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ABSTRACT

    An analytical technique for predicting the instantaneous magnetic field distribution in

the air gap region of permanent magnet motors with rotor eccentricity is developed. The

governing equations and the associated boundary conditions are formulated and solved by

a perturbation method. The predicted solutions are verified by the results of a

corresponding  finite element analysis. The results show the effectiveness of using the

perturbation method for this eccentric field calculation. According to this study, the

additional flux density due to the rotor eccentricity is proportional to the amount of the

eccentricity in a small range and has a quite different distribution from the normal flux

density without the rotor eccentricity. Accordingly, the rotor eccentricity may cause

undesirable effects on brushless permanent magnet motors.



I. INTRODUCTION

    The spindle motor is one of the most important elements of a disk drive and, on the other

hand, acts as a frequent source of vibration induced by magnet forces or defects of its

structural components. It has a profound effect on the performance and the capacity of a

disk drive through its configuration, operating speed, runouts, and resonances. Therefore a

great number of efforts have been made to achieve technological innovations and market

competitiveness. Among them, size reduction, spindle speed increase, and cost reduction

have been the main concerns[1]. As the disk size is reduced, the spindle speed must

increase for a given maximum bit density and media data rate. Thus, the high speed use

will continue to improve disk drive performance. However, this increase in speed will

place a greater emphasis on the spindle motor and bearing design. Much more precise

manufacturing process is also needed. A great number of papers have been published on

the spindle motor and bearing design in relation to higher speed effects, whereas few

literatures are found which examine the performance and the dynamic effects of the spindle

motor caused by manufacturing imprecisions. One of many concerns is the rotor

eccentricity which may result from unavoidable errors or working allowances from

manufacturing processes. For example, ball bearing defects such as excessive clearance

and waviness may create eccentricity problems and so do resonant vibrations of the rotor

and bearing system in the hard disk drive. In fluid bearings which will be extensively used

for high speed spindles, eccentricity occurs inherently due to the unbalanced distribution of

pressure. The rotor eccentricity may yield problems in magnetic and dynamic aspects

causing additional vibration, noise, and torque pulsation. It is believed to either directly or

indirectly affect the track following error in the disk drive. Thus it is necessary to start



studying the magnetic field analysis produced by the rotor eccentricity in permanent

magnet motors rotating in high speed.

    Eccentricity has long been studied with an emphasis on the calculation of the air gap

field [2] and its effect on the unbalanced magnet pull (UMP)[3]. Belmans et al has

analyzed the UMP and its relationship between the stability of an induction machine shaft

with eccentricity [4]. Other authors have examined the presence of unique signature

patterns in the current and vibration spectra which can show characteristics of eccentricity

[5] and methods to detect the eccentricity [6]. Many studies concerning on the eccentricity

effects on induction motors have been reported, but few publications have appeared

regarding permanent magnet synchronous or brushless DC motors. Zhu and Howe have

referred to the effect of eccentricity on additional acoustic noise and vibration source in

brushless permanent magnet motors [7]. Chao et al has also mentioned it as a possible

torque pulsation source but did not elaborate on  the details [8]. All of the authors

mentioned above have handled the eccentricity problem by using relative permeance

functions, considering only the fact that the air gap permeance varies inversely as the air

gap length. But using the permeance functions is an indirect way to describe the magnetic

field due to eccentricity and may lead to a poor understanding. One dimensional permeance

functions can only explain the overall behavior of the eccentric magnetic field at the stator

outer surface but can not describe details induced by the pulsating magnet forces and

boundary effects due to the rotor eccentricity. Most papers using the permeance functions

for the eccentric field calculation could not include the whirling phenomenon of the rotor

effectively. More rigorous explanation in the field is needed for other applications such as



rotor dynamic problems excited by the magnetic field of a motor supported by fluid film

bearings.

    In this paper, a direct analysis of the magnetic field induced by the rotor eccentricity in

permanent magnet motors is explained. The governing equations and the associated

boundary conditions are formulated for an external rotor motor in two dimensions by a

perturbation method. Static and dynamic eccentricities are considered. Analytical results

are compared with those of a corresponding finite element method. This work can be used

as the basis for future practical applications regarding the rotor eccentricity of other motors

or magnetic bearings.

II. MAGNETIC FIELD INDUCED BY ROTOR ECCENTRICITY

A. Problem Description

    This paper presents an analytical method for the magnetic field produced by a permanent

magnet motor with rotor eccentricity. Fig. 1 shows a schematic geometry of a motor

including the geometric notations which will be used in the following analysis. The

magnetic field is produced by an external rotor which rotates with the angular velocity of ω

about the axis Or and whirls around the axis Os with the angular velocity of Ω. The radial

distance between the two axes is defined as the eccentricity of the rotor and is denoted by

ε = ⋅e g (1)

where e is the eccentricity ratio and g is the nominal air gap length. Note that the

eccentricity ratio e, has the following limits.

     0 1≤ ≤e (2)



    The X-Y coordinate system is fixed to the center of the stator Os, whereas the x-y

coordinate system is attached to the center of the rotor Or and rotates with the same angular

velocity as the rotor. The x’-y’  coordinate system does not rotate and expresses the relative

position of the rotor with respect to the stator position by the quantities ε and φ, the

whirling position at an instant which can be expressed as Ωt without the loss of generality.

The rotor eccentricity in a motor can be divided into three types: static eccentricity,

dynamic eccentricity, and their combination. Static eccentricity with which the rotor is

displaced from the stator center but is still turning upon its own axis Or, can be modeled by

assuming ε and φ as constants. Dynamic eccentricity with which the rotor is turning around

the stator, can also be treated by considering them as functions of the time and the position,

which can be determined by solving the associated rotor dynamic problem [9].

    In order to limit the mathematical efforts and to gain physical insight regarding the

problem, the following assumptions are made in this study. First, both the rotor and stator

surfaces are perfect cylinders, and the axis of the rotor is parallel to the axis of the stator,

i.e., only translatory eccentricity is considered, which still renders the problem to be two

dimensional. Second, the effects of slotting are neglected. Third, the permeability of the

rotor and the stator back iron is infinite. And last, the eddy current and the saturation

effects are neglected.

B. Coordinate Transformations of Two Reference Frames



    An arbitrary point P in the air gap  or the permanent magnet region in Fig. 2 can be

expressed in terms of either r-θ or ξ-ψ coordinates, which can be transformed into each

other as follows.

ξ ε θ φ ε= − − +r Ocos( ) ( )2 (3a)

  ψ θ ω
ε

θ φ ε= − + − +t
r

Osin( ) ( )2 (3b)

Throughout the following analysis, only linear components in perturbation equations are

retained, which is not unusual for most perturbation analyses. The detailed derivation of

the transformation equations is given in Appendix 1.

C. Magnetic Field Equation

    A quasi-static field is a dynamic field in which the effects of inertia can be neglected. In

a magnetic field, a quasi-static condition occurs when the propagation time for an

electromagnetic wave within a device is small compared to the characteristic time

associated with  the motion of the device. Most electromechanical devices, including

permanent magnet motors, are characterized in terms of  quasi-static magnetic fields. The

magnetic field that is produced as the rotor rotates can be assumed as a series of  magneto-

static fields, which helps to transform the governing equations into the quasi-Poisson type

equations. In this section, a perturbation formulation is explained for modeling the quasi-

static magnetic field produced by the eccentric rotor. The perturbation analysis appears

plausible, since the rotor eccentricity is usually small in comparison to the air gap length.

    The governing equations and the associated boundary conditions are formulated in the

fixed coordinate system, which can easily reveal the perturbing effects of the magnets and



their boundaries. However, this procedure yields some mathematical deficiencies. Firstly,

an undesirable form of an exciting forcing term occurs in the governing equations which

can not be handled easily. Secondly, the Poisson equations are to be solved by a series

expansion method, in which the series need to be differentiated twice. This may lead to a

problem of uniform convergence of the solutions despite the small perturbation. Thirdly,

more complicated boundary conditions are required, since the number of asymmetries

increases in the fixed coordinate system. Thus, for pure mathematical reasons, the field

equations are formulated and solved in the moving coordinate system and are transformed

into those in the fixed coordinate system by the transformation equations (3a,b). This is

acceptable in a quasi-static system if the whirling speed Ω  is constant and the moving

coordinate system is considered as an initial reference frame. In this case, the governing

equations and the associated boundary conditions are invariant in terms of the moving

coordinates [10].

D. Derivation of the Governing Equations and the Boundary Conditions

    In this section, general equations of a magnetic field are derived. The field vectors 
&
B and

&
H  are written as

& &
B H1 0 1= µ (4)

& & &
B H Mm2 2 0= +µ µ (5)

where the subscripts 1 and 2 denote the air gap and the permanent magnet region,

respectively; 
&

M is the residual magnetization vector of magnitude Br µ0 , whereBr  is the

remanence. The equation for the recoil permeability of the permanent magnets is given



byµ µ µm r= 0 , where µr  is the relative recoil permeability. The vector 
&

M  can be expressed

by a Fourier series form as previously reported by Zhu et al [11],

    Introducing the scalar magnetic potential Φ defining

&
H = −∇Φ (6)

makes the coupled Maxwell equations into Poisson type equations in the respective regions

where there is no current source. The governing equations are, then,

∇ =2
1 0Φ              (7a)

∇ = ∇ ⋅2
2

1
Φ

µr

M
&

             (7b)

   In polar coordinates originating from the moving (x-y) coordinate system, the above

equations are expressed as

∂
∂ξ ξ

∂Φ
∂ψ ξ

∂
∂ψ

2
1

2
1

2

2
1
2

1 1
0

Φ Φ
+ + =          (8a)

∂
∂ξ ξ

∂Φ
∂ψ ξ

∂
∂ψ µ ξ

ξ
2

2
2

2
2

2
2
2

1 1 1Φ Φ
+ + =

r

M
(8b)

where Mξ is the ξ-direction component of the magnetization vector 
&

M given by

M M npn
n

ξ ψ= ∑
=

∞

1 3 5, ,
cos( )

�

(9)

Here Mn is again given by

M
B

n

nn
r

p

p

p
=







2 2

2
0µ

α

πα

πα
sin

(10)

where p is the number of the magnet pole pairs, and αp is the ratio of the pole-arc to pole-

pitch of the magnets.



    The field intensity vectors are related to the magnetic potential functions by

H i
i

ξ

∂Φ
∂ξ, = − (11a)

H i
i

ψ ξ
∂Φ
∂ψ, = −

1
(11b)

where i = 1 and i = 2 again for the air gap and the permanent magnet region, respectively.

    The boundary conditions are described by

& &
n H× = 0 (12a)

& &
n B• = 0 (12b)

where 
&
n  is the normal vector along the associated boundary and⋅  represents the amount

by which a value differs on the two sides of the boundary. Note that the normal vector 
&
n  is

a function of the eccentricity components ε and φ, as well as the instantaneous rotational

position of the rotor, ωt. It can also be expressed in the moving coordinate system as

described in the next section.

    Magnetic potential equations (8a) and (8b) together with the boundary conditions

describe the magnetic flow from the north poles to the south poles of the magnets through

the eccentric air gap region. Note that the rotor eccentricity effect only occurs on the

boundary of the stator in the moving coordinate system, which makes mathematics simpler.

    For the stator boundary described by

f t R Os( , , ) cos( ) ( )ξ ψ ε ξ ε ψ ω φ ε= + + − − + =2 0 (13)

the normal vector is

   
&
n

f

f
e t e O( , , ) � sin( )� ( )ξ ψ ε ε

ξ
ψ ω φ εξ ψ=

∇
∇

= − + − + 2 (14)



where�eξ and�eψ are the unit vectors ascribed to the moving coordinates. Again only the

terms up to the first order will be retained in the following analysis, and the perturbation

order symbol will be omitted for simplicity.

    The boundary condition along the surface of the stator for an external rotor motor is

represented by

( )&
n H e H e× + =ξ ξ ψ ψ, ,� �

1 1 0 (15)

After some vector calculations, equation(15) is written explicitly as

H t H
R ts

ψ ξ
ξ ε ψ ω φ

ξ ψ ε
ε
ξ

ψ ω φ ξ ψ ε, ,

cos( )

( , , ) sin( ) ( , , )1 1+ + −
= − + −

= 0 (16)

The other boundary conditions are obtained by

H
Rr

ψ ξ
ξ ψ ε, ( , , )2 0

=
= (17)

B B
R Rm m

ξ ξ ξ ξ
ξ ψ ε ξ ψ ε, ,( , , ) ( , , )1 2= =

= (18)

H H
R Rm m

ψ ξ ψ ξ
ξ ψ ε ξ ψ ε, ,( , , ) ( , , )1 2= =

= (19)

where the radii of the magnets and the rotor are defined by R R gm s= +  and

R R g hr s m= + +  for an external rotor motor, hm being the radial thickness of the magnets.

    By considering the boundary condition (16), regular perturbation expansions of the

moving coordinates are proposed in the following forms.

  Φ Φ1 1
0

1
1( , , ) ( , ) ( , )( ) ( )ξ ψ ε ξ ψ εΦ ξ ψ= + +�       (20a)

      Φ Φ2 2
0

2
1( , , ) ( , ) ( , )( ) ( )ξ ψ ε ξ ψ εΦ ξ ψ= + +�     (20b)

    The field intensity vectors in the concerning regions are thus represented by



H i
i i

ξ ξ ψ ε
∂Φ ξ ψ

∂ξ
ε

∂Φ ξ ψ
∂ξ,

( ) ( )

( , , )
( , ) ( , )

= − − −
0 1

� (21a)

H i
i i

ψ ξ ψ ε
ξ

∂Φ ξ ψ
∂ψ

ε
ξ

∂Φ ξ ψ
∂ψ,

( ) ( )

( , , )
( , ) ( , )

= − − −
1 10 1

� (21b)

where again the subscript i implies 1 or 2 for the air gap and the permanent magnet region,

respectively.

    By substituting equations (21a,b) into equation (16) and a Taylor series expansion about

the nominal radius of the stator Rs, groups of the governing equations and the

corresponding boundary conditions are thus derived.

    The zeroth-order governing equations are

     
∂

∂ξ ξ
∂Φ

∂ξ ξ
∂
∂ψ

2
1

0

2
1

0

2

2
1

0

2

1 1
0

Φ Φ( ) ( ) ( )

+ + =             (22a)

     
∂

∂ξ ξ
∂Φ

∂ξ ξ
∂
∂ψ µ ξ

ξ
2

2
0

2
2

0

2

2
2

0

2

1 1 1Φ Φ( ) ( ) ( )

+ + =
r

M
(22b)

and the zeroth-order boundary conditions are

− =
=

1
01

0

Rs Rs

∂Φ ξ ψ
∂ψ

ξ

( ) ( , )
(23)

− =
=

1
02

0

Rr Rr

∂Φ ξ ψ
∂ψ

ξ

( ) ( , )
(24)

−
=

µ
∂Φ ξ ψ

∂ξ
ξ

0
1

0( ) ( , )

Rm

= − +
=

=
µ µ

∂Φ ξ ψ
∂ξ

µ
ξ

ξ ξ0
2

0

0r

R
R

m
m

M
( ) ( , )

(25)

   − = −
= =

1 11
0

2
0

R Rm R m Rm m

∂Φ ξ ψ
∂ψ

∂Φ ξ ψ
∂ψ

ξ ξ

( ) ( )( , ) ( , )
(26)

    The first-order governing equations are



∂
∂ξ ξ

∂Φ
∂ψ ξ

∂
∂ψ

2
1

1

2
1

1

2

2
1

1

2

1 1
0

Φ Φ( ) ( ) ( )

+ + = (27a)

∂
∂ξ ξ

∂Φ
∂ψ ξ

∂
∂ψ

2
2

1

2
2

1

2

2
2

1

2

1 1
0

Φ Φ( ) ( ) ( )

+ + = (27b)

Note that equation (27b) does not have an exciting forcing term unlike in equation (22b).

    The first-order boundary conditions are

1 1
1

Rs Rs

∂Φ ξ ψ
∂ψ

ξ

( ) ( , )

=

= − + −
=

1
2

1
0

R
t

s Rs

∂Φ ξ ψ
∂ψ

ψ ω φ
ξ

( ) ( , )
cos( )

                                 + + −
=

1 2
1

0

R
t

s Rs

∂ ξ ψ
∂ξ∂ψ

ψ ω φ
ξ

Φ ( ) ( , )
cos( )

                                   − + −
=

1 1
0

R
t

s Rs

∂Φ ξ ψ
∂ξ

ψ ω φ
ξ

( ) ( , )
sin( )    (28)

− =
=

1
02

1

Rr Rr

∂Φ ξ ψ
∂ψ

ξ

( ) ( , )
(29)

    − = −
= =

µ
∂Φ ξ ψ

∂ξ
µ µ

∂Φ ξ ψ
∂ξ

ξ ξ
0

1
1

0
2

1( ) ( )( , ) ( , )

R

r

Rm m

 (30)

− = −
= =

1 11
1

2
1

R Rm R m Rm m

∂Φ ξ ψ
∂ψ

∂Φ ξ ψ
∂ψ

ξ ξ

( ) ( )( , ) ( , )
  (31)

    A sequence of problems with the unperturbed boundary conditions can be solved. For

equations (22a,b) and the boundary conditions (23-26), the general solutions of the zeroth-

order for the scalar magnetic potential distribution in the air gap and the magnets are

obtained by considering the periodicity of the field.

( )Φ1
0

1
0

1
0

1 3 5

( )

, ,
( , ) cosξ ψ ξ ξ ψ= +∑ −

=

∞
A B npn

np
n

np

n �

(32)



( ) [ ]Φ2
0

2
0

2
0

1 3 5
2

1 3 5 1
( )

, , , ,
( , ) cos
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ξ
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⋅
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∞
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∞
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M
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npn
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n

np

n

n

rn� �

(33)

The arbitrary constants A0
1n, B

0
1n, A

0
2n , and B0

2n are easily obtained by substituting the

boundary conditions. A detailed procedure for obtaining the general solution is described in

the paper by Zhu et al [11].

    The zeroth-order solutions for the flux density distribution in the air gap region are given

in the paper by Zhu et al [11] as

B
M np
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    The following solutions for the first-order governing equations (27a,b) are proposed by

considering the boundary conditions and the periodicity of the field in the ξ-ψ coordinates.

( ){ [ ]Φ1
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1 1
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1 3 5
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The integral constantsA n1
1 , B n1

1 , etc. andA n2
1 , B n2

1 , etc. are obtained from the boundary

conditions in (28-31). The complete first-order solutions for the magnetic field regions in

terms of the  moving coordinates are derived for np ≠ 1, which is a usual configuration in

external rotor motors. Throughout this paper, only the air gap flux density distribution is

calculated.

    The flux density distribution in the air gap region is
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where the coefficients  Wn, Xn, Yn , and Zn are given as follows
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A0 in the above equations is given by
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E. Flux Density Distributions in the Moving Coordinates

    Equations (38) and (39) describe the flux density distribution in the air gap region due to

the rotor eccentricity in terms of the moving coordinates. These equations can provide

information on the effects of the rotor eccentricity on the magnetic field. The total flux

density distribution is the combination of the zero-order and first-order solutions
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Equations (44) and (45) are complete solutions for the flux density distribution of the air

gap in terms of the coordinates that originate from the rotor reference coordinate system.

F. Flux Density Distributions in the Fixed Coordinate System

    Equations (44) and (45) are not in a convenient form for the purpose of other

applications. It is therefore reasonable to represent them in terms of fixed coordinates. It is

well known that in a quasi-static magnetic field as considered in the present paper, the field

variables which are evaluated in different reference coordinate systems, are the same

whether viewed from one coordinate system or the other [10]. In the present paper, it

follows that

& &
H r H( , , ) ( , , )θ ε ξ ψ ε= (46)

& &
M r M( , , ) ( , , )θ ε ξ ψ ε= (47)

& &
B r B( , , ) ( , , )θ ε ξ ψ ε= (48)

and consequently

Ψ Φ( , , ) ( , , )r θ ε ξ ψ ε= (49)

where the magnetic field vectors with a bar indicate the field variables described by the

fixed coordinates and in the same context,Ψ  is the magnetic potential expressed by the



fixed coordinates. The flux density distribution in the fixed coordinate system can be

obtained directly by substituting the coordinate transformations (3a,b) into the equation

(48). However, note that the flux density distribution is expressed in a vector form and the

vector bases are taken with respect to the coordinates of each reference frame. Accordingly,

the vector components can not be directly compared with each other. The following

procedure is, therefore, suggested.

    The flux density in the fixed coordinate system is defined as

B
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By equation (49) and the coordinate transform equation (3a,b)  as well as their derivatives

with respect to the fixed coordinates, the above equations can be evaluated as follows.
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Then the air gap flux density distributions can be explicitly represented by using the

perturbation equations (20a,b), i.e.,
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Now, combining the coordinate transformation equations (3a,b) with (44) and (45) as well

as Taylor series expansions up to the first order of ε gives the desired solutions in the fixed

coordinate system.
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Equations (56) and (57) are the most complete solutions for the flux density distribution in

the air gap region due to the rotor eccentricity in the fixed coordinate system, but can be

simplified by neglecting the perturbed phase terms in the solutions as follows.
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    These simplified solutions (58) and (59) yield few errors in numerical values when

compared with the results from the finite element analyses. However, they are expressed in

forms that are more convenient for other applications. Note that the original unperturbed

flux density distribution is recovered when ε=0.

III. COMPARISON OF THE PERTURBATION AND FINITE ELEMENT

SOLUTIONS

    The perturbation solutions of the eccentric magnetic field have been verified for a

prototype motor by finite element calculations. The geometric parameters of the motor are

given in Table 1 in Appendix 2. The finite element model of the motor to be analyzed was

built through a magnetic finite element analysis package, TOSCA with a pre- and post-

processor called OPERA. The analysis was executed with the linear magnetic material

properties of the stator iron and the rotor magnets. Unlike the perturbation model in which

the relative permeability of the stator iron is considered infinite, the finite element model

considers the relative permeability of the stator iron finite, i.e., µr=1364. For this reason,

the boundary conditions of the finite element model are approximated by the far field

conditions, where the scalar potentials are zero. The finite element model was built on the

moving coordinate system due to a relative simplicity of expressing the rotor magnet



directions. Therefore the results are to be compared with those from equations (44) and

(45).

    Fig. 3 shows the flux density distributions in the radial direction calculated by the

perturbation and the finite element analysis for the case of 10% eccentricity at an instant of

φ=0o and ωt=0o. The figure shows the flux density curves in the range only from 0o to 180o

since they are symmetric about 180o for φ=0o and ωt=0o.  The figure shows the flux density

from both calculations are in good agreement in amplitude and wave form. Fig. 4 compares

the flux density distributions in the radial direction for the case of 50% eccentricity at an

instant of φ=45o and ωt=30o. Again, the distributions show good agreement despite the

relatively large eccentricity, which shows the effectiveness of the perturbation method for

calculation of eccentric magnetic field problems. Fig. 5 reveals the eccentric field effect on

the flux density distribution in the radial direction, Bξ
( )1 , by various rotor eccentricities.

Note that the additional flux density has complicated profiles and sharp peaks also appear

on the flux density distribution curves, which may yield additional unwanted effects on

motor performance. Fig. 6 and Fig. 7  show the flux density distributions in the radial and

circumferential directions along an imaginary circle in the air gap region with the radius of

Rs+0.2g from the center of the stator. Again the results show good agreement except for

the error in the magnitude of some peaks in the circumferential direction but this minor

discrepancy may be yielded by errors in the finite element model discretization. All the

perturbation solutions contain only the linear terms up to the first order of ε and clearly can

be improved by taking more terms.

 

IV. CONCLUSION    



    A complete procedure of analysis for predicting the instantaneous magnetic field

distribution in the air gap region of permanent magnet motors with the rotor eccentricity is

developed. The governing field equations and the associated boundary conditions are

formulated and solved by the aid of a perturbation method, which is introduced to treat the

nonlinear boundary conditions caused by the rotor eccentricity. The perturbation analysis is

validated by the corresponding finite element analysis. Only the linear terms up to the first

order solutions are sufficient for obtaining good results compared with the finite element

analysis. Comprehensive understanding of the magnetic field induced by the rotor

eccentricity will help to develop motors with better design and performance.
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APPENDIX 1 : Derivation of Coordinate Transformation Equations (3a, b)

    Consider the coordinate relationship detailed in Fig. 2 in the domain of the air gap or the

magnet pole region. In the figure, let P be a point defined by the polar coordinates r and θ

with respect to the origin Os in the fixed coordinate system. It is necessary  to be able to

express ξ and ψ as a Fourier series of r and θ.

    By drawing the perpendicular line from Os upon the line P-Or  the following expression

is produced.

     ε ψ ω φ ψ ω θsin( ) sin( )+ − = + −t r t

or
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Rewriting the above equation yields
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Taking logarithms on both side of the above equation yields

j j t re rej j2 2ψ ω φ ε εθ φ θ φ= − − + − − −− − −( ) log{ } log{ }( ) ( )



The right hand side can be expanded in a convergent series. With r > ε  for most

permanent magnet motors, the above equation is expressed as
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e j± −( ) has a modulus less than unity the right hand side can be again expanded

into a convergent series.

    j j t
r

e ej j2 2ψ θ ω
ε θ φ θ φ= − + − +− − −( ) { }( ) ( )

� + − +− − −1

n r
e e

n

n
jn jnε θ φ θ φ{ }( ) ( )

�

or

    ψ θ ω
ε

θ φ= − + ∑ −
=

∞
t

n r
n

n

n

n

1

1
sin[ ( )]

The terms up to the first order of ε are retained for the perturbation analysis.

     ψ θ ω
ε

θ φ ε= − + − +t
r

Osin( ) ( )2

And ξ is obtained by applying the cosine law.

     ξ ε ε θ φ= + − −r r2 2 2 cos( )

Taking a Taylor expansion of the right hand side gives the following expression.

     ξ ε θ φ ε= − − +r Ocos( ) ( )2

APPENDIX 2 : Geometric Parameters of the Model Motor

Table 1 : Geometric parameters of the model motor



             Parameter                 Symbol              Value (unit)

 Pole number                     2p               8

 Pole-arc/pole-pitch ratio                     αp               1.0

 Air gap length                     g               0.25 (mm)

 Radial thickness of

magnets

                    hm               0.80 (mm)

 Stator radius                     Rs               10.64 (mm)

 Magnet remanence                     Br               0.71 (T)

 Relative permeability                     µr               1.26
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Fig. 1.  Geometric configuration of the model motor
       (Air gap is exaggerated for clarity)
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Fig.2. Coordinate relationship of the fixed and moving coordinates
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          Fig. 3. Flux density distributions along the surface of the stator calculated

                     by the perturbation and FEM for 10% eccentricity at an instant

                     of φ=0o and ωt=0o
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    Fig. 4. Flux density distributions along the surface of the stator for

                      50% eccentricity at an instant of φ=45o and ωt=30o.
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Fig. 5. Additional flux density distributions along the surface of the

                       stator at an instant of φ=0o and ωt=0o.
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           Fig. 6. Flux density distributions of the radial direction in the air gap

                    region (RS+0.2g) for 50% eccentricity at an instant of φ=0o

                    and ωt=0o.
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Fig. 7. Flux density distributions of the circumferential direction

                       in the air gap region (RS+0.2g) for 50% eccentricity at an

                       instant of φ=0o and ωt=0o.


