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ABSTACT

In this paper we present a non-nested full approximation storage (FAS) multi-grid algorithm

over an unstructured triangular mesh for slider air bearing simulation that can significantly speed

up the convergence rate of the implicit finite volume scheme we presented in a previous paper.

The multi-grid algorithm requires no relationship between the fine and coarse meshes, which

offers greater convenience and flexibility in the mesh generation and takes into account the fact

that the mesh generated by Delaunay triangulation in our previous paper is not nested. When

combined with the implicit and adaptive finite volume scheme that has been shown to have good

high frequency error damping qualities, it achieves fast convergence. The overall simulation

strategy, including the mesh generation and adaptation, the implicit finite volume scheme and the

multi-grid algorithm, has proved to be an efficient way of solving the generalized Reynolds

equation over sliders with complex rail systems. In addition, the steady state flying attitude is

obtained by a Quasi-Newton iteration method.
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INTRODUCTION

In the past several years extensive effort in the Computer Mechanics Laboratory (CML) has

been devoted to the development of efficient and accurate numerical methods and corresponding

software for solving the slider air bearing problem in hard disk drives. Due to its accuracy,

convenience, robustness and efficiency, the CML air bearing design code is now widely accepted

and used in the hard disk drive industry.  Before the present development the CML air bearing

design code was based on the control volume schemes for convection and diffusion type

equations cast in a convenient form in Patankar’s book (1980).  These schemes are well known

for their robustness.  In that code a rectangular Cartesian mesh system is used.  Such a mesh

system is easy to generate and the grid lines can be adaptively moved around conveniently. Sha

and Bogy (1994 and 1997) further improved its efficiency by implementing the multi-grid

scheme of Shyy et al (1993).

The sliders in current hard disk drives have become increasingly complicated. Shaped rail

systems are now widely utilized to achieve the desired design goals such as low flying height and

the uniformity of flying height across the radial position range of the disk.  For these sliders most

rail boundaries are either curved or not aligned with the coordinate axes. Along these boundaries

the etching process of manufacturing leaves a narrow recess wall region in which the recess

height changes abruptly through a wall profile from the value on the air bearing surface to that of

the fully recessed region.  Since the air bearing pressure is built up by forcing the air to flow

from an open space into a narrow gap, in most cases, the recess wall region characterized by a

relatively large geometric change has large pressure gradients.  This is especially true on the

downwind part of the boundaries of the rail. Although in most cases the pressure gradients of the

recess wall regions on the upwind parts of the rail are relatively smaller (in most cases, it was so
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small, after mesh adaptation, that no mesh was added to these regions in the prior CML code),

these regions have non-negligible effects on the pressure profile on the rail behind them. This is

especially true when the angles between the local disk velocity vector and these rail boundaries

are not °90 .  As a result, it is desirable to cluster fine meshes in the recess wall regions.

In our previous paper (Wu and Bogy 1999), we fully discussed the advantages of using an

unstructured triangular mesh over the rectangular Cartesian mesh, if the rail geometry is

complicated.  In that paper we presented triangular mesh generation and adaptation techniques

and an implicit finite volume scheme. The scheme is unconditionally stable and has good high

frequency error damping qualities.  Even though the time step can be chosen arbitrarily large the

code still does not converge fast enough, due to the nature of the Gauss-Seidel smoother

employed. From the convergence history it can be seen that the error drops very quickly at the

beginning, its magnitude can be reduced about two orders with only a few time steps. But after

the high frequency errors have been smoothed out, the convergence rate declines. In such cases,

the multi-grid technique has proved to be an efficient way to greatly improve the convergence

rate.  In this paper we employ a non-nested multi-grid technique that suits the nature of the new

mesh generation process.

The multi-grid methodology was originally developed for solving elliptic equations, and it

was later applied to other types of differential equations with great success. It takes into account

the fact that most iteration techniques are efficient at smoothing out the error components with

wave lengths comparable to or smaller than the mesh size (high frequency errors). But after these

error components have been quickly eliminated the convergence rate can greatly diminish with

most computational time being consumed by the inefficient task of reducing the error

components with wave lengths larger than the mesh size (low frequency errors). However, a
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coarser mesh sees these components as relatively higher frequency error, so if subsequent

iterations are done on the coarser mesh, the error can be continually reduced efficiently.

Therefore, instead of using only one mesh, the multi-grid technique iteratively solves the

problem on several sets of mesh ranging from very fine to very coarse by switching back and

forth between them.  In this manner a fast convergence rate can be achieved.

Most multi-grid techniques are designed for nested meshes, in which several finer meshes

can be combined to form a coarser mesh. This makes the transfer of variables and residues

between the fine and coarser meshes relatively easy.  But due to the nature of the Delaunay

triangulation used in our approach, it is impossible to generate nested meshes. Therefore a non-

nested multi-grid technique has to be used. Compared with other triangulation techniques like the

pure longest-side bisection technique (Rivara 1989) that can be used to generate nested meshes,

the relaxation of the nested requirement can also give the user more flexibility in the mesh

generation.

In our approach the full storage approximation multi-grid strategy of Brandt (1977) is

implemented. Mavriplis and Jameson’s (1987 and 1988) restriction and interpolation functions

that suit non-nested triangular meshes are used to transfer the variables and residues between the

meshes. The resulting multi-grid implicit finite volume scheme is robust and efficient in solving

the generalized Reynolds equation. The overall efficiency of the new code can compete with the

rectangular mesh CML code even with a similar number of nodes. To get comparable results, the

new code is normally four to five times faster as a result of the significantly reduced number of

required meshes.

Finally, the steady state flying height of the slider is found by a Quasi-Newton iteration

method fully described in Dennis and Schnabel (1983).
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IMPLICIT FINITE VOLUME DISCRETIZATION OF THE GOVERNING EQUATION

AND THE BOUNDARY CONDITION

The governing equation for the air bearing problem is the modified Reynolds equation. In

non-dimensional form, it can be written as
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The computational domain is divided into a series of non-overlapping triangles with the mesh

generation techniques presented in Wu and Bogy (1999).  The space descretization is achieved

by integrating the governing equation over the control volumes, which are taken to be the dual

Voronoi polygons of the Delaunay triangulation, while the variables are stored at the vertices of

their dual triangles.  The semi-discretized form of the scheme can be written as
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where jP  are the pressures at the vertices surrounding vertex i.  The unsteady term is

approximated by backward difference.  The resulting fully implicit scheme can be written at each

time step as
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The steady state solution is found by marching in time.  The definition and physical meaning of

each term can be found in Wu and Bogy (1999). iC  and ijC  are functions of 1+n
iP  and 1+n

jP , so

the equations are non-linear.  A lagging technique can be used to linearize the discretized

equations.  We can simply calculate these coefficents using the solution of the previous time

step. But this requires the final solution to be found through iteration. Each time step (or outer

iteration) we update the coefficents once, and the resulting linear algebra equations are solved by

a two sweep Gaussian-Seidel iteration method described in Wu and Bogy (1999) (inner

iteration).

The boundary condition is very simple, along the boundaries of the slider, the pressure is

ambient.

GRID TRANSFER OPERATORS FOR THE MULTI-GRID ALGORITHM

In the implementation of the multi-grid algorithm, variables and residues are transferred

frequently between different mesh levels.  The transfer procedure has vital influence on the

overall performance of the multi-grid algorithm.  Mavripilis and Jameson’s (1987 and 1988) grid
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transfer operators have been shown to be well suited for multi-grid algorithms over unstructured

triangular meshes.  Here we simply adopt their techniques.

Let k
kI 1+  be the operator used to transfer variables or residues from the fine mesh k+1 to the

coarse mesh k, it is also called the restriction or projection operator. If k
kI 1+  is operating on

variables, it can simply be taken as a linear interpolation of the variables from the fine mesh

nodes to the coarser mesh nodes.  For example, if we want to get the pressure at vertex i, (see

Fig.1) of the coaser mesh, we just need to locate the triangle IJK of the fine mesh that encloses it

and do a linear interpolation.  If it operates on the residue, then the residue at the vertex of a finer

mesh can be distributed to the three vertices of the coaser triangle that encloses the vertex by its

three area coordinates.  For exmple, if we want to distribute IR  (the residue at vertex I in Fig. 2)

to vertices i, j and k of a coase mesh, we simply send Ii RL , Ij RL  and Ik RL  to vertices i, j and k

respectively. iL , jL  and kL  are area coordinates or shape functions of point I, which are equal to

the area of the triangle formed by the opposite line to i, j and k and I itself and divided by the

area of triangle ijk respectively.  This can guarantee the conserversion of the residue in the

transfer process.

Let 1+k
kI  be the operator used to transfer corrections from the coarse mesh k to the fine mesh

k+1, it is also called the interpolation or prolongation operator. It can simply be taken as a linear

interpolation. For each vertex of mesh k+1, we just need to locate the triangle of mesh k that

encloses it and linearly interpolate the corrections at the three vertices of the triangle to it.
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FAS MULTI-GRID ALGORITHM

The full approximation storage (FAS) algorithm in Brandt (1977) is well suited for non-

linear equations.  It solves the equations by iterating over several sets of mesh. In abstract form it

can be presented as follows.  To simplify the expression we assume only two levels of mesh are

used (k+1 represents the fine mesh and k represents the coarse mesh).  Let L be the differential

operator, U  be the unknown vector and F  be the source term, then the differential equation can

be written as

.FUL =                                                                  (5)

On the fine mesh, the equation can be discretized as
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where 1+kL  is the discretized operator over the mesh k+1. A certain number of iterations can be

carried out until the convergence rate becomes slower. Then the solution 1+ku  and the residue
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is solved there with an initial guess 1
1

+
+

kk
k uI . kL  is the discretized operator on mesh k. k

kI 1+  is the

grid transfer operator used to transfer either the solution variables or residues from mesh k+1 to
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k.  A solution ku  is found after enough iterations. Finally the correction on mesh k is transferred

back to k+1, and the solution on mesh k+1, 1+ku  is updated as
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which serves as the initial guess of the next multi-grid circle iteration. k
kI 1+  is the grid transfer

operator used to transfer the correction from mesh level k to k+1.  The above process continues

until the error drops to an acceptible level.

For our implicit finite volume scheme, the differential operator on level k+1can be written as
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Similar expressions hold for the other levels. The source term on the fine mesh k+1 is
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On the coase level k, it can be written as
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In our actual implementation three levels of mesh are used.  Figure 3 shows the multi-grid V

cycles used in the simulation.  To get a good initial guess we first do forty iterations on the

coarsest mesh, then we linearly interpolate the solution variables to the second level mesh.

Twenty iterations are carried out there before we transfer the solution variables to the third level

mesh.  After that, N V cycles are carried out before we adaptively refine the third level mesh

according to the pressure distribution.  The following V cycles are performed over the new finest

mesh and the other two meshes until convergence is achieved.  Each V cycle consists of one

iteration on the finest mesh, then the solution variables and residues are transferred to the second

level mesh using the operators we previously defined. Then four iterations are done there. Again,

solution variables and residues are transferred to the first level mesh. Eight iterations are carried

out before the corrections are transferred back and used to update the second level mesh solution.

Four more iterations are done on the second level mesh.  Finally, the finest mesh solution is

updated by the correction transferred from the second level mesh, which serves as the initial

guess for the next V cycle.  There is no solid physical background for deciding how many outer

iterations should be carried out on each mesh level to give the best result.  The above choices

correspond to optimized results for some sliders. Within each outer iteration, there is no need to

solve the linear algebra equations extremely well, since for the final steady state solution the

coefficients depend on the solution itself.  In each outer iteration we linearized the equations by

taking them to depend only on the solution of the previous outer iteration.  In our code, about ten

to twenty Gauss-Seidel iterations are used to find an approximation solution for the set of linear

algebra equations with coefficients updated at the beginning by the solution of the last outer

iteration.  Again, the choice of the number of inner iterations corresponds to optimized results for

some sliders.
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INVERSE PROBLEM

In air bearing simulation the steady state flying attitude corresponding to a fixed prescribed

load is more important than the pressure distribution of one fixed attitude, because it is the

former that influences the performance of the hard disk drive.  The steady state flying attitude is

defined as the one at which the pre-enforced suspension force and pitch and roll torques are

balanced by their counterparts generated by the air bearing force.  We can define a vector

( )321 ,, RRRR = , where
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airF  is the air bearing force, sF  is the applied suspension force, airM , sM  and shearM  are

moments caused by air bearing pressure, applied suspension force and viscous shear force,

respectively.  Subscripts p and r represent the projection in the pitch and roll directions.  0X  and

0Y  are coordinates of the position where the suspension force is applied.  R  is a non-linear

function of the flying height, the pitch angle and the roll angle.  The object is to find a particular

flying attitude that makes R  zero, which corresponds to the steady state flying attitude.  The

Quasi-Newton iteration method for non-linear problems fully described in Dennis and Schnabel
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(1983) is implemented to find the steady state attitude.  Our experience shows that generally only

a few Newton steps are needed to find the steady state solution.

RESULTS AND DISCUSSION

The IBM Travelstar slider (Fig. 4) and the NSIC load/unload slider (Fig. 16) are used to

demonstrate the performance of the above multi-grid numerical scheme and the Quasi-Newton

iteration method.  Figures 5, 6 and 7 show the three initial meshes for the IBM slider.  Figure 8

shows the adaptively refined third level mesh.  Figures 9 and 10 show the pressure contours at

the steady state attitude obtained by the triangular mesh solver and the rectangular mesh solver,

respectively.  They are almost the same, differing only by some small details.  Comparing Fig. 8

and Fig. 9, we can see that all the regions with large geometric change or pressure gradient have

been efficiently captured by our mesh generation and adaptation techniques.  Figure 11 shows

the comparison of the convergence rate between the fully implicit iterations on a single mesh and

that of the multi-grid iteration at a fixed attitude without mesh adaptation.  The single mesh is the

same as the finest mesh of the multi-grid iteration.  From the figure it can be seen, for the single

mesh iteration, that the error initially drops very fast, only ten iterations are needed to bring the

error down from about 2
10

−  to 4
10

− . But after the high frequency error has been smoothed out, the

curve flattens.  It takes about another 200 iterations to further reduce the error by two orders of

magnitude.  The multi-grid curve shows that all error components can be continuely and

efficently romoved.  The log error drops almost linearly with the number of outer iterations (time

steps).  Figure 12 shows the flying height grid convergence comparison between the triangular

mesh solver and the rectangular mesh solver.  The former achieves grid convergence with much
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fewer node points.  This is due to the fact that the node points can be much more reasonably

distributed by the triangular solver than the rectangular solver.  Figures 13 and 14 show the pitch

angle and roll angle grid convergence history.  For the node number corresponding to flying

height convergence, both codes reach grid convergence.  Figure 15 shows a plot of the

simulation time for finding the steady state attitude as a function of the grid size.  For both

solvers the simulation time increases almost linearly with the node number.  For the same

number of node points, the triangular mesh solver costs a little more time than the rectangular

solver.  But this is not always true.  The rail shape of the modified IBM slider is extremely

regular.  In this case, the rectangular mesh solver is supposed to do a good job.  But the

triangular mesh solver can treat all shapes equally well, no matter how complicated they are.

To demonstrate this, the NSIC load/unload slider (Fig. 16) is simulated.  Figure 17 shows the

flying height grid convergence history.  Again, the triangular mesh solver achieves grid

convergence at a much smaller grid size. But this time, the performance of the rectangular mesh

solver deteriorates substantially.  Figure 18 shows the simulation time used to find the steady

state flying attitude as a function of node number.  This time, at a similar node number, the

triangular mesh solver uses almost the same amount of time as the rectangular mesh.

SUMMARY AND CONCLUSIONS

A non-nested FAS multi-grid algorithm has been successfully employed to speed up the

convergence rate of an implicit finite volume scheme that we previously designed for slide air

bearing simulation.  The multi-grid algorithm requires no relationship between different mesh

levels.  On the average nearly one order of simulation time has been saved by implementing the
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multi-grid algorithm. In addition the steady state flying attitude is found by a Quasi-Newton

method.  Even though the unstructured nature of the grid makes the situation much more

complicated than that of the structured rectangular mesh, and all the information can only be

stored and retrieved through a complicated data structure, the efficiency of current code can

compete with the rectangular mesh counterpart with similar grid size.  To get comparable results,

the triangular mesh solver is generally four to five times faster depending on the complexity of

the rail shape.
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Fig. 1 Grid restriction operator.
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Fig. 2 Residue distribution operator.
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Fig. 3 The muti-grid V cycles.
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Fig. 4 The IBM Travelstar slider with slight modification.
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Fig. 5  The first level conforming mesh with 656 nodes.
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Fig. 6 The second level mesh with 4108 nodes.
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Fig. 7 The third level mesh before mesh adaptation with 12642 nodes.
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Fig. 8 The third level mesh after mesh adaptation with 18145 nodes.
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Fig. 9 The steady state pressure contour of the solution by the  18145 nodes triangular

mesh solver.



25

Fig. 10 The steady state pressure contour of the solution by the 148225 nodes (385X385)

rectangular mesh solver.
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Fig. 11 The convergence history of iteration on a single mesh and multi-grid iteration.
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Fig. 12 The grid convergence comparison of nominal flying height (NM).
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Fig. 16 NSIC load/unload slider.
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