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ABSTRACT

The current method of analysis for hardness measurements by indentation is reviewed

and examined. Although, the method is based on Sneddon’s solution for an elastic stress

field within a homogeneous half space indented by an elastically deformable indenter, it

implicitly assumes a fixed indenter geometry. Therefore, if indentations are made on

materials whose hardnesses are close to that of the indenter, the indenter geometry could

change during the indentation process, and this method would underestimate the contact

area and thus, overestimate the hardness and modulus values of the indented materials. A

new method based on the Hertz contact theory is proposed. This method accounts for the

indenter’s elastic deformation while indenting on hard materials. The method also

provides a simple way to calculate the tip radius at the origin (which will be described

later). The restrictions of this method are also indicated and discussed. Finally, the

hardness and modulus values for two recently developed films are measured and

calculated by this method, and the results are compared with published finite-element-

simulation results.
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1 INTRODUCTION

The demand for higher areal storage density for disk drives has driven the development

of thinner and harder protective films for disks and sliders. Nanoindentation tests have

been widely adopted to study the mechanical properties, such as hardness and modulus of

these films. The modified Sneddon’s solution for an elastic field within a homogeneous

half space indented by a solid of revolution is usually used to analyze the

load/displacement curves obtained from experiments. Indenters are implicitly treated as

rigid bodies by using a fixed tip shape function. (This point will be explained in detail

later in this section.) When indenting on materials with hardnesses of 50GPa or lower, a

diamond indenter can be treated as a rigid body and no appreciable errors will be

introduced. However, if indentations are made on much harder materials, for example,

the recently developed cathodic-arc amorphous carbon films, the diamond indenter

deforms during the indentation processes. As the demand of harder protective films for

disk drives continues, even harder materials will be developed. The current method of

analysis will then fail to predict the right hardness and modulus values. A new technique

is needed to compensate for the diamond indenter deformation during indentation.

The new method proposed here is based on the Hertz contact theory for elastic solids.

The hardness values for the cathodic-arc amorphous carbon films calculated by this

method are compared with those from Sneddon’s solution and those from the finite-

element simulation obtained by Follstaedt et al. (1997). Together with the current
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method, the new method is able to estimate the indenter tip radius by a series of

indentations on fused Quartz.

Indentation tests in this report were made by the Hysitron single-axis tester, which is a

commercially available nanomechanical test instrument. The system is able to obtain the

load-unload/displacement curves for indentations. The resolutions of the system are

0.2nm in depths and 0.1µN in forces. The software version 3.0 was used to record and to

analyze the data according to Sneddon’s solution. A triangle-based pyramid-shaped

diamond indenter with a tip radius of about 160nm was used. Cathodic-arc amorphous

carbon films were used for obtaining samples with hardness near that of diamond.

1.1 Review of the current method

The current method of analyzing the load/displacement curve is based on Sneddon’s1

solution for an elastic stress field within a homogeneous half space when it is indented by

a rigid flat punch. He derived a simple relationship between the contact stiffness S, the

projected area of indentation (or, the contact area) A, and the elastic modulus E of the

indented material, i.e.

)
1

(2 2νπ −
== EA

S
dh

dP
, (1)

where ν is the Poisson’s ratio of the indented material. For elastically deformable

indenters, the term in the parenthesis can be generalized to the reduced modulus Er,

which is defined as

i

i

r EEE

22 111 νν −+−= . (2)
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Thus, Eq. (1) can be re-written as

rE
A

S
π

2= . (3)

Pharr et al.2 extended this expression to the deformation behavior of an elastic half space

indented by any punch that can be described as a solid of revolution of a smooth function.

Therefore, Eq.(3) can be used to analyze the load-unload/displacement curves obtained

from indentation experiments with non-flat indenters. (A detailed discussion on the

validity of Sneddon’s solution is provided elsewhere5.)

Among the variables in Eq.(3), the contact stiffness S can be calculated from the

unloading curve for each indentation. Therefore, we have two unknowns involved in Eq.

(3), the contact area A and the reduced modulus Er. So it is an indeterminate system. The

system becomes determinate if we introduce a tip shape function. The tip shape function

is the relation between the contact depth and contact area, i.e. A = A(hc), which is the

shape of the assumed rigid tip. The tip shape function can be found by a series of

indentations on materials with homogeneous and isotropic mechanical properties, for

example, fused Quartz. Since the reduced modulus of fused Quartz is known, the contact

area of each indentation can be calculated from Eq. (3). According to Sneddon’s solution,

the contact depth can also be calculated for the same indentation. The tip shape function

can thereby be established. Equation (3) together with the tip shape function constitute a

closed system.
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1.2 Problem associated with the current method

Finding the tip shape function on fused Quartz implicitly assumes that the tip shape is a

fixed geometry. This is true if the tip is made of diamond and indentations are on

relatively soft materials. For most materials used in disk drive applications, for example,

silicon, silicon carbide, silicon nitride, hydrogenated carbon, nitrogenated carbon, etc.,

the method predicts hardness and modulus values quite well. However, if indentations are

made on the recently developed cathodic-arc amorphous carbon films whose hardnesses

are close to that of diamond, this method fails to predict the right hardness and modulus

values. In fact, since the tip deforms to increase the contact area between itself and the

indented material, this method underestimates the contact area and thus, overestimates

the hardness and modulus, according to the definition of hardness and Eq.(3). A new

method that accounts for indenter deformation during indentation is needed to solve the

problem.
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2 COMPENSATING FOR ELASTIC INDENTER DEFORMATION

2.1 Theoretical background3

When two solids are brought into contact, they initially touch at a single point or along a

line. As the contact force increases, they deform near their points of first contact. Figure 1

shows a schematic diagram of this concept. The solids are shown as convex for

convenience. They could be of any shape as long as they are topograpgically smooth. The

point of first contact is taken as the origin of a rectangular coordinate system. The

common tangent plane at the origin is taken as the x-y plane. The z-axis is chosen to

coincide with the common normal to the surfaces at the origin. The sense of the z-axis is

chosen to point to Body One. Before any interaction of these two solids, the profile of

each surface near the origin can be expressed approximately in the form,

...22 +++= CxyByAxz , (4)

where higher order terms are neglected. The separation between the two surfaces is given

by

( ) xyCyBxAxyCyBxAxyCyBxAzzs ''' 22
2

2
2

2
21

2
1

2
121 ++=++−++=−= .    (5)

By properly choosing the x, y axes, we can make C’ zero, and hence

''2'2
''

22
22

R

y

R

x
yBxAs +=+= , (6)

where A’ and B’ are positive constants and R’ and R’’  are defined as the principal relative

radii of curvature. A’ and B’ can be written in terms of R’ and R’’  by,
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where R1’ and R1’’ are the principal radii of curvature of the first surface at the origin and

R2’ and R2’’  are the principal radii of curvature of the second surface at the origin and α

is the angle between the axes of principal curvature of each surface. If the bodies can be

described as solids of revolution with respect to the origin, then R1’ = R1’’ = R 1 and R2’ =

R2’’ = R 2, thus, A’ = B’ = ½(1/R1+1/R2)=1/2R. Therefore, the separation between two

surfaces can be simplified as

( )
R

r
yx

R
s

22

1 2
22 =+= . (9)

Figure 2 shows the geometry of two solids of revolution in contact under the application

of a normal load P.  uz1 and uz2 are the displacements of points S1 on surface 1 and S2 on

surface 2 due to the contact pressure. h1 and h2 are the displacements of distant points in

the two bodies T1 and T2. a is the radius of the contact circle. After deformation, if the

points S1 and S2 coincide with each other within the contact surface, then

hhhsuu zz =+=++ 2121 , (10)

where h is the relative displacement of two distant points T1 and T2. Equation (10) has to

be satisfied for all points within the contact circle, i.e. for ar ≤≤0 .

Now, we will consider the contact of two bodies of special shapes: one is a solid of

revolution (the indenter) and the other is a homogenous half space with a flat surface (the
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specimen material). Thus, R1 is the tip radius at the origin and ∞→2R . From Eq.(9), the

separation of S1 and S2 before deformation is

1

2

2R

r
s = . (11)

Therefore, Eq. (10) becomes

1

2

21 2R

r
huu zz −=+ . (12)

The pressure distribution proposed by Hertz, which results in displacements satisfying

Eq. (12), is given as
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where p0 is the maximum pressure. Hertz also showed that the normal displacement

induced by this pressure distribution is
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Equation (14) is valid for both bodies. Subscripts have been dropped for convenience.

Therefore, Eq. (12) can be written as,
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where Er is the reduced modulus as defined in Eq.(2). Again, Eq. (16) is valid for all r

smaller than a. Re-arranging Eq. (15), we have
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where h and a are variables independent of r. Since the left hand side of Eq. (16) is not a

function of r, the right hand side cannot be a function of r either. Therefore, all terms

involving r on the right hand side should cancel out. Thus, we have

12

1

4 RaE

p

r

o =π
, (17)

or,

rE

Rp
a

2
0π= . (18)

Note that the subscript 1 of R has been dropped for simplicity. Substituting Eq. (18) back

to Eq. (16), we obtain

R
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. (19)

The total load can also be calculated by integrating the pressure over the contact area, i.e.,

( ) 2
03

2
2 aprdrrpP ππ∫ == . (20)

Substituting for p0 by 22
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 into Eq.(18) and Eq. (19), we have
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The second equality in Eq. (22) can be re-written as,

3

3
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Taking the first derivative of P with respect to h, we obtain
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in which the first equality of Eq. (22) has been invoked. Equation (24) is the same as Eq.

(3), which is derived from Sneddon’s solution. Thus, Eq. (3) can be derived from Hertz

contact theory for the elastic stress field within a homogenous half space indented by any

punch that can be described as a solid of revolution of a smooth function.

The restrictions of this derivation are that the contact radius has to be much smaller than

the tip radius as well as the lateral and axial dimensions of the two bodies. That is to say

a << R, and a << l, where l represents the lateral and axial dimension of the bodies. These

restrictions are easily satisfied in the specimen side. However, if indentations are made

on the nanometer scale, care is needed in applying these equations, since the restrictions

may not be satisfied. A detailed discussion will be provided in the next subsection.

2.2 Accounting for elastic indenter deformation

Equation (22) and Eq. (24), which are re-written below, constitute a determinate system

for Er and a (or A), unlike the results from Sneddon’s solution, from which only Eq. (3)

can be obtained.

R

A

R

a
h

π
==

2

(22)

rE
A

S
dh

dP

π
2== (24)

Equation (22) states a linear relation between the contact area A and the indenter

displacement h, which can be measured experimentally, as long as R is a constant. Since
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the tip radius R is defined at the origin, a constant R indicates that deformation is

localized in the vicinity of the origin. Besides, there are only geometric parameters,

instead of material properties, involved in Eq. (22). This means that Eq. (22) is valid for

all materials with the same geometry parameters. That is to say, Eq. (22) is only tip

dependent. If we can obtain the relation between the indenter displacement and the

contact area on one material for a particular tip, this relation holds for all materials

inasmuch as indentations are done within the restrictions.

There are two approaches for obtaining the relation between indentation depth and the

contact area for a particular tip. The first one is based on a known tip radius. By

substituting the tip radius into Eq. (22), we can construct the relation between the

indentation depth and the contact area. The tip radius is usually estimated from SEM

pictures of the region near the origin4. However, this is often a lengthy and expensive

process. The accuracy of this method is also a concern. The second approach for getting

the indentation depth and contact area relation is to indent on any homogeneous and

isotropic material, for example, fused Quartz for a range of indentation depths. Contact

areas can be calculated by the method mentioned in Sec. 1, since no appreciable

deformation is expected if a diamond tip is used. Indentation depths can be easily read

out from the load-unload/displacement curve obtained from each indentation test. Figure

3 shows the contact area vs. the indentation depth for tip 47. The curve does not look

linear over the entire range (0 – 250 nm). This means that the tip radius R is not a

constant within the range shown, and thus the Hertz solution is not applicable. However,

if we consider only the lower part of the curve, (for example, for indentation depths lower
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than 85nm), the curve can be fitted by a linear function in that range without experiencing

large errors, as shown in Fig. 4. Thus, the technique based on the Hertz contact theory is

valid in this range of indentation depths. This range is called the working range. After

obtaining the fitted linear function for the area vs. depth curve, we can calculate the tip

radius by dividing the slope of the function by π. In the case of tip 47, its tip radius with

respect to the origin is 160 nm. Determining tip radii by this approach involves only a

simple calculation and no special equipment is needed.

After Eq. (22) has been used for a particular tip, indentation tests can then be conducted

for materials as hard as the diamond indenter. For each indentation, the maximum

indentation depth can be read out from the load-unload/displacement curve. Substituting

the maximum depth into Eq. (22), we can calculate the maximum contact. Thus, the

hardness, which is defined as the maximum indentation force divided by the maximum

contact area, can be calculated. Besides, the slope Smax for the unloading curve at the

maximum indentation depth can be calculated by approaches discussed elsewhere5.

Substituting Smax and the maximum contact area into Eq. (24), we can calculate the

reduced modulus at the maximum indentation depth.

Next, we need to determine if it is sufficient to consider only the elastic deformation of

the indenter. Figure 5 shows the hardness measurement of fused Quartz using tip 47

before and after indenting on a cathodic-arc amorphous carbon film (cathodic-arc DLC

film) whose hardness is close to that of diamond. The hardness values were calculated by

the method mentioned in Sec. 1 with the tip shape function obtained before the test, since
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no significant deformation of the diamond indenter is expected while indenting on fused

Quartz. The same tip shape function was used in the calculation before and after

indenting. If the indenter had experienced plastic deformation or other damage during

indenting on the cathodic-arc DLC film, the tip shape would have changed permanently,

and so the tip shape function would have changed. However, according to the data

shown, there is no significant difference in the measured hardness before and after

indenting on the cathodic-arc DLC film. This indicates that the tip shape did not change

permanently. Therefore, it is sufficient to consider only the elastic deformation of the

diamond indenter.

2.3 Experiments

Figure 6 shows the hardness values for a cathodic-arc amorphous carbon film with a

thickness of 500nm, which was deposited under –100V substrate bias. Note that the

abscissa is the residual depth, instead of the indentation depth. The empty triangles

represent the hardness data calculated by the method mentioned in Sec. 1. The solid

triangles show the hardness data calculated by the new technique based on the Hertz

contact theory. The data plotted are within the working range of the theory, i.e. the

maximum indentation depths are smaller than 85nm. The values represented by the

empty triangles are significantly higher than the ones represented by the solid triangles.

The relatively low hardness at the film surface is due to predominant sp2 bonding near the

surface6. A similar phenomenon has been reported by Pharr et al7.
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Follstaedt et al.8 have adopted a finite element technique to calculate the hardness and the

modulus of this film. In their approach, they matched the finite-element-simulated load-

unload/displacement curve with the experimentally found load-unload/displacement

curve by varying the film elastic modulus and yield strength. The hardness they obtained

was 68.4 ± 2.5 GPa at a residual depth of around 30nm. This result appears to agree with

the data shown in Fig. 6. Figure 7 shows the reduced modulus values for the same film.

The empty symbols also show higher values than those shown by the solid symbols. Note

that the difference in the reduced modulus between these two methods is not as much as

that in hardness. This is because the reduced modulus depends only on the square root of

the contact area in Eq. (24), while the hardness depends on the contact area itself. Note

that the values shown on Fig. 7 are the reduced modulus of the film/indenter system.

Substituting the elastic parameters for diamond (E = 1140GPa and ν = 0.07) into Eq. (2),

we find that 21 ν−
E

 for the film itself is about 500GPa. Assuming that the Poisson’s ratio

equals 0.25, we can roughly estimate the elastic modulus of the film to be 470GPa.

However, the simulated result reported by Follstaedt et al is 848 ± 10 GPa at a residual

depth of 30nm. No explanation is available at this point for the inconsistency. Figures 8

and 9 show the hardness and modulus values of a different cathodic-arc amorphous

carbon film, which was deposited under –2000V substrate bias. In this case, the values

represented by the empty symbols are not significantly different from those shown by the

solid symbols. This indicates that if there is no deformation of the indenter, the technique

based on the Hertz contact theory predicts the same hardness and modulus values as the

methods mentioned in Sec. 1. The relatively low hardness values at the film surface are

explained by the same argument as provided for the other film. According to the data
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shown in Fig. 8, this film exhibits a hardness of 25GPa at a residual depth of 40nm,

which agrees well with the value (27.5 ± 0.7 GPa) reported by Follstaedt et al. The elastic

modulus at 40nm residual depth can be roughly estimated to be 300GPa by the same

approach as mentioned above. This number is not far from the modulus (360GPa ±

10GPa) reported by Follstaedt et al, unlike the modulus for the film deposited under –

100V substrate bias. Knapp et al.9 have a detailed discussion on their simulation

techniques.
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3 SUMMARY AND CONCLUSIONS

Sneddon’s solution can be derived from the Hertz contact theory (Eq. (24)). The relation

between the contact area, indentation depth, and tip radius can be obtained (Eq. (22)).

The system of equations derived from the Hertz contact theory is determinate. No extra

assumption is necessary, for example, such as a constant tip shape, to close the system.

Thus, the method proposed here is able to account for the indenter elastic deformation if

indentations are made on materials as hard as the indenter. If a diamond indenter is used,

considering only the elastic deformation is sufficient according to experimental

experiences. Besides, the tip radius at the origin can also be calculated if the contact areas

are known. No special equipment and time-consuming processes are needed.

The method proposed here shows lower hardness and modulus values while indenting on

very hard material than those calculated by the method based on Sneddon’s solution. This

is due to underestimation of the contact area and thus, overestimation of hardness and

modulus by the method based the Sneddon’s solution. The method proposed here shows

almost the same hardness and modulus values when indenting on soft materials as the

method based on Sneddon’s solution. This is because there is no essential indenter

deformation while indenting on soft materials. The hardness and modulus values

calculated by this method agree with the finite-element-simulated results by Follstaedt et

al, except the modulus for the film deposited at –100V substrate bias. No explanation can

be found for the one inconsistency at this point.
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Finally, it is also possible to integrate this technique into the commercial software for

analyzing load-unload/displacement curves. Thus, the real hardness and reduced modulus

values can be calculated in seconds, rather than hours or days if done by the finite-

element simulation.
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Figure 1: A schematic diagram for two bodies at first contact
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Figure 2: A schematic diagram and the geometry parameters for two solids in
contact under a normal load P
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Figure 3: Contact area vs. indentation depth for tip 47 (long range)
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Figure 4: Contact area vs. indentation depth for tip 47 (short range)
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Figure 7: Reduced modulus of the cathodic arc DLC film deposited under –100V
substrate bias
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Figure 8: Hardness of the cathodic arc DLC film deposited under –2000V substrate
bias
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Figure 9: Reduced modulus of the cathodic arc DLC film deposited under –2000V
substrate bias


