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Abstract

Robust Tuning of Fixed Structure Controllers for Hard Disk Drives

by

Bo Zhu

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California at Berkeley

Professor Masayoshi Tomizuka, Chair

This dissertation is concerned with the tuning of fixed-structure controllers and its appli-
cation in the design of track-following controller for hard disk drives.

Instead of building the controller on an over-simplified nominal plant, a compre-
hensive method of statistically modeling a large number of drives is considered. The model
is built based on the decomposition of PESs (position error signals) collected from multiple
drives. It can be used to predict the time-domain performance of a population of drives
with a given controller in terms of the mean value of variance of PES and the variance of
variance of PES, without tedious time-domain simulations.

The parameter optimization of fixed-structure controller is of great interest in
control practice. Due to the structure and order limitations, the problem cannot be pa-
rameterized as a convex optimization problem. A large number of approaches focus on

making the optimization a convex one through appropriate parameterization and approx-



imation. The motivation is that there are effective and powerful algorithms to solve the
convex optimization problem. This dissertation develops a MOGA (multi-objective genetic
algorithm) to directly solve the multi-objective non-convex optimization problem. The
population-based nature of the MOGA enables the evolution of a set of Pareto-optimal so-
lutions without requiring weights before optimization. Furthermore, due to the stochastic
nature of search mechanism, the MOGA is more likely to find the global optimum than
conventional optimization methods in a non-convex search space. As shown by simulations
and experiments, the proposed method is capable of optimizing the controller in a large
range in which gradient-based methods generally fail.

While the gradient-based techniques lack robustness over global non-convex opti-
mization problems and are sensitive to initial starting points, they are more efficient than
the MOGA in local fine-tuning search. Therefore this dissertation proposes a two-phase
algorithm combining the advantage of the MOGA and the gradient-based techniques to
further improve the solution quality and computational efficiency.

This dissertation also provides a systematic analysis of the state truncation errors
associated with the digital implementation of the track following controller.

Although the methods presented in this dissertation are devised to be applied in
the design of HDD track following controllers, the mathematical treatment employed is

general and applicable to other engineering applications.

Professor Masayoshi Tomizuka
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Background and Motivation

Hard disk drives (HDDs) have a short but fascinating history. Since IBM invented
the first computer disk storage system, the 305 RAMAC (Random Access Method of Ac-
counting and Control) in 1956, HDDs have evolved from a monstrosity with fifty, two-feet
diameter disks holding only five Mbytes of data to today’s drives measuring 3.5 inches wide
and less than an inch high, holding more than 160 Gbytes. Despite the boom of solid-state
non-volatile storage devices, HDDs are still leading the race in terms of capacity and cost
per Mbyte, and this trend is expected to continue for a long time.

This evolution of HDDs is a consequence of both market needs and progression
of various technologies. In today’s highly competitive HDD market, manufacturers have to
cut overall cost yet maintain high performance and meet an increasing demand for large
capacity. The recording densities in current commercial products are around 50K tracks

per inch (TPI) in the radial direction and 400K bits per inch (BPI) in the circular direction,



corresponding to an areal density of 20 Gbits per square inch and a track width of 0.5um.
While the circular density is related to the disk rotation speed and read/write (R/W)
channel throughput, the radial density is directly determined by the tracking performance
of R/W head positioning systems. Since it is desirable that the track error be less than one
eighth of the track width, the servo system needs to keep the R/W head within 0.06um of
the desired track. The modern magnetic materials have the capability of storing hundreds
of Gbits per square inch. Thus, developing an accurate R/W head positioning system is
critical to explore such a potential.

HDD servo design is an iterative process involving not only control engineers, but
electrical engineers, mechanical engineers, and material scientists. The major difficulties in
the design of HDD servo systems are associated with the presence of repetitive and non-
repetitive disturbances, non-linear bias forces and frictions, model uncertainties, limited
actuator bandwidth, and other system limitations. There are two major ways to further
increase the recording density: 1) improve the mechanical structure of actuators, and 2)
redesign and optimize the servo controller.

Improving the mechanical structure of actuators typically increases the support-
able bandwidth and reduces the disturbances at source. Such improvements, however, take
a significantly longer time and higher cost than redesigning the controller. Thus actuator
redesign is considered to be a major change and seldom happens unless controller perfor-
mance has already been pushed to the extreme. Neal in [1] made a complete survey of the
present and expected future technologies of HDD mechanical design. It is clear that the

conventional single-stage actuator can no longer support annual 60% areal density growth



in the coming decade. One reason for this is that the hysteresis effect due to the bearing
friction of single-stage actuators limits the servo loop gain at low frequencies, while the
closed-loop bandwidth is limited by its low resonance mode. As the track width is reduced
to sub-micrometers, the influence of high frequency disturbances on track positioning accu-
racy becomes more serious. Since the early 1990s, dual-stage servomechanism, in which the
secondary actuator is a high bandwidth micro-actuator, has been emerging as a promising
solution [2] [3] [4] [5] to further improve the recording density.

On the other hand, redesigning and optimizing the embedded controller for better
disturbance rejection is a more cost-effective way to reduce the tracking error. The HDD
servo system consists of two modes of operation namely, 1) the track-following mode, in
which the read-write (R/W) head is positioned on a particular track for read/write actions,
and 2) the track-seeking mode, in which the R/W head is moved from one track to another.
Some early works on the HDD servo design can be found in [6] [7] [8] [9] [10]. Because
of technological advances in the design and implementation of servo controllers, there has
been an increased interest since the late 1980s in applying modern control techniques to the
design of HDD controllers. For example, the linear quadratic Gaussian control with loop
transfer recovery technique (LQG/LTR) has been applied to the design of controllers for
single-stage actuators [11] [12] [13] [14] and for dual-stage actuators [2] [15]. Applications
of Heo loop-shaping are in [16] [17] [18] [19] [20].

As in most of industrial applications, however, the track-following controllers used
in production HDDs still adopt simple structures like a PID with notch filters. There are

a couple of reasons for slow adoption of modern control techniques by industrial control



engineers. The first reason is associated with the pressure of market and cost constraints.
Generally speaking, the more complex the control law, the higher the cost, and the harder
the maintenance. During design cycles, servo engineers usually have little control over the
selection of the signal digital processor (DSP). The DSP that one can afford to put into a
HDD has only few hundreds clock cycles between sample points. Moreover, 95% of clock
cycles are consumed by computations that are not related to the update of control out-
put [21]. This prohibits the use of high-order controllers unless a significant performance
improvement by such a controller can justify a more expensive DSP. In order to get a man-
ageable order for implementation, it is common practice to apply order reduction techniques
on plant or controller. However, this restricts the use of comprehensive models during de-
sign. Furthermore, there is no guarantee that the structure of reduced-order controllers is
consistent from design to design. If the controller structure is changed in every design cycle,
the problems associated with implementation cost, reliability, and maintainability usually
override the benefits of using modern control techniques. In fact, it is more practical and
efficient to start with a controller structure that has good nominal properties, and optimize
its parameters directly in the discrete-time domain. Fixing the structure of the controller
minimizes the difficulties involved in design iterations. Optimizing the controller directly in
discrete-time domain minimizes the performance degradation due to discretization, which
is particularly critical in multi-objective designs.

As Steinbuch and Norg [20] have pointed out, some important issues in the design
of control systems are largely underemphasized in academic research. Control design is a

complete process of arriving at a formal control solution. This process includes, but is not



limited to, defining design objectives, modeling of plant and disturbances, making choices for
controller structures and operation points, and implementing control laws. Modern control
methods put much effort into the creation of elegant algorithms for control design, while
industrial control practices are dominated by efforts to understand a particular physical
process or problem. As an example, building effective control systems in the data storage
industry is 90% process understanding and 10% control design [21]. This is in contrast
to the majority of publications that present a wide range of solutions to neatly solvable
mathematical problems. This gap deserves more attention in the control community. A
design method which requires substantially more time to understand and implement stands
little chance of being used in the market-driven design cycles. Moreover, the improvements
that can be made by fundamentally understanding the problem and then applying simple

solutions typically swamp out the improvements achieved by a complex control design.

1.2 Problem Description

This dissertation is focused on the problems associated with the tuning of fixed-
structure track-following controllers for HDDs. The design objectives of the track-following

controller can be summarized as following.

e In order to achieve higher TPI, minimizing the tracking position error is the major
objective. The final performance assessment of a tracking controller therefore is in

the time-domain, in terms of variance of the tracking error.

e Robustness is required because the same control algorithm has to be performed in

millions of mass produced drives, where each drive has slightly different characteristics
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Figure 1.1: Typical flowchart of control system design.
due to manufacturing tolerances, temperature variations, and aging effects.

This is a typical multi-objective control design problem. As illustrated in Figure
1.1, the control system design is an iterative process. Building the model is the first step to
design a controller for a target system to achieve multiple performance and stability goals.
However, the HDD industry is lacking a non-conservative plant model that 1) covers the
characteristics, especially of the time-domain, of a large number of drives, and 2) yet is com-
putationally simple and dynamically upgradeable. Therefore, such a multi-objective design
is usually performed in frequency-domain by loop-shaping based on the power spectrum of
measured position errors. Time-domain performance is then evaluated by prototype drives
and time-domain simulation tools. This is an indirect method to design the track-following
controller in order to minimize tracking errors.

Tuning the parameters of the fixed-structure controller to achieve multiple objec-

tives and under multiple constraints is of interest in numerous practical applications. Fixing



the controller structure inevitably destroys the convexity of the search space [22]. Gradient-
based methods, e.g. [23], have no guarantee of global convergence for such a non-convex
multi-objective optimization problem (NCMOP). Even where a convex approximation of
the NCMOP is possible, its parameterization would require numerous auxiliary conditions
which could make the final formulation too large to solve [24].

For multi-objective optimization problems (MOPs), it is desirable to provide a set
of trade-off solutions to the decision maker. Due to the lack of efficient multi-objective
optimization algorithms, most methods either combine all objectives into a single objective
by using weighted-sum strategy, or prioritize the most important objective and treat others
as constraints. Such strategies involve many trial-and-errors due to the need for heuristic
tuning of a, usually poorly understood, set of weightings, especially when there are com-
peting objectives. Moreover, some solutions on non-convex trade-off surface may not be

accessible (see Section 4.4 for details).

1.3 Previous Research

This section presents a review of previous works on two distinct subjects which
are the main themes of this dissertation: modeling HDDs and the optimization of fixed-

structure controllers.

1.3.1 Previous Research on Modeling HDDs

In 1997, Abramovitch et al. [25] [26] [27] published a series of papers addressing

the component-level breakdown of track mis-registration (TMR, See Section 2.3 for details)



sources. The results were based on intrusive experiments where the HDD cover had to
be opened, thus this method is not practical for a large quantity of drives in production
processes. Guo et al. (28], 1999) proposed a comprehensive time-domain simulation tool

“virtual drive”, which allows the prediction of time-

for TMR prediction. It serves as a
domain performance and thus achievable recording density given a particular mechanical
platform and controller. Since this tool was designed for a single drive and the time-
domain simulation is inherently time-consuming, it was tedious to perform the prediction
for a population of drives. Yi ([29], 2000) presented an intact method requiring only PES
measurements to build the TMR model for a single drive. Yi’s method makes it possible to
dynamically update the TMR information in a production line and without damaging the

drives. It is the issue of how PES measurements from multiple drives should be transferred

into a mathematical model that dictates the design of a servo controller.

1.3.2 Previous Research on Optimization of Fixed Structure Controllers

Parameter optimization under a fixed controller structure has attracted a consid-
erable number of researchers. There are two dominant trends as seen in the literature: 1)
approximating the problem into a convex form through suitable parameterization, and 2)

direct optimization by non-gradient-based search techniques.

Convex Approximation Nett et al. ([30], 1989) showed a systematic method of reducing
optimal constrained-structure dynamic output feedback problems as optimal static output
feedback problems. This reduction procedure was illustrated in nine special cases which

cover most practical applications of interest. The motivation behind Nett’s work was the



possible convex parameterization of static output feedback control and widely available
convex optimization algorithms. In an accompanying paper by Bernstein et al. [31], a
general theory of optimal static output feedback compensations was presented. This theory
addresses both Hy and Ho performance objectives, and in each case provides a Riccati
equation characterization of optimal static output feedback control. Based on the cone
complementarity linearization proposed by El Ghaoui ([22], 1997), Ibaraki and Tomizuka
([32], 2000) developed a method to overcome the non-convex rank constraint so that the
fixed-order design is solvable by semidefinite programming (SDP). The proposed method
was verified in redesigning a track-following controller of HDD. Rotunno ([33], 2000) utilized
the Hyo loop-shaping method to design a fixed-order track-following controller for a dual-
stage HDD. It was based on an idea by Cahinet et al. ([34], 1994): the non-convex rank
constraint is enforced by minimizing the k-th eigenvalue of generalized plant matrix P such
that the k smallest eigenvalues of P are forced to be zero, where k is the order difference

between P and controller.

Direct Optimization Goal attainment programming (GAP) is a technique used to find
the best compromise solutions in MOPs. Initiated by Charnes and Cooper in 1955, GAPs
are extensively used in innumerable engineering activities [35] [36] [37] [38] [39] [40]. Instead
of finding only the feasible solutions, GAP requires the designer to assign a set of design
goals, and enables the designer to minimize the deviation between performance indexes and
design goals, or, if possible, attain the design goals with zero deviation. A comprehensive
review of GAP methodology and applications can be found in [41].

Genetic algorithms (GAs) are global, parallel search techniques which emulate
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natural genetic operations. Due to their potential for global optimization, GAs have been
received great attention in many areas [42] [43]. In the field of automatic control, for exam-
ple, various successful applications have been reported [44] [45] [46] [47]. In recent years,
genetic algorithms have been applied to various MOPs. Schaffer ([48], 1985) proposed the
vector evaluation genetic algorithm (VEGA) to solve MOPs. Fonseca and Flemming ([49],
1993) explored Pareto-based multi-objective genetic algorithms (MOGAs) which are likely
to find multiple trade-off solutions simultaneously. Horn et al. ( [50], 1994) investigated
multi-objective problems via test functions. A good review of MOGAs can be found in
Tamaki et al. [51].

Patton and Liu ([45], 1994) solved the problem of eigenstructure assignment for
robust control design via a combination of genetic algorithm and gradient-based optimiza-
tion. First, a GA was used to effectively find a sub-optimal solution for the problem above.
Then a gradient-based Davidson-Fletcher-Powell (DFP) algorithm took this sub-optimal

solution as the initial point from which to search for the optimum locally.

1.4 Contribution of Dissertation

One Model for A Family of HDDs towards Tracking Error Minimization

This dissertation solves an open question raised by Steinbuch and Norg in [20];
i.e., characterizing multimodal identification for mass produced products by developing
a statistical model. Such a model should cover the characteristics for a population of
drives and yet require little computational effort to predict the time-domain performance

for a given controller. The basic idea is pretty straightforward. As shown in Figure 1.2,
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e[n] «— H(z1,K) f¢—d[n]

Figure 1.2: A simple discrete-time SISO system.

H(z7!,K) is a fixed-structure discrete-time system where K is the tunable parameter set.
Considering a regulator problem, d[n] is the disturbance and e[n] is the error signal. For
any given K, e[n] is measurable but d[n] is not. The primary design objective is to optimize
H(z™!, K) over K such that the |le[n]||, or (Tz[n] is minimized. Such an optimization problem
becomes much more difficult for mass-produced systems like HDDs in track-following mode,
where there can be a vast variation on d[n| from one drive to another. This dissertation will
try to identify d[n] in frequency-domain based on a group of e[n] measured from a population

of drives having the same K. Then a statistical model is built aimed at synthesizing ||e[n]]|,

2

or Ue[n]

in a computationally effective way for a given K. The proposed technique can serve
as an effective evaluation tool during the optimization of K towards |le[n]||, minimization,

which could possibly automate the TMR-based controller design process. Experimental

validations are performed and results are presented.

Parameterizing Fixed-Structure Control through Goal Attainment Program-

ming

The fixed-structure controller is posed in the form of multi-objective GAP. The
proposed formulation is free from dependence on relative weightings and has no convexity
limitations of any kind. Thus it is suitable for optimization of any fixed-structure controller

as long as the user-defined goal functions are calculable. Since some controllers cannot



12

be transformed into static feedback controller synthesis, LMI-based Hy, methods are not
applicable. To minimize the performance degradation due to discretization, this dissertation

uses direct discrete-time design and optimization.

Solving Multi-objective GAP by Multi-objective Genetic Algorithm

This dissertation first demonstrates the superior robustness of GAs with respect to
interior point and simplex methods by solving a non-convex benchmark problem. GAs are
extended to handle multi-objective optimization by using the Pareto-based fitness assign-
ment. The proposed multi-objective GA (MOGA) needs no weighting prior to optimization
and uses embedded parallelism to search for the Pareto-optimal solutions, none of which
are better than others in all objectives. The goal functions of GAP are used to dictate the
fitness assignment of candidate solutions in MOGA. Since the interactions between con-
flicting, non-commensurable objectives are clearly revealed after optimization, the decision
maker can easily pick up one solution from the Pareto-optimal set based on his preference.
This greatly reduces the trial-and-errors in design cycles. Another significant advantage
of MOGA is that it imposes no requirements like differentiability on the user-defined goal

functions of GAP.

Two-Phase Genetic-Gradient Optimization

This dissertation proposes a two-step non-convex optimization method to take
advantage of both 1) the robustness of genetic algorithms in identifying high performance
regions in a non-convex search space, and 2) the efficiency of gradient-based methods in a

local search. The performance goals can be of any type as long as they can be evaluated
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in the optimization loop. The effectiveness of the proposed method is demonstrated by
simulations and experiments, which also serve to investigate the computational tractability

and efficiency of the proposed method.

Truncation Error Analysis in Digital Servo Implementation

This dissertation provides a systematic analysis of the state truncation errors as-
sociated with the digital implementation of the track-following controller. Simulation and
experiment showed the effectiveness of two optimization schemes, i.e. changing the imple-
mentation structure and applying a scaling couple, in minimizing the PES due to state

truncation errors.

1.5 Outline of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 describes the
HDD servomechanism and gives a brief review of design techniques for track-following con-
trol. The statistical model for a large number of HDDs is presented in Chapter 3. Chapter 4
discusses different parameterizations of optimal fixed-structure control and multi-objective
optimization techniques. Chapter 5 proposes a MOGA to solve the GAP parameterization
of the fixed-structure track-following controller. In Chapter 6, a two-phase optimization
algorithm is presented that takes advantage of the efficiency of gradient-based techniques in
local search to further improve the performance of the MOGA. In Chapter 7, a systematic
approach is presented from a servo point of view to minimize the effect of state truncation

errors on the PES.
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L

Figure 1.3: Linear fractional tranformation.

1.6 Notation

This section provides background materials, which are essential to understand this
dissertation. Advanced readers may skip this section. One can refer to [52] and [53] for
more details.

For a square matrix X € R"™*", the following notations are used

X > 0« X is symmetric and positivedefinite;
X > 0<¢ X is symmetric and positivesemidefinite;
X < 0« X issymmetric and negativedefinite;

X = 0« X is symmetric and negativesemidefinite.

Let [ g g ] := C(21 — A)"!B + D denote a minimal realization of a discrete-

time dynamic system which has following state space realization

x(k+1) = Az(k) + Bu(k)
(1.1)
y(k) = Cx(k) + Du(k)

where u(k) and y(k) are the input and output signal vectors respectively, and (k) is the

state vector.

P | Prio ]

Figure 1.3 shows a general feedback configuration for the plant P =
Poy | P
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with the controller K as a separate block. To make our notation simple during the analysis

of closed-loop performance, K may be absorbed into the interconnection structure
E(P, K) = P+ P12K(I — PQQK)71P21 =N (1.2)

where Fj(P, K) denotes a lower linear fractional transformation (LFT) of P with K as the
parameter.

The p-norm of a sequence ek] is defined as

lelkll, = (Devfnp)p. (1.3)
k

The most commonly used signal norms |||, ||e||,, and ||e||,, denote the integral absolute
value, energy, and peak value of the signal respectively. Given a proper system e[k] =
G(z71)d[k] where d[k] is the input signal and e[k] is the output signal, the induced matrix

norm describing the amplification or gain of the system matrix G is defined by

lell,

|G|, = max —L (1.4)
P ||,

where e = Gd.



16

Chapter 2

Hard Disk Drive Servomechanisms

2.1 Overview of Hard Disk Drives

Hard disk drives (HDDs) consist of a single disk or stack of disks, which have a thin
magnetic coating and rotate at a high speed. Information is recorded on invisible concentric
tracks on disk surfaces, by using a read/write (R/W) head integrated into a slider which
is mounted at one end of the suspension. The other end of the suspension is connected to
the arm which is moved across the disk surface by a high-speed rotary actuator. The slider
flies above the rotating disk surface at a distance measured in micro-inches, sustained by
an air bearing between them.

HDDs are developed to standard form factors which are stated in terms of the
diameter of the disks: 5.25-in (130mm), 3.5-in(95mm), 2.5-in(65mm) and even smaller 1-
in(25mm). 3.5-in drives currently dominate the desktop market while almost every mobile
computer uses 2.5-in drives. Most current HDDs spin at 5400, 7200 or 10,000 RPM. 15,000

RPM drives are emerging. As a marvelous example of recent developments in HDD tech-
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Spindle Actuator Arm  Voice Coil Motor

Circuit

Magnetic Disks Suspension

Read/Write Heads

Figure 2.1: A typical rotary servomechanism of modern hard disk drives.

Figure 2.2: IBM highly compact 1-in Microdrive™ (courtesy IBM, San Jose)

nology, in June 2000, IBM announced the 1-in Microdrive™™

(Figure 2.2) with a capacity
up to 1Gbits paving the way for a new generation of “go-anywhere” pervasive-computing

devices and applications.
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2.2 Position Sensing of Read/Write Heads

Disk drives using a voice coil motor (VCM) type actuator require a closed-loop
position control system to center the R/W head over the target track. The control system
needs to know the real-time actual position of R/W head and uses this to compare with
the desired position so that a compensating VCM error current can be generated. In
the early 1960s, the position of R/W heads was measured by a linear or angular encoder
attached to the actuator. However, mechanical resonances, temperature variation, and
encoder resolution limit the track density of this indirect method [54]. It was desirable to
have a direct method to measure the actual position of R/W heads. In the late 1960s, the
encoder method was replaced by dedicated servo technology in which an entire disk surface,
called servo surface, was reserved to record position information on reference track. One
R/W head was dedicated to read the reference track. Other R/W heads in the head stack
assembly were assumed to be in the same vertical position with respect to the reference
R/W head. The dedicated servo approach gave adequate control performance as long as
the offsets caused by manufacturing tolerance, mechanical resonances, and thermal effects
were small relative to track width. This is no longer true with the current drives with high
track densities. In modern HDD systems it is rare to find the dedicated servo in actual use.

In the late 1970s, the need to increase TPI to gain more capacity motivated HDD
manufacturers to move from the dedicated servo to the embedded servo technology [55].
Figure 2.3 illustrates the embedded servo scheme and Figure 2.4 shows the schematic im-
plementation of an embedded HDD servo system. Embedded servo sectors are interleaved

with data sectors in a constant periodic manner on the same surface. At the time of man-
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ufacturing, servo sectors are written on the magnetic surface of disk as “housekeeping”
information by an expensive machine called servowriter, while data sectors are left blank
for user to achieve the main purpose of HDD, data storage. In the reading order of R/W
head, a servo sector consists of sector address mark (SAM), gray code, analog fine position
bursts, and optional RRO field [56] [29]. The SAM identifies the beginning of a servo sector
and also indicates the sector number. The gray code provides the track number. A gray
code takes a binary sequence in which successive numbers differ by only a single bit for its
efficiency in computation. Analog fine position bursts are a group of magnetic written-in
patterns with certain radial offsets with respect to the track center. Each burst group has
a width of a track. The position of R/W heads can be determined by the difference of the
signal strength read back from these burst groups. Figure 2.3 shows the four-burst (A B
C D) scheme which is being widely used in current commercial products. The servo drives
the R/W head such that the difference of detected signal strength between A and B is min-
imum, and the difference between C and D is maximum. Because of the nonlinear nature of
head position sensing mechanism and other nonlinear sources like pivot friction and printed
cable force, the actuator dynamics is nonlinear. Although increasing the number of bursts
will theoretically improve the dynamic range and the linearity of PES, it suffers from cost

consideration, manufacturing difficulties and computational delay.

2.3 Position Error Signal and Track Mis-Registration

Figure 2.6 shows the relationship between various track positions and position

errors. Ideal track position is circular centered at spindle pivot. The track position, Xserpo,
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Figure 2.3: Embedded servo scheme: head position is measured by reading back the servo
information embedded between data sectors. Two head positions are shown, one on track
and one off track.
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Figure 2.4: Genetic disk drive system (Courtesy Texas Instruments).
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Figure 2.5: PES is a zero mean Gaussian.
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written in servo track writing (STW) process is non-ideal due to head and disk motion
during STW, and disk motion during track-following. Actually the written track position
during STW is a summation of asynchronous pure tones and random noises for only one
revolution. The mean track position after STW thus is not an ideal circular. The actuator
servo follows the servo written track with error. At some frequencies the error is small, at
other frequencies the error is large. This results in the head position, Xjeqq, being apparently
unrelated to the servo written track position, at times being closer to the ideal track, at
other times being further from the ideal track. The head position will be the track position
after STW operated upon by the servo system. The mean track-following head position
is the head repeatable runout (RRO), Xpeqarro, measured by averaging synchronously
with servo index and typically at orders of the spindle rotational frequency. As contrast to
RRO, non-repeatable runout (NRRO) denotes all leftover parts of position error that are
not synchronized with the spindle rotational frequency. Spindle NRRO vibration combines
with the servo system random noise, all operated upon by the servo system, to create an
overall head NRRO, which is denoted as XpeqdNRRO-

The true position error, tpe, is defined as the difference between the servo written

track Xgerpo and the R/W head position Xpeqq-

tpe = Xservo — Xhead (2.1a)

tpe = tperro + tpengrroO (2.1b)
tperro = Xservo — XheadRRO (2.1c)
tpenrrO = Xservo — XheadNRRO (2.1d)

The measured position error is called position error signal (PES), pes, which is tpe sam-
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Figure 2.6: The relationship between various track positions and position errors.

pled at servo sectors, contaminated by the read channel noise passing through the PES

demodulator. pes itself is a zero mean Gaussian process as shown in Figure 2.5.

pes = tpe+ noise (2.2a)

pes = PEeSRRO + PESNRRO (2.2b)
PesrRrO = tPERRO (2.2¢)
PESNRRO = lpenRro + noise (2.2d)

Track mis-registration (TMR) is the most important quantity in the HDD design
process to evaluate the overall performance of servo systems. TMR is not a number but a

statistical distribution, furthermore, a central design method for servo systems that

e provides compatibility between servo, mechanical, read/write channel, servo writer,
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head/media, and control logic;

e provides the means to visualize design trade-offs: for a HDD with corresponding
off track capability (OTC), TMR budget is a constraint such that within this limit,

system can achieve an acceptable soft error rate (SER);

e allows continuous product evaluations for development cycle, manufacturing and plan-

ning enhancements.

TMR has two related aspects, write-to-read track mis-registration (W/R TMR)
and write-to-write track mis-registration (W/W TMR). The W/R TMR is a measurement
of the distribution of the relative misalignment of the head trajectory during data write and
data read. This error lowers read signal to noise ratio and thus causes bit errors. The W/R
TMR is usually quantified by pesyrro. The W/R TMR is Gaussian by definition and it is
required that the 30(W/R TMR) is not greater than 12% of the track width. The W/W
TMR is a measurement of the distribution of the encroachment upon the current track by
writing operation on adjacent tracks. This part of TMR also causes bit errors. The W/W
TMR is quantified by Xpeaqrro- It is theoretically possible to measure the track position
RRO, XpeadrRrO, using a very low bandwidth track follow loop. With such a system the
resulting PES RRO, pesiow, Bw RrRO, Would correspond to the servo track position RRO,

Xservo- Following relation thus exists.

XheadRRO = P€Slow BW RRO — DESRRO (2.3)

30(W/W TMR) is acceptable whin 10% ~15% of the track width and with a typical value

of 1.3 times the 30(W/R TMR). A full discussion of TMR is beyond the scope of this
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dissertation; interested readers can refer to [10] [57].

2.4 Design Challenges for HDD Servo

The HDD head positioning system has a great impact on almost every aspect of
the overall performance of HDD, which is defined in terms of capacity, speed, reliability,
power consumption, acoustic, and so on. The need to simultaneously improve and balance
all specifications presents a tremendous challenge to the design of HDD servo systems. Two
major functions of HDD servo are track-following and track-seeking. In the track-following
mode, the controller functions as a regulator to minimize the on-track position error (¢pe,
not pes). In the track-seeking mode, the objective is to minimize the transition time from
one track center to another as well as the acoustic noise and power consumption. The
interactions between the overall and the servo performances are examined in details in the

following subsections.

2.4.1 Performance Specifications

The recording density of HDD is usually described by areal density, which measures
how many bits of data can be packed into each square inch. Higher areal density is achieved
by writing more bits per inch (BPI) in circular direction along the data track and increasing
the number of tracks per inch (TPI) in radial direction. The highest achievable areal density
in current commercial HDDs is 22 Gbits per square inch (50k TPI and 440k BPI). Achievable
BPI is determined by the spindle speed and R/W channel capability while achievable TPI

is more related to the servo performance. Improving the regulation performance of track-
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following controllers reduces tracking errors. Thus it not only allows more tracks being
packed in radial direction, i.e. increases achievable TPI, but decreases soft error rate [10]
and improves long term reliability.

The access speed of HDD can be approximated by summing the time contributors
of data read/write and transfer. The inverse of this summation gives an approximate
throughput rate for random data access in a non-queued operation environment. These

time contributors are explained in the following.

e Seek time is the time required for the R/W heads to move from one track to another.
The number quoted in commercial products is the average seek time between random
tracks, normally from 5 ms to 10 ms. In normal operation, switching between adjacent
tracks occur much more frequently than random seeks. Thus another specification
called track-to-track seek time is used to denote the amount of time that the R/W head
takes to jump between adjacent tracks. It is usually less than 1 ms. Full stroke seek
time is the amount of time to move the R/W head from the innermost diameter/track

(ID) to the outermost diameter/track (OD).

e Latency is another important performance index which is the amount of time that the
R/W head must wait to reach the target sector. The latency depends on the spindle
rotation speed and the angular distance between the current sector and the target
sector. The worst case happens when the R/W head has to wait a full revolution to
reach the target sector. The average latency is half the time of a full disk rotation,

ie 30

.., wpar second, which is 5.6 ms for 5400 revolution per minute (RPM) drives, 4.2

ms for 7200 RPM drives, and 2.8 ms for 10,000 RPM drives.



27

e Command overhead time includes all computational delay imposed by implementing
commands in embedded microprocessors. For digital control systems, the effect of

delay is significant and thus must be taken into account in the design process.

e Data transfer time refers to the time interval between reading (writing) data bits from
(to) disk/head interface and sending (getting) them to (from) host interface, as shown

in Figure 2.4.

2.4.2 Design Trade-offs

The rapid development of control and data channel circuitries leads to a great
improvement in the command overhead time and data transfer time. Actuator seek time
and latency are still the largest contributors of HDD throughput performance. Seek time
is determined by the performance of track-seeking controller. A well-designed track-seeking
controller not only has a short seek time, but also reduces the power consumption and leads
to quiet operation. Increasing the spindle speed, RPM, apparently will reduce the latency
and enhance the bit transfer rate for a given BPI. However, it also adversely affects power
consumption, acoustics, aerodynamic excited vibration of disks and actuator, and spindle
dynamics, and may necessitate reduced BPI for a given channel speed.

Another important trade-off is between the sampling rate fs, the spindle speed RPM,
and the number of sectors per track Ngeetor. The sampling frequency is determined by RPM

and Ngeetor as

_ RPM - Nsector

s 50

(2.4)

Because of the interleaving nature of embedded servo sectors, the embedded servo system is
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a sampled system which leads itself to a digital implementation of controller. It is desirable
to have a high sampling frequency for the digital control. Due to the aforementioned reasons,
the choice of the spindle speed RPM is limited and it cannot be arbitrarily selected. The
number of sectors on each track also should not be too large so as to use as much disk surface
as possible for data storage. All are limiting the sampling frequency in HDD servo system.
For example, for a 5400 RPM drive with 120 sectors, the sampling frequency is 10.8KHz.
This is considered to be relatively low as the allowable track error is only one tenth of a
micrometer. If the digital controller is converted from a continuous-time design under such
a low sampling rate using discretization transformations, e.g. bilinear transformation, some
performance degradation is expected. Therefore, it is always desirable to be able to design
directly in discrete-time.

One way to reduce tpe is through improving the mechanical structure which re-
duces the disturbances and noises at source. Another method is to loop-shape the controller
such that better disturbance rejection is attained. By loop-shaping we mean a design pro-
cedure that involves explicitly shaping the magnitude of different loop transfer functions.
It starts with a nominal controller or a controller from the last design cycle. Then PES is
collected and the spectrum of PES is calculated. The desired loop characteristics are then
determined by comparing the PES spectrum with the bode plots of various loops.

However, there are always trade-offs in loop-shaping. The sensitivity function S
governs how the position disturbance d,, and measurement noise n,, go through the system
and show up at the track error tpe. If we make it less sensitive to disturbances at some

frequencies, we then make the system more sensitive at other frequencies. This is called
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waterbed effect and can be explained by the well-known Bode integral theorem by Bode
158]. Freudenberg [59] extended this theorem to unstable plants. Here is its discrete-time

version by Mohtadi [60].

Theorem 1 (Bode Sensitivity Integral for Discrete-time Systems) For all closed-
loop stable discrete-time feedback systems, the sensitivity function has to satisfy the following

integral constraint:

1 /7 ' m
;/0 I | S(e7)| duw = ;In|5i| (2.5)

where [(3; are the open-loop unstable poles of the system and m is the total number of these

poles.

There are couple of important suggestions by this theorem. First, the theorem in-
dicates that some of our objectives are competing during loop-shaping. For example, if PES
spectrum tells us there is a mode below the crossover frequency which needs to be atten-
uated, we push down |S(jw)| around the frequency of that mode. This may inadvertently
amplify some noises at high frequencies because the gains after the crossover frequency are
pumped up due to the waterbed effect.

Since most energy of PES is concentrated at low frequencies, one way of improving
serve error rejection is by increasing the servo bandwidth. However, the Bode theorem
suggests that for a given sampling rate (or say Nyquist frequency), we cannot push up the
crossover frequency without degrading the high frequency performance. In the other words,
high bandwidth implies high power consumption, amplification of audible noise, and last but

not least poor robustness against variations of resonance peaks, time delay, and unmodeled
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high frequency dynamics. One may suggest increasing the sampling rate such that there
is more room to spread out the amplification. Unfortunately, increasing the sampling rate
may not be able to improve the performance because the maximum attainable bandwidth
is actually limited by the computational time delay or the lowest actuator resonance. For
the basic rotary actuator used in today’s HDDs, several design parameters limit the servo
bandwidth, e.g., the in-plane out-of-phase bending mode of the arms and the electrical rise
time of the VCM [1]. As a rule of thumb, the servo bandwidth frequency is limited by 25%
of the frequency of the lowest actuator resonance, often either the first suspension torsional
(T1) mode or the first actuator lateral (butterfly) mode. Therefore a faster DSP chip and a

secondary high-bandwidth actuator are more helpful in improving the HDD performance.

2.5 Design Techniques for Track-following Controller

One of the main purposes of this dissertation is to develop a tuning method for
fixed-structure controllers. For the simplicity of track-following controllers, it serves as the
study-case in this dissertation. Figure 2.7 shows a typical blockdiagram of HDD track-
following servo along with various disturbances and noises [10] [61]. C represents the digital
controller and P represents the plant dynamics, including power amplifier (PA), voice coil
motor (VCM), and head-disk assembly (HDA). There are two categories of disturbance

sources: mechanical disturbances and electrical noises [62].

e On mechanical side, d; denotes the force disturbances such as external shock, pivot
friction, flex cable bias, and windage. d, denotes the position disturbances including

spindle motor vibration, disk flutter, and slider vibration.
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Figure 2.7: A typical blockdiagram of disk drive servo system.

e On the other hand, electrical noises consist of measurement noise n,,, power amplifier
noise nyp, and quantization errors nap, npa, and ng from A/D, D/A, and fixed-point
DSP respectively. A detailed analysis of the effect of ng, on servo performance is

presented in Chapter 7.

Track-following performance of HDDs determines the recording density and overall
system robustness. Track-following is a regulation problem, therefore the major design
objective of track-following control is to minimize the true tracking error tpe, which is,
however, immeasurable. The position error signal pes being measured is the true position
error tpe contaminated by the measurement noise n,,. Typical time-domain specifications
are |tpe[n]| < 12% trackwidth and 3o (tpe[n]) < 5% trackwidth. Fortunately, n,, is shown to
be white [63] thus minimizing the power of pes is equivalent to minimizing the power of tpe.
The design also needs to have enough robustness due to the same servo algorithm having
to perform in millions of disk drives that are mass produced, each with slightly different

characteristics due to manufacturing tolerances, temperature variations, and aging effects.



32

In this dissertation, all constraints are related to the frequency-domain requirements, such
as the minimum phase margin which is a direct safeguard against time delay uncertainty,
the minimum gain margin which is a direct safeguard against steady-state gain uncertainty,
the minimum crossover frequency, and the maximum peak of sensitivity function.

The PID-like controllers based on classical techniques still dominate the cost-
sensitive industrial applications like HDDs. Due to the technological advance in the design
and implementation of sophisticated controllers, there has been an increased interest in ap-
plying modern control techniques, such as LQG/LTR and Hs, loop-shaping, to the design
of HDD controllers since the late 1980s. The remainder of this section gives a review of

different approaches on the design of HDD track-following controller.

2.5.1 PID

Analog PID control has been used in track-following control for years. Typically, an
analog PID tracking controller has a crossover frequency of 400Hz and a phase margin of 35
degrees. One of the weaknesses of PID control was its large integrator time constant needed
to maximize loop phase margin and low frequency gain for systems with low bandwidth.
Analog design for HDD servo began to come to the end in the late eighties when it could
no longer provide solutions for the increasingly complex control problem associated with
increasing data track density, faster access requirements, and smaller board footprint. The
adoption of DSP chips in HDD servo systems since the early nineties has not only solved
the limited footprint problem, but significantly improved the performance and been proved
to be cost effective [64]. The most straightforward application of digital track-following

control is to use digital PID control. The crossover frequency of a typical digital PID track-
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following controller is around 600 Hz and phase margin is slightly over 40 degrees. It must
be pointed out that part of the improvement in bandwidth and phase margin was due to
improvement in the R/W head and actuators.

Tuning of PID controllers belongs to a class of fixed-structure controller optimiza-
tion problems, which are the main focus of this dissertation. It will be discussed in details
in Chapter 4. There are numbers of methods to heuristically tune the PID controller for
HDDs, such as Ziegler-Nichols method [65], pole placement [66], loop-shaping [67], Hoo
optimization [32], and mixed Ha/Ho.

Usually, notch filters are cascaded with PID controller to tackle narrow mechanical
resonances modes. The notch filter is designed separately and before the tuning of PID

controller.

2.5.2 LQG/LTR

In HDD servo system, the R/W head position is usually the only measurable state.
The observer based output feedback control is a right fit [68]. Formulating the problem in
the state space setting allows to use some popular techniques such as LQG/LTR and H
loop-shaping. Basic LQG control is the combination of linear quadratic regulator which
provides the optimal state feedback control, and Kalman filter which is an optimal stochastic
state estimator under fictitiously introduced process noises [69] [70]. The LQG approach
proved particularly suited to meet performance specifications while guaranteeing closed-
loop stability. The performance index is usually a balance of minimizing track error and
minimizing control effort, defined in the weighted-sum quadratic form. Given the weighting

of performance index and the power of fictitious noises, the feedback gain and Kalman
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filter gain are designed separately based on the separation theorem. However, the choice of
weights and power is not directly connected with the desired closed-loop characteristics.
In order to simplify the trial-and-error procedure needed for weight selection, the
LQG control combined with loop transfer recovery, named LQG/LTR, is extremely useful
from the practical viewpoint of HDD servo design. The basic steps of LQG/LTR are as

follows.

e Based on measured PES spectrum and various frequency-domain requirements, design
an cascaded weighting compensator that gives a satisfactory open-loop dynamics. Now

the extended plant model includes the dynamics of this shaping compensator.

e Generate a target feedback loop with a selection of an estimator based on the extended
plant model. Kalman filter is favored because of assured stability and excellent ro-

bustness properties.

e Recover the TFL through a cheap LQ feedback control.

Applying LQG/LTR control to the design of HDDs servo is presented in vast lit-
eratures for both single-stage actuator [11] [12] [13] [15] [14] and dual-stage actuator [2]
[15]. Hanselmann et al. ( [11], 1998) applied the continuous-time LQG/LTR methodology
to design a track-following controller for a highly resonant disk drive. Yen et al. ([2], 1990)
used a discrete LQG/LTR technique to design a tracking following controller for a dual-stage
HDD actuator. Chiu et al. ([12], 1993) used frequency shaped LQG/LTR design to improve
the runout performance of a disk file system. Weerasooriya et al. ([13], 1995) presented

a discrete-time LQG/LTR design of a HDD track-following servo system. One important
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point made by Weerasooriya [13] is that the excellent robustness and performance charac-
teristics of a continuous-time LQG/LTR design are theoretically unachievable due to the
relative low sampling rate and non-minimum phase plant characteristics in HDDs. There-
fore the most efficient path to design track-following controllers is to use direct discrete-time
design and optimization. Al-Mamun ([18], 1995) presents a two-step Hoo /LTR method. The
loop transfer recovery (LTR) is achieved by minimizing the Hoonorm of a transfer function
which represents the difference between the loop gain of the static full state feedback and
feedback with observer.

The knowledge of disturbances and noises is often taken into account in loop-
shaping. Chang ([14], 1999) designed a track-following controller using discrete-time LQG/
LTR. A noise model is augmented into actuator nominal plant to shape sensitivity and
co-sensitivity such that TMR budget could be reduced. Lin ([71], 2000) augmented the
disturbance and noise covariances into discrete-time LQG/LTR formulation. Optimization

is performed by varying two tuning factors to achieves a minimum 3ope.

2.5.3 H, Loop-shaping

Hy loop-shaping is to explore the loop-shaping design procedure using Hy, opti-
mization theory. First, appropriate weighting functions are defined to reflect disturbance
and desired closed-loop characteristics. Second, corresponding Hoo-norm optimization prob-
lem is solved to give a full-order controller C(z~1). Figure 2.8 shows a typical S/T mixed-
sensitivity optimization setup for HDD servo design where S is the sensitivity function and T’
is the closed-loop complementary sensitivity function. Unlike the loop-shaping in LQG/LTR

which loop-shapes the open-loop transfer function, mixed-sensitivity design loop-shapes the
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Figure 2.8: Mixed-sensitivity Heo, control for track following control.

closed-loop transfer functions such that the noises and disturbances will be better attenu-
ated. Actually Skogestad et al. [53] showed the open-loop properties, e.g. gain margin and
phase margin, are closely related to ||S||,, and ||T||,, which are the peak values of |S(e/*)]
and |T'(e?*)| respectively. Furthermore, |S(e/*)| and |T'(e7*)| directly govern the propaga-
tion of disturbances and noises to tpe. The performance dynamic filters Wg and W specify

the desired shape of ‘S(ej“’)‘ and ‘T(ej“’)‘ in the way that ‘Sdesired(ej“)‘ < 7 and

1
[Ws(edw
‘Tdesired(ej“)‘ < m for all w up to the Nyquist frequency. Therefore, loop-shaping of

‘S (ej“’)‘ and ‘T(ej“’)‘ is equivalent to solving the following H,, optimization problem

Ws(e*)S(e?v, O)
mcin < 1. (2.6)

Wy (e?)T (7%, O)

oo

P

Additional closed-loop transfer function (e.g. I' = 755

for torque disturbance
attenuation) can be added to the formulation above as an additional loop-shaping require-
ment. Because we are trying to push the performance to achievable limits, dictated by the

Bode integral theorem, the iterative tuning of weighting filters based on the disturbance

and performance specifications is the most difficult part of this technique [20].
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The applications of Hy loop-shaping in HDD can be found in [16] [17] [18] [19] [20].
Hirata ([17], 1999) took into account the intersampling behaviors of the HDD digital con-
troller by applying the sampled-data Hy, control synthesis. Hy, loop-shaping also attracts
lots of interests in the control design of dual-stage HDD due to its significant advantages in

handling multi-input multi-output (MIMO) systems [33].

2.6 Summary

In this chapter, an overview of HDD servomechanism was presented. The measur-
able position error signal (PES) is the true position error contaminated by measurement
noise. A detailed breakdown of PES was given in this chapter and will be used as the basis
for the statistical modeling of a large number of HDDs in Chapter 3. The design of HDD
servo systems is always subject to numerous constraints and trade-offs.

Since this dissertation uses the design of track-following controllers as the illus-
tration example, the last section of this chapter had a review on the design techniques
for track-following controllers. The basic method is an signal-based loop-shaping process
with experiments within each iterative cycle. Although there are great efforts in apply-
ing modern control techniques, such as LQG/LTR and H control, to the design of HDD
track-following controller, most modern HDDs still use PID-like controllers plus notch fil-
ters. One of the down sides of modern control methods is that they usually yield a high
order dynamic controller, which either is not implementable in on-drive DSP or causes too

much implementation hassle.
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Chapter 3

One Model for A Population of

Drives

3.1 Introduction

For a typical design cycle in HDD industry in Figure 3.1, track-following servos
are designed by loop-shaping in frequency-domain before a drive is built. To evaluate
the servo performance, PESs are measured from prototype drives and TMR analyses are
applied. In [28], PES was broken down into contributors. A comprehensive time-domain
simulation tool, called virtual drive (Figure 3.1), was built for controller evaluation and TPI
predication. Designers then adjust frequency-domain objectives according to time-domain
results. Apparently, the evaluation of time-domain performance is not an objective directly
associated with optimizer. It is an indirect and inefficient way to tune controller because

the final performance assessment of track-following controller is in time-domain, i.e. in
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Figure 3.1: The time-consuming time domain simulation is the bottleneck. Also, it does
not directly give direction to optimizer.

terms of variance of PES. On the other hand, current PES models are single-drive based,
which only allow the candidate controller to be evaluated on one drive per simulation.
However, we are designing controllers for mass produced HDDs. In order to get a precise
statistical prediction of time-domain performance, this time-consuming simulation needs
to be repeated on a large number of drives. It is impractical to dynamically include this
tedious process in the parameter optimization loop.

To overcome the above dilemma, this chapter proposes a novel method of building
a drive model which not only describes the characteristics of large population of drives but
requires minimum calculation efforts for time-domain performance projection. The model
will be finally used to synthesize two major time-domain performance indexes, average
performance mean(opes) and performance robustness std(opes), for a given controller. This
makes it possible to directly optimize the controller towards the minimization of PES,

without tedious time-domain simulations (Figure 3.2). In [72], a multi-objective genetic
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Figure 3.2: A new design scheme using direct TMR projection in the optimization loop.

algorithm (MOGA) was used to optimize the controller parameters based on this TMR
projection and other design constraints and objectives.

The model building is a two-step process. First, a nominal linear plant model
is constructed based on multi-model identification performed on a large amount of drives.
Secondly, repeating PES decomposition on the same drives leads to a statistical model of

disturbances. Experimental verification of the model is given at end of this chapter.

3.2 Preliminaries of Statistical Signal Processing

Following are some fundamental yet important definitions and theorems that will
be used in the development of the aforementioned statistical model. For a systematic
discussion on the statistical signal processing, readers may consult Oppenheim and Schafer

(73], [74], and the references therein.
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Definition 2 (Fourier Transform for Sequence) The Fourier transform (FT) of a se-

quence x[n] is given by

o
X () = Z x[n]e I+m (3.1)
n=-—oo
and the inverse Fourier transform is
1 [T o
x[n] == —/ X ()" dw (3.2)
27 )

Definition 3 (Discrete Fourier Transform) Given a N-point sequence x[n|, the dis-

crete Fourier transform (DFT) is give by
X([m] := a[n)e7 (2m/N)mn (3.3)

and the inverse discrete Fourier transform is

N-1
> X[m]edCr/NImn, (3.4)

m=0

x[n] := %

Note that FT(z[n]) = X (e/*) is a continuous periodic function, while DFT(x[n])

= X[m] is a finite sequence. The relationship between them is

X ()| _om, 0<m<N-—1
X[m] = v (3.5)
0 otherwise

The fast Fourier transform (FFT) algorithms implemented in all commercial soft-

ware, e.g. MATLAB and MathCAD, only provide DFT (z[n]) = X[m].

Definition 4 (Parseval’s Theorem for FT) With x[n] € CNX! as a square integrable

sequence and X (') as its FT
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o0

> el = g [l 39

n=—oo

where HX(ej“’) H2 is called the energy density spectrum.

Definition 5 (Parseval’s Theorem for DFT) For N-point sequence z[n] € CN*! and

its N-point DFT X|m)],

N-1 1 N-1
> llzln]l? == N D Xl (3.7)
n=0 m=0

Remark 6 Parseval’s Theorem for DFT is a more practical relationship as we always deal

with DF'T of signals in data processing.

While stochastic signals are not absolutely summable or square summable and
consequently do not directly have Fourier transforms, many of the properties of such signals
can be summarized in terms of the autocorrelation or autocovariance sequence, for which

the Fourier transform often exists.

Definition 7 (Autocorrelation Sequence) Let x[n] be a wide-sense stationary sequence.

Its autocorrelation sequence is given by Rgyz(k) := E(x[n]z[n 4+ k|) = Rz (—k)

Definition 8 (Power Spectral Density) The power spectrum of a stationary random

process x[n] is given by the Fourier transform of its autocorrelation,

2(e7%) == Z Rz |k|e 9k (3.8)

k=—o00

where w is the normalized frequency. In terms of physical frequency f (e.g., in hertz), it

becomes

f
Z Ry [kle 775" (3.9)

k=—o0
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where fs is the sampling frequency. The power spectral density (PSD) of x[n] is defined as

Py (e??) := % (3.10)
and
Pro(f) = Sr;s(f). (3.11)

On the other side, the correlation sequence can be derived from the PSD by use of the inverse

Fourier transform.

fs
d 2

Reall = [ Prale)eito = [

J =T J—

Pou(f)2 TR (3.12)

Is
2

Remark 9 Let y[n] = H(z71)x[n], we have Pyy(e?*) = HH(ej“’)H2 Ppo(e?).

For a real signals, Py.(e/¥) is a even function, i.e. Ppp(e’*) = Pyi(e™7%), thus
L jornLk . . .
Ruzlk] = 2 Jo? Pua(f)e’”"7:%df . This is a very useful relation because all signals are
assumed to be real and stationary in the dissertation.
In this dissertation, MATLAB Signal Processing Toolbox [74] is used to estimate

the PSD of a real finite-length signal. It adopts the one-sided PSD defined as

) 2P1:1:(ejw) 0w
By (e7) = . (3.13)
0 —T<w<0

For convenience, from this point, PSD refers to the one-sided PSD.

Definition 10 (Average power over a frequency band) The average power (mean square

value) of a signal over the frequency band [f1, fa] is defined as

_ f2
P p) = /fl ur(f)df, 0L fi < f2< fs (3.14)
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. L jorLk
Since Razlk| = [o2 Pea(f)e’”" 7df, the average power of the real sequence x[n]

over the entire Nyquist interval [0 %] is

Ls
2
Roall) = [ 7 @l (3.15)
On the other hand, R,;[0] = E(2%[n]) = 02 + (E(x[n]))?. Therefore, we can estimate the

variance of a sequence

Js

ﬁ=ATQMﬂ#—@@MW (3.16)

3.3 Transfer Function Estimation

Transfer functions are sinusoidal steady-state output to input ratios, which usually
are complex numbers. It is assumed that the system is linear or system operates in its
linear range when a transfer function is being measured. As an unique example of electro-
mechanical control systems, the head positioning servo of HDDs has higher noise level
and less linearity than typical electrical or purely mechanical systems. The mechanical
imperfections of the servo track and head-disk assembly introduce both periodic and random
signals into the servo system. The non-linear behavior is primarily due to the position error
signal which has a limited linear region. As the head is driven further off its target track,
the position error signal becomes increasingly non-linear. The end result of this combined
non-linearity is a measurement challenge.

There are two type of techniques in identifying a dynamic system, the classical
swept-sine technique and the broadband FFT technique. The broadband FFT technique

computes the transfer function over a band of frequencies simultaneously. In order to ac-
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complish the broadband measurement, the excitation to the system must contain frequency
components that cover the selected frequency range. The excitation is usually a periodic
chirp or white noise. Based on the definition of transfer function, the swept-sine technique
excites the system by using one single frequency sine signal a time, over a user defined
frequency range. Compared with the broadband technique, the swept-sine approach is least
effected by noise and non-linear system behavior, however, at the expense of measurement
time. When time is not an issue, the swept-sine approach provides a more accurate estimate
of transfer functions for dynamic systems like HDDs, which are noisy and not perfectly lin-
ear. On the other hand, it is not practical to measure every drive by using the swept-sine
technique, thus the “quick-and-dirty” estimate of transfer functions is usually broadband
FFT based which provides reasonable accuracy within seconds and keeps drives intact.

To balance accuracy and efficiency, a linear model is first built based on the swept-
sine estimate from a couple of drives and then verified by the broadband measurements over

a large population of drives.

3.3.1 Swept-sine Estimation

A multi-channel dynamic signal analyzer, DSPT Sigl.ab 20-22, is used to imple-
ment the swept-sine measurement on our experimental HDDs with parameters listed in
Table 3.1. SigLab is connected to a PC through a SCSI card, as shown in Figure 3.3. Setup
and control of all Siglab measurements are through a graphical user interface (GUI) coded
in MATLAB, running on a PC. There are two input channels and two output channels on
SigLab 20-22. Making transfer function estimate on the noisy non-linear HDD system is

not as straightforward as in noise-free linear systems. Our goal is to identify the open-loop
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Figure 3.3: Identify the HDD plant dynamics by a two-step swept-sine approach.

and plant dynamics. However, the track-following loop must be closed because the plant is
measurable only when R/W heads are on track. A practical solution is to add a summing
circuit in the feedback loop. This allows the measurement instrumentation to inject a signal
into the system . In this dissertation the summing circuit is between the controller DAC
output and the power amplifier input, as shown in Figure 3.3. Note that the sampling of the
position error signal pes|n| is performed on the input side of the analog-to-digital converter
(ADC) in servo demodulator so as to fully utilize the high-resolution ADC coming with the
SigLab. However, deriving P(w) = %l from the measurements of the position error
signal pes[n| and sampled control input w[n] is risky because it may suffer from significant
electrical disturbances. In order to minimize the effect of electrical noises and get unbiased
estimation, it is recommended that the excitation source is directly measured by an input
channel of SigLab [75]. Since there are only two input channels on SigLab 20-22, a two-step

approach is adopted. As illustrated in Figure 3.3, when switch is in position ‘a’, the force
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disturbance transfer function F'(w) is computed as

ﬁ(W) _ P _ anspes (w)
1 + PC (Dnsns ((JJ)

(3.17)

where @, . (w) is the auto power spectrum of the excitation signal ny[n] and @nspes (w) is
the cross power spectrum between ns and the position error signal pes[n]. Similarly, when

switch is in position ‘b’; the sensitivity transfer function S(w) is computed as

(3.18)

where @, (w) is the cross power spectrum between the excitation signal ns[n] and the
power amplifier input u[n]. Combining these two unbiased estimates, an unbiased estimate

of the plant transfer function can be calculated as

P Bpel)
P =50 = %, .00)

(3.19)

Since this estimate is unbiased, it will converge to the actual transfer function with
sufficient averaging. It takes approximately six minutes for the setup to give one estimate
over full frequency range (10Hz 7000Hz) with 200 averages. The excitation amplitude
increases with frequency to enhance the signal to noise ratio at high frequencies. Data
are collected over inner diameter (ID), middle diameter (MD), and outer diameter (OD)

respectively.

3.3.2 Broadband FFT

Since the swept-sine technique needs the added-on summing circuit and is time-
consuming, it is impractical to apply this technique to every drive. In contrast, the

broadband FFT method is more suitable for expeditious intact testing during production.
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Figure 3.4: A intact system ID based on the broadband FFT technique.

Through the host interface (e.g. standard IDE port), a repeating pseudo-random burst is
loaded into power amplifier by interfacing software and the responding position error signal
pes is collected. The collected PES data is averaged along the position index to reduce the
undesired measurement noise component, assuming such noise term is uncorrelated with

the averaging process.

5, FFT(pes[n])

P@) = Tt (3.20)

Since the white excitation stimulates all modes at the same time, the whole iden-
tification process only takes couple seconds and virtually requires no setup time. However,
it is well known that the broadband method performs poorly in non-linear region [73], thus
it is expected a low accuracy in low frequencies where the friction effect is dominating. Fur-
thermore, the sampling rate of this method equals to the servo sampling rate and there is
no anti-aliasing filter before sampling. Since the frequency components of some mechanical
modes exceed the servo Nyquist frequency fy = %, the aliasing effect in high frequencies
also makes such method less accurate than the swept-sine technique. Figure 3.5 presents
the result of identification experiments that are performed on the OD of the same drive
by using two different methods. It clearly shows that the broadband FFT method is less

accurate at both high (>4000Hz) and low (<200Hz) frequencies.
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Figure 3.5: Identification of plant transfer function by the swept-sine technique and the

broadband FFT method.

3.4 Nominal Linear Model

Figure 3.6 shows a simplified discrete-time model of HDD track-following servo
system [10]. C (z’l) represents the digital controller. P (z’l) is the ZOH equivalence of
continuous-time plant dynamics [66]. The sampling frequency is fs = %. The

sensitivity, co-sensitivity, and torque disturbance functions that are used throughout this

dissertation are respectively defined as

1
T 1+ PEHC(E)

S(z™h (3.21)

_ P(z~HO(z7!
T(z 1) =1 -I-(P(z)l)(C’(z)l)’ (3.22)
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Figure 3.6: Discrete-time HDD servo model with lumped disturbances.

—1y _ P(z 1)
F(™) = 1+ Pz HC( 1)
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(3.23)

For convenience, disturbances and noises are lumped into three sources depending on their

injecting points in the loop: torque disturbance dy, position disturbance d), and measurement

noise ny,. Details regarding these PES contributors will be discussed in Section 3.5. This

section synthesizes a linear model for the plant P (z’l) based on the transfer function

measurements by the swept-sine technique and the prior knowledge of plant structure. The

measurements from the broadband FFT method are used to validate the model.

3.4.1 Plant

A HDD servo plant consists of power amplifier (PA), voice coil motor (VCM) and

head stack assembly (HSA). The desired plant model needs to achieve the best trade-off

between the conflicting requirements of accuracy in representing the real system and low

complexity to make a sensible control design possible.
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Figure 3.7: Simplified plant model for track-following.

PA is usually modeled as a low pass filter with a single pole at fpy,

fra-2m

P, =Kpp———.
PA(S) PAS + fpa-2m

(3.24)

This dissertation is focused on the track-following control of HDD, in which PA operates
in its linear range without saturation. Furthermore, the bandwidth of PA is much higher
(e.g., fpa = 11KHz in the experimental Maxtor drives) than the servo bandwidth which is
usually less than 1KHz. The PA dynamics therefore has little effect on the stability margins.
Thus, the PA dynamics is often simplified as a constant gain Kpy.

VCM dynamics is modeled as

Sl

Pyom(s) = Ky = KiPyow,(s) (3.25)

s+ %
where L is the coil inductance, R is the VCM loop resistance including the coil resistance

and the current sensor resistance providing the current information.



Table 3.1: Plant parameters

Parameter description Symbol | Value

Spindle speed RPM 5,400 rev/minute
Number of sectors Nsector 120

Sampling rate F 10,800 Hz
Number of disks Nyisk 4

Number of heads Nhead 8

Track density TPI 20,000 track/inch
Arm length from pivot to the head gap | Larm 2.1343 inch

VCM torque constant K 0.096 N - m/Amp
VCM coil inductance L 20x107% H
VCM loop resistance R 18.35

Actuator inertia J 5.25 x 107 Kg-m?
Actuator imbalance Limp 0.2 x 107° kgm?
PA gain for track-following Kpa 0.15 Amp/Volt
PES demodulation gain Kaiem 2 Volt/Track
ADC resolution Kaop 1024 bit/Volt
DAC Voltage resolution Kpac 4/1024 Volt [bit
Computational time delay Ty 24 ps

The overall open-loop gain is

t

K,
Ko=Kpac-Kps - = Lorm - TPI - Kgem, - Ka2D

Table 3.2.

52

(3.26)

where values of the experimental drives used in this dissertation are shown in Table 3.1 and

The ideal actuator would behave like double integrator due to the rigid bode

resonances at high frequencies.

mode of the arm, while the actual HSA dynamics exhibits friction at low frequencies and

Friction is a complicated nonlinear phenomenon. To make a linear design possible,

PF(S) =

it is approximated by a second order resonance mode

s2 4+ 20p (27 fr) - s + (27 fF)?

(3.27)
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Table 3.2: HSA modes

Parameter description Symbol | Value
Pivot friction approximation frequency fr 40H z
Pivot friction approximation damping ratio | (g 0.15
Suspension T1 mode frequency fr 2700 Hz
Suspension T1 mode half-width Juw)/2 4Hz
Suspension T1 mode damping ratio Cr 0.007
Actuator butterfly mode frequency fr 3950 Hz
Actuator butterfly mode damping ratio (r, 0.06

Major mechanical resonances include suspension torsional modes and actuator
lateral modes. Both can be modeled as second-order systems. A suspension torsional mode

is usually described as

s° + 2072w (fr + fuso)l - s + 20(fr + fup2)® 27(fr — fup))?
82+ 20p[27(fr — fuwj2)l - 8 + 27(fr — fuw/2)?  270(fr — fu)2)]?

Pr(s) = (3.28)

where fr is the center frequency of torsional mode and f,, /o represents half the bandwidth

of mode. A actuator lateral mode can be described as

(27 f1,)?

BRI TS AE (3.29)

Pr(s)

where (; is the damping ratio and fr, is the center frequency of lateral mode.

It is important to include the time delay in HDD modeling because time delay
always reduces the phase stability of a system. The time delay in HDD servo is mainly
from the computational overhead of digital signal processor. The nonrational time delay

Ty

term e~ '4° can be approximated by the first order Pade approximation [66] as

_ —0.5Ty-s+1
P —eTas — ¢ 7T 7 )
i(s) =e 05T, 51 (3.30)

The overall plant transfer function in continuous-time domain is

P(S) = KO . PVC]\/L,(S) . PF(S) . PT(S) . PL(S) . Pd(s) (331)



o4

Plant (black thick line: model; colored thin lines: broadband FFT)

Mag(dB)

Phase (degree)

! 102 103 5400

Frequency (Hz)

Figure 3.8: Plant model validation through applying broad-band FFT technique to a num-

ber of drives.

The ZOH equivalent form is calculated as

P(s)

S

P(z"") = (1 -z Yzl =] (3.32)

where Z[.] denotes the z-transform action and IL™1[.] is the inverse Laplace transform action.

The model is validated by comparing it with the broadband FFT measurement from a large

number of drives, as shown in Figure 3.8.

3.4.2 Fixed-Structure Controller

The track-following controller C(271) used in the experimental Maxtor drives is a

fixed-structure compensator cascaded with a notch filter,

C(Z_l) = Cpid(z_l)cnotch(z_l)- (333)
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Figure 3.9: The four lowest modes, (0,0) at 608 Hz, (0,1) at 619 Hz, (0,2) at 729 Hz, and
(0,3) at 1168 Hz are the most significant TMR contributors.

Compensator Cp;g(27") takes a PID-like form as

1
Cpid(zil) = kloop{]- - (ka + kb)zil + kakb272 + klm] (334)

where [kioop, Ka, kv, ki] are tunable parameters. This structure is proven to have a good
nominal performance in the last design cycle. The digital notch filter C’notch(z_l) is added

to attenuate the adverse effect due to the suspension resonance at 2700Hz.

3.5 Decomposition of Position Error Signals

The next step of building the statistical model is to identify the PES contributors
from measured PES for every drive. For convenience, disturbances and noises are lumped
into three sources depending on their injecting points in the loop: torque disturbance dg,

position disturbance d;,, and measurement noise n,,, as shown in Figure 3.6.

e Torque disturbance d; includes windage, pivot friction, flexible cable bias. Power

amplifier noise and quantization errors from D/A and DSP [61] are also lumped in d;
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as they enter the loop as voltage disturbances. It has been shown that windage, power
amplifier noise and quantization errors can be modeled as white noises [25] [26]. The

closed-loop transfer function between d; and pes is F(z71).

e Position disturbance d, consists of servo written-in errors, disk modes, slider vibration
and spindle motor vibration. Although disk modes consist of all possible (m,n) modes,
the lowest four modes shown in Figure 3.9 are the most significant contributors to dp.

The sensitivity function S(z~1) maps d, to pes.

e Measurement noise ny, includes position sensing noise and quantization noise of A/D.
Both can be modeled as white noises [25] [26]. n,, and pes are related by the sensitivity

function S(z71).
In time-domain, the total relationship between disturbances and pes is
pesin] = F(z"")difn] + S(z~")(dy ] + nm[m]) (3.35)
In frequency-domain it is

Cpes(f) = IF()I* @, (f) + IS [@a, (f) + P, ()] (3.36)

where ®pes, ®g,, Pn,,, and &4, denote the power spectral density (PSD) of pes(n), di(n),
nm(n) and d,(n) respectively. Note that the true position error tpe cannot be measured

directly and position error signal (PES) is always contaminated by measurement noise n,y,.

tpeln] = F(z7Y)dg[n] + S(z7")dy[n] + T(z7 " )nm,n] (3.37)

Cipe(f) = IEHI” @a, () + ISP @, () + 1T (NI Py () (3.38)
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The PES spectral decomposition and analysis method used in this dissertation is
similar to those described in [25] [26] [27]. PES components can be categorized as repeatable
run-out (RRO) which is synchronous with the spindle rotation and non-repeatable run-out
(NRRO) which is not. Following procedure is used to separate RRO components and NRRO

components from measured PES traces.
Algorithm 11 (Decomposition of RRO and NRRO)

1. Collect PES at a fixed cylinder for M revolutions. Assume each revolution covers N

sectors: pes[n], n=1,2,.... MN

2. Average the PES over M revolutions to get the repeatable part:

Z?i1 pes[i+ (j — 1)N]

53 mroli] = _ Ji=1,mN (3.39)
3. Extend pesppo to the full length:
pesrroln] = ﬁe\sRRo[mod(%)],n =1,..,MN (3.40)
4. Get NRRO by removing RRO from PES:
pesnrroln] = pes[n| — pesgro[n|,n =1, ..., MN (3.41)

5. Calculate the PSD of pespro[n| and pesyrro[n|, denoted as ®pesrro and @pesnvrrRO

respectively.

It is well known that the pes is a white Gaussian random variable and the best

way of quantifying it is to use 30pes. We are designing the controller for millions of drives,
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PES Statistics: 340 Revolutions x 120 Sectors

10
max(PES) PESRRO B

tr%

min(PES)

0 20 40 80 100 120

60
Sector

Figure 3.10: Averaging PES traces over multiple revolutions seperates the repeatable com-

ponents from the non-repeatable parts.

Histogram of var[PES] (48 traces)
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Figure 3.11: The variance of PES is not a constant but a random variable.



99

Power Spectral Density of RRO (48 traces overlap)
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Figure 3.12: The PSD of RRO based on 48 PES traces.
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Figure 3.13: The PSD of repeatable position disturbance is recovered from PSD(RRO). The
magnitude of bin has a Weibull disturbance.
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Histogram(DpR(1)) (48 traces)

25 T
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Figure 3.14: The random variable used to denote the magnitude of each RRO bin has a
Weibull distribution.

therefore the variance of pes o2, is not a constant but a random variable. Figure 3.11

pes

shows the histogram of 48 traces of PES collected from four identical drives. Since (Tges
has the unit of square of track percentage, it is expected that it has a Weibull distribution

which is common for random variables with power units.

Decomposition of RRO

It is important to realize that the repeatable part of PES, pesgrro, only comes
from the position disturbance d, [28]. For each drive, the PSD of repeatable components

of d, denoted as ®4,rro, is calculated by

®4,rRO(f) = Ppesrro(f) m (3.42)

where the sensitivity function S(f) = W is not the measured one but the linear

1+P

model, and f, is the frequency of n-th RRO mode. Totally, there are Ny = % modes
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at the multiplicities of the spindle frequency, where Ngeeror is the number of sectors. For
example, Figure 3.12 shows that the experimental drives have 60 RRO modes. 48 traces
are collected from four drives and measurements are repeated over the ID, MD, and OD
of all disk surfaces. Figure 3.13 presents the overlapping ®4,grro recovered by using Eq.

(3.42). Let a random variable Dyg(n) denote the power of n-th bin of ®4,rro,

Dyi[nl= [puwpm Paprro(f)df, n=1,..,Ng (3.43)

where BWg|n| is the bandwidth of n-th mode.
Repeat the procedure above for every drive. As shown in Figure 3.14 which is
the histogram of Dyr(1), Dpr(n) has a Weibull distribution which is typical for a power

measurement of a Gaussian random variable.

Decomposition of NRRO

®pesnvrrRO can be divided into narrow-band and broadband components. Narrow-
band components are mainly contributed by NRRO components of the position disturbance
dp, like disk modes and spindle modes. Broadband (baseline) noises are mainly contributed
by the measurement noise n,,, the torque disturbance d;, and some broadband noises from
d,. Broadband noises can be separated from ®pesnyrro by using root mean square (RMS)
average. This smoothed version of ®pesnrRo is denoted as RM S(P@pesvrro)- Figure 3.15

shows a typical relationship between RMS(®pesnrro) and its contributors.

Modeling n,: As shown in [27], the measurement noise n,, is white. It affects PES
through sensitivity function S(f). The power level of n,, can be estimated from RMS(®pesnrRO)

as follows. At high frequencies (above 4 kHz), S(f) has a unit gain and F(f) rolls off
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RMS(NRRO)
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Figure 3.15: Both measurement noise n,, and torque disturbanace d; are assumed to be
white noises. The fittings to the baseline of NRRO are colored versions of N,, and Dj.

quickly. Based on Eq. (3.35) and (3.36), it is expected that the high frequency contents of
RMS (<I>pes NRRO) are mainly contributed by the measurement noise n,, and the broadband
part of d,. A further component level measurement proves that the measurement noise ny,
dominates RMS(®pesnyrro) at high frequency. Since ||S(f)||> = 1 near the Nyquist fre-
quency, the power level of n,, is simply the power spectral magnitude of RMS(®pesnrRO)
at high frequency. Let a random variable N,,, denote this power level. After identifying N,
for every drive, the mean value and variance of N, are calculated. It is expected that N,

also has a Weibull distribution.
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Modeling di:  To identify the torque disturbance dy, ||S||* - N, is subtracted from RMS

((:DpeSNRRO)a i'e'a

RMS((I)pesNRRO_T) (3.44)

= R]\/[S((I)pesNRRO) - ||S||2 N,

where RMS ((DpesNRRO_T) is solely contributed by the torque disturbance d; and some
unaccounted TMR, sources. Among the components of dy, on one side, windage, power
amplifier noise, and quantization errors can be modeled as white noises [25] [26]. On the
other hand, due to the nonlinear nature of pivot friction and flexible print cable force, it is
impossible to use a linear model to completely describe the torque disturbance d;. However,
since our overall objective is to do the variance projection of PES, it is reasonable to model
d; as white noise with PSD(d;) = D;. For each drive, Dy is picked up such that the model

has an equivalent TMR contribution as the measured data, more precisely,

B JyF RMS (PpesvrRrO_T)df
- Is
I IE(F)ll? df

Another benefit of using this model is that the unaccounted TMR sources are also automat-

D; . (3.45)

ically included. Totally, the power level Dy is a random variable with a Weibull distribution.

Modeling narrow-band NRRO components: Narrow-band components are identified
to be contributed by NRRO components of the position disturbance d,, like disk modes
and spindle modes. Since those modes are not periodic, a ‘bin’ method is used to model
the narrow-band components. Bins are defined according to the center frequencies and
bandwidth of disk modes and spindle modes, which are normally known. Assuming there

are total Ny g of such significant modes, Dpng[n] is used to denote the power level for n-th
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mode

nl — (I)pesNRRO(f) - R]V[S((DPBSNRRO)(JC)
Dyl = ./BWNR[R] 1S

where BWyg[n| is the bandwidth of n-th mode.

df, n=1,..,Nyr (3.46)

3.6 TMR synthesis

The major design objective of servo system is to reduce the true PE, tpe. However, tpe is
not directly measurable and we have to predict it based on measured pes. Actually, pes
itself is a zero mean Gaussian process. It is impossible to synthesize pes and tpe completely
in time-domain. However, TMR. projection needs only the variance of tpe. Based on Eq.

(2.2a-d) and Eq. (2.1a-d) and the fact that pespro and pesyrro are independent [10], we

have
012783 = UIQJESRRO + UIQJBSNRRO' (3'47)
and thus
(Tt2pe = 0]2123 - (Tim (348)
2 2 2
= Opesrro + Opesnrro ~ Pnm -
The variance of pesgrro, PeSNrRrO, and n,, are
Nr
. 2
Opesnno = O Dprlil [S(frroi)| (3.49)
i=1
2 2
Opesynno =Nm/0 1SCHI df+Dt/0 I CHI" df (3.50)

Nnr

+ > Dynrlil 1S(fvrro) I,
=1
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%
= / N df. (3.51)
J0O

where frro; is the center frequency of i-th RRO mode and fyxgrroj is the center frequency
of j-th NRRO narrow band mode. The random variable set {Dpr(1), ..., Dpr(Ng), Nm,
D:, Dpnr(1), ..., Dpnr(Nyg)} fully describe the characteristics of the disturbances in
track-following mode for a family of drives. Note that both § = 14—% and F' = H—%

are functions of controller C(z~1). This implies a direct method to tune the parameters of

2
tpe*

C(z7!) to minimize o Since we are designing the controller for mass produced HDDs
with plant variations and disturbance uncertainties, it is important to realize that U%pe is
not a constant but rather a random variable. It is thus more appropriate to assess the
average performance which is quantified by the expected value of atgpe, and the performance
robustness which is quantified by the standard deviation of ¢7,,. According to (3.49), (3.50)

and (3.51), the mean values of O'pe and (Tfpe respectively are

S

ZE o) 1SCA)IP + E(N / 1S(f (3.52)
Nnr
+E(Dy) / IEDOIP+ S E@pwr() [E)I
7j=1

and

B(o?,) = ZE o) 1S + E(N / 1S(f (3.53)

Nnr £,
FED) [IFGIP + 3 B IFG)IE + BN -
7j=1

Before deriving the variance of (Tpes and (T?pe, let cov(vy,va) € R™ %™ denotes the

covariance matrix for two random variable vectors vi € R™*1 and vo € R™*! such that
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cov(vi,va)ij = cov[vi(i), va(j)]. Then the variances of 02, and 03, are given as

Uar((f;es) = U‘”"(U;Q;esRRo) + Uar(agesNRRo) + 2 cov( I%BSRRO,JIQ)ESNRRO) (3.54)
and
Uar(afpe) = Uar(aieSRRo) + Uar((rgesNRRo) —var(o? ) (3.55)
+2- COU( ?)esRRovo—]desNRRo) -2 COU(O—IQ)esRRovo—?‘Lm) 2. COU( IQ)esNRRovo—gzm)
where
2
UaT(U;DSSRRo) =L [(J?JSSRRO B E(O—gesRRO)> } (3‘56)
Ng 2
ZDpR IS(fnrrON® =Y EDur()] |S(fNrROH)|
7j=1
2 2 IS(I?
= [ISUI? - IS (wa) || cov(Dpm, Dpr) | . 1,
1S(fae)l
2
Var(Opesy o) = [(JJQ\/RRO — E(0%rRo)) } (3.57)
L oo
= var(Np) [/0 ISCHI| 4 var(Dy) [/0 IECHI
2 2 IS(I?
ISCOIP - IS (Frn) I cov(Dpie, Dys) | - i
1S(fnye)l
and
COU(UIQJBSRRO’JI%ESNRRO) = (3'58)
2 2 Eralk
ISCON™ - IS(fnp)l”| cov(Dpr, Dpng) | - ,
1S(fvwe)l

ISP 1 e
+ [cov(Dyr, Nyy) + cov(Dyp Do) | - /0 ISCHI2,

1S (fxe) I
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IS 1 4
cov(ageSRRo,aim) =cov(Dpr,Np,) | .. ES, (3.59)
IS
£ (%
O T 7h) = var (N5 [ ISP (3.60)
s
e N [ IFI?
ISGIF 7
+C0V(DPNR,Nm) ?s
1S I

Although the expressions above seem to be messy, note that those mean values
E(+), variances var(-) and covariance matrices cov(-,-) can be calculated based on the
PES data measured from hundreds of drives and saved as constant matrices. For a given
controller parameter set K, S(f, K) and F(f,K) can also be easily derived based on the
aforementioned linear plant model. Thus one can predict the time-domain performance of
any given controller in terms of E(afpe) and Uar(agpe) based on Eq.(3.53) and (3.55) respec-
tively. The overall statistical model includes the linear plant model and the formulations
for E(07,.) and var(of,.). It can be easily built into optimization loops as an evaluation
function. Thus it is especially useful for the non-gradient based optimization algorithms,

such as genetic algorithms which will be discussed in later chapters.

3.7 Experimental Verification

Before putting the model into work, we need to verify its accuracy in prediction and

its computational efficiency. The experimental setup is shown in Figure 3.16. The accuracy
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verification is a two-step process. First, the modeling accuracy is evaluated by comparing
the measured and calculated results based on original drives without changing controller
parameters. Secondly, the capability of the PES prediction is evaluated by applying a

different set of controller parameters.

Recovery Accuracy Evaluation 96 traces of PES are measured from eight drives and

statistical analysis is applied to get mean(oZ.,) and std(cZ.s). On the other hand, a sta-

tistical PES model is built by using the above procedure. The synthesized mecm(a%es) and
Std(O’ZQ)es) are compared with the results from measured PES, as shown in Table 3.3. The

difference between the synthesized and measured results of std(ages) is bigger than that of

mean(o2,,) because it involves more complex recovery process and thus more accumulated

pes

errors. Even so, the difference is less than 3% which is a clear indication of accuracy for

the recovery process detailed in Section 3.6.

PES Prediction Evaluation In this stage, the model is used to predict the performance
of a group of drives when some parameters in the controller are changed. As an example,
a new firmware with the track-following loop gain (k! = 0.27) increased by 6%, i.e.

loop

Kloop = 1.06k?oop = (.2808, is loaded into these drives and a new set of PESs are collected.
The new statistical results from measured PES and synthesized results by the model are
listed in Table 3.4.

As a natural extension, we repeat the above process for nine different loop gains.

Every time PESs are collected for a new controller, a new statistical model is built and

the prediction for both mean(oZ,,) and std(02,,) is performed when kjoop is in a range of
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[0.92klooop, 1.08klooop] and kg, kp, and k; are fixed at nominal values. Looking at Figure 3.17,
the results are very interesting. Nine pairs of continuous lines are the predictions by nine
different statistical models. Being nicely agreeing with each other suggests that the model
is insensitive to its building point. In other words, whether it is built from PESs associated
with klooop or 1.06k?oop, it gives a repeatable prediction. Furthermore, the measured data
matching the prediction indicates the accuracy over the range. Another interesting point is
the trend they suggested. Both the measured data and model suggest that the kjoo, which
achieves the smallest mean(o2,,) and std(02,,) is actually around klooop. This implies that
the original controller is well optimized.

To further illustrate the usefulness of the statistical model, we apply it to predict
the time-domain performance by varying the tunable parameters of the track-following
controller, Ki,op, kq, and k; in large ranges respectively. In Figure 3.18, kj,p is varied
from 0 to 1 as k4, and kp, are kept at nominal values. It can be seen that as functions of
Kioop: mean(ages) and Std(o‘;es) have two singular points around 0 and 0.42 respectively.
Similarly, they have two singular points around 0.5 and 0.98 in terms of k, (see Figure 3.19),
and two at —0.3 and 0.75 in terms of k; (see Figure 3.20). Actually, the tuning of fixed-
structure controllers is a non-convex optimization problem, and often with discontinuities
like the track-following controller shown here. Thus it is not surprising that gradient-based

methods are easily trapped in local optimum or just unable to converge. Some non-gradient

based methods are therefore preferred. This topic will be discussed in details in Chapter 4.

Computational Efficiency All simulations are performed in MATLAB on a AMD 1GHz

PC with 256 MB memory. For a given controller, the total CPU-time for computing E(atgpe)
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Figure 3.16: The setup for model validation.

Table 3.3: Accuracy evaluation of Modeling

std((rges)
2.311(tr%)?
2.253(tr%)>
-2.5%

mean(o?,,)

5.219(tr%)?

5.240(tr%)?
0.4%

Measured
Modeled (average)
Percentage difference

and var(o7,,) based on Eq.(3.53) and (3.55) is always less than 0.06 second. This is in
contrast to the 2-minute CPU-time achieved by a time-domain simulation tool [28], which
even requires repetition if used to predict performance for multiple drives. Thus it is highly
efficient to use the statistical model as an evaluation function inside the optimization loop.

Table 3.4: Evaluation of PES prediction capability (koep = 1.06klooop)

mean(o2,,)

std(ages)

Measured

5.324 (tr%)?

2.355 (tr%)>

Modeled (average)

5.271 (tr%)?

2.360 (tr%)?

Percentage difference

-1.0%

0.2%
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Prediction by Model (lines) v.s. Experiment (stars)
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Figure 3.17: Nine models are built by repeating the building process on the same eight
drives with nine different loop gains k?oop-[0.92 0.94 0.96, 0.98, 1.00, 1.02, 1.04, 1.06, 1.08].

The trend predicted by models matches the experimental results.
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Figure 3.18: The predicted trend of mean(o2,,) and std(o%.,) by varying kigop.
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Figure 3.19: The predicted trend of mean(oZ,,) and std(0%.) by varying kq.
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Figure 3.20: The predicted trend of mean((rges) and std((rz%es) by varying k.
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3.8 Summary

This chapter developed a statistical model for a population of HDDs. The overall
formulation includes the linear plant model which was built by a multiple-phase identifica-
tion process, and a set of random variables describing the PES contributors identified from
a large number of drives. This model was proved to be efficient and accurate in predicting
the time-domain performance in terms of E(07,,) and var(03,.) for a population of drives
with a given controller. The model will be adopted by the non-gradient-based optimization
tool in later chapters to tune the parameters of the track-following controller towards PES
minimization. The methodology described here is also applicable to the tuning of controller

parameters for other mass-produced electro-mechanical systems.
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Chapter 4

Multi-objective Tuning of Fixed

Structure Controller

4.1 Introduction

Modern control techniques like LQG/LTR, Heo, Ha2, and p synthesis offer sig-
nificant advantages over classical control methods in handling multiple control inputs and
system uncertainties. On the down side, modern control methods usually lead to controllers
with an order equal to or greater than the plant model used in design. Most literatures on
the application of modern control techniques to HDDs showed a performance improvement
by implementing the resulted high order controller in an add-on DSP [17] [13] [18] [76], while
little emphasis was given to the comprehensive understanding of the plant to be controlled.
This design philosophy has formed a gap between control theory and control practice. On

one side, nice theory and laboratory results are there, but they are hard to be transferred
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into control engineers who are working on industrial applications.

We use the servo design for HDDs as an example. The high-volume product nature
of HDDs strongly constrains the complexity of the controller. The common approach to
tackle this constraint is to first obtain a high-order controller which is then reduced to a
manageable order for implementation by applying order reduction techniques on plant or
controller. This not only limits the use of comprehensive models during design, but has
no guarantee that the structure of the reduced-order controller is consistent from design
to design. Due to the iterative nature of servo design, if changing the controller structure
every design cycle, one is usually overwhelmed by difficulties associated with coding and
version management. This makes the free-structure design prohibitive in the time-critical
design cycle. Therefore, choosing a right controller structure is important not only in the
design stage but also in the implementation stage. Readers may refer to the survey by
Hanselmann [77] for a thorough discussion on this subject .

An alternative method is to put more efforts in building non-conservative plant
model based on the fundamental understanding of plant and disturbances and then applying
simply control laws. In fact, it is more efficient to start with a controller structure that has
good nominal properties, and tune the parameters within that structure.

As discussed in the previous chapters, the design of the track-following controller
involves numerous trade-offs and limitations. Although the frequency-domain properties
provide strong analysis results, the real specifications and disturbances are in the time-
domain. In fact, the combination of the variance of PES, hard bound on PES amplitude, and

frequency-domain specifications is what is really needed to push the limits of performance.
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A single performance objective is seldom adequate to capture multiple and often conflicting
design objectives.

To solve such a multi-objective optimization problem (MOP), most optimization
algorithms explicitly or implicitly require designer to assign weight to each objective before
optimization. The problem is that the best combination of weights that leads to the desired
performance is usually not known in advance. The designer needs to heuristically tune the
weights until satisfactory performance is achieved.

In this chapter, the multi-objective tuning of fixed-structure controller is formu-
lated as a goal attainment programming (GAP) problem [40]. Instead of finding feasible
solutions which minimize or maximize objective functions, the GAP is intended to find so-
lutions that, if possible, achieve a set of goals; otherwise, violate the goals minimally. GAP
is conventionally solved by non-linear programming which still needs weights. This disser-
tation proposes a multi-objective genetic algorithm that is capable of parallelly searching
for a set of Pareto optimal solutions without using weights before optimization.

This chapter will resolve the following two basic questions in order to tune the

fixed-structure controller efficiently and reliably.

e How should the fixed structure control problem be formulated with multiple objectives

and constraints?

e How should the formulated problem be solved or optimized?

From a point of view of decision making, however, for a given control engineering
problem, we usually first want to know what optimization algorithms are available, and

then we can formulate the problem in a solvable form accordingly. For example, a large
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number of approaches focus on making the optimization a convex one through suitable
parameterization. The motivation is that there are numbers of powerful algorithms for
solving convex optimization problems. Therefore, the reminder of this chapter will answer
the questions above in a reversed order. Section 4.2 gives some necessary preliminaries
on optimization. Section 4.3 briefly reviews general optimization techniques. Section 4.4
considers the multi-objective optimization and introduces the concept of Pareto optimality.
Section 4.5 discusses the parameterization of the fixed-structure control problem based on

different optimization techniques.

4.2 Preliminaries

Definition 12 (Convex Set) A set Cis convex if the line segment between any two points

in Clies in C, i.e., if for any x1, x9 € C and any 0 that 0 < 0 < 1, the following holds:

Ox1 + (1 —0)xs € C. (4.1)

Definition 13 (Convex Function and Concave Function) A function f: R — R is
convex if domf is a convex set and if for any x, y € domf and any 0 that 0 < 0 < 1, the

following inequality holds:

fOx+ (1 —-0)y) <Of(x) +(1-0)f(y) (4.2)

A function f is called concave if —f is convexr.

Definition 14 (Local and Global Optimum) For the following general optimization prob-
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lem,

minimize fo(x)

subject to  fi(x) <0 (i=1,..,m) (4.3)

x 18 feastble if x satisfies all inequality and equality constraints. If x is feasible and

folw) = mf {fo(z)] ||z — 2|l < R} (4.4)

holds for some feasible z and YR > 0, then x is locally optimal. If (4.4) holds for any

feasible z, then x is globally optimal.

Definition 15 (Convex Optimization Problem) The minimization problem of a con-
vex function over the optimization variable x € R™ subject to inequality constraints on con-
vex function of x and equality constraints on affine functions of x is a convex optimization

problem, i.e.,

minimize  fo(x)

TER™
subject to fi(x) <0 (i=1,...,m) (4.5)
alz=0b (i=1,..,p)
where fy, ..., fm are convexr functions. Let x be locally optimal for the convex optimization

problem (4.5). Then, x is also global optimal for (4.5).

4.3 Overview of Optimization Techniques

No matter which parameterization framework is used, there is one fundamental

issue that needs to be addressed: how should the global optimum be located efficiently
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and reliably. The numerous search and optimization techniques can be classified into three
categories: gradient-based algorithms, non-gradient-based deterministic schemes, and non-

gradient-based stochastic algorithms.

4.3.1 Gradient-based Algorithms

Gradient-based techniques use numerical or analytic gradients information of tar-
get function to dictate a direction of search in which the optimum is thought to be. They
can be classified into two groups: indirect and direct [42]. Indirect methods search local
extreme by solving a set of usually nonlinear equations which result from setting the gradi-
ent of the objective functions equal to zero. On the other hand, direct methods seek local
optima by jumping on the hyper-surface of target function and moving in a direction related
to the local gradient. Both classes are local methods for they seek the optima only in a
neighborhood of the current point.

General speaking, gradient-based methods are more efficient than other methods
when the first derivative of the target function is continuous. Newton-type methods are only
really suitable when the second derivative information can be easily calculated because cal-
culating second derivatives, usually the Hessian matrix, by using numerical differentiation,
is computationally expensive. Quasi-Newton algorithms developed by Dennis and Schnabel
[78] avoid calculating Hessian directly by using the first derivative and function itself to build
up curvature information to make an approximation to Hessian. A class of interior point
methods have shown to be more efficient [79] [80]. They are based on Newton’s method,
to solve or approximately solve a sequence of smooth unconstrained or equality-constrained

problems. Provided that the sequence of smooth problems is chosen appropriately, the
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resulting algorithms are very efficient in both theory and practice.
However, gradient-based methods require the continuity and the existence of deriva-
tive of the target function and thus cannot provide sufficient robustness to find the global

optimum for a non-convex optimization problem.

4.3.2 Non-gradient-based Deterministic Schemes

Non-gradient based methods use only evaluations of the objective function, not
requiring its gradient or Hessian. Therefore they are most suitable for problems that are
very nonlinear or have a number of discontinuities. The enumerative search is the simplest
scheme in this class. Its idea is pretty simple; within a finite search space, or a discretized
infinite search space, the search algorithm evaluates objective function values at every point
in the space, one at a time. This scheme can arrive at reasonably good solutions for
search spaces of small size. But when confronted with search spaces of enormous size
and wide variation from point to point in their precinct, such schemes must ultimately be
discounted in the robustness race for one simple reason: lack of efficiency. Even the dynamic
programming, a highly touted enumerative scheme, may become exhausted on problems of
moderate size and complexity, suffering from “the curse of dimensionality” [81]. Simplex
search by Nelder and Mead [82] [83] is the most widely used non-gradient-based deterministic
scheme. It implements extreme-point search by moving from one basic feasible solution to
another until either the problem is shown to be unbounded or the current solution is proven

to be optimal.
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4.3.3 Non-gradient-based Stochastic Algorithms

Stochastic algorithms have been recognized to be able to overcome the shortcom-
ings of gradient-based and deterministic schemes. The common feature of these methods is
that they use stochastic rules to dictate the search. Random walk is the simplest version
of stochastic optimization algorithms. Although it is capable of searching for the global
optimum, it still lacks efficiency and does no better than the enumerative search. During
the last three decades there has been a growing interest in algorithms that rely on analo-
gies to the natural processes. The best-known examples are evolutionary algorithms (EAs),
simulated annealing (SA), and neural networks (NN).

Particularly, the EAs refer to a class of such algorithms inspired by the process
of natural evolution and heredity. The three mainstream versions of EAs are genetic al-
gorithms (GAs), developed by Holland [84] [42], evolutionary strategies (ESs), developed
by Rechenberg [85] [86] and Schwefel [87] [88], evolutionary programing (EP), developed by
Fogel [89] [90]. EAs maintain a population of potential solutions, and have some selection
processes based on fitness of individuals, and some genetic operators [43]. The difference
and similarity of various EAs are summarized in Table 4.1. A comparative study of EAs
can be found in [91] [92].

EAs were originally defined as stochastic search methods for scalar optimization

problems of the following form:

min f(x) with f: Q CR" - R (4.6)

xe2
where f is the fitness function, 2 is the feasible region, and n is the dimension of variables

x = (x1,...,x,) (and thus search space). The fitness function might be just the objective



Table 4.1: A summary of evolutionary algorithms.

| | ES EP GA
Representation | Real coding Real coding Binary coding or
real coding
Fitness = Objective function | Scaled value of Scaled value of
objective function | objective function
Mutation Main operator The only operator | Minor operator
Recombination | Different variants None Major operator
Different variants
Selection Deterministic Probabilistic Probabilistic
extinctive extinctive Preservative
Self-adaptation | Standard deviations | Variances None
and covariances

function of optimization problem. Without loss of generality, assume f(x) > 0 for any x €

Q.

4.4 Multi-objective Optimization

Practical control design problems are often characterized by several non-commensurable
and often competing measures of performance, or so-called objectives. A multi-objective
optimization problem (MOP) can be posed as the minimization of a vector of objectives

f(K) ={fi(K),..., fm(K)} that may be the subject of a number of constraints or bounds.

minimize f(K) (4.7)
Kehn
subject to ¢;(K) =0, i=1,...,n,
gi(K) <0, i=n.+1,...n (4.8)

Kip < K <X Kyp

If any of objectives are competing, there is no unique solution.
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Figure 4.1: Different methods of dealing with multiobjective optimization problems. The
upper part is the conventional weighting-based method and the lower part is the Pareto-

based approach.
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Figure 4.2: An example of Pareto optimality.
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Pareto optimality, developed by Vilfredo Pareto (1848-1923, an Italian sociologist),
is the most widely accepted criterion of economic efficiency. A state of a given system is
Pareto optimal, and thus efficient, if and only if there is no feasible alternative state of that
system in which at least one is better off and no one is worse off. And, for purposes of this
criterion, a person is ‘better off” with some alternative A rather than B if and only if this
person prefers A to B [93]. The concept of Pareto optimality requires no weights before
optimization and makes it possible to provide multiple optimal solutions to the decision

maker.

Definition 16 (Domination) The vector J(KY)={J1(K"),..., J,(K')} is said to domi-
nate vector J(K?) = {J1(K?), ..., Jo(K?)} if and only if J(K') is partially less than J(K?),

denoted as J(K1) <, J(K?), more precisely
(Vi) Ji(K) < Jo(KC) A (Fi)Ji(KT) < Ji(KCP). (4.9)

Definition 17 (Pareto Optimality) A solution K' is Pareto optimal if and only if there
is no K% € Qg such that J(K?%) <, J(K'). Pareto optimal solutions K, are also called

non-dominated set or non-inferior set, which are a set of K7 such that

(J(K) £ pd(K) A (I(ET) £ J(KT)), (4.10)

K' € K, K/ cK,Vi#j.

In other words, the Pareto set is optimal in the sense that no improvement can be
achieved in any objective without degradation in others. An illustration example is shown
in Figure 4.2, the solutions are evaluated based on three performance indexes Ji, Js, and

Js3 respectively. For each index, the smaller the value, the better the solution. It is easy to
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see that solution A and B are better than all the other solutions in all aspects. However, A
performs better than B in terms of J; and Js but worse than B in term of J3. According
to the definition of Pareto optimality, we say A and B are the equally best solutions and
in the same Pareto set. Similarly, C' and D are equally good solutions in the second best
set. Both dominate solution E but are dominated by A and B. The overall Pareto ranking

with respect to J = {J1, J2, J3} can be expressed as
J{A,B} <, J{C,D} <, J{E}. (4.11)

The goal of MOPs is to search and identify noninferior solution points. Some of the
major techniques to tackle MOPs are described below. Although there are different ways to
classify these techniques, we divide them in two classes: weighting-based techniques which
use weighting explicitly or implicitly, and Pareto-based methods which solve the MOP in a

parallel way.

4.4.1 Weighted Sum Strategy

One way of dealing with multiple objectives is to combine them into a single

objective by using weighting vector w={w1, ..., w,, } The MOP objective Eq. (4.7) becomes

inimi =3 s fi(K) - 4.12
minimize fi, =35, w; fi(K) (4.12)

In most cases, however, the best combination of weightings is not known in advance due
to the lack of knowledge of target problem. As shown in the upper part of Figure 4.1, the
whole iterative process involves many try-and-errors. One has to play with weights and
repeat optimization for many times before getting insight into the interaction among objec-

tives. This situation will get worse with increasing number of competing objectives. Some
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Jy(K) Trade-off solutions

Figure 4.3: The convex trade-off boundary is accessible by varying weightings.

techniques such as loop-shaping use weightings implicitly. Therefore no matter whether
we use LQG/LTR or Hy loop-shaping, the most difficult part is still the selection of the
weighting functions or filters.

Furthermore, the trade-off solution boundary may be nonconcurrent so that certain
solutions are not accessible [94|. This can be illustrated geometrically by the following
example with two objectives. In the objective function space a line L : wJ(K) = b is
drawn. The minimization of b in domain A can be interpreted as finding the value of b with
which L just touches the boundary of A as it proceeds outwards from the origin. Selection
of weights w = [w1, ws], therefore, defines the slope of L, which in turn leads to the solution
point where L touches the boundary of A. For a A with convex lower boundary as shown in
Figure 4.3, all optimal solutions are reachable by varying w. However, accessibility cannot
be guaranteed for A with a non-convex lower boundary. For example, in Figure 4.4, all

solutions between the point a and (3 are not accessible.
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J,(K) Accessible trade-off solutions

Inaccessible
trade-off
solutions

Figure 4.4: Some trade-off solutions on the nonconvex boundary are not accessible by
varying w.

4.4.2 ¢—Constraint Strategy

In the setup of e—Constraint method, one primary objective .J,, is minimized while

the remaining objectives are converted into inequality constraints

i 418 -
subject to  fi(K) <eg;, i=1,....m, i #p
along with the other constraints in MOP Eq. (4.8).

The e-constraint method overcomes the inaccessible problems that the weighted
sum strategy suffers from in non-convex optimization. However, it still has the same short-
coming as the weighted sum strategy that the designer must choose a suitable set of €; such
that there is a feasible solution to the problem. In order to put the designer’s true prefer-
ences into a mathematical description, one has to express a full table of their preferences
and satisfaction levels for a range of objective value combinations [94]. Therefore, difficul-

ties arise when the designer tries to prioritize the objectives that are equally important,

especially at the early stage of optimization cycles.
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4.4.3 Goal Attainment Programming (GAP) Strategy

The goal attainment programming (GAP) is a technique to find a compromised
solution which will simultaneously satisfy a number of design objectives. GAP first appeared
in the fifties to obtain “constrained regression” estimates for an executive compensation
problem by Charnes and Cooper [40] [95]. In contrast to linear programming (LP), the GAP
does not require that all constraints must be satisfied in order to have a feasible solution.
Instead, the GAP requires the designer to assign a set of design goals, fO={f? ..., fo}, to
the objectives f(z) ={ fi(z), ..., fm(x)} and minimizes the deviation between the objectives
and design goals and, if possible, attains the goals with zero deviation. The minimization
process can be accomplished with different optimization techniques. Each one leads to a
different GAP variant.

The classical GAPs as presented in [38] [39] [36] convert the multiple objectives

(Eq.(4.7)) into a single objective optimization problem with additional constraints
minimize -y
yER,KER™ (414)

such that fi(K) — f2 <wyy, i=1,...,m
by introducing a slack variable v and weighting vector w={w1, ...,wp,}. This GAP for-
mulation can be directly posed as a nonlinear programming problem such as sequential
quadratic programming (SQP). A more complete description will be presented in Chapter

6. The GAP can also be posed as a minimax problem by using the following setup [96].

minimize max{\;}
yER,KeR" 7 (415)

. _ 70
N = LBy

where rr—

5 eeey M0

Other setups are also possible, such as lexicographic goal programming [96] [97].
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All setups can take advantage of the existing single objective optimization algorithms, such
as those in MATLAB Optimization Toolbox. A major drawback with above setups is that
they still require the user to specify a set of weighting factors w, signifying the relative
importance of each criterion. This makes these approaches subjective to the designer.
Moreover, these approaches have difficulty in finding solutions in problems having non-
convex feasible solution space; they are still local methods.

Although using multi-objective optimization techniques to solve GAP has been
previously presented in [98] [96], the works primarily focused on solving linear GAP due
to the inefficiency of gradient-based nonlinear multi-objective optimization methods. The
non-gradient-based GA was first introduced to solve general GAP by Kalyanmoy [97]. This
dissertation parameterizes the parameter tuning problem for fixed structure controllers as
a multi-objective GAP which is then solved by a Pareto-based multi-objective genetic algo-
rithms (MOGA). The population-based nature of MOGA enables the evolution of a Pareto-
optimal set of solutions without requiring weightings [99] [100] [49].

In order to convert the objective into a “goal” form, an user-defined target f? is

needed. For example, H}i{n fi(K) (Eq. (4.7)) can be converted to

goal(fi(K) < f7). (4.16)
KeQ

Note that fi0 is not necessarily achievable. If the minimum possible cost f;(K™*) is bigger
than the target fz0 , there exists no feasible solution which will achieve the target in 2. In
this case the objective of Eq. (4.16) is to find a solution that will minimize the deviation
d= fi(K) - f}.

Handling constraints in GAP framework is very straightforward. Constraints are
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Table 4.2: MOP and multi-objective GAP
Objectives and constraints of MOP | Objective functions of GAP |

mliﬂ fi(K) g?(al(fi(K) < f9)
max f;(K) goal(fi(K) > 20)
K K

gi(K) < ¢! g?(al(gi(K ) < g?)

9i(K) > ¢f g?(al(gz(K ) = gY)

gi(K) = ¢} gf})(al(gi(K ) =gY)

gFP < gi(K) < g7'P g?(al(giLB < gi(K) < g/P)
Kip < K < Kyp 1:={K:K.p<s K= Kyp}

often seen as hard objectives, which need to be satisfied before the optimization of the
remaining objectives takes place [101]. Without losing generality, constraints of Eq. (4.8)

can expressed in the following type of inequality

g(K) < ¢° (4.17)

where g(K) is a real-valued function of the variable set K, and g is a constant value. The
inequality may also be strict (< instead of <). Equality constraints of the type g(K) = ¢°

can be formulated as a particular case of inequality constraints. According to the basic idea

of GAP, constraint Eq. (4.17) is satisfied if

goal(g(K) < ¢°)
KeQ

is achieved, where €2 is user-defined search space.
Finally, the constrained MOP in Eq. (4.7) (4.8) is converted to an unconstrained

MOP according to Table 4.2. Note that goals are not subject to convexr limitation of any

kind.
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4.4.4 Linear Matrix Inequalities (LMIs)

Linear matrix equalities (LMIs) have received a great deal of attention since it
provides a unifying framework for control design with multiple design specifications. If
the state space description of a problem is available, many of the design objectives and
constraints can be parameterized in convex LMI forms and then solved exactly and efficiently
as semidefinite programmings (SDPs). See [102] [103] [104] for a collection of such problems.

To tackle the multi-objective control problem, the closed-loop system is affinely
parameterized with the Youla parameterization (also called Q-parameterization). The de-
sired closed-loop specifications are guaranteed by introducing auxiliary Lyapunov matrices
into the problem. Because of the product terms between these Lyapunov variables and the
state space matrices of Youla parameterization, the resulting MOP is a non-convex bilinear
matrix inequality problem. It has been shown by Scherer [104] and Masubuchi [105] how this
non-convex problem can be transformed into a convex feasibility problem by imposing the
extra constraint that all the Liyapunov variables are equal, at the expense of conservatism
for the overall design. Sub-optimal solutions are then computed by confining the search of
the Youla parameterization to finite-dimensional subspaces. However, it still suffers from
a substantial inflation of size of the resulting optimization problem if improving the ap-
proximation accuracy to the optimal solution. To avoid such a problem, [106] revealed a
novel parameter transformation method to arrive at an efficient algorithm. The final MOP
formulation as shown in [106] still adopted the weighted-sum strategy. Therefore the Pareto

optimal controller was attained by varying the weights and repeating the SDP.
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4.5 Parameterization of Fixed Structure Controller

Fixed structure control is a design method where the order and the structure (or
parameterization) of controllers are pre-determined by the user and only some parameters
are tunable.

Besides the classical methods for PID tuning, there are two dominant trends in
dealing with the tuning of more general fixed-structure controllers. On one side, a large
number of approaches focus on making the optimization problem a convex one, mostly
by using some suitable parameterization. The motivation is that there are effective and
powerful algorithms for solving the convex optimization problems. Examples of such algo-
rithms are ellipsoid algorithms [107] and more efficient interior point methods for solving
LMI-based problems [79]. The problem is that the parameterization itself usually intro-
duces many auxiliary variables. For a multi-objective design problem, the final LMIs might
be too large to solve [24]. On the other hand, non-gradient-based optimization techniques,
such as genetic algorithms and simulated annealing, have drawn a great attention in directly
solving the MOP in the original engineering setup, no matter it is convex form or not. This

section discusses both techniques in great details.

4.5.1 Convex Parameterization

For a fixed structure controller with tunable parameters, the optimization problem
cannot be directly parameterized as a convex optimization problem. It is usually recast
into a static output feedback control problem which then has a number of well-developed

optimization theories [108] [30] [31] [109] [110]. For example, Nett et al. [30] showed that
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Figure 4.5: Reduction procedure (a) Dynamic output feedback control; (b) Decomposition;
(c) Augmentation; (d) Static output feedback control.

nine cases of constrained-structure controllers, which cover most practical applications, can
be recast as static output feedback controllers. The procedure is outlined as follows.
Decomposition of Controller Dynamics and Tunable Parameters

As depicted in Figure 4.5 (a) and (b), the first step of transformation is to separate
the tunable parameters of controller with the controller dynamics such that C(z71, K) =
Fr(Po(271),K). The necessary and sufficient condition under which the decomposition

exists is given in the following theorem [30].

Theorem 18 (Existence of Decomposition) Suppose that the controller C(z~1, K) has
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a state space realization [ éc gc ] and is affine in K, then there exists Po which satisfies
C C
C(z 1K) = Fr(Po(z 1), K) (4.18)
if and only if there exists a solution to the following real matriz equation:

Ac Be | | Poy  Poy Py,
[ Co  Dc ] B [ Pe, Po, | K[ Py, Pog, | (4.19)

where K is a full block of tunable parameters and the state space realization of P is

PC11 | PC12 PC13
PCQl PCQQ P023
PC'31 PC32 0

Proof. See Nett et al.[30] or Ibaraki [19]. m
Note that the assumption that C(2~!, K) is affine in K is satisfied in most appli-
cations of interest.

Augmentation of Controller Dynamics into Plant

The extended plant is constructed by absorbing the controller dynamics into the

plant
G(z ') = Fr(P(zY), Po(z7Y)). (4.20)
The the stability property of the transformation is stated by the following theorem.

Theorem 19 (Internal Stability of the Interconnection) Suppose (4.18), (4.19), and
(4-20) hold, then C (21, K) is internally stabilizing for P(z~1) if and only if K is internally

stabilizing for G(271).

Proof. See Nett et al. [30]. =
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Optimization of Static Output Feedback Controller

There are a large number of literatures on optimal static output feedback control

[111] [22] [19]. The Hy optimization method is reviewed below.

H,, Optimal Static Output Feedback Control In contrast to the full-order con-
troller synthesis case, the Hy, synthesis problem of static output feedback or more gener-
ally reduced-order controller synthesis cannot be reparameterized as a convex optimization
problem. As suggested by the following theorem [112], the order constraint destroys the

convexity.

Theorem 20 (Solvability of Discrete-time H,, Controller Synthesis Problems))
There exists a dynamic controller C(s) of order k such that | Fr,(Pk(s),C(s))|,, < if and

only if there exist two symmetric matrices X € R"*™ and Y € R™*" such that

AXAT - X AxcT By
N | o1 x AT —yI4+C1XCT Dy | Ny <0 (4.21)
Bf Df, 1
ATYA-Y ATY B cr
NS | BTy A —yI+BIYB, DI | Ny<0 (4.22)
Ch D1y —yI
X I
= .
{ Ty ] =0 (4.23)
rank(XY —I) <k (4.24)

where N1 = diag{N12,1}, No = diag{Na1,I}, N1a and No21 are bases of the null space of

[ BT DI, | and [ ¢, D, |, respectively.
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In the full-order controller synthesis case where k > n, the condition (4.24) is au-
tomatically satisfied and the global solution that satisfies the LMI conditions (4.21)7(4.23)
can be computed by convex optimization. For the reduced-order problem, the rank con-
straint (4.24) is non-convex. The overall problem becomes non-convex, and thus it cannot
be directly solved by convex solvers. Fortunately, for static output feedback control, the

rank constraint becomes rank(XY —I) = k = 0 and can be replaced by the following lemma

[113] [19].

Lemma 21 Suppose X € R and Y € R™*"™ are symmetric and satisfy (4.23), then

rank(XY —I) =0 if and only if tr(XY) = n.

Based on the lemma above and the cone complementarity linearization algorithm
proposed by El Ghaoui et al. [22], Ibaraki [19] presented a practical Ho, method of tuning
the fixed-structure controller by using convex optimization algorithms such as SDP, with

an application to the Hy, loop-shaping of a HDD track-following (PID) controller.

H>/H, Optimal Static Output Feedback Control It is beyond the scope of this
dissertation to review the vast literatures of Hy/Hy, optimal static output feedback control.
Interested readers may refer to Berstein [31] for a comprehensive theory of optimal Ho /Hy

static output feedback control.

4.5.2 Direct Optimization by Non-gradient Methods.

The reason of transforming dynamic controller into static controller is that the

overall fixed-structure control synthesis is a non-convex optimization problem. One can get
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around this limitation by directly applying non-gradient-based optimization methods. Sec-
tion 4.3 gives a review of non-gradient-based methods, which are classified as deterministic
rule based (e.g. dynamic programming) and stochastic rule based (e.g. genetic algorithms).
Such algorithms are not as efficient as gradient-based methods in solving convex optimiza-
tion problems. But they usually work more closely on the original engineering problems and
have no need for auxiliary information. Genetic algorithms (GAs) are a class of stochastic
rule based search techniques that work with a population of potential solutions and simulate
the natural evolution process. Details about GAs will be discussed in Chapter 5. The most
significant advantage of GAs is that they are ready to tackle multi-objective problems in a
parallel way. Chapter 5 develops a multi-objective genetic algorithm (MOGA) to solve the

fixed-structure controller synthesis problem by the following procedure:

1. Define the design objectives and constraints.

2. Parameterize the problem as multi-objective GAP according to Table 4.2 with user-

defined goals.

3. Define the performance evaluation functions in terms of tunable parameters.

4. Solve the GAP by MOGA.

5. Select a preferred solution from the Pareto-optimal set.

To further improve the computational efficiency and solution accuracy, there have
been some attempts to combine non-gradient based and gradient based techniques in the
hope of generating a more efficient hybridization [114] [45] [115] [116] [117]. The resulting

hybrid algorithms usually take advantage of the robustness of the non-gradient techniques
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in identifying high performance regions within a non-convex search space and utilize the
gradient-based algorithms to rapidly search for the exact optimum. In light of this, Chapter
6 proposes a two-phase algorithm combining the MOGA and the nonlinear programming
(SQP) to optimize the parameters of a fixed-structure HDD track-following controller.
The proposed methods allow consideration of arbitrary controller structures (like
order, internal structure, and decentralization) and arbitrary parameterizations (like LMI,
ARE, and GAP etc.). Actually, some practical design is very difficult or even impossible to
be parameterized in standard frameworks. Practicing engineers prefer a flexible optimiza-
tion technique that can be easily dropped into their practical applications. The examples
in Chapter 5 and Chapter 6 adopt the classical frequency-domain loop-shaping techniques
that have been successfully used by servo engineers for decades in the analysis and design

of HDD servo systems.

4.6 Summary

This chapter first reviewed multi-objective optimization techniques. A number
of approaches are currently employed including the e-constraint, weighted-sum and GAP
methods. However, such approaches usually require precise expression of a set of weightings
and goals, which is usually not well understood. If the trade-off surface between the design
objectives is to be better understood, repeated application of such methods is necessary. The
parameterization of fixed-structure controllers is discussed in this chapter. The structure
and order constraints make its optimization a non-convex problem. One class of methods are

to approximate and parameterize it in a convex form, which is solved by efficient gradient-



99

based solvers. On the other hand, the population-based Pareto solvers, like GAs, enable the
Pareto GAP parameterization, which requires no weighting before optimization and allows
consideration of arbitrary controller structures. The next chapter will be devoted to the

development of such method.
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Chapter 5

Parameter Optimization by

Multi-Objective Genetic Algorithm

5.1 Introduction

Fixing the controller structure destroys the convexity of overall optimization prob-
lem. The trade-off between reliably finding the global optima and efficiently searching the
whole non-convex space makes it challenging to design an optimal fixed-structure controller.
Considerable research efforts have been devoted in recent years to address such problem,
e.g. [30] [?] [118] [110]. The servo design of HDDs needs to achieve multiple objectives and
involves many design constraints. It is desirable to provide the decision maker with insight
into the trade-offs of the optimization problem before a final balanced solution is selected.

This chapter explores the opportunity of tackling the design of fixed-structure

control by using a multi-objective genetic algorithm (MOGA). Section 5.2 addresses the
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Ki=[k/,....k []; i=1,...,n —» max Fit(K!) < min J(K!) i=1,...,n
n individuals (candidate solutions) J is the performance cost function
7 Decoding 3 Coding e.g., Binary Coding
0100010101] —> K Ki —> [0100010101]
6 Mutation 10100010101] 4 Selection
Flip state V‘.’i.th a i m parents by roulette wheel
low probability [0100011101] with slots sized according to fitness

) v

5 Crossover Parent 1 [0100010111] __ Child 1 [0100100010]
Parent 2 [0111000010] ™ Child 2 [0111000111]

L]
A crossover position is selected uniformly at random

Figure 5.1: The flowchart of a simple genetic algorithm for parameter optimization. It is
easier to exemplify genetic operations by using the binary coding.

general idea of genetic algorithms (GAs) in great details. Section 5.3 extends the GAs to
address multi-objective optimization problems by adopting the concept of Pareto optimality.
In Section 5.4, the proposed MOGA is applied to optimize a fixed-structure HDD track-

following controller.

5.2 General Genetic Algorithms

GAs are biologically inspired global searching methods, described in one sentence
as “an individual with greater vitality has a better chance to survive in this highly com-
petitive world.” Since the initial idea is brought out by Holland [84] in 1975, GAs have
attracted a great interest and quickly become a flagship among machine learning and func-

tion optimization. It is beyond the scope of this dissertation to review the vast literature
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associated with GAs, instead, this section addresses the basic ideas of GAs. The interested
reader might consult Goldberg [42] and Michalewicz [43].

GAs have been widely applied to the design of automatic control laws, for example,
tuning of PID controller [47] [119] [120] [121] [122] [123], design of Ho/Hy optimal fixed-
structure control [44] [101], multi-objective control [124] [45] [46], robust control [125], and
solving LMI [126].

GAs overcome the limitations of conventional searching algorithms described in

Section 4.3 through the following aspects [43] [127].

e GAs use probabilistic transition rules to guide their search, but not deterministic

rules.

e (GAs use objective function information, but not derivative or other auxiliary data.

e GAs maintain a population of potential solutions to search in a parallel manner, while
all other methods process a single point of the search space. This is referred to as

“Implicit Parallelism”.

The basic building blocks of GAs are shown in Figure 5.1. GAs start with a
population of randomly generated solutions. Each solution in this very first generation will
be evaluated through cost functions that are defined according to design objectives. During
the evaluation, we define a fitness function and evaluate the fitness for each candidate
solution. The fitness is assigned in a way that maximizing the fitness is equivalent to
minimizing the cost function. Then the population is processed and evaluated through

various operators to generate a new population. The basic operators of GAs are selection,
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crossover, and mutation, as shown in steps 4, 5, and 6 of Figure 5.1 respectively. This process
is repeated until a global optimal point is reached. The following subsections examine this

process in details.

5.2.1 Coding: From Binary to Real

GAs work with a coding of parameters, but not parameters themselves. The main
purpose of coding is to make it possible to imitate the natural evolution process in parameter
space. The traditional way to illustrate GAs is to use binary coding (BC) . As shown in
Figure 5.1-(3), each parameter is encoded into a string of bits. The individual bit is called
a gene. The content of each gene is called an allele. The whole string of such genes for
all parameters in a written sequence is called a chromosome. The choice of chromosome
length depends on the accuracy requirement of the targeting optimization problem. GAs
maintain a population of chromosomes or individuals in every generation, quite often these
individuals are called candidate solutions. The number of chromosomes in a population is
called the population size, denoted as 7,0,. These chromosomes will evolve from generation
to generation through some genetic operators.

However, there are some drawbacks when applying BC to multidimensional, high-
precision numerical problems. For example, for 80 variables with domains in the range [-100
100] where a precision of six digits after the decimal point is required, the minimum length
of the binary chromosome is 27 x 80 = 2160. For such a problem GAs perform poorly
because the BC generates a search space of about 22160,

For many optimization problems, the elements in the space to be searched are

naturally represented by data structure such as arrays, trees, digraphs, etc. It is more
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natural to keep the original data structure of target problems and make the genetic operators
work directly on such structure. Instead of using BC, this dissertation uses real-coded
(RC) encoding scheme, i.e. each candidate solution is represented as a float-point vector
Ki= [kj, ey k,]n] At (t)th generation, MOGA maintains a population of individuals, K(t)
= [K(t),..., KI(t), ..., K™°r (t)], with a fixed population size 7np.p. This real-coded (RC)
representation has many advantages over the classical binary-coded (BC) representation

143].

e The RC is faster, more consistent from run to run and provides a higher precision
than BC. The precision of RC depends on the underlying machine, hence is generally
much better than that of the BC. Although we can always enhance the precision of

the RC by introducing more bits, this considerably slows down the algorithm.

e The RC is capable of representing quite large domains. On the other hand, the BC
must sacrifice precision with an increase in domain size for a given fixed binary length.

Thus the RC avoids Hamming Cliffs effect from which the BC suffers.

e The RC is conceptually closer to the problem space, so virtually no decoding is re-

quired. The RC also allows for an easier implementation of genetic operators.

5.2.2 Initial Population

A simple GA is an iterative procedure starting with a randomly generated popu-
lation of candidate solutions. Since one has little geometric knowledge of the search space
of target problem before solving it, the uniform distribution is arguably the best initializa-

tion scheme. Keep in mind that the population size npp is the only factor in this method
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to balance the trade-off between initial diversity and computational complexity. If npp is
too small, the chance that chromosomes in the population cover the entire search space is
low. This makes it difficult to obtain the global optimal solution and may lead to a local
optimum as a result of premature convergence. On the other hand, a population size that
is too large decreases the rate of convergence. In the worst case scenario, it may lead to
divergence. Hence the population size needs to be carefully selected based on the size of
search space. An example at the end of this section will clearly illustrate this relationship.

Individuals in the first generation are evaluated and assigned fitness values based
on their relative performance. Through applying genetic operators, the initial population

will evolve into a new population which contains a group of better solutions.

5.2.3 Cost Function and Constraint Handling

Cost functions are directly related to our design objectives and constraints. If we
are to solve a minimizing problem, the objective function itself can be used as cost function
because GAs are aimed at minimizing cost functions. On the other hand, to define the cost
function for maximization problems, one usually just takes the reciprocal or flips the sign
of objective functions. Since GA is a population-based probabilistic optimization method
and does not require the convexity of search space, the cost function J(K) can be freely

chosen for the convenience of designer.

5.2.4 Fitness

After the function evaluation, a real positive number called fitness is assigned to

each candidate solution in the way that maximizing the fitness is equivalent to minimizing
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Figure 5.2: An example of fitness assignment for a minimizing problem with positive
semidefinite objective function.

the cost function, i.e.,
max[Fit(K)] <= min|[J(K)] <= achieve objective and/or satisfy constraint.  (5.1)

The fitness serves as the surviving probability of each individual during genetic
operations as described in the next section. An individual with a bigger fitness value
implies higher quality with respect to design objectives, and a better chance to survive in
genetic operations. The programmer is allowed to use any fitness function that adheres
to the relationship in (5.1). This advantage over other optimization methods makes GAs
more attractive when dealing with practical engineering optimization problems. Eq. (5.2)
and Figure 5.2 show an example of defining fitness for a minimizing problem with positive
semidefinite objective function. Fit(K) gets the biggest value of 1 (for a possibility may

not be greater than 1) when minimum J(K) = 0, and converges to zero as J(K) increases.

1

FitlK) = 505

(5.2)
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5.2.5 Genetic Operators: Selection, Crossover, and Mutation

A new generation is generated from the current one by examining the fitness
values of all candidate solutions and applying the genetic operators, which include selection,
crossover, and mutation. Through the genetic operations, the survival of the fittest means
transferring the highly fit chromosomes to the next generation and combining different

chromosomes to explore new search points.

Selection The roulette-wheel-like selection is more likely to pick up candidates with
higher fitness values into a mating pool. FEach candidate solution corresponds to a slice
in the weighted roulette wheel (Figure 5.1-(4)). The relative size of the slice equals to the
fitness percentage of corresponding solution in the total fitness. The total fitness is ob-
tained by summing the fitness over all individuals in the current generation. Every spin of
the weighted roulette wheel yields one reproduction candidate for parent pool. Since the
time to stop is a uniform random variable, the possibility of any individual being picked
up is proportional to its fitness. This spinning process needs to be repeated until enough

parents are generated.

Crossover The selected solutions in parent pool are then processed by applying crossover
which pairs up the parents and exchanges portion of their segments pairwisely. The step
5 of Figure 5.1 shows a single point crossover for BC chromosomes. A crossover point is
selected randomly as an integer between 1 and the chromosome length. Then children Child
1 and Child 2 are generated by exchanging the segments after the crossover point (bit 8-10

in Figure 5.1) between Parent 1 and Parent 2.
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Besides the crossover point, another parameter called crossover probability P., is
used to control the number of crossovers by acting as a decision variable before performing
the crossover. A real number is uniformly generated in the range [0 1]. If this number is less
than P,, a crossover is performed, otherwise, Child 1 and Child 2 are simply direct copies of

Parent 1 and Parent 2.

Mutation Nature uses large population sizes to keep her diversity. However, it is expen-
sive to keep a very large population in GAs. Instead, Mutation performs a slight perturba-
tion to the resulting solutions with a very low probability. As illustrated in the step 6 of
Figure 5.1, the Tth gene is the bit being mutated. This is an effective way to preserve the
diversity given a limited population size.

In this dissertation, a special dynamic mutation operator is used to improve single-
element tuning and reduce the disadvantage of random mutation in the RC implementation.
It is called non-uniform mutation [43]. TIf K7 (t)= [k (t), ,kf(f),kfn(t)] is a chromosome
in (¢)th generation and the element kf is selected for applying non-uniform mutation, the

result is a vector K7 (t) = [k () k].'/(t).., ki (t)], where

5 =y Vg

k! + ®(t,UB —k]) if a random digit is 0
k' = (5.3)

kf — O(t, kf — LB) if a random digit is 1
and LB and UB are lower and upper domain bounds of the variable kf . The function
®(t, z) is chosen such that it returns a value in the range [0, z] and the probability of ®(t, z)
gets close to 0 as t increases. This property causes the non-uniform mutation to search the

space uniformly initially and very locally at latter stages; thus increases the probability of

generating a new point closer to the original one rather than a random choice. According
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Figure 5.3: The probability density of ¢(x,z) with respect to evolving generation t when
b=2.

to this requirement, the following function is used in this dissertation:

Ot,2) =z - <1 — e )b> (5.4)

where r € [0,1] is a random number, nge, is the maximal generation number, and b is a
system parameter determining the degree of dependency on iteration number. As shown
in Figure 5.3 and Figure 5.4, the bigger b is, the faster the probability density of ®(t,z)

becomes concentrated on zero with the increase of t.

5.2.6 Solving a Benchmark Problem by GA

Solving the following example (5.5) shows the effectiveness of GA in dealing with
non-convex optimization problems. The global minimum of this example, J(z;) = 0, is

apparently achieved at origin x; = 0, as shown in Figure 5.5 (n = 1). The gradient-based
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Figure 5.4: The probability density of ¢(x,z) with respect to evolving generation t when

b=5.

Table 5.1: The computational cost and solution quality v.s. the number of generations and

population size

2

Ngen, 5 10 15 30 50 100
Npop 600 300 200 100 60 30
CPU time (s) | 50.86 | 25.16 | 18.46 | 12.53 | 10.77 10.03
max a:fpt 0.15 | 0.0015 | 0.001 | 0.0016 | 0.00027 | 0.0047

methods are likely to be trapped in numerous local minima at x; = 2km, k= 0,1, ... .

min [J(x;)] = ﬂy;ni (‘%‘ +4 ‘sm(%)‘)

Zg
i=1

z; € [—40,40); n=1,2,..

(5.5)

In De Jong’s [128] study of genetic algorithms in function optimization, a series of

parametric studies across a five function suite of problems suggested that good GA perfor-

mance requires the choice of a moderate population size npp, a high crossover probability

P,, and a low mutation probability P,,, which is inversely proportional to the population
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Figure 5.5: The illustration of the non-convex optimization example in Eq. (5.5) when n=1.

Table 5.2: Robustness comparison with other algorithms

max &

opt
4

(The global optimum has been found:,/; otherwise: x)

Algorithms Interior Point Simplex GA
MATLAB function fminunc fminsearch | (n4en=30; 7pop=100)
Initial point | & | 0.7072 x 1071 [ /| 0.0458 | /| 0.016 V

Y 5 —0.1702 x 107% | /| 4.4284 | x | (Random
i=1,..,10 | = 6.2823 x | 6.2823 | X initial
= 6.2823 x | 18.9125 | x | points)
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Figure 5.6: The right choice of the populaton size in one generation and the number of
generations is very important in GAs. All trials have a total of 3000 samples.
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Figure 5.7: Upon applying the GA to solve the given example, the relationship between the
time to convergence ( |xiiopt| <1073 ) and the deminsion of search space is almost linear.

size Npop-

To deliver the best performance of GA with a given computational power, the right
choice of the number of generations and the population size is crucial. Figure 5.6 illustrates
the interaction between these two quantities on the fitness convergence. Table 5.1 shows
their impact on the computational cost and solution quality. For a fair comparison, all
six cases have the same total number of 3000 samples. The time to convergence for all
cases is defined as when all variables of the best solution converge to a hyper-ball centered
at the origin with a radius of 1073. We can see from Figure 5.6 that if the population
size is too small, it may lead to the premature convergence problem because of the lack of
diversity. Graphically it appears as a plateau in the average fitness curve before it converges

to 1. A fitness of 1 generally corresponds to the global optimality (Figure 5.6-F). Other
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graphical evidences of the lack of diversity include the existing of very rough curves, and
that the average fitness curve is much closer to the maximum fitness curve than to the
minimum fitness curve. As the population size is increasing, however, the convergence
speed is lowering and the computational cost is increasing. As shown in Table 5.1 and
Figure 5.6-A, using too large population size not only wastes computational resource but
also lowers the quality of solution. All simulations are performed on a AMD 1GHz PC with
256MB memory.

Figure 5.7 shows the relationship between the computational cost (the time for
all Pareto solutions converging to a small hyper-ball around the origin) and the dimension
of search space. Unlike the enumerative or LMI+4-approximation+SDP methods, the CPU
time representing the overall computational complexity does not increase exponentially, but
rather grows in a linear manner with respect to the problem size. For non-convex MOPs
with large number of tunable parameters, this is truly a big advantage of GAs over other
optimization techniques.

In Table 5.2, we compared the robustness of GA with two existing algorithms,
gradient-based interior point method and non-gradient-based deterministic simplex method,
which correspond to functions fminunc and fminsearch respectively in the MATLAB Opti-
mization Toolbox. fminunc is a large-scale subspace trust region method which is based on
the interior-reflective Newton method [94]. fminsearch uses the simplex search method that
does not use numerical or analytic gradients and is claimed to be able to handle disconti-
nuity. The performance of both algorithms depends on the initial estimate. It is surprising

that the simplex method fminsearch fails in most cases except the one in which the initial
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point is very close to the global optimum. The interior point method fminunc performs
well when initial points are within the monotone region around the global optimum but
fails otherwise. Apparently both of them cannot handle the non-derivative local minimal
points z; = 2km. This experiment shows the excellent robustness of GA in non-convex
optimization.

We would like to point out that there are no hard and bound restrictions on
what operators and strategies a programmer has to use. So one has the freedom to choose
the operators and strategies in any combination according to the characteristics of target

problem.

5.3 Multi-Objective Genetic Algorithm

This section proposes a multi-objective genetic algorithm (MOGA), which extends
the general GAs to handle multi-objective optimization problems, especially the ones with
non-commensurable and competing objectives. Ishibuchi and Murata [124] presented the
single-objective genetic algorithm (SOGA) that translates multiple objective functions into
a single-objective function by using weightings. Several multi-objective genetic algorithms
(MOGASs), which are GAs combined with the concept of Pareto optimality, have been
proposed in [42] [48]. A good review of MOGAs is in [51|. Many researchers [47] [125] [126]
have successfully applied MOGA to solve MOPs.

The flow chart of the MOGA used in this dissertation is shown in Figure 5.8. The

details are described below. A summary of this MOGA is given at the end of this section.
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Table 5.3: Relation between goals of GAP and cost functions of MOGA

| Goals of GAP | Cost functions of MOGA

goal( fi(K) < f?) (MOP objective) min {Ji(K) = fi(K)}

Eoal (7K > 77) (MOP abieci) | i () = ()

goal(gz(K) <9)) min{Ji(K) = Q[g:(K) — ¢;1}

goal(gz(K) > g7) min{J;(K) = Qlg) — g:(K)]}

goal(gz(K) 97) min{J;(K) = \ 90 — g:i(K)[}

goal(g 7 < gi(K) < g min{.J;(K) = max(Q[g:(K) — ¢; °], Qlo;” — i(K)])}

5.3.1 Cost Functions of Multi-objective GAP

Although the optimization problem of fixed-structure controller can be formulated
as solving LMIs, limiting the objective functions in quadratic form does not fully explore
the potential of GAs. Some practical design problem is very difficult or even impossible
to be parametrized in standard frameworks. On the other hand, GAP formulation has no
convexity limitation of any kind thus it can be fitted into most practical multi-objective
control problems. As shown in Table 5.3, we follow the defining of GAP goals to setup
cost functions of MOGA. One minor difference is that for min (or maz) objectives, we set
the f? = —oco (or co ) because MOGA is naturally constructed for minimizing. Q[.] is the

explicit goal function

a a>0
Qla] = . (5.6)
Certain types of goals, such as bounds on the search space, can be handled by
mapping the search space so as to minimize the number of infeasible solutions it contains and

designing the genetic operators carefully in order to minimize the production of infeasible
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Randomly generate the first generation K(1)

v

> Kt)=[K'(t),... ,K(t),... ,K™(t) ]

v

Calculate the cost vector J(A(t))

v

Pareto Ranking of K(t) according to J(K(t))
v

Rank-based fitness assignment and sharing Fit(A(t))

v v

Tournament Selection

Elites Random
(Rank 1) v Immigrants
Crossover / Mutation
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y
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> K(t+1)=[K'(t+1),..., K(t+1),... ,K2(t+1)] <

Figure 5.8: The flow chart of MOGA with elitism and random imigrants.

offspring from feasible parents [129].

5.3.2 Pareto Ranking

All K7 in the Pareto optimal set have the similar vectorial performance and thus
are so-called “the equally best solutions” among the current generation K = [K, ..., K™er].
Therefore they are assigned the same rank of 1. The final solution of a MOP depends only
on the vectorial performance and on the preferences of the decision maker, and not on any
subsequent optimization [100]. Based on (4.9) and (4.10), the following Pareto ranking

scheme derived from [119] is proposed for the MOGA,
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Algorithm 22 (Pareto Ranking)

1. Sort K = [K,..., K7, ..., K™°r] from the least to the largest according to ||J(K7)||; =

S Ji(K7). The sorted vector is denoted as K. Let Rank=1.

2. Use the first entry of Ky, K], as criterion. Take out any K? from K, and put it into

a dominated vector ®4 if J(K}) <, J(KD), j=2,... length(K,).
3. Move out K} from K, and put it into a Pareto optimal set K,.

4. Let the remaining candidate solutions in K, form a new Kg, then repeat 2 to 4 until

all dominated solutions are removed.
5. Assign all entries in K, with the same rank, Rank. Empty K.
6. Replace Ky with @4, i.e. K; = ®y.

7. Rank = Rank + 1 and repeat 2 to 7 until the entire population is ranked.

5.3.3 Rank-based Fitness Assignment

Every candidate solution K is assigned a fitness value Fit(K) which is the mea-
surement of solution quality. For a candidate solution in MOGA, the smaller the rank
number, the better the vectorial performance. By selection, the MOGA is biased to the
solution with higher fitness value. Therefore the fitness assignment should be a mapping
that maximizing the fitness Fit(K) is equivalent to minimizing the cost vector J(K), i.e.

maximizing the vectorial perform of K. In this dissertation, a simple exponential mapping
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is used

1

Fit (K) = K

(5.7)

5.3.4 Intra-Rank Fitness Sharing

Although all “equally good” solutions are assigned the same fitness, their actual
choice to be selected as parents may differ due to the random nature of selection. This
imbalance can be accumulated with evolutions such that the population drifts towards an
arbitrary region of the trade-off surface, a phenomenon known as genetic drift [130]. Various
population diversity mechanisms have been proposed to make a GA to maintain a diverse
population of individuals through its search [100]. These mechanisms allow GAs to identify
multiple optima in a multimodal objective domain. Intra-Rank Fitness sharing is one of
such mechanisms to counteract the genetic drift by re-distributing the fitness among the
candidate solutions with the same rank [100]. The sharing function penalizes the fitness of
individuals in popular neighborhoods and is in favor of more remote individuals. In this

dissertation, the sharing function is defined as

Fit(K7) = Z DKJ Zth (K7) (5.8)

where D(K7(t)) is the mutual similarity distance which is the summation of similarity
distance between K7(t) and any solution K*(t), i # j, with the same rank in the current
generation. Fit (K7) is the original fitness value for K7 and Fit(K7) is the fitness after
sharing. The similarity distance can be defined either in the objective space (phenotype) [50]
or in the solution space (genotype) [99]. A genotype similarity distance is usually objective

independent metric, such as the Hamming distance between two candidate solutions. It
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is used if there is little knowledge about the objective space. A phenotype metric is more
meaningful distance measurement quantifying the similarity of two solutions in the objective

space.

5.3.5 [Elitism and Random Migrants

To increase the converging rate of the MOGA, the elites (individuals with the Rank
1) of current generation are directly copied into the new generation, taking up to €% of total
population. The upper limit €% is enforced to prevent the premature convergence. As a
complementary mechanism of mutation, 7% of total population are generated randomly to
preserve the population diversity. The remaining (100 — e — r)% individuals are generated
from the process of selection/crossover/mutation.

The MOGA used in this dissertation is summarized as follows.

Algorithm 23 (MOGA)

1. Determine the search space of K, Qx C R™, which is the range of K that stabilizes

the nominal plant Py(z~!) by Jury Criterion [66].

2. The MOGA randomly and uniformly generates the first generation with 7, individ-
uals (candidate solutions), [K1(1),..., K7(1), ..., K™ (1)] € Qk. Each individual is

represented by RC.

3. For each individual K7(t) in the current (¢)th generation, calculate the cost function

vector J(K¥(t)) = {J1(KI(t)), ..., Ji(KI (1)), ..., Jn (K7 (t))}.

4. Pareto ranking of [K1(t),..., K/(t),..., K" (t)] according to J(K7(t)).
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Table 5.4: MOGA configurations

| Description | Symbol | Value |
Number of generations Ngen 60
Number of individuals per generation | np0p 200
Probability of crossover P, 1
Probability of mutation P, 0.02
Maxium percentage of elitism e% 30%
Percentage of random immigrants r% 6%

5. Assign fitness to K7(t) based on its ranking, Fit'(K’(t)) = m, and apply
fitness sharing, Fit(K7(t)) = 5 DKQJ) > Fit' (K (t)).

6. Directly migrate the elite, individuals with rank 1, to the (¢ + 1)th generation. This

makes up €% of total population rny,ep, where €% is up to a certain percentage.

7. Randomly generate r% of total ny.p individuals in the search space Q for the (t+1)th

generation.

8. Apply the tournament selection [42] to generate npop - (100 — e — )% parents from
the (t)th generation. A linear crossover is used to produce npgp, - (100 — e — )% new

individuals from these parents. Apply mutation to these new individuals.

9. Set [K'(t+1),... KI(t +1),..., K™ (t + 1)] as the current generation. Should this
new generation achieve the optimization goal, stop the MOGA; otherwise go to step

3.

5.4 Example: Optimization of HDD Controller Parameters

The specifications of the disk drives used in our experiments are listed in 3.1. The

track-following controller for these drives is an extended PID controller in the following
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form

1

Cpid(zil) = kloop{]- - (ka + kb)zil + k'akb272 + kzm

] (5.9)

where Kjoop, ka, kp, and kr are design parameters. A digital notch filter is added to attenuate
the adverse effect due to the suspension resonance at 2700Hz. The integrator gain, K7y, is
predetermined and hence not a target of optimization. So the tunable parameter set is K
= [Kloop, Ka, kp]. The original controller used by these drives was Korig = [Kioop, Ka, k| =
[0.270,0.850,0.400], which was hand-tuned by experienced engineers in the previous design
cycle. The search space Qg — [(0.01 : 0.98), (—0.8 : 0.99), (—0.8 : 0.99)] is the range of K
that stabilizes the nominal plant. The gradient method used in [23] had always failed to
converge in this range. To make our method more practical for most servo engineers in HDD
industry, we follow the classical control framework. Since we are designing the controller
for the mass produced HDDs with plant variations and disturbance uncertainties, 012]68 is
not a constant but rather a random variable. It is more appropriate to assess the average

performance mean(o%,,) and the performance robustness std(c2.s). The major objectives

of HDD track-following control therefore are

JI(K) = mean(o?

pes) (5.10)

Jo(K) = std(aﬁes)

The statistical model developed in Chapter 3 is used to synthesize these two indexes.
Design goals are GMgoqr = 6.5dB, PMgoq = 42°, Wogoar = 650H 2z, and Sogoar =
5dB. Note that the goals are slightly higher than the nominal performance in order to

ensure a converging pressure over the whole evolution process. We also impose some search



123

constraints, GMyax = 10dB, PMuyax = 60°, and wopax = 800Hz to prevent gen-
erating some senseless solutions. By following aforementioned guideline (Table 5.3), the

corresponding cost functions are defined as

J(K) = max{Q[GMypar — GM(K)), QIGM(K) — GMysax]} (5.11)
J4(K) = max{Q[P]\/[goal —PM(K)],Q[P]\/[(K) —P]\/[]\/[A)(]}
Js (K) = maX{Q[wogoal - WO(K)] ; Q[WO(K) - wo]\/IAX]}

Jo(K) = Q[Seo(K) = Soogoal]

where the phase margin PM (K), the gain margin GM (K), the crossover frequency w,(K),
and the peak of sensitivity function So(K)=||S(K,jw)| ., are functions of the tunable
parameter set K € Q. J3(K) ~ Jg(K) will be zero if the candidate solution K satisfies
all constraints. Thus, the original constrained MOP is converted to an unconstrained MOP
whose target is to minimize the cost vector J(K) = {J1(K), ..., Ji(K), ..., Jo(K)} over K.
J(K) is therefore called the vectorial performance index.

The MOGA configurations are listed in Table 5.4. It took the MOGA 7.3 minutes
in a AMD 1GHz computer to give a Pareto optimal set (Rank 1) with 23 solutions in
the 60th generation. One solution, Kyoga = [0.246,0.870,0.275] which has the minimal
std(ages) among the Pareto optimal set, was picked up and loaded into twelve drives. The
performance comparison between this optimized controller and the original one is shown
in Table 5.5. The 3% improvement of mean (o) and 8.7% of std(c2.,) in experiments
may be considered moderate because the original controller had been well optimized. It can

also be seen that mean(o%,) and std(0Z.) predicted by the model match up reasonably

well with the experimental results. The disturbance model was then updated based on new
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Table 5.5: Performance comparison before and after MOGA optimization

Before Optimization After Optimization
(Korig) (Kmoga)
Objective | Unit | Simu | Exp Simu | EXp (relative to orig)
mean(oy,,) | tr% | 5.24 5.22 5.0 | 5.09(—2.9%)
std(o2,,) | tr%® | 2.25 2.31 2.02 | 2.11(-8.7%)
GM dB 6.1 6.3 6.5 6.3
PM degree | 42.1 40.4 41.5 40.4
Wo Hz 540 544 600 595
Soo dB 5.7 5.5 5.9 5.8

PES measurements, and ready for the next run of optimization. This iterative optimization

process can be repeated until satisfactory results are obtained.

5.5 Summary

This chapter developed a MOGA (multi-objective genetic algorithm) to directly
solve the multi-objective non-convex optimization problem. As shown by simulations and
experiments, the proposed method was capable of optimizing the controller in a large range
in which gradient-based methods generally failed. The proposed method has the following

advantages over existing tuning methods:

1. The population-based nature of the MOGA enables the evolution of a set of Pareto-

optimal solutions without requiring weightings before optimization.

2. Compared to gradient based methods, the MOGA greatly increases the possibility
of finding the global optima for an extremely broad class of optimization problems,
especially non-convex optimization problems. The MOGA gives designer multiple

Pareto solutions without tedious trial-and-errors for picking up weightings.
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3. The GA offers almost linear computational complexity relative to the number of tun-
able variables. This is a very attractive feature for non-convex MOPs with a large
number of variables. For example, the track-following controllers for dual-stage actu-
ators usually have over twelve tunable variables for which the LMI 4 convex approx-

imation parameterization is practically unsolvable.

4. Users can use any optimization setup as long as the cost functions are evaluatable
in closed-form. For example, the statistical model developed in Chapter 3 was used
to effectively predict the time-domain performance of candidate solutions for a large

population of drives.

However, like any optimization algorithm, there is “no free lunch” [131]. In other
words, no optimization algorithm is universally better than other algorithms. There is
a trade-off between efficiency and applicable generality. Although the ideas of GAs are
applicable to a broad range of problems, different GAs can be built, which displays a
varying degree of problem dependence. GAs incorporating some problem specific knowledge
generally outperform the one in canonical form, however, with the sacrifice of generality.
The major drawback of the approach proposed in this chapter is that the MOGA suffers
from poor numerical tractability. It should be noted that because of the stochastic nature of
GAs, one cannot guarantee the convergence of GAs to the global optima in a deterministic
way. Our experience has shown that the Pareto sets are different from run to run, although
they are all close to the global optima in the objective space. In next chapter, a two-phase

optimization method will be proposed to enhance the local fine-tuning capability of the

MOGA.
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Chapter 6

A Two-Phase Optimization

Algorithm

6.1 Introduction

In the previous chapter, the MOGA was used to search for the Pareto-optimal
parameter set of fixed-structure controller, through solution of an appropriately formulated
GAP problem. The MOGA is capable of identifying the high performance region in non-
convex search space, yet slow in fine-tuning local search. The major drawback of the
MOGA is its poor computational tractability. Because of the stochastic nature of the
MOGA, the Pareto solution set is slightly different from run to run. It has been found
that the improved accuracy has to be sacrificed for efficiency [43]. On the other hand, as
shown by the benchmark problem in Section 5.2.6, in a non-convex search space the results

of gradient-based methods heavily depend on the initial starting points. If a good starting
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point is encountered, the gradient-based search algorithms can efficiently attain the optimal
solution with good numerical tractability. Yet, if a poor initial point is utilized, the result
is likely to be trapped in a local minimum.

In this chapter, a numerical algorithm is presented by combining the advantage of
the MOGA and the gradient-based techniques to provide a practical technique for tuning
the fixed-structure controller. First, the MOGA performs a global search and seeks a near-
optimal initial point for the second stage. In the second stage, a gradient-based nonlinear
programming method is used to perform local search to further enhance the quality of

solutions.

6.2 Nonlinear Goal Attainment Programming

Recall the nonlinear GAP setup presented in Section 4.4. A constrained MOP can

be reformulated as an unconstrained GAP

minimize 7y
7ER,KEQ ) (6.1)

subject to  Ji(K) < JP+wiy, i=1,...,m

The mechanism of Eq. (6.1) can be illustrated by a two-objective problem (m=2)

as shown in Figure 6.1.

minimize

yeR,KeR"

subject to  J1(K) < JY + w1y
Jo(K) < J9 +way

KeQ
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Figure 6.1: Goal attainment method with two objectives.

The weighting vector w = {wy, w2} defines the direction of search. J° = {J?, J{}
are the design goals that are not necessary in the feasible region €. Given w and JO, the
direction of vector J° 4 yw is determined. During the optimization « is varied, which
changes the length of J?+~yw. The Eq. (6.1) is equivalent to finding a feasible point along
vector J + yw in the objective space. When the weight w; is positive, the GAP attempts
to make the objective J; less than the goal value J?. To make the objective J; greater than
the goal value, set the weighting w; to negative. The optimal value of the slack variable,
denoted as +*, indicates whether the goals are attainable or not. A negative value of ~+*
implies that the goal is attainable, and an improved solution will be obtained. Otherwise,
if v* is positive, then the goal is unattainable. In the example of Figure 6.1, w; > 0 and
wy > 0 mean that we try to find J(K) < J°. However, v* > 0 indicates that this goal
cannot be achieved but the GAP does give a solution J* = J% + v*w that has the least

degree of under-achievement.
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The motivation of parameterizing MOP in this GAP form is that Eq. (6.1) can
be solved by nonlinear programming techniques, like sequential quadratic programming
(SQP). We utilize the function fgoalattain in MATLAB Optimization Toolbox as the SQP
solver. fgoalattain implements SQP by following the argument of Brayton et al. [132]. It
first updates the Hessian of the Lagrangian function using a quasi-Newton approximation
method. This information is then used to solve a quadratic programming subproblem whose

solution is used to form a line search direction. An overview of SQP can be found in [133]

[134] [94].

6.3 Two-Phase Optimization Algorithm

SQP requires that the objectives must be continuous in the interested search space.
As shown in Chapter 3, both .Ji(K) = mean(oZ,,) and J(K) = std(07,,) have some singu-
lar points in search space. Thus it is expected that randomly generated starting points may
lead SQP to the local optima of GAP or even nonconvergence. As illustrated in Figure 6.2,
starting from a randomly picked point J” may generate a non-optimal solution J*". Since
the weightings are selected heuristically, starting from sub-optimal Pareto solutions will
make J° +yw more likely to be in the Pareto surface. Therefore, a two-phase optimization

algorithm for tuning the fixed-structure control is proposed as follows:
Algorithm 24 (Two-Phase Optimization Algorithm)

1. (Phase-One) Run Algorithm 23 (MOGA) with a moderate ngep,.-

2. (Phase-Two) Select relative weightings based on the performance of Pareto-optimal

solutions of the MOGA.
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Figure 6.2: When GAP is solved by SQP, starting from the sub-optimal set of MOGA
enhances the possibility of reaching Pareto-optimal surface.

3. Reparameterize the original MOP as a nonlinear GAP according to Eq. (6.1).

4. Use Pareto-optimal solutions of the MOGA as initial points.

5. Solve the GAP by using SQP.

6. If all goals are achieved, stop; otherwise adjust weightings based on the degree of

under-attainment or over-attainment, and then go to step 4.

Like all weighted-sum strategies, selecting adequate weightings is still the most
difficult step. But by using the best evolved solutions of the first stage (MOGA), we not
only greatly increase the possibility of finding the true Pareto-optimal solutions, but gain
valuable insights into the trade-offs among different objectives. Even so we cannot guarantee
that SQP will achieve all goals under the weightings we select. At least, however, we know
to what degree the solutions under-achieve or over-achieve our goals, and we can adjust the

weights accordingly or pick up the solution that has the best trade-off.
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Table 6.1: Two-phase algorithm: MOGA configurations in phase one

| Description | Symbol | Value |
Number of generations Ngen 30
Number of individuals per generation | np0p 200
Probability of crossover P, 1
Probability of mutation P, 0.02
Maxium percentage of elitism e% 40%
Percentage of random immigrants r% 5%

6.4 Example: Optimization of HDD Controller Parameters

The configuration of the MOGA used in the first phase is presented in Table 6.1.
The definition of cost functions are same as Eq. (5.10) and Eq. (5.11). After 3.8 minutes in
a AMD 1GHz PC, the MOGA generates a Pareto set with 19 solutions, five of which with
the smallest Mgz, are selected as starting points for phase two, as listed in Table 6.2.

As shown in Figure 6.2, the result of fgoalattain depends on not only the selection of
weightings which dictate the search direction, but the initial starting point. The advantage
of using the Pareto set of MOGA as starting points for SQP is shown in Table 6.2. The first
six starting points are randomly picked and five of six cases fail to deliver a solution that
satisfies all goals. The last five are picked from the Pareto-optimal (actually sub-optimal)
solutions of the MOGA and all converge to slightly better optimal solutions. The MOGA
sub-optimal solutions are very close (evaluated in objective space) to the final optimal
solutions. It takes less than 10 seconds for fgoalattain to converge in all cases.

By fine-tuning the relative weightings, we can further improve the quality of so-
lutions. In Table 6.2, the fourth solution by SQP [0.261,0.864,0.335] with relatively small
me2 and Oo2,,> is evolved from the MOGA solution [0.211,0.065,0.916] by using rela-

tive weights [1,1,—1,—1,—1,1]. According to Eq. (6.1), the bigger the weight, the larger
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Objectives M2 | Og2 GM | PM Wo Soo
Unit tr%> | tt%> | dB | deg Hz dB
Goals <b.2 | <22 | >59 | >36 | >600 | <6.5
<10 [ <60 | <1000
Weights 1 1 -1 -1 -1 1
(ko ki1, k2]
StartingPoint Solution Simulation results
R [0.2,0.3,0.7] [0.409,0.636,1.0] 4.84 1.48 2.2 | 87.3 591 13.1 | %
a [0.5,0.5,0.5] [0.376,1.0,1.0] 3.50 1.20 1.8 | 72.0 | 4084 14.7 | X
n [0.1,0.5,0.5] [0.368,1.0,0.562] 5.10 1.58 3.2 | 80.3 595 10.14 | x
d [0.5,-0.5,-0.5] [0.268,0.876,0.334] | 4.86 1.87 6.1 | 44.7 604 6.1 |/
0 [0.9,-0.7,0.3] [0.384,0.649,1.0] 4.71 1.45 2.7 | 93.1 474 11.38 | %
m [0.5,0.5,-0.5] [0.3677,1.0,0.562] 5.10 1.56 3.2 | 80.3 595 10.14 | x
M | [0.361,0.340,0.853] 4.38 1.77 | 4.6 | 38.6 768 8.4
O [0.229,0.204,0.909] | 5.19 1.95 6.5 | 45.6 600 58 |/
G | [0.351,0.813,0.415] 4.50 1.88 4.7 | 376 755 7.3
A [0.246,0.870 0.274] | 5.05 2.02 | 6.5 41.5 600 5.8 | 4/
[0.251,0.325,0.735] 5.18 2.10 6.4 | 37.2 570 5.3
[0.272,0.332,0.877] | 4.79 1.84 5.9 | 445 617 6.2 |4/
[0.211,0.065,0.916] 5.22 2.04 6.1 | 41.8 643 6.5
[0.261,0.864,0.335] | 5.05 1.96 6.3 | 42.7 592 58 | v/
[0.221,0.192,0.921] 5..48 | 2.04 6.7 | 47.8 583 5.6
[0.245,0.274,0.870] | 5.05 2.02 6.5 | 41.5 600 58 | v/
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Table 6.3: Performance comparison among different controllers.

Original MOGA: Two-Phase:
Korig KJ\IOGA Ktwo
CPU time: 7.3 mins CPU time: 3.9 mins

Objective Unlt Slmu EXp Slmu | EXP.('rclaLi\'c to orig) Slmu | EXP.('rclaLi\'c to orig)

m(o2.,) | tr%* | 5.24 | 522 [ 5.05 5.09(—2.9%) 4.92 | 4.93(-5.5%)
o(o2,,) | tr%* | 2.25 | 231 | 2.02 2.11(—8.7%) 1.90 | 1.97(-14.7%)
GM dB 6.1 | 63 | 65 6.3 6.2 6.1
PM degree | 42.1 | 40.4 | 41.5 40.4 44.0 43.5
Wo Hz 540 | 544 | 600 595 602 598
Seo dB 57 | 55 | 5.9 5.8 6.0 5.9

the over- or under-attainment of corresponding objective. Therefore, a weighting vector
[10,10,—1,—1,—1,1] is used to further push down Mg, and Oo2,,- The resulting solution
by fgoalattain is Ky = [0.259,0.877,0.313]. By loading Ky, into our experimental drives,
we compare its performance with that of Kyoga = [0.246,0.870,0.275] in the last chapter,
as list in Table 6.3. It can be seen that besides the improvement on average performance
in terms of m(ages), there is a big improvement on the performance robustness over exper-
imental drives in terms of (T((T]%es). The reason is that the original controller K.;; was not
systematically tuned toward minimal performance variation, due to the lack of a good multi-
drive model. This is another proof for the effectiveness of the statistical model developed
in Chapter 3. Compared with the pure MOGA method, the two-phase algorithm almost
cut the total CPU time by half because the gradient-based SQP is much more efficient in

the local search.
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6.5 Summary

While the gradient-based techniques lack robustness over global non-convex op-
timization problems and are sensitive to initial points, the MOGA is less efficient than
gradient-based methods in local fine-tuning. In light of the above, this chapter developed a
two-phase numerical algorithm to optimize the parameter set of fixed-structure controller
based on multiple design criteria. In phase one, the MOGA effectively searches the non-
convex space and identifies a set of sub-optimal Pareto solutions, which are used as starting
points in phase two. In phase two, the SQP rapidly generate a precise optimal solution
around every starting point. The trade-offs among design objectives revealed by the MOGA
in phase one dictate the selection of weightings in phase two. The simulation and experi-
ment have shown that, compared with the pure MOGA method, the two-phase algorithm

is more computationally efficient yet preserves the searching robustness of MOGA.
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Chapter 7

Minimize the State Truncation

Error

7.1 Introduction

Almost all servo systems of modern HDDs use the digital control structure con-
sisting of analog-to-digital (A/D) converter, fixed-point digital signal processor (DSP) and
digital-to-analog (D/A) converter [135]. Compared with floating-point DSPs, fixed-point
DSPs are more economical. However, the unavoidable quantization errors of fixed-point
DSPs are obstacle to the further performance enhancement of the HDD servo system.

Besides the quantization errors caused by A/D and D/A [136] [25], the quantiza-
tion errors occurring inside fixed-point DSPs are the coefficient quantization error (CQE)
which is due to the quantization of coefficient parameters, and the state truncation error

(STE) which is due to the truncation of state variables [73]. In HDD servo systems, the
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Figure 7.1: Cascade form implementation of track following controller.

CQE is negligible because in order to preserve the precision of coefficient parameters, the
corresponding integers stored in fixed-point DSP are usually close to the full wordlength.
On the other hand, the state variables may take very small values because of input uncer-
tainty and arithmetic operation. Therefore the state truncation could lead to much larger
relative error than the coefficient quantization. For this reason, the STE should not be
overlooked. In fact, our experiments showed that even for a very good initial design, STEs
from a careless DSP implementation could contribute up to 7% of the total energy of the
position error signal (PES). In this dissertation, a systematic approach is presented from a

servo point of view to minimize the effect of STEs in PES.

7.2 Truncation Noise Propagation

Contrary to the quantization errors of A/D and D/A, the STE depends not only
on the hardware resource, e.g. wordlength, but also on the controller implementation struc-

ture. As a simple illustration, consider a track-following controller which consists of a PD
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regulator
Gpd(zfl) = Kp+ KD(l — Zﬁl) (71)

and a notch filter [28]

bo + b1z + byz™?

C l—ajzl—agz2

which is added to attenuate the potential suspension resonance mode.

Figure 7.1 shows a cascade form implementation of this track-following controller
Groten(2 1) - Gpd(zfl) in fixed-point DSP. The fixed-point implementation requires that
all coefficients are scaled by 28 where B is the standard wordlength. Results are then
truncated or rounded into integers and stored in the data memory of DSP. For convenience,
these integers are called in the format of @Qp. For example, Q15 means that a floating-
point number is quantized as a 16-bit integer. Assuming that a double-word accumulator
is available, the sum-then-truncate scheme is used in all summation points. Also, all blocks
of the notch filter within the dashed line (Figure 7.1) include only prior states which can
be calculated in the last clock cycle. This is called pre-calculation [137]. Tt decreases the
computational delay between the measurement input PES and the updated control output
Ucmd, and thus improves the system stability margin. Every double-line box indicates a
quantizer, i.e., a scale-back factor 2~ with a truncation or round-off operator ¢[-]. State
truncation errors occur at these quantizers.

It is well known that the fixed-point implementation with quantizers is nonlinear.
However, under certain condition, it can be approximately treated as a linear floating-

point system plus some quantization noise sources [66]. This will make the system much
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Figure 7.2: Identification of state truncation noise source.

easier to analyze. A cascade controller model as shown in Figure 7.1 is built by using
MATLAB Simulink Fixed-point Blockset. To simulate the real scenario, STEs are identified
by injecting some segments of measured PES traces into controller input and applying
the method shown in Figure 7.2 to every quantizer. The decoupled quantization noise
ni(k) = K;xi(k) — q[K;x;(k)] is the difference between two outputs, i.e., with and without
truncation. A simple statistical data analysis shows that every STE is a stationary white
process with amplitude uniformly distributed over [0 1] for truncation or [-0.5 0.5 for
round-off, both in the format of Q. All STEs are mutually uncorrelated and independent
of the input at the large. More precisely, the mean, auto-covariance, and cross-correlation

of STEs are respectively given in the format of Qg as

0; roundoff
;= Elni(k)] = { 0.5; truncation
5 k=1
E(ni(k) = ma, ) (ni(l) — mn,;)] = : (7.3)
0; k#I

Elni(k)n;()l = 0, i#j -
Based on these observations, one can convert every corresponding quantizer in the

controller into a floating-point scaling factor 272, plus a noise source n; which is equal to the

identified truncation error. The modified block diagram is shown in Figure 7.3. However,
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Figure 7.3: Cascade form: linear model plus quantization noise sources.

note that this approximation is true only if the controller input is a complicated wide-band
signal [73]. Fortunately, in HDD servo systems, controller input PES is a wide-band random
process that makes the above transformation valid.

The analysis above shows that the STEs can be treated as exogenous input noises.
For convenience, based on the linear model shown in Figure 7.3, all truncation noise sources
are lumped into one noise source ng as shown in Figure 2.7, which enters the closed-loop

system right before D/A and
1q(k) = Groten (2 )11 (k) + Gaen (2 1) [n2(k) + na (k)] (7.4)

where Goten, 18 the transfer function of notch filter and G, = m which has

the same denominator as the notch filter. Finally, referring back to Figure 2.7, the lumped

noise n, relates to PES by
PES,, (k) = Gq(z " )ng(k) (7.5)

where Gy(z71) = % and P(z7!) is the discrete version of plant dynamics iden-

tified by measurements [138]. Given that the exogenous noise inputs are white noises with
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Noise Transfer Functions
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Figure 7.4: Noise transfer functions.

mean my,, (0.5 for truncation or 0 for round-off) and power spectral density ®p,,(e/*) =

2 _ 1 :
05, = 13, the mean of PES, is

mPEan = Gq(l)[Gnotch(l) + 2Gden(]—)] s MM, (76)

and the power spectral density of PES,, is

PNE
. ‘Gnotch(ejw) ‘
Ppps,, (@) = |Go(e?)| Th
+2|Gaen(e3*)|” (7.7)
+276(w) - m%Ean.
From (7.6) and (7.7), the variance of PES),, can be calculated as
2

1 s
TPES,, = 5- / PpEs,, (w)dw— ‘mPEan (7.8)
oJ =T

As stated above, statistically, all noise sources share the same characteristic: they
have the same energy spreading over the whole frequency range up to the Nyquist frequency.
So the magnitude shapes of Ggen, Gnoten, and Gy determine the energy distribution of noise

output in the frequency-domain. Figure 7.4 shows one set of typical magnitude plots of
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Table 7.1: Variance percentage of state truncation noises in total PES: Cascade form (Sim-
ulation)

CascadeForm
S | 45%

T o
sl o

Gden, Groten, and Gy [138] [28].  In this dissertation, the system has a sampling rate
of 12,960 Hz. Ggep, attenuates the low frequency noises by -6 dB up to 1,500 Hz and
amplifies noises starting from 3,500 Hz. On the other hand, notch filter Gpoen, has an almost
opposite effect: it has a unit gain at the low frequency and gives the high frequency input
a great attenuation. Furthermore, since G, places great emphasis on the low frequency,
noise ni associating with Goten, will map more energy into PES. This can be shown in
Figure 7.5 where the power spectral density of two components of 1y, Gpoten(z71)n1(k)
and Ggen(271)[na(k) + n3(k)], are plotted. This plot combined with Figure 7.4 clearly
explains why ni alone contributes more to PES than ne and ns together. Furthermore,
based on (7.4), (7.5), and previously identified truncation noises (m,;, = 0), components of
PES),, can be quantitatively determined through numerical simulation. Then the variance
percentage of PES,, and its components in PES;yq are calculated based on (7.7) and
(7.8), as shown in Table 7.1. In this case, PE S is the same PES used to identify those
STEs (Section 3). Surprisingly, as normal as this cascade implementation appears to be,

simulation shows that the STEs contribute to 6.6% of the total PES variance.
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Power spectral density of shaped noises
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Figure 7.5: Power spectral density of shaped noise sources.
7.3 Implementation Structure Optimization

The above example reveals that STEs are statistically independent of the input
and their propagation relates to the controller structure. Here an optimization problem
arises: how should the implementation structure be designed to minimize the effect of STEs
in PES? From the analysis above, several important guidelines can be drawn as discussed
below.

First, try to minimize the number of noise sources, i.e. quantizers, especially
the ones going through the loop that has relatively large gains at the low frequency. For
example, as shown in Figure 7.6, the direct IIR form implementation of Gpd(z’l) and
Gnotch(z’l) will reduce the total number of truncation noise sources by combining the

first-order controller and the second-order notch filter as

Gall(zil) = Gpd(zil)Gnotch(zil)

. NO —+ leil —+ N2272 —+ Nngg
1= Djzl — Dyz=2 — Dgz—3

(7.9)
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where
No = (Kp + Kp)bo,
Ny = (Kp+ Kp)bi — Kpby,
Ny = (Kp+ Kp)by — Kpb1, (7.10)
N3 = —Kpba,
D =aq, Dy = as, D3 = 0.
So the PES due to truncation noises is

1

"D 1Dy (nq +ny). (7.11)

PES, =Gy (z")

Apparently, m is equal to Ggep. So, unlike the cascade form, all state truncation
noises in direct IIR form pass through the loop which has attenuation effect at the low
frequency. Simulation shows that this makes a big difference on the propagation of these
noises: the variance percentage of PESn; in PESq is only 2.1% compared to 6.6% in
the previous cascade form implementation. However, considering the potential problem of
overflow, a direct IIR form with an order higher than four is not recommended.

Another method to attenuate truncation noises is to use a scaling couple, i.e., put
the quantizer between a scale-up factor 2° and a scale-down factor 2=°. For comparison,
this method is used to attenuate the most significant noise source n; in the previous cascade
form example. As shown in Figure 7.7, n; is attenuated by 275 but the overall loop gain is
unchanged because the multiplication of scaling couple is one. So the final output due to

the STEs is

PES,p(k) = Gylz ) 28 Gnoten (57 (8) . (7.12)

+G gen (271 [n2(k) + n3(k)]
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Figure 7.6: Linear model of direct IIR form with noise sources.

PES
— A/D P

o B[] 273

Notch > D/A

Figure 7.7: Use a scaling couple to attenuate the truncation noises.

Table 7.2: Variance percentage of state truncation noises in total PES with different opti-

mization schemes (Simulation)

Direct Cascade Form
Form with Scaling Couple
S=0 | S=1 | S=2 | S=3
var[PESy, |
Wb’m;z] 21% | 6.6% | 3.7% | 2.5% | 2.2%
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Implementing the scale-up factor is equivalent to changing the scale-back factor
278 to 298, Note that directly implementing the scale-down factor (bits right-shift in
DSP) will introduce another state truncation noise. The best way to avoid that is to absorb
the scale-down factor into the coefficients of the following notch filter. One may argue
that this will enlarge the CQEs and trigger the degradation of system performance due to
coefficient shift. In fact, a small S is enough to dramatically reduce the effect of STEs while
barely affecting the precision of coefficients. For example, when S = 1, the noise amplitude
is cut by half and the energy is reduced by 75%. On the other hand, even for a very small
6-bit coefficient in the format of @12, the change of CQE by absorbing this 1-bit scale-down
factor is tiny, say from %2 = 0.78% to 32 = 1.56%.

Table 7.2 shows simulation results for different scaling S. Obviously, the biggest
improvement is made from without scaling (S = 0) to with 1-bit scaling (S = 1). The
variance percentage of the truncation noise output is almost reduced by half. However,
with the increase of S, the profit exponentially decreases. When § = 3, the noise output
level is already nearly equal to direct IIR form. It suggests that 1-bit or 2-bit scaling should
be the most efficient.

Figure 7.8 shows experimental results of loading three different implementation
structures into a disk drive embedded DSP respectively. The drive has a recording density
of 17,000 TPI and a sampling rate of 12,960 Hz. The FFT components of measured PES
are summed every 100 Hz for a better visualization. Only the low frequency components
are shown because most energy of the PES is in this range. The experimental results agree

with the trend predicted by numerical simulation: the cascade form without scaling couple
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Comparison of PES FFT Components

BN Direct[IRForm
09 [_1 Cascade Form w/o scaling
Bl Cascade Form with S=2

Amplitude (Units)

100 200 300 400 500 600 700 800 900 1000 1100 1200
Frequency (Hz)

Figure 7.8: FFT components of PES for different implementations (Experiment)

is the worst case (30pes = 5.02% trackwidth) and the direct form has the best performance
(30pes = 4.79% trackwidth) which is 5% smaller the worst case. Scaling couple with S = 2
(30pes = 4.81% trackwidth) greatly improves the performance of cascade form and almost
matches the performance of direct form. Moreover, from the no-scaling cascade case, it
can be seen that the influence of STEs peaks around 200 ~ 400 Hz and decreases as the
frequency goes up. This fits the magnitude profile of G}, as shown in Figure 7.4. Finally,
note that because the STEs are relatively small PES sources, the resulted improvement on

PES could vary depending on the overall PES level.

7.4 Summary

This chapter analyzed the characteristics and propagation mechanism of state

truncation errors (STEs) of fixed-point DSP in disk drive servos. For a specified structure,
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the effect of STEs can be evaluated even before it is implemented in a real drive. Simula-
tion and experiment in track-following mode showed the effectiveness of two optimization
schemes, i.e. changing the implementation structure and applying a scaling couple, in reduc-
ing the PES due to STEs. The rules of thumb are to reduce the number of state truncation

noise sources first, then apply the scaling couple to unavoidable quantizers.
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Chapter 8

Conclusions and Suggestions for

Future Research

8.1 Conclusions

This dissertation investigated two major problems associated with the design of
the track-following controller for HDDs: 1) modeling of a population of HDDs, and 2)
parameter optimization of fixed structure controllers.

An overview of HDD servomechanism was given in Chapter 2, with an emphasis
on the detailed breakdown of PES contributors in the track-following mode. Chapter 2 also
showed that due to the numerous design constraints and trade-offs, the design of the HDD

track-following controller is a multi-objective problem in which the major objective is to

2
pes*

minimize the variance of the PES, o Chapter 3 was devoted to building a statistical plant

model, which was aimed to provide an accurate and efficient way to predict the time-domain
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performance for a population of drives with a given controller. The overall formulation
consists of a linear plant model built by a multiple-phase identification process, and a set of
random variables describing the PES contributors identified from a large number of drives.

The model synthesizes the average performance index E (a%es) and performance robustness

2

bes) With a great accuracy (<3%) and a small computational overhead (<0.1s).

index var(o
It was utilized by the non-gradient-based optimization algorithms in later chapters to tune
the controller parameters for minimization of PES.

Chapter 4 discussed the parameterization of fixed structure controllers and the
optimization techniques for multi-objective design problems. Fixing the structure of con-
trollers is favored in engineering practice, but it makes the tuning of controller parameters
a non-convex optimization problem. In this dissertation, the tuning of fixed structure con-
trollers was formulated as a non-convex multi-objective GAP. It was directly solved by a
non-gradient-based Pareto solver, MOGA, presented in Chapter 5. The population-based
nature of the MOGA enables the evolution of a set of Pareto optimal (or sub-optimal) so-
lutions without requiring weights before optimization. Due to the stochastic nature of the
MOGA, it is more robust than conventional optimization methods in a non-convex search
space, but it lacks fine-tuning capability in local search. Our experiments showed that the
Pareto sets are different from run to run, although they are all close to the global optima
in the objective space. In Chapter 6, a two-phase numerical algorithm was developed by
taking advantage of the robustness of the MOGA and the efficiency of the gradient-based

techniques. The MOGA first performed a global search and found sub-optimal initial points

for the second stage, in which a gradient-based nonlinear programming method was used
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to perform local search to further enhance the quality of solutions. Comparing with the
experimental results of the original controller, the average performance index F (012)68) and
performance robustness index Uar(ages) were reduced by 2.9% and 8.7% respectively for
the controller tuned by the MOGA, and 5.5% and 14.7% for the controller tuned by the
two-phase algorithm. In terms of the computational efficiency, the two-phase algorithm cut
the total CPU time of the MOGA almost by half because the gradient-based algorithm is
much more efficient than the MOGA in local search. On the other hand, if starting from
a randomly generated point in the non-convex search space, the gradient-based algorithm
was likely to be trapped in a local optimum or unable to converge.

Chapter 7 provided a systematic analysis of the state truncation errors (STEs)
associated with fixed-point DSP implementation. In order to achieve desired performance,
the implementation structure of controllers also needs to be taken into account. Simulations
and experiments showed that a good implementation can reduce 3é,es up to 5% solely by

minimizing the effect of STEs.

8.2 Suggestions for Future Research

Having a good model or a set of models based on experimental data is very impor-
tant for the design and evaluation of HDD servo systems. The statistical modeling method
proposed in this dissertation can be extended to HDDs with dual-stage actuation, although
it is more difficult to identify various PES contributors due to the added complexity of
the servo loop. A good estimation algorithm or a new sensing mechanism is required to

de-couple the effects of two actuators. An intact method is desirable for it can be easily
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scaled to handle a large number of drives, even in production processes.

The MOGA offers almost linear computational overhead relative to the number
of tunable variables. This is a very attractive feature for non-convex MOPs with a large
number of variables. For example, the controller of dual-stage servo usually involves over
twelve tunable variables for which the convex approximation with LMI parameterization is
practically unsolvable.

Despite of advances in microelectronics, implementing a digital control algorithm
is much more difficult than what it appears to be. The gap between control design and
engineering implementation deserves more academic efforts. Much can be learned from
the related field of digital signal processing in which the implementation issues have been
tackled persistently and systematically from the early years of its development. Chapter 7
of this dissertation discussed the effect of limited wordlength in the implementation stage;
a more efficient way, however, is to take into account the implementation imperfection in
the design stage. For instance modern robust and optimal control designs are robust with
respect to plant uncertainty. However, they (especially high-order controllers) can be very
sensitive or fragile with respect to the variations of the controller coefficients due to finite
wordlength in digital systems or imprecision inherent in analog systems. Studies on the
fragility of control design can be found in [139], [140], [141], [142], [143], [144], and the
references therein. GAs can be used to solve the problem of non-fragile control design as a
robust optimization tool. One can encode the controller variables with the binary coding
scheme according to hardware resolution and redefine the performance indexes to penalize

fragile solutions. Such an integer programming problem is highly non-convex and extremely
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difficult to solve by conventional optimization techniques, while GAs are stochastic rule
based and thus are capable of directly searching for the best (or sub-optimal) solution that
guarantees a compromise between optimality and fragility in the discretized search space.

Another potential application of GAs is to automatically synthesize control laws.
The problem of synthesizing a controller involves the definition of basic functional blocks, the
determination of topological interconnections between these blocks, and the optimization of
tunable variables of each block. The first two steps which define the control law are usually
performed manually in the traditional controller design. On the other hand, GAs have been
successfully applied to automatic topology synthesis in other fields for years. Defining a set
of basic functional blocks seems to be the most difficult part. A pioneering work of applying
GAs to synthesize the control law can be found in Koza et al. [145].

In light of the two-phase algorithm discussed in this dissertation, it is meaningful
to combine the merits of other optimization techniques with GAs in order to compensate for
the deficiency of GAs in terms of local fine-tuning capability. This includes not only using
the results of GAs as starting points for the next stage of optimization but incorporating the
gradient information into genetic operators. The resulting hybrid GAs such as conjugate
GA have been shown to be very effective in solving non-convex optimization problems with
regard to the search robustness and solution quality. Readers can find more details on this

topic from the references mentioned in Chapter 5 and 6.
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Appendix A

Codes of Multi-objective Genetic

Algorithm

This appendix lists the MATLAB codes of multi-objective genetic algorithms

MOGA.m

function[bestK,best0bj,bestPerf,0ffspring,Stat] = MOGA(g) ;

format lon
close all;

numGen
numPop =

pCross
pMutate =

g5

g.para.

g.para.

g.para.

g.para.

ub = g.para.ub’;
1b = g.para.1lb’;

perImmig
perEliteUB

COSTfilename

MOGAflag
bestK
best0bj

(1;
(1;

g.
g.
g.
g.

numGen; %total # of generations

numPop; ‘%total # of populations in one generation
pCross; Yprobability of crossover

pMutate; %probability of mutation

para.perlmmig;
para.perEliteUB;
para.COSTfilename;
para.MOGAflag;

%-—-Set up the search range and resolution of parameters
RangeK =[1b ub];
if length(lb)== length(ub)
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NumK = length(1lb);
else

disp(’degrees of upper and lower bound do not agree.’);
end
oo
%% Randomly generate the first Generation
T
begin_time = cputime;
firstK = diag(ub-1b)*rand(NumK,numPop) + lb*ones(1l,numPop);
for iPop = 1:numPop

firstGen(iPop) .K = firstK(:,iPop);’% K in column

firstGen(iPop) .parents = [0 0];

[firstGen(iPop) .cost, firstGen(iPop) .perf]

= feval (COSTfilename,firstGen(iPop) .X);

end
if (size(firstGen(iPop).cost,2)>1)&(MOGAflag==0)
disp(’MOGA warning: You have multiple objectives.
Please use MOGA by setting MOGAflag=1’)
break;
end

[Offspring(l,:), origParetoSet]
= PARETORANKING(MOGAflag,firstGen,numPop,NumK,RangeK) ;

paretoSet = DEDUPLICATE(origParetoSet);

SumFit sum( [Offspring(1,:) .fitness]);
Stat.AveFit (1) = SumFit/numPop;

Stat.MaxFit(1) = max([Offspring(l,:).fitness]);

Tolh

%% Main iteration

%/ Generate the next generation by three ways:
%% [1] Elitism (e%)

%% [2] Normal selection/crossover/mutation

%% [3] Randomly generate small portation (10%)
o
NumImmig=floor (ceil (numPop*perImmig/100)/2)*2;
NumElite (1)=0;

for jGen=2:numGen

b
%-[1] Elitism

%- Directly move the Elite to the next generation

%- ,up to 1/2 population



NumElite (jGen)=floor (size(paretoSet,2)/2)*2;
if NumElite(jGen) >numPop*perEliteUB/100
NumElite(jGen)=numPop*perEliteUB/100;
end
for jElite=1:NumElite(jGen)
Offspring(jGen, jElite)=paretoSet (jElite);
end

/A

%—[2] generate 90% children by selection/crossover/mutation

for jPop=NumElite(jGen)+1:2:numPop-NumImmig

matel = SELECT(SumFit,Offspring(jGen-1,:),4);
distanceK=0.7;
while (distanceK >=0.4)
mate2 = SELECT(SumFit,Offspring(jGen-1,:),4);
distanceK=DISTOFK(matel.K,mate2.XK,NumK,RangeK) ;
end
[childl, child2,crossedFlag]
= CROSSOVER (matel,mate2, pCross,’R’,NumK );
[childl,mutatedFlagl]
= MUTATION(’R’ ,pMutate, childl, RangeK, NumK,jGen,numGen);
[child2,mutatedFlag2]
= MUTATION(’R’ ,pMutate, child2, RangeK, NumK,jGen,numGen);

if (crossedFlag==1)|(mutatedFlagl==1)
[childl.cost, childl.perf]
= feval (COSTfilename,childl.K); %evaluate ## COST ##
else
childl.cost=matel.cost;
childl.perf=matel.perf;
end

if (crossedFlag==1)|(mutatedFlag2==1)
[child2.cost, child2.perf]
= feval (COSTfilename,child2.K); %evaluate ## COST ##
else
child2.cost=mate2.cost;
child2.perf=mate2.perf;
end
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childl.rank=[];
childl.fitness=[];
Offspring(jGen, jPop) = childl;
child2.rank=[];
child2.fitness=[];
Offspring(jGen, jPop+1)= child2;
end % end of jPop by selection
b
%-[3] Generate 10% children randomly

firstK = diag(ub-1b)*rand(NumK,numPop) + lb*ones(1,numPop);
randK = diag(ub-1b)*rand (NumK,numPop) + lb*ones(1,numPop);

for iPop=numPop-NumImmig+1 :numPop
Offspring(jGen,iPop) .K=randK(:,iPop-numPop+NumImmig) ;
Offspring(jGen,iPop) .parents=[0 0] ;
%#h-—-Calculate fitness for the random generated first gene
[Offspring(jGen,iPop) .cost, Offspring(jGen,iPop) .perf]
= feval(COSTfilename,0ffspring(jGen,iPop) .K); %## COST ##
end %end of jPop by random

% =
[Offspring(jGen,:), origParetoSet]
= PARETORANKING(MOGAflag,0ffspring(jGen, :) ,numPop,NumK,RangeK) ;
paretoSet=DEDUPLICATE (origParetoSet) ;
SumFit = sum([0ffspring(jGen,:).fitness]);
Stat.AveFit (jGen)=SumFit/numPop;
Stat.MaxFit (jGen)=max([0ffspring(jGen,:).fitness]);

Stat.MinFit (jGen)=min([0ffspring(jGen,:).fitness]);

set(g.run_cputime_t,’String’ ,num2str (cputime-begin_time)) ;drawnow;
set(g.run_avgfit_t,’String’ ,num2str(Stat.AveFit (jGen))) ;drawnow;

end % end of jGen

Tolh =
oto Return the optima

Tolh =
if MOGAflag==

J====== MOGA




NumOpt=size (paretoSet,2);
for jout=1:NumOpt
bestVector (jout)=paretoSet (jout) .cost(1);
end
[sortBest,sortBestIndex]= sort(bestVector,2);

for kout=1:NumOpt
size(paretoSet (sortBestIndex (kout)) .K) ;
bestK (kout, : )=(paretoSet (sortBestIndex (kout)) .K) ’;
bestObj (kout, : )=[paretoSet (sortBestIndex(kout)) .cost]’;
bestPerf (kout, :)=[paretoSet (sortBestIndex(kout)) .perf]’;
save Offspring Offspring bestK bestObj bestPerf

Stat.maxFitAll = 0;
for iGen = 1:numGen
for iPop = 1:numPop

if (Offspring(iGen,iPop).fitness>=Stat.maxFitAll)
Stat.maxKAll= 0ffspring(iGen,iPop) .K;
Stat .maxGenAll
Stat .maxPopAll
Stat.maxFitAll
Stat.bestObj = 0ffspring(iGen,iPop).cost;
Stat.bestPerf = Offspring(iGen,iPop) .perf;

iGen;

iPop;
Offspring(iGen,iPop) .fitness;

end
end
end
best_Fitness =[Stat.maxGenAll Stat.maxPopAll Stat.maxFitAll];

bestK = Stat.maxKAll;

bestObj = Stat.best0bj;

bestPerf = Stat.bestPerf;

save Offspring Offspring bestK bestObj bestPerf
end
SELECT.m

function Selected = SELECT(SumFit, 0ldGen, NumTour)
rnPoint = rand(NumTour,1)*SumFit;
cumSumFit=cumsum( [01dGen.fitness],2);
for i=1:NumTour
ind=find (cumSumFit >rnPoint (i));
iPopS(i) = ind(1);
end
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[maxF,indS]=max ([01dGen(iPopS) .fitness]) ;
Selected = 01dGen(iPopS(indS));
Selected.ID=iPopS(indS);

CROSSOVER.m
function [childl,child2,crossedFlag]
= CROSSOVER (matel,mate2,pCross,codingFlag,Kpara)
crossedFlag=FLIP(pCross) ;
childl.K = matel.K;
child2.K = mate2.K;
if (crossedFlag==1)
if codingFlag==’B’;
cLocation = ceil(rand(1)*(Kpara-1))
childl.K(cLocation+l:Kpara) = mate2.K(cLocation+l:Kpara);
child2.K(cLocation+l:Kpara) = matel.K(cLocation+l:Kpara);
end % end of ’B’
if codingFlag=='R’
cLocation = ceil(rand(1)*Kpara);
a=0.3;
childl.K(cLocation:Kpara)

= a*matel.K(cLocation:Kpara) + (1-a)*mate2.K(cLocation:Kpara);

child2.K(cLocation:Kpara)

= (1-a)*matel.K(cLocation:Kpara) + axmate2.K(cLocation:Kpara);

end % end of ’R’
end %, end of ’crossover’
childl.parents = [matel.ID mate2.ID];
child2.parents = [matel.ID mate2.ID];

MUTATION.m
function [mutated,mutatedFlag]

= MUTATION(codingFlag,pMutate, orig, RangeK, Kpara,jGen,NumGen)

indM = 0;

T = 0;

mutated = orig;

mutatedFlag=0;

indM=find(rand (Kpara,1l) <pMutate) ;

if ("isempty(indM))
mutatedFlag=1;
if codingFlag == ’B’

mutated.K(:,indM)=bitcmp(orig.K(:,indM),1);

end % end of if ’B’

% Mutation for floating point coding, Kpara= NumK
if codingFlag == ’R’
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if (FLIP(0.5)== 0)
y=RangeK(indM,2) -mutated.K (indM) ;
mutated.K(indM)=mutated.K(indM)+y*(1-rand (1)~ ((1-jGen/NumGen) "5)) ;
else
y=mutated.K(indM)-RangeK(indM, 1) ;
mutated.K(indM)=mutated.K(indM)-y* (1-rand (1) " ((1-jGen/NumGen) "5)) ;
end
end % end of if ’R’
end %end of if ’isempty’

PARETORANKING.m
function [after, paretoOptima]

= PARETORANKING(MOGAflag,before,NumPop,NumK,RangeK)
oo

%hsort cost from the least to the largest according to sum(cost)

costMatrix=[before.cost];
costSumVector=sum(costMatrix,1);
if size(costMatrix) ~=NumPop;
disp(’MOGA ERROR: cost must be in Mxl form’);
break;
end
ot
%huse MOGAflag to switch between GA and MOGA
after=before;
if size(costMatrix,1)==1
MOGAflag=0;

end

if MOGAflag==0;
Yoo
%hGA : if you have only ONE cost/objective or
Toth combine all cost into one objective.

after=before(sortedPointer);

for k=1:NumPop

after(k) .rank = k;

after(k) .fitness = 1/(after(k).cost+1);

end

paretoOptima = before(sortedPointer(1));
else
ot
%% beginning of MOGA

after = before;

domPointer= sortedPointer;
RNK=1; % rank



while (“isempty(domPointer)) ¥ search for next pareto set

undetPointer = domPointer;
domPointer = [];
paretoPointer = [];
ni=0;
%hsearch for the next element in this set
while (“isempty(undetPointer))
%hlet’s look at the undeterminate set again
pointer = undetPointer;
undetPointer = [];
first = pointer(1l);
pointerSize = size(pointer,2);
if (pointerSize>1)
dif = costMatrix(:,first)*ones(1,pointerSize)
- costMatrix(:,pointer(l:pointerSize));

domByFirstVector = ((max(dif,[],1)<=0)& (min(dif,[],1)<-1e-10));

domByFirstInd = find(domByFirstVector);
domPointer = [domPointer pointer(domByFirstInd)];
undetByFirstInd = find(bitcmp(domByFirstVector,1));
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undetPointer = pointer(undetByFirstInd(2:length(undetByFirstInd)));

end %end of if
ni=ni+l; % ni is the size of current Pareto Set
%hput the first element to non-dominated set
paretoPointer(ni)=first;
%hsince sum(sorted(first)) is the minimum
end %end of inner while
Toth
hhassign fitness
shareFlag=0;
Toth
%/ w/sharing
if shareFlag==

dij = 0;
h=1;
sumS =[];

%hcalculate the mutual distance within the same ranking

for ii=1:ni

tempSum = O;

for jj = 1:ni

dij = DISTOFK(’B’,after(paretoPointer(ii)) .K,
after (paretoPointer(jj)) .K,NumK,RangeK) ;
tempSum = tempSum + GSTEP(1 - dij/h);



end

sumS (ii)=tempSum;

end

sumSumS=sum (sumS) ;
%totalFitness=ni*2%(1.5-1)* (NumPop-RNK)/ (NumPop-1); % linear
totalFitness=ni/RNK; 7 disp(’Exponential’) % exponetial

%hfitness sharing
for asi=1:ni
after(paretoPointer(asi)) .rank=RNK;
%hshared among same rank
%after (paretoPointer (asi)) .fitness
= 2*(1.5-1)*(NumPop-RNK) / (NumPop-1) ;
after(paretoPointer(asi)) .fitness
= totalFitness*sumS(asi)/sumSumS;
if RNK==
paretoOptima(asi)=after(paretoPointer(asi)); J pareto optima
end
end

else

Tolh

%k w/o sharing

end

for asi=1:ni
after (paretoPointer(asi)) .rank=RNK;
%after(paretoPointer(asi)).fitness

= 2%(1.5-1)* (NumPop-RNK) / (NumPop-1) ;
after(paretoPointer(asi)) .fitness

= 1/(RNK"2); %shared among same rank
if RNK==
paretoOptima(asi)=after (paretoPointer(asi)); % pareto optima
end
end % end of ’for asi’
% end of shareFlag

RNK=RNK+1;

end
end

FLIP.m

% end of outer while

function BS=FLIP(p)
rn=rand(1);

if rn<=p;
BS=1;
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else
BS=0;
end

GSTEP.m
function out=GSTEP (in)
if in<O0;
out=0;
else
out=in;
end

COST.m

function y=cost(x)

%#This is a user—defined evaluation function
y(1)=x(1)"2 % dummy code

y(2)=x(2)"2 7 dummy code

y(3)=x(1)+x(2) % dummy code



