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Abstract

    In this report, the momentum and energy equations are solved by applying, respectively,

the slip and jump boundary conditions for velocity and temperature for an ultra-thin air

bearing. With the temperature distribution known, the heat flux between the slider and the air

bearing is obtained using Fourier’s Law. It is found that the heat flux contains contributions

from both heat conduction, which transfers heat from the slider to the air bearing when the

slider has a higher surface temperature than the disk, and viscous dissipation, which transfers

heat from air bearing to the slider. Whether an air bearing is a “coolant” or “heater” depends

on which part, the heat conduction or viscous dissipation, dominates the heat transfer. Since

the magnitude of viscous dissipation is relative small, the “heating” effect often plays a

weaker role unless the temperature difference between the slider and disk is very nearly equal

to zero. Simulation results also show that the heat conduction effect increases with the

decrease of the flying height (or disk rotation speed), but the viscous dissipation effect

decreases with the decrease of the flying height (or disk rotation speed). In other words, the

“cooling” effect increases with the decrease of the flying height (or disk rotation speed).

Key words: heat transfer, air bearing, ultra-thin film.



2

1  Introduction

The flash temperature rise nearby the MR element due to a head/disk contact leads to a

thermally induced disturbance in read-back signals. This phenomenon is referred to thermal

asperities, and it can cause serious problems in data reading of a MR head. When a MR head

flies very close to the disk surface, another type of thermally induced problem occurs in the

MR signal as a result of flying height fluctuation (Tian, H., et al., 1997). Their experimental

results showed that the air bearing has a cooling effect on the slider and makes the major

contribution to this disturbance. In this report, we conduct a theoretical study of the heat

transfer between a slider and the air bearing to find the mechanism of the “cooling” effect of

the air bearing.

    One difficulty in solving the heat transfer problem between a slider and the air bearing is

that the traditional theory, which is based on the continuum assumption, is no longer valid

when the air bearing is ultra-thin. For example, the flying height of a typical MR head is

around 50 nm in today’s hard disk drive, which means the Knudsen number Kn=λ/h , where λ

is mean free path of the air and h is the spacing, is around 1. Air flow with such a Knudsen

number is usually considered in the slip or transition regimes (Schaaf, S.L., et al., 1963). To

solve the heat transfer problems in these regimes, we need to consider some special

approaches such as the Boltzman equation or velocity slip and temperature jump conditions

(Kennard, E.H., 1938). These methods have been used previously in solving for the velocity

distribution in an air bearing by several researchers (Burgdorfer, A., 1959; Gans, R., 1985;

Fukui, et al., 1988).

    Another difficulty is that the continuity equation, momentum equation and energy equation

need to be solved simultaneously because the physical properties of air depend on the
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temperature, which usually makes the problem more complicated, and leads to the need of

more computation time in the numerical analysis.  A simple approach is to assume the

properties are constant if the temperature variation is not too great, so we can evaluate the

properties at a certain reference temperature, say the average temperature of the two surfaces.

With such an approximation, the momentum and energy equations can be decoupled for

solution. Since the temperature difference between the slider and disk surfaces is expected to

be very small, it is reasonable to apply a constant  property assumption in an air bearing.

Thus, we can solve the momentum and energy equations separately.

    In this report, we first simplify the momentum and energy equations by dimensional

analysis. Then we solve the reduced momentum equation to get the velocity distribution and

solve the energy equation to get the temperature distribution in the air bearing. Using

Fourier’s  law, we obtain an expression for heat flux between the slider and air bearing. A

computer program is implemented to simulate the heat flux for several cases. The slider/disk

system as well as the related coordinate system used in the analysis are shown in the Fig.1

Fig.1  Slider/disk system and coordinates
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2. Governing Equations in the Air Bearing

In the following analysis we focus on the steady case, so the time dependent terms in the

related equations disappear. Using dimensional analysis, we reduce these equations to simpler

forms.

(1) Navier-Stokes (N-S) equation:

    The simplification of the N-S equation in an air bearing has been performed by many

researchers. Here we only list the final results and do not present the detailed derivation

(Gross, W.A., et al., 1980):
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where u, υ are velocities in the x and y directions, p is the pressure and µ  the viscosity of the

air. Velocity w in the z direction is approximated to be zero. Clearly, pressure p remains

constant across the thickness of the air bearing.

(2) Energy equation:

    As in the N-S equation, the energy equation can also be simplified by using dimensional

analysis in the air bearing. Assuming that the magnitudes ∂/∂x~ ∂/∂y<< ∂/∂z, we write

the energy equation as:
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where ρ is the density, cp is the specific heat, k is the heat conductivity and T is the

temperature of the air.  To get this equation, we set i=cpT as the enthalpy of the flow.

    As in simplifying the N-S equation, we use the characteristics of the air bearing to reduce

the energy equation (2-a). Let’s first look at the convection term (I) and conduction term (V).

If we assume the magnitudes of u~U, T~T0, x~L and z~h, where U is the disk velocity, T0 is

the reference temperature (say the ambient temperature), L is the length of the slider and h is

the thickness of the air bearing, then we can express (I)/(V) as ρcpUh2/Lk~PrRe(h/L), where

Pr is the Prandtl number defined by Pr=µcp/k and Re is the Reynolds number defined as

Re=Uh/v. For a typical air bearing, we can take ρ~1 kg/m3, cp~103 W⋅s/kg⋅K, k~0.03 W/m⋅K,

U~15 m/s, L~2 mm, and h~50 nm. Thus (I)/(V)~10-7 or the convection term (I) is much

smaller than the conduction term (V), and therefore it can be neglected in the energy equation.

Similarly, the convection term (II) is also negligible.

    In a similar way, (VI)/(V)~µU2/k∆T where ∆T is the temperature difference between the

slider and disk surfaces. If we take µ~10-5 kg⋅m/s, ∆T~10 °K, then (VI)/(V)~10-2. This implies

that if ∆T appears in magnitude of 10 °K or smaller, the viscous dissipation term (VI) is

comparable to the conduction term (V). Therefore, in the following analysis, we keep the

viscous dissipation terms in the energy equation.
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    If we finally neglect terms (III) and (IV) because (III)/(V)~p0h
2/µUL~(p0/ρU2)(h/L)Re ~10-3

by taking p0~105 kg/m⋅s2, where p0 is the ambient pressure, we can reduce the energy equation

to:

0
22

=






∂
∂+







∂
∂+







∂
∂

∂
∂

zz

u

z

T
k

z

υµµ . (2-b)

    In this reduced energy equation, the convection terms disappear and only the conduction

and viscous dissipation terms remain. Strictly speaking, this equation is valid only when

PrRe(h/L)<<1, (p0/ρU2)(h/L)Re<<1 and h/L<<1. Fortunately, these conditions are usually

satisfied in a slider/disk air bearing.

(3) Boundary conditions:

    We assume that the disk has a non-zero velocity U in the  x direction and zero velocity V in

the y direction, which is the case of a slider flying at a middle radius of the disk. As for the

temperature, considering the disk has a much larger size than the air bearing and rotates with

high speed, we assume that it has a constant and uniform surface temperature that is the same

as that of the ambient air flow. We also assume the slider’s surface temperature is uniform.

Introducing the slip condition for the velocity and the jump condition for the temperature at

the boundaries of the air bearing for the cases of Kn around 1 (Schaaf, S.L., et al., 1963;

Kennard, E.H., 1938), we can write the boundary conditions for velocity and temperature as

(1st order):
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where σ is the momentum accommodation coefficient and α is the thermal accommodation

coefficient, γ is the ratio of cp to cv which are specific heats at, respectively, constant pressure

and constant volume, Ts and Td are , respectively, the slider surface temperature and disk

surface temperature. For convenience, we write a=(2-σ)/σ  and b=2(2-α)γ/α(γ+1)Pr in the

following analysis.

3. Heat Transfer between the Slider and the Air Bearing

To get the heat transfer in the air bearing, we need to know the temperature distribution in it.

This requires us to solve the N-S equation and the energy equation. Because of the

approximation of constant properties of the air, we can decouple the N-S and the energy

equations and solve them separately.

(1) Velocity distribution:

    The velocity distribution can be obtained by integrating the reduced N-S equations (1-

a)~(1-b) and applying the boundary conditions (3-a)~(3-f). The procedure is straight forward
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and was done by other researcher (Burgdorfer, A., 1959; Mitsuya, Y., 1993). Here we list the

results of the solution:
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    In the RHS of equation (4-a), the first term is the contribution of the Poiseuille flow and the

second term is the contribution of the Couette flow, while in (4-b) only the Poiseuille flow

result is involved because we take the y-component of disk velocity V=0. Clearly, these

results are not complete because we still do not know the pressure gradient in the x and y

directions. To finish the solution we need to solve the Reynolds equation, which requires the

integration of the continuity equation (Burgdorfer, A., 1959; Fukui, et al., 1988), to obtain the

pressure distribution first. To get the solution, a numerical method is required (Cha, E.T., et

al., 1995; Lu, S., et al., 1994).

(2) Temperature distribution:

    We substitute the velocity solutions (4-a), (4-b) into the energy equation (2-b) and integrate

it to obtain the temperature distribution in the air bearing:
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    As in the velocity solutions, the temperature T also consists of contributions from the

Poiseuille flow and Couette flow. In addition, extra terms exist which are the combined

effects of both Poiseuille flow and Couette flow.

(3) Heat transfer:

    Using Fourier’s Law q=−k∂T/∂z at z=h, and the temperature solution (5), we can obtain the

heat transfer into the slider as follows:
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We can also write the heat transfer equation (6-a) in a non-dimensional form as:
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where P, X and Y are non-dimensional variables define as P=p/P0, X=x/L and Y=y/L, and M is

the Mach number defined as M=U/(γRT0)
1/2.

4. Analysis and Discussion

In this section, we study the heat transfer for two special cases, Couette flow and Poiseuille

flow between two plane plates, in order to reveal the physical meaning of each term in the

heat flux equation (6-a). The velocity fields for the two types of flows are shown in Fig. 2 and

3.

Fig. 2  Couette flow Fig. 3  Poiseuille flow

(1) Couette flow:

    Using the linear expression for Couette flow, in which the velocity is unidirectional (say in

the x direction), and the boundary condition (3-a)~(3-b), we can obtain the velocity

distribution as:
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Substituting this velocity solution into the energy equation (2-b) and integrating it, we obtain

the temperature distribution and then the heat transfer between the upper plane and the air

flow by Fourier’s Law:
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We can also write this heat transfer equation in a non-dimensional form as:
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    Comparing equation (9-b) with equation (6-b), we see that the second term in the RHS of

(6-b) is the contribution from the viscous dissipation by Couette flow.

(2) Poiseuille flow:

    The velocity field in the Poiseuille flow is also unidirectional and can be obtained by

integrating equation (1-a) and applying the boundary condition (3-a)~(3-b) with U=0. The

solution is:
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    In a similar way as used with the Couette flow, we can express the temperature distribution

and  the heat transfer between the slider and the air bearing as:
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Or in the non-dimensional form:
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    Comparing equation (12-b) with equation (6-a), we see that the third term in the RHS of (6-

b) is the contribution from the viscous dissipation of Poiseuille flow. Clearly, the fourth term

is a combined contribution of both Couette flow and Poiseuille flow.

(3) Heat conduction:

    The first term in the RHS of equation (6-b) is the contribution of heat conduction. The

expression of this term is a modification of that for two plane plates by Fourier’s Law:

q=−k∆T/h. Due to the introduction of the temperature jump at the boundary, the effect of the

heat conduction is reduced by a factor of (1+2bλ/h).

    It is interesting to note that the heat transfer between the slider and air bearing is not zero

when the temperature difference between the slider surface and the disk surface vanishes,

because of the effect of viscous dissipation.
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5. Simulation Results

In this section, we compute several case studies for sliders flying close to the disk surface. We

assume that the slider has a surface temperature either equal to that of the disk or higher than

that of the disk because of an electrical current goes through the MR element (Tian, et al.,

1997). For convenience, we choose a 50% (2mm×1.6mm) tri-pad slider with a load of 3.5 g

and with taper length and angle of 0.2 mm and 0.01 rad, respectively. The slider is fixed at a

radial position r=23 mm. The rail shape of this slider is shown in Fig. 4(a). For each case in

the analysis, the Reynolds equation is solved by using the CML Air Bearing Simulator (Lu,

S., et al., 1995).

(a) (b)

Fig. 4 A tri-pad slider and the pressure profile in the air bearing

(1) “Cooling”  effects of the air bearing:

    In this case, we choose the disk rotation Ω=6400 rpm. With this rotation, the pressure

distribution of the air bearing is calculated and shown as in Fig.4(b) and the flying

characteristics are shown in Table 1. To calculate the heat transfer from the slider to the air
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bearing, we take Ts=301 °K and Td=300 °K, or ∆T=1 °K. The heat flux for each point is shown

in Fig.5, in which (a) and (b) are based on the same data but viewed from different

perspectives. Note that positive values mean that heat is transferred from the slider to the air

bearing.

Table 1    Flying Characteristics

Disk rotation (rpm) Pitch angle (µrad) Roll (µrad) CTE-FH✝ (nm)

6400 176 8 44
✝ Central trailing edge flying height

(a) (b)

Fig.5  Heat flux between the slider and air bearing (Ts−Td=1 °K)

    It is seen that the heat is transferred from the slider to the air bearing in this case. In other

words, the air bearing plays a “cooling” role under such a condition. But, this “cooling” effect

does not always exist for the air bearing. From the discussion in the last section, we know that
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heat transfer between the slider and air bearing is a combined result of heat conduction and

viscous dissipation. The former transfers heat from the slider to the air bearing if the slider has

a higher surface temperature than the disk, while the latter transfers heat to the slider from the

air bearing and plays a role of  “heater”. From Fig. 5(a, b), we see that the heat flux at some

points at the trailing edge has smaller values, which implies that there exists stronger viscous

dissipation at these points. Whether an air bearing is a “coolant” or “heater” depends on

which part, heat conduction or viscous dissipation, dominates the heat transfer between the

slider and air bearing. We can illustrate this point more clearly if we take Ts=Td and obtain the

heat flux as shown in Fig.6.

(a) (b)

Fig.6  Heat flux between slider and the air bearing (Ts=Td)

    It is clear that in this case heat is transferred to the slider because of the viscous dissipation,

or the air bearing has a heating effect. Since the pressure has a sharp decrease close to the

trailing edge, the magnitude of the heat flux increases sharply there (referring to equation (6-
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b)). Comparing Fig.6 with Fig.5, we easily conclude that the viscous dissipation has a smaller

magnitude than the heat conduction even for a small temperature difference.

(2) Effect of the flying height and disk speed:

    From Fig.5, we see that heat flux shows different values in the air bearing and recessed

region, which implies that the heat flux changes with the head/disk interface (HDI) spacing.

In the following cases, we study the relation of the heat flux to the CTE flying height hm.

Note that to change the flying height, we have to change the disk rotation speed

simultaneously if we keep the other parameters the same. Therefore, the heat flux is affected

by both the disk rotation speed and the flying height. Table 2 shows the related flying

characteristics for different cases. The results for heat flux with flying height for ∆T=1°K and

0°C are shown in Fig.7 and Fig.8, respectively.

Table 2    Flying characteristics for different cases

Disk rotation (rpm) Pitch angle (µrad) Roll (µrad) CTE-FH (nm)

4400 136 5 19
4900 148 6 24
5250 155 6 28
5500 160 7 32
6000 169 8 39
6500 177 8 47
7000 184 9 56
7500 189 10 66
8000 194 10 77
8500 197 11 89

    In Fig.7, for ∆T=1 °K, the maximum heat flux (Fig. 7(a)) and average heat flux (Fig. 7(b))

are determined over the whole slider surface. It is seen that both of them increase with the
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decrease of  the flying height under the given temperature difference (Ts−Td=1 °K). The

calculation results also show that the maximum heat flux occurs at the trailing edge where the

air bearing always has the smallest spacing.

(a) (b)

Fig.7  Heat flux vs. central trailing edge flying height (∆T=1 °K)

    In Fig.8, for ∆T=0 °K, the heat flux has negative values which means the heat is transferred

to the slider because of viscous dissipation. Note that the “maximum” in Fig. 8(a) means the

maximum magnitude, or maximum heat flux into the slider. It is seen that this maximum heat

flux increases with the decrease of the flying height. A reason for it may be that the pressure

profile at some points such as the trailing corners of the rear rail (Fig. 6(a)), where usually

there exists a drastic pressure variation at the low flying heights, becomes smoother at the

higher flying height. But for the average heat flux (Fig. 8(b)), its magnitude decreases with

the decrease of the flying height. In other words, the “heating” effect of the air bearing

decreases with the decrease of the flying height.  Since the flying height is proportional to the
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disk speed (Table 2), we can also say the “heating” effect of the air bearing decreases with the

decrease of the disk speed.

(a) (b)

Fig.8  Heat flux vs. central trailing edge flying height (∆T=0 °K)

6. Conclusion

In this report, we solve the N-S and energy equations to get the temperature distribution in the

air bearing and then the heat transfer between the slider and the air bearing. In solving these

equations, we make an assumption that the properties of the air remain the same across the air

bearing because the temperature variation is not significant, so we can decouple the

momentum equation and energy equation and integrate them separately. The results show that

the heat transfer between the slider and air bearing depends on both the heat conduction,

which transfers heat to the air bearing if the slider has a higher surface temperature than the

disk, and viscous dissipation, which transfers heat to the slider. In most cases heat conduction

dominates the heat transfer, and therefore the net result is that heat is transferred from the

slider to the air bearing. Under this condition, the air bearing is regarded as a coolant. But

0 50 100
−7

−6

−5

−4

−3

−2

−1
x 10

4

CTE−FH hm (nm)

m
ax

im
um

 q
 (

W
/m

2)

0 50 100
−2000

−1500

−1000

−500

0

CTE−FH hm (nm)

av
er

ag
e 

q 
(W

/m
2)



19

when the temperature difference is nearly equal to zero, viscous dissipation dominates the

heat transfer and heat is transferred into the slider, so the air bearing acts as a heater. Since the

magnitude of the viscous dissipation is not large, this heating effect is not significant.

Simulation results also show that the heat conduction effect increases with the decrease of the

flying height (or disk rotation speed), but the viscous dissipation effect decreases with the

decrease of the flying height (or disk rotation speed). In other words, the “cooling” effect

increases with the decrease of the flying height (or disk rotation speed).
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