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ABSTRACT

The current method of analysis for hardness measurements by indentation is reviewed
and examined. Although, the method is based on Sneddon’s solution for an elastic stress
field within a homogeneous half space indented by an elastically deformable indenter, it
implicitly assumes a fixed indenter geometry. Therefore, if indentations are made on
materials whose hardnesses are close to that of the indenter, the indenter geometry could
change during the indentation process, and this method would underestimate the contact
area and thus, overestimate the hardness and modulus values of the indented materials. A
new method based on the Hertz contact theory is proposed. This method accounts for the
indenter's elastic deformation while indenting on hard materials. The method also
provides a simple way to calculate the tip radius at the origin (which will be described
later). The restrictions of this method are also indicated and discussed. Finally, the
hardness and modulus values for two recently developed films are measured and
calculated by this method, and the results are compared with published finite-element-

simulation results.



1 INTRODUCTION

The demand for higher areal storage density for disk drives has driven the development
of thinner and harder protective films for disks and sliders. Nanoindentation tests have
been widely adopted to study the mechanical properties, such as hardness and modulus of
these films. The modified Sneddon’s solution for an elastic field within a homogeneous
half space indented by a solid of revolution is usually used to analyze the
load/displacement curves obtained from experiments. Indenters are implicitly treated as
rigid bodies by using a fixed tip shape function. (This point will be explained in detalil
later in this section.) When indenting on materials with hardnesses of 50GPa or lower, a
diamond indenter can be treated as a rigid body and no appreciable errors will be
introduced. However, if indentations are made on much harder materials, for example,
the recently developed cathodic-arc amorphous carbon films, the diamond indenter
deforms during the indentation processes. As the demand of harder protective films for
disk drives continues, even harder materials will be developed. The current method of
analysis will then fail to predict the right hardness and modulus values. A new technique

is needed to compensate for the diamond indenter deformation during indentation.

The new method proposed here is based on the Hertz contact theory for elastic solids.
The hardness values for the cathodic-arc amorphous carbon films calculated by this
method are compared with those from Sneddon’s solution and those from the finite-

element simulation obtained by Follstaesit al. (1997). Together with the current



method, the new method is able to estimate the indenter tip radius by a series of

indentations on fused Quartz.

Indentation tests in this report were made by the Hysitron single-axis tester, which is a
commercially available nanomechanical test instrument. The system is able to obtain the
load-unload/displacement curves for indentations. The resolutions of the system are
0.2nm in depths and (UN in forces. The software version 3.0 was used to record and to

analyze the data according to Sneddon’s solution. A triangle-based pyramid-shaped
diamond indenter with a tip radius of about 160nm was used. Cathodic-arc amorphous

carbon films were used for obtaining samples with hardness near that of diamond.

1.1 Review of the current method

The current method of analyzing the load/displacement curve is based on Srfeddon’s
solution for an elastic stress field within a homogeneous half space when it is indented by
a rigid flat punch. He derived a simple relationship between the contact sti§ngms
projected area of indentation (or, the contact afeagnd the elastic modulus of the

indented material, i.e.
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where v is the Poisson’s ratio of the indented material. For elastically deformable
indenters, the term in the parenthesis can be generalized to the reduced r&gdulus

which is defined as

+ L (2)
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Thus, Eqg. (1) can be re-written as

S= 2\/EEr : 3)
T

Pharret al? extended this expression to the deformation behavior of an elastic half space
indented by any punch that can be described as a solid of revolution of a smooth function.
Therefore, Eqg.(3) can be used to analyze the load-unload/displacement curves obtained
from indentation experiments with non-flat indenters. (A detailed discussion on the

validity of Sneddon’s solution is provided elsewhdre

Among the variables in Eq.(3), the contact stiffn&san be calculated from the
unloading curve for each indentation. Therefore, we have two unknowns involved in Eq.
(3), the contact are& and the reduced modul&s. So it is an indeterminate system. The
system becomes determinate if we introduce a tip shape function. The tip shape function
is the relation between the contact depth and contact areA, #eA(h,), which is the

shape of the assumed rigid tip. The tip shape function can be found by a series of
indentations on materials with homogeneous and isotropic mechanical properties, for
example, fused Quartz. Since the reduced modulus of fused Quartz is known, the contact
area of each indentation can be calculated from Eq. (3). According to Sneddon’s solution,
the contact depth can also be calculated for the same indentation. The tip shape function
can thereby be established. Equation (3) together with the tip shape function constitute a

closed system.



1.2 Problem associated with the current method

Finding the tip shape function on fused Quartz implicitly assumes that the tip shape is a
fixed geometry. This is true if the tip is made of diamond and indentations are on
relatively soft materials. For most materials used in disk drive applications, for example,
silicon, silicon carbide, silicon nitride, hydrogenated carbon, nitrogenated carbon, etc.,
the method predicts hardness and modulus values quite well. However, if indentations are
made on the recently developed cathodic-arc amorphous carbon films whose hardnesses
are close to that of diamond, this method fails to predict the right hardness and modulus
values. In fact, since the tip deforms to increase the contact area between itself and the
indented material, this method underestimates the contact area and thus, overestimates
the hardness and modulus, according to the definition of hardness and Eq.(3). A new
method that accounts for indenter deformation during indentation is needed to solve the

problem.



2 COMPENSATING FOR ELASTIC INDENTER DEFORMATION

2.1 Theoretical background®

When two solids are brought into contact, they initially touch at a single point or along a
line. As the contact force increases, they deform near their points of first céinjact 1

shows a schematic diagram of this concept. The solids are shown as convex for
convenience. They could be of any shape as long as they are topograpgically smooth. The
point of first contact is taken as the origin of a rectangular coordinate system. The
common tangent plane at the origin is taken asxtfigolane. The z-axis is chosen to
coincide with the common normal to the surfaces at the origin. The sense of the z-axis is
chosen to point to Body One. Before any interaction of these two solids, the profile of

each surface near the origin can be expressed approximately in the form,
z= A% +By* +Cxy+..., (4)
where higher order terms are neglected. The separation between the two surfaces is given
by
s=z-2,=Ax*+By’ +C1xy—(A2x2 +B,y’ +C2xy): Ax*+B'y*+C'xy. (5)
By properly choosing the, y axes, we can mak& zero, and hence
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whereA’ andB’ are positive constants aRd andR” are defined as the principal relative

radii of curvatureA’ andB’ can be written in terms &' andR” by,
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whereR; andR,” are the principal radii of curvature of the first surface at the origin and
R, andR,” are the principal radii of curvature of the second surface at the origin and
is the angle between the axes of principal curvature of each surface. If the bodies can be
described as solids of revolution with respect to the origin,RienR;” = R1 andR, =
R)” = Ry, thus,A’ = B’ = %(1/R;+1/Ry)=1/2R. Therefore, the separation between two

surfaces can be simplified as

2
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Figure 2shows the geometry of two solids of revolution in contact under the application
of a normal loadP. u,; andu,; are the displacements of poilgison surface 1 an§, on
surface 2 due to the contact presshieandh, are the displacements of distant points in
the two bodiesl; andT,. a is the radius of the contact circle. After deformation, if the
pointsS; andS; coincide with each other within the contact surface, then
u,+u,+s=h+h,=h, (10)
whereh is the relative displacement of two distant poiitandT,. Equation (10) has to

be satisfied for all points within the contact circle, i.e.0atr <a.

Now, we will consider the contact of two bodies of special shapes: one is a solid of

revolution (the indenter) and the other is a homogenous half space with a flat surface (the



specimen material). ThuB; is the tip radius at the origin arfd, - «. From Eq.(9), the

separation o5, andS; before deformation is
S=—. (11)
Therefore, Eqg. (10) becomes
r
Uy tU, =h=-——. (12)

The pressure distribution proposed by Hertz, which results in displacements satisfying

Eq. (12), is given as

/2

_Br_g , r<a, (13)
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where pp is the maximum pressure. Hertz also showed that the normal displacement

induced by this pressure distribution is

_yy2
uZ:1 v E(Zaz—rz),rsa. (14)
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Equation (14) is valid for both bodies. Subscripts have been dropped for convenience.

Therefore, Eq. (12) can be written as,
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whereE; is the reduced modulus as defined in Eq.(2). Again, Eq. (16) is valid for all

smaller thara. Re-arranging Eq. (15), we have
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whereh anda are variables independentrofSince the left hand side of Eq. (16) is not a
function of r, the right hand side cannot be a functiorr aither. Therefore, all terms

involving r on the right hand side should cancel out. Thus, we have

&:i’ (17)
4aE, 2R

or,

4= PR

T (18)

Note that the subscript 1 Bfhas been dropped for simplicity. Substituting Eq. (18) back
to EqQ. (16), we obtain

h= ap, =
2E

a2
=3 (19)

r

The total load can also be calculated by integrating the pressure over the contact area, i.e.,

_ _2 2
P= p(r)2rrdr =5 P’ (20)

Substituting forpg by g% into Eq.(18) and Eq. (19), we have

PR 1/3
a:%i?g , (21)
op?

2 1/3
The second equality in Eq. (22) can be re-written as,
P=%5¢Rw. (23)

Taking the first derivative dP with respect td, we obtain
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in which the first equality of Eqg. (22) has been invoked. Equation (24) is the same as Eq.
(3), which is derived from Sneddon’s solution. Thus, Eq. (3) can be derived from Hertz
contact theory for the elastic stress field within a homogenous half space indented by any

punch that can be described as a solid of revolution of a smooth function.

The restrictions of this derivation are that the contact radius has to be much smaller than
the tip radius as well as the lateral and axial dimensions of the two bodies. That is to say
a <<R, anda <<I, wherel represents the lateral and axial dimension of the bodies. These
restrictions are easily satisfied in the specimen side. However, if indentations are made
on the nanometer scale, care is needed in applying these equations, since the restrictions

may not be satisfied. A detailed discussion will be provided in the next subsection.

2.2 Accounting for elastic indenter deformation

Equation (22) and Eq. (24), which are re-written below, constitute a determinate system
for E; anda (or A), unlike the results from Sneddon’s solution, from which only Eqg. (3)

can be obtained.

h:a_:A (22)
R mR

E=S:2 éEr (24)

dh m

Equation (22) states a linear relation between the contact Aaread the indenter

displacemenh, which can be measured experimentally, as long i@sa constant. Since

10



the tip radiusR is defined at the origin, a constaRtindicates that deformation is
localized in the vicinity of the origin. Besides, there are only geometric parameters,
instead of material properties, involved in Eq. (22). This means that Eq. (22) is valid for
all materials with the same geometry parameters. That is to say, Eq. (22) is only tip
dependent. If we can obtain the relation between the indenter displacement and the
contact area on one material for a particular tip, this relation holds for all materials

inasmuch as indentations are done within the restrictions.

There are two approaches for obtaining the relation between indentation depth and the
contact area for a particular tip. The first one is based on a known tip radius. By
substituting the tip radius into Eqg. (22), we can construct the relation between the
indentation depth and the contact area. The tip radius is usually estimated from SEM
pictures of the region near the ori§itowever, this is often a lengthy and expensive
process. The accuracy of this method is also a concern. The second approach for getting
the indentation depth and contact area relation is to indent on any homogeneous and
isotropic material, for example, fused Quartz for a range of indentation depths. Contact
areas can be calculated by the method mentioned in Sec. 1, since no appreciable
deformation is expected if a diamond tip is used. Indentation depths can be easily read
out from the load-unload/displacement curve obtained from each indentatidfigest.

3 shows the contact area vs. the indentation depth for tip 47. The curve does not look
linear over the entire range (0 — 250 nm). This means that the tip radius R is not a
constant within the range shown, and thus the Hertz solution is not applicable. However,

if we consider only the lower part of the curve, (for example, for indentation depths lower

11



than 85nm), the curve can be fitted by a linear function in that range without experiencing
large errors, as shown ifig. 4. Thus, the technique based on the Hertz contact theory is
valid in this range of indentation depths. This range is called the working range. After
obtaining the fitted linear function for the area vs. depth curve, we can calculate the tip
radius by dividing the slope of the function tayln the case of tip 47, its tip radius with
respect to the origin is 160 nm. Determining tip radii by this approach involves only a

simple calculation and no special equipment is needed.

After Eg. (22) has been used for a particular tip, indentation tests can then be conducted
for materials as hard as the diamond indenter. For each indentation, the maximum
indentation depth can be read out from the load-unload/displacement curve. Substituting
the maximum depth into Eq. (22), we can calculate the maximum contact. Thus, the
hardness, which is defined as the maximum indentation force divided by the maximum
contact area, can be calculated. Besides, the Sgpdor the unloading curve at the
maximum indentation depth can be calculated by approaches discussed efsewhere
Substituting Snax and the maximum contact area into Eq. (24), we can calculate the

reduced modulus at the maximum indentation depth.

Next, we need to determine if it is sufficient to consider only the elastic deformation of
the indenterFigure 5shows the hardness measurement of fused Quartz using tip 47
before and after indenting on a cathodic-arc amorphous carbon film (cathodic-arc DLC
film) whose hardness is close to that of diamond. The hardness values were calculated by

the method mentioned in Sec. 1 with the tip shape function obtained before the test, since

12



no significant deformation of the diamond indenter is expected while indenting on fused

Quartz. The same tip shape function was used in the calculation before and after
indenting. If the indenter had experienced plastic deformation or other damage during
indenting on the cathodic-arc DLC film, the tip shape would have changed permanently,
and so the tip shape function would have changed. However, according to the data
shown, there is no significant difference in the measured hardness before and after
indenting on the cathodic-arc DLC film. This indicates that the tip shape did not change
permanently. Therefore, it is sufficient to consider only the elastic deformation of the

diamond indenter.

2.3 Experiments

Figure 6shows the hardness values for a cathodic-arc amorphous carbon film with a
thickness of 500nm, which was deposited under —100V substrate bias. Note that the
abscissa is the residual depth, instead of the indentation depth. The empty triangles
represent the hardness data calculated by the method mentioned in Sec. 1. The solid
triangles show the hardness data calculated by the new technique based on the Hertz
contact theory. The data plotted are within the working range of the theory, i.e. the
maximum indentation depths are smaller than 85nm. The values represented by the
empty triangles are significantly higher than the ones represented by the solid triangles.
The relatively low hardness at the film surface is due to predominabosging near the

surfac8. A similar phenomenon has been reported by Ritaf.
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Follstaedeet al® have adopted a finite element technique to calculate the hardness and the
modulus of this film. In their approach, they matched the finite-element-simulated load-
unload/displacement curve with the experimentally found load-unload/displacement
curve by varying the film elastic modulus and yield strength. The hardness they obtained
was 68.4+ 2.5 GPa at a residual depth of around 30nm. This result appears to agree with
the data shown ifig. 6 Figure 7shows the reduced modulus values for the same film.
The empty symbols also show higher values than those shown by the solid symbols. Note
that the difference in the reduced modulus between these two methods is not as much as
that in hardness. This is because the reduced modulus depends only on the square root of
the contact area in Eq. (24), while the hardness depends on the contact area itself. Note
that the values shown drg. 7 are the reduced modulus of the film/indenter system.

Substituting the elastic parameters for diamdad (L140GPa and = 0.07) into Eq. (2),

we find that

> for the film itself is about 500GPa. Assuming that the Poisson’s ratio

1-v
equals 0.25, we can roughly estimate the elastic modulus of the film to be 470GPa.
However, the simulated result reported by Follstadil is 848+ 10 GPa at a residual
depth of 30nm. No explanation is available at this point for the inconsistémeyes 8
and 9 show the hardness and modulus values of a different cathodic-arc amorphous
carbon film, which was deposited under —2000V substrate bias. In this case, the values
represented by the empty symbols are not significantly different from those shown by the
solid symbols. This indicates that if there is no deformation of the indenter, the technique
based on the Hertz contact theory predicts the same hardness and modulus values as the
methods mentioned in Sec. 1. The relatively low hardness values at the film surface are

explained by the same argument as provided for the other film. According to the data
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shown inFig. § this film exhibits a hardness of 25GPa at a residual depth of 40nm,
which agrees well with the value (2&®.7 GPa) reported by Follstaexdtal. The elastic
modulus at 40nm residual depth can be roughly estimated to be 300GPa by the same
approach as mentioned above. This number is not far from the modulus (3&0GPa
10GPa) reported by Follstaeelt al, unlike the modulus for the film deposited under —

100V substrate bias. Knapet al® have a detailed discussion on their simulation

techniques.
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3 SUMMARY AND CONCLUSIONS

Sneddon’s solution can be derived from the Hertz contact theory (Eq. (24)). The relation
between the contact area, indentation depth, and tip radius can be obtained (Eq. (22)).
The system of equations derived from the Hertz contact theory is determinate. No extra
assumption is necessary, for example, such as a constant tip shape, to close the system.
Thus, the method proposed here is able to account for the indenter elastic deformation if
indentations are made on materials as hard as the indenter. If a diamond indenter is used,
considering only the elastic deformation is sufficient according to experimental
experiences. Besides, the tip radius at the origin can also be calculated if the contact areas

are known. No special equipment and time-consuming processes are needed.

The method proposed here shows lower hardness and modulus values while indenting on
very hard material than those calculated by the method based on Sneddon’s solution. This
is due to underestimation of the contact area and thus, overestimation of hardness and
modulus by the method based the Sneddon’s solution. The method proposed here shows
almost the same hardness and modulus values when indenting on soft materials as the
method based on Sneddon’s solution. This is because there is no essential indenter
deformation while indenting on soft materials. The hardness and modulus values
calculated by this method agree with the finite-element-simulated results by Folédtaedt

al, except the modulus for the film deposited at —100V substrate bias. No explanation can

be found for the one inconsistency at this point.
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Finally, it is also possible to integrate this technique into the commercial software for
analyzing load-unload/displacement curves. Thus, the real hardness and reduced modulus
values can be calculated in seconds, rather than hours or days if done by the finite-

element simulation.

4 ACKNOWLEDGEMENT

This work is supported by the Computer Mechanics Laboratory at the University of
California at Berkeley. The cathodic-arc carbon films used in this report were
manufactured and provided by Dr. O. R. Monteiro at the Lawrence Berkeley National

Laboratory.

17



5 REFERENCE:

1. Sneddon, I. N., 1965, “The relation between load and penetration in the axisymmetric
Boussinesq problem for a punch of arbitrary profileiternational Journal of
Engineering Scien¢éNo. 3, pp. 47-57.

2. Pharr, G. M., Oliver, W. C., and Brotzen, F. R., 1992, “On the generality of the
relationship among contact stiffness, contact area, and elastic modulus during
indentation”,Journal of Material Resear¢hol. 7, No.3, pp. 613-617.

3. Johnson, K. L., 1985, “Contact Mechanics”, Cambridge University Press, 37 East 57
Street, New York, NY 10022, USA.

4. Lu, C.-J., Bogy, D. B., and Kaneko, R., 1994, “Nanoindentation hardness tests using a
point contact microscopeJournal of Tribology Vol. 116 pp. 175-180.

5. Lo, R. Y., Bogy, D. B., 1997, “On the measurement of nanohardness and elastic
modulus of ultra-thin overcoats: effect of W-doping and annealing on the
properties of DLC”, Technical Report N®7-017 Computer Mechanics
Laboratory, Department of Mechanical Engineering, University of California,
Berkeley.

6. Monteiro, O. R.; DelplanckeOgletree, M. P.; Lo, R. Y.; Winand, R.; Brown, I., 1997,
“Synthesis and characterization of thin films of WCx, produced by mixing W and
C plasma streams'Surface and Coatings Technolpgyol. 94-5 No. 1-3, pp.
220-225.

7. Pharr, G M., Callahan, D. L., McAdams, S. D., Tsui, T. Y., Anders, S., Anders, A.,

Ager lll, J. W., Brown, I. G., Bhatia, C. S., Silva, S. R. P., and Robertson, J.,

18



1996, “Hardness, elastic modulus, and structure of very hard carbon films
produced by cathodic-arc deposition with substrate pulse biaskgplied
Physics Lettersvol. 68, No.6, pp. 779-81.

8. Follstaedt, D. M., Knapp, J. A., Myers, S. M., Dugger, M., Friedmann, T. A., Sullivan,
J. P., Monteiro, O. R., Ager lll, J. W., Brown, |. G., and Christenson, T., 1997,
“Energetic particle synthesis of metastable layers for superior mechanical
properties”, 1997 Fall meeting of Material Research Society.

9. Knapp, J. A., Follstaedt, D. M., Barbour, J. C., Myers, S. M., 1997 “Finite element
modeling of nanoindentation for determining the mechanical properties of
implanted layers and thin filmsNuclear Instruments and Methods in Physics

ResearchSec.B, Vol. 127, pp. 935-939.

19



Body Two

Figure 1: A schematic diagram for two bodies at first contact
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Figure 3: Contact area vs. indentation depth for tip 47 (long range)
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Figure 5: Hardness values calculated by the same tip shape function for tip 47
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