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Abstract
Head-Disk Interface Dynamics of Ultra-Low Flying Air Bearing Sliders
for Hard-Disk Drive Applications
by
Brian Hayes Thornton
Doctor of Philosophy in Engineering - Mechanical Engineering
University of California, Berkeley

Professor David B. Bogy, Chair

The dynamics associated with the head-disk interface (HDI) in hard-disk drives are
studied for ultra-high magnetic recording areal dengties. Slider dynamics and flying
height modulation (FHM) are studied both experimentally and by simulation. The
experimental results are explained by modeling and simulation to understand and control

FHM through design guidelines.

For a steady-proximity flying interface (occasiona contacts between the dider and disk)
the FHM is composed primarily of repeatable notions induced by the disk morphology.
This FHM consists of three frequency regimes, which can be characterized as (1)
geometric, (2) dynamic, and (3) zero response FHM. The geometric FHM is the major
contributor for certain combinations of dliders and disks, and it is studied in detal in

order to understand its cause and to minimize the effects of this component.

A comparative study of the dynamic performance of diders as a function of form-factor

(size) revealed counter intuitive results. It was previoudy believed that as the form-factor



decreased, the FHM and dynamic performance would improve. However, in this work we
found that this conventional understanding is not always the case. As the form-factor
decreases, the air bearing stiffness usually decreases and the geometric FHM is not

necessarily minimized.

As the dider trangitions from steady-proximity to unsteady-proximity, a certain nonlinear
characteristic of the ar bearing dider system becomes more pronounced. This
nonlinearity is studied using joint-time frequency analysis in which a highly non-
stationary response causes unusual complexities in understanding the system’s behavior
in the frequency domain. Also, the cause of an observed “snapping” effect from steady-
proximity to unsteady-proximity is explained by incorporating near-contact triggered
adhesion forces between the dider and disk through modeling. The experimenta results
showing this “snapping” effect as well as the presence of an observed flying-height
hysteresis can be explained by inclusion of these adhesion forces. These results suggest
that there is a lower limit of the flying-height below which a dider cannot fly stable. This
lower FH limit may preclude the use of traditional air bearing diders for areal densities
greater than 1 Thit/in? and it is likely to require special designs of the dider’s air bearing

surface to reach 1 Thit/in?.

Professor David B. Bogy
Dissertation Chair
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CHAPTER 1

INTRODUCTION

1.1 Magnetic Recording Hard-Disk Drives

Magnetic recording technology has evolved to become the most common means of
storing information. In this digital world, the endless appetite for storage capacity has
driven magnetic recording technology over many technical hurdles. This demand for
greater capacity has caused the magnetic area recording density versus time to follow a
schedule known in the integrated circuit world as Moore's Law, which states that the
number of transistors (or magnetic bits for magnetic recording) per unit area will double
annually. In fact, magnetic areal densities have increased at a rate of greater than 60 %
annualy in the late 90's, thereby exceeding Moore's Law. Along with the magnetic areal
density, the data transfer rate has also increased dramatically. This rapid increase in
densities and data transfer rates has been enabled by several technological advances in

magnetics, mechanics, tribology, and severa other areas of research.

The fundamental basis of magnetic recording hard-disk drives has changed very little
since its introduction in 1957 by IBM. However, since 1957 the drives physica size has
gone from that of a room to something that is handheld, and the cost has gone from
$35,000/Mbit to under $0.01/Mbit. Figure 1.1 shows a picture of a modern hard-disk
drive with its cover off exposing the components. The information is written onto co-
rotating disks by a read/write transducer that is located at the end of a suspension
mounted on a rotary actuator. The combination of the spinning disks and the rotary voice

coil motor actuator alows the read/write transducers to rapidly scan the entire surface of



the disk as seen in Fig. 1.2. In order for the magnetic areal density to increase, the area of
the magnetic bit has to shrink. The areal density is a product of the track density and the
linear bit dengity as shown in Fig. 1.3. Data is written on circular tracks at fixed disk radii
in the form of smal domains (bits) of like polarized magnetic grains. Increasing the
magnetic areal density requires packing the bits closer together in both the
circumferential and radia directions, and a fundamental “paramagnetic’ limit at which
the bits will demagnetized their neighbors is expected to be reached soon for

conventiond longitudinal recording.

A density of 100 Ghit/in® has already been demonstrated, and the quest for 1 Thit/in? is
now the goal of academic and industry researchers [4]. Organizations such as the
Information Storage Industry Consortium (INSIC) conducts research in media and heads
(magnetics), signal processing, servo, and tribology with al groups having a common

godl of reaching 1 Thit/in? [5].

1.2 Mechanics of the head-disk interface

In striving for the densities of 1 Thit/in?, we are expecting severe chalenges in designing
the interface between the read/write transducer and the magnetic media disk or the head-
disk interface (HDI). According to the Wallace spacing loss eguation, the magnetic signal

decreases exponentially as the distance increases between the magnetic media and the
transducer [6]. Thus, the lowest signal-to-noise ratio (SNR) would be obtained at a
spacing of zero. However, to achieve a tribologically reliable interface, the spacing has to

be greater than zero. Over the years the way to achieve a reliable interface, both



tribologically and magnetically, has been to control the transducer-disk spacing by use of
an air bearing dider resulting in a “flying” transducer. For a given magnetic areal density,
a corresponding spacing is found from modeling and experimentation to be a complex
function of several physica parameters and as the areal densties increase, the
corresponding head to media spacing must decrease [7]. For areal densities of 3, 35.3,
and 130 Gbit/in®, the corresponding physical spacing has been 38, 10, and 5 nm,
respectively [8]. It is projected that in order to achieve 1 Thit/in?, a magnetic spacing of
6.5 nm will be required [7]. Allocated to this magnetic spacing budget are the thicknesses
of the protective overcoats on the disk and transducer surfaces (1 nm each) and 1 nm of
lubricant over the disk surface. The protective overcoats are necessary to provide wear
resistance and more importantly corrosion protection of the magnetic media and
transducer. The lubrication layer also provides wear resistance and durability. These
protective overcoats and the lubricant have been crucia in the development of a reliable
HDI, however, for the 1 Thit/in? system this leaves only 3.5 nm of physical spacing or

flying-height (FH) between the transducer and the lubricant/disk surface.

The motion of the transducer relative to the disk surface is composed of two components;
in-plane and out-of-plane or off-track vibrations and flying-height modulation (FHM),
respectively. For large off-track motions, the transducer can read/write the wrong data
thereby creating errors. Also, for large FHM, the magnetic readback signa fluctuates and
can result in a “write or read skip” due to a loss of signal also causing errors. Both of

these fluctuations must been controlled: off-track to within +12 % of the track width and

FHM to within +£10%, corresponding to several nanometers and several angstroms,



respectively. Off-track motion has been controlled by single or dua stage actuator(s)
while FH and FHM has been controlled passively. With these tolerances becoming
tighter in both the off-track and FHM directions and with the excitation levels increasing
due to the disk rotation speed increasing to 20,000 RPM, the control of the HDI

fluctuations is becoming more difficult and more important.

1.3 Air-bearing diders

The FH has been controlled passively through self-acting air bearing diders such as the
example shown in Fig. 1.4. The air bearing dider body size has changed over the years
from the full size dider (4.1~ 3.2 " 0.85 mm) to the current “pico” diders (1.25" 1.00 "
0.3 mm) and the experimental “femto” diders (0.85 ~ 0.70 © 0.23 mm ). The air bearing
surface (ABYS) is a patterned surface that comes within proximity of the disk surface. A
thin film magnetic transducer is deposited onto the trailing edge of the dider body. The
relative motion between the “stationary” dlider mounted on the end of the suspension and
the rotating disk generates a thin ar film bearing (gas lubrication). The dider body is
supported by the gimbal and suspension that is swaged onto the actuator arm. The
suspension acts as a flexible support in the out-of-plane direction, which alows the dider
to follow the disk runout and distortions. The gimbal acts as a flexible support of the
dider to the suspension and the dimple acts as a point load on the dlider. The suspension
supplies a load (“gram-load”) through the dimple to the dlider, which is counter balanced
by the air bearing pressure force. Static equilibrium is obtained when the forces and
moments acting on the dider from the suspension and gimbal balance those generated by

the thin air film bearing. For the ABS shown in Fig. 1.4, the equilibrium pressure field



generated by the reative air flow is obtained numerically by the generalized Reynolds
equation. The “flying” dider body has similar degrees-of-freedom as an airplane
vertical, pitch and roll. The flying attitude and characteristics of the dider are complex
functions of many parameters including the gram-load, shape of the ABS, and relative
velocity. The shape and design of the ABS has changed drastically over the years from
simple mechanically machined positive pressure taper-flat designs to complicated plasma
etched sub-ambient pressure designs as shown in Fig. 1.5. As seen in Fig. 1.1, the pivot
point of the actuator and the spinning axis of the disks are fixed. Therefore, as the dider
is actuated from the inner diameter (ID) to the outer diameter (OD) of the disk, the
relative velocity and the relative air flow direction (skew angle) changes. These changes

cause the dider’ s flying characteristics to vary as the dider seeks from ID to OD.

The most important criteria for ABS dider design is the static performance. The static
performance criteria consist of constant FH at the transducer from ID to OD considering
manufacturing tolerances and other factors such as altitude insengtivity. It is aso
desirable for the transducer FH to be coincident with the minimum FH, but unfortunately,
the transducer FH is generally a couple of nanometers higher than the minimum FH due
to the flying attitude of the dider and the ABS design. A static optimization of the ABS
will yield near constant FH from ID to OD, but contains no information on the dynamic

performance of the HDI.

In the past, a purely static design of the ABS was sufficient when flying at spacings

greater than 30 nm, however, when flying in the sub- 10 nm regime, the dynamics must



be taken more into account. Even though the disk morphologies have become extremely
smooth for “super-smooth” media (< 0.5 nm RMS), for low flying diders, the
morphology becomes comparable to the FH. This is analogous to an airplane flying over
the desert floor at 20 ft opposed to 2 ft features that appear smooth at 20 ft will appear as
large bumps and/or obstacles at 2 ft. With smaller alowable perturbations from steady-
state, higher level of excitations, and additional forces that are no longer negligible
subjected to the dider, the understanding of the HDI dynamics is becoming a crucid

aspect in developing ardiable HDI.

1.4 Objective

The objective of this research is to investigate the out-of-plane (FHM) dynamics and the
HDI stability associated with ultralow flying air bearing diders. Emphasis is placed on
understanding and controlling HDI dynamics with design guidelines to achieve stable and
reliable ultra-low FH’'s. Both experimental and numerical modeling was used to study

and verify the findings and results presented in this dissertation.

1.5 Dissertation outline

This dissertation is divided into seven chapters. The first chapter is an introduction to
magnetic hard-disk drive technology, the HDI, and the motivation for the research
presented. The technicad material is categorized into two parts associated with the
trangtion as FH is lowered to achieve higher magnetic areal densities. The first part,
consisting of chapters 2 - 4, is concerned with the dynamics associated with a purely

“flying” dider interface without contact. The second part, chapters 5 and 6, is concerned



with the transition between a purely “flying” interface to a “partia-contact” or a “stable”
to “unstable’ interface. These two categories are common of what occurs as the FH is
lowered from sub- 10 nm to sub- 5 nm, or in moving from 100 Ghit/in® to 1 Th/in?

applications, respectively.

Chapter 2 presents the development of an experimental apparatus and procedure to
measure sub- nm FHM and verification of the system by simulation. Also, a case study is
included to show the effect of disk morphology on FHM. Chapter 3 presents an
investigation of the effect of ABS design and flying attitude on the geometric FHM.
Chapter 4 contains a comparative study of the dynamic performance as a function of
dider form-factor. Chapter 5 is concerned with an investigation of the nonlinear effect of
the HDI as the dider transitions from steady-proximity to unsteady-proximity. Chapter 6
presents an investigation of the HDI instability caused by adhesion forces between the

dider and disk. Finaly, chapter 7 presents the conclusions of this dissertation.
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Fig. 1.5. (left) Simple taper-flat positive pressure ABS design and (right) complex sub-
ambient pressure ABS design.
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CHAPTER 2

THE EFFECTS OF DISK MORPHOLOGY ON FLYING-HEIGHT
MODULATION: EXPERIMENT AND SMULATION

Abstract
The effect of morphology on flying height modulation (FHM) of a sub-10 nm flying air
bearing dider was studied for three different disks by experiment and simulation. The
experimental measurement methods are discussed and a new single beam laser Doppler
vibrometer (LDV) measurement method, which yielded the highest resolution with a 2
nm beam spot size, was introduced. Analysis was performed in three different frequency
bandwidths — a geometric FHM from 10 kHz to 100 kHz, a dynamically excited FHM
from 100 kHz to 500 kHz and the third band, being negligible compared to the other two
bands, above 500 kHz. Transfer function analysis was carried out to investigate the FHM
in the lowest frequency band. FHM in the first band was shown to be caused primarily by
a phase shift between the diders response and the disks' morphology and secondarily by
decreasing dider motion with decreasing morphology wavelength, which correlates well
with the research presented in Chapter 3. For two of the disks investigated, the FHM due
to the disks morphology showed air bearing excitation that resulted in an intolerable
level of FHM. However, for one of the disks studied, the FHM was as low as the disk
morphology for wavelengths of 2 mm and less, which was within tolerable limits. It is
concluded that when designing a disk for low FHM, it is not sufficient to characterize the
quality of a disk by a single number such as roughness or waviness. Proper design and
optimization of both the disk and air bearing dider results in FHM that is lower than the

disks morphology.
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2.1 Introduction

With flying-heights (FH) decreasing as magnetic aread density increases a better
understanding of the dynamics at the head-disk interface (HDI) is required. There are
numerous parameters, the effects of some of which are still unknown, that affect the
tribological and magnetic performance at the HDI. The condition of “steady-proximity”
flying, or flying without contact, over an actual magnetic disk at sub-10 nm FH is not yet
completely understood. But understanding the dynamics of the dlider due to the disk
morphology is required for the design of a stable HDI. The physical spacing requirement
for 100 Gbit/in® data density is only 6 nm a the transducer location [11]-[12]. Also,
reliable reading and writing of magnetic data requires that the transducer location on the
dider fluctuate by no more than £10 % of the nominal FH, which means +0.6 nm [12].
An accurate method for measuring FHM due to repeatable events such as disk
morphology and other motions of the disk was proposed previously by Zeng, Thornton,

Bogy, and Bhatia [9].

We applied the LDV to measure FHM in a manner similar to that proposed by Zeng et al.
with a dlight modification [9]. The modification entailed a single or absolute
measurement of the disk and dlider with a smaller, 2 mm, beam diameter in order to
improve spatial resolution. It was found that not only was a higher resolution obtained,
but also we were better able to directly compare experimental and simulation results. In
this way we investigated three different “super-smooth” disks with an air bearing dider
that was designed for 100 Ghit/in? applications. By keeping the other experimental

conditions constant, we compared the FHM of the three disks experimentally and by
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simulation. Excellent agreement between the experimental and simulation results was
found. Analysis of the data was broken into three distinct frequency bandwidths: Band I:
10 kHz to 100 kHz, Band I1: 100 kHz to 500 kHz, and Band Il1: greater than 500 kHz. It
was shown that the FHM amplitude in Band |, which was found to be the geometric
FHM, was on the same order as the disk morphology. The FHM in Band Il was found to
be dominated by the dynamics of the air bearing dider. It was shown that for a certain
level of disk morphology, the air bearing was excited to an intolerable level of FHM. In
Band I11, it was found that the dider had essentialy zero absolute motion as the disk
morphology passed underneath. However, the FHM in Band Ill could be neglected as
compared to that in Bands | and 11 due to the low amplitude of the disk roughness at such
high frequencies. From this study, we conclude that many factors need to be taken into
consideration when designing a “steady” flying dider and a reliable HDI. With proper
design of both the air bearing surface (ABS) and the disk, small fluctuations in the FH
can be obtained yielding a more reliable HDI a sub-10 nm spacing, and these

fluctuations can be held within 10 %.

2.2 Experimental setup

The experimental results shown in this chapter were obtained using a modification of the
experimental setup explained in detail by Zeng et al. [9]. A Thét Technologies platform
with the flyability option was the basic test stand. We used a Polytec LDV with a
highpass filter set at 20 kHz for triggering at a small radia scratch on the outer diameter
of the disk. This ensures accurate triggering for averaging the measurement. A Polytec

512 LDV with a highpass filter at 5kHz was used for the actual measurement of the disk
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and dider motion. Data acquisition was accomplished using a LeCroy oscilloscope
sampled at 5 MHz and averaged 500 times. All data post-processing was carried out
using Matlab. This genera testing platform has shown at least 95 % repeatability for

measurements on the nanometer scale [9].

FHM consists of two components — the repeatable and non-repeatable fluctuations. The
repeatable fluctuations can be caused by the disk morphology and other repeatable
events. The non-repeatable fluctuations can be caused by aerodynamically excited disk
flutter and suspension vibrations. However, if an extremely low noise LDV sgnd is
obtained measuring the dider flying in steady-proximity (i.e., no contact), the diders
motion is repeatable as shown in Fig. 2.1 in the bandwidth of 10 kHz — 2 MHz. The high
amplitude, low frequency components are almost identical after averaging 500 times with
the only difference in the low amplitude, high frequency noise. Therefore, in this

bandwidth, the sliders motion due to the disks morphology is amost all repeatable.

2.2.1 Single LDV beam measurement technique

Instead of wing a LDV differential beam measurement as in Zeng et al. [9], we used a
single LDV beam for absolute motion measurement with a beam spot size of
approximately 2 mm. However, this can only be accomplished using the velocity output
mode of the LDV. The necessary dynamic resolution would be lost if the displacement

mode of the LDV were utilized.
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As a disk spins, its morphology, clamping distortions, warpage, and other repeatable
motions, as viewed by a stationary dlider, can be decomposed into an infinite sum of

sinusoids having different amplitudes, A;, frequencies, wi, and phases, fi:
3
d(t) =g Asin(wt +f;) (2.1)
i=1
The velocity, v(t) of this displacement is:

W(t)= & Aw costat +,) 2.2)

i=1
Displacement can be recovered by numerical integration of the velocity. Generaly, for
“super-smooth” disks, the amplitudes of the components decay exponentialy as the
frequency increases. If the displacement output mode were used with the LDV, the low
frequency content of the disk morphology would overwhelm the higher frequency
content, yielding low resolution across the bandwidth. The amplitudes of the velocity
components are Aiw; which can be thought of as an exponentially decaying function,
A(w), multiplied by linear increasng w. This helps maintain a higher resolution across

the wide bandwidth of interest.

Several comparisons between differential and single beam measurements and different
beam spot sizes were completed. Beam spot sizes of approximately 20 mm, 10 nm, and 2
mm were used. However, for the differential dual beam measurement, one of the beams
could be no smaller than 20 mm due to the optics arrangement on the tester. For a given
sampling frequency, fs, the spatial resolution of the disk is V/fs, where v is the relative
linear velocity between the dider and the disk. For the test case presented in this chapter

with fs equal to 5 MHz, the spatial resolution was 3.7 nm/sample. If the beam spot size
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were greater than the spatial resolution, the disk morphology resolution would be lost.
Figure 2.2 shows time domain plots of the FHM and Table 2.1 contains peak-to-peak and
3s vaues of the FHM for different measurement methods of the same HDI system.
Differential or dual beam and single beam measurements of the FHM for beam sizes of
10 mm and 2 mm are shown (recall that in the dual beam measurement one beam was 20
mm). The 20 mm beam was the limiting factor of resolution for the dual beam method. It
can be seen that the peak-to-peak and standard deviation values increase dightly as the
beam size decreases. This is due to the ability to capture more high frequency
components or very small wavelength features on the disk surface. By using the single
beam or absolute measurement not only was higher resolution obtained but also a better
understanding could be inferred from the results, as will be seen later in the chapter. This
measurement technique provides the absolute motion of the disk surface under the slider
as well as the absolute motion of the dider. By subtraction of these measurements the

FHM can be obtained.

2.2.2 Effects of disk morphology on FHM

A comparison of three different “super-smooth” disks under the same experimentd
conditions with the same dlider was conducted. Skew angle was set to zero. The linear
velocity of 18.7 m/s was chosen to be 1-2 m/s faster than that associated with the first
signs of contact, determined by the LDV velocity response of the dider, between the
roughest disk and the dider. When the frequency content of the signal contains torsion
and/or bending modes of the dlider body, at 1.25 MHz and 1.65 MHz, respectively, it is

assumed that contact has occurred. Even though the nominal FH of the dider was the
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same for al three disks, the clearances over the high spots and asperities of the disks
were different. The dider under investigation was a pico negative-pressure symmetric

design with a 1.5 gm preload and with the ABS shown in Fig. 2.3.

The transducer FH at the test conditions was approximately 9 nm. The dlider chosen for
the experiment had good agreement in its attitude parameters (FH, pitch and roll)
between measurements on a Phase Metrics Dynamic Flying-Height Tester and smulation
using the Computer Mechanics Laboratory (CML) Air Bearing Design Code. The LDV
beam was positioned on the dlider body adjacent to the transducer to obtain the FHM at
the transducer location for comparison between experiment and simulation. The band of

the digital filter was 10 kHz to 2 MHz.

2.3 Experimental results

The three disks investigated, disks A, B, and C, are labeled in decreasing order of
waviness and roughness. Figure 2.4 shows the frequency content of the disk
morphologies from 10 kHz to 2 MHz plotted in nanometers on log-linear axes. When
investigating FHM due to disk morphology, we must consider the spectral content of the
entire bandwidth. Disks A and B had glass substrates and disk C had an auminum
substrate. As can be seen from Fig. 2.4, the manufacturing processes and substrates can
have an effect on surface characteristics. Figure 2.5 shows the frequency content of the
FHM obtained from the three different disks. By comparing Fig. 2.3 to Fig. 2.4, we
observe that the FHM for disk C appears to be the same as the disk morphology. Also,

comparison of the results for disks A and B shows excitations of the air bearing modes at
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approximately 160 kHz and 320 kHz, which causes large fluctuations.

2.4 Comparison: experiment and simulation

Simulations were performed using the CML Dynamic Air Bearing Simulator. The
measured disk morphologies were used as the input data for the disk surface topographies
for the simulator. This one-dimensiona measurement was extended radially across the
disk surface in the simulation, as a rough approximation of the two-dimensiona
morphology. For this specific case where the ABS is symmetric, the transducer is at the
center of the trailing edge, and the skew is zero degrees, the error from this

approximation is expected to be minimized.

Figure 2.6 shows the experimentally measured disk morphology of disk C that was used
in the simulation. The comparison between the FHM from experiment and simulation for
disk C is shown in Fig. 2.7, where excellent agreement is seen. Similar results were
obtained for the other two disks. A summary of the results for all three disks is shown in
Table 2.2. The percentages shown in Table 2.2 are the peak-to-peak FHM normalized by
the nominal FH, which for this case was 9 nm. Also, shown in Table 2.2 are the 3s
values of the FHM found experimentally, which were close to those values found by
smulation. Excellent correlation of experiment and smulation was found in both the
time and frequency domain comparisons. From Table 2.2, it can be seen that for disk C
the FHM stays within the tolerable range of +10 %, being +5.8 % and +7.35 % for the
experiment and simulation, respectively. However, disks A and B exceed this criteria

markedly being £37 % and +20.2 % for the experimental results, respectively.
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2.5 Discussion

The three disks under investigation have very different morphologies, as seen from Fig.
24. The effect of the morphology on FHM can now be anayzed using both the
experimental and simulation results. We anadyzed the data in three distinct frequency
bandwidths: Band I: 10 kHz < f < 100 kHz, Band II: 100 kHz < f < 500 kHz, and Band
I1I: f > 500 kHz, where f is frequency. The experimentally determined standard deviations
(s) of the disk morphologies and FHM’s are shown in each frequency band for al three
disks in Fig. 2.8. Figure 2.9 presents the ratio of the standard deviation of the FHM to the
standard deviation of the disk morphology, broken into Bands I, I, and 111 for disks A, B,
and C. The ratios in Fig. 2.9 are outputs (FHM) divided be the inputs (disk morphology)

showing the “gain” of the system in the different frequency bands for the three disks.

Band | corresponds to the geometric FHM which is studied extensively in Chapters 3 and
4. Geometric FHM occurs at frequencies below the modal frequencies of the air bearing
dider that are determined by the geometry of the ABS, pressure profile underneath the
ABS and the disk morphology. This is a complicated function and for this particular
ABS, the geometric FHM was on the same order as the disk morphology in Band | as will
be shown in Chapter 3. As seen from Figs. 2.8 and 2.9, this holds true for al three disks

investigated.

Band |1 spans the moda frequencies of the air bearing dider. If we consider the air film

and dider to be a linear system for smal perturbations (which is not true for large
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perturbations) under the condition of “steady” flying, the air bearing moda frequencies
for the ABS under investigation fall within Band Il. So in Band 11, the disk morphologies
excite this dynamical system and cause a resonance type FHM. Two modes are excited
when the dider flies over disks A and B. The differences in the frequency peaks in Fig.
2.5 for disks A and B have to do with the differences in the clearance between the disk
and the dider. For disk A the clearance was less than for disk B, causing a greater air
bearing modal stiffness. These two modes are the first and second pitch modes of the air
bearing. The roll mode does not contribute to FHM at the transducer due to the symmetry
of the ABS and the transducer location. From Figs. 2.5, 2.8, 2.9, and Table 2.2 it is
apparent that for disks A and B there was an excessive level of excitation of the air
bearing, causing FHM. However, for disk C, the disk morphology is © low in amplitude
that the ar bearing was not excited, and it actualy shows a FHM that is lower in
amplitude than the disk morphology in Band Il. From Fig. 2.9, the gain of the FHM to the
disk displacement was more than 2 for disks A and B, but it was anly approximately 1 for
disk C. From Fig. 2.4, it can be seen that in Band I, the FHM amplitude for disk C
decreases with frequency much faster than for the other two disks. The results show how
sengitive the FHM is to air bearing excitation. Different air bearing dider designs will

have different threshold values for excitation due to the disk morphology.

Band IlIl covers the high frequency range in which the disk morphology passes
underneath the dider without causing any significant absolute motion. It is also seen from
Figs. 24 and 2.8, that the amplitudes of the disk morphologies in Band Il were

negligible for all three disks, compared to those in Bands | and I1.
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2.5.1 Explanation of band |

Even in HDI's where the air bearing dynamics are not excited (i.e. the case for disk C,
see Fig. 2.8), there may ill be a high level of FHM due to the geometric effect
mentioned earlier. This effect will be explained in detail in the numerica simulation
investigations presented in Chapter 3. As will be shown, the geometric effect is due to a
phase shift between the disk surface topography and the response at the transducer
location on the dider and also a decrease in the absolute motion of the dlider as the
wavelength on the disk decreases. This will be shown numericaly using a sinusoidal
waviness on the disk with various wavelengths but not for an actual disk surface that is
composed of an infinite number of sinusoids over al frequencies, as seen in Eq. (2.1). If
we use transfer function analysis to decompose the ratio of the output (slider motion) to
the input (disk surface motion) into amplitude and phase verses frequency we can
compare the experiment and simulation for the response to an actual disk. We used the
Welch's averaged periodogram numerical method for estimating the transfer function
between the disk and the dider motions with the aid of Matlab. Figures 2.10 and 2.11
show the estimated transfer functions for the experimental and ssimulation results for both
amplitude and phase. Instead of plotting the transfer function verses frequency, f, it was
plotted verses wavelength, | , on the disk: | = v/f. From Fig. 2.11, it will be seen that the
phase relationship of the ratio of dider motion to that of the disk, for both the
experimental and simulation, is similar to what we find in Chapter 3. Smilarly, from Fig.
2.10 it can be sen that the amplitude of the absolute motion of the dlider decreases as the

disk waviness wavelength decreases. Both of these effects combined cause the geometric
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FHM, but the phase shift is the primary cause and the decrease in the dlider vibration

amplitude is a secondary cause [10].

2.5.2 Case study

FHM for 10 different disks designed for sub- 20 nm FH interfaces were measured. These
disks varied in manufacture, substrate, carbon overcoat, lubricant, and other variables,
hence, there morphologies varied substantially. The peak-to-peak and 35 disk topography
values for the 10 disks are shown in Fig. 2.12 in the bandwidth of 10 kHz — 2 MHz,
ranging from “roughest” to “smoothest”. If FHM fluctuations are required to be held to
within £10 % of the FH, > +2 nm of alowable FHM is required. Comparing this criteria
to the peak-to-peak values shown in Fig. 2.12 we see that disks 1 — 6 do not meet this
requirement. If the design FH were 10 nm, only disk 10 would meet the requirement of
FHM less than £10 % of the FH. Also, it is interesting to notice that the FHM is
approximately in one-to-one correlation with the disk topographies; however, this may

not always be the case.

2.6 Summary and conclusion

In this study, we modified an existing experimental method to measure the FHM and
obtained an increase in resolution, more insight into the mechanics, and as a result we
were able to make direct comparisons between experiment and simulation. Different

LDV beam sizes were used and compared, showing that the highest resolution was
obtained with the single beam measurement using the smallest beam size of 2 mm. Slider

vibration measurements taken while flying in “steady-proximity” showed that the
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fluctuations were primarily composed of repeatable motion, hence, they were caused by
the disk morphology. Experiments were conducted to obtain the FHM over three
different disks. Using the measured disk topographies we obtained a direct comparison
between experiment and simulation that showed excellent correlation. The FHM was
analyzed using the experiments and simulations in the time and frequency domains.
Three distinct frequency bandwidths were used to anadyze of the effect of disk
morphology on FHM. Band |: 10 kHz < f < 100 kHz was the band of the geometric FHM.
Additional analysis in this bandwidth using transfer function anaysis correlated the
results obtained here with the findings of Chapter 3. The geometric FHM amplitude for
the particular system studied was on the same order as the disk morphology. However,
depending on the dider ABS design and the disk morphology, this geometric FHM may
be greater or less than the disk morphology [10]. The FHM in frequency Band I1: 100
kHz < f < 500 kHz was influenced by the dynamics of the air bearing. If the disk
morphology amplitude in Band Il is low enough, excitation of the air bearing does not
contribute to the FHM due to the disk morphology. The FHM in frequency Band Il1: 500
kHz < f < 2 MHz was so low that it could be neglected compared to that in Bands | and
[1. It is obvious that a single number characterization of roughness or waviness is not
sufficient to determine the quality of a disk with respect to FHM. We have shown that,
for the particular dider used with disk C, the FHM amplitude is on the order of the disk
morphology. However, optimization can be achieved with both the ABS design and the
disk morphology © obtain an even lower FHM. A case study was carried out measuring
the FHM of 10 different disks manufactured for sub- 20 nm interfaces. The results

showed that a majority of the disks did not meet the requirement due to the disks
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morphology inducing large FHM. Also, with the correlation realized here between
experiment and simulation, simulations can now be used as a design tool. New ABS
designs can be modeled and smulated for FHM due to disk morphology prior to

manufacturing.
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Dual Beam | Dual Beam | Single Beam| Single Beam
(10mm beam | (2mm beam | (10mm beam| (2mm beam
size) size) size) size)
Peak-to-Peak ) =) 2, 1.93 1.93 2.05
FHM [nm]
3s [nm] 0.78 0.82 0.82 0.87

Table 2.1. Peak-to-peak and 3s vaues of FHM for different measurement methods.

Disk A | Disk B [ Disk C

Experimental FHMp-p/FHnom || 74% 40.4% | 11.6%
Simulation FHMp-p/FHnom 60% 38% 14.7%
Experimental 3s [nm] 5.04 2.43 0.81

Table 2.2. Theratio of FHM peak-to-peak to the nominal FH for disks A, B, and C found
experimentally and by smulation. Also, 3s of FHM found experimentally.
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Fig. 2.1. Frequency content of the measured dlider vibration in steady-proximity averaged

1 and 500 times.
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Fig. 2.2. FHM comparison between dual beam and single beam LDV measurements.
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Fig. 2.4. Power spectral density of disks A, B and C morphologies as seen from a
stationary point as the disk rotates.
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Fig. 2.5. Power spectral density of the FHM at the transducer location for disks A, B, and
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Fig. 2.6. Measured disk morphology of disk C used in the simulation.
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Fig. 2.7. Comparison of experiment and simulation of the FHM for disk C.



Disk A:

1.5

. BFHM

S [nm]

(10kHz-
100kHz-
100kHz) ¢ (500kHz-
500kHz)

. 2000kHz)
Disk B:
1.2

Opisk

HruMm

0.8 1
Snm] 0.61
0.4 1
0.2

100kHz-
100kHz) ( (500kHz-
500kHz)

Dlg( C 2000kHz)

1.2

Opisk
BMrFHM

0.8 1
S [nm] 061
0.4
0.2-

(10kHz-

(100kHz-
100kHz)

s500kHz)  (5O0KHZ-
2000kHz)
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Fig. 2.9. Ratio of the standard deviation of FHM to the disk morphology broken into
different Bands for disks A, B, and C.
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CHAPTER 3

FLYING HEIGHT MODULATION DUE TO DISK WAVINESS OF SUB- 5
NM FLYING HEIGHT AIR BEARING SLIDERS

Abstract
Two new air bearing dider designs are presented for storage densities greater than 100
Gblin? in hard disk drive (HDD) applications. Their dynamic frequencies and mode
shapes are characterized, and they are used to study the flying height modulation (FHM)
over wavy disks due to geometric effects as opposed to dynamic effects. It is found that
low pitch designs experience large FHM at wavelengths on the order of the length of the
diders to one-eighth the length of the diders due to a complex phase shift in the diders
trailing edge response as compared to the disk waviness. FHM due to disk waviness
wavelengths from 2 mm to 0.16 mm was found to be a function of the diders attitude
(pitch angle) and the air bearing surface (ABS) geometry (pressure distribution over the
ABS). The results presented suggest that the pitch should be greater than 100 nrad for the
ABS designs presented and attention needs to be focused on the ABS design and disk
morphology to avoid unacceptable FHM. A new ABS design was introduced to illustrate
the results of the geometric FHM showing an 83% decrease in geometric FHM. The
FHM due to geometric effects of the dider designs studied in this chapter could possibly

be predicted by the disk morphology alone.

3.1 Introduction
As HDD storage densities approach 100 Gb/in? the flying height (FH) of the air bearing

diders must be reduced to 6 nm or less. Since al disks have some roughness and
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waviness it is impossible to completely eliminate variations of the FH about its mean
value. But it is dedirable to limit this variation to no more than +10 % of the mean FH

[11]-[13].

Previous research has shown that FHM has different causes depending on the wavelength
of the disk roughness relative to the length of the dider. For long wavelengths the FHM
is proportiona to the sgquare of the length of the dider, a purely geometric effect. As the
roughness wavelength approaches zero the dider flies about the mean surface and the
FHM equals the disk waviness. For some intermediate wavelengths of waviness an air
bearing resonance may be excited and the FHM depends on the dynamics of the

mechanical system [14].

To minimize the long wavelength FHM a shorter dlider is obviously needed. Other design
features determine the air bearing modal parameters, such as FH, static attitude, and ABS

design that determine air bearing stiffness and damping.

It is usually believed that femto diders will be favored over the most commonly used
pico diders of current HDDs. This chapter investigates the relative performance of a
particular pico dider designed for 5 nm FH, suitable for 100 Gb/in? applications, and a
similar femto 3.5 nm FH dlider, expected to be required for 1 Th/in? densities [11]-[13].
First we present the ABS designs for the two diders and indicate their uniformity of FH
over the track range from inner diameter (ID) to outer diameter (OD) of the disk. Then

we present their characterization, showing their air bearing frequencies and vibration
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modes, as well as their damping characteristics. With these results as a basis we
investigate the FHM for given waviness wavelengths of the disk. As expected, we find
that for long wavelengths the FHM of the femto dlider is about half that of the pico dider,
and it is negligible for both diders for a peak-to-peak waviness amplitude of 2 nm. As the
disk wavelengths are reduced from 4 mm to 0.156 mm, it is found that the FHM of the
femto dider actually exceeds that of the pico dider. This unexpected phenomenon is not
associated with resonance but is found to result from the diders’ pitch and an associated
phase lag between the dynamic response of the dider at the transducer point and the disk
waviness. The primary finding of this work is that the FHM for some dider designs,
especidly certain five-pad, sub-ambient pressure designs with a center rear pad, will be
unacceptably large if the pitch is too low. For low pitch the rear center pad does not
generate a pressure leg, and only the aft portions of the side rails support the dider. For
high pitch the rear center pad also provides comparable pressure, thereby producing the
third leg of support for the dider. It was found that the FHM due to disk waviness with
length on the order of the diders’ body length (1.5 mm to 0.156 mm) is a function of the
diders attitude and the ABS design and not the length of the overal diders body. It is
found that the geometric FHM can possibly be predicted by the disk morphology aone.
To illustrate these findings, a femto ABS design is presented to minimize the FHM due to
disk waviness, and it shows an 83% decrease in geometric FHM. Geometric FHM can be
extremely dgnificant, showing a maximum of 3.5 nm peak-to-peak for a disk waviness
amplitude of only 2 nm peak-to-peak. Only by proper design of an ABS and disk

morphology can tolerable levels of FHM be obtained.
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3.2 Pico and femto designs

The pico dlider was designed for 5 nm FH for use in 100 Gh/in? HDD while the femto
dlider was designed for 3.5 nm FH for use in 1 Th/in? HDD. Both sliders use basicaly the
same design, a wrap around front rail that surrounds three sides of a sub-ambient region
and a trailing center pad for mounting the transducer and controlling the flying height of
the transducer. Figures 3.1 and 3.2 show the designs of the two dliders. There are three
step levels on both diders, the no-etch level of the primary air bearing surfaces, the 300
nm etch regions adjacent to the rails, and the 2.5 nm base level of the dliders. Tables 3.1
and 3.2 dso indicate the FH profile as a function of radial position and the associated
skew. The pre-load for the pico dider is 1.5 gm, while it is 1.0 gm for the femto dider.
Notice that the pitch of the pico dider is 120 nrad while it is only 55 nrad for the femto at
a radius of 15 mm; the skew is zero degrees and the spindle rotational speed is 7200
RPM. These vaues of pitch, radius, skew and RPM are noted because those 1D

conditions were used in the following analysis.

These dliders were characterized by use of the CML Parameter Identification Program,
and the results are shown in Figs. 3.3 and 3.4 [15]. It is seen that the three air bearing
modes are quite decoupled, as indicated by the perpendicularity d the nodal lines. Also
we see that the two lowest mode frequencies are similar for the two diders, around 110
and 180 kHz, while the highest mode frequencies are different by about 100 kHz, the

femto dlider frequency being about 380 kHz versus 280 kHz for the pico dider.
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3.3 Dynamic simulation of the FHM

The CML Dynamic Simulator Program was used to calculate the responses of the two
diders to disks of various waviness. In all cases the peak-to-peak amplitude of the
waviness was 2 nm, and the wavelengths were chosen between 12 mm and 0.1 mm.
Figure 3.5 shows the FHM for the two diders for a waviness wavelength of 2.5 mm,
which is obtained by subtracting the disk waviness from the diders displacement at the
transducer. Here we see that the pico dider has a peak-to-peak FHM of about 0.4 nm,
while it is about 0.27 nm for the femto dider. Similar calculations were made for severa
different wavelengths, and the resulting peak-to-peak FHM’s are plotted for all of these
wavelengths for both didersin Fig. 3.6. As expected the FHM of the femto dider remains
below that for the pico dider for wavelengths greater than about 1.5 mm. But for shorter
wavelengths the modulation of the femto dider is much greater than it is for the pico
dider, reaching a value of ailmost 3.5 nm at the wavelength of about 0.3 mm. This is an
unexpected result. Notice that since the air bearing resonance frequencies are al above
100 kHz, and this value occurs for wavelengths less than 0.1 mm for 7200 RPM this
strong response cannot be associated with a resonance phenomenon. Further studies are

required to reveal the cause of this phenomenon.

Figure 3.7 shows the disk waviness and the pico dider's response to a 0.625 mm
wavelength waviness for two different dider designs that have the same 5 nm flying
height, but with different values of pitch. These dider designs are only dightly different;
having the load point moved dightly aft/forward and the suspension load dightly

reduced/increased for the higher/lower pitch dider. However, the ABS design was
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unchanged. Two things are observed from this figure: first it is seen that the diders
responses are phase shifted from the disk waviness; second we see that the amount of
phase shift is much greater for the low pitch dider than it is for the higher pitch dider.
Also it is apparent that the FHM, which is the difference between these two curves,
increases with the phase shift. Just envision a case where the phase shift is 180 degrees as
opposed to a case where it is O degrees. Figure 3.8 shows the FHM, absolute sider
displacement and phase shift as a function of pitch over a disk waviness wavelength of
0.625 mm for similar 5 nm FH pico diders. The diders response amplitudes are rather
insensitive to the pitch, but the phase shift and hence the FHM monotonically increase as
the pitch is decreased. Since the origina femto dider had much lower pitch than the pico
dider the large difference in the FHM for short wavelengths shown in Fig. 3.6 is
evidently due to this phase-lag-pitch relation. Indeed, Fig. 3.9 shows the dependence of
the FHM, absolute dider displacement and phase shift over a disk waviness wavelength
of 0.625 mm for the femto diders, and it is seen to be quite similar to that in Fig. 3.8 for

the pico dider.

3.4 Explanation of the phase-lag-pitch relationship

It has been shown that the increase in FHM with decreasing waviness wavelength is
related to an increase in a phase lag between the diders’ response and the disk waviness,
which in turn is related to a decrease in the diders pitch. The origina femto dider had
much lower pitch than the pico dider and that accounts for the larger FHM of the femto
dider in Fig. 3.6. It remains to explain why this phase difference becomes pronounced at

shorter wavelengths and why thisis related to pitch.
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Figure 3.10 shows a sequence of pressure profiles for the origina low pitch femto dider
calculated at different locations of the transducer on the waviness phase. (1) is at the
waviness trough, (2) is at the waviness mean height on an increasing dope, (3) is a the
waviness peak, and (4) is again at the waviness mean height, but on a decreasing slope.
While these profiles have some minor differences, the main observation is their similarity
and the fact that the central trailing pad provides very little support to this low pitch
dider. The dider is dmost entirely supported by the small regions at the rear of the side
pressure pads, giving it essentially a two-point support at some distance from the trailing
edge where the transducer is located. When the disk rises and fals, because of its
waviness, the dider responds near these two support points in phase with the disk, while
the transducer is cantilevered a certain distance behind, leading to the phase shift. At
some location on the dider, there exists a line which we call the “zero phase line” where
forward of the line exists a phase lead and aft of this line exists a phase lag (i.e. the
transducer location). For some simple dider designs, the “zero phase ling’ exists at the
center of pressure of the ABS. Unfortunately this is not true for al dider designs
including those presented in this chapter. Figure 3.11 shows the sequence of pressure
profiles for the high pitch femto dider. Here we see that the center trailing edge has
relatively high pressure, and therefore this dider is supported by three pressure points,
one at the center trailing edge, where the transducer is located. Therefore the “zero phase

line” shifts aft and causes the phase shift to be much less.
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Figure 3.12 shows that the distance, |, between the trailing edge of the side rails and the
trailing edge of the center pad (transducer location) is about 0.15 mm for both the pico
and femto diders. When the waviness wavelength is 0.625 mm, | is about 0.25 of the
waviness wavelength, so the transducer phase lag is about 90 degrees as shown in Fig.
3.13. This also can be seen in Figs. 3.8 and 3.9 for the pico and femto diders. As the
pitch decreases, the phase angle approaches a maximum of approximately 90 degrees.
When the waviness wavelength is 0.325 mm the transducer phase lag is amost 180
degrees. This can be seen for the femto dider in Fig. 3.14. Similarly, as the pitch
decreases, the phase approaches 180 degrees. This case of 180 degrees phase shift is the
worst-case situation with the FHM becoming maximum due solely to the subtraction of a

sine and cosine wave.

Thus, the dider should have sufficient pitch to give it a three-point support rather than a
two-point support. On the other hand, if the pitch is increased too much the dider will
have only a one-point support at the center trailing edge. Clearly this would not be a

stable design.

3.5 Comparison of pico and femto dliders with similar specification

Finaly, Fig. 3.15 shows a more meaningful comparison between the pico and femto
dider designs. Both diders were dightly redesigned to have the same flying height of 4
nm and they have smilar pitch angles. the pico dider has 116 nrad pitch and the femto
dider has 121 nrad pitch. However, there are dight differences in these ABS designs —

the femto dlider is not merely a scaled down version of the pico dider. Here we see the
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more expected behavior. For waviness wavelengths between 6 mm and 1 mm the FHM
of the pico dider is roughly twice that for the femto dider. Between the wavelengths of
1.5 mm to 0.156 mm for both the pico and femto diders’, the geometric FHM amplitude
increases to about 2 to 2.25 nm peak-to-peak for a disk waviness amplitude of 2 nm peak-
to-peak. The femto dider shows dightly worse FHM performance attributed to the
differences in the ABS designs and how the pressure profile is distributed. For the femto
dider, the “zero phase line” is farther forward on the dider body compared to the pico

dider causng worse FHM performance.

Figures 3.16 and 3.17 show FHM, absolute dider displacement, and phase lag as a
function of disk waviness wavelengths for the redesigned pico and femto diders. An
important difference between these plots is that the FHM decreases and the phase angle
approaches zero at a disk waviness wavelength of 0.156 mm for the femto dlider. Figures
3.18 and 3.19 show the results from the CML Parameter Identification Program for the
redesigned femto and pico diders. The redesigned femto dider’s air bearing mode
stiffnesses are lower than those of the origind design while the redesigned pico dider is
gtiffer than the origina. We aso see that the redesigned femto dider’s pitch resonant
mode is approximately 65 kHz. At a disk waviness wavelength of 0.156 mm, this pitch
mode is excited, alowing the dider to pivot and permitting the transducer to follow the
disk without a phase shift. It should be noted that the emphasis in this chapter is on
geometric effects of disk waviness on FHM. This resonance phenomenon is a dynamic

effect.



Another contributor to FHM due to a geometric effect is the decreasing amplitude of the
absolute displacement of the dlider for waviness wavelengths below 2 mm as seen in
Figs. 3.16 and 3.17. This is caused by the relationship between the distance from the
trailing edge of the dide rails to the trailing edge of the center pad (i.e. the distance
between the high pressure points, 1) and the disk waviness wavelength. If we assume a
simple geometric model as shown in Fig. 3.20, for small disk waviness wavelengths, the
curvature is too large for the three-support points (high pressure points) of the dider to
follow the disk exactly. The analytical solution for the absolute dider displacement is:
Saws=A(1+cos(lp/l )) forl 3 | (3.1
Where | is the distance shown in Fig. 3.12, | is the waviness wavelength, and A is the
sinusoidal amplitude of the waviness. Figure 3.21 shows how the absolute displacement
of the dider (Sis) changes with A = 1 nm as wavelength is varied. This relationship
follows the trend seen for both the pico and femto diders from simulations, as seen in
Figs. 3.16 and 3.17. However, this geometric effect of the diders displacement on the

FHM is a secondary effect compared to the phase shift.

For both the pico and femto diders the FHM for a waviness wavelength of 0.208 mm and
varying amplitude from 0.2 nm to 3 nm (peak-to-peak) were smulated to find the
dependence of FHM on amplitude of the disk waviness. Figure 3.22 shows how FHM
changes with disk waviness amplitude. For both the pico and femto diders, the
relationship is linear with an approximate dope of one (i.e. for this particular waviness
wavelength the FHM amplitude is that of the disk). Therefore, FHM due to this geometric

effect is aso a function of the disk morphology amplitude. For the particular ABS



designs studied in this chapter, the geometric FHM can be predicted by the disk
morphology. For waviness wavelengths from 0.5 mm to 0.16 mm the FHM is
approximately the disk morphology and for higher wavelengths, the FHM decreases

exponentialy.

3.6 ABS design for minimizing FHM due to geometric effects

From the work presented here we conclude that certain design parameters need to be
taken into consideration when designing an air bearing dider for low FHM. Firstly, the
“zero phase line” should be as close to the transducer as possible. Unfortunately, thisis a
very difficult design condition due to the transducers location and the dynamic stability
of the dlider. The best that can be done is to concentrate a high pressure point at the
transducer location with very low pressures everywhere else on the ABS. This will move
the “zero phase line” closer to the transducer thereby decreasing the parameter |.
Secondly, the distance between the high pressure points, |, needs to be decreased as much
as possible. This ensures the secondary cause of FHM will be minimized as seen from

Eqg. (3.1).

Modifications were made to the femto dider design to obtain a very high pressure point
near the transducer with a pitch of 450 nrad. However, after analyzing the dider from a

dynamics point of view, the air bearing resonant frequencies were found to be far to low

and the stability was drastically compromised.
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A new femto ABS was designed with the above parameters considered. The ABS design
and pressure profile are shown in Fig. 3.23. The air bearing was not very tiff in the roll
and the pitch degrees of freedom (43 kHz and 62 kHz, respectively), however it was stiff
enough to show large improvements with respect to FHM. The pitch was 190 nrads with
a5 nm FH at the transducer. Figure 3.24 shows how the dider’s absolute displacement,
phase, and FHM change as a function of disk waviness wavelength, smilar to Figs. 3.16
and 3.17. At a waviness wavelength of 0.2 mm, the pitch mode is excited; hence the
geometric effect is overcome by the dynamics of the dider. As the waviness wavelength
decreases from 10 mm to 0.25 mm, a dight phase shift and decrease in dider amplitude
occurs because the pressure profile is not a perfect high pressure point — the pressure
profile has some distribution across the entire ABS. However, the small phase shift is at
most 8 degrees and with the dight decrease in dider amplitude, the phase and amplitude
changes are much smaller than those of the original femto design as seen in Fig 3.6. In
comparing this redesigned femto dider’s FHM to that of the origina femto dider shown
in Fig. 3.6, we find there is an 83% decrease in FHM. The redesigned femto dlider has
very low pitch and roll stiffness, which could possibly compromise flyability, however
this ABS design is an extreme example to show how important ABS design is for

reducing the geometric FHM.

3.7 Summary and conclusions
We examined the FHM of a5 nm pico dlider design and a 3.5 nm femto dlider design for
disks with 2 nm peak-to-peak waviness amplitude, and as a function of waviness

wavelength. The expectation was that the femto dider should have less FHM than the
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pico dider, because it has long been known that for wavelengths somewhat larger than
the dider length, the FHM is proportiona to the square of the length of the dider. It was
found that this was indeed the case for wavelengths longer than the dlider, but when the
wavelength was reduced to about the diders length the FHM of the femto dider was
much greater than that of the pico dider. After examining the characteristics of the diders
it was found that the primary reason for the large FHM of the femto dider was its low
pitch, which caused its pressure support points to be at the trailing edges of the side ralils,
about 0.15 mm forward of the transducer. It was aso observed that the large FHM results
from a phase shift between the diders response and the disk waviness, which is itself a
result of the low pitch and forward pressure points. The phenomenon occurred for both

the femto dider and the pico dider.

It can be concluded that, for the five-rail negative pressure diders under consideration,
the pitch should be higher than about 100 nrads to avoid large FHM. The pitch should
probably be lower than about 250 nrads to avoid too much load being carried by the

single trailing center pad, which would be inherently unstable.

In comparing redesigned pico and femto diders with the same target FH and comparable
pitch, we showed that the pico dider has roughly twice the FHM in the 6 mm to 1.5 mm
waviness range. However, for waviness between 1.5 mm to 0.156 mm both the pico and
femto diders have smilar high levels of FHM due to their smilarities in ABS designs
(i.e. pressure distribution). We concluded that a femto design has lower FHM due to disk

waviness for wavelengths greater than 1.5 mm. However, for waviness wavelengths
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below 1.5 mm and above the dynamic resonant modes of the air bearing, FHM is not
primarily a function of the diders overdl length but is more a function of diders attitude
and the ABS design. It is possible to predict FHM due to this geometric effect by
considering only the disk morphology. An extreme femto dider was designed to
minimizing the geometric FHM based on the findings in this chapter taken into account.
Results showed an 83% decrease in FHM when compared to the original femto dider
design. Therefore, these results can be used in designing better ABS's and disks for ultra
low FH dliders. In order to decrease FHM due to disk waviness for wavelengths below
1.5 mm, attention needs to be focused on dider attitude, ABS design, and disk

morphology.



Radial Position (mm) | Skew (deg.) | Flying Height (nm)
31 17.39 5.05
23 9.1 4.93
15 -1.22 5.05

Table 3.1. Flying height profile of the pico dider as a function of radia position and

skew.

Radial Position (mm) | Skew (deg.) | Flying Height (nm)
31 17.39 3.49
23 9.1 3.54
15 -1.22 3.51

Table 3.2. Flying height profile of the femto dider as a function of radial position and

skew.
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Fig. 3.4. Dynamic characteristics of the femto dlider.
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Fig. 3.5. FHM for the (A) Pico and (B) Femto diders for the 2.5 mm disk waviness
wavelength.
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Fig. 3.6. FHM (peak-to-peak) as a function of waviness wavelength for the pico and
femto diders.
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FHM, Slider Displacement {Paak-Peak), and Phase Angle as a Function of Pitch
{Femto Slider Over a A=0.625 mm Waviness Disk)
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Fig. 3.9. FHM, absolute dlider motion, and phase shift as a function of pitch of the 3.5
nm FH femto diders for a waviness wavelength of 0.625 mm.
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Fig. 3.10. Sequence of pressure profiles for the low pitch femto dlider at different disk
waviness phase locations. The trailing edge isin a waviness trough in (1), a the mean in
(2), at awaviness peak in (3) and again at the mean in (4).
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Fig. 3.11. Sequence of pressure profiles for the high pitch femto dlider at different disk
waviness phase locations. The trailing edge isin a waviness trough in (1), a the mean in
(2), at awaviness peak in (3) and again at the mean in (4).
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Fig. 3.12. The distance between the trailing edge of the side rails and the trailing edge of
the center rail is about 0.15 mm for both the pico and femto dider designs.
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Fig. 3.13. The low pitch dider has pressure points at the trailing edge of the outer rails,
which are about 0.15 mm from the transducer. When the waviness wavelength is 0.625
mm, or about ¥awavelength, the transducer phase lag is about 90 degrees. When the
waviness wavelength is 0.325 mm the transducer phase lag is amost 180 degrees.




FHM, Slider Displacement (Peak-Peak), and Phase Angle as
a Function of Pitch
(Femto Slider Over a 1.=0,3125 mm Waviness Disk)
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Fig. 3.14. FHM, absolute slider motion, and phase shift as a function of pitch of the
3.5 nm FH femto dliders for a waviness wavelength of 0.325 mm.
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Fig. 3.15. FH modulation as a function of waviness wavelength for the
redesigned pico and femto diders.



FHM, Slider Displacement and Phase Angle vs Waviness Wavelenght
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Fig. 3.16. FHM, absolute slider motion, and phase shift as a function of
waviness wavelength for the 4 nm FH pico dider.
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Fig. 3.19. Dynamic characteristics of the redesigned femto dlider.
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Fig. 3.20. Geometric model for showing how absolute dider motion changes with

waviness wavelength.
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Fig. 3.21. Absolute dider motion as a function of waviness wavelength found from

the geometric model.
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FHM of Pico and Femto Sliders as a Function of Waviness
Amplitude {(1=0.208 mm)
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Fig. 3.22. FHM of the pico and femto diders as a function of waviness amplitude at a
waviness wavelength of 0.208 mm.
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Fig. 3.23. ABS design of the redesigned femto dider and the pressure profile associated
with this dider.
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wavelength for the redesigned femto dider.
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CHAPTER4

A NUMERICAL STUDY OF AIR-BEARING SLIDER FORM-FACTORS

Abstract
This chapter presents a numerical study comparing the performance of air bearing dider
form-factors. The ar bearing dider and air bearing surface (ABS) design has gone
through large changes in recent years in order to achieve the performance required by
lower flying heights. In the past, improvements have been achieved by scaling down the
form-factors of air bearing diders. The pico form-factor (1.25 °~ 1 mm) has been
successfully used for several generations of products and the question arises — should the
form-factor be scaled down further? The dynamic characteristics and flying-height
modulation (FHM) performance of two different ABS designs in the pico and femto (0.82
"~ 0.66 mm) form-factors were numerically investigated. It was found that for the smaller
form-factor designs, greater damping of the air bearing film and dider body system was
achieved but with an undesirable decrease in modal frequencies. However, depending on
the ABS design, beneficia dynamic properties can be achieved by scaling down the
form-factor from pico to femto. Maximizing the total air bearing force (the sum of
negative and positive) with a design featuring a large number of transverse pressure
gradients can obtain high stiffness and damping. Geometric FHM was also investigated
using both sinusoidal disk waviness and an actual measured disk topography. It was
found that the FHM depends not only on the form-factor, but also on the ABS design. For
long disk waviness wavelengths (longer than the dider body length, L), the FHM is

proportional to L° where b was found to be between 2.6 and 4; hence FHM is dependent



on form-factor. For short disk waviness wavelengths, the FHM is a function of the ABS
design and flying attitude and not the form-factor. A disk waviness wavelength of 3 mm
demarks the transition above which the FHM is a function of form-factor and below
which the FHM is a function of the ABS design, and the superposition of these two
effects compose the geometric FHM. Simulations with an actua measured disk
topography showed that the femto form-factor exhibited 22% - 32% less FHM than the
pico form-factor for a smilar design. However, by changing the ABS design, 35% - 40 %
less FHM was achievable within the same form-factor. By scaling down a pico dider to a
femto dider, we do not necessarily achieve enhanced overal performance. Significant
performance improvements in the pico form-factor can be attained if the ABS is properly
designed. However, in designing a dynamicaly stable and low FHM air bearing dider a
femto dider ultimately yields better performance when care is taken in designing the

ABS.

4.1 Introduction

In the evolution of hard disk drives, there has been a steady trend toward miniaturization
of the drives as well as al its components. This miniaturization is motivated by severa
considerations such as economics, higher areal magnetic densities, access time and data
rate, physical space requirements, and new applications other than computer data storage.
While the general design of the mechanical components of disk drives has remained
relatively fixed, the air bearing dider design has gone through substantia changes. The
dider housing the read/write transducer has evolved from a large duminum externally

pressurized hydrostatic dider in 1957 with head/media spacing of 20 mm to today’s

65



complex sdlf-acting ceramic pico (30%: 1.25 mm =~ 1 mm) air bearing diders flying at
sub-20 nm over the media [6]. The need for more complex air bearing designs stems from
the higher bit areal dendties requiring a smaller gap, or flying-height (FH) between the
transducer and magnetic media. In turn, this has increased the need for a better
understanding of the head-disk interface. Shrinking the air bearing dider form-factor has
produced many benefits both in cost and in performance. As the FHs approach the sub-5
nm range the question naturally arises: is it time to scale the form-factor down once again

too keep up with the rapidly increasing performance criteria?

For a recording density of 1 Thit/in? it is projected that the FH will be 3.5 nm [7]. In
order for a reliable head-disk interface to be maintained, contacts between the slider and
disk and fluctuations in FH need to be held to a minimum. Therefore, the dynamic
performance of air bearing diders is becoming of increasing importance. At such low
FH’'s, intermittent contacts between the slider and the disk are unavoidable. The more
stable the air bearing dider, the less damage will occur and the faster the dider will settle
back to its steady-state flying condition once disturbed. Important characteristic
parameters controlling the stability are the air bearing moda frequencies and damping
ratios. The higher the frequencies and damping ratios, the more stable the interface. The
spacing fluctuations between the transducer and disk, or FHM, also needs to be held to a
minimum. A large fraction of the FHM is the so-called “geometric’ FHM [10Q], [14],
[16]. This FHM occurs due to disk waviness and micro-waviness with significant
amplitude in the wavelength range from approximately 8 mm down to the wavelength

corresponding to the first air bearing natura frequency — on the order of several hundred
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microns [10]. It has been shown for disk waviness wavelengths much longer than the
dider body length, L, that the geometric FHM scales proportionally to the square of the
dider body length [14]. Also, from more recent studies, in the waviness wavelength
regime where the wavelength is comparable to the dider body length, this geometric
FHM becomes a very complex function of the ABS geometry and attitude and not the

dider’slength [10].

In order for manufacturers to decrease the dlider form-factor, the benefits must outweigh
the costs involved. A study is presented here comparing the dynamic and FHM
performance as a function of form-factor and ABS design for two sizes of air bearing

diders.

4.2 Air bearing designs

In this chapter we investigated two ABS designs of different rail complexity. The first
design, depicted in Fig. 4.1a, is a five-pad sub-ambient pressure design labeled ABS |.
The second and more complicated design is a sub-ambient pressure design shown in Fig.
4.1b labeled ABS 1I. The transducer is located near the center of the trailing edge of the
dider body. ABS | was designed with the following considerations: (1) high stiffness, (2)
constant roll angle from inner diameter (ID) to outer diameter (OD), and (3) ease of
manufacturing. ABS 1l was designed with the following considerations. (1) low
geometric FHM, (2) high damping, and (3) relatively high stiffness. The simulations were
preformed at 7200 RPM, disk radial position of 16.25 mm, and skew angle of zero

degrees. Each of the two designs were scaled for pico (30%: 1.25 X 1 mm) and femto
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(20%: 0.82 X 0.66 mm) form-factors. In changing the form-factor, the geometry of the
rails, recess heights, crown, and camber of the ABS's were scaled proportionally as seen
in Table 4.1. The additional features on the leading edge of ABS Il protrude 40 nm from
the ABS. These additional features serve to increase damping (as will be discussed) and
could be manufactured smilar to diamond-like carbon pads used on padded “stiction-
free” diders. For this study the FH at the transducer was kept approximately the same for
all designs, but due to the highly non-linear nature of the generalized Reynolds equations,
the gram-load could not ssimply be scaled down proportionally, as seen in Table 4.1. The
static attitude of each ABS is aso shown in Table 41. ABS | and ABS |l were designed
for transducer FHs of 7 nm and 5 nm, respectively for 100 Ghit/in® and greater areal
recording density applications. Figures 4.2a and 4.2b show the pressure profiles with the
pressure values normalized by the ambient pressure generated under the ABS | and ABS
Il diders in the pico form-factor, respectively. For each dider design, the pressure profile
geometry remained relatively constant, independent of form-factor with differences only
in the amplitudes of pressure. The high pressure generated at the side rails of ABS | help
achieve high stiffness (especially in the roll motion) and constant roll angle from ID to
OD. The features on the trailing edge pad of ABS Il help generate high pressure near the
transducer location decreasing the geometric FHM and the large number of pressure

gradients generated on the leading edge pads increase the air film damping [10], [17].

4.3 Dynamic system properties of the air bearing dlider

The air bearing film and dider body form a complex coupled non-linear dynamic system.

By using the CML Dynamic Air Bearing Simulator, which solves the generaized
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Reynolds equations coupled with the dynamics of the dider body and a lumped
parameter suspension, we are able to simulate the dynamic response of the dider for
various inputs. For small perturbations about the dider’s steady flying attitude the non-
linearities are small and linear moda analysis can be used to obtain the modal parameters
of the air bearing dider system. This system is modeled as a three degree-of-freedom
(DOF) system — the vertical, pitch and roll motions. By simulating the response of the
dider to initia veocities in al three DOFs, we can estimate the impulse response
functions and perform modal analysis to obtain the modal masses, stiffnesses, damping
ratios and nodal lines [17]. The modal frequencies and damping ratios are shown in Figs.
4.3 and 4.4 for the ABS | and ABS Il designs, respectively, for the two form-factors
investigated. Modes 1, 2 and 3 correspond to the three coupled modes generally called
pitch, roll, and vertica or first-pitch, roll and second-pitch. For the ABS I designs,
modes 1, 2 and 3 correspond to the first-pitch, roll, and second-pitch, respectively. For
ABS |1, modes 1, 2, and 3 correspond to roll, first-pitch and second-pitch, respectively.
The modal parameters are dependent on the pressure profile generated under the ABS
and the size and mass of the dider body. The noda lines or mode shapes remain
relatively fixed for each design regardless of form-factor as expected by the relatively
constant pressure profiles generated by each design in the two form-factors. However, the
modal stiffnesses and damping ratios changed quite significantly with form-factor, as

seen in Figs. 4.3 and 4.4, due to several effects.

As the diders decrease in size, dl three moda frequencies of both dider designs

decrease. This result my seem counter-intuitive initially due to the smaler mass of the
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smaler form-factor (i.e. the modal frequency w; @(k/m)"0.5), however the stiffness
decreases significantly more than the mass causing the modal frequencies to ultimately

decrease with decreasing form-factor.

There are two effects that cause the stiffness to decrease as slider size decreases. As the
form-factor decreases, so does the bearing load capacity — the ability of the air bearing to
create positive and negative forces. For a decrease in length dimension by 33 % (pico to
femto) the ABS area decreases by 56 %. The forces generated by the air film are related
to the area that the air pressure acts over; hence by decreasing the area, we also decrease
the bearing load capacity. ABS | decreases its load capacity by 60 % and 58 % to produce
positive and negative force, respectively as seen in Table 4.1. Similarly, ABS |l decreases
its load capacity by 48 % and 53 % to produce positive and negative force, respectively.
The ability of a dider design to retain load capacity while reducing the form-factor helps
it to maintain a stiff air bearing film. Scaling the form-factor from pico to femto causes
total force (positive force + | negative force |) to decrease by 59% and 51% for ABS | and
ABS I, respectively. The ability of ABS Il to retain a larger percentage of the total force

helpsiit retain its stiffness as the form-factor is decreased.

Peak pressures generated by the ar bearing can also have an effect on ar bearing
stiffness. The higher a pressure peak, the stiffer the local area will be. ABS | contains
three high pressure points — one at the trailing edge pad and two on the side rails
demarked in Fig. 4.2 as locations A and B. These three locations can be viewed as three

stiff distributed springs over the local areas of the pads. When the form-factor decreases
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from pico to femto, the overall effectiveness of these three springs decreases as the peak
pressures decrease (see Table 4.2). However, ABS Il has only one high pressure point
located on the trailing edge pad as seen in Fig. 4.2, and as the form-factor decreases from
pico to femto, the peak pressure actually increases. This increase in peak pressure helps
to maintain the stiffness of ABS Il in the femto form-factor. This is most effective in
retaining the stiffness of the pitch modes exhibiting a decrease of only 4.6 % in stiffness
for ABS Il when it is scaled down from pico to femto as compared to a 30.4 % decrease
in stiffness of ABS |. The three high pressure points on ABS | provide the characteristic
high stiffness, especialy in the roll direction, however, when it is scaled down from pico
to femto, the peak pressures at all three points decrease, hence causing a decrease in al

three modal frequencies.

Desirable higher damping ratios were obtained with the femto form-factor as compared to
the pico form-factor for both ABS designs. It has been shown previoudly that the stiffer
the air bearing film, the smaller the damping will be (achieved through the transverse
viscous shearing [17]-[20]). This holds true for ABS | and ABS Il — the femto form-
factors have lower stiffnesses than the pico, and hence, higher damping ratios. ABS | had
an increase in damping ratios of 1 % to 28 % while ABS |l had an increase in damping
ratios by at least 30% when scaling the form-factors from pico to femto. Textured ABS
designs and disks have been studied and have been shown to enhance the damping
characteristics of the air film [17], [18], [21]. The extra pads that are located on top of the
leading edge surface of ABS Il cause multiple pressure gradients designed to increase

damping. From the modal analysis results, it is seen that in comparing the pico form-
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factors, ABS Il exhibits an increase of 21 %, 428 %, and 195 % in damping ratios over
ABS | for the pitch, roll, and vertical modes, respectively. Similarly, in comparing the
femto form-factors, ABS Il exhibited 26 %, 480 %, and 346 % increase in damping ratios

over ABS | of the pitch, roll, and vertical modes, respectively.

4.4 Air bearing flying-height modulation

It has been shown in the previous two chapters that geometric FHM due to disk waviness
and micro-waviness can be comparable to the FH. It aso has been known for some time
that for waviness wavelengths much longer than the diders overall body length the FHM
scales proportionaly to the square of the dider’s length [14]. However, when the
waviness wavelength approaches the diders length, we showed in Chapter 3 that the
FHM is a complex function of the ABS design, and it is independent of the overall length
of the dider. In order to assess how each ABS design and form-factor is affected by disk
waviness, we performed simulations using a modeled sinusoidal disk waviness, d(x), for

which the wavelengths, | , ranged from 20 mm to 0.3125 mm:

d(x) = AsnZP <2 (4.1)
el o

In this wavelength range, the dynamic resonant modes of the air bearings are not excited
and the FHM is a result of geometric effects and not dynamics. The results of the
amulations are shown in Figs. 4.5 and 4.6. These figures show amplitude ratios of the
FHM peak-to-peak (FHMp.p) over the disk waviness amplitude peak-to-peak (DISKp.p),
or the “gain” as a function of disk waviness wavelength on a log-log scale. These results
are similar to those presented in Chapter 3. The predicted behavior is present, with low

gain for disk waviness wavelengths much longer than the dlider body length, and with the
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gain exponentially increasing as the wavelength approaches the dider body length. It is
aso seen, for long wavelengths, that the larger form-factors exhibit larger gain.
However, as the wavelength decreases, the gain becomes dependent on the ABS design
and independent of form-factor. This can be seen more clearly in Fig. 4.7 where the data
plotted in Figs. 4.5 and 4.6 are plotted on the same plot on a linear-linear scale. There
appears to be a transition waviness wavelength (depicted in Fig. 4.7) at approximately 3
mm — above which the FHM is dependent on the form-factor and below which the FHM
is dependent on the ABS design. This dependence on geometry (diders length and/or
ABS design) can been seen in Figs. 4.8 and 4.9. These figures show the form-factor

FHM ratios or gains ((FHMgain),,,/(FHMgain),,) for the same design plotted as a

function of waviness wavelength. It can bee seen from Figs. 4.8 and 4.9 that in the
waviness wavelength range of 7.5 mm to 20 mm the curve is constant. Below 7.5 mm the
curves transition and increase to 100 % and beyond as the waviness wavelengths

approach 0.3125 mm.

For ABS | and ABS Il the average values of the form-factor FHM ratios from waviness
wavelength 7.5 mm to 20 mm are 52 % and 29 %, respectively. In this region, the FHM
can be explained by Zhu's work showing that the FHM is proportiona to the square of
the dider length and the combined curvature of the slider and disk [14]:

FHM p ’Z¢ (4.2)

From this formulation, the form-factor FHM ratios should be:

FHM o _ L2284 2 {3) 28

= . =66.7% (4.3
FHM ., L5xZ¢ L5z ¢
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where L, and Lt are the lengths of the pico and femto sliders, respectively and Z¢ and
Z@are the curvatures of the pico and femto sliders, respectively, calculated from the
crown, Z, of the diders:

"2 I
ax o 9

&0

Z(x) = 4R§(E- (4.4)

where R is the maximum value of crown shown in Table 4.1 and X is in the length
direction of the dlider. However, Zhu's formulation was for a simple taper-flat positive
pressure dider and further ssimplified assuming a constant distributed pressure aong the
rails. The ABS designs evaluated in this study are much more complex, and it is found
that for waviness wavelengths greater than 7.5 mm, the form-factor FHM ratios scale as

L2%and L*for ABS | and ABS |1, respectively.

Below waviness wavelengths of 7.5 mm another mechanism causes geometric FHM. It
was shown in Chapter 3 that this geometric FHM is dependent on the ABS design and
flying attitude (specifically the pressure profile), and the waviness wavelength. This
geometric FHM is primarily due to a phase shift between the dider’s response at the
transducer and the disk, f, and secondarily due to an amplitude change, B. In this
waviness wavelength range, 0.3125 mm to 7.5 mm, the dider’'s displacement can be

written as:

S(x) = Bsin%x# 0 (4.5)
e a

In order to calculate the FHM gain, we subtract the disk’s displacement in Eq. (4.1) from

the dider’s displacement in Eq. (4.5) and normalized by the disk’s amplitude:
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FHM o = 25n@P x +j & nZP 0 (4.6)
A el g él g

This geometric FHM s the difference of two sinusoids with the same frequency but with
different amplitude and a phase shift. This is illustrated in Fig. 4.10 which shows the disk
and dider displacements for ABS | in the pico form-factor for a disk waviness

wavelength of 0.625 mm. The normalized amplitude, B/A, and the phase shift, f, are

known to be dependent on a characteristic length, |, which is dependent on the ABS
design and pressure profile rather than the dider’s body length as was shown in Chapter
3. As the waviness wavelength decreases from 7.5 mm to 0.3125 mm, the form-factor
FHM ratios for both ABS | and ABS |1 approach 100 %, showing that both form-factors

exhibit similar levels of geometric FHM.

Clearly, for long waviness wavelengths, the ABS designs in the smaller form-factors out
perform the larger form-factors. However, the FHM gain for long waviness wavelengths
is extremely small, so the contribution to FHM is small. As the waviness wavelengths
approach the length of the diders, the amplitude ratios in Figs. 4.8 and 4.9 reach
approximately 100%, showing FHM in this waviness wavelength range is independent of
form-factor. By comparing ABS | to ABS Il in Fig. 4.7, we see that the ABS |l design
exhibits approximately 50% less maximum FHM gan than the ABS | design for
wavelengths in the vicinity of the dider body length for both form-factors. This result
shows that ABS Il is much less susceptible to geometric FHM than ABS I. Figures 4.8
and 4.9 are informative in comparing the ratio of FHM., / DISK,., between form-factors
of the same ABS designs, however it is useful to understand how this trandates to FHM

for an actual disk topography.
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When the disk rotates, the disk’s out-of-plane motion is composed of clamping
distortions, disk flutter, and disk morphology, including waviness, micro-waviness and
roughness in order of low to high frequency or long to short wavelength. For a typical
“super-smooth” disk used in sub-10 nm FH applications, the out-of-plane displacement
amplitudes decrease approximately exponentiadly as frequency increases or as
wavelength decreases. Figures 4.11 and 4.12 show the FHM ratios for the ABS designs
in the pico and femto form-factors and a measured typica “super-smooth” disk
topography as a function of waviness wavelength. The disk displacement amplitudes
were measured with a laser Doppler vibrometer and include wavelengths from 20 mm
down to 0.3125 mm. To obtain the corresponding FHM, the disk amplitude was
multiplied by the FHM ratio in Figs. 4.11 and 4.12. As shown in Figs. 4.11 and 4.12 the
disk amplitudes follow approximately an exponentidly increasing function of waviness
wavelength and the FHM ratio is approximately an exponentiadly decaying function of
waviness wavelength. However, the FHM ratio curve decays faster than the disk
function curve increases, so that when these two curves are combined to get FHM, the

shorter waviness wavel engths influence the FHM more than the longer wavelengths.

In order to quantitatively compare the ABS designs and form-factors, we performed
smulations using the measured disk topography. These simulation results are
summarized in Table 4.3, which includes peak-to-peak and standard deviation (s) of the
FHM for ABS | and ABS Il for the pico and femto form-factors. ABS | exhibited 22%

less FHM for the femto than for the pico form-factor. Similarly, ABS Il exhibited 32%
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less FHM for the femto than for the pico form-factor. Comparing only form-factors with
the same ABS design, we see a significant decrease in FHM for the smaller form-factor.
However, in cross-comparing ABS designs, ABS 1l is found to have 35%-40% less FHM
than ABS | with the same form-factor. Additionaly, ABS Il in the pico form-factor

exhibited 22% less FHM than ABS | in the femto form-factor.

4.5 Discussion

By changing the form-factor of ABS designs and holding the design constant, we studied
form-factor effects on dynamic and FHM performance. From the dynamic system
properties, it is observed that, in genera, the air bearing stiffnesses detrimentaly
decrease while the damping ratios beneficialy increase as the form-factor is scaled from
pico to femto. However, it is seen that these modal parameters determining the dynamic
stability of the system do not scale proportionally with form-factor and are highly
dependent on ABS design. The dynamic performance of ABS Il is better than that of
ABS | for two reasons. Firdtly, it has the ability to maintain its stiffness by retaining a
larger percentage of its bearing load capacity and by creating a higher peak pressure as
the form-factor is scaed down from pico to femto. Secondly, the large number of
transverse pressure contours on ABS Il makes it highly damped compared to ABS | in
both form-factors. Overall, a design’s dynamic properties may not be enhanced by smply
decreasing the form-factor. However with the proper design, both the modal stiffness and

damping ratios can remain large leading to a dynamically more robust air bearing dider.
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Another extremely important performance consideration is FHM. The largest contributor
to FHM can be the geometric FHM, which is due to the disk morphology and other out-
of-plane disk motions. The FHM ratios for the designs investigated were lower in
amplitude for the smaller form-factor diders for waviness wavelengths much longer than
the dider body length. The femto form-factors exhibited 50% - 80% less FHM for long
waviness wavelengths than the pico form-factor. However, as the disk waviness
wavelength approach the dider body length, the FHM ratio becomes dependent on the
ABS design and independent of form-factor. The ABS | design exhibited a gain in FHM
ratio, approaching 100% and even dightly above 100%, for waviness wavelengths
around the dlider body length. However, for ABS I, a maximum FHM ratio of 50% was

attained, half as much when compared to ABS | — regardless of form-factor.

To quantitatively compare form-factors and cross compare ABS designs, we conducted
simulations using an actual measured disk topography. In comparing FHM for the same
design, it was found that the smaller femto form-factor exhibited 22% - 32% less FHM
than the larger pico form-factor. However, when cross comparing ABS designs, an even
larger decrease in FHM was observed. The ABS Il design demonstrated 35% - 40% less
FHM compared to the ABS | design for both form-factors, pico and femto. Additionaly,
it was found that the pico form-factor of the ABS Il design showed 22% less FHM

compared to the femto form-factor of the ABS | design.
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4.6 Conclusion

By comparing the dynamic and FHM performance of pico and femto form-factor air
bearing sliders designed for 100 Ghit/in® applications, it was found that the smaller form-
factor exhibited an overall enhancement in performance when the ABS is properly
designed. A beneficid increase in damping ratios and a detrimental decrease in modal
stiffnesses was observed when scaling the form-factor from pico to femto. However, it
was seen that if the ABS is designed to retain a larger percentage of its bearing load
capacity and can maintain high peak pressure(s), the stiffness is not compromised
dramatically by scaling down the form-factor. Also, a large number of transverse pressure
gradients are extremely effective in increasing damping, and they further increase
damping when the form-factor is scaled from pico to femto. FHM due to geometry is
composed of the superposition of two effects dependent on the overall length of the dider
for long disk waviness wavelengths and dependent on the ABS design for shorter disk
waviness wavelengths. For long waviness wavelengths, FHM was shown to be dependent
on the dliders body length: proportional to L% and L*for ABS | and ABS |1, respectively.
For shorter waviness wavelengths, FHM was shown to be dependent on the ABS design
and a phase shift between the dider’s response at the transducer and the disk as well as an
amplitude change in the dider’s displacement. These two effects are demarked by a
transition disk waviness wavelength of approximately 3 mm. By comparing femto to pico
form-factors, it is seen that the femto exhibited lower FHM for waviness wavelengths
greater than the diders body length, however, it demonstrated ssmilar levels of FHM for
waviness wavelengths less than the diders body length. By cross comparing ABS

designs, it was found that significant improvements in FHM performance can aso be
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attained by changing the ABS design and not decreasing the form factor. Simulations
were performed using an actual measured disk topography which showed a decrease of
22 % to 32 % in FHM by scaling down the form-factor from pico to femto. However, by
cross-comparing ABS designs, ABS |l exhibited much less FHM even in comparing ABS
[l in the pico form-factor to ABS | in the femto form-factor. It is concluded that by
smply scaling down the form-factor, enhanced performance is not aways attained.
However if specia care is taken in the design of the ABS in order to maintain stiffness,
increase damping and decrease geometric FHM, magor improvements can be attained.
Ultimately, to achieve the greatest performance, a smaler form-factor should be used

with specid care taken in the ABS design.
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Air Bearing Design
ABS | ABS Il
Form-Factor| Pico Femto|l Pico Femto
Gram-Load [gm]| 1.50 0.70 || 1.90 0.75
Positive Force [gm]|| 4.76 2.00 || 4.83 2.28
Negative Force [gm]| -3.26 -1.30 || -2.93 -1.53
Pitch [mrad]||123.50 142.70] 95.60 101.50
Roll [ntad]|| -1.58 -1.43 || -5.08 -2.97
Transducer FH [nm]|| 7.0 7.3 4.8 4.9
Crown [nm]|| 25.4 16.9 || 25.4 16.9
Camber [nm]|| 2.5 1.7 2.5 1.7
Base Recess [um]|| 2.5 1.7 2.5 1.7
Step Recess [um]|| 0.3 0.2 0.3 0.2

Table 4.1. Air bearing specifications and static flying attitude solution.

Air Bearing Design

ABS | ABS |
Form-Factor Pico Femto|[ Pico Femto
Normalized P_eak 3.70 3.15 |l 10.75 12.62
Pressure (location A)
Normalized Peak 584 504 | N/A N/A

Pressure (location B)

Table 4.2. Normalized peak pressures at locations A and B demarked in Fig 2 for
ABS| and ABS 1 in the pico and femto form-factors.
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Air Bearing Design

ABS | ABS Il ||ABS Il / ABS | [%]
Femto Peak-to-Peak [nm]| 1.52 0.90 59%
Femtos [nm]| 0.23 0.15 63%
Pico Peak-to-Peak [nm]| 2.04 1.33 65%
Picos [nm]| 0.30 0.18 61%
Femto/Pico (Peak-to Peak)| 74% 81%
Femto/Pico (s)| 78% 68%

Table 4.3. FHM results from simulations with actual measured disk topography for

ABS |1 and Il in pico and femto form-factors.
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Fig. 4.1. Air bearing surface designs: (a) ABS | and (b) ABSIII.
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Air Bearing Modal Parameters for ABS | Design
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Fig. 4.3. Moda frequencies and damping ratios of the ABS | designs for the pico and
femto form-factors.
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Fig. 4.4. Modal frequencies and damping ratios of the ABS |1 designs for the pico
and femto form-factors.
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FHM Ratio for ABS | Sliders as a Function of Waviness
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Fig. 4.5. FHM ratio or gain for the ABS | design ABS' s as afunction of disk

waviness wave ength.
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Fig. 4.6. FHM ratio or gain for the ABS Il design ABS's as a function of disk

waviness wavelength.
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FHM Ratio for ABS | and ABS Il as a Function of
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Fig. 4.7. FHM ratio or gain for the ABS | and ABS II ABS's as afunction of disk
waviness wavelength.
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Fig. 4.10. Disk and dider displacement for ABS | in the pico form-factor for a

disk waviness wavelength of 0.625 mm.

89



Slider Design FHM Comparison for the Pico Form-Factor
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Fig. 4.11. Slider design comparison of the FHM ratios for the pico form-factor
with a measured disk topography overlaid.

Slider Design FHM Comparison for the Femto Form-Factor
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Fig. 4.12. Slider design comparison of the FHM ratios for the femto form-factor
with a measured disk topography overlaid.
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CHAPTER 5

NON-LINEAR ASPECTS OF AIR BEARING MODELING AND DYNAMIC
SPACING MODULATION IN SUB 5 NM AIR BEARINGS FOR HARD DISK
DRIVES

Abstract

A new analytica model and method of anaysis are proposed for understanding the
dynamical behavior of ultralow flying height air bearing diders in proximity based on
non-linear dynamics. It was found that for sub-5 nm flying height air bearing diders, the
non-linear effects cannot be neglected. These non-linear effects cause a dider’s response
to become highly non-stationary; making frequency domain analysis by fast Fourier
transforms (FFT) an insufficient means of anaysis. Joint time-frequency anaysis was
applied for accurately analyzing the non-stationary slider responses and to verify the non-
linear nature of the air bearing for both experimental and smulation results. One degree-
of-freedom (DOF) and 2DOF non-linear lumped parameter models were proposed
showing the effect of non-linearities on the FFT representations of air bearing dider
responses. The 2DOF model was used to further investigate the non-linear coupling
effect, and it showed high correlation with experimental results from two different dider
designs when they operated in unsteady-proximity conditions. These findings suggest
that the non-linearities of the air bearing dider must be considered when modeling dlider-
disk interface dynamics. Also, complex frequency domain representations of dider
responses in proximity can be explained by the non-linear nature of the air bearing dider
without contact between the dider and disk contrary to what has been previoudy

proposed by other models.
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5.1 Introduction

With areal recording densties increasing in hard disk drives, the physica spacing
between the transducer housed on an air bearing dider and the disk media will have to
decrease and will require a spacing of 3.5 nm for recording densities of 1 Th/in?[7]. In
order to achieve a reliable interface, both magnetically and tribologically, the interactions
between the dlider and disk must be controlled. With advanced “super-smooth” disk
media, it is possible to obtain flying heights (FHs) of sub-5 nm. As a dider’s FH decrease
to within the glide-height of the disk, a transition between steady flying (i.e. no contact)
on a hydrodynamic air bearing film to intermittent contact is observed. This transition
region is of interest because the steady-state FH in the sub-5 nm range is near or within

this regime and many new phenomena have been observed in these systems.

The air bearing dider system dynamics can be modeled as a three degree-of-freedom
(DOF) system — describing pitch, roll, and vertical motions. The dynamics of the system
can be analyzed by simulation or experiment to obtain linearized mode shapes, modal
frequencies, and damping ratios [17], [21]. The air bearing dider system is by no means
linear. However, linear approaches such as linear modal analysis are accurate for steady
flying conditions or small perturbations about the steady-state. If the dider is dynamically
excited, the response should be a linear combination of the three vibrational modes, and
the frequency domain analysis should reveal three or less resonance peaks. However, as
the FH decreases, the dider’s dynamic response is observed to become more complex in

the frequency domain. Harrision et al. attributed air bearing harmonics to wave truncation
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due to contact, and Knigge et al. attributed air bearing harmonics to a non-linear model
due to contact with a thickly lubricated disk [22], [23]. However, we have observed even
more complex dider responses when flying within “unsteady” proximity without

measurable contact.

A new analyticd model and method of anaysis are proposed for understanding the
dynamical behavior of ultrarlow FH air bearing diders in proximity with the disk based
on non-linear dynamics. Very few published works have acknowledged the presence or
even the effect of air bearing film non-linearities. Knigge et al. and Menon et al. used
joint-time frequency analysis (JTFA) to study the time-frequency evolution of a dider’s
response to a bump impact [23]-[25]. Sheng et al. introduced a non-linear model for the
air bearing film and stated that as the dider’s response increases in amplitude, the
resonance frequency decreases [26]. However, non-linear dynamics is generally more
complicated than what is described by their analysis and the idea of a single resonance

frequency ceases to exist for non-linear systems.

The moda stiffness of the “vertical” resonance mode (i.e. generaly called the second-
pitch mode) is found to exponentialy increase as the FH decreases. This exponentially
increasing stiffness is a predicted result from the generalized Reynolds equation
governing the pressure field between the air bearing surface (ABS) and the disk. For sub-
5 nm FHs and relatively large perturbations or flying-height modulation (FHM), the air
bearing dider's response is no longer stationary in time, and frequency domain analysis

using the Fast Fourier transform (FFT) becomes insufficient. JTFA is used here with
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experimental and simulation data to show that the dider’s response is a non-stationary —
frequency modulated response. Simple 1DOF and 2DOF non-linear lumped parameter
models are used to reinforce the findings by JTFA, and the effects of dider response

amplitude (i.e. the level of non-linearity) and non-linear coupling were studied.

5.2 Preliminaries

5.2.1 Experimental procedure

The experimental data presented are from both diders A and B shown in Fig. 5.1. The
diders responses were measured near the pole-tip (PT) location, which is near the
trailing edge center (TEC) of the dider body. These measurements were made with a
laser Doppler vibrometer (LDV) measuring velocity, which was numericaly integrated to
obtain displacement. The bandwidth of interest is from 10 kHz to 2 MHz. The test
conditions for both experimental and simulation investigations were at the zero-skew

radial position.

5.2.2 Experimenta results

Figures 5.2a and 5.2b show the frequency domain responses of diders A and B calculated
by FFT analysis averaged 64 times in the frequency domain. Figure 5.2a indicates dider
A trangitions from steady-proximity to unsteady-proximity as the linear velocity is
lowered from 3.8 m/s to 3.6 m/s, and then it further transitions to intermittent contact as
the linear velocity is lowered to 3.3 m/s. Figure 5.2b shows a similar transition for dider
B. The PT FH for these diders at the test conditions are within the glide height of the disk

— approximately 34 nm. Torsion and bending modes of the dlider body at 1.25 MHz and
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1.6 MHz, respectively, are evidence of contact. Within the region labeled unsteady-
proximity, there was no sign of measurable contact. When the dliders fly in steady-
proximity, 23 air bearing resonance modes are excited at low amplitudes — 112 kHz and
240 kHz for dider A and 167 kHz and 225 kHz for slider B. However, as soon as the
diders transition to unsteady-proximity, many “resonance’ peaks appear in the
bandwidth of 10 kHz to 1 MHz. The frequency domain response of dider A appears to
have a fundamental resonance mode, f,, at 292 kHz and sub- and super-harmonics at nf,
(n=1,2,3,...) and (mfp)/2 (m=1,3,5,...). Slider B exhibits similar behavior, however, the
multiple modes do not show up at simple multiples of a fundamental mode. This region
of unsteady-proximity is of interest and is the regime that will be focused upon for the

following analysis.

5.3 Air bearing dider dynamics

5.3.1 Governing equations

An ar bearing dider's dynamic response is obtained by simultaneoudly solving the
generalized Reynolds equation to attain the pressure distribution over the ABS and the

equations of motion describing the rigid body motion of the dider body:

l

1 o, 1@ T 1
— h =6nd —(ph)+6nY h)+12m—(ph 51
ﬂx?éep Q‘ﬂxg 1y &P Qﬂyﬂ ™ (ph) ﬂy(p) ﬂt(p) (5.1)

mz = Fs +dp' pa)dA
A
1 G=M+fp- p)Ax, - x)dA (5.2)
A

Iff”= Msf +dp- pa)><yg_ y)jA
A
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where p is pressure, h is the local dider-disk spacing, mis the viscosity of the air, Q is the
flow factor, and U and V are the relative velocities in the x and y directions between the
dider and disk in Eq. (5.1). In Eq. (5.2), pa is the ambient pressure, and xg and yq are the
positions of the dider’s center of gravity. Fs, Mg, and Mg are the force and moments
applied by the suspension in the z, g and f directions. 14 and I; are the slider’s moments
of inertia and m is the dider’'s mass. Satisfying these equations smultaneoudly results in
the dider’s dynamic response in the vertica (2), pitch (g) and roll (f) DOF s to various
inputs. The above equations are based on an assumption of no contact between the dlider
and disk and are dependent on al the design parameters and flying attitude, and they are
highly coupled and non-linear. The CML Dynamic Simulator was developed to
numerically solve this set of equations. For small perturbations, the system of equations
can be accurately modeled by techniques such as linear modal analysis or perturbation
methods [17]. However, when perturbations from steady-state become relatively large,

the non-linearities of the equations of motion cannot be ignored.

5.3.2 Non-linear modal coefficients

For smplicity we only address the non-linear nature of the “vertica” mode's stiffness.
Although al the modal parameters are non-linear to some degree, the stiffness of the
“vertical” mode is the most non-linear one for sub- 5 nm FHs. The “vertical” mode's
stiffness was mapped out as a function of FH by adjusting the pre-load value to vary the
FH, and then linear modal analysis was preformed with extremely small perturbations to
attenuate any non-linear effects. Figure 5.3 is a plot of the stiffness as a function of FH at

the PT for the ABS shown in Fig. 5.1a This dlider has a FH of 4 nm at a linear disk
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velocity of 3.8 m/s under the simulation conditions. A power law curve fit can be applied
to the results giving a stiffness, k(FHpt), in units of MN/m as a function of FH at the PT,
(FHp7) in units of nm:

k(FHpr) = b(FHpr)? (5.3
For dider A, the coefficients b and a are determined to be 5.1 and —0.480, respectively.
Two important aspects of the non-linear nature of the air bearing film are: (1) as the FH
decreases, the stiffness increases exponentialy, and (2) the lower the FH, the greater non-
linear effects become from small perturbations. By only mapping out the “vertical”
stiffness as a function of FH we find that the stiffness is highly non-linear, especially for

low FHs.

When large FHM occurs, the “vertical” tiffness of the air bearing dider should change
instantaneoudly according to Fig. 5.3. There no longer exists a single resonance
frequency for the “vertica” mode and the larger the amplitude of the dider’s response,
the more non-stationary the signal becomes, hence the more difficult frequency domain

analysis becomes with the FFT.

5.4 Joint-time frequency analysis (JTFA)
In order to accurately represent the frequency content of a signal by FFT analysis, we
must assume the signal is stationary or wide-sense stationary. The FFT representation,

X(f), of asignal, x(t), can be written mathematically as:

X (f)= djx(t)e‘ 25t gy (5.4)
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A signd is stationary if it can be written as a discrete sum of sinusoids:

X(t) = & Accos[2pft +f,] (5.5)

According to Fig. 5.3, the dider's response can be approximately represented as a
discrete single resonance frequency in Eq. (5.5) and assumed to be wide-sense stationary
only if: (1) the FH is not below approximately 5 nm, and (2) the perturbations aout the
steady FH remain relatively small. However, if these conditions are violated, the response
of the dider will be highly non-stationary due to the time varying, continuousy
frequency modulated content of the signa according to Eq. (5.3), and then the response

can no longer be accurately represented by FFT analysis.

JTFA has been studied extensively in signa processing to analyze non-stationary signals.
More recently it has been introduced in analyzing dider responses to bump impacts [23]-
[25]. These studies have acknowledged the presence of a non-linear air bearing effect,
however, they explain and represent the non-linear aspects of the air bearing without a

physically and theoretically accurate explanation.

A different explanation is adopted here based on the linear reassigned Gabor method

[27], [28]. The Gabor representation can be expressed discretely by:

G,[n.mh]=3 xk]n'[k - n]e 2 (5.6)

where n and m represent the time-frequency plane and h is a Guassian window for
locdization of the signd in time. This windowing function is defined over an interval of
time, and the frequency content is calculated at the center of the window. JTFA can be

extremely powerful in representing non-stationary signals, however, its effectiveness is
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subject to interpretation. An example of its misrepresentation can be seen in Figs. 5.4 and
5.5. This numerically generated signa is sinusoidally frequency modulated between 0.05
Hz and 0.1 Hz at a period of 51.2 s as seen in the time domain plot in Fig. 5.4a and the
time-frequency plot in Fig. 5.4b. Due to the non-stationary nature of this signal, the FFT
representation is insufficient in representing the frequency content as seen in Fig. 5.4c.
The JTF representations are shown in Fig. 5.5. The differences between these two
representations are caused by the different windowing function lengths. The longer the
window, the less localized is the captured frequency content. It is seen that one needs a
window smaller than the period of the modulated signal in order to accurately represent

the frequency content of the signal by JTFA.

The JTF representations of the responses of diders A and B in unsteady-proximity are
shown in Fig. 5.6. It is seen that the responses are non-stationary with frequency content
continuously modulated as a function of amplitude or FHM. As the diders fly lower, the
frequency (i.e. stiffness) increases approximately according to the power law shown in
Fig. 5.3. Slider B exhibits a dightly more complex signa in both the JTF and FFT
representations compared to slider A. The cause of the multiple peaks in the FFT analysis
iS seen to be a product of the misrepresentation of the non-stationary signal. The
following two non-linear lumped parameter models are used to further investigate the

non-linear effects.
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5.5 Non-linear lumped parameter air bearing dider models
5.5.1 1DOF model
A 1DOF modd of the air bearing dider is inaccurate for modeling air bearing dider
dynamics. However, it can be useful to provide a basic understanding of the non-linear
effects. A schematic of the system is shown in Fig. 5.7, and the equation of motion for
unforced free vibration can be written as:

mz+cz+k(z2)z=0 (5.7)
where c is the damping constant, z is the FH with a zero mean (z = FH — steady state FH),
and k(2) is given by Eg. (5.3). The CML Dynamic Simulator can be constrained to a
1DOF system by increasing Iqand Is to prohibit the slider’s pitch and roll. Both the
1DOF model and the constrained CML Simulator were then used to simulate an impulse
response of the dider in the vertical direction with a large initiad perturbation chosen to
provide a minimum FH of approximately 1 nm. The FFT was then taken of the response,
and it is shown in Fig. 5.8 with the frequency axis normalized to the linearized resonance
frequency, fo. A non-symmetric fundamental mode appears near f,, and higher harmonics
also result from the non-linear stiffness. High correlation is found between the 1DOF
model and the constrained CML Simulator simulations. Figure 5.9 shows the effect of the
initiadl amplitude on the FFT representation of the 1DOF model. For a smal initial
perturbation (0.01 nm), the system behaves linearly showing a single resonance peak. As
the initiadl amplitude is increased, it becomes progressively more difficult to interpret the
FFT representation. JTFA can be used to show that this complexity is smply due to a

modulated frequency response of the dider. Figures 5.10a and 5.10b show the response
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and JTF representations due to a large impulse as smulated by the 1DOF model. Figure
5.10a uses a relatively long window length, h, while Fig. 5.10b has a relatively short
window length. Figure 5.10b accurately represents the frequency content of the signal
while Fig. 5.10a does not. Figure 5.10a is similar to what has been seen by others [23],
[26]. Initidly, the response amplitude is large and the JTF plot reveals a lower
fundamenta frequency and harmonics. As the response amplitude decays, the harmonics
disappear the fundamental frequency increases to the linear system’s resonance
frequency. This apparent decrease in the fundamental frequency is an artifact of
averaging the non-stationary signal over too long a time period by FFT analysis. This can
be seen in Fig. 5.11, which presents the FFT of the response of the undamped 1DOF as
the response amplitude increases. Another observation from Fig. 5.11 is the widening of
the fundamental peak as the amplitude increases, leading to an interpretation that greater
damping is obtained for larger response anplitudes. However, this is again an artifact, or

misrepresentation obtained by viewing the non-stationary signal with an FFT.

This 1DOF model and the constrained CML Simulator show complexities of the dider’s
response when viewed by the FFT are due to the non-linear nature of the air bearing, and
they can be explained by only considering the “vertical” mode's non-linear stiffness.
However, this model does not explain the sub- and super-harmonics seen experimentally

at mfo/2 (m=1,3,5,...) with dider A and the additional peaks with dider B.
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5.5.2 2DOF model

A 1DOF modd over smplifies the dynamics of the air bearing dider system at the PT
location. If we assume that the ABS designs are symmetric and the test condition is at @
skew, the roll nodal line will pass extremely close to the PT location, and therefore the
roll mode will not contribute to the response. However, there will then be two pitch
modes, both of which will contribute to the dider’s response at the PT location. This can
be modeled by a 2DOF model as shown in Fig. 5.12. The equations of motion of this

model for unforced free vibration can be written as:

mz+ 24k, (2,0) +k, |+ 2oc, +¢,]- 1adk,(z.a)- k,]- 1a7e; - ¢,]=0

1d - 12k, (2.0)- ko]- 122{c, - ¢, ]+1%0 ok, (2.0) + k. ] +179 {c, +¢,] =0 (5.8)
where ki(z,g) and c; are the stiffness and damping coefficients at the TE of the dider
body. Smilarly, k, and ¢, are the stiffness and damping coefficients at the leading edge

(LE) of the dider body. The only non-linear element of this system is the TE spring,

characterized by ki(z,g), which is a function of both zand g

k(za)=bxz- 1a)f (5.9)
Since the PT response will be a combination of both pitch modes, which contain the non-
linear spring, both modes will be non-linear and coupled. The stiffness values, kz and the
linearized value of k; were selected so as to obtain the same linearized modal frequencies
of the first and second pitch modes as seen in dider A. The ratio of the linearized second
pitch mode resonance frequency (f;) to the linearized first pitch mode resonance
frequency (f1) is defined by R=f,/f;. For this particular ABS design, R » 2.2. The damping
coefficients were chosen to fit the CML Simulator data. This 2DOF model can be

compared to the CML Simulator by looking at an impulse response of the dider. Here,
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the CML Simulator is no longer mnstrained as in the previous section. The results are
shown in Fig. 5.13 in both the time and frequency (FFT) domains. The frequency axis is
normalized by f,, which is defined to be the fundamental frequency, f, = f. Thereis a
high correlation between the 2DOF model and the CML Simulator. These results show a
complicated dlider response representation by the FFT. This 2DOF exhibits al the sub-
and super-harmonics a nf, (n=1,2,3,...) and a (mfy)/2 (m=1,35,...) as seen
experimentally for dider A. The FFT aso exhibits a split peak around f; due to the non-
linear coupling between the two modes. Figure 5.14 shows the amplitude effect on both
the impulse response and the undamped response. As the amplitude increases the degree
of non-linearity increases, causing the FFT representation to become less representative

of the system’s response.

Also, the resonance frequency ratio, R, has a drastic effect on the dlider’s response as
represented by FFT analysis. Figure 5.15 shows impulse responses for several vaues of R
varying from 1.7 to 3. In most cases the FFT exhibits severa peaks extending high above
the fundamental frequency, f, and, in some cases, below fi. Figures 5.16a and 5.16b show
the JTF representations of the responses for R equal to 2.4 and 1.7, respectively. Here it is
clearly seen that the frequency signature in the JTF representation changes drastically by
varying R. The response of dider A is closaly represented by the results shown in Fig.

5.16a with R » 2.2 and the response of dlider B closely resembles the results shown in

Fig. 5.16b with R » 1.35 as can be seen by comparing these figures to Figs. 5.6a and 5.6b.
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5.6 Discussion

When air bearing diders transition between steady flying to intermittent contact, an
unsteady-proximity regime exists where complexities of the dider’s response are seen in
the frequency domain. In this regime, the non-linearities of the air bearing dider system,
according to the generalized Reynolds equation, are not negligible. In fact, the “vertical”
resonance mode of an air bearing exponentially increases as FH decreases. This non-
linearity causes the dlider’s response to be non-stationary in time and the larger the
perturbations are from steady-state flying and the lower the FH, the more pronounced this
effect becomes. FFT analysis is a satisfactory means for analyzing the frequency content
of stationary or wide-sense stationary signals, however it becomes increasingly more

difficult to interpret FFT results the more non-stationary the signa becomes.

Linear reassigned Gabor JTFA was used to represent the diders’ responses obtained from
both experimental and smulation results. JTFA was used to show that the diders
responses were non-stationary and demonstrated that the complexity seen by FFT

analysis was due to non-linearities.

1DOF and 2DOF non-linear lumped parameter models were introduced to further study
the effects of the non-linearities. The 1DOF model was verified by comparing the
response to a constrained model simulated by the CML Simulator. This mode only
smulated the vertical motions of the air bearing dider while constraining the pitch and

roll motions. These models were used to show that super-harmonics of the fundamental
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linearized resonance frequency were caused by the non-linear stiffening of the air bearing
dider system. Also, the level of non-linearity was studied to understand the evolution of a
linear to a highly non-linear system and the associated complexities with FFT analysis.
This 1DOF modedl gave a basic understanding of the non-linear effect; however, it was

inadequate for completely explaining the experimental results.

A 2DOF model was introduced to more accurately model a dlider’s response, and it was
verified with the CML Simulator. The results show that both pitch modes kecome non-
linearly coupled, causing extreme complexities by FFT analysis. This model explained
the sub- and super-harmonics seen experimentally for dider A. Similar to the 1DOF
model, the level of non-linearity was again studied to observe the evolution of alinear to
a highly non-linear system and the associated complexities with FFT analysis. By
changing the linearized modal parameters, specifically the resonance frequency ratio, R,
we observed drastic differences in the dlider’s FFT frequency content. For some values of
R the non-linear response did not resemble the linear response by FFT analysis but

showed results similar to those of the experimenta response for dlider B.

5.7 Conclusion

These findings suggest that the non-linearities of the air bearing dider system cannot be
ignored for sub-5 nm FH diders and must be considered when modeling dider-disk
interface dynamics. When a dider is within proximity of a disk the complexities of the
dider's response can be explained by the non-stationary response, and FFT analysis

becomes an inadequate means for frequency domain analysis. A method such as JTFA
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must be used to accurately analyze the non-linear, non-stationary response of a dider
when it is in the state of unsteady-proximity. Contact between the dider and disk can
cause complexities of the dider’s response due to the additional boundary conditions
when viewed in the frequency domain, however, it is seen that contact is not a necessary

condition for producing this phenomenon.
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Fig. 5.1. ABS pictures of (@) dider A and (b) dider B.
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Fig. 5.2. Frequency domain averaged dlider velocity response for (a) dider A and (b)
dider B transitioning from steady proximity to unsteady proximity and intermittent
contact.
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Fig. 5.3. Non-linear “vertical” air bearing stiffness as a function of FH at the PT.
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Fig. 5.7. 1DOF model schematic.
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Fig. 5.8. The FFT’s of dider A’s impulse response simulated by the SDOF model and the

constrained CML Simulator.
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Amplitude Effect on the SDOF model due to an Impulse
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Fig. 5.9. The effect of amplitude (i.e. effect of the level of non-linearity) on the FFT

representation of an impulse response simulated by the 1DOF mode!.
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Fig. 5.11. Effect of amplitude (i.e. level of non-linearity) on the FFT representation of the
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CML vs ZDOF Model: Impulse Response
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Fig. 5.13. Impulse response of dider A simulated by the 2DOF model and the CML
Simulator shown in the (a) time and (b) frequency (FFT) domains.

117



(a) Amplitude EfMect on the I00F model due te an Impulse

—_— =01 nm
—Az0.1nm
— =1 1IN
A=2nm
i —fA=inm
o Il\._./" i NN
= I
NN
—
] 1 2 3 4
Frequency [£7,]
(b) Amplitude EMect on the Z00F model due to Undamped Free Vibration
| =001 M =—=A=0.5 nm
—A=1nm A=2 nm
—A=3nm

:

_J|l_ \,;._ 7
AN

= N~

FIN’

=

] 1 2 3
Freguency [#F ]

Fig. 5.14. Effect of amplitude (i.e. level of non-linearity) on the FFT representation of an
(@) impulse and (b) undamped responses of the 2DOF model.
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Fig. 5.15. The effect of non-linear coupling the FFT domain by varying R: (a) R=1.7, (b)
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Fig. 5.16. JTF representations of the 2DOF model with (a) R=2.4 and (b) R=1.7.
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CHAPTER 6

HEAD-DISK INTERFACE DYNAMIC INSTABILITY DUE TO
INTERMOLECULAR FORCES

Abstract

This chapter presents a nonlinear dynamic anaysis of the head-disk interface by
including intermolecular adhesion forces for sub- 5 nm flying ar bearing diders.
Experimental evidence shows that one of the major roadblocks in achieving ultra-low
flying-heights is the stability of the head-disk interface. It is found that the inclusion of
intermolecular forces between the dider and disk in modeling the head-disk interface
leads to dynamic instability of the dider. It is shown by a bifurcation diagram that a dlider
can eadsly be forced into unstable, high amplitude oscillations. It is aso shown that the
experimentaly observed spin-down — spin-up flying-height hysteresis, intermittent flying
instability, and “snapping” from stable to unstable proximity can be explained by the
inclusion of the intermolecular forces. A parametric study is conducted showing the
dependence of sability/instability on the variables. By understanding the effect each
parameter has on stability, we can achieve air bearing surface and disk morphology
system design guidelines. From this study it is found that the head-disk interface can
become unstable due to intermolecular forces below a flying-height of about 6 nm.
However, from the results of the parametric study, it is shown that a head-disk interface
can be designed such that it maximizes stability, athough the instability cannot be
attenuated completely. By minimizing the intermolecular adhesion forces and the flying-

height modulation, and by maximizing the air bearing stiffness and damping, we achieve
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maximum stability. Also, it is found that the stiffening effect of the air bearing film
increases the stability. The implications of this study are that the head-disk interface
stability is dramatically compromised in the sub- 6 nm flying-height regime and that the
glide-height of “super-smooth” disks will not only be a function of the disk’s morphology

but also the intermolecular adhesion force induced instability of the dider.

6.1 Introduction

In order to achieve a magnetic recording areal density of 1 Thit/in? it is expected that the
physical spacing between the media and transducer or flying-height (FH) will have to be
3.5 nm [7]. For a head-disk interface (HDI) to perform reliably, both tribologicaly and
magnetically, the fluctuations in the FH must be held to a minimum. One of the
roadblocks thus far for redlizing a 3.5 nm FH is the dynamic stability of the HDI. We
showed experimentally in Chapter 5 that a dider can transition from stable to unstable
proximity flying by decreasing the FH only dightly. Also, it has been widely observed
that a dlider’s touchdown and takeoff FH’s are not equal. This “snapping” effect between
stability and instability and the difference in a dider’s touchdown and takeoff FH's are
evidence of a complicated dynamica system when operating in the sub- 6 nm FH regime.
As the dider to disk spacing is decreased, the interface surface interactions are evidently
no longer negligible. Two adhesion models have been proposed to account for the
interactions between the dider and the disk: one is based on lubricant interacting with the
dider causing a meniscus force and the other is based on intermolecular forces between

the two intimate surfaces.
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Previous publications have studied the effects of lubricant on HDI stability and flying
characteristics [30] - [33]. Kato et. al. used an equilibrium meniscus force model in
simulations to account for the dynamic dlider-lubricant interactions [31] - [33]. However,
their use of this meniscus force model neglects some very important assumptions of the
model: extremely thin liquid lubricant film thickness ¢ 15 A) and the kinetic formation
of a meniscus. Generdly, lubricant is highly bonded to the disk surface, thus only a
fraction of the lubricant layer is available to behave as a liquid in the formation of a
meniscus making a meniscus more energetically difficult to form. Also, on the time scale
of interest for “bouncing’ or unstable proximity of the air bearing dider, the liquid
volume required to form the meniscus does not have time to be transported and is far

from the equilibrium state described by a kinetic meniscus formation model [34].

Intermolecular adhesion forces can be extremely large when two very flat surfaces come
within proximity. In fact, it has been shown that intermolecular adhesion forces are the
mechanism that alows gecko lizards to “stick” on molecularly smooth surfaces [35].
Therefore, when flying an extremely smooth air bearing dider over a “super-smooth”
disk a ultralow FH's, intermolecular forces must be accounted for. Thus far,
publications investigating the effect of intermolecular forces on the HDI have been based
on static analysis [36] - [38]. It has been shown that for air bearing diders flying in the
sub- 5 nm regime, intermolecular forces can become important and cause a significant
decrease in static FH [36]. However, the implications of intermolecular forces on the

dynamic stability of the HDI have not been published.
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In this chapter we present some experimental evidence of the abrupt stable to unstable
flying transition and the FH hysteresis, which are measures of instability for the HDI. We
aso show that even for non-lubricated disks HDI instability occurs, suggesting this
phenomenon is more likely to be caused by intermolecular forces than by meniscus
forces. By accounting for the intermolecular forces through a Lennard-Jones potential
and representing the HDI by a lumped parameter one degree-of-freedom (1DOF) model,
we show that the system becomes highly nonlinear in the proximity region. It is shown
that the dynamics of this nonlinear system are extremely complicated and can even be
chaotically unstable. From a nonlinear dynamics analysis with nomina values and from a
parametric study, the variables implicating the HDI stability/instability are discussed,

including design guidelines to minimize HDI instability due to intermolecular forces.

6.2 Experimental results

It has been observed that when the FH of a dider is gradually reduced to within proximity
of an extremely “super-smooth” disk the dider can be easily set into unstable high
amplitude oscillations. Figure 6.1a shows the absolute displacement of the trailing edge
center of dider 2 shown in Fig. 6.2 flying in proximity of the disk at linear velocities of
3.6, 3.4 and 3.2 m/s. This result is measured by a laser Doppler vibrometer (LDV) in the
bandwidth of 10kHz — 2 MHz. It is seen that the dider transitions abruptly from stable to
intermittently unstable and then further to indefinitely unstable as the velocity is lowered
dightly. The high amplitude oscillations of the dider appear to be salf-excited as opposed
to asperity contact induced. This “snapping” effect from stable to unstable suggests

complex dynamics of the HDI system.
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It has been widely observed that as a dlider is forced into and back out of contact by
decreasing and increasing disk speed or pressure a FH hysteresis is present (i.e,
touchdown FH ! takeoff FH) [39]. Experiments investigating HDI instabilities as a
function of the FH were conducted on a TTi T1000 spinstand for various dliders and
disks while controlling the FH with the spindle speed of the disk. The diders instability
and contact was initially measured by both LDV and an acoustic emission (AE) sensor,
however, the LDV was found to be much more sensitive than the AE sensor. Therefore,
the dliders vertica motion was measured by a LDV and highpass filtered at 60 kHz to
obtain air bearing resonance vibration and dider body vibration modes to detect unsteady
proximity and contact, respectively. This signa was then acquired through a RMS circuit
sampled at 4 kHz. A typical FH hysteresis can be seen in Fig. 6.1b, which shows the
diders RMS vertical velocity as the disk spindle RPM is lowered until the slider comes
into unsteady proximity and/or contact with the disk (touchdown) and then the disk
spindle RPM is increased and the dider ceases to contact and flies in steady proximity
over the disk (takeoff). It has been observed that the touchdown RPM is lower than the
takeoff RPM or the touchdown height (TDH) is less than the takeoff height (TOH). This
difference in RPM or FH is what constitutes this hysteresis (TOH - TDH). Severa sets of
experiments were conducted using four different sub-ambient pressure pico diders and a
set of disks with varying lubricant thickness. The four air bearing surfaces (ABS) are
shown in Fig. 6.2. Two types of disks were used in this experiment: B2 with Ry = 0.3 nm
and B4 with Ry = 0.2 nm both with glide-heights of 2.5 to 4 nm. The disks were al

processed in exactly the same manner with the only variation being the lubricant

125



thickness: 0 (not lubricated), 8, 12, 16 and 20 A. The lubricant is a perfluoropolyether
(PFPE) with a high bonding ability to the disk of approximately 80%. For every test, new
samples were used so as to not affect the experimental results by lubricant pickup on the
dlider, wear and other factors. Figures 6.3 through 6.6 summarize the experimental results
for diders 1 — 4. The bar graphs show the touchdown, takeoff, and hysteresis RPM’s as a
function of lubricant thickness. It is interesting to notice that for all of the lubricant
thicknesses tested, there is no trend in the FH hysteresis as a function of lubricant
thickness. What is common among all the tests is that a FH hysteresis is present for al
disks and diders tested including the non-lubricated disks and that the takeoff RPM was
always higher than the touchdown RPM. This FH hysteresis can be used as a measure of
instability of the HDI. For example, take the case of dider 3 flying over the disk with 0 A
of lubricant (see Fig. 6.5). If the dider is flying at any speed between 3500 RPM
(touchdown) and 8000 RPM (takeoff) the dider has the ability to become unstable and
remain unstable until the RPM is increased beyond the 8000 RPM (takeoff). Also, the
intensity of the diders vibration can be measured from the RMS value of the LDV signal.
For diders 1 — 3, the intensity of vibration saturated the data acquisition system.
However, dlider 4 exhibited very low vibration amplitude, as seen in Fig. 6.7 compared to
the other diders. The main difference between diders 1 -3 and 4 is the small diamond-
like carbon pads distributed across the entire ABS. These small pads on dlider 4 decrease
the actual proximity/contact area substantially and lead to less adhesion force, which
could explain the results seen in Fig. 6.7. Also, the diders vibration amplitude in Fig.
6.1b is asymmetric, showing that the maximum dlider vibration does not occur when the

RPM is the lowest.
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Both the “snapping” effect from steady to unsteady proximity flying and the presence of
a FH hysteresis are new phenomena not well understood. By ssimulating a quasi-static FH
and the touchdown-takeoff process, accounting for al of the forces shown in the free-
body diagram in Fig. 6.8, we would not predict this “snapping” effect from stable to
unstable proximity or the FH hysteresis. Therefore to explain the above experimental
observations, it appears that additional forces at the HDI can no longer be neglected for

such low FH’s.

6.3 Adhesion forces at the HDI

With FHs decreasing and the probability of contact increasing, a better understanding of
the interface interactions are becoming more important in developing a reliable HDI.
Also, with the intimate surfaces of the dider and disk becoming extremely smooth (i.e.,
close to atomically smooth) and with the presence of a thin layer of lubricant on the disk
surface, the interface interactions become very complicated. Generaly the interface is a
diamond-like carbon (DLC) coated dider surface — the air — a lubricant interface during
flying, and a DLC coated dlider surface — lubricant surface interface during contact. If the
disk is not lubricated, the interface would include the DLC coated disk instead of the
lubricant layer. The source and nature of the interface forces acting between the dlider
and the disk can be very complicated. Such forces can be generated through electrostatic
charging, tribocharging, and adhesion. In this chapter we will only consider adhesion

forces acting at the interface.
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At least two types of adhesion forces can be generated at the HDI: capillary (meniscus)
and intermolecular. In order for meniscus forces to be generated, a liquid layer must be
present at the interface. In the case of the HDI, the liquid layer would consist of primarily
the mobile lubricant and possibly a very thin condensed water vapor layer. Also, the
formation of a meniscus force is kinetic, hence, highly time dependent [34]. It has been
shown through experiments and simulation that the meniscus force is negligible when the
dider and lubricant are in contact over a short enough time period and increases to a
steady-state value over a time period on the order of minutes [34], [40]. Under dynamic
instability of the dlider, it can be seen from Fig. 6.1a that the dider is in contact with the
lubricant layer for less than 800 ns; far too short to form a measurable meniscus force as
predicted from a kinetic meniscus formation model and previous experimental results.
Also, for the high velocity vibration of the dider under unstable proximity, it is still
unknown if the lubricant behaves as a liquid or a solid when the dider impacts the
[ubricant. Our experimental results agree with the above anaysis. If meniscus forces were
partially the cause of the additiona interface forces, then we would expect the FH
hysteresis to increase as the lubricant thickness increases, and little or no FH hysteresis
should exist for an interface without lubricant. Our experimental results shown in Figs.
6.3 — 6.6, show no clear trend in the FH hysterisis with increasing lubricant thickness and

that a FH hysterisisis present even for an interface without lubricant.

Meniscus forces and/or other lubricant interactions could possibly cause new dynamic

HDI phenomena; however, the above experimenta results showed very little correlation

between a meniscus force effect and instability. For the following analysis the

128



contribution of adhesion due to meniscus formation under the unsteady proximity regime
seems unlikely and adhesion due to intermolecular forces, which is time independent for
unsteady proximity of the HDI, is considered to be the sole contributor to adhesion. To
get an idea of the magnitude of the adhesion force generated by intermolecular forces we
focus on a particular system. For a flat area, As = 15,000 nm? (approximate area of the
alumina at the trailing edge of dider 2) placed parald to a flat disk surface, the van der
Waals intermolecular adhesion force as a function of separation distance, D, is [41]

e A 0§
F = +X 6.1
Coni A (61)

where A is the Hamaker constant assumed to have a value in the range of 0.4x10™° -
4x10™° J for condensed phases across air or vacuum [41]. Figure 6.9 shows the adhesion
force as a function of separation distance for the range of Hamaker constants given
above. It is seen that at a separation distance of 3 nm, the adhesion force can range from
0.12 — 1.2 gm, which is quite significant at the HDI. This example does not take into
account the dlider’s attitude, crown, camber and twist or roughness effects. In the
following anaysis we account for the dider geometry parameters and will comment on

the effect of dider/disk roughness in the discussion section.

6.4 Head-disk interface model

6.4.1 Modeling intermolecular forces

For modeling of the intermolecular forces, we adopted the method of Lin and Bogy who
implemented an additional force into the CML Static Air Bearing Simulation Code via
the Lennard-Jones potential [36]. The Hamaker constant, A, was taken to be 10*° J and

the repulsion constant, B, was taken to be 107 JmP. This method takes the slider air
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bearing geometry and flying attitude into account, however, it assumes mathematically
smooth surfaces. The fixed attitude solution is found by fixing the attitude of the dider
(FH, pitch, and roll) and solving for the forces acting on the dider. When the forces and
moments acting on the dlider equal those of the suspension, the static solution is obtained.
Figure 6.10a shows the resultant intermolecular force acting on the pico size ABS shown
in Fig. 6.2 (dider 2) as a function of minimum FH for a roll angle of 1.5 nrad and pitch
angle of 40 nrad; similar to the conditions under which dlider 2 exhibits unstable
proximity. It is seen that as the FH decreases, an attractive force becomes present around
5 nm and by further decreasing the FH, a strong repulsive force becomes present, as
expected. The Lennard-Jones model does not alow for physical contact between the
dider and disk. The Lennard-Jones modeled force becomes unbounded as the spacing
goes to zero due to the repulson term to simply model physical contact. This
smplification in the repulsion term modeling physical contact will be commented on in
the discussion section. However, it will be shown that even though the Lennard-Jones
repulson and physical contact are modeled differently, they predict smilar dynamic

instability results.

6.4.2 Static force analysis

Figure 6.10b shows the resultant force exerted on the dider as a function of minimum FH
for the fixed attitude solution. The force consists of the positive and negative (sub-
ambient) air bearing forces and the adhesion and repulsion forces from the Lennard-Jones
potential. When the intermolecular forces are accounted for there can exist up to three

equilibria — two stable and one unstable. It is seen that for small perturbations about the
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nominal FH solution of 7 nm, the solution is stable. However, at 2.8 nm, there exists an
unstable equilibrium and another stable equilibrium at 0.2 nm. These additional equilibria
suggest a very complicated nonlinear system, which is the focus of the following

dynamic analysis.

6.4.3 Nonlinear one degree-of-freedom HDI model

In order to smplify the HDI for the following analysis, we used the simple lumped
parameter 1DOF model depicted in Fig. 6.11. In this model, the air bearing dider system
is modeled with a nonlinear spring, Kk(s), mass, m, and proportiona damping, c. The
nonlinear air bearing stiffness is a function of the dider — disk spacing, s, and takes the

power-hardening form
k(s) =b xs* (6.2)

where a and b are constants found by matching with the CML dynamic simulation code
as was shown in Chapter 5. The air bearing force can be found from

Fo (X)=-k(s)>x=-b xFH ¢+ x- d ) xx 6.3)
where FHg is the steady-state FH without accounting for the intermolecular force and x is
the dider's absolute displacement: x = s + d —FHs. The disk topography, d(t), can be
modeled in various ways; as a numerically generated random wavy surface, a harmonic
excitation, or using an experimentally measured disk topography. The intermolecular

force, Fvaw, acting on the dider takes the form

AC BC AC B¢

F (s)=- S+ 2=
a9 R (FHL+x- d)’ ' (FH +x- d)’ (59
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where A" and B” are constants found from curve fitting plots similar to Fig. 6.10a where
the first term is the attraction force and the second term is the repulsion force. The
equation of motion for this system can be written in terms of the diders absolute

displacement, x
mx + X + (K - Fgy )X+ (Fqy - K)d- cd =0 (6.5)
Due to the intermolecular force in Eq. (6.4) and the nonlinear spring stiffness in Eq. (6.3),

Eqg. (6.5) becomes highly nonlinear, and due to the addition of the intermolecular force,

the solution is not simple.

6.5 Head-disk interface nonlinear analysis

6.5.1 Stability

Stability of the HDI model can be analyzed by considering the energy of the system. If
we assume no forcing, d(t) = 0, and no damping, ¢ = 0, the system is conservative and a
potential energy method can be used to show equilibria and local stability. The potential
energy of the system, Usg, IS comprised of the potential energy of the air bearing spring,
Uab, and the potentia energy of the intermolecular force, Uyqaw, derived from the Lennard-

Jones potential. These conservative forces are related to their potential energies through

U
F(x)=- —
w=-1

(6.6)
The total potential energy can be found by integrating the air bearing force, Fap, and the

intermolecular force, Fyaw
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The criteria for equilibrium, x , is satisfied when the system’s potential reaches an

inflection point

U
ﬂxsys =0 (6.8)

and the equilibrium point is stable if the potential evaluated a equilibrium is a loca
minimum

17U,
%

>0 (6.9)

and is unstable if the potential evaluated at equilibrium isaloca maximum

U,
x*

<0 (6.10)

For the nomina coefficients used, as shown in Table 6.1, equilibria and stability as a
function of FHss can be obtained. Figure 6.12 shows the potential energies of the air
bearing, the Lennard-Jones potential and the total system potential at FHss = 7.75 nm as a
function of spacing. It is seen that when the air bearing and the Lennard-Jones potentials
are added, the system has one equilibrium, FHe, and it is stable, where FHeq = X +FHss.
In Fig. 6.13, the total potentials for FHss = 7.75, 5.75, 4.75, and 1.25 nm are shown as a
function of spacing. It is seen, at FHss of 7.75 nm, one stable equilibrium exists at FHeq =

7.75 nm. At FHss = 5.75 nm, there exists two stable and one unstable equilibria at FHe =
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5.75, 0.35, and 0.7 nm, respectively. At FHss = 1.25 nm, the air bearing is overcome by
the intermolecular force and only one stable equilibrium exists, FHeq = 0.25 nm. The
equilibria and stability as a function of FHss can be summarized in the bifurcation plot
shown in Fig. 6.14. It is seen that when FHgs is greater than 6.3 nm only one equilibrium
exists, x;, the nomina FH solution. Between FHss of 1.35 nm and 6.3 nm, three
equilibria exist — two stable, x;” and xs~ and one unstable, x, . At FHs of 1.35 nm, only
one stable equilibrium exists, xz . The regime where the three equilibria exist is of utmost

interest — both theoretically and for practical application.

Between FHgs of 1.35 nm and 6.3 nm in Fig. 6.14 three equilibria exist and within this
regime the potential energy takes on a specia form generaly caled a “double-wdl” or
“two-well” potential. Double-well potential systems have been studied for the past two
decades in the field of nonlinear dynamics [42] - [45]. Many systems have exhibited
double-well potentias with very interesting dynamics, from mechanica systems to super
conductivity. Within this regime, the dynamics of the system are extremely complex and
can even be chaotic [42] - [45]. A detailed nonlinear dynamics analysis of this system
investigating periodic solutions, limit cycles, and trangitions to chaos are interesting to
study, however, the practical issues associated with the HDI would be over shadowed in
such a complete study. The detaills concerning the HDI stability and instability are of

more interests to us here, and they are discussed in detall.
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6.5.2 Unforced system

This system is considered to be unforced when the disk forcing is zero, d(t) = 0 (e.g. for a
perfectly smooth disk surface). From the bifurcation plot in Fig. 6.14 we observe one
very important characteristic of the unforced system. This observation can be explained
by a touchdown (TD) - takeoff (TO) simulation by decreasing and then increasing the
FHss. From Fig. 6.14, the FHe's can be found as a function of FHss as the FHs is
lowered from 10 nm to 1 nm and then increased back to 10 nm. As the FHss is decreased
from 10 nm to 1.35 nm, the equilibrium follows the nominal solution, x; (a-b). However,
at the FHs of 1.35 nm, the air bearing is overcome by the intermolecular force and the
nominal solution is annihilated by x, and the dlider “snaps’ down to the other stable
equilibrium, x3~ (b-c). Upon increasing the FHg back to 10 nm, the equilibrium solution
will remain dong xs  until it is annihilated by x., at a FHss of 6.3 nm (d-€). At FHss = 6.3
nm the equilibrium solution “snaps’ from xs to x; , back to the nominal solution (e-f).
This is illustrated in Fig. 6.15, which depicts an unforced TD — TO simulation showing
the dider remaining “stuck” on the disk until the FHss reaches 6.3 nm. The difference
between the FHg at which the dider becomes “stuck” while decreasing the FHss and
where the dider becomes “unstuck” while increasing the FHs is the unforced “FH
hysteresis’. It is seen that for the unforced system the FH hysteresis is bound by the

regime were multiple equilibria exist — namely the three equilibria, X, X2, and X3 .

Figure 6.16 shows a sketch of the energy surface in state-space (X versus x) and the

tragjectories projected onto the state-space within the regime where the multiple equilibria

exist, 1.35 < FHs < 6.3 nm. Since the unforced and undamped system is conservative, the
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systems trajectory remains on a level contour of the energy surface. Depending on the
initial conditions the system will behave differently. In Fig. 6.16b, it is seen that for a
relatively low energy state, E < Ej, with initiadl conditions near xs or x;’, the slider
oscillates about xs or x; , respectively, with small amplitudes. However, if enough initial
energy is applied, E > E, the system remains in high amplitude oscillations about both x;"
and xs . The energy state that separates the oscillations about x;” or xz and oscillations
about both x;” and xs, Es, is defined as the homoclinic orbit or separatrix shown in Fig.
6.16. By adding damping, c, the systems trgectory would end up spiraling down into
either x;” or xs depending on the initial conditions as seen in Fig. 6.17. Two sets of initial
conditions were chosen to illustrate the sengitivity to initial conditions: (FH , velocity) =
(6.3 nm, -0.3945 mnvs) and (FH , velocity) = (6.3 nm, -0.394 mms). It is seen that one
of the trajectories spirals into x; and the other spiras into xs . The dynamics associated
with the unforced system are rather simple as described above. However, once this type
of system is forced, the dliders response becomes very nontrivial and highly

unpredictable.

6.5.3 Forced system

Forced double-wel potentia systems have been found to exhibit strange attractors
causing chaos and sensitivity to initial conditions, however, the important result for the
HDI can be summarized as follows [42]-[45]. As long as the model of the HDI exhibits a
double-well potential the forced solution can be periodic, non-periodic, or chaotic for
simple harmonic forcing. The homoclinic energy level separating oscillations about x;” or

x3 and x;” and x3 can no longer be used to approximately predict the slider’s response.
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That is, for the nominal parameters used, this system can exhibit non-predictable chaotic
dynamics between FHss of 1.35 nm and 6.3 nm. The slider motion is defined as stable if
it oscillates about the x;~ equilibrium and unstable of all other motions. This choice of
terminology describes the nomina flying condition as stable and large chaotic dider

oscillations as unstable.

6.5.3.1 Touchdown — takeoff simulations

The topography of a disk is composed of harmonic and non-harmonic content at al
wavelengths or frequencies as the disk spins. Figure 6.18 shows the experimentally
measured frequency spectral contents of two disk’s morphology as seen by the dider as
the disk spins. Both disks are “super-smooth” media, however, it is seen that disk A is
smoother than disk B across the entire spectra band. Figure 6.19 shows a TD — TO
numerical simulation that is similar to that shown in Fig. 6.15, however the system is now
forced with the measured disk topography from disk A. It is found that while decreasing
FHss the slider “snaps’ from stable motions about x; into chaotic high amplitude
oscillations. Upon increasing FHss, stable slider motion is resumed about X, , exhibiting a
FH hysteresis. Because this system exhibits strange attractors in the sub- 6 nm FH
regime, the characteristics of the chaotic dider motion are highly dependent on the disk
forcing. However, for all disk topographies investigated an unstable motion exhibiting a
FH hysteresis was aways present due to the intermolecular force. By qualitatively
comparing the experimenta result in Fig. 6.1b with the smulation results in Fig. 6.19 we
see that the maximum amplitude of vibration does not occur at the lowest FHss, but rather

it occurs after the minimum FHss has been reached and increases with increasing FHss.
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6.5.3.2 Transition between stable and unstable flying

Experimentaly it was shown that by changing the FH only dightly the transition between
stable and intermittent unstable flying was abrupt (see Fig. 6.1a). Numerica simulations
have also been carried out showing this phenomenon in which the FHgs is held fixed.
Within the regime where the system exhibits a double-well potentia, it has been shown
that the dider can be easily forced into unstable high amplitude oscillations. Figure 6.20
shows the dider motion exhibiting intermittent instability at FHss = 3.35 nm. Figure 6.21
shows a similar simulation without including the intermolecular force. These two figures
show that the intermittent instability here is due to the inclusion of the intermolecular
force. By dightly increasing the FHss, the instability ceases to exist and by dightly
decreasing the FHss, the instability will persist indefinitely. Under these conditions, the
dider has the ability to oscillate about xs , X', or both x3* and x;” and can switch between
oscillation states chaotically. Figure 6.22 presents a plot of the state-space showing
ocillations about xs, X1, and both xs and x; . Figure 6.23 shows the chaotic nature of
the system as it switches between oscillation states. It is seen that when the system
becomes unstable, the most likely oscillation state of the dider is oscillation about both
x3s and x;". It is possible for the slider to oscillate about xs~ but due to the disk forcing,
the dider cannot continue oscillating about this equilibria. If a dider could remain in the
state of oscillation about xs, a stable sub- 1 nm FH dlider could be realized. However,
due to disk waviness, roughness and glide-height, the result is high amplitude unstable

oscillations.
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6.6 Parametric study

The above 1DOF system used to smulate the HDI is greatly smplified to give an
understanding of the effects of adding intermolecular forces in the system and to show
how certain parameters affect HDI dynamic stability. However, due to the assumptions
made in reducing the HDI to a 1DOF system, the results must be viewed as merely
gualitative. It is desired to make the HDI as stable as possible, and thus far it has been
shown that stability can be highly compromised when flying in the sub— 6 nm regime due
to the presence of intermolecular forces. Nomina values have been used in the
simulations presented. Next we present some qualitative results on how these parameters

affect the HDI stability as they are varied.

It was shown that the dider has the ability to become unstable when multiple equilibria
exist. Therefore, if it were possible to exclude this regime of multiple equilibria, the
dider system dynamics would be much smplified, and not exhibit instability and a FH
hysteresis due to intermolecular forces. However, the incluson of the intermolecular
forces in the modeling will always predict this regime. The bifurcation plot in Fig. 6.14 is
useful in visualizing the regime where multiple equilibria exist, and the model e ements
controlling the location and length of this regime are both the intermolecular and the air

bearing forces.

6.6.1 Intermolecular force

The cause of the complicated dynamics of this system stems from the intermolecular

force. By smply scaling the intermolecular force in Eq. (6.4) as shown in Fig. 6.24, we
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obtain the corresponding bifurcation plots as shown in Fig. 6.25, which clearly illustrates
its effect on HDI stability. It is seen that by decreasing the intermolecular force to one-
fourth and one-half its nomina value, the multiple equilibria regime shrinks from 1.35 <
FHss < 6.3 nm to 0.9 < FHss < 1.8 nm and 1.1 < FHs < 3.3 nm, respectively. These
decreases result in much smaller FH regimes where the system has the ability to become
unstable. On the other hand, by increasing the intermolecular force by two times its
nominal value, the multiple equilibria regime increases to 1.65 < FHss < 12.3 nm. Figure
6.26 presents plots of the dider’s motion flying over a measured disk topography at a
FHss of 3 nm for different amplitudes of the intermolecular force. It is seen that as the
intermolecular force increases, so does the instability of the HDI. Figure 6.27 shows the
TD — TO FH hysteresis simulation results as a function of intermolecular force
amplitude. It is seen that as the intermolecular force is increases, so does the FH

hysteresis.

Even though the intermolecular force cannot be attenuated completely, there are ways to
reduce its effect. Decreasing the effective dider area within proximity of the disk is the
most effective method (recall Eq. (6.1)). This reduction in area can come from texturing
the ABS, through design of the ABS rails, form-factor (nano, pico, femto, etc.) and by
dider attitude. Figure 6.28 shows the intermolecular force as a function of minimum
gpacing for different pitch angles and form-factors for two different ABS designs. It is
seen that the larger the rear ABS rail within proximity of the disk surface, the higher the
adhesion force. Also, other factors such as crown, camber and twist will substantially

affect the adhesion force. By simply decreasing the rear ABS pads area, the adhesion

140



force decreases, however, for manufacturability, flyability, stability, and other design
criteria, the rear ABS pad has to have certain minimum dimensions. Also, the
intermolecular force scales proportionally with the Hamaker constant. In this analysis, a
nomina value of A = 10%° was used, however, this value is only approximate. A more
accurate value of the Hamaker constant needs to be obtained for the HDI. Also, surface
chemistry could aso change the Hamaker constant between various lubricants and DLC
coatings. Some recently published values of the HDI Hamaker constant are A =
0.724 10™ J with lubricant on the disk surface and A = 1.80" 10*° J without Iubricant at
the interface [38]. These values are close to what has been used in this analysis; therefore
it is expected that the adhesion force will always be present below 3.5 nm FH'’s causing

possible HDI instabilities.

6.6.2 Air bearing stiffness: nonlinear

The air bearing stiffness is another variable affecting the nature of multiple equilibria
The air bearing stiffness is a function of the ABS design, suspension pre-load, dider
atitude, relative disk velocity, and other design parameters. Generaly, the linearized
“vertical” resonant mode of vibration of an air bearing — dider system is between 150
kHz and 400 kHz. For large oscillations, the dlider exhibits a power hardening stiffness as
modeled in Eq. (6.2). A change in the stiffness by factors in the range of 0.25 — 4 changes
the linearized resonant frequency half to twice the nominal value: 108.6 — 434.4 kHz. The
bifurcation plots associated with the factors 0.25 and 4 are shown in Fig. 6.29. A series
of smulations was performed at a FHss of 3 nm showing how the stiffness affects the

HDI stability. It is seen from the results shown in Fig. 6.30 that stability increases as the
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air bearing stiffness increases. Also, the TD — TO FH hysteresis was simulated as a
function of air bearing stiffness, and the results are shown in Fig. 6.31. The trend between
the FH hysteresis and air bearing stiffness does not appear to be monotonic. This is due to
the complex disk forcing function and the varying air bearing resonant frequency as the
giffness changes. The disk topography frequency spectra is not uniform across the
frequency band, and at different resonant frequencies, the disk affects resonance
differently. However, there is an overall decreasing trend of the FH hysteresis as the

stiffness is increased.

6.6.3 Air bearing stiffness: linear

If the air bearing stiffness were linear and not a power-hardening nonlinear spring as
described in Eq. (6.2), the bifurcation plot would be affected as would be the stability. In
Fig. 6.32 the bifurcation plots are shown for linear stiffnesses of k.= 3" 10° N/m, k =
ko*2, and k = Kko,*4. In comparing these results with those for a nonlinear air bearing
stiffness in Fig. 6.29 we see that the FH regime where al three equilibria exist (unstable
regime) is larger for the linear stiffness cases. By increasing the extent of the unstable
regime, we know that the stability of the HDI would be less. We conclude that the power-
giffening air film of an actua air bearing is extremely beneficid in increasing the

stability of the HDI.

6.6.4 Air bearing damping

As with the air bearing dtiffness, air bearing damping is aso a function of many

parameters. Generally, the linearized “vertical” mode damping is between 1 % to 5 % of
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critical damping. In the previous two sections the bifurcation plots were used to show the
degree of ingtability. On the other hand, air bearing damping does not change the
bifurcation plots. In nonlinear systems, generally, more damping enhances stability.
Indeed we find similar results here. Figure 6.33 presents the effect of damping on dider
instability a a FHss of 3.4 nm as the damping is varied from 0.46 to 3.64 %. It clearly
shows that the higher the damping, the more stable the HDI becomes. Also, the
dependence of the FH hysteresis on damping as determined by TD — TO simulations is
summarized in Fig. 6.34, which shows that the FH hysteresis decreases as the damping is

increased.

6.6.5 Disk topography

As seen in Fig. 6.18, disk topographies can vary substantially depending on substrate
material, texturing, and other process conditions. The forcing and initial conditions of
nonlinear systems of the type described here are the most sensitive variables to their
chaotic nature that leads to the unstable oscillations. When the HDI model exhibits a
double-well potential chaotic oscillations can arise even when it is forced by a single
harmonic excitation. Figure 6.35 shows a plot of single frequency disk forcing amplitude,
A4, where the dider steady-state motion becomes unstable versus disk forcing frequency,
fq, where d(t) = Assn(2pfy) and the initial conditions are (FH , velocity) = (3.4 nm, O
mnvVs) a a FHs =3.4 nm. Above the curve shown in Fig. 6.35, the dider’s response is
unstable and below it, the response is stable for a single frequency excitation. It is
observed that the most sensitive forcing frequency is around the systems linearized

resonant frequency of approximately 175 kHz. Unfortunately a technique such as
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superposition cannot be used to extend the results in Fig. 6.35 to the complicated disk
forcing by an actual disk. Figure 6.36 compares the TD — TO FH hysteresis simulation
results for the two disks A and B described in Fig. 6.18. It is observed that as the FHss
transitions from 12.65 — 4.65 — 12.65 nm, disk B forces the HDI to transition into
unstable dider oscillations while the forcing of disk A is too smal at these FHs to
trangtion the dider into unstable oscillations. This result suggests that wavier and
rougher disks result in HDI ingtability at much higher FHss values. By just varying the
amplitude of the waviness and roughness of disk A we perform another parametric study
with the results presented in Fig. 6.37, which shows the TD — TO FH hysteresis
smulations for amplitude multiples of 0.25 to 4 times its origina topography. It is
observed that as the disk topography amplitude is increased the FH hysteresis remains

relatively constant at OFH » 1 nm, but the unstable response amplitude increases.

6.7 Discussion

Experimental evidence of low FH dider instabilities is evident from two effects. (1) the
“snapping” effect from stable to intermittently unstable and further to indefinitely
unstable proximity and, (2) the presence of the TD — TO FH hysteresis. Adhesion forces
due to capillary (meniscus) effects appear unlikely to be the cause of these ingtabilities
due the short time duration the dlider is in contact with the lubricant film. Also, the
experimental FH hysteresis results showed no dependence on lubricant thickness, for the
thickness range tested. On the other hand, the time independent intermolecular adhesion
force was shown to be significant when a dider and disk come within proximity of each

other. The Lennard-Jones model was used to incorporate additional adhesion and
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repulsion forces into the CML Static Air Bearing Smulation Code solutions and into a
simple lumped parameter 1DOF model. The 1DOF model was used for investigating the
experimentally observed nonlinear dynamics associated with the HDI. It was shown from
bifurcation plots of the system, hat as the FH approaches sub— 6 nm, multiple equilibria
exist. Also, for lower FH, the intermolecular force overcomes the air bearing load
capacity and the dider “snaps’ down onto the disk. From a static analysis, one would
expect that the only effect caused by intermolecular forces are at low FH's would be a
static spacing loss, and by further decreasing the FH, the intermolecular forces would
overcome the air bearing load capacity (Fig. 6.10b). However, a much greater effect
arises when including the intermolecular force that has not been previously addressed —
that of dynamic instability. It was shown that the possibility of the HDI becoming
dynamicaly unstable is restricted to a regime where multiple equilibria exist, which
extends into FH's much higher than those resulting from static analysis. The dynamics
associated with a double-well potential system can be quite complicated when the system
is forced, as was shown. The chaotic characteristic of the system with a double-wel
potential is what causes the HDI instability due to intermolecular forces. By numericaly
investigating both constant FH and the hysteresis TD — TO process, we were able to
reproduce the experimental findings of HDI instability and FH hysteresis. Also, several
gualitative features demonstrated by the experimental and simulation results are in
agreement, including the effect of adding small DLC pads to decrease the dliders
instability vibrations (decreases adhesion forces) and the asymmetric dider vibration

amplitude during the TD — TO process.
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These results imply that the HDI has a fundamenta lower limit of FH at which the dider
remains stable. This lower limit is a function of not only the disk morphology but aso the
ABS design and dider attitude. For the nomina values studied here it was shown that the
dider trangitions into unstable oscillations at a FHss of 3 nm and 4.6 nm while flying over
two different disks, A and B, respectively. It was shown by a parametric study that the
FH at which instability occurs, as well as the severity of the oscillations, change with the
parameters. The effect of the parameters discussed must be understood to obtain a stable
HDI design when flying extremely low. Also, it was shown that the power-gtiffening
feature of an air bearing increases the HDI stability. In order of importance, we found
that the following parameters can be adjusted to obtain maximum HDI stability: (1) the
intermolecular force should be reduced, (2) the disk morphology and dlider should be
optimized to produce minimum FHM, (3) air bearing stiffness should be increased, and
(4) air bearing damping should be increased. It was shown for al the parameter values
studied that HDI stability can aways be compromised, however, by considering the

findings in this chapter, the instability due to intermolecular forces can be minimized.

The analysis presented here is based on adhesion modeled by the Lennard-Jones
potential. The functional form of the repulsion term in Eg. (6.4) stems from the need for a
repulsion term as the two mating surfaces contact one another. This approach lacks
physical basis due to the fact that the two surfaces never actually come into contact. A
more physical and complicated approach would be to model the repulsion as a contact
force, similar to what was done in the Derjaguin-Muller-Toporov (DMT) model and the

extension that Cheng, Etsion and Bogy (CEB) made [46] - [48]. In the DMT and CEB
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models, the attractive force is similar to Eq. (6.4) but the repulsion force stems from
physical contact as seen in Fig. 6.38. For a smple spherical asperity impinging on a flat

surface the forces generated as a function of separation distance are [46], [47]:

Fuaw(X)=- %2 for x>a,
Four (X)=- §+2E\/§(ao - x)* for x£a, (6.11)

where R is the radius of the spherical asperity, E* is the effective elastic modulus, and a,
is the intermolecular distance usually taken to be about two angstroms. However, by
comparing the additional force that is generated by EQ. (6.4) (see Fig. 6.24) and by the
DMT and CEB models, we find that similar force curves are generated. Therefore, by
using either the simplistic approach of the analysis in this chapter in modeling the
repulsion by Eg. (6.4) or by including a complex contact force from the CEB model, we

would expect to find quditatively similar dynamic instability results.

Another simplification of the modeling here was to neglect surface roughness effects. It
can be seen from Eq. (6.1) that the adhesion force scales proportionaly with the area
within proximity. Due to the qualitative nature of the 1DOF HDI model, the roughness
effect can be discussed only qudlitatively. By including the surface roughness of the
dider and disk, we would expect the adhesion force to be effectively decreased. This
effect is covered in the parametric study of scaling the intermolecular force. Increasing
roughness decreases the intermolecular force, hence, leads to an increase in HDI stability.
However, in order to achieve a non-contact 3.5 nm FH HDI, the dider and disk surfaces

must be extremely smooth.
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6.8 Conclusion

Experimentally it is observed that as a dider flies within proximity of the disk HDI
dynamic stability is lost. Additiona forces due to capillary and intermolecular adhesion
were considered. Due to the kinetic formation of a meniscus and the experimental results
presented, we concluded that meniscus forces need not be considered in the dynamic
modeling of the HDI. A nonlinear dynamic analysis of a modeled HDI incorporating
intermolecular forces revealed a new kind of dynamics that cannot be captured by static
analysis. By andyzing the systems equilibria and stability, it was found that multiple
equilibria exist in the sub — 6 nm FH regime associated with a double-well potential.
Within this regime the diders motion can be stable or chaotically unstable when it is
externaly forced by a disk topography. From the anayticad and numerica anaysis
presented here, the experimentally measured FH hysteresis, the intermittent dlider
ingtability and the abrupt transition between stable and unstable proximity can be
explained. A parametric study was used to show how the variables affect HDI stability.
Also, the effect of the power-hardening air bearing stiffness was shown to be beneficial
in increasing HDI sability. By optimizing the parameters such as the air bearing design
and the disk morphology, the stability of the HDI can be improved. However, for
practical values of the parameters, it is found that instability is likely to occur when flying
below 6 nm. From these results, we are forced to conclude that there may be a
fundamenta lower FH limit for a given dider — disk combination, below which the dider
would not be able to fly due to HDI dynamic instability caused by intermolecular

adhesion forces.
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Parameter| Nominal Value || Parameter| Nominal Value
b 244.1 [N/m] B' 2.7 10% [N-m?]
a -0.48 m 1.6158" 10° [kg]
A' 1.8 10 [N-m?] c 0.08 [N-s/m]

Table 6.1. Nominal values of constants used.
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Fig. 6.1. (8) Time trace of the stable, intermittently unstable, and indefinitely unstable
dlider motion measured by LDV. (b) Measurement of the FH hysteresisasthe FH is
lowered and increased by changing the disk RPM.
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Fig. 6.2. Air bearing surface designs of four different pico size sub-ambient diders.
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Fig. 6.3. Touchdown, takeoff, and FH hysteresis as a function of lubricant thickness for
dider 1.
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Fig. 6.4. Touchdown, takeoff, and FH hysteresis as a function of lubricant thickness for
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Fig. 6.5. Touchdown, takeoff, and FH hysteresis as a function of lubricant thickness for
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Where:

F.. Suspension force
F, Drag force

F.,: Air bearing force
F Friction force

F.: Contact force

M : Suspension moment

Fig. 6.8. Free-body diagram of the air bearing — dider modd.
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Fig. 6.9. Intermolecular adhesion force as a function of separation distance for two
pardle flat surfaces.
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Fig. 6.11. Schematic of the 1DOF nonlinear model.
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156



10

8
€ 6 - Xy /Af
c
o
T 4 -
L
A
2 b
Xi* Xy
V"‘ LN e
0 d C |; T T T
o) 2 4 6 8 10
FH_ [nm]
Fig. 6.14. Bifurcation plot showing FHeq as afunction of FHss. (—) stable, and (- -)
unstable.
8
7 -
6 4
— 5 T
£ FH
= 4 - \
L 3 |
2
FH.,
1 - /
0

Time
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Fig. 6.17. State-space trgjectories of the unforced system showing senditivity to initia
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Fig. 6.19. Forced TD —TO simulation showing the (a) disk, FHss and FHe and (b) the
diders velocity as functions of time.

18

[nm]

Disp.

Velocity [mm/s
o

-10

-15

Fig 6.20. Forced constant FHss Simulation showing the (a) disk and diders displacement

(@
T T
0.5 1 1.5
Time [ms]
—Velocity w/Fvdw [mm/s]
(b)

.5 ] 1 1.5
Time [ms]

and (b) the dliders velocity as functions of time.

161



18
16
14
12
10

Disp. [nm]

'
N ON MO

15

10

Velocity [mm/s]
o

-10
-15

(@

Disk

Time [ms]

(b) Velocity w/o Fvdw [mm/s]

Time [ms]
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CHAPTER 7

SUMMARY AND CONCLUSIONS

Several technologica challenges till remain in the pursuit of a magnetic recording areal
density of 1 Thit/in®. One of the important challenges is obtaining a reliable HDI that is
tribologically and magnetically robust with a FH of only 3.5 nm. At such an ultra-low
spacing, severa new phenomena at the HDI are either not currently considered or simply
unknown. In achieving 1 Thit/in? it is important to understand these phenomena as
spacing is decreased from sub- 10 nm to sub- 5 nm. One of the concerns is how the new
phenomena at the HDI affect the dynamics of the dider. Achieving and maintaining
dider dynamic stability and tolerable spacing modulation (FHM) is a crucia aspect in
achieving a working interface. The understanding of the new phenomena of ultra-low
flying diders can be applied to study their effects on the air bearing dider dynamics and

stability. This understanding will be an integral part of redlizing aHDI for 1 Thit/in®.

In this dissertation, the research focus is on the understanding of dider dynamics and
FHM for ultra-low spacing. This dissertation is broken into two distinct sections. The
first section considers a flying interface and studies the effects of new phenomena on
dider dynamics and FHM. The second section is focused on stability transitions as the

FH islowered in order to achieve greater area densities.

In Chapter 2 a new measurement system was briefly introduced to measure the dider’s

displacement and the disk’s morphology directly under the dider with sub- nm accuracy.
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This system was then used to measure the response of a sub- 10 nm FH dider flying over
various disks. It was found that over the bandwidth of interest from 10 kHz to 2 MHz the
dider’s response while flying in steady-proximity was mostly caused by repeatable
motions associated with the disk morphology. Using the measured disk topographies we
obtained a direct comparison between experiment and simulation that showed excellent
correlation. The FHM was analyzed using the experiments and smulations in the time
and frequency domains. Three distinct frequency bandwidths were used to analyze the
effect of disk morphology on FHM. Band I: 10 kHz < f < 100 kHz was the band of the
geometric FHM. The geometric FHM amplitude for the particular system studied was on
the same order as the disk morphology, which can be the largest contributor to FHM. The
FHM in frequency Band I1: 100 kHz < f < 500 kHz was influenced by the dynamics of
the air bearing. If the disk morphology amplitude in Band Il is low enough excitation of
the air bearing does not contribute to the FHM due to the disk morphology. The FHM in
frequency Band I11: 500 kHz < f <2 MHz was so low that it could be neglected compared
to Bands | and IlI. It is obvious that a single number characterization of roughness or
waviness is not sufficient to determine the quality of a disk with respect to FHM. We
have shown that, for the particular dider used with disk C, the FHM amplitude is on the
order of the disk morphology. However, optimization can be achieved with both the ABS
design and the disk morphology to obtain an even lower FHM. A case study measuring
FHM of 10 different disks manufactured for sub- 20 nm interfaces was carried out
revealing that a majority of the disks exhibited excessive FHM. Also, with the correlation

realized here between experiment and simulation, simulations can now be used as a
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design tool. New ABS designs can be modeed and simulated for FHM due to disk

morphology prior to manufacturing.

From Chapter 2, it was found that even for a well behaved HDI, the FHM is on the same
order as the disk morphology. Since the amplitude of the disk morphology exponentialy
decays as frequency increases, the geometric FHM becomes the largest contributor to
FHM. In Chapter 3 we extensively studied the cause of the geometric FHM with pico and

femto form-factor designs.

The expectation was that the femto dider should have less FHM than the pico dider,
because it has long been known that for wavelengths somewhat larger than the dider
length, the FHM is proportiona to the square of the length of the dlider. It was found that
this was indeed the case for wavelengths longer than the dider, but when the wavelength
was reduced to about the dider’s length the FHM of the femto dider was much greater
than that of the pico dider. After examining the characteristics of the diders it was found
that the primary reason for the large FHM of the femto dider was its low pitch, which
caused its pressure support points to be at the trailing edges of the side rails, about 0.15
mm forward of the transducer. It was also observed that the large FHM results from a
phase shift between the dider’s response and the disk waviness, which is itself a result of
the low pitch and forward pressure points. The phenomenon occurred for both the femto

dider and the pico dider.
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In comparing redesigned pico and femto diders with the same target FH and comparable
pitch, we showed that the pico dider has roughly twice the FHM in the 6 mm to 1.5 mm
waviness range. However, for waviness between 1.5 mm to 0.156 mm both the pico and
femto diders have smilar high levels of FHM due to their smilarities in ABS designs
(i.e. pressure distribution). We concluded that a femto design has lower FHM due to disk
waviness for wavelengths greater than 1.5 mm. However, for waviness wavelengths
below 1.5 mm and above the dynamic resonant modes of the air bearing, FHM is not
primarily a function of the diders overall length but is more a function of diders atitude
and the ABS design. It is possible to predict FHM due to this geometric effect by
considering only the disk morphology. A new femto dider design was introduced for
minimizing the geometric FHM with the findings in this chapter taken into account.
Results showed an 83% decrease in FHM when compared to the original femto dider
design. Therefore, these results can be used in designing better ABS's and disks for ultra
low FH diders. In order to decrease FHM due to disk waviness for wavelengths below
1.5 mm, attention needs to be focused on dider attitude, ABS design, and disk

morphology.

In Chapter 3, results were presented for both pico and femto dliders, however, the focus
was on understanding the cause and minimizing geometric FHM. In Chapter 4 we
performed a direct comparison of the performance of air bearing dider form-factors,
namely femto and pico size diders. We found that the smaller form-factor exhibited an
overall enhancement in performance when the ABS was properly designed. A beneficial

increase in damping ratios and a detrimental decrease in modal stiffnesses was observed
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when smply scaling the form-factor from pico to femto. However, it was seen that if the
ABS is designed to retain a larger percentage of its bearing load capacity and maintain
high peak pressure(s), the stiffness is not compromised dramatically by scaling down the
form-factor. Also, a large number of transverse pressure gradients are extremely effective
in increasing damping, and they further increase damping when the form-factor is scaled

from pico to femto.

It was previously believed that geometric FHM was solely caused by the form-factor and
was proportional to the square of the dider body length. However, we found that the
FHM due to geometry is composed of the superposition of two effects dependent on the
overall length of the dider for long disk waviness wavelengths and dependent on the
ABS design for shorter disk waviness wavelengths. For long waviness wavelengths,
FHM was shown to be dependent on the sliders body length: proportional to L?® and L*
for ABS | and ABS I, respectively. For shorter waviness wavelengths, FHM was shown
to be dependent on the ABS design and a phase shift between the dider’s response at the
transducer and the disk as well as an amplitude change in the dider’s displacement.
These two effects are demarked by a transition disk waviness wavelength of
approximately 3 mm. By comparing femto to pico form-factors, it is seen that the femto
exhibited lower FHM for waviness wavelengths greater than the dider’s body length,
however, it demonstrated smilar levels of FHM for waviness wavelengths less than the
dider’s body length. By cross comparing ABS designs, it was found that significant
improvements in FHM performance can also be attained by changing the ABS design and

not decreasing the form factor. Simulations were performed using an actual measured
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disk topography which showed a decrease of 22 % to 32 % in FHM by scaling down the
form-factor from pico to femto. However, by cross-comparing ABS designs, we found
that ABS Il exhibited much less FHM even in comparing ABS Il in the pico form-factor
to ABS | in the femto form-factor. It is concluded that by ssimply scaling down the form-
factor, enhanced performance is not always attained. However if specia care is taken in
the design of the ABS in order to maintain stiffness, increase damping and decrease
geometric FHM, major improvements can be realized. Ultimately, to achieve the greatest
performance, a smaller form-factor should be used with special care taken in the ABS

design.

As the FH is lowered, a dider’s behavior as described above changes drastically. What
has been described in Chapters 2 — 4 are the dynamics associated with steady-proximity
or a flying dider. However, once the spacing becomes extremely small, unsteady-
proximity behavior occurs that cannot be describe by the analysis thus far. In Chapter 5,
the nature of the unsteady-proximity behavior was studied. The findings presented
suggest that the non-linearities of the air bearing dider system cannot be ignored for sub-
5 nm FH diders and must be considered when modeling dider-disk interface dynamics.
When a dider is within proximity of a disk the complexities of the dider’s response can
be explained by the non-stationary response, and FFT anaysis becomes an inadequate
means for frequency domain analysis. A method such as JTFA must be used to accurately
analyze the non-linear, non-stationary response of a dider when it is in the state of
unsteady-proximity. Contact between the dider and disk can cause complexities of the

dider’s response due to the additional boundary conditions when viewed in the frequency
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domain, however, it is seen that contact is not a necessary condition for producing this

phenomenon.

Experimentally it is observed that as a dider flies within proximity of the disk, HDI
dynamic stability is lost and the interface becomes unsteady. The nature of this response
under unsteady-proximity was studied in Chapter 5, however the cause was not addressed
there. In Chapter 6 we considered additional interfacial forces due to the close proximity

of the dider and disk.

Additional forces due to capillary and intermolecular adhesion were considered. Due to
the kinetic formation of a meniscus and the experimental results presented, we concluded
that meniscus forces need not be considered in the dynamic modeling of the HDI. A
nonlinear dynamic anaysis of a modeled HDI incorporating intermolecular forces
revealed a new kind of dynamics that cannot be captured by static analysis. By anayzing
the systems equilibria and stability it was found that multiple equilibria exist in the sub —
6 nm FH regime associated with a double-well potential. Within this regime the dider’s
motion can be stable or chaoticaly unstable when it is externaly forced by a disk
topography. From the anaytical and numerical analysis presented, the experimentaly
measured FH hysteresis, the intermittent dider instability and the abrupt transition
between stable and unstable proximity can be explained. A parametric study was used to
show how the variables affect HDI stability. Also, the effect of the power-hardening air
bearing stiffness was shown to be beneficia in increasing HDI stability. By optimizing

the parameters such as the air bearing design and the disk morphology we can improve
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the stability of the HDI. However, for practical values of the parameters, it is found that
instability is likely to occur when flying below 6 nm. From these results, we are forced to
conclude that there may be a fundamental lower FH limit for a give dider — disk
combination, below which the dider would not be able to fly with a controlled FH due to

HDI dynamic instability caused by intermolecular adhesion forces.

This dissertation describes the dynamics associated with ultraslow flying diders over a
broad range from steady to unsteady proximity. Based on the research presented, we
conclude that achieving the spacing requirement for 1 Thit/in®> will not be a smple
matter. The topics covered here are by no means the only phenomena associated with the
HDI, however, these findings can be directly applied to increase the feasibility, stability,

and reliability of the HDI in future hard disk drives.

183



REFERENCES

[1] Seagate website, http://www.seagate.com/newsi nfo/images/downl oads/
Barracuda36ES.jpg.

[2] Hutchinson Technologies website, http://www.htch.com/primer.asp.
[3] IBM Corporation website, http://www.almaden.ibm.com/sst.

[4] Read-Rite Corporation website, http://www.readrite.com/html/whatnew/
topgun.html.

[9] Information Storage Industry Consortium (INSIC) website, http://insic.org.

[6] C. D. Mee and E. D. Daniel, Magnetic Recording Handbook: Technology &
Applications, United States of America, McGraw-Hill, 1990.

[7] R. Wood, “The Feasibility of Magnetic Recording at 1 Terabit per Square Inch,”
|EEE Transactions on Magnetics, Vol. 36, no. 1, pp. 36-42, Jan. 200.

[8] Hitachi Globa Storage Technologies website, http://www.hgst.com/hdd/research/
storage/hdi/interaction.html.

[9] Q .H. Zeng, B. H. Thornton, D. B. Bogy, and C. S. Bhatia, “Flyability and Flying
Height Modulation Measurement of Sliders with Sub-10nm Flying Heights,”
IEEE Trans. on Mag., Vol. 37, No.2, pp. 894-899, March 2001.

[10] B. H. Thornton, A. Nayak, and D. B. Bogy, “Flying Height Modulation Due to
Disk Waviness of Sub-5nm Flying Height Air Bearing Siders,” ASME J. of
Tribology, Vol. 124, pp. 762-770, Oct. 2002.

[11] T. Pitchford, “Head/Disk Interace Tribology Measurements for 100Gb/in?”
Proceedings of the Symposium on Interface Technology Towards 100 Gbit/ir?,
ASME, TRIB-Val. 9, pp. 83-90, 1999.

[12]  A. Menon, “Critical Requirements for 100Gh/in? Head/Media Interface,”
Proceedings of the Symposium on Interface Technology Towards 100 Ghit/ir?,
ASME, TRIB-Voal. 9, pp. 1-9, 1999.

[13] A. Menon, “Interface Tribology for 100 Gb/in“,” Tribology International, Vol. 33,
pp. 299-308, 2000.

[14] L.-Y.ZhuandD. B. Bogy, “Head-Disk Spacing Fluctuation due to Disk
Topography in Magnetic Recording Hard Disk Files,” Tribology and Mechanics

184



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

of Magnetic Sorage Systems, STLE Specia Publication, SP-26, pp. 160-167,
1989.

W. Yao, D. Kuo, and J. Gui, “Effects of Disc Micro-Waviness in an Ultra-high
Density Magnetic Recording System”, Proc. Of the Symposium on Interface
Technology Toward 100 Gbit/ir?, ASME, pp. 31-37, 1999.

B. H. Thornton, D. B. Bogy, and C. S. Bhatia, “ The Effects of Disk Morphology
on Flying Height Modulation: Experiment and Simulation,” |EEE Transactions
on Magnetics, Vol. 38, no. 1, pp.107-111, Jan. 2002.

Q. H. Zeng and D. B. Bogy, "Stiffness and Damping Evauation of Air Bearing
Sliders and New Designs with High Damping”, ASME J. Tribology, Vol. 121, pp.
341-347, April 1999.

Y. Hu and D. B. Bogy, “Flying Characteristics of a Slider over Textured Surface
Disks,” |IEEE Transactions on Magnetics, Vol. 33, no. 5, pp. 3196-3198, Sept.
1997.

J. W. White, “The Transverse Pressure Contour Slider: Flying Characteristics and
Comparisons with Taper-Flat and Cross-Cut Type Sliders,” Advancesin
Information Storage Systems, Vol. 3, pp. 1-14, 1991.

J. W. White, “Dynamic Response of the Transverse Pressure Contour Slider,”
Tribology and Mechanics of Magnetic Storage Systems, STLE Special
Publication, SP-22, pp. 72-82, 1987.

H. Tanaka, S. Yonemura, and H. Tokisue, “ Slider Dynamics During
Continuous Contact with Textured and Smooth Disks in Ultra Low Flying
Height,” IEEE Transactions on Magnetics, Vol. 37, no. 2, pp. 906-911, March
2001.

J. C. Harrison, K. J. Altshuler, and C. M. Huynh, “An explanation of the observed
frequency domain behavior of head-disk interface resonances in the proximity
recording regime,” |EEE Trans. Magn., vol. 35, pp. 933-938, Mar., 1999.

B. Knigge, and F. E. Talke, “Dynamics of transient events at the head/disk
interface,” Tribology International, vol. 34, pp. 453-460, July, 2001.

B. Knigge, and F. E. Take, “Slider vibration analysis at contact using time-
frequency analysis and wavelet transforms,” ASME J. of Tribology, vol. 123, pp.
548-554, July, 2001.

A. K. Menon, and Z.-E. Boutaghou, “ Time-frequency analysis of tribologica

systems — part I: implementation and interpretation,” Tribology International, vol.
31, pp. 501-510, Sept., 1998.

185



[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

G. Sheng, B. Liu, and W. Hua, “A nonlinear dynamics theory for modeling dlider
air bearing in hard disk drives,” J. of Applied Physics, vol. 87, pp. 6173-6175,
May, 2000.

J. C. Goswami, and A. K. Chan, Fundamentals of wavelets. Theory, algorithms,
and applications, New York, NY: John Wiley and Sons, Inc., 1999.

F. Auger, and P. Flandrin, “Improving the readability of time-frequency and time-
scale representations by the reassignment method,” |EEE Trans. Sgnal
Processing, vol. 43, pp. 1068-1089, May, 1995.

B. H. Thornton, and D. B. Bogy, “Non-Linear Aspects of Air Bearing Modeling
and Dynamic Spacing Modulation in Sub 5 nm Air Bearings for Hard Disk
Drives,” IEEE Transaction on Magnetics, Vol. 39, pp. 722-728, March 2003.

X. Ma, D. Kuo, J. Chen, H. Tang, and J. Gui, “Effect of lubricant on flyability and
read-write performance in the ultra-low flying regime,” Proceedings of the
Symposium on Interface Tribology Toward 100 Gb/ir?, C. S. Bhatia, A. A.
Polycarpou, and A. Menon, eds., ASME Trib-Val. 10, Seattle, WA, pp. 27-34,
Oct. 2000.

T. Kato, S. Watanabe, and H. Matsuoka, “Dynamic characteristics of an in-
contact headdlider considering meniscus force: part 1—formulation and
application to the disk with sinusoidal undulation,” ASME J. of Tribology, vol.
122, pp. 633-638, July 2000.

T. Kato, S. Watanabe, and H. Matsuoka, “dynamic characteristics of an in-contact
headdlider considering meniscus force: Part 2 — application to the disk with

random undulation and design conditions,” ASME J. of Tribology, vol. 123, pp.
168-174, Jan. 2001.

T. Kato, S. Watanabe, and H. Matsuoka, “dynamic characteristics of an in-contact
headdlider considering meniscus force: Part 3 — formulation and application to the
disk with sinusoidal undulation,” ASME J. of Tribology, vol. 124, pp. 801-810,
Oct. 2002.

C. Gao, and B. Bhushan, “Tribologica performance of magnetic thin-film glass
disks: its relation to surface roughness and lubricant structure and its thickness,”
Wear, vol. 90, pp. 60-75, Nov. 1995.

Autumn, K., M. Sitti, A.M. Peattie, W. Hansen. S. Sponberg, Y.A. Liang, T.

Kenny, R. Fearing, J.N. Israglachvili, R.J. Full, “Evidence for van der Waals
adhesion in gecko setae,” PNAS, vol. 99(19): 12252-12256, 2002.

186



[36] L.Wu, and D. B. Bogy, “Effect of the intermolecular forces on the flying attitude
of sub- 5 nm flying height air bearing didersin hard disk drives,” ASME J. of
Tribology, vol. 124, pp. 562-567, July, 2002.

[37] J. H.Li, B. Liu, W. Hua, and Y. S. Ma, “Effects of intermolecular forces on deep
sub- 10 nm spaced dliders,” IEEE Trans. Magn , vol. 38, pp. 2141-2143, Sept.
2002.

[38] B. Zhang, and A. Nakajima, “Possibility of surface force effect in dider air
bearings of 100 Ghit/in® hard disks,” Tribology International, vol. 36, pp. 291-
296, April — June 2003.

[399 R.H.Wang, V. Raman, U.V. Nayak, “Head-Disk Interface |ssues for Near
Contact Recording,” Proceedings of the Symposium on Nanotribology and
Nanotechnology for 1 Thit/ir?, A. A. Polycarpou, and C. Singh Bhatia, eds.,
ASME Trib-Voal. 11, San Francisco, CA pp. 37-43, 2001.

[40] N.V.Gitis, L. Volpe, “Nature of static friction time dependence,” J. Phys. D:
Appl. Phys., Val. 25, pp. 605-612, 1992.

[41] J.N. Israelachvili, Intermolecular and surface forces, 2™ ed. San Deigo:
Academic Press, 1992.

[42] S H. Strogatz, Nonlinear Dynamics and Chaos. Cambridge: Perseus Books,
1994.

[43] L.N.Virgin, Introduction to Experimental Nonlinear Dynamics. A case study in
mechanical vibration. New Y ork: Cambridge University Press, 2000.

[44] F. C.Moon, and P. J. Holmes, “Magnetoel astic strange attractor,” J. of Sound and
Vibration, vol. 65, pp. 275-296, 1979.

[45] P.J Holmes, and F. C. Moon, “Strange attractors and chaos in non-linear
mechanics,” ASME J. of Applied Mechanics, vol. 50, pp. 1021-1032, 1983.

[46] B.V.Derjaguin, V. M. Muller, and Y. P. Toporov, “Effect of contact
deformations on adhesion of particles,” J. of Colloid and Interface <ci., vol. 53,
pp. 314-326, 1975.

[47] S 1. Lee, W. Howell, A. Raman, and R. Reiferberger, “Nonlinear dynamics of
mircocantilevers in tapping mode atomic force microscopy: A comparison
between theory and experiment,” Phys. Rev. B, vol. 66, 115409, 2002.

[48] W.R. Chang, I. Etsion, and D. B. Bogy, “Adhesion Model for Metallic Rough
Surfaces,” ASME J. of Tribology, vol. 110, pp. 50-56, Jan. 1988.

187



