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Abstract

As the density of data on magnetic disk drives increases, so does the need for more precise position control

of the read/write head, especially in the presence of internal and external disturbances. This is achieved

by measuring the acceleration of the drive and feeding the sensor information forward to the actuator. By

matching the electromechanical impedance between the disturbance and the position error, the feedforward

controller can cancel the e�ects of the disturbance. Two techniques are presented for designing the feed-

forward controller. The �rst method is an in�nite impulse response �lter that is designed o�-line, and the

second is a �nite impulse response �lter that is adapted on-line using the �ltered-x LMS algorithm. Both

techniques are tested through shake table experiments, resulting in reductions of the position error signal

between 50% and 95%.
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1 Introduction

Despite amazing performance improvements in the recent past, the disk drive industry continues to search

for ways to make its products smaller, faster, and able to hold more data. Key elements in this search are

increasing radial density, or the number of concentric data tracks stored on the disk surface, and decreasing

access time, the time it takes to move from the current track to the desired track. This requires, among other

things, more accurate positioning of the read/write head, often in the presence of signi�cant disturbances.

These disturbances can be in the form of shock or vibration, while the drive is seeking or following a track.

Disk drives are being used in increasingly demanding environments. For example, laptop and handheld

computers are becoming even more popular. New applications such as cellular phones are being investigated.

With the advancement of automation in industry, even traditional desktop computers are subjected to the

rigors of the manufacturing oor. All of these situations elevate the level of external disturbances to which

the drives are subjected.

To compound this problem, many of the smaller form factors have abandoned the use of shock mounts

that help to isolate the drives from such disturbances. Those drives that have retained the shock mounts

are more susceptible to wind-up, the internal reaction force due to actuator motion, which is especially

signi�cant during seeks. To decrease seek time, drive engineers are pushing closer to time-optimal, or bang-

bang, control. This type of control results in large reaction forces and excites modes of the drive dynamics

that have been neglected in the past.

The technique described in this paper uses accelerometers to measure the motion of the drive, and then

feeds this information forward to the actuator controller to coordinate the read/write head position with the

desired track position.

A number of authors have suggested the use of accelerometers for disturbance rejection in the past. Aruga

et al. (1990) employed them on a dual, linear actuator system for a 10.5 inch form factor drive. They were

concerned with the e�ects on the track following of one head as the second head performed a seek. Some

dynamics of the drive were included, and robustness to modeling parameters was considered analytically.

An experimental seek result was shown.

Davies and Sidman (1993) developed a constant, single-parameter, acceleration feedforward controller with

low-pass �ltering on the accelerometer output. Again, an analysis of the robustness to parameter variations

was presented, with experimental results for a seek test and an external impulse disturbance.

Kempf (1994) used an accelerometer on a compact disk player to control the focus length of the reading lens.
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He considered the �rst bending mode of the disk with simple models for the motor and shock mounts. The

�ltered-x LMS (least mean squares) adaptation algorithm was applied to the controller parameters.

Although drive companies have included low-grade accelerometers as shock sensors for shutdown, until

recently the cost of quality-signal accelerometers has prohibited their use for control. However, advancements

in sensor technology have lowered prices to a level that makes including these accelerometers in a production

drive feasible. Examples of such sensors were used in the experiments. Furthermore, the �eld of microsensors

may soon provide low-cost accelerometers that, due to their small size, can be used in more sophisticated

schemes.

Section 2 follows with a description of the disk drive system, the nominal feedback controller, and the

experimental platform. Section 3 describes the �xed-parameter feedforward design and the results achieved

using this technique. Then the adaptive feedforward control method is presented in Section 4 with the results

of its implementation. Conclusions are given in Section 5, and a convergence proof for the �ltered-x LMS

algorithm is included in the Appendix.

2 Disk Drive System

The disk drive used for experimentation was a 5.25 inch form factor with 2000 tracks per inch and a disk

spindle speed of 3600 rpm. (See Fig. 1 for a schematic of the drive.) The drive base was attached to a

mounting frame with shock mounts. The drive contained a stack of 8 disks. One disk side was dedicated to

servo information to generate the position error signal (PES) between the read/write head and the desired

track. The rotary actuator was composed of a voice coil motor (VCM) and the bearing-supported actuator

arm with the read/write head and its suspension system.

The drive frame was mounted on a rotary shaker system that provided the external disturbance. The

drive was situated so that it rotated about the actuator axis. This con�guration transmitted the maximum

disturbance to the read/write head. As shown (exaggerated) in Fig. 2, the disturbance to the base caused

a relative displacement between the data track and the position of the head. It was this displacement that

acceleration feedforward control was designed to minimize.

Two linear accelerometers were mounted on the drive base to measure the tangential components of the

acceleration, and were used to calculate the angular acceleration of the drive base. The accelerometer signal

was sent through a low-pass �lter with a -3 dB point of 1 kHz before it was received by the feedforward

compensator.
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Figure 3: Comparison of the Measured and Modeled Open Loop Frequency Responses

The plant model included the shock mounts, base, and actuator. The damping and sti�ness of the actuator

bearing had prominent e�ects. Higher frequency actuator arm resonances were identi�ed but did not signif-

icantly a�ect the experimental results. A time delay of approximately 150 �s contributed additional phase

lag to the system. It was not possible to measure the plant frequency response directly, but the plant model

was veri�ed through the measurement of the open loop transfer function as described below.

The disk drive was equipped with a factory-installed analog feedback controller. Before experimentation, the

analog controller was switched o� and replaced with a digital controller. The digital feedback controller was

a lead-lag �lter that resulted in an open loop gain crossover frequency of 635 Hz. The feedback controller

was designed in continuous time and then converted to discrete time using the bilinear transformation.

The open-loop frequency response was calculated from the known digital controller and the modeled plant,

and compared to the measured open-loop frequency response as shown in Fig. 3. Frequency response mea-

surements were obtained with a Hewlett-Packard dynamic signal analyzer.

2.1 General Control Structure

A block diagram of the plant and control loops is shown on the next page in Fig. 4, reproduced from (White

and Tomizuka, 1995). The variablesKa, K� , and Kpes represent the gains of the transconductance ampli�er,

motor torque constant, and position error signal. The dynamics of the actuator between the motor torque �

and the head position �head are contained in the transfer function G�h. The symbols G�b and Gbt represent
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Figure 4: Block Diagram of Plant and Control System

the transfer functions from the disturbance to the base acceleration and from the base acceleration to the

desired track position �track, respectively.

The nominal closed loop system consisted of the drive and the feedback controller, Gc. The drive sent the

PES to the feedback controller, which calculated the required input to the actuator.

The measurement of the base acceleration was passed through a low-pass �lter (LPF) to the feedforward

controller Gff . The feedforward controller calculated the additional control input v̂ that was required due to

the disturbance to the base Tdist, and this signal was added to the actuator input calculated by the feedback

controller.

It should be noted that this technique was not pure feedforward. Because of the reaction torque of the

actuator, there was a feedback component of the output of the feedforward controller. However, due to the

ratio of the masses of the actuator and the base, the feedforward component dominated, and the feedback

component did not signi�cantly a�ect stability.

The feedforward controller was designed to match the electromechanical impedance between the base accel-

eration and the PES. By ignoring the torque feedback e�ects, the block diagram of Fig. 4 may be rearranged

to appear as Fig. 5. The reference transfer function Gref represents the dynamics to be canceled by Gff ,

and is given by

Gref =
Gbt

KaK�G�h

: (1)
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The transfer function Gout represents additional dynamics before the PES,

Gout =
KaK�KpesG�h

1�KaK�KpesG�hGc

: (2)

From Fig. 5, it can be seen how the proper choice of Gff can cancel the disturbance e�ects. Note that v is

a mathematical artifact, not a physical signal in the system, and therefore could not be measured.

2.2 Experimental Implementation

During testing, the disk drive described previously was connected to a digital control unit. (See Fig. 7

for a diagram of the experimental system.) The digital control unit included a TMS320C30 digital signal

processor (DSP) that was used to calculate the feedback and feedforward control inputs for the drive. Also

included were analog to digital converters (ADC) for the accelerometer signal and PES, digital to analog

converters (DAC) for the control inputs to the drive and signals for analysis, and a LPF for smoothing the

VCM command signal.

A personal computer was used to run an interactive system control program that allowed the user to specify

the operating mode of the drive. A second computer ran the DSP debugger software with an XDS 510

emulator. An external hardware interrupt signaled the controller sampling period of 50 �s.

3 Fixed-Parameter Feedforward Controller

The �rst controller design method tested was a simple �xed-parameter, in�nite impulse response (IIR) �lter.

The expected value of Gff was determined through the use of the model information. This result was

veri�ed through experimental measurements. Recall that the signal v shown in Fig. 5 is not measurable.

Because of this, the frequency response of Gff had to be determined indirectly. To begin, Gwo = GrefGout

was measured with the feedforward controller turned o�. Then the frequency response Gw from the base

acceleration ��base to the PES was measured with a nominal feedforward controller Gff;nom in place. Thus,

Gout could be calculated as (Gwo � Gw)=Gff;nom. Finally, the desired Gff was calculated as Gwo=Gout.

The modeled and measured results for Gff are shown in Fig. 6. As with Gc, the transfer function Gff was

designed in continuous time and converted to discrete time using the bilinear transformation. A third-order

model was found to be adequate for Gff .
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Figure 8: Magnitude of Experimental Frequency Response from Base Acceleration to PES without and with

Fixed-Parameter IIR Feedforward Control

3.1 Fixed-Parameter Feedforward Controller Experimental Results

To test the e�cacy of the feedforward control technique, comparisons of the position error signal with and

without the acceleration information were made. The drive was put into track-following mode. A swept-sine

was sent to the shaker system that generated an acceleration of approximately 1 G. This led to position

errors on the order of 1 �m for the case with feedback control only, which is approximately the limit for

reading and writing on a disk with 2000 tracks per inch. For higher density disks, this limit will obviously

decrease.

Fig. 8 shows the frequency response between the acceleration of the drive and the PES. Between 40 Hz and

400 Hz, the PES was reduced from 50% to 90% using the �xed-parameter IIR feedforward controller. The

response above and below this range was relatively una�ected. Note that in all cases, the measured PES

also contained repeatable runout components due to eccentricities of the drive that were not induced by the

disturbance.

Sample time traces are shown in Figs. 9-12 for frequencies of 60 Hz and 200 Hz. At 60 Hz, the PES was 1.36

�m without feedforward control and 0.55 �m with the �xed-parameter IIR feedforward controller. For 200

Hz, the error amplitudes were 1.42 �m and 0.39 �mwithout and with the feedforward controller, respectively.

These correspond to reductions of 59% and 72%, which agree with the transfer function results.

4 Filtered-x LMS Adaptation Algorithm

Experimentation with the �xed-parameter design showed that performance of the feedforward controller was

heavily dependent upon accurate modeling of the system. In mass-produced products such as disk drives,

variations in system parameters between units are common. Additionally, the dynamics of a single drive are
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Figure 9: Experimental Time Trace without Feedforward Control at 60 Hz

Figure 10: Experimental Time Trace with Fixed-Parameter IIR Feedforward Control at 60 Hz
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Figure 11: Experimental Time Trace without Feedforward Control at 200 Hz

Figure 12: Experimental Time Trace with Fixed-parameter IIR Feedforward Control at 200 Hz
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known to vary with age and use. These changes can be long term due to extended wear or short term due

to such factors as thermal e�ects, although time scales are typically long enough that the system may be

modeled as time-invariant. To combat the problems associated with parameter variations, adaptation on the

feedforward controller was applied using a model reference version of the �ltered-x LMS technique described

in (Widrow and Stearns, 1985).

The �ltered-x LMS algorithm is a modi�cation of the least-mean square (LMS) algorithm, a simple gradient

technique. The �ltered-x LMS algorithm switches the typical order of the adaptive �lter and the plant

dynamics in an e�ort to reduce the e�ects of the plant noise on the adaptation. The �ltered-x LMS algorithm

has been used extensively in the �eld of active noise control (Fuller and von Flotow, 1995; Elliott et al., 1987;

Ren and Kumar, 1989).

4.1 Adaptive Feedforward Controller Algorithm Details

The adaptive feedforward control algorithm follows the same basic idea as the �xed-parameter algorithm.

The goal is to match the transfer function Gref of the physical system with the feedforward controller Gff .

For an FIR �lter, Gff takes the form

Gff (k; q
�1) = w0(k) +w1(k)q

�1 + :::+wN�1(k)q
�(N�1) (3)

where the parameters wi(k), or tap weights, at time k are adjusted on-line via the �ltered-x LMS algorithm,

and q�1 represents the one-step delay operator. The tap weights are adjusted in the direction that minimizes

the expectation of the squared error with constant gain �, or

w(k + 1) = w(k) � �
@

@w(k)
(E["2(k)]) (4)

where w(k) represents the vector of tap weights, E denotes the expectation, and "(k) is the PES. Calculating

the gradient @
@w

results in

wi(k + 1) = wi(k) + 2�E["(k)Gout(q
�1)��base(k � i)]: (5)

This is the desired update law. However, the expectation is not known, nor is the transfer function Gout.

Thus, some approximations must be made. The transfer function Gout is replaced with an a priori estimate

Ĝout, and the current value of "(k)Ĝout(q
�1)��base(k) is used in place of the expected value. This results in

an actual update law given by

wi(k + 1) = wi(k) + 2�"(k)Ĝout(q
�1)��base(k � i): (6)
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Figure 13: Impedance Matching for Feedforward Controller Design with Adaptive Feedforward Control

From equation 6 it can be seen that the �ltered-x LMS algorithm is of the standard recursive adaptation

form with "(k) as the modeling error and Ĝout(q
�1)��base(k � i) as the regressor.

4.2 Discussion of Adaptive Algorithm

Using an a priori estimate of Gout may seem to defeat the purpose of the adaptation. However, it has been

shown experimentally that even a poor estimate of Gout is generally acceptable (Elliott et al., 1987; Ren

and Kumar, 1989; Widrow and Stearns, 1985). The condition on Ĝout for convergence of the �ltered-x

LMS algorithm is that Ĝout=Gout is strictly positive real (SPR). The convergence proof is presented in the

Appendix.

It is possible to expand the algorithm so that the transfer function Ĝout is included in the adaptation, and to

include more complicated methods for estimating the expectation. However, this increases the computation

time and was not performed in the results presented here.

Fig. 13 shows how the adaptation algorithm may be added to the feedforward technique shown in Fig. 5,

where the use of Ĝout is included implicitly in the parameter adaptation algorithm (PAA). The �ltered-x

LMS algorithm is appealing for this application because it is simple and has very few computations. This

is due mainly to the fact that it uses a constant adaptation gain. Disk drive control systems typically have

little space or time to run complicated processes. In addition, the �ltered-x LMS algorithm is designed to

decrease the e�ects of noise. Using an FIR �lter is also helpful in decreasing noise sensitivity, and FIR �lters

are always stable. The stability of IIR �lters is dependent upon their parameters, which often means that

the algorithmmust include extra calculations to check the stability of the IIR �lter before it is implemented.

This is not necessary with an FIR �lter.

13



Figure 14: Magnitude of Experimental Frequency Response from Base Acceleration to PES without and

with Adaptive FIR Feedforward Control

There are some drawbacks to this algorithm. Because the adaptation gain is constant, this technique

converges more slowly than some more complicated algorithms and there is no inherent signal normalization.

Also, FIR �lters typically require more parameters than IIR �lters to describe the same frequency response.

4.3 Adaptive Feedforward Controller Experimental Results

The same experimental tests were run for the �ltered-x LMS algorithm that were run for the �xed-parameter

design. Fig. 14 shows the magnitude of the frequency response from the disturbance to the PES with the

adaptive feedforward controller compared to the case without feedforward. The PES is reduced between

55% and 95% over the range of 15 Hz to 400 Hz. Compare these results to those shown in Fig. 8. Note

that the peformance has been improved with the addition of the adaptation, especially in the low frequency

region.

Although the FIR �ltered-x LMS method is computationally e�cient for an adaptation algorithm, it still

requires more computations than the �xed-parameter scheme. The computation time for the adaptive

algorithm is dependent upon the number of parameters included in the FIR �lter. Experimentation showed

that the optimal number of tap weights was approximately 40, so the sampling time for the adaptive case

was increased to 100 �s. This is still quite reasonable for disk drive applications, as most sample in the 5 kHZ

to 10 kHz range. Using fewer parameters at 50 �s sampling, or more parameters at sampling times of 100

�s and greater, did not signi�cantly improve the results. Widrow et al. (1976) have shown that increasing

the number of parameters does not always improve performance. Sampling the �xed-parameter controller

at 100 �s showed little change from the results presented previously.

PES time responses are shown in Figs. 15-18. Fig. 15 and Fig. 17 show the e�ects of the disturbance without

feedforward control to be 3.6 �m at 40 Hz and 6.0 �m at 100 Hz. Figs. 16 and 18 show the PES values
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for the same disturbances with the �ltered-x LMS feedforward control in place. Initially, the FIR �lter

parameters are set equal to zero and there is no disturbance. After the disturbance begins, the feedforward

parameters are allowed to adapt to their steady state values. After some transient behavior, the PES is

reduced to approximately 1.3 �m at both 40 Hz and 100 Hz. This is an improvement of 63% for the 40

Hz disturbance and 78% for the 100 Hz disturbance. The value of the adaptation gain, � = 1:5 � 10�7,

used in the experiments shown was a fairly moderate value. The rate of convergence can be improved by

increasing the value of �, but at the expense of robustness to the magnitude of the disturbance. There

are some conditions on the magnitude of the adaptation gain for convergence of the algorithm, which are

discussed in the Appendix.

5 Conclusions

The e�ects of disturbances on disk drive performance and a control method to reduce these e�ects were

described. This technique used accelerometers to measure the acceleration of the drive and a feedforward

�lter to send a canceling signal to the drive actuator. Two di�erent implementations of the feedforward

�lter were used. The �rst was a �xed-parameter IIR �lter. The second was an FIR adaptive �lter using

the �ltered-x LMS algorithm. These techniques were implemented experimentally using a digital signal

processor to calculate the control, and a shake table to provide the disturbance. Results demonstrated that

acceleration feedforward was e�ective in reducing the position error of the drive actuator due to disturbances.

A comparison between the two feedforward controllers showed that the adaptive controller gave better results,

and can adapt to variations in the drive parameters, but at the cost of increased computation.
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A Convergence Proof for the Filtered-x LMS Adaptive Algorithm

A.1 Algorithm and Notation

Consider the �ltered-x LMS algorithm as shown in Fig. 19, which is essentially Fig. 13 with some slight manipulation

for ease of analysis. Then v̂(k), the output of Gff for input ��base(k), may be written as

v̂(k) = [w0(k); :::;wN�1(k)][��base(k); :::; ��base(k �N + 1)]T (7)

= w
T (k)�(k) (8)

and the output of Gout for input v̂(k) is g(k) = Gout(q
�1)v̂(k).

A key assumption of the �ltered-x LMS algorithm is that Gout and Gff commute, at least approximately, which can

be justi�ed in the case of small adaptation gain. This implies that

g(k) =
�
Gout(q

�1)�T (k)
	
w(k) = h

T (k)w(k): (9)

Now de�ne the error "(k) and the mean square error �(k) as

"(k) = d(k)� g(k) (10)

�(k) = E["
2

(k)] (11)

where d(k) is the desired value. Let "2(k) serve as the estimate of its expectation �(k). Thus the estimate of r(k),

the gradient of �(k), is

r̂(k) =
@"2(k)

@w(k)
= �2h(k)"(k): (12)
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However, the vector h(k) is not available. Instead, use the modeling approximation ĥ(k) = Ĝout(q
�1)�(k). This

results in

r̂(k) = �2ĥ(k)"(k): (13)

The update law for the parameters of Gff is made in the opposite direction of the approximated gradient

w(k+ 1) = w(k) + 2�ĥ(k)"(k): (14)

A.2 Solution for the Optimal Filter Weights

Squaring equation 10 and substituting for g(k) results in

"
2(k) = d

2(k) +w
T (k)h(k)hT (k)w(k)� 2d(k)hT (k)w(k): (15)

Assume that "(k) is stationary and that d(k) and �(k) are jointly stationary. Then for constant w, taking the

expectation leads to

E["2(k)] = E[d2(k)] +w
T
E[h(k)hT (k)]w� 2E[d(k)hT (k)]w: (16)

De�ne R = E[h(k)hT (k)] and p = E[d(k)h(k)]: Note that R is positive semi-de�nite, so the eigenvalues of R are

real and non-negative. Typically, R will be positive de�nite, in which case the eigenvalues are positive. Substituting

for R and p, equation 16 becomes

� = E["2(k)] = E[d2(k)] +w
T
Rw� 2pTw (17)

and the gradient can be calculated as

r =
@�

@w
= 2Rw� 2p: (18)

Note that due to the stationarity assumptions, R, p, �, and r are all constant with respect to k. Setting r = 0 and

solving for the optimal weights w = w� results in

w
� = R

�1
p (19)

assuming that R is positive de�nite, and therefore nonsingular. Substituting these values into equation 17 gives the

minimum mean square error

�min = E[d2(k)]� pTR�1
p: (20)

A.3 Solution for the Converged Filter Weights

De�ne R̂ = E[ĥ(k)hT (k)] and p̂ = E[d(k)ĥ(k)]: Assume that

F (q�1) =
Ĝout(q

�1)

Gout(q�1)
(21)
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is strictly positive real (SPR), then

Re(F (e
�j!

)) > 0 8! (22)

and R̂ is positive semi-de�nite. To see this, note that

R̂ = E[fF (q�1)h(k)ghT (k)]: (23)

Consider any z 2 RN , the set of real N vectors, then

z
T
R̂z = z

T
E[fF (q�1)h(k)ghT (k)]z (24)

= E[ ~�(k)�(k)] =
1

2�

Z �

��

F (e�j!)���(!)d! (25)

where �(k) = hT (k)z and ~�(k) = zT fF (q�1)h(k)g are scalars, and ���(!) is the spectral density of �(k). Since

���(!) and E[ ~�(k)�(k)] are real

z
T
R̂z =

1

2�

Z �

��

Re(F (e�j!))���(!) d! (26)

but Re(F (e�j!)) > 0, and ���(!) � 0, therefore zT R̂z � 0: R̂ and p̂ are constant with respect to k, and typically

R̂ will be positive de�nite. Assuming that R̂ is positive de�nite, de�ne

ŵ = R̂
�1
p̂: (27)

A.4 Filtered-x LMS Convergence Proof: Constant Adaptation Gain

The convergence proof for the �ltered-x LMS algorithm presented in this section follows the proof for the LMS algo-

rithm given in (Widrow and Stearns, 1985). To analyze the convergence of w(k), take the expectation of equation 14

E[w(k+ 1)] = E[w(k)] + 2�E[ĥ(k)"(k)] (28)

= E[w(k)] + 2�E[ĥ(k)d(k)� ĥ(k)hT (k)w(k)]: (29)

If the common, simplifying assumption that �(k) and w(k) are uncorrelated is made (Widrow et al., 1975), then

E[ĥ(k)hT (k)w(k)] = R̂E[w(k)]: (30)

Substituting R̂ and p̂ into equation 29,

E[w(k+ 1)] = (I� 2�R̂)E[w(k)] + 2�R̂ŵ (31)

where I is the identity matrix. Let Q̂ be the similarity transformation matrix such that

Q̂
�1
R̂Q̂ = Ĵ (32)
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where Ĵ is the Jordan form of R̂. Now, transform equation 31 to the principal coordinate system, �rst by the

translation w(k) = u(k) + ŵ,

E[u(k+ 1)] = (I� 2�R̂)E[u(k)] (33)

and then by the rotation u(k) = Q̂u0(k),

E[u0(k + 1)] = (I� 2�Ĵ)E[u0(k)]: (34)

Since the eigenvalues �i of Ĵ are the diagonal elements, the eigenvalues of (I � 2�Ĵ) also lie on the diagonal. The

eigenvalues of R̂, and therefore Ĵ, are positive. Thus, the system described by equation 34 is stable if

j1� 2��ij < 1 (35)

for i = 1; :::;N or if

0 < � <
1

�max

(36)

where �max is the maximum eigenvalue of Ĵ and R̂. Note that

�max � tr[Ĵ] = tr[R̂] (37)

thus, convergence of the mean is assured if

0 < � <
1

tr[R̂]
(38)

since this implies

lim
k!1

E[u0(k)] = lim
k!1

E[w(k)� ŵ] = 0: (39)

Since ��base(k) is assumed to be stationary,

tr[R̂] = N � E[fĜout(q
�1)��base(k)gfGout(q

�1)��base(k)g] (40)

= N � E[ĥ(k)h(k)] (41)

or N times the �ltered input signal power. This is a convenient, if possibly conservative, estimate of �max. Since

the signal h(k) is not available, use the average value of ĥ2(k) for the estimate of E[ĥ(k)h(k)]. Widrow and Stearns

(1985) suggest a value of � approximately equal to one-tenth of the maximum value given by equation 38. Note that

due to the trade-o�s between fast convergence and sensitivity to noise, the maximum value of � is rarely the optimal

value (Benveniste and Ruget, 1982; Reason and Ren, 1993).

Using Ĝout in place of Gout for calculating the bound on � limits the magnitude of the allowable modeling error in

Ĝout. Considering equations 38 and 40, it is evident that there is an inverse relationship between the accuracy of the

estimate of the bound on � and the size of the Ĝp magnitude error. To set � close to its maximum value, an accurate

estimate of the magnitude of Gp is required. However, as stated above, it is typical to use a value of � signi�cantly

lower than the maximum. This relaxes the requirement on the estimate of the magnitude of Gp.
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The other requirement on the estimate Ĝp is the SPR condition stated previously. The SPR condition limits the

phase error in Ĝp, since it is equivalent to the condition

�90
�
< 6 (Gp(e

�j!
))� 6 (Ĝp(e

�j!
)) < 90

�
8! (42)

where 6 (G(e�j!)) denotes the phase angle of G(e�j!). Thus, there is a requirement for the magnitude estimate of Gp

and a requirement for the phase estimate of Gp to achieve convergence of the mean. The SPR condition of equation 22

is not terribly restrictive, and if � is chosen to be near one-tenth of its maximum, neither is the requirement on the

Ĝp magnitude error.

Convergence of the �ltered-x LMS algorithm may also be shown using the ODE method introduced by Ljung in

(Ljung, 1977). This proof was omitted due to space limitations. Both the ODE method and the technique of Widrow

and Stearns show convergence of the �ltered-x LMS algorithm tap weights to ŵ. The ODE result is stronger,

with convergence with probability one compared to convergence of the mean for the Widrow and Stearns technique.

However, the ODE method requires, among other conditions, that the adaptation gain (k)! 0 as k ! 1, which

the Widrow and Stearns technique does not.

Ljung suggests that it is reasonable to assume that the behavior of the adaptive algorithm for small, nonzero,

adaptation gains is similar to the case with vanishing adaptation gain (Ljung, 1977). In comparison, recall that the

Widrow and Stearns technique places a limit on the magnitude of the adaptation gain, and that the justi�cation for

the commutivity of Gout and Gff is that the controller parameters are slowly varying. Since the assumption of a

small adaptation gain is implicit in the use of the �ltered-x LMS scheme, the results of the ODE analysis can be

expected to predict the behavior of the �ltered-x LMS algorithm for nonvanishing adaptation gains as well.

A.5 Analysis of the Mean Square Error

The mean square error with the converged values of the �ltered-x LMS algorithm is equation 17 with

w = ŵ = w
� + (ŵ�w�) = w

� +�w (43)

or

� = �min +�w
T
R�w+ 2

�
w
�T
R� p

T
�
�w: (44)

If Ĝout = Gout, then �w = 0 and � = �min. Ren and Kumar (1989) suggest a second situation where � = �min. Let

the transfer function F be de�ned as before and let fi be such that

F (q�1) =

1X
i=0

fiq
�i
: (45)

Then

Rŵ� p =

1X
i=1

fi

f0
E[h(k � i)"(k; ŵ)] (46)
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since from equation 27

E[ĥ(k)h
T
(k)ŵ] = E[ĥ(k)d(k)] (47)

E[ĥ(k)"(k; ŵ)] = 0 (48)

F (q�1)E[h(k)"(k; ŵ)] = 0: (49)

Substituting for F and splitting the summation results in

�f0E[h(k)"(k; ŵ)] =

1X
i=1

fiq
�i
E[h(k)"(k; ŵ)] (50)

E[h(k)hT (k)]ŵ�E[h(k)d(k)] =

1X
i=1

fi

f0
E[h(k� i)"(k; ŵ)] (51)

which is equation 46. When w� achieves complete cancellation of the error component that is correlated with the

input ��base(k)

E[��base(s)"(k;w
�)] = 0 (52)

for all k 6= s, which implies

E[h(k� i)"(k;w�)] = 0 (53)

for all i 6= 0, so w� is a solution of equation 46 even if Ĝout 6= Gout. Since R is assumed to be positive de�nite,

equation 46 has a unique solution, and therefore ŵ must equal w�.
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