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Abstract

The direct simulation Monte Carlo (DSMC) method is used to solve the three-

dimensional nano-scale gas film lubrication problem between a gas bearing slider and a rotating

disk, and this solution is compared to the numerical solution of the compressible Reynolds

equations with the slip flow correction based on the linearized Boltzmann equation as presented

by Fukui and Kaneko (MGL method1). In the DSMC method, hundreds of thousands of

simulated particles are used and their three velocity components and three spatial coordinates are

calculated and recorded by using a hard-sphere collision model. Two-dimensional pressure

profiles are obtained across the film thickness direction. The results obtained from the two

methods agree well with each other for Knudsen numbers as large as 35 which corresponds to a

minimum spacing of 2 nm. The result for contact slider is also obtained by the DSMC simulation

and presented in this paper.



2

I.  Introduction

Slider air bearing modeling requires increased accuracy for lower spacings in today's

hard-disk industry.  In order to increase the magnetic recording density, the read/write head is

required to fly lower, now approaching contact with the hard disk surface. On the other hand

tribological considerations dictate the continued reliance on air bearings to support most of the

interface load. In current drives, the slider carrying the read/write head flies within the range of

the mean free path of the gas molecules λ, (λ = 65 nm at STP for air). The air bearing force and

flying height prediction is crucial in slider air bearing design.

In the head/disk interface, the rotation of the disk surface brings air under the slider that

creates the pressure and provides the lifting force that causes the head to float above the disk.

Traditionally, macroscopic hydrodynamic equations (e.g. Navier-Stokes. Reynolds) have been

used to model slider air bearing problems.  In 1867, Maxwell discovered the “velocity slip”

effect near a moving wall. The slip correction was introduced into the Reynolds equation by

Burgdorfer in 1959 for Knudsen numbers Kn << 1, where Kn is defined as the ratio of the

molecular mean free path to the characteristic length of the flow. Hsia (1983) proposed a higher

order approximation for larger Knudsen numbers. Fukui and Kaneko (1988) developed a more

sophisticated slip correction for the Reynolds equation, based on the Boltzmann equation, where

the Poiseuille flow rate was calculated on the basis of a linearized BGK1 model of the Boltzmann

equation. The validity of this model (often referred as the MGL model) was confirmed in the

range of a Kn up to 6, that is, for minimum spacing of 10 nm under standard atmospheric

pressure (Takeuchi et al., 1994). In the Computer Mechanics Laboratory (CML) at Berkeley, the

CML Air Bearing Design Program has been developed (Lu and Bogy, 1995). This program uses
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the compressible Reynolds equation with various slip corrections for rarefied flows, which was

solved by a multi-grid control volume method for the simulation of arbitrarily shaped slider air

bearings with multiple recess levels.

The Direct Simulation Monte Carlo (DSMC) approach was first employed for the slider

air bearing problem by Alexander et al. (1994). They considered a 5 µm long flat slider of infinite

width. Their results showed that for such a two-dimensional flat slider, the MGL model gives

accurate results, even in regimes where its validity should be questionable.

The MGL model needs further verification for slider air bearing designs under several

circumstances: (i) When the slider geometry is 3-dimensional, i.e. side effects are taken into

account, (ii) When the flow is 3-dimensional due to either slider configuration or surface

roughness, (iii) when the application of interest is close to quasi-contact or contact.

The Direct Simulation Monte Carlo method has been thoroughly tested over the past 20

years and found to be in excellent agreement with both molecular dynamics and experiments. It

is loosely based on the Boltzmann equation and was popularized as a practical numerical

algorithm by G. A. Bird in the late 60's. In the slider air bearing problem,  the DSMC method can

be applied to various surface configurations, such as those with surface roughness. The flow is no

longer  assumed to be a plane flow, as required by lubrication theory.

 The objectives of this project are: (i) the determination of the validity of the 3-

dimensional slider bearing models for minimum spacings below 25 nm, (ii) the investigation of

the model for quasi-contact and contact. In this report, we present the results from DSMC

simulations of the 3-dimensional flat slider bearing problem.

Following this introduction, Part II describes the DSMC algorithm and numerical system

configuration for the slider bearing problem. Part III presents the DSMC simulation results and
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compares them to the MGL model. Then a summary and comments on future work are given in

Part IV.
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II. DSMC Method

Instead of using molecular dynamics to keep track of a huge number of molecules,

DSMC, which was constructed as a stochastic model, abandons the attempt to predict the

instantaneous state of a simulated particle and only provides probabilities and average quantities.

Even in a very small volume, we are still averaging over a large sample. For example, at STP,

there will be about 6,200 air molecules in a volume of a cubic mean free path. Each particle used

by DSMC represents a number of real molecules that are roughly at the same position with

roughly the same velocity.

The gas under the slider is assumed to be dilute so that the interactions between particles

are modeled as two-body collisions and the potential energy of the particles is negligible

compared to the kinetic energy. We use a hard sphere model throughout this report. The particles

behave like a cloud of tiny billiard balls of diameter d. The simulation region is divided into

rectangular cells. For reliable simulations, the DSMC method requires that the cell volumes are

no larger than a cubic mean-free-path, and in each cell there should be an average of at least 20 ~

30 simulated particles (Alexander et al. 1994).

In the simulation, the state of the system is given by the positions and velocities of

particles, { r i, vi }. At each time step, particles are moved with free flight motion. Any particles

that reach a boundary are processed according to the appropriate boundary condition. After all

particles finish moving for one time step, some particles are selected randomly for collisions

(Garcia, 1994). The number of collision candidates per cell within one time step is determined

by:
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where Ncell = Number of particles in a cell

d = Diameter of the particle

vr
max = Estimated maximum relative speed between particles (three times the most

probable particle velocity)

τ = time step

 Vcell = Effective cell volume

Only those particles in the same cell can be selected as collision partners, regardless of their

positions within the cell. The selection is random. After the collision candidates are determined,

the probability of whether they are accepted or rejected for collision is calculated based on their

relative speed according to the hard sphere model. In our simulations, about 1% ~ 2% of the total

particles are selected to collide with other particles within every time step. Once the collision

pairs are chosen, their post-collision velocities are evaluated by the conservation of linear

momentum and energy. The velocities and positions of particles are recorded for later averaging.

The DSMC method is based on the assumption that when the time step is less than the

mean collision time for a particle, which is defined as the mean time between the successive

collisions of any particle, the particle collisions can be decoupled from the particle positional

changes within one time step. The time step we used is one fifth of the time a particle needs to

pass through a single cell with the most probable velocity (337 m/s for the argon atom at STP).

There are two types of boundary conditions in our simulation for the slider bearing

problem: thermal walls and fluxing reservoirs. The slider and disk surfaces are two thermal

walls. When a particle strikes either of  these walls, the particle velocity is reset according to a
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biased Maxwellian distribution. The four sides of the slider are treated as fluxing reservoirs.

They act as infinite, equilibrium thermal baths at temperature T0 and pressure P0. The flow

velocity in the reservoirs are such that the pressure at all four sides can be maintained at ambient

pressure P0. Due to the fact that the particles are traveling at much higher speed than the disk, it

is very easy for particles to enter the control volume from the exit.

To get the averaged quantities, such as momentum and kinetic energy, the program does

the sampling after the flow system reaches its steady state. We use the total number of particles

inside the system to be the indicator of the steady state. The program starts sampling when the

total particle number becomes steady.
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III. DSMC Simulation and Results

Figure 1 shows a typical 3-D flat slider gas bearing configuration. The length L of the

slider is 4 µm, its width W is 3.3 µm. The height at the trailing edge of the slider, Hmin, which is

used to determine the Knudsen number, ranges from 25 nm to 0 nm. The pitch angle α is 0.01

rad. The disk speed U at the slider is 25 m/s. The gas is chosen to be argon with temperature T0 =

0 °C and density ρ = 1.78 kg/m3. Argon is chosen in place of air in our study is because a single

element gas is simpler in the DSMC method. Since the Mach number is low and the Knudsen

number is high, the flow field is nearly isothermal. While argon has a different heat capacity

from a nitrogen - oxygen mixture due to the fact that it does not have rotation, this difference is

not important in isothermal flows. Also the molecular mass and diameter of argon is similar to

those of nitrogen and oxygen. So argon is a good candidate for simulating air without considering

the molecule’s rotation.

 The flow and the system geometry are symmetric about the plane which crosses the

center line of the slider along the length direction and is perpendicular to both the disk and the

slider surfaces. So only half of the system is used in all simulations. In order to do this, we put a

fully elastic wall at the plane of symmetry.

The number of particles needed for the half system is about 250,000 initially. Then

particles will accumulate inside the control volume and get to an equilibrium stage when the flow

is in its steady state. The number of cells is 10,000, 80 cells in the length direction, 25 cells in the

width direction (covered half width) and 5 cells in the height direction. Since the slider has a

pitch angle, some cells cross the slider surface and some other cells are simply outside the control
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volume. The volume of a cell outside the control volume can not be used and is subtracted from

the total cell volume. The largest cell volume is about 18% of a cubic mean-free-path of argon

atoms. There is an average of 35 particles in each cell initially and every particle represents about

15 to 30 real argon atoms.

Conventional solutions (i.e. the MGL model) were obtained numerically by using the

multi-grid control volume method. All the DSMC simulations were run on the IBM RS/6000

workstations. The results of the MGL model and DSMC model are compared with minimum

spacings ranging from 25 nm to 2 nm. Selected 3-D pressure distributions of both simulations are

shown in Figs. 3 - 5, to be discussed later.

Figure 2 shows a plot of the particle accumulation inside the control volume as a function

of time for Hmin = 4 nm (Kn = 15.63). The points on the curve are separated by 500 time steps.

There are initially 250,000 particles inside the control volume. The number increases with time

and fluctuates about the steady state number of 337,000 after about 0.45 µsec. The sampling

function starts at 0.54 µsec and last for about 50,000 time steps. Figure 2 also shows the similar

curve for Hmin = 15 nm (Kn = 4.17). The particle accumulation starts from 250,000 and begins to

fluctuate around 292,000 after about 0.38 µsec. In this case, the flow reaches its steady state

earlier than in the case with smaller minimum spacing. In addition, every particle represents more

argon atoms due to the larger control volume in this case. So it accumulates fewer particles at the

steady state than in the case with smaller minimum spacing to match the real number of the argon

atoms in the control volume.

Figure 3(a) shows pressure plots from the DSMC solution while Fig. 3(b) shows the

corresponding results from the Reynolds equation solution for the case Hmin = 25 nm (Kn = 2.5).

The top two plots in Fig. 3(a) show the DSMC pressure profile viewed from the side and front.
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The lower left plot in Fig. 3(a) shows the contours of the pressure profile. We present similar

plots in  Figs. 4 - 5 in which Hmin are 5 nm and 2 nm, respectively.

Comparing Fig. 3(a) and Fig. 3(b), we notice that the two results agree well with each

other. We then lower the flying height of the slider (without changing anything else) from 25 nm

to 5 nm and 2 nm. It turns out that very small relative differences are detected between the

DSMC and Reynolds (MGL) solution . When the minimum spacing becomes smaller, it can be

observed from these pressure profiles that the peak position moves toward the trailing edge of the

slider and the peak value increases. The pressure gradient near the trailing edge is also higher.

In Table 1, we list the bearing force for different Knudsen numbers Kn and bearing

numbers Λ (defined as 6µUL/(p0Hmin
2) and µ is the viscosity of the gas). The bearing force is

defined as:

W
g

p p dA
A

= −∫1
0( )                                                          (2)

where g is the gravitational acceleration. From the relative difference column, we can see that the

maximum relative difference detected in the load is 3.76%.  A graph of bearing force as a

function of Knudsen number is plotted in Fig. 6. It shows that the MGL results are always higher

than the DSMC results. In other words, DSMC will predict lower flying height than the MGL

model if the loading force is the same. The flying height difference would be about 0.5 nm when

the minimum spacing ranges from 10 nm to 5 nm according to the data showed in Table 1.

Figure 7 plots the bearing force relative difference between the DSMC and the MGL

model as a function of Knudsen number. The relative difference increases with the Knudsen

number until Kn reaches about 12.5 and then it drops quickly to 0.53 % when Kn is about 31.25.

The reason for the relative difference drop is that the influence of the Knudsen number on the
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bearing force reduces as the bearing number gets larger. Consider the steady 1-D Reynolds

equation with the F-K slip correction7 for constant boundary temperature:

d

dX
Q Kn PH

dP

dX
PHp{ ( ) }

~
3 0− =Λ                                              (3)

Poiseuille flow term     Couette flow term

where X = x / L

P = p / p0

H = h / Hmin

 Qp

~
( Kn ) = 1 + 6AKn+

12

π
Kn log(1+BKn ), with  A = 1.318889, B = 0.387361,. given by

Robert14 for α = 1. When h0 decreases, Kn increases and so Qp

~
 will also increase. However, the

Poiseuille flow term decreases as H2logH while the Couette flow term increases as H-1 when H

approaches zero. So the Knudsen number loses its influence as the Couette flow term becomes

dominant. The flow becomes independent of the Knudsen number.

Finally, we reduced the minimum spacing to zero so that the slider is actually contacting

the disk at the trailing edge and the contact region is a straight line in the width direction. In this

case, the particle reservoir at the trailing edge vanishes and no particle will come in or go out of

the control volume through the slider's trailing edge. It should be noted that the Reynolds

equation predicts unbounded pressure at zero spacing, and therefore cannot be used for contact.

The pressure profile from DSMC is presented in Fig. 8. Figure 8(a) shows the contact pressure

profile viewed from the side. This simulation indicates that the DSMC method can solve for

cases asperity contacts which often occurs in the new slider-disk interfaces. It shows that the

peak pressure is located at about 95% of the total slider length from the leading edge and is about
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14.78 times the atmospheric pressure. Figure 8(b) gives a better look at the contact region. It

shows that near the contact region, the pressure drops sharply from the peak value to about

absolute zero. This is because in the neighborhood of the contact line, the effective cell volume is

so small that there are not enough particles to provide any bearing pressure. This is a qualitatively

reasonable representation of the real physical situation. Further contact simulation is already in

progress.
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IV. Conclusion

 The slider bearing problem for very low spacing is simulated by the Direct Simulation

Monte Carlo method and the results are presented in this report. The slider is a three-dimensional

flat plate flying over a flat rotating disk. Results for different flying heights were obtained and

compared to the numerical simulation results of the Reynolds lubrication equation with the

Fukui-Kaneko slip correction. The results show that the MGL model predicts higher bearing

force (or up to 0.5 nm lower flying height) than the DSMC model. Overall, the two solutions

agree well with each other, and surprisingly, the agreement is better as the spacing decreases

beyond about 5 nm. The largest relative difference for the bearing force is 3.76% when the

Knudsen number is 12.5 and the bearing number is 4,928. The study also shows that the reason

the two solutions merge at very large bearing number and the continuum model works well

again, is that the effect of the Knudsen number becomes negligible.

The contact pressure profile calculated by DSMC shows that there exists a sub-ambient

pressure region in front of the contact point and the pressure reduces to zero at the contact point.

This example shows that the DSMC method is capable of air bearing simulation when there are

points of contact. This is in contrast to the Reynolds equation, which predicts unbounded

pressure at contact points.

Although the MGL model works very well for the sliders with simple 3-D geometry, it is

still not clear what will happen when the slider has a more complicated geometry so that some

local Knudsen number is high but the global bearing number is not so large. Will the MGL

model still be capable of  giving good results? In addition, when the minimum spacing

approaches zero, the conventional method will predict infinitely large pressure while the DSMC
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solution is still capable of dealing with quasi-contact and contact condition. Our next

investigation will be to simulate a three dimensional flat slider with a spherical asperity

underneath by using the Direct Simulation Monte Carlo method to determine the pressure as the

spacing at the asperity approaches zero. In this way we expect to learn how to correctly modify

the MGL model in situations where surface roughness leads to isolated contacts.
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Fig. 3.     3-D Pressure Profile for Kn = 2.5 (Hmin = 25 nm)
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Hmin (nm) Kn Λ

Bearing Force (x 10-2 mg)

DSMC                           MGL Rel. Difference

25 2.5 197 1.571 1.594 1.46 %

20  3.13 308 2.019 2.070 2.52 %

15 4.17 548 2.753 2.823 2.54 %

10 6.25 1,232 4.028 4.167 3.42 %

5 12.5 4,928 6.950 7.212 3.76 %

4 15.63 7,700 8.180 8.373 2.36 %

3 20.83 13,689 9.835 9.979 1.46 %

2 31.25 30,800 12.355 12.420 0.53 %

                                                              Table 1.   Bearing Force
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Fig. 6. Bearing Force Vs. Knudsen Number
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Fig. 7. Relative Bearing Force Difference between DSMC and MGL model
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(a) Side view   (b) 3-D view


