig. 6.1a). Numerical simulations 

have also been carried out showing this phenomenon in which the FHss is held fixed. 

Within the regime where the system exhibits a double-well potential, it has been shown 

that the slider can be easily forced into unstable high amplitude oscillations. Figure 6.20 

shows the slider motion exhibiting intermittent instability at FHss = 3.35 nm. Figure 6.21 

shows a similar simulation without including the intermolecular force. These two figures 

show that the intermittent instability here is due to the inclusion of the intermolecular 

force. By slightly increasing the FHss, the instability ceases to exist and by slightly 

decreasing the FHss, the instability will persist indefinitely. Under these conditions, the 

slider has the ability to oscillate about x3
*, x1

*, or both x3
* and x1

* and can switch between 

oscillation states chaotically. Figure 6.22 presents a plot of the state-space showing 

oscillations about x3
*, x1

*, and both x3
* and x1

*. Figure 6.23 shows the chaotic nature of 

the system as it switches between oscillation states. It is seen that when the system 

becomes unstable, the most likely oscillation state of the slider is oscillation about both 

x3
* and x1

*. It is possible for the slider to oscillate about x3
* but due to the disk forcing, 

the slider cannot continue oscillating about this equilibria. If a slider could remain in the 

state of oscillation about x3
*, a stable sub- 1 nm FH slider could be realized. However, 

due to disk waviness, roughness and glide-height, the result is high amplitude unstable 

oscillations.     
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6.6 Parametric study 

The above 1DOF system used to simulate the HDI is greatly simplified to give an 

understanding of the effects of adding intermolecular forces in the system and to show 

how certain parameters affect HDI dynamic stability. However, due to the assumptions 

made in reducing the HDI to a 1DOF system, the results must be viewed as merely 

qualitative. It is desired to make the HDI as stable as possible, and thus far it has been 

shown that stability can be highly compromised when flying in the sub– 6 nm regime due 

to the presence of intermolecular forces. Nominal values have been used in the 

simulations presented. Next we present some qualitative results on how these parameters 

affect the HDI stability as they are varied.  

 

It was shown that the slider has the ability to become unstable when multiple equilibria 

exist. Therefore, if it were possible to exclude this regime of multiple equilibria, the 

slider system dynamics would be much simplified, and not exhibit instability and a FH 

hysteresis due to intermolecular forces. However, the inclusion of the intermolecular 

forces in the modeling will always predict this regime. The bifurcation plot in Fig. 6.14 is 

useful in visualizing the regime where multiple equilibria exist, and the model elements 

controlling the location and length of this regime are both the intermolecular and the air 

bearing forces. 

 

6.6.1 Intermolecular force 

The cause of the complicated dynamics of this system stems from the intermolecular 

force. By simply scaling the intermolecular force in Eq. (6.4) as shown in Fig. 6.24, we 
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obtain the corresponding bifurcation plots as shown in Fig. 6.25, which clearly illustrates 

its effect on HDI stability. It is seen that by decreasing the intermolecular force to one-

fourth and one-half its nominal value, the multiple equilibria regime shrinks from 1.35 < 

FHss < 6.3 nm to 0.9 < FHss < 1.8 nm and 1.1 < FHss < 3.3 nm, respectively. These 

decreases result in much smaller FH regimes where the system has the ability to become 

unstable. On the other hand, by increasing the intermolecular force by two times its 

nominal value, the multiple equilibria regime increases to 1.65 < FHss < 12.3 nm. Figure 

6.26 presents plots of the slider’s motion flying over a measured disk topography at a 

FHss of 3 nm for different amplitudes of the intermolecular force. It is seen that as the 

intermolecular force increases, so does the instability of the HDI. Figure 6.27 shows the 

TD – TO FH hysteresis simulation results as a function of intermolecular force 

amplitude. It is seen that as the intermolecular force is increases, so does the FH 

hysteresis. 

 

Even though the intermolecular force cannot be attenuated completely, there are ways to 

reduce its effect. Decreasing the effective slider area within proximity of the disk is the 

most effective method (recall Eq. (6.1)). This reduction in area can come from texturing 

the ABS, through design of the ABS rails, form-factor (nano, pico, femto, etc.) and by 

slider attitude. Figure 6.28 shows the intermolecular force as a function of minimum 

spacing for different pitch angles and form-factors for two different ABS designs. It is 

seen that the larger the rear ABS rail within proximity of the disk surface, the higher the 

adhesion force. Also, other factors such as crown, camber and twist will substantially 

affect the adhesion force. By simply decreasing the rear ABS pads area, the adhesion 
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force decreases, however, for manufacturability, flyability, stability, and other design 

criteria, the rear ABS pad has to have certain minimum dimensions. Also, the 

intermolecular force scales proportionally with the Hamaker constant. In this analysis, a 

nominal value of A = 10-19 was used, however, this value is only approximate. A more 

accurate value of the Hamaker constant needs to be obtained for the HDI. Also, surface 

chemistry could also change the Hamaker constant between various lubricants and DLC 

coatings. Some recently published values of the HDI Hamaker constant are A = 

0.724×10-19 J with lubricant on the disk surface and A = 1.80×10-19 J without lubricant at 

the interface [38]. These values are close to what has been used in this analysis; therefore 

it is expected that the adhesion force will always be present below 3.5 nm FH’s causing 

possible HDI instabilities. 

 

6.6.2 Air bearing stiffness: nonlinear 

The air bearing stiffness is another variable affecting the nature of multiple equilibria. 

The air bearing stiffness is a function of the ABS design, suspension pre-load, slider 

attitude, relative disk velocity, and other design parameters. Generally, the linearized 

“vertical” resonant mode of vibration of an air bearing – slider system is between 150 

kHz and 400 kHz. For large oscillations, the slider exhibits a power hardening stiffness as 

modeled in Eq. (6.2). A change in the stiffness by factors in the range of 0.25 – 4 changes 

the linearized resonant frequency half to twice the nominal value: 108.6 – 434.4 kHz. The 

bifurcation plots associated with the factors 0.25 and 4 are shown in Fig. 6.29.  A series 

of simulations was performed at a FHss of 3 nm showing how the stiffness affects the 

HDI stability. It is seen from the results shown in Fig. 6.30 that stability increases as the 
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air bearing stiffness increases. Also, the TD – TO FH hysteresis was simulated as a 

function of air bearing stiffness, and the results are shown in Fig. 6.31. The trend between 

the FH hysteresis and air bearing stiffness does not appear to be monotonic. This is due to 

the complex disk forcing function and the varying air bearing resonant frequency as the 

stiffness changes. The disk topography frequency spectra is not uniform across the 

frequency band, and at different resonant frequencies, the disk affects resonance 

differently. However, there is an overall decreasing trend of the FH hysteresis as the 

stiffness is increased. 

 

6.6.3 Air bearing stiffness: linear 

If the air bearing stiffness were linear and not a power-hardening nonlinear spring as 

described in Eq. (6.2), the bifurcation plot would be affected as would be the stability. In 

Fig. 6.32 the bifurcation plots are shown for linear stiffnesses of ko= 3×106 N/m, k = 

ko∗2, and k = ko∗4. In comparing these results with those for a nonlinear air bearing 

stiffness in Fig. 6.29 we see that the FH regime where all three equilibria exist (unstable 

regime) is larger for the linear stiffness cases. By increasing the extent of the unstable 

regime, we know that the stability of the HDI would be less. We conclude that the power-

stiffening air film of an actual air bearing is extremely beneficial in increasing the 

stability of the HDI. 

 

6.6.4 Air bearing damping  

As with the air bearing stiffness, air bearing damping is also a function of many 

parameters. Generally, the linearized “vertical” mode damping is between 1 % to 5 % of 
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critical damping. In the previous two sections the bifurcation plots were used to show the 

degree of instability. On the other hand, air bearing damping does not change the 

bifurcation plots. In nonlinear systems, generally, more damping enhances stability. 

Indeed we find similar results here. Figure 6.33 presents the effect of damping on slider 

instability at a FHss of 3.4 nm as the damping is varied from 0.46 to 3.64 %. It clearly 

shows that the higher the damping, the more stable the HDI becomes. Also, the 

dependence of the FH hysteresis on damping as determined by TD – TO simulations is 

summarized in Fig. 6.34, which shows that the FH hysteresis decreases as the damping is 

increased.  

 

6.6.5 Disk topography  

As seen in Fig. 6.18, disk topographies can vary substantially depending on substrate 

material, texturing, and other process conditions. The forcing and initial conditions of 

nonlinear systems of the type described here are the most sensitive variables to their 

chaotic nature that leads to the unstable oscillations. When the HDI model exhibits a 

double-well potential chaotic oscillations can arise even when it is forced by a single 

harmonic excitation. Figure 6.35 shows a plot of single frequency disk forcing amplitude, 

Ad, where the slider steady-state motion becomes unstable versus disk forcing frequency, 

fd, where d(t) = Adsin(2πfd) and the initial conditions are (FH , velocity) = (3.4 nm , 0 

mm/s) at a FHss =3.4 nm. Above the curve shown in Fig. 6.35, the slider’s response is 

unstable and below it, the response is stable for a single frequency excitation. It is 

observed that the most sensitive forcing frequency is around the systems linearized 

resonant frequency of approximately 175 kHz. Unfortunately a technique such as 
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superposition cannot be used to extend the results in Fig. 6.35 to the complicated disk 

forcing by an actual disk.  Figure 6.36 compares the TD – TO FH hysteresis simulation 

results for the two disks A and B described in Fig. 6.18. It is observed that as the FHss 

transitions from 12.65 – 4.65 – 12.65 nm, disk B forces the HDI to transition into 

unstable slider oscillations while the forcing of disk A is too small at these FHss to 

transition the slider into unstable oscillations. This result suggests that wavier and 

rougher disks result in HDI instability at much higher FHss values. By just varying the 

amplitude of the waviness and roughness of disk A we perform another parametric study 

with the results presented in Fig. 6.37, which shows the TD – TO FH hysteresis 

simulations for amplitude multiples of 0.25 to 4 times its original topography.  It is 

observed that as the disk topography amplitude is increased the FH hysteresis remains 

relatively constant at ∆FH ≈ 1 nm, but the unstable response amplitude increases.  

 

6.7 Discussion  

Experimental evidence of low FH slider instabilities is evident from two effects: (1) the 

“snapping” effect from stable to intermittently unstable and further to indefinitely 

unstable proximity and, (2) the presence of the TD – TO FH hysteresis. Adhesion forces 

due to capillary (meniscus) effects appear unlikely to be the cause of these instabilities 

due the short time duration the slider is in contact with the lubricant film. Also, the 

experimental FH hysteresis results showed no dependence on lubricant thickness, for the 

thickness range tested. On the other hand, the time independent intermolecular adhesion 

force was shown to be significant when a slider and disk come within proximity of each 

other. The Lennard-Jones model was used to incorporate additional adhesion and 
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repulsion forces into the CML Static Air Bearing Simulation Code solutions and into a 

simple lumped parameter 1DOF model. The 1DOF model was used for investigating the 

experimentally observed nonlinear dynamics associated with the HDI. It was shown from 

bifurcation plots of the system, that as the FH approaches sub– 6 nm, multiple equilibria 

exist. Also, for lower FH, the intermolecular force overcomes the air bearing load 

capacity and the slider “snaps” down onto the disk. From a static analysis, one would 

expect that the only effect caused by intermolecular forces are at low FH’s would be a 

static spacing loss, and by further decreasing the FH, the intermolecular forces would 

overcome the air bearing load capacity (Fig. 6.10b). However, a much greater effect 

arises when including the intermolecular force that has not been previously addressed – 

that of dynamic instability. It was shown that the possibility of the HDI becoming 

dynamically unstable is restricted to a regime where multiple equilibria exist, which 

extends into FH’s much higher than those resulting from static analysis. The dynamics 

associated with a double-well potential system can be quite complicated when the system 

is forced, as was shown. The chaotic characteristic of the system with a double-well 

potential is what causes the HDI instability due to intermolecular forces. By numerically 

investigating both constant FH and the hysteresis TD – TO process, we were able to 

reproduce the experimental findings of HDI instability and FH hysteresis. Also, several 

qualitative features demonstrated by the experimental and simulation results are in 

agreement, including the effect of adding small DLC pads to decrease the sliders 

instability vibrations (decreases adhesion forces) and the asymmetric slider vibration 

amplitude during the TD – TO process.    
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These results imply that the HDI has a fundamental lower limit of FH at which the slider 

remains stable. This lower limit is a function of not only the disk morphology but also the 

ABS design and slider attitude. For the nominal values studied here it was shown that the 

slider transitions into unstable oscillations at a FHss of 3 nm and 4.6 nm while flying over 

two different disks, A and B, respectively. It was shown by a parametric study that the 

FH at which instability occurs, as well as the severity of the oscillations, change with the 

parameters. The effect of the parameters discussed must be understood to obtain a stable 

HDI design when flying extremely low. Also, it was shown that the power-stiffening 

feature of an air bearing increases the HDI stability. In order of importance, we found 

that the following parameters can be adjusted to obtain maximum HDI stability: (1) the 

intermolecular force should be reduced, (2) the disk morphology and slider should be 

optimized to produce minimum FHM, (3) air bearing stiffness should be increased, and 

(4) air bearing damping should be increased. It was shown for all the parameter values 

studied that HDI stability can always be compromised, however, by considering the 

findings in this chapter, the instability due to intermolecular forces can be minimized.   

 

The analysis presented here is based on adhesion modeled by the Lennard-Jones 

potential. The functional form of the repulsion term in Eq. (6.4) stems from the need for a 

repulsion term as the two mating surfaces contact one another. This approach lacks 

physical basis due to the fact that the two surfaces never actually come into contact. A 

more physical and complicated approach would be to model the repulsion as a contact 

force, similar to what was done in the Derjaguin-Muller-Toporov (DMT) model and the 

extension that Cheng, Etsion and Bogy (CEB) made [46] - [48]. In the DMT and CEB 



 147 

models, the attractive force is similar to Eq. (6.4) but the repulsion force stems from 

physical contact as seen in Fig. 6.38. For a simple spherical asperity impinging on a flat 

surface the forces generated as a function of separation distance are [46], [47]: 
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           ( ) ( ) 23*
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xaRE

x
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xF oDMT −+−=   for oax ≤      (6.11) 

where R is the radius of the spherical asperity, E* is the effective elastic modulus, and ao 

is the intermolecular distance usually taken to be about two angstroms. However, by 

comparing the additional force that is generated by Eq. (6.4) (see Fig. 6.24) and by the 

DMT and CEB models, we find that similar force curves are generated. Therefore, by 

using either the simplistic approach of the analysis in this chapter in modeling the 

repulsion by Eq. (6.4) or by including a complex contact force from the CEB model, we 

would expect to find qualitatively similar dynamic instability results. 

 

Another simplification of the modeling here was to neglect surface roughness effects. It 

can be seen from Eq. (6.1) that the adhesion force scales proportionally with the area 

within proximity. Due to the qualitative nature of the 1DOF HDI model, the roughness 

effect can be discussed only qualitatively. By including the surface roughness of the 

slider and disk, we would expect the adhesion force to be effectively decreased. This 

effect is covered in the parametric study of scaling the intermolecular force. Increasing 

roughness decreases the intermolecular force, hence, leads to an increase in HDI stability. 

However, in order to achieve a non-contact 3.5 nm FH HDI, the slider and disk surfaces 

must be extremely smooth.  
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6.8 Conclusion 

Experimentally it is observed that as a slider flies within proximity of the disk HDI 

dynamic stability is lost. Additional forces due to capillary and intermolecular adhesion 

were considered. Due to the kinetic formation of a meniscus and the experimental results 

presented, we concluded that meniscus forces need not be considered in the dynamic 

modeling of the HDI. A nonlinear dynamic analysis of a modeled HDI incorporating 

intermolecular forces revealed a new kind of dynamics that cannot be captured by static 

analysis. By analyzing the systems equilibria and stability, it was found that multiple 

equilibria exist in the sub – 6 nm FH regime associated with a double-well potential. 

Within this regime the sliders motion can be stable or chaotically unstable when it is 

externally forced by a disk topography. From the analytical and numerical analysis 

presented here, the experimentally measured FH hysteresis, the intermittent slider 

instability and the abrupt transition between stable and unstable proximity can be 

explained. A parametric study was used to show how the variables affect HDI stability. 

Also, the effect of the power-hardening air bearing stiffness was shown to be beneficial 

in increasing HDI stability. By optimizing the parameters such as the air bearing design 

and the disk morphology, the stability of the HDI can be improved. However, for 

practical values of the parameters, it is found that instability is likely to occur when flying 

below 6 nm. From these results, we are forced to conclude that there may be a 

fundamental lower FH limit for a given slider – disk combination, below which the slider 

would not be able to fly due to HDI dynamic instability caused by intermolecular 

adhesion forces.  
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Parameter Nominal Value Parameter Nominal Value

β 244.1 [N/m] B' 2.7×10-88 [N·m9]

α -0.48 m 1.6158×10-6 [kg]

A' 1.8×10-30 [N·m3] c 0.08 [N·s/m]

Table 6.1. Nominal values of constants used. 
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Fig. 6.1. (a) Time trace of the stable, intermittently unstable, and indefinitely unstable 
slider motion measured by LDV. (b) Measurement of the FH hysteresis as the FH is 
lowered and increased by changing the disk RPM.  
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Fig. 6.2. Air bearing surface designs of four different pico size sub-ambient sliders. 
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Fig. 6.3. Touchdown, takeoff, and FH hysteresis as a function of lubricant thickness for 
slider 1. 
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Fig. 6.4. Touchdown, takeoff, and FH hysteresis as a function of lubricant thickness for 
slider 2. 
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Fig. 6.5. Touchdown, takeoff, and FH hysteresis as a function of lubricant thickness for 
slider 3. 
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Fig. 6.6. Touchdown, takeoff, and FH hysteresis as a function of lubricant thickness for 
slider 4. 

 

Fig. 6.7. Typical time traces of the RPM and LDV RMS for sliders (a) 1- 3 and slider (b) 
4. 
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Where :

F s:  Suspension force

F d :  Drag force

F a b :  Air  bearing force

F f:  Friction force

F c:  Contact  force

M s :  Suspension moment

Fs

Fc

Fa b

F d

Ms

Ff

 

Fig. 6.8. Free-body diagram of the air bearing – slider model.  
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Fig. 6.9. Intermolecular adhesion force as a function of separation distance for two 
parallel flat surfaces. 
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Fig. 6.10. (a) Intermolecular adhesion force modeled by the Lennard-Jones potential and 
(b) the resultant force acting on the air bearing as functions of the minimum FH. 
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Fig. 6.11. Schematic of the 1DOF nonlinear model.  
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Fig. 6.12. Potential energy curves of the air bearing, Lennard-Jones and the total system 
at a FHss of 7.75 nm. 
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Fig. 6.13. Total system potential energy curves at a FHss of 7.75, 5.75, 4.75, and 1.25 nm. 
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Fig. 6.14. Bifurcation plot showing FHeq as a function of FHss. ( – ) stable, and ( - - ) 
unstable. 
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Fig. 6.15. Unforced TD – TO simulation showing the FH hysteresis is bound by the 
multiple equilibria regime.  
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Fig. 6.16. (a) Sketch of the energy surface in state-space and (b) the trajectories projected 
onto the state-space plane for the unforced, undamped system.  
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Fig. 6.17. State-space trajectories of the unforced system showing sensitivity to initial 
conditions. 
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Fig. 6.18. (a) Topography of disk A and (b) its frequency content. (c) Topography of disk 
B and (d) its frequency content.  
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Fig. 6.19. Forced TD –TO simulation showing the (a) disk, FHss and FHeq and (b) the 
sliders velocity as functions of time. 
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Fig 6.20. Forced constant FHss simulation showing the (a) disk and sliders displacement 
and (b) the sliders velocity as functions of time. 

(a) 

(b) 

(a) 

(b) 



 162 

 

-2

0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

0 0.5 1 1.5

T i m e  [ m s ]

D
is

p
. 

[n
m

]

Disk 

Slider 

V e l o c i t y  w / o  F v d w  [ m m / s ]

-15

-10

-5

0

5

10

15

0 0 . 5 1 1.5

T i m e  [ m s ]

V
e

lo
c

it
y

 [
m

m
/s

]

 

Fig. 6.21. Forced constant FHss simulation without including the intermolecular adhesion 
force showing the (a) disk and the sliders displacement and (b) the sliders velocity as 
functions of time. 
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Fig. 6.22. The state-space trajectories for the forced system showing the different 
oscillation modes. 
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Fig. 6.23. The state-space trajectories for the forced system showing the switching 
between all oscillation modes randomly or chaotically. 
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Fig. 6.24. Intermolecular adhesion forces used in the parametric study. 
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Fig. 6.25. Bifurcation plots for intermolecular adhesion forces equal to (a) FvdW*0.25, (b) 
FvdW*0.5, (c) FvdW*1, and (d) FvdW*2. ( – ) stable, and ( - - ) unstable. 
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Fig. 6.26. Constant FHss simulations for intermolecular adhesion forces equal to (a) 
FvdW*0.25, (b) FvdW*0.5, (c) FvdW*1, and (d) FvdW*2. 
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Fig. 6.27. FH hysteresis as a function of intermolecular adhesion force magnitude. 
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Fig. 6.28. Intermolecular adhesion force magnitude as a function of minimum spacing for 
(a) pico and (b) femto form-factors for two different ABS designs and two different pitch 
attitudes.  
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Fig. 6.29. Bifurcation plots for the nonlinear air bearing stiffness equal to (a) k*0.25, (b) 
k*4. ( – ) stable, and ( - - ) unstable. 
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Fig. 6.30. Constant FHss simulations for the nonlinear air bearing stiffness equal to (a) 
k*0.25, (b) k*4. 
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Fig. 6.31. FH hysteresis as a function of the nonlinear air bearing stiffness. 
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Fig. 6.32. Bifurcation plots for the linear air bearing stiffness equal to (a) ko, (b) ko*2 and 
(c) ko*4. ( – ) stable, and ( - - ) unstable. 
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Fig. 6.33. Constant FHss simulations for air bearing damping equal to (a) c*0.5, (b) c, and 
(c) c*2. 
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Fig. 6.34. FH hysteresis as a function of air bearing damping. 
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Fig. 6.35. Stable - unstable boundary for harmonic disk excitation. 
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Fig. 6.36. TD-TO simulations forced by (a) disk A and (b) disk B. 
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Fig. 6.37. TD – TO simulations by forcing the slider by disk A multiplied by: (a) 0.25, (b) 
0.5, (c) 1, and (d) 1.75.   
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Fig. 6.38. Additional force generated by including the DMT model.  
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CHAPTER 7 
 

SUMMARY AND CONCLUSIONS 
 

 
Several technological challenges still remain in the pursuit of a magnetic recording areal 

density of 1 Tbit/in2. One of the important challenges is obtaining a reliable HDI that is 

tribologically and magnetically robust with a FH of only 3.5 nm. At such an ultra-low 

spacing, several new phenomena at the HDI are either not currently considered or simply 

unknown. In achieving 1 Tbit/in2 it is important to understand these phenomena as 

spacing is decreased from sub- 10 nm to sub- 5 nm. One of the concerns is how the new 

phenomena at the HDI affect the dynamics of the slider. Achieving and maintaining 

slider dynamic stability and tolerable spacing modulation (FHM) is a crucial aspect in 

achieving a working interface. The understanding of the new phenomena of ultra-low 

flying sliders can be applied to study their effects on the air bearing slider dynamics and 

stability. This understanding will be an integral part of realizing a HDI for 1 Tbit/in2.   

 

In this dissertation, the research focus is on the understanding of slider dynamics and 

FHM for ultra-low spacing. This dissertation is broken into two distinct sections. The 

first section considers a flying interface and studies the effects of new phenomena on 

slider dynamics and FHM. The second section is focused on stability transitions as the 

FH is lowered in order to achieve greater areal densities.  

 

In Chapter 2 a new measurement system was briefly introduced to measure the slider’s 

displacement and the disk’s morphology directly under the slider with sub- nm accuracy. 
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This system was then used to measure the response of a sub- 10 nm FH slider flying over 

various disks. It was found that over the bandwidth of interest from 10 kHz to 2 MHz the 

slider’s response while flying in steady-proximity was mostly caused by repeatable 

motions associated with the disk morphology. Using the measured disk topographies we 

obtained a direct comparison between experiment and simulation that showed excellent 

correlation. The FHM was analyzed using the experiments and simulations in the time 

and frequency domains. Three distinct frequency bandwidths were used to analyze the 

effect of disk morphology on FHM. Band I: 10 kHz < f < 100 kHz was the band of the 

geometric FHM. The geometric FHM amplitude for the particular system studied was on 

the same order as the disk morphology, which can be the largest contributor to FHM. The 

FHM in frequency Band II: 100 kHz < f < 500 kHz was influenced by the dynamics of 

the air bearing. If the disk morphology amplitude in Band II is low enough excitation of 

the air bearing does not contribute to the FHM due to the disk morphology. The FHM in 

frequency Band III: 500 kHz < f < 2 MHz was so low that it could be neglected compared 

to Bands I and II. It is obvious that a single number characterization of roughness or 

waviness is not sufficient to determine the quality of a disk with respect to FHM. We 

have shown that, for the particular slider used with disk C, the FHM amplitude is on the 

order of the disk morphology. However, optimization can be achieved with both the ABS 

design and the disk morphology to obtain an even lower FHM. A case study measuring 

FHM of 10 different disks manufactured for sub- 20 nm interfaces was carried out 

revealing that a majority of the disks exhibited excessive FHM. Also, with the correlation 

realized here between experiment and simulation, simulations can now be used as a 
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design tool. New ABS designs can be modeled and simulated for FHM due to disk 

morphology prior to manufacturing. 

 

From Chapter 2, it was found that even for a well behaved HDI, the FHM is on the same 

order as the disk morphology. Since the amplitude of the disk morphology exponentially 

decays as frequency increases, the geometric FHM becomes the largest contributor to 

FHM. In Chapter 3 we extensively studied the cause of the geometric FHM with pico and 

femto form-factor designs.  

 

The expectation was that the femto slider should have less FHM than the pico slider, 

because it has long been known that for wavelengths somewhat larger than the slider 

length, the FHM is proportional to the square of the length of the slider. It was found that 

this was indeed the case for wavelengths longer than the slider, but when the wavelength 

was reduced to about the slider’s length the FHM of the femto slider was much greater 

than that of the pico slider. After examining the characteristics of the sliders it was found 

that the primary reason for the large FHM of the femto slider was its low pitch, which 

caused its pressure support points to be at the trailing edges of the side rails, about 0.15 

mm forward of the transducer. It was also observed that the large FHM results from a 

phase shift between the slider’s response and the disk waviness, which is itself a result of 

the low pitch and forward pressure points. The phenomenon occurred for both the femto 

slider and the pico slider. 
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In comparing redesigned pico and femto sliders with the same target FH and comparable 

pitch, we showed that the pico slider has roughly twice the FHM in the 6 mm to 1.5 mm 

waviness range. However, for waviness between 1.5 mm to 0.156 mm both the pico and 

femto sliders have similar high levels of FHM due to their similarities in ABS designs 

(i.e. pressure distribution). We concluded that a femto design has lower FHM due to disk 

waviness for wavelengths greater than 1.5 mm. However, for waviness wavelengths 

below 1.5 mm and above the dynamic resonant modes of the air bearing, FHM is not 

primarily a function of the sliders overall length but is more a function of sliders’ attitude 

and the ABS design. It is possible to predict FHM due to this geometric effect by 

considering only the disk morphology. A new femto slider design was introduced for 

minimizing the geometric FHM with the findings in this chapter taken into account. 

Results showed an 83% decrease in FHM when compared to the original femto slider 

design. Therefore, these results can be used in designing better ABS’s and disks for ultra-

low FH sliders. In order to decrease FHM due to disk waviness for wavelengths below 

1.5 mm, attention needs to be focused on slider attitude, ABS design, and disk 

morphology. 

 

In Chapter 3, results were presented for both pico and femto sliders, however, the focus 

was on understanding the cause and minimizing geometric FHM. In Chapter 4 we 

performed a direct comparison of the performance of air bearing slider form-factors, 

namely femto and pico size sliders. We found that the smaller form-factor exhibited an 

overall enhancement in performance when the ABS was properly designed. A beneficial 

increase in damping ratios and a detrimental decrease in modal stiffnesses was observed 
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when simply scaling the form-factor from pico to femto. However, it was seen that if the 

ABS is designed to retain a larger percentage of its bearing load capacity and maintain 

high peak pressure(s), the stiffness is not compromised dramatically by scaling down the 

form-factor. Also, a large number of transverse pressure gradients are extremely effective 

in increasing damping, and they further increase damping when the form-factor is scaled 

from pico to femto.  

 

It was previously believed that geometric FHM was solely caused by the form-factor and 

was proportional to the square of the slider body length. However, we found that the 

FHM due to geometry is composed of the superposition of two effects dependent on the 

overall length of the slider for long disk waviness wavelengths and dependent on the 

ABS design for shorter disk waviness wavelengths. For long waviness wavelengths, 

FHM was shown to be dependent on the sliders body length: proportional to L2.6 and L4 

for ABS I and ABS II, respectively. For shorter waviness wavelengths, FHM was shown 

to be dependent on the ABS design and a phase shift between the slider’s response at the 

transducer and the disk as well as an amplitude change in the slider’s displacement. 

These two effects are demarked by a transition disk waviness wavelength of 

approximately 3 mm. By comparing femto to pico form-factors, it is seen that the femto 

exhibited lower FHM for waviness wavelengths greater than the slider’s body length, 

however, it demonstrated similar levels of FHM for waviness wavelengths less than the 

slider’s body length. By cross comparing ABS designs, it was found that significant 

improvements in FHM performance can also be attained by changing the ABS design and 

not decreasing the form factor.  Simulations were performed using an actual measured 
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disk topography which showed a decrease of 22 % to 32 % in FHM by scaling down the 

form-factor from pico to femto. However, by cross-comparing ABS designs, we found 

that ABS II exhibited much less FHM even in comparing ABS II in the pico form-factor 

to ABS I in the femto form-factor. It is concluded that by simply scaling down the form-

factor, enhanced performance is not always attained. However if special care is taken in 

the design of the ABS in order to maintain stiffness, increase damping and decrease 

geometric FHM, major improvements can be realized.  Ultimately, to achieve the greatest 

performance, a smaller form-factor should be used with special care taken in the ABS 

design.   

 

As the FH is lowered, a slider’s behavior as described above changes drastically. What 

has been described in Chapters 2 – 4 are the dynamics associated with steady-proximity 

or a flying slider. However, once the spacing becomes extremely small, unsteady-

proximity behavior occurs that cannot be describe by the analysis thus far. In Chapter 5, 

the nature of the unsteady-proximity behavior was studied. The findings presented 

suggest that the non-linearities of the air bearing slider system cannot be ignored for sub-

5 nm FH sliders and must be considered when modeling slider-disk interface dynamics. 

When a slider is within proximity of a disk the complexities of the slider’s response can 

be explained by the non-stationary response, and FFT analysis becomes an inadequate 

means for frequency domain analysis. A method such as JTFA must be used to accurately 

analyze the non-linear, non-stationary response of a slider when it is in the state of 

unsteady-proximity. Contact between the slider and disk can cause complexities of the 

slider’s response due to the additional boundary conditions when viewed in the frequency 
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domain, however, it is seen that contact is not a necessary condition for producing this 

phenomenon. 

 

Experimentally it is observed that as a slider flies within proximity of the disk, HDI 

dynamic stability is lost and the interface becomes unsteady. The nature of this response 

under unsteady-proximity was studied in Chapter 5, however the cause was not addressed 

there. In Chapter 6 we considered additional interfacial forces due to the close proximity 

of the slider and disk. 

 

Additional forces due to capillary and intermolecular adhesion were considered. Due to 

the kinetic formation of a meniscus and the experimental results presented, we concluded 

that meniscus forces need not be considered in the dynamic modeling of the HDI. A 

nonlinear dynamic analysis of a modeled HDI incorporating intermolecular forces 

revealed a new kind of dynamics that cannot be captured by static analysis. By analyzing 

the systems equilibria and stability it was found that multiple equilibria exist in the sub – 

6 nm FH regime associated with a double-well potential. Within this regime the slider’s 

motion can be stable or chaotically unstable when it is externally forced by a disk 

topography. From the analytical and numerical analysis presented, the experimentally 

measured FH hysteresis, the intermittent slider instability and the abrupt transition 

between stable and unstable proximity can be explained. A parametric study was used to 

show how the variables affect HDI stability. Also, the effect of the power-hardening air 

bearing stiffness was shown to be beneficial in increasing HDI stability. By optimizing 

the parameters such as the air bearing design and the disk morphology we can improve 
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the stability of the HDI. However, for practical values of the parameters, it is found that 

instability is likely to occur when flying below 6 nm. From these results, we are forced to 

conclude that there may be a fundamental lower FH limit for a give slider – disk 

combination, below which the slider would not be able to fly with a controlled FH due to 

HDI dynamic instability caused by intermolecular adhesion forces. 

 

This dissertation describes the dynamics associated with ultra-low flying sliders over a 

broad range from steady to unsteady proximity. Based on the research presented, we 

conclude that achieving the spacing requirement for 1 Tbit/in2 will not be a simple 

matter. The topics covered here are by no means the only phenomena associated with the 

HDI, however, these findings can be directly applied to increase the feasibility, stability, 

and reliability of the HDI in future hard disk drives. 
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