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Abstract

Random rough surfaces are characterized by fractal geometry using a modified two-variable

Weierstrass-Mandelbrot function. This surface model is incorporated into an elastic-plastic con-

tact mechanics analysis of two approaching rough surfaces, and closed form solutions for the

elastic and plastic components of the normal contact force and real contact area are derived in

terms of fractal parameters, material properties, and mean surface separation distance. The ef-

fects of surface topography and material properties on the total deformation force are investigated

by comparing results from two-dimensional and three-dimensional contact mechanics analyses

and elastic and elastic-plastic material behaviors. The developed algorithm yields three-

dimensional fractal surfaces that are representative of engineering rough surfaces. For elastic-

plastic silica surfaces in normal contact and the range of surface interference examined, the inter-

facial force is predominantly elastic and the real area of contact is approximately one percent of

the apparent area of contact or less, depending on the mean interfacial distance.
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1  Introduction

The topography of engineering surfaces has been traditionally considered to be a sta-

tionary random process (Nayak, 1971). Consequently, statistical parameters of the surface height

function, such as the root-mean-square (rms) of the surface height (σ), slope (σ′), and curvature

(σ″), have been used for topography characterization (Greenwood and Williamson, 1966; Nayak,

1973). Greenwood and Williamson (1966) analyzed elastic contact of two rough surfaces by con-

sidering an equivalent rough surface comprising spherical asperities of constant radius (equal to

the average radius of curvature of the original asperities) in normal contact with a flat surface.

Assuming a Gaussian distribution for the asperity heights and uniform distribution of asperities

over the projected in-plane area according to a known areal density, the number of asperity con-

tacts, mean microcontact area, real contact area, and interfacial distance were obtained in terms

of the normal load. Nayak (1973) considered rigid-plastic contact of two Gaussian rough surfaces

and noticed that the Greenwood-Williamson model was not applicable to all microcontact sizes;

hence, the rough surfaces were represented by a narrow-band rough surface and a wide-band

smooth surface. A review of classical elastic-plastic contact models for isotropic and anisotropic

surfaces presented by McCool (1986) has indicated that surface characterization has been pri-

marily based on the surface height distribution function and values of σ, σ′, and σ″.

Experiments by Sayles and Thomas (1978) have shown that the surface topography is a non-

stationary process, and that the corrugation of the surface height may contain a broad bandwidth.

In addition, the determination of σ, σ′, and σ″ depends on the sample size and instrument resolu-

tion or any other experimental filter used in topography data acquisition. For example, in the case

of fractal surfaces, σ′ and σ″ depend on the instrument resolution but not on the sample size,

whereas σ depends on the sample size but is insensitive to the instrument resolution (Majumdar

and Bhushan, 1995). In view of the dependence of previous classical models on scale-dependent

parameters, to perform objective contact mechanics analyses of rough surfaces, it is essential to

develop surface models that are invariant at all length scales.

The power spectra of engineering surfaces produced by random processes, such as cleavage,

solidification, vapor deposition, and directionally unbiased machining, have been observed to

follow inverse power laws over several decades of length scales (Majumdar and Tien, 1990).

This is an inherent behavior of fractal geometry revealing its potential to represent surface fea-
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tures from the microscale to the nanoscale. Fractal geometry has been recently introduced in the

field of contact mechanics to perform scale-independent analyses. Majumdar and Bhushan

(1995) reviewed the traditional and fractal contact mechanics models and attempted to describe

both fractal and nonfractal surfaces by using the structure function and magnitude of σ″ deter-

mined in two orthogonal in-plane directions. However, this method is relatively complex and is

based on difficult-to-obtain experimental data.

An especially difficult problem in contact mechanics analyses of rough surfaces is the

change of the surface shape during deformation. Among the few models dealing with this prob-

lem is the rigid-perfectly plastic contact model of Warren and Krajcinovic (1995) and Warren et

al. (1996) that uses a deterministic Cantor set to represent the effective fractal surface and ac-

counts for volume conservation. Assuming that the material truncated by the opposing smooth

surface flows into the valleys of the noncontacting regions of the rough surface, analytical results

for the contact load that were supported by experimental measurements were obtained for rela-

tively small surface interference; however, discrepancies between analytical and experimental

results were found at relatively large surface interference.

The main objectives of this publication are to introduce a comprehensive contact mechanics

analysis of elastic-plastic rough surfaces characterized by fractal geometry and to present nu-

merical results for the variation of the interfacial contact force and real contact area during quasi-

static approach of the surfaces that elucidate the significance of fractal parameters and material

properties in the deformation at the contact interface

2  Fractal Surface Characterization

Fractal geometry, pioneered by Mandelbrot (1982), is observed in various natural phenom-

ena, such as precipitation, turbulence, and surface topography, and is characterized by continuity,

nondifferentiability, and self-affinity. These mathematical properties are satisfied by the Weier-

strass-Mandelbrot (W-M) function (Berry and Lewis, 1980) given by

w x e eD n i x i

n

n
n( ) ( )( )= −−

=−∞

∞

∑γ γ φ2 1 (1)

where w is a complex function of the real variable x. A fractal profile z(x) can be obtained as the

real part of w(x),
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where D (1 < D < 2) is the fractal dimension of the profile, φn is a random phase, and γ (γ > 1) is

a parameter that determines the density of frequencies in the profile. The right hand side of Eq.

(2) is a superposition of a series of cosine functions with geometrically increasing frequencies.

The random phase φn is introduced to prevent the coincidence of different frequencies at any

point of the surface profile. Based on surface flatness and frequency distribution density consid-

erations (Komvopoulos and Yan, 1997), γ  is set equal to 1.5 in the present study. The approxi-

mate continuous power spectrum, P(ω), of z(x),

    P D( )
ln( )ω

ω γ
= −

1
5 2 , (3)

is an inverse power function of the spatial frequency, ω, which has been found to hold for many

engineering surfaces.

Ausloos and Berman (1985) generalized the W-M function (Eq. (1)) by introducing multiple

variables to account for higher-dimension stochastic processes. In this generalization, the homo-

geneity and scaling properties of the single-variable function are preserved, i.e., the mean square

increment of function w(x), ( ) ( ) ( )V w x w xτ τ= + − 2
, remains independent of x and V(γτ) =

γ2(2-D)V(τ) still holds. Two-variable functions can be used to model fractal surfaces exhibiting

corrugations in all directions. Such a function satisfying the requirements of homogeneity and

scaling has been constructed by Ausloos and Berman (1985) by using a weighted random phase

superposition of ridge-like surfaces with cross sections similar to that given by Eq. (1). The

height function of a fractal surface exhibiting randomness in all planar directions, hereafter re-

ferred to as a three-dimensional (3-D) surface, can be obtained as the real part of the Ausloos-

Berman function,
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(4)

where ρ and θ are the planar polar coordinates of a point on the surface with height z, and are re-

lated to the planar Cartesian coordinates, x and y, by

( )ρ = +x y2 2 1 2
and ( )θ = −tan 1 y x ,
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γ  has the same physical meaning and magnitude as in Eq. (2), and D (2 < D < 3) is the fractal

dimension of the surface. The physical significance of D is the extent of space filling by the

rough surface, with larger values corresponding to denser fillings. For isotropic surfaces, the

value of D can be determined from the slope of the log-log plot of the power spectrum P(ω)

given by Eq. (3) (Wang and Komvopoulos, 1994a), and for anisotropic (and isotropic) surfaces

by using a method proposed by Gagnepain and Roques-Carmes (1986). In both methods, D is

invariant of spatial frequencies. The parameter M represents the number of superposed ridges

used to construct the surface. When M = 1, surfaces with cylindrical corrugations (hereafter

termed two-dimensional (2-D) surfaces) are produced. The anisotropy of the surface geometry is

controlled by the magnitude of Am. For isotropic surfaces, Am = A for all m values; for anisotropic

surfaces, Am assumes different values for different m′s. The arbitrary angle αm is used to offset

the ridges in the azimuthal direction. Since in the present study the ridges are equally offset, αm =

πm/M. The values of the random phase φm,n are uniformly distributed in the interval [0, 2π] based

on a random number generator (Press et al., 1992). The parameter k is a wavenumber which is

related to the sample size by k = 2π/L. In practice, the frequency index n assumes finite values.

Since the lowest frequency of the sample is 1/L, the lower bound of n is limited by the sample

length, L, and can therefore be set equal to zero. In addition, because fractal geometry cannot be

extended below the atomic scale, the highest frequency is set equal to 1/Ls, where Ls is of the or-

der of the atomic distance and is thus assumed equal to 1 A
$

. Hence, the maximum value of n is

( )
n

L Ls

max  =












int
log

logγ

where int [ ⋅ ] denotes the integer part of the number in the brackets. The surface height function

of 3-D isotropic surfaces can be obtained by substituting the above relations of Am, αm, ρ, θ, k,

and n into Eq. (4),
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       (5)

Since A, L, and 2π all have length dimensions, a length parameter G can be defined such that

A= ( )2 2
2

π π G
D( )−

.  Introducing this relationship into Eq. (5) gives
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 As can be seen from Eq. (6), G is a height scaling parameter that is independent of the fre-

quency; thus, it is termed the fractal roughness.

Equation (6) will be used to represent a 3-D isotropic fractal surface in the elastic-plastic

contact mechanics analysis presented below. This function of the surface height provides a de-

terministic means for generating stochastic rough surfaces. The only unknown variables in Eq.

(6) are the scale-independent fractal parameters G and D, which can be determined experimen-

tally. Therefore, this fractal approach has the inherent capability of representing surfaces at vari-

ous length scales, different from those at which the measurements were made.

Figure 1 shows a 1 1  µ µm m×  fractal surface generated from Eq. (6) for D = 2.4, σ = 7 nm

(G = 1.36 × 10-11 m), and M = 10. Although a visually random surface is produced when M > 3, a

circular heterogeneity can be detected in the power spectrum when a relatively small ridge num-

ber is used. The homogeneity of the simulated surface shown in Fig. 1 can be evaluated by ex-

amining the contour plot of the corresponding power spectrum, shown in Fig. 2, obtained by fast

Fourier transform. It is known that isotropic surfaces possess axially symmetric power spectra

(Nayak, 1973). With the exception of two orthogonal high intensity bands along the two fre-

quency axes, the power spectrum shown in Fig. 2 exhibits axial symmetry. These artificial bands

are due to the unmatchness of the opposing boundaries of the simulated surface, and can be

eliminated by adopting a simple technique proposed by Anguiano et al. (1994) that uses the mir-

ror images of a fractal surface with respect to its boundaries to obtain an axially symmetric power

spectrum.

3  Elastic-Plastic Contact Model

In previous elastic-plastic contact mechanics models dealing with fractal surfaces possessing

single-slope and double-slope power spectra (Majumdar and Bhushan, 1991; Bhushan and Ma-

jumdar, 1992), classical Hertz theory was used to determine the elastic contact load at asperity

microcontacts, whereas the load at fully plastic microcontacts was assumed to be proportional to

the real area of contact. However, a clear distinction between truncated and real microcontact ar-
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eas was not provided in these studies. In recent contact mechanics analyses of fractal surfaces,

Wang and Komvopoulos (1994a, 1994b, 1995) distinguished and related the truncated and real

microcontact areas and considered elastic, elastoplastic, and fully plastic deformation of the as-

perities in order to analyze frictional heating at sliding surfaces. In all the above models, rough

surfaces have been represented by 2-D profiles, which is a reasonable approximation for isotropic

surfaces. For anisotropic surfaces, however, a 3-D surface characterization must be used. Thus,

the present study is conducted for random 3-D rough surfaces. To simplify the problem, the sys-

tem of two opposing rough surfaces is replaced by a deformable rough surface with roughness

equivalent to the effective roughness of the two original surfaces and effective Young’s modulus,

( ) ( )[ ]E E E∗ −
= − + −1 11

2
1 2

2
2

1
ν ν , whereν1, ν2 , and E1, E2 are the Poisson’s ratios and

Young’s moduli of the original surfaces, respectively, and a flat (smooth) rigid countersurface.

For isotropic surfaces, the height function of the equivalent rough surface is given by Eq. (6) and

for anisotropic surfaces by Eq. (4). The basic approach for determining the deformation force at

the contact interface comprises the calculation of the forces at asperity microcontacts and the in-

tegration of microcontact forces using the size distribution function developed by Mandelbrot

(1982).

To obtain the deformation force at a microcontact, its interference with the opposing rigid

plane must be determined first. However, in view of Eqs. (4) and (6), it is impossible to obtain a

simple solution for the asperity interference in terms of the microcontact size due to the summa-

tion over m and the presence of random phases. It is therefore necessary to assume spherical as-

perity contacts and derive single-variable equivalent relationships for the two-variable surfaces

represented by Eqs. (4) and (6). This can be accomplished by introducing a factor C(M) to ac-

count for the superposition of M ridges and enforcing the rms roughness of the original 3-D sur-

faces to be equal to that of the equivalent 2-D surfaces. Although the following discussion is for

isotropic surfaces, a similar approach can be adopted to analyze anisotropic surfaces. This will be

discussed briefly at the end of this section.

After introducing C(M) and assuming only one ridge, Eq. (6) becomes
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G
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γ γ φ
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Computations showed that, for a typical value of D = 2.5, C(M) assumes values between 0.85

and 1.15 when M varies in the range of 1 to 100. Thus, in view of the small variation of C(M), it

may be considered that C(M) ≈ 1 and Eq. (7) reduces to

( ) ( )z x L
G

L

x

L

D

D n
n

n

n
n

n

= 



 − −



















−
−

=
∑

( )
( )

, ,ln cos cos
max2

1 2 3
1 1

0

2
γ γ φ

πγ
φ

Since the right hand side of the above equation is a series of cosine functions, a profile with

smaller asperities residing on larger asperities is produced. For an asperity with truncated micro-

contact radius r′ (see Fig. 3), the longest wavelength in the asperity waveform is 2r′. Thus, the

corresponding frequency index is

( )
n

L r
0

2
=

′ln

lnγ

and the cosine term is

( ) ( ) ( )z x G r
x

r
D D

n n0
2 1 2 3

1 12
0 0

= ′ −
′

−











− −( ) ( )
, ,ln cos cosγ φ

π
φ

The asperity interference, δ, is determined by ( )z x0  and is equal to the peak-to-valley amplitude

of the cosine function,

  ( ) ( ) ( )( )δ γ= ′− −2 22 1 2 3
G rD Dln         (8)

The interference of a spherical asperity with the flat surface is related to its radius of curvature, R,

by ( )R r R− + ′ =δ 2 2 2 . Since the asperity radius of curvature is typically orders of magnitude

greater than the asperity height, the latter relationship can be reduced to ′ =r R2 2 δ . In order to

calculate an equivalent radius of curvature of the cosine-shaped asperity, its shape can be ap-

proximated by a circular profile. Then substituting Eq. (8) into the above relationship gives

  
( )

( ) ( ) ( ) ( )
R

a

G

D

D D D
=

′ −

− − −

1 2

5 1 2 2 1 2
2 π γln

       (9)

where a′ is the truncated area of the microcontact (′ = ′a rπ 2 ). From Hertz contact theory, the

elastic force at a microcontact is given by (Johnson, 1987)

∆F
E r

Re =
∗4

3

3

     (10)
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where r is the radius of the real area of the microcontact, a r= π 2 . For a circular elastic micro-

contact, a′ = 2a (Johnson, 1987), thus ′ =a r2 2π . Then the elastic force at a microcontact can be

obtained as a function of a′ by substituting this relationship and Eq. (9) into Eq. (10),

( )

( ) ( ) ( ) ( )∆F G E ae

D

D
D D= ′

−

−
− ∗ −2

3

11 2 2

4 2

1 2 2 4 2

π
γln      (11)

Since the critical interference at yielding, δc, is proportional to ( )R H E* 2
(Majumdar and

Bhushan, 1995), the yielding criterion for plastic microcontact can be written as

 δ λc R
H

E
= 



∗

2

     (12)

where λ is a coefficient. Substituting Eqs. (8) and (9) into Eq. (12), the critical microcontact

truncated area, ′ac , corresponding to δc is obtained as

  ( ) ( ) ( )

( )

′ =




















− − − −
∗

−

a G
E

Hc
D D D

D

2 9 2 2 1 2 4

2 1 2

π λ γln              (13)

Since elasto-plastic deformation is not considered in this study, asperities with truncated areas

larger than ′ac  are elastically deformed, whereas those with truncated areas smaller than ′ac  are

fully plastically deformed. For elastic microcontacts, the contact force is given by Eq. (11),

whereas for fully plastic microcontacts, the contact force is

∆F Hap =

Experiments by Pullen and Williamson (1972) involving a rough metal surface pressed by a

rigid plane demonstrated that plastic flow at microcontacts yielded a uniform increase in surface

height at noncontacting regions. Since for light and intermediate loads the total real contact area

is much smaller than the apparent contact area, a should be slightly greater than a′. Thus, it may

be assumed that

∆F Hap ≈ ′      (14)

The magnitude of ′ac  is determined based on the condition that the microcontact force is con-

tinuous during the approaching process of the surfaces. Hence, at ′ = ′a ac , it is set

( ) ( )∆ ∆F a F ae p= . Thus, from Eqs. (11) and (14), it is found that

( ) ( ) ( ) ( )2 911 2 2 4 2 4 2 2− − ∗ − −= ′D D D
c

DG E a Hlnγ π 
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Combining Eq. (13) with the above equation yields

λ
π

=
9

4

2

Substituting this value of λ into Eq. (13) gives

  
( )

( )
( )

( )

′ =

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D
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4
2 4

2 1 2

π
γln       (15)

Mandelbrot (1982) has found that the number of islands, N, with areas greater than a par-

ticular area, s′, follows the power-law relationship,

( )N s
s

s
L

Ds

′ =
′
′







2

where Ds is the fractal dimension of coastlines and sL′ is the largest island area. This relationship

has been used in previous contact mechanics analyses of fractal surfaces with Ds = D − 2, where

D is the fractal dimension of the rough surface (Majumdar and Bhushan, 1991; Wang and Kom-

vopoulos, 1994a, 1994b, 1995) due to the close fractal resemblance between islands over the sea

level and truncated asperities of rough surfaces. Hence, the truncated asperity size distribution

function can be written as

( ) ( ) ( ) ( )

n a
dN a

da

D

a

a

aL

L
D

′ = −
′

′
=

−
′

′
′





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+1

2

1 2

     (16)

where aL′ is the size of the largest truncated microcontact area at a given mean surface separation

distance. The number of microcontacts with truncated areas between a′ and a′+da′ is given by

( )n a da′ ′ .

The total contact force can be determined by integrating the forces ( )∆F ae ′  and ( )∆F ap ′

using the size distribution function, ( )n a′ . If at a given interfacial distance ′ ≤ ′a aL c , all the as-

perities are fully plastically deformed. Then the total deformation force, Ft, is equal to the total

plastic deformation force, Fp,

F F HSt p= = ′

where S′ is the total truncated area at a given mean surface separation distance, and the total

elastic deformation force, Fe, is zero. If ′ > ′a aL c , both elastic and fully plastic microcontacts ex-

ist; thus,
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( )F F a n a dae ea
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c
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and

F F Ft e p= +

Substituting Eqs. (11) and (16) into Eq. (17) yields

( )
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Integration of Eq. (19) leads to
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and

( )F G E a
a

ae L
L

c

= ′
′
′







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Introducing Eqs. (14) and (16) into Eq. (18) gives

( )

F
D

D
Ha

a

ap L
c

L

D

=
−

−

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
 ′

′
′









−
1

3

3 2

     (22)

As can be seen from Eqs. (20), (21), and (22), the contact forces are functions of ′aL  and ′ac .

At a given mean surface separation distance, the truncated area of the largest microcontact, ′aL ,

can be determined from the total truncated area of the equivalent rough surface, S′, by

( )′ = ′ ′ ′
′

∫S a n a da
aL

0

Substituting Eq. (16) into the above relationship yields

  ′ =
−

−




 ′S

D

D
aL

1

3
     (23)

The total truncated area, S′, can be determined from numerical integration of the truncated areas

of the rough surface, and ′aL  can be obtained from Eq. (23).
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In contact analyses of rough surfaces, the total real area of contact, S, and its elastic and

plastic components, Se and Sp, are of significant importance. When ′ ≤ ′a aL c , all microcontacts are

in the fully plastic contact state; thus,

( ) ( )S S an a da a n a da
D

D
a Sp

a a

L

L L

= = ′ ′ = ′ ′ ′ =
−

−




 ′ = ′

′ ′

∫ ∫0 0

1

3
and Se = 0

When ′ > ′a aL c , both elastic and fully plastic microcontacts exist at the interface, and the total

elastic and plastic contact areas are given by

( ) ( )
( )

S an a da
a

n a da
D

D

a

a
ae a

a

a

a
c

L

D

L
c

L

c

L

= ′ ′ =
′

′ ′ =
−

−




 −

′
′





















′
′

′

′

′
−

∫ ∫2

2
3 2

2

1

6 2
1

and

( ) ( )
( )

S an a da a n a da
D

D

a

a
ap

a a
c

L

D

L

c c

= ′ ′ = ′ ′ ′ =
−

−






′
′







 ′

′ ′
−

∫ ∫0 0

3 2
1

3

Hence,

( )

S S S
D

D

a

a
ae p

c

L

D

L= + =
−

−




 +

′
′





















′
−

1

6 2
1

3 2

From the previous analysis, it can be seen that both the total contact force and the total real

area of contact are functions of ′ac , ′aL , and S′. According to Eq. (15), ′ac depends on the surface

topography and material properties and is invariant of the interfacial distance, whereas Eq. (23)

indicates that ′aL  is proportional to S′, which depends on the surface topography and interfacial

distance.

Although the previous analysis for the contact force and contact area is for isotropic sur-

faces, a similar derivation can be followed for anisotropic surfaces. To elaborate on this, the ex-

pression for the anisotropic surface (Eq. (4)) is first written as

     ( )( ) ( )[ ]{ }z
M

A
A

A
k km

m

M
n D

m n
n

m m n
n

( , )
ln

cos cos cos, ,ρ θ
γ

γ φ γ ρ θ α φ= 



 − − +

=

−

=−∞

∞

∑ ∑
1 2

1
11

3
,    (24)

and, subsequently, Eq. (24) is modified by introducing a factor C(M) and maintaining only one

ridge function such that the rms roughness of the surface represented by Eq. (24) is identical to

that of the modified relationship, i.e.,
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( ) ( ) ( )( ) ( )[ ]z x C M A k k xn D

n
n

n
n

( ) ln cos cos, ,= − −
−

=−∞

∞

∑1

1 2 3

1 1γ γ φ γ φ      (25)

Computations similar to those performed for isotropic surfaces can then be performed for the

anisotropic surface assuming 2 < D < 3 and 1 < M < 100 to determine the range of C(M). After

the median value of C(M) is substituted into Eq. (25), the asperity interference, contact force, and

real contact area can be obtained following a procedure similar to that presented above for iso-

tropic surfaces.

4  Numerical Results

Results for the elastic and plastic components of the deformation force and real contact area

based on the above analysis are presented in this section for rough silica surfaces, the basic

structural material of microelectromechanical systems where contact phenomena involving high

adhesion (stiction) forces are of great concern. Unless otherwise stated, simulation results are

given for 1 µm × 1 µm surfaces with M = 10, equivalent rms roughness σe = 7 nm (G = 1.36 ×

10-11 m), and fractal dimension D = 2.4. The material properties of silica are E = 72 GPa, ν =

0.17, and H = 5.5 GPa (Lin and Pugacz-Muraszkiewicz, 1972; McLellan and Shand, 1984). The

forces are converted to average contact pressures by dividing them by the apparent contact area,

and the real contact areas are normalized by the apparent contact area. In a previous publication

by Komvopoulos and Yan (1997), a 2-D contact mechanics analysis of elastic rough surfaces was

presented, and important insight into the evolution of the repulsive force due to deformation of

the asperities and the van der Waals, capillary, and electrostatic attractive forces at the contact

interface was obtained. In the present study, however, elastic-plastic material behavior and 3-D

surface topography are introduced to develop a more rigorous contact mechanics analysis of

rough surfaces. Results from both analyses are presented below for comparison.

In order to examine the effect of the material behavior on the resulting contact force, nu-

merical results for the average contact pressure versus mean surface separation distance are pre-

sented in Fig. 4 for elastic and elastic-plastic 2-D surfaces possessing identical geometry (M = 1,

G = 1.16 × 10-11 m). A lower contact pressure is produced in the case of elastic-plastic response.

For both material behaviors, the incipient mean surface separation distance is approximately

equal  to 2.6 σe and the contact pressure increases rapidly by about two orders of magnitude in
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the early stage of contact and levels off at distances less than about 2σe. This behavior is attrib-

uted to the rapid increase of the real contact area at the incipience of surface contact and its rela-

tively gradual variation at smaller surface separation distances.

Figures 5 and 6 show results for the average contact pressure and real contact area versus

mean surface separation distance for 3-D fractal surfaces consisting of silica. The corresponding

elastic and plastic components are also plotted to reveal the dominant deformation mode. Figure

5 shows that, for the simulated range of surface distance, elastic deformation dominates at the

interface of contacting rough silica surfaces, except at the initial contact distances. The plastic

deformation force component comprises only about 10 percent of the total contact force. Al-

though the pressure distributions shown in Fig. 5 exhibit an overall trend similar to that shown in

Fig. 4, there are two profound differences worth mentioning. The incipient mean surface separa-

tion distance is equal to about 3.6σe for the 3-D surfaces and the contact pressure is markedly

lower than those shown in Fig. 4. Figure 6 shows that the real contact area is less than 1.1 percent

of the apparent contact area when the interfacial pressure is less than 40 MPa, as evidenced from

Fig. 5. These results indicate that the real contact area is a very small fraction of the apparent

contact area. This is generally true for relatively low and moderate contact pressures that are

typically encountered at interfaces of microsystems, such as magnetic recording devices and mi-

croelectromechanical systems.

5  Conclusions

 A contact mechanics analysis of elastic-plastic rough surfaces characterized by fractal ge-

ometry was presented. Based on the power spectrum of the surface height function, it was dem-

onstrated that random rough surfaces can be generated by using the proposed fractal model. The

theoretical analysis yields relationships of the total contact force and real contact area in terms of

surface separation distance, fractal parameters, and material properties, and provides new insight

into the effects of surface topography and material behavior on the evolution of elastic and plas-

tic deformation at the contact interface. Elastic-plastic material behavior yields lower contact

pressures compared to purely elastic behavior. The contact pressure and incipient mean surface

separation distance corresponding to 3-D elastic-plastic rough surfaces are smaller and greater,

respectively, than those of 2-D surfaces possessing the same material properties and rms rough-
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ness. In view of 3-D elastic-plastic contact simulation results for rough silica surfaces, the real

contact area is a remarkably small fraction of the apparent contact area and, for the range of sur-

face separation distance considered, elastic deformation is predominant at the contact interface.
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Fig. 1 Simulated three-dimensional fractal surface with M = 10, D = 2.4, and G = 1.36 × 10-11

m (σ = 7 nm)

Fig. 2 Contour plot of the power spectrum of the surface shown in Fig. 1

Fig. 3 Schematic of a microcontact established between an asperity on the composite rough

surface and the opposing rigid plane
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Fig. 4 Average contact pressure versus mean surface separation distance for two-dimensional

elastic and elastic-plastic silica surfaces with M = 1, D = 2.4, and G = 1.16 × 10-11 m (σe

= 7 nm)

Fig. 5 Elastic, plastic, and total average contact pressures versus mean surface separation dis-

tance for three-dimensional elastic-plastic silica surfaces with M = 10, D = 2.4, and G =

1.36 × 10-11 m (σe = 7 nm)

Fig. 6 Elastic, plastic, and total real contact areas versus mean surface separation distance for

three-dimensional elastic-plastic silica surfaces with M = 10, D = 2.4, and G = 1.36 ×

10-11 m (σe = 7 nm)














