
Implementation of an Adaptive Repetitive
Compensation Algorithm for Tracking-following

Disk File Servos

Chi Chan, Graduate Student

Advisor: Professor Roberto Horowitz

Computer Mechanics Laboratory
Department of Mechanical Engineering

University of California at Berkeley
Berkeley, CA 94720

1 June 1997

Abstract

This report concludes a successful implementation of an adaptive repeatable
disturbance compensation algorithm for tracking-following servos on a JTS 3.25 disk
drive. The theoretical background, experimental setup, computational concerns, and

method of implementation are discussed in detail in this report. Experimental data from
the use of the adaptive algorithm for the repeatable disturbance compensation is

presented.

2

Contents

1 Introduction 3

2 Theory
2.1 System Formulation 4
2.2 Repetitive Control Scheme 6

3 Experimental Setup
3.1 The JTS Drive 10
3.2 The Interface Board 14

3.2.1 Control Signal Summer 15
3.2.2 PES Decoder 17

3.3 TMS320C30 Digital Signal Processor 19
3.3.1 Analog Interfaces 19
3.3.2 Links 20
3.3.3 DSPLINK 20

4 Simulated Results
4.1 Simulation of the Disturbance Model and Plant 22
4.2 Kernel Function and Performance

5 Assembly Program
5.1 Implementation Method
5.2 Program Flow

6 Experimental Results

7 Conclusion

3

1. Introduction

In business and everyday life, huge volumes of information -- audio and visual --
are being digitized, and such information that has traditionally been stored on analog
media is now commonly stored on hard disk drives. Multimedia applications, the
downloading of images and video from the Internet, and video-on-demand are just a few
examples of the growing demand on storage capacity. In addition, the demand on
reduction in thickness of portable disk files leads to using fewer disks inside the drives,
but still maintaining the same capacity. As a result, the data areal density of fixed disk
file systems increases, and so does the effect of disturbance on the actuator servo systems.

Two major functions are provided by the servos system in disk drives: track-
seeking and track-following. The track-seeking servo attempts to move the head from
one track to another in minimum time, whereas the track-following servo must keep the
head positions over the center of a selected track as precisely as possible during the
read/write process. Unfortunately, the data tracks are not perfectly concentric and the
radial variations which take place as the disk rotates are referred to runout. Two types of
track runout affect the track-following performance: non-repeatable and repeatable
runout. The former is caused by such factors as random oscillations in HDA and external
disturbances, whereas the latter is mainly due to the lack of eccentricity of the spindle-
bearing-disk systems.

Since different units in a product line have different actuator dynamics and
repeatable runout, a fixed compensator designed for all units may not be able to achieve
the growing demand on storage capacity and track density. Besides, disk files,
particularly those operate in portable computers, are subject to different vibration, noise
and thermal environments, so more robust and adaptable servo control schemes becomes
more popular. There have been several successful implementations of adaptive repetitive
control systems to compensate for the repeatable runout in computer disk file servos.
Most of these schemes require some a-priori knowledge of the actuator dynamics in order
to guarantee stability. Implementations of adaptive non-repetitive control systems are
less common. Recently, an adaptive system for disk file servos was introduced by
(Horowitz, Sat & Li) which simultaneously identifies the actuator-controller dynamics
and compensates for the repeatable runout. This is achieved by incorporating a learning
repetitive control algorithm (Messner et al., 1993) in the control structure formulated in
(Horowitz and Li, 1996). The purpose of this report is to present a successful
implementation of such adaptive repetitive compensation scheme on a track-following
servo of a disk file, which confirms the repeatable-runout rejection of the adaptive control
scheme.

4

2. Theory

The formulation of the adaptive control structure on a disk drive used in this
report was developed by (Horowitz and Li, 1996; Horowitz et al., 1996; Horowitz, Sat
and Li, 1996). Readers with particular interests should refer to these paper for further
details. For the sake of this report, fundamental ideas and formulae of the repetitive
control structure are cited in this section.

2.1 Systems Formulation

The overall closed-loop dynamics is modeled as a SISO discrete time stochastic
system. The system consists of odel of disk drive, a repetitive compensator, and a non-
repetitive compensator. Figure 1 shows the overall block diagram of the disk drive track-
following servo connected with the add-on repetitive and non-repetitive compensators.
The block diagram contains three loops, the VCM-controller loop inside the disk drive,
the non-repetitive compensator loop, and the compensator-to-drive loop. We may think
the disk drive as the plant for which the add-on compensators try to control, whereas the
internal controller K controls the VCM actuator itself.

G

K

Q̂

B

A
^

R̂

-

C
A w

er

u a
y

ê
u q

u id

u r

u w

^

u k

u

Add-on Repetitive Compensator

-

Disk Drive

Add-on Non-repetitive Compensator

Figure 1. Block Diagram of the Disk Drive and Add-on Compensators

K : disk drive controller
G: disk drive actuator (VCM)
Q : estimate FIR filter
R : estimate repetitive filter
C

A
: stochastic disturbance model

B

A
 identified VCM - controller closed - loop

 dynamics from u

u : control signal entering the VCM
u add - on control signal
u nominal control signal
w : white noise
e repetitive disturbance
y : position error signal
u nonrepetitive control signal
u identification input signal
u : repetitive control signal
e : noise estimate

: kernel function

a

a

k

r

q

id

r

B

�

�

�

�

:

:
:

:

:
:

�

�

to y

γ

γ
�B

5

As the figure shows, the add-on compensators manipulate the sampled PES y(k) and
injects an auxiliary compensating signal ua(k). This compensating signal ua(k) is
composed of three components: a white noise uid(k) which is used for an initial system
identification phase, a nonrepetitive control signal uq(k), and a feedforward repetitive
control signal ur(k). The sampled PES in discrete time domain can be described by the
following static equation,

y(k) =
B(q)

A(q
u (k) +

C(q)

A(q)
w(k) + e (k)

-1

-1 a

-1

-1 r)
(1)

where ua(k) is the auxiliary control input,
B(q)

A(q)

-1

-1 is the discrete closed-loop transfer

function from ua to y using the unit delay operator q-1, w(k) is a white noise,
C(q)

A(q)

-1

-1 is the

stochastic disturbance model, and er(k) is a repeatable disturbance given by

er(k) = er(k-N) (2)

The order of the polynomials A(q-1), B(q-1), and C(q-1) are na, nb, and nc, respectively.
The closed-loop transfer function from ua(k) to y(k) has the same denominator as the
stochastic disturbance model because ua and w both enter the same loop at different
locations. In the system described above, the following assumptions are made: a) qnaA(q-

1) and qncC(q-1) are Hurwitz, b) upper bounds for na, nb, and nc are known, c) the zero-
delay term in B(q-1) is assumed to be zero, and d) the period of er(k) is known to be N.

The control structure in figure 1 consists of three control blocks, a nominal
controller K, an add-on non-repetitive compensator, and an add-on repetitive
compensator. Basically, the idea is to extract the repetitive and non-repeatable
disturbance information from the PES and compensate for them. Both the add-on
repetitive and non-repetitive compensators require an identification of the plant from ua to
y to generate the estimation errors ε & , respectively, which is then used to update the
control signals. Consider the repetitive control algorithm. By expressing the polynomials
A(q-1), B(q-1), and C(q-1) as (1 + a1q

-1 + ... + anaq
-na), (b1q

-1 + … + bnbq
-nb), and (1 + c1q

-1

+ … + cncq
-nc), Eq. (1) is rewritten as follows,

y(k) = (k) A(q)e (k) w(k)

 = [a ... a , b ... b , c ... c]

k y(k 1) ... y(k n), u (k -1) ... u (k - n),w(k -1) ... w(k - n)]

u (k) = u (k) + u (k) + u (k) = u (k) + u (k)

T -1
r

1 na 1 nb 1 nc
T

a a a b c
T

a id q r w r

ψ θ

θ

ψ

+ +

= − − − −() [
 (3)

6

where the auxiliary control signal ua(k) is separated into its stochastic uw(k) and repetitive
ur(k) components. To obtain the estimation error ε(k), an a-priori PES estimate�y(k) is
defined as follows,

� �(

�() � � � � � �

() [� � �

�

� � �

y(k) = (k) k -1) j(k)

k = [a (k) ... a (k), b (k) ... b (k), c (k) ... c (k)]

k y(k 1) ... y(k n), u (k -1) ... u (k - n), (k -1) ... (k - n)]

(k) = y(k) - y(k), u (k) = u (k) + u (k)

T

1 na 1 nb 1 nc
T

a w w b c
T

w id q

φ θ

θ

φ ε ε
ε

w

w

+

= − − − −
 (4)

where �()θ k is the estimate of the parameter vector θ. By updating the PES estimate with
the stochastic control input uw, the repetitive control input ur can cancel the repeatable
runout from the estimation error ε(k) once converges, leaving only the stochastic
disturbance w(k). This allows the repetitive control input ur(k) to converge to the correct
value at which the repeatable disturbance is cancelled because updating of ur(k) is based
on the estimation error ε(k). To show this, obtain the estimation error dynamics by
subtracting Eq (4) from Eq. (3),

ε φ θ θ(k) =
1

C(q)
k) k + w(k) +

1
C(q)

A(q e (k) + B(q)u (k) - j(k)]-1
T

-1 r
-1

r((�()) [) �− −1

φ ε ε() [� � �k y(k 1) ... y(k n), u(k -1) ... u(k - n), (k -1) ... (k - n)]a b c
T= − − − − (5)

The term j(k) is shown to converge to zero in (Horowitz, Sat and Li, 1996) and the

difference θ θ− �()k is assumed to be negligible. Therefore, the determining term in (5)
are the repeatable disturbance and the filtered repetitive compensating input. If the
repetitive control input ur is updated such that ur(k) converges once ε is zero, ur(k) will

converge to the values at which A(q-1)er(k) = - �B (q-1)ur(k). These converged ur(k), which
repeat for every N’th samples, thus yields an effective compensation of the repeatable
disturbance A(q-1)er(k).

2.2 Repetitive Control Scheme

The term “ repetitive control ” refers to methods used to compensate for periodic
disturbances which affect dynamical systems. Particularly, discrete periodic disturbances
can be described as r(k) = r(k-N), where N is the period. The term “ learning control ” is
also sometimes used. There are many mechanical systems which are subjects to periodic
disturbances for which the period is known, most notably rotating machinery such as
lathes, printing presses, and computer disk drives. Repeatable disturbances also occur in
automated milling and machining and in the operation of robots as well as many other
manufacturing applications.

7

All repetitive controllers require a model of the disturbance in order to generate a
cancellation signal. Repetitive controllers can be classified as being either “ Internal
Model” based or “ External Model “ based controllers. In Internal Model controllers, a
model of the disturbances signals is included in the basic feedback loop. The disturbance
model is simply a periodic signal generator. The advantages of this type of algorithm are
that it is linear, making analysis easier, and that convergence is very rapid. Complete
cancellation can occur in a finite number of cycles. The disadvantage is that frequency
response of the system alters because additional dynamics are added. For example,
placing the disturbance model inside the basic feedback loop raises the loop gain at the
disturbance frequencies, but reduces it at frequencies between the disturbance
frequencies. Consequently, while disturbance rejection is improved at the disturbance
frequencies, it is degraded at the intermediate frequencies. Besides, robustness to noise
and unmodelled dynaimcs is reduced, and the system can become unstable. External
Model based controllers do not change the loop gain once converges, and can be more
robust to noise because non-linear adaptive estimation of the periodic disturbance can be
used. Further, placing the controllers outside the loop make add-on controllers possible,
which allow minimum modifications to the disk drive being tested.

The repetitive control scheme used is called the integral equation approach,
originally introduced in (Messner et al., 1991). The central idea behind the approach is
that the repeatable runout can be represented as a linear combination of basis functions
(or basis in discrete time) for the runout happening every rotation of the disk. Given the
Kahunen-Loeve expansion of

er’ (t) = A(q-1)er(t) = ri γ i
i

j

t()
=
∑

1

(6)

where A(q-1)er(t) is defined as er’(t), which is also repetitive with the same period tn as the
repeatable disturbance er(t), γi(t)’s are the basis functions of er’(t), and ri ‘s are the
corresponding coefficients. Because er’(t) repeats for every period tn given by

er’(t) = er’(t-t n) (7)

we thus can derive the sufficient condition, γi(t) = γi(t - tn). One possible choice of the
basis functions is the Fourier expansion of er’(t). We may think the basis functions,
cos(w1Tk) … cos(wn/2Tk), … sin(w1Tk) … sin(wn/2Tk) in the case of Fourier expansion,
as some frequency components. The more cos and sin functions are used, the more
repeatable disturbance of higher harmonics can be compensated. In discrete time domain,
we may rewrite (1) as

er’(k) = A(q-1)er(k) = ri γ i
i

j

k()
=
∑

1

(8)

or in vector form,

8

[er’(k), er’(k-1), ..., er’(k-N+1)] = [r1, r2, ..., rj]

γ γ

γ γ

1 1 1

1

() .. ()

..

() .. ()

k k N

k k Nj j

− +

− +

















 []= R = R H(k)T Tγ γ() .. ()k k N− +1 (9)

where γi(k) = γi(k - N), H(k) = H(k-N) with N being the number of samples in one

rotation of the disk, R = [r1, r2, ..., rj]
T, H(k) =

γ γ

γ γ

1 1 1

1

() .. ()

..

() .. ()

k k N

k k Nj j

− +

− +
















, and γ ’s are

the column vectors of H. Because the rank of H(k) is smaller than or equal to N, and
H(k) is the range space of [er’(k), er’(k-1), ..., er’(k-N+1)], we can assume j = N, leaving
N independent row vectors without loss of generality. In this case, the same function of
length N, but of different time delay is used to construct the independent row vectors
[γi(k), ..., γi(k-N+1)]. In other words, a function of length N is used to construct the
column vector γ (k), and it is shifted as the sampling time index k increases. This
simplifies the implementation algorithm and enhances the computation speed, especially
when implementing on a DSP because circular addressing can be used. Particularly, we
can think of a function of N elements being shifted to the left as going down the matrix
H(k). For example, let the function have four elements: a, b, c, and d.

Then H(k) =

a b c d

b c d a

c d a b

d a b c



















(10)

By describing the repeatable disturbance as in Eq. (8), the auxiliary repetitive
control law can be defined by

ur(k) = - � ()R kT γ
�B
 (k) (11)

where � ()R k is the estimate of the coefficient vector R defined in Eq. (9) above and

γ γ() �
�

k = B(q) (k)-1

B
(12)

Convergence of the estimated coefficient vector � ()R k yields an accurate representation of
the repeatable disturbance er’(k). By substituting the control law (10) into the PES static
equation (3), it is straight forward that the convergence of the estimate vectors � ()R k and
�B(k) results in an effective compensation of the repeatable disturbance. Here we assume

9

that � � () � � ()
� �

B(k)R(k) = R(k)B(k)B Bγ γk k after � ()R k and �B(k) have converged. Also note that

B/A does not have to be minimum phase, and B is not required to be stable. In Eq (11),
we define a function γ

�

()
B

k to obtain the control law, and γ ()k is thus defined in Eq (12)

using γ
�

()
B

k . As long as γ γ γ(k), (k -1), ..., (k - N + 1) are still linear independent, the

repeatable disturbance e’r(k) can be represented by these linear independent vectors as
shown in Eq (9), and R can be estimated by �R(k) . Therefore, the vectors γ

�B
(k),

γ
�B
(k -1), ... γ

�B
(k - N +1) must be chosen such that γ γ(k), (k -1), ..., (k - N +1)γ are

linear independent.

Recall that in the estimation error dynamics the filtered repetitive control input
�B(q)u (k)-1

r is used such that ε(k) converges to zero as the filtered input converges to
er’(k). The convergence to er’(k) of the filtered input thus can be derived using the
following equations,

� � ()

(
()

R(k) = R(k-1) + (k) k

k) =
G(k) (k)

k G(k) (k)T

Λ

Λ

ε
γ

γ γ1+
(13)

where G(k) is a decaying scalar adaptation gain, the "2 norm of γ (k) in the denominator

of Λ(k) can be calculated as a constant for computation purpose, and γ (k) in the

numerator of Λ(k) can be treated as a frequency weighing function of the estimation error
ε(k).

By using this value of �R(k) in the control law given by Eq. (11) and feeding back
the control input ur(k) into the estimation error equation (5), the estimation error
differential equation can be formed. Assuming that the basis function γ(k) is bounded

and �B(k) has converged before the control output ur(k) is applied, the proof showing the
system is stable using hyperstability is particularly straightforward and can be found in
(Tomizuka and Kempf).

10

3. Experimental Setup

The experimental setup consists of a JTS 3¥” Nordic III disk drive, an interface
board, a 486-66 PC with TMS320C30 DSP, a HP3562A dynamics spectrum analyzer,
and a HPE3630A power supply. Figure 2 below shows the schematic of the experimental
setup.

PC /
T M S 3 2 0 C 3 0
DSP .

In ter face Board

Ch1 (Yel low)

Hard Disk Tr igger (Green at edge)

PES (Red)

Ch2 (Green)

A/D (purple)

D/A (yel low)

Spect rum Analyzer

JTS Dr ive

Tr igger to DSP
(DSPLINK)

1 K

power supp ly

Figure 2. Experimental Setup for the Implementation of the Add-on Compensators.

Basically, the JTS drive is the plant the add-on compensators try to control (please refer
to figure 1 for the overall block diagram). Referring to the notation used in figure 1, Ch1
gives the control signal from the hard disk controller uk, whereas the red wire outputs the
position error signal y. The add-on compensating algorithm is implemented on a
TMS320C30 DSP, which is installed in a 486-66PC. In order for the DSP to manipulate
the sampled PES and append its output to the drive, an interface board as described below
must be built.

3.1 The JTS Drive

The JTS 3¥” Nordic III hard drive has a rotation speed of 4103.2 rpm (i.e. ≈
68.39 Hz) and capacity of 810 MB. The sampling period is 152.32 µs, and thus, each
track has 96 servo sectors (i.e. each rotation has 96 sample of PES). The number of servo
sectors on track implies how often the repeatable runout repeats. Particularly, the
repeatable runout can be described by, er (k) = er (k-N), where N is the number of servo
sector per track and is 96 in this case. The typical value of PES using the nominal
controller is about (2.74 ± 0.150) V, whereas the nominal controlling signal is about 50
mV. Because the minimum count of the DSP A/D is 0.0916 mV, which is relatively
small comparing to the signal noise of PES, further magnification of PES to enhance the

11

revolution is not necessary. However, the signal-to-noise ratio of the nominal control
signal is so small that shielding is particularly important. Figure 3 shows the block
diagram of the closed-loop servo-controller system inside the drive. The closed-loop
system basically consists of a voice coil motor (VCM), a micro-controller to implement
the nominal control scheme, a digital-to-analog converter (DAC) to convert the digital
control signal from the micro-controller to control voltage, a pulse-width modulus to
represent the digital PES measured by the head as duty-cycle-weighted square waves, and
a low-pass filter working as an integrator to convert the duty cycle of the PWM to
discrete voltage level.

V C M
(voice coi l

motor)

µcontrol ler
D A C

(digital-to-
analog

converter)

P W M

digi tal PES

low-
pass
filter

analog PES, Y
(red)

P W M

-

+

JTS Drive

op-amp
circuit

1K

trigger

ua

u

u k

Ch1
(yellow)

Ch2
(green)

Figure 3. Block diagram of the Closed-Loop Servo-Controller System inside the Drive

12

The JTS disk drive is modified so that the PES can be measured, and additional signal
can be appended to the internal embedded controller output signal. Physically, there are
four wires pull out from the drive. PES can be measured on the red wire. The green wire
is connected to CH2 which outputs the internal controller signal. The control signal,
which may be appended with an additional compensating signal, must be fed back to CH1
(yellow wire) for re-calibration. In other words, CH2 must be connected to CH1 directly
or indirectly in order to close the servo loop, and they are not connected inside the hard
disk. The green wire at the edge of the disk drive outputs the triggering signal, whereas
the black wire provides grounding. Since the trigger edge is too sharp to electro-
magnetically interference the sensitive control signal from CH2, whose magnitude is
about 50mV at most, shielding of the trigger signal is not enough. A resistor of 1K� is
connected to the end of the trigger wire (green) to form a low-pass filter together with the
capacitance inside the coaxial cable in order to smoothen the trigger edge.

Referring to figure 1, it is obviously that the hard disk, including the VCM and the
controller, is the plant the add-on controllers trying to compensate. So the closed-loop
dynamics form ua to y must be known. Figure 4 shows the closed-loop frequency
response of this system measured by a spectrum analysis with its sweeping-sin-wave
feature. Besides, the repeatable runout for one cycle (96 samples) is recorded and is
shown in figure 5.

The analog PES the JTS drive output is a low-passed PWM. The micro-controller
inside the drive uses digital PES. To facilitate testing and measurement, the digital PES
is converted to analog signal in the form of pulse-width-modulus (PWM) and then passed
through a low-pass filter. All the conversion and low-pass filtering are implemented
inside the drive and the only accessible analog PES is the low-passed PWM. To maintain
the phase lag as minimum as possible, the corner frequency of the low-pass filter cannot
not be too low. As a result, the analog PES is contaminated with triangular waves of the
PWM frequency (refer to figure 8), and the amplitude of the triangular waves is at least
2/3 of the PES. Therefore, the analog PES must be further notch-filtered at the frequency
of the PWM by the interface board.

13

F
ig

ur
e

4.
 C

lo
se

d
Lo

op
 F

re
qu

en
cy

 R
es

po
ns

e
of

 t
he

 A
ct

ua
l

S
er

vo
-c

on
tr

ol
le

r
S

ys
te

m
 f

ro
m

 u a
to

 y
.

14

Figure 5. Repeatable runout for One Cycle of Rotation

3.2 The Interface Board

The interface board has two electrical subsystems, a control signal summer and a
PES decoder. The control signal summer is used to append the control signal of the add-
on compensator and any additional noise to the control signal of the hard disk controller,
whereas the PES decoder provides notch filtering, low-pass filtering, and zero-order
holding of the analog PES from the drive. Figure 6 shows the connections of the
interface board to the DSP and to the drive. Addition noise can be appended to the
control signal in order to evaluate the performance of the non-repetitive compensator.
The power supply of the interface board should be larger than ±5V in order to operate the
digital components.

15

Trig

Trig
W
I
O

Gnd
Gnd
V-
V+

PES

ch1

ch2Coaxial

Coaxial

Coaxialred

Coaxial

Disk Dr ive yellow

green

green

D S P

DSPLINK

A/D
D/A

noise

brown

purple

yellow

Power
Supply

1K

black

white

INT0 GND

Figure 6. The Interface Board and Connections.

3.2.1 Control Signal Summer

In order to append the control of the add-on compensator to the that of the hard
disk controller, an op-amp circuit similar to that shown in figure 7 must be used. The
circuit in the figure consists of a differentiator, a common-mode filter, an ac-coupler, a
summing amplifier, an inverting amplifier, and several voltage followers.

16

10K

+

-
10K

10K

10K

+

-

0.5K

10K

+

-

10K

+

- 10K

10K

noise

Ch1100uF

10K

2K

+

-

2K

2K

2KCh2

hard disk ground

DSP D/A

coaxial cable

+

-

differentiator

AC coupl ing

summing amplif ier
inverting amplif ier

common-mode f i l ter

Figure 7. Schematic of the Control Signal Summer.

The major component is the differentiator which appends the add-on control
signal to the hard disk control signal by the equation,

Ch1 = Ch2 - DSP D/A (14)

The common-mode filter ensures the common grounding between the disk drive and the
differentiator. Using a wire to common ground the differentiator and the disk drive is not
effective to the control signal from ch2 because the signal from ch2 is very small in
magnitude, about 30mV at most. Also, the distance between the differentiator and the
hard drive is significantly long. For such a small signal, the inductance of the long
ground wire can create enough impedance to separate both ground. Therefore, the
common-mode filter is used to common ground the differentiator with the hard disk so
that noise contamination to the signal from ch2 at the differentiator can be reduced. The
ac-coupler is a critical component to avoid biasing the calibration of the JTS drive’s
VCM. Without it, any dc offset of the control signal can increase the low-frequency
variance of the PES. Once the calibration is biased, the variance of PES changes even
thought the dc-offset is set to zero. In that case, the hard disk must be reboot. In order to

17

evaluate the performance of the non-repetitive compensator, color noise is added to the
control signal through the summing amplifier. Also, due to the finite revolution of the
DSP D/A, the inverting amplifier is used to further diminish the DSP D/A signal by a
factor of 20 in order to enhance the revolution of the add-on control signal at the expense
of the signal range. Therefore, the overall input-to-output relation of the control signal
summer excluding the ac-coupling is given by,

Ch1 = Ch2 - DSP D / A + white noise

20
(15)

3.2.2 PES Decoder

The other function of the interface board is to filter and zero-order hold the analog
PES from the drive. The signal P1 in figure 8 shows a typical PES output from the drive.
The PES (P1) is generated by low passing a PWM whose duty cycle represents the digital
PES used in the micro-controller. To avoid phase lag, the corner frequency of the low-
pass filter is designed to be as high as possible, and as a result, P1 is contaminated with
triangle waves at the PWM frequency. So, P1 must be notch filtered at the frequency of
the triangle wave as shown in figure 8. A low-pass filter is also placed in front of the
notch filter in order to filter any noise that may induce to the cable. By optimizing
between the noise attenuation and phase lag at the sampling frequency, the phase lag of
the overall filter (low-pass + notch) achieves to 13° at 6kHz. Besides, only the steady
state of the filtered PES (P2) in each sampling period has the error information which can
be manipulated by the add-on controller. Therefore, an one-shot is used to delay the edge
of the triggering signal from the drive for about 90µs, after which P2 has reached the
steady state. A zero-order hold then samples the steady state value of P2 and holds it
after 14µs, leaving 48µs for the DSP to update the add-on control signal to the drive. Due
to the fast low-triggering INT0 on the DSP, which detects the external trigger to the ISR,
a low of duration longer than 1µs can create more than one external trigger. So a third
one-shot must be used to create a short low with duration of 280ns to trigger the ISR.
Figure 9 shows the schematic of the PES decoder which filters P1 and zero-order holds
P2.

18

Figure 8. PES from the Drive and its Filtering.

DSP A/DZ O H

202pF

101pF 101pF

15.3K 15.3K

7.6K +

-

+

-

0.5K

1K

222pF

101pF

101pF

15.3K 15.3K

7.6K +

-

+

-

10K
+

-

PES from
hard disk

+

-

151pF

10K

151pF
10K

DM74121DM74121 DM74121

power .
 supply .

5V voltage
regulator

trigger from hard disk

delay

trigger to DSP

sample

low-pass f i l ter

notch f i l ter

notch f i l tertrigger from
HD

Figure 9. Schematic of the PES Decoder.

Notch
Filter

Low-pass
Filter

P1 P2

19

3.3 TMS320C30 Digital Signal Processor

The TMS320C30 is a digital signal microprocessor produced by Texas
Instruments. The C30 is the third generation of TMS320 family of microprocessor. The
TMS320C30 is a 32-bit floating-point microprocessor capable of executing up to 16.7
MIPS (million instructions per second) and 33 MELOPS (million floating-point
operations per second). The instruction time of the microprocessor is 60ns.

For our applications, it is simpler to control the C30 by using the SDS30 Debug
Monitor. The SDS30 is an easy to use Debug Monitor. Some of the functions of the
SDS30 Debug Monitor include: downloading a complied assembly language program
into the microprocessor’s memory, displaying the instructions of the program that was
downloaded, providing the ability to put breaks on the code to be able to monitor the
contents of the registers and of the memory at different stages of the program, and
transferring data from the specified addresses of the C30 memory to a data file. All these
characteristics facilitate the debugging process. With respect to the memory maps, our
board only has area A-bank0, area B-bank3, RAM0, and RAM1. Other area of memory
are used for memory mapped devices, such as analog I/O and DSPLINK (digital ports).
Before discussing the assembly program, additional details about the analog interfaces,
links, and DSPLINK should be explained.

3.3.1 Analog Interfaces

The TMS320C30 system board has two channels, each of them with A/D and D/A
converters. The A/D and D/A of the same channel share the same address, and the
converters of different channels are located at the following addresses:

Channel A, A/D & D/A at address 804000h
Channel B, A/D & D/A at address 804001h

Each channel uses the 16 MSB (most significant bits) of the register at the given
address, and data is represent in 16-bit 2’s complement format (16-bit integer). To output
a voltage, you must write the corresponding fixed-point number to the desired channel
(804000h or 804001h) and write a dummy to 804008h to generate a conversion trigger.
Two other options are available to generate a conversion trigger: through timer 1 and by
an external trigger. To read a voltage from the A/D, a conversion trigger is generated,
and the corresponding value can be read at the 16 MSB of the desired channel. Both A/D
and D/A processes complete in 6µs after the conversion trigger is generated. Since the
A/D’s and D/A’s use the same register for output and for input. With no processor
intervention, the A/D value will be shifted into the register, with the previous register
contents being simultaneously shifted to the D/A for every conversion trigger. Therefore,
if no value is written to the register, the analog input signal on each channel will, by
default, be echoed directly to the corresponding analog output channel, with one
conversion trigger delay. To avoid echoing the A/D value through the D/A in the

20

following conversion trigger, the previous D/A value can be written to the channel
register. Section ?? describes one possible solution to this problem. Besides, the value
coming through the A/D must be read before a value is written to be sent out through the
D/A in order to avoid overwriting the newly A/D converted voltage.

The D/A can output a voltage between +3 and -3 volts. The conversion factor
from a fixed-point 32-bit number to a voltage at the output of the D/A is thus

32767*164 decimal / 3 volts

This number automatically writes the desired number to the 16 MSB. To convert the
value read by the A/D’s to volts, the 32-bit number read should be right shifted by 16 bits.

For the experiments that were performed in the implementation of an adaptive
repetitive control for disk file servos, only channel B was used to input and output
signals. Once trigger happens at DSPLINK’s INT0, PES on the A/D of channel B is
taken into the DSP by generating a software conversion trigger at 804008h. Then the
digital PES is manipulated by the repetitive algorithm to update the control signal, which
is given out to the D/A of channel B. Since the value on channel B’s register (804001h)
from the previous sample is echoed through the D/A when triggering the A/D
conversions, the control signal from the previous sample must be written to the register
before reading the A/D in order to maintain the voltage at the D/A. Further discussions of
how the control signal is updated can be found in section 4, Assembly Programs.

3.3.2 Links

The links are small jumpers that are used on the TMS320C30 system board to
select different options by making hardware connections. For the experiments that were
performed in the implementation of an adaptive repetitive control for disk file servos, link
#2 was not connected, link #10 was placed at position b, and link #12 was, placed at
position a.

3.3.3 DSPLINK

DSPLINK is a bi-directional digital expansion interface that allows digital input
and output. By using DSPLINK, the construction of memory mapped digital ports is
greatly simplified. The digital ports can be mapped between addresses 800000h and
801FFFh. Only the 16MSB at those addresses can be accessed. DSPLINK connector is
the physical connector with the address lines, the data lines, and other related signals such
as w/r, reset, INT 0/1, and clock. The address and data lines only get activated when a
read or write operation is performed at an address between the 800000h and 801FFFh
range. Therefore, when building a hardware device to interface with the DSPLINK, the
designer need not to decode all the address lines, since memory operations outside this
range will not interface with the DSPLINK connector. It can be thought of as having a

21

separate bus for DSPLINK. For the experiments that were performed in the
implementation of an adaptive repetitive control for disk file servos, only INT0 and
digital ground are connected to the interface board.

22

4.0 Simulated Results

4.1 Simulation of the Disturbance Models and Plant

The objective of the add-on compensators is to minimize the variance of the PES.
The mean of the PES is not important in the aspect of the add-on compensators because
the disk drive internal controller is able to minimize the steady state error. So we can
assume that the PES measured from the disk drive is zero mean. To obtain the variance
of the PES, we can measure the spectrum magnitude/density of the PES. Figure 10 shows
the spectrum magnitude of the nominal PES used in the simulations. The spectrum
diagram shown consists of the repetitive and non-repeatable runout. Since the drive
spans at 68.39 Hz, the repeatable runout has the spectrum magnitude at the multiples of
this frequency (i.e. 68.39 Hz, 138.8 Hz, 208.2 Hz and etc.) The spectrum at these
frequencies is simulated by using a record of the repeatable runout in one rotation of the
drive (refer to figure 5). The spectrum magnitude at the other frequencies are due to the
non-repeatable runout. The spectrum is thus formulated by modeling the stochastic

disturbance model
� ()
� ()

C k

A k
, which is then used to filter some white noise, whose spectrum

magnitude is 1 at all frequencies.

Figure 10. Simulated Spectrum Magnitude of the Nominal PES

Even though the VCM-actuator dynamics is simply a second-order spring-mass
system, the controller-actuator closed-loop system is not. As shown in figure 11, it is

23

formulated as a seventh-order SISO system for simulation purposes. In order to minimize
computation time and memory usage in the implementations, the controller-actuator
closed-loop system is identified as a fourth-order transfer function in the simulation and
experiment. Using the recursive least square algorithm, the identified fourth-order
transfer function of the plant is

G' =
0.016z - 0.036z + 0.176z

1 1.4192z + 0.4045z + 0.1115zuy

-1

-1 -2 -3

− −

−

2 3

(16)

 Figure 11. Discrete Bode Plot of the Simulated Closed Loop Transfer Function from the Add-on control
Signal to PES with Nyquist frequency at 3283 Hz.

Guy
0.0023z

1
0.0017z

2
0.1219z

3
0.2167z

4
0.0719z

5
0.0234z

6

1 3.6534z
1

5.2527z
2

3.7650z
3

1.4089z
4

0.2620z
5

0.0189z
6

(17)

24

4.2 Kernel Function and Performance

Given the plant by Guy and the identified plant by G’uy, the repetitive control
scheme is simulated to compensate for the repeatable runout. In the simulations and
experiment, the kernel function γ

�B
(k) is defined by,

γ
�B
(k) = [f(0, k), f(1, k), ..., f(95, k)]T (18)

where f(n, k) is a Gaussian function given by,

f(n, k) =
1

2

x

2

 and x = 3

n

N

for remainder(
n - k

N
) < N

for remainder(
n - k

N
N

2

2σπ σ σexp()

)

−



 ≥0
(19)

where σ is 10. Each cycle of the kernel function can be interpreted as a function
consisting of a zero and a non-zero vector (kernel = [non-zero vector T, zero vector T] T).
The non-zero vector is defined by sampling the Gaussian function,

g(x) =
1

2

x
 x

2

2σπ σ
σexp()

−
<

2
3 (20)

by N-1 data points. Since each cycle of the kernel function has a fix number of data
points (96 for the JTS drive). Increasing the number of samples on g(x), N, thus
decreases the length of the zero component. As a result, the function g(x) spread out over
2N-1 samples, flattening the kernel function. Therefore, N defines the flatness of the
kernel function. Recall from section 2 that the kernel vector has two functions. One is to
provide the basis to estimate the repeatable disturbance er, and second is to frequency-
weigh the estimation error ε. Eq(13) shows that H(k) is symmetrical, so the basis in time
domain is also given by γ

�B 1(k - k) , where k1 indicates any shifting of the kernel function.

Obviously, the kernel function γ
�B
(k) gives the frequency content of the basis. Note that

H(k) still has full rank or, in other words, all the rows γi are linear independent though the
basis are the same in frequency domain. Besides, from Eq (13), γ(k) is used as a

fundamental formulation of� ()R k , so we may think it as a frequency weighing function of
the estimation error. The reason why a Gaussian function is used as the kernel is thus
because it looks much like a low-pass filter in the frequency domain, giving a low
frequency weighing on the estimation error and providing basis of a frequency continuum
for the estimation of the repeatable disturbance. Figure 12 shows the two kernel
functions of different flatness, and figure 13 shows their frequency content.

25

Figure 12. Two Kernel Functions γ
�B
(0) of Different N

Figure 13. The Kernel Functions in Frequency Domain

It illustrates that the flatter the kernel is (larger N), the less high frequency content it has.
Therefore, reducing N results in compensation for the repeatable runout of higher
harmonic frequencies because the basis has more high frequency content, and the

N = 40

N = 40

N = 16

N = 16

26

estimation error is more highly frequency-weighed. Figure 14 and figure 15 show the
simulated spectrum magnitude of the PES with and without the adaptive repetitive
compensation using kernel functions of different N (flatness). By comparing these
figures, we can find that more of the harmonic frequencies (up to the fifth) can be
compensated using the kernel function of N = 16 while using the kernel of N = 40 can
only compensate for the first two harmonics. It is also of our interests to show the
convergence of � ()R k . Because � ()R k has 96 terms, only several terms are shown here.
Figure 15 shows the convergence of the 11th, 21st, 31st, 41st, 51st, 61st, 71st, and 81st
terms of � ()R k for the first 1100 samples, and figure 16 shows the convergent � ()R k using
the kernel of N = 16.

Figure 13. Simulated Spectrum Magnitude of Nominal and Adaptive PES using Kernel Function of N = 40

Figure 14. Simulated Spectrum Magnitude of Nominal and Adaptive PES using Kernel Function of N = 16

27

Figure 15. Convergence of the estimation � ()R k in the first 1100 samples using the Kernel of N =16

Figure 16. Convergent � ()R k using the Kernel function of N =16

28

5.0 Assembly Program

The add-on compensators are implemented on a TMS320C30 DSP. To enhance
the computation efficiency, the algorithm is written in assembly language. The control
algorithm has two phases, identification phase and control phase. The former identifies
the plant parameters of the hard disk closed-loop system from ua to y using the recursive
least square algorithm, whereas the latter compensates for the repetitive and non-
repeatable runout using the adaptive repetitive algorithm described in section 2 and the
adaptive non-repetitive scheme given in (Horowitz and Li, 1996; Horowitz et al., 1996).
So the identification phase must be carried out to obtain the convergent plant parameters
before the control phase can compute the auxiliary control outputs.

5.1 Implementation Method

The DSP’s INT0 is set to ‘external triggering’ in order to synchronize the DSP
with the hard disk. Once a trigger occurs on the hard disk, which is connected to INT0
through the interface board, the interrupt service routine of the assembly program starts,
suspending any job in process. The program has two interrupt service routines, one for
the identification phase and one for the control phase. In the identification ISR, the PES
is read through the A/D of channel B, and a pseudo binary random control output is sent
to the disk drive through channel B’s D/A. θ and φ are then updated in the remaining of
the program. In the control ISR, the A/D of channel B is read, and the auxiliary control
outputs (uq and ur) in channel B’s D/A are updated using the PES just input from channel
B’s A/D. To allow the control outputs to be updated as soon as a new PES is available,
the computations involved in between reading from and writing to channel B’s register
must be minimized. Therefore, the repetitive control laws in Eq. 11 is rewritten as,

u (k) = - R(k -1) +
G(k) (k)

 + (k)G(k) (k)
(k) (k)

 = - R(k -1) (k) +
G(k) (k) (k)

 + G(k)
(k)

r T B

B

REP1

B

REP2

�

�

�

�

�

γ
γ γ

ε γ

γ
γ γ

γ
ε

1

1
2





























	
�� ���

	
�� ���

(21)

where γ γT(k k) () is computed as a constant γ
2
 omitting the discrete time index k. With

Eq (21), the terms REP1 and REP2 can be pre-computed, and the control output ur(k) can
be updated as soon as the estimation error ε(k) is available. Besides, referring to Eq (13),
�R(k 1)− is updated using ε(k-1). So when implementing the algorithm, � ()R k is updated

and then REP1 is computed. In section 2, γ γ() ()
�

k and k
B

 is down-shifted given by Eq

(10) as k increases. In the assembly program, however, � ()R k is up-shifted in each
sampling period instead. For a � ()R k of four terms, a, b, c, and d, � ()R k is up-shifted as
below,

29

� � �R(k) =

c

d

a

b

 R(k -1) =

b

c

d

a

 R(k - 2) =

a

b

c

d























































Therefore, updating of � ()R k includes up-shifting �R(k -1) and adding ε(k) to it.

By taking advantages of the circular addressing feature provided by C30, the
pointer to � ()R k is shifted downward. In the experiment carried out for the repetitive
compensator, the following control law is also tested,

u (k) = - R(k -1) k

 = - R(k -2) +
G(k -1) (k -1)

 + (k -1)G(k -1) (k -1)
(k -1) (k)

 = - R(k -2) (k) +
G(k -1) (k -1) (k)

 + G(k -1)
(k -1)

r B

T B

B

REP1

B

REP2

� ()

�

�

�

�

�

�

γ
γ

γ γ
ε γ

γ
γ γ

γ
ε

1

1
2





























	
�� ���

	
��� ����

(22)

In this case, �R(k 2)− is updated using ε(k-2), and �R(k 2)− is up-shifted by 2 steps with
respect to γ

�B
(k) . Therefore, REP1 is computed before � ()R k is updated using the ε(k) in

that sampling period. Since REP1 is computed first, �R(k 2)− must be up-shifted by 2
steps before computing REP1 in order to match each elements of �R(k 2)− with γ

�B
(k) . To

convert the algorithm back to that shown in Eq (21), three changes have to be made.
First, change the estimation error used to update ur(k) from ε(k-1) to ε(k). This can be
found in ISR2. Second, change γ γ(k -1) (k)

B�
 to γ γ(k) (k)

B�
 by not shifting FGAU when

computing GAU_FGAU in the subroutine GAU_DFGAU. Third, compute REP1 as
�R(k -1) by not up-shifting � ()R k by 2 steps in the subroutine REP and updating � ()R k

before calculating REP1.

5.2 Program Flow

Before looking to the flow of the program, we must explain the following
variables and arrays to be used in the program.

Table 1. Variables and Arrays used in the Assembly Program

GAU It is the kernel function, γ
�B

. In this case, we use a Gaussian

function given by,

30

γ σπ
�

exp())

)
B

2

2

(x) =

1

2

9x

2N
 for remainder(

x

96
< N

 for remainder(
x

96
N

−

≥








 0

where σ is 10, x are all integers from 0 to 95, and N is a number of
the user’s choice. Note that the arrangement of GAU array is
circular such that x can also be interpreted as all negative integers
from -95 to 0. The function above is basically identical to Eq (19)
with N being the number of samples used for the non-zero elements.
So, the larger N is, the flatter GAU is. The function above consists
of an array of N’s non-zero elements, an array of zeros, and an array
of (N-1)’s non-zero elements. To minimize the computation time
and memory usage, GAU only stores the non-zero arrays. This
breaks GAU into two parts, GAU1 and GAU2. A typical GAU is
shown in figure 17. GAU has three pointers, PT1_GAU, PT2_GAU,
and PT3_GAU. The addresses to which these pointers are pointing
is also shown in figure 17.

FGAU It stores the B-filtered kernel function, γ . Before �B is identified, it
has a structure similar to GAU. FGAU consists of two parts,

FGAU1 and FGAU2. When filtered by �B , the elements at the larger
addresses are treated as the latest information (i.e. FGAU =
[FGAU(k-95), FGAU(k-94), …, FGAU(k)]T). Before filtered,
FGAU1 has three components. It has (NB-1)’s previous values of

GAU to be filtered by �B to obtain the first element of the filtered
FGAU, GAU1, and (NB-1)’s zeros to store the (NB-1)’s non-zero
elements of the filtered FGAU at the end of GAU1. This structure
facilitates the filtering process. Figure 18 shows a typical FGAU

before and after it is filtered by �B . Similarly, FGAU has three
pointers, PT1_FGAU, PT2_FGAU, and PT3_FGAU.

RHAT It stores the estimation � ()R k . In the implementation of the repetitive
algorithm, instead of down-shifting γ

�B
 and γ , � ()R k is up-shifted.

By taking advantages of the circular buffering feature provided by
C30, the pointer to RHAT (i.e. PTU_RHAT) is shifted downward
instead of moving around the elements of RHAT. RHAT has
another pointer called PT_RHAT, which is fixed and is used to show
the convergence of several elements of RHAT array.

REP1 It stores the result of REP1 as defined in Eqs. (21) and (22)
REP2 It stores the result of REP2 as defined in Eqs. (21) and (22)

k_DECAY It is the inverse of the adaptation gain 1/G(k) defined in Eqs (21) and
(22). To guarantee convergence of � ()R k , G(k) must decay to 0 as
k -> ∝. This is made possible by incrementing k_DECAY.

31

k_DECAYR It is G(k) defined in Eqs (21) and (22).
k_INC It is the increment of k_DECAY.

GAU_NORM It stores |GAU|2

DATA It stores the first 1100 samples of eight elements of RHAT array
GAU_FGAU γ γ

�B
(k) (k -1)

KAPPA
KAPPA =

k_ DECAYR
1 + k_ DECAYR *GAU_ NORM

Figure 17. A Typical Structure of GAU Array and its Pointers

GAU1 GAU2PT1_GAU PT2_GAU PT3_GAU

32

Figure 18. A Typical Structure of FGAU Array and its Pointers before and after filtered

With the variables and arrays defined above, we can now look at the flow chart
shown in figure19. As mentioned above, ISR1 is used in the identification phase obtain

the plant parameters
� ()
� ()

B k

A k
, where �B and �A are both fourth-order polynomial of the delay

operator q-1. ISR2 is the heart of the program. It contains the adaptive algorithm to
compensate for the repetitive and non-repeatable disturbances. So, the details of ISR2 is
shown separately in figure 20.

FGAU1

FGAU2

PT1_FGAU
PT2_FGAU PT3_FGAU

Before
filtered

After
filtered

PT1_FGAU PT2_FGAU PT3_FGAU

FGAU1 FGAU2

zeros

Previous
values of
GAU

33

STAGE_1

1. disable INT0 and clear IF
2. PHIS <-> CPHIS
3. ITHETA <-> BTHETA

enable INT0

LSM_S

PHIS

ITHETA
->BTHETA





1. clear IF
2. f ind dc offset in A/D
3. AR5 = loop_1

disable INT0

TEST_1
IF = 1

IF ≠ 1

AR5 ≥ 0

No
ISR1

1. clear IF
2. read y from Ch B A/D and write u id to D/A
3. CPHI -> CPHIS
4. (y, u id) -> CPHI
5. output predict ion, ITHETA*CPHI = Zh
6. compute next binary output, u id

BEGIN

Initialization

1. GAU = γB
2. FGAU = γΒ∗
3. rhat = zero vector
4. compute |GAU| 2

5. k_DECAYR = 0
6. k_DECAY = 1
7. init ial ize all other variables used in the non-
 repetit ive algorithm as zero vector
8. load ' ISR1' as the ISR

Yes

cal l REPT to f ind
repetit ive runout by
averaging over each

servo sector and store
in REP1

STAGE_2

1. PHIQ <-> CPHIQ
2. IBETA <-> BBETA

enable INT0

LSM_Q

PHIQ

IBETA
- > BBETA





TEST_2
IF = 1

IF ≠ 1

ISR2

disable INT0

1. disable INT0
2. solve Diaphantin eq.
3. f i l ter FGAU by FB to form γB
 and store in FGAU
4.

5 . GAU_FGAU
 = GAU * 1-up-shif ted FGAU
6. load ' ISR2' as the ISR

FGAU_ NORM

= FGAU
FGAU

GAU
*()−

identi f icat ion phase

control phase

Figure 19. The Flow Diagram of the Adaptive Control Scheme

34

1. clear IF
2. compute Zhrep(k) for repet i t ive control
3. read ch B A/D, subtract dc-offset, and
 mult ipl ied by a scalar gain to obtain Znew(k)
4. Erep(k+1) = Znew(k) - Zhrep(k)
5. Enew(k) = Znew(k) - Zh(k)
6. nonrepeti t ive control,

u q (k) = IBETA(q -1) * Enew(k)
 = IBETA(1) * Enew(k) + Uu

7. repetit ive control,
u r(k) = rep1 + rep2 * Erep(k)

8. output saturat ion check
9. output ur and ua to ch B D/A

1. incremenet N_REPT2
2. store repeti t ive runout to
 REP2 by averaging over
 each servo sector

N_ISR2 <
SK IP_N_REPT

N_REPT2 ≥
ARSIZE

N

Y

Y

N

DATA_SKIP

1. increment N_ISR2
2. increment k_DECAY by k_INC
3. i f k_DECAY > k_STOP
 then k_DECAY = k_DEAD
4. k_DECAYR = GN / k_DECAY

K A P

1. KAPPA =
k_ DECAYR

1 + FGAU * k_ DECAYR

R E P

1. REP2 = KAPPA*GAU_FGAU
2. REP1 = GAU*1-up-sh i f ted U_RHAT

R _ H A T U

1. U_RHAT(k)
 = 1-up-shi f ted U_RHAT(k-1)
 * (KAPPA*Erep(k)) * FGAU
2. I f N_DATA < M A X _ D A T A
 then
 a) increment N_DATA
 b) store u r to u r array
 c) store 11th, 21st, 31st, 41st, 51st,
 61st, 71st, 81st elements of RHAT
 array to DATA

1. CPHI -> CPHIS
2. update PT_Ex and PT_Ed
3. compute Xnew and Dnew(k)
4. compute PT_CX, , and
 EQnew(k) = Dnew(k) -
5. update PT_E(k)
 = [Enew(k), . . . , Enew(k-3)] T

6. i f |EQnew(k)| ≥ EQMAX, then
 CEQ(k) = EQnew(k)
 EQMAX = |EQnew(k) |
 CX -> CPHIQ
7. compute Uu and
 Zhnew(k) = ITHETA * CPHI
8. update PT_Uq(k) , PT_Zh(k) ,
 and PT_Znew(k)
9. compute Zh(k+1)

�d(k)
�d(k)

Interrupt Return

ISR2

Figure 20. The Flow Diagram of ISR2

35

Figure 19 shows that once the interrupt INT0 is enabled, the ISR can interrupt the
program flow whenever an external trigger occurs. This enables the multirating update of
the plant parameter vector θ and the adaptive non-repetitive FIR filter Q, which usually
requires longer computation time. When the subroutines LSM_S and LSM_Q update θ
and Q, the ISR can interrupt the program once an external trigger occurs in order to keep
up the I/O update of the DSP with the disk drive. To ensure the correct values of θ and
Q are used by the ISR, up-sampled θ and Q are used. Unfortunately, the repetitive
algorithm cannot use the multirating updating scheme and must update all the related
variables and arrays, such as RHAT, REP1, and REP2, in one sampling period.
Therefore, INT0 should be disable when updating these variables and arrays.

There are three assembly programs, ardemo, rdemo, and ademo. All these
programs are similar; they all have two phases, identification phase and control phase.
The difference is that different program turns on different compensators. The first
program implements both the adaptive repetitive and non-repetitive compensators. The
second one implements only the repetitive compensator, and the last one only turns on the
non-repetitive compensator. All these programs call three library files, ‘mfilt.lib’,
‘mmisc.lib’, mmcal2.lib’. The ‘mfilt.lib’ library file has five FIR filters, including

‘mfilt5’, which filters the kernel function by �B . The ‘mmisc.lib’ library file has several
functions, including prbs2, invf, mdup, and exp. The function ‘prbs2’ generates the
pseudo random binary sequence used as the control input in the identification phase. The
function ‘invf’ inverts the register content in R1 and output the result back to R1. No
argument is required when calling ‘invf’. The function ‘mdup’ copies all the elements of
array 1 to array 2 using the circular addressing feature. The function is called as, ‘mdup
pointer_array1 pointer_array2 array_size array_size-2’. The function ‘exp’ calculates the
exponential function of the first argument and output the result to the second argument.
Only ten terms of the power series is used in the calculation of ‘exp’. The last library file
‘mmcal2.lib’ computes matrix multiplication. ‘mv’ multiplies a matrix with a column
vector. ‘vm’ multiplies a row vector with matrix, and ‘vv’ computes the dot product of
two vectors.

36

6.0 Experimental Results

The spectrum magnitude of the PES by applying the adaptive repetitive algorithm is
shown in figure 21. Table 2 summarizes the parameters used in the assembly program. It
shows a 10-dB attenuation on the fundamental frequency (68.39 Hz) and a 5-dB
attenuation on the second and third harmonics (138.8 Hz and 208.2 Hz, respectively).
Figure 22 shows the convergence of the 11th, 21st, 31st, 41st, 51st, 61st, 71st, and 81st
terms of � ()R k for the first 1100 samples, and figure 23 shows the convergent � ()R k . The
control output ur for the first 1100 samples is also shown in figure 24.

Figure 21. Experimental Spectrum Magnitude of PES with and without repetitive compensation.

Table 2. Repetitive Algorithm Parameters

Gn 550 k_DEAD 1000000
k_INC 0.3 k_STOP 100000

N 16 σ 10

with compensation

nominal

37

Figure 22. Convergence of the estimation � ()R k in the first 1100 samples using the Kernel of N =16

Figure 23. Convergent � ()R k using the Kernel function of N =16

38

Figure 24. Control Output ur in the First 1100 Samples

39

7.0 Conclusion

The integral equation approach is successfully formulated and tested on the JTS 3.25
drive. By using a kernel function of N = 16 as shown in figure 12, experimental results
confirm that the repeatable runout of the first three harmonic frequencies is compensated,
and the power magnitude of the nominal and compensated PES is shown in figure 21.
The estimated repeatable disturbance parameters � ()R k is also shown in figures 22 and 23.
These are consistent with the simulation results, which indicates the compensation of the
first third harmonic frequencies.

40

References

[1] M. Tomizuka, K. Chew, and W. Yang. Disturbance rejection through an external
model. ASME Journal of Dynamic Systems, Measurement and Control, 112(4):559-564,
December 1990.

[2] W. Messner and C Kempf. A comparison of four discrete-time repetitive control
algorithms. December 1991

[3] R. Horowitz, S. Pannu, and B. Li. Adaptive track following servos for disk files.
1996

[4] R. Horowitz and B. Li. Design and implementation of adpative non-repetitive track-
following disk file servos. 1996

[5] W. Messner, R. Horowitz, W. W. Kao, and M. Boals. A new adaptive learning rule.
IEEE Transaction on Automatic Control, 36(2):188-197, February 1991.

[6] K. Chew and M. Tomizuka. Digital control of repetitive errors in disk-drive systems.
IEEE Control Systems Magazine, 10(1):16-20, January 1990.

