
1

The CML Air Bearing Optimization Program Version 1.5
Matthew A. O’Hara and David. B. Bogy

Computer Mechanics Laboratory
Department of Mechanical Engineering

University of California
Berkeley, CA 94720

Abstract

This report presents a detailed description of the air bearing optimization program developed

at the Computer Mechanics Laboratory at the University of California at Berkeley. The code pro-

vides the tools necessary for the optimization of air bearing designs. Version 1.5 is an update

from the previously released optimization program.

The optimization implemented is a variation of the simulated annealing algorithm. The tech-

nique does not make use of numerical derivatives in the search for an optimum, rather it makes

use of a neighborhood function. Further, it will achieve a global optimum in the presence of

multiple local optima.

The program implements the CML Air Bearing Design Program to evaluate the quality of differ-

ent designs. Therefore, it is necessary for the design program (version quick300) to be available

and working in order for this optimization program to be used.

The method is capable of multi–dimensional optimization with multiple goals being simulta-

neously satisfied.

2

1. Introduction

The algorithm implemented to optimize air bearing slider designs is a variation of the Simulated

Annealing optimization algorithm. This algorithm is a stochastic optimization technique that

is modeled after the physical process of annealing. The algorithm does not make use of function

derivative information, either analytical or numerical. Instead, it uses a neighborhood operator

to find the global optimum. The algorithm also achieves global optimums in the presence of

multiple local optima. This has been shown for a specific case of an air bearing slider[1], for

which this technique is particularly well suited.

The optimization problem can be divided into two parts: constraints and cost function. A file,

entitled “constraint.dat,” enables one to define the geometric and parametric constraints for a

problem and to control the weighting of the terms in the cost function. To evaluate the cost func-

tion for a given configuration, the optimization program makes use of the CML Air Bearing De-

sign Program[2].

2. Input and output

i. Input

The file constraint.dat is the only input file to the program (in addition to the files rail.dat, stea-

dy.def, multcase.dat, and tol.dat which are necessary to run the CML Air Bearing Design Pro-

gram). All variables that are not set explicitly in the constraint.dat file are taken from the rail.dat

and steady.def files. A specific example of such data is the wall profile information. The wall

profile is defined in the rail.dat file as described in the CML Air Bearing Design Program manu-

al. Essentially, a series of linear segments can be connected to approximate a wall angle and/or

edge blend that may result from a manufacturing process. If such a profile is defined, it often

terminates at a recessed region of the slider. When the recess depth is varied in the optimization

3

procedure, the wall profile must be modified. The modification implemented is a simple scaling

of both dimensions with the ratio of the current recess depth to the original recess depth (Fig. 1.).

nominal wall profile

specified wall profileoriginal recess
depth

box encompassing
original profile

box encompassing
modified profile

modified recess
depth

modified, specified wall profile

Fig. 1. Modification of wall profile
under recess depth variation.

The first two lines of the constraint.dat file describe the format of the six parametric constraints

and should not be edited. They are:

Format for non–geometric constraints:
variable name lower value upper value initial value

The following six lines actually define constraints for the problem. If a particular parameter

listed in these six lines is not desired for optimization, simply set the upper and lower bounds

to be equal. An example of how these lines would be written is:

load 2.5 3.5 3.0
x offset 0.4 0.6 0.5
y offset –0.1 0.1 0.0
taper length 0.8e–1 1.2e–1 1.0e–1
taper height 0.5e–6 1.5e–6 1.0e–6
recess depth 4.0e–6 6.0e–6 5.0e–6

Note that the taper length (but not the taper height) is given in normalized units, i.e., the desired

taper length range should be divided by the length of the slider before being entered in

constraint.dat which is consistent with the bearing design code.

4

The next line is a separator line and should not be edited.

The following two lines describe how the geometric constraints should be constructed and

should also not be edited. They are:

Format for original geometric constraints:
rail# vertex# dir low val. up val. init val.

Below these lines is where geometric constraints are defined for the problem. Multiple vertices

can be given a range in which to vary. Each constraint takes up one line. The upper limit on

the number of geometric constraints is 40. The rail# field defines on which rail the vertex resides

as defined in the CML Air Bearing Design program. Similarly, the vertex# field defines which

vertex is to be varied on this rail and is also used as it is defined in the CML Air Bearing Design

program. The dir field defines in which direction a vertex is to move. The field should read

x (or X) if the vertex is to move parallel to the direction of flow or y (Y) if the vertex is to move

in the direction transverse to the flow. These conventions are consistent with the CML Air Bear-

ing Design program[2]. The low val. field gives the lower value of the geometric constraint.

Note that all geometric constraints are given in normalized coordinates, i.e., all physical coordi-

nates are divided by the slider length with the coordinate axes at the inner leading edge. So, the

trailing edge would have an x coordinate value of 1, every point not at the back edge would have

x coordinate values less than 1, and the outer edge would typically have a y coordinate that is

less than 1 due to the rectangular shape of most sliders. The next field, up val., gives the upper

limit on the value of the constraint. The following field, initial val. , gives the values that are

used for the starting point of the optimization. Note that if a parameter range has lower and upper

bounds that are equal, i.e., this parameter is not to be included in the optimization, then the initial

val. field will be ignored and the value read in from the rail.dat that already exists in the current

directory will be used.

5

The next two lines describe how the symmetric constraints should be constructed and should

not be edited. They are:

Format for symmetric constraints
rail# vertex# dir to be symmetric with: rail# vertex#

Below these lines is where symmetric constraints are defined for the problem. Each line consists

of five fields. The first two fields, rail# and vertex#, indicate which rail and vertex will be varied

symmetrically. The dir field defines in which direction the specified vertex should vary. The

final two fields, (to be symmetric with:) rail# and vertex#, define the vertex that the current ver-

tex will vary symmetrically with.

The next two lines describe how the relative constraints should be constructed and should not

be edited. They are:

Format for relative constraints
rail# vertex# to be moved relative to: rail# vertex#

Below these lines is where relative constraints are defined for the problem. A relative constraint

fixes a specified vertex to move with the same relative distance to another specified vertex

throughout the optimization. Each line consists of four fields. The first two fields, rail# and

vertex#, define which vertex will be moving relatively. The second two fields, (to be moved

relative to:) rail# and vertex#, define the vertex to move relative to.

The next section defines constraints on recess values for individual rails. The first three lines

consist of a separator and two description lines and should not be edited. They are:

Format for rail height constraints
rail# low val. (m) up val. (m) init val. (m)

The first field, rail# , lists which rail will have its recess value varied in the optimization. The

next three fields, low val., up val. and init val. , define the lower and upper bound on the

constraint and the initial value used to start the optimization, respectively. Directly following

6

this is the relative rail height section. The first two lines are description lines and should not

be edited. They are:

Format for relative rail height constraints
rail# rail# to be moved relative to

The two fields, rail# and rail# to be moved relative to, define which rail will be varying rela-

tively and which rail will be the reference.

Typically, the optimization program evaluates slider fly heights, roll values, etc. at different

places on the disk. Where, and how many of, these evaluations are made are described in this

section. Two fields are needed to define exactly where the slider is to be evaluated for purposes

of the cost function. The first field, radius, determines the radial distance from the center of

the disk and the next field, skew, determines the corresponding skew. An example of how this

section might look:

Format for evaluation points (from inner radius out):
radius(meters) skew(degrees)
0.015 1.22
0.019 –9.1
0.031 –17.39

The next section is the altitude sensitivity section. The first two lines are a separator and direc-

tion line and should not be edited. They are:

Altitudes in meters (one entry per line) (STP is always evaluated)

If no altitude sensitivity is to be performed, do not enter any value. Only enter an altitude value

if altitude sensitivity is one of the terms to be included in the objective function. An evaluation

is always made at the values provided in the steady.def file, therefore, this altitude does not need

to be entered.

7

The remaining section determines the weightings of the objective function. The first two lines

of this section are a separator line and a description of the section and should not be edited.

Weightings for objective function:

The following line is an informational line and should not be edited. The following line is the

weighting for the maximum difference term in the objective function. An example of these two

lines is:

weighting for maximum difference in fly height (nm):
1.0e0

The maximum difference term is defined to be the maximum difference in fly height at the first

fly height of interest for all the points specified in the evaluation points section, given in nanome-

ters. The first fly height of interest is defined in the rail.dat file that exists prior to the beginning

of the optimization. It is defined in the CML Air Bearing Design Program manual[2], and it is

the last two rows of the first column of the rail.dat file. The penultimate row is the normalized

x value, e.g., 1.0 corresponds to the trailing edge, and the final row corresponds to the normalized

y value. The next two lines in the constraint.dat file describe and define the weighting for the

difference between average and target fly height, which is defined as the absolute value of

the difference between the average of the first fly heights of interest at the evaluation points and

the target fly height that is described and defined in the following two lines of the constraint.dat

file. An example of these lines is:

weighting for difference between average and target fly height(nm):
1.0e0
target fly height (nm):
14.0e0

This term is also given in nanometers. The following two lines describe and define the weighting

for the sum of |roll values| term in the objective function. An example of these lines is:

8

weighting for sum of |roll values (urad)|:
1.0e0

At each evaluation point, the roll value is determined. This term consists of the sum of the abso-

lute values of these roll values given in µradians. The next four lines define the pitch – pitch

cutoff term in the objective function. This term has the form of a penalty function. The term

takes on no value until the pitch cutoff, given in µradians, is reached at any evaluation point.

Beyond this, the term gains value for every µradian, multiplied by the weighting. An example

of these lines is:

weighting for sum of (pitch – pitch cutoff) (urad):
1.0e0
pitch cutoff (urad):
175

This is graphically depicted in Fig. 2.

pitch
cutoff

pitch
value

(p
itc

h
–

pi
tc

h
cu

to
ff)

 te
rm

 v
al

ue

1

(pitch – pitch cutoff) term
weighting

Fig. 2. Graphical depiction of pitch term in objective function

The next weighting is for the sum of vertical sensitivities term. An example of the lines that

define this term is:

9

weighting for sum of vertical sens. sum(|eval. pt. value – target(nm/g)|):
1.0
vertical sensitivity target (nm/g):
10.0

This term is the sum of the inverse of the vertical stiffness of the air bearing at each of the evalua-

tion points minus the target value specified. The next weighting is for the sum of pitch sensitivi-

ties term. An example of the lines that define this term is:

weight for sum of pitch sensitivities:
1.0
pitch sensitivity target urad/(g–mm):
10.0

This term is the sum of the inverse of the pitch stiffness of the air bearing at each of the evaluation

points minus the target value specified. The last sensitivity term is the sum of roll sensitivities

term. An example of the lines that define this term is:

weight for sum of roll sensitivities:
1.0
roll sensitivity target urad/(g–mm):
10.0

This term is the sum of the inverse of the roll stiffness of the air bearing at each of the evaluation

points minus the target value specified.

An entire stiffness matrix is calculated by the CML Air Bearing Design Program (if desired) by

comparing the load, the x moment (pitch), and the y moment (roll) against the fly height, pitch

and roll of the slider. The reason the stiffness is used is that the entire problem is a minimization

problem and by casting the stiffness as sensitivity, it can be added directly to the objective func-

tion. If any of the sensitivity weighting is non–zero, the stiffness calculation will be carried out.

If sensitivity optimization is not desired in an optimization, these terms should all be set to zero

so that the bearing design program will not evaluate the stiffness matrix.

The next section defines the weighting and target for the sum of sub–ambient pressure term.

10

weighting for sum of sub–ambient pressures term sum(|neg. press – tar-
get(g)|):
1.0
sub–ambient pressure target (g) (note: give as absolute value)
3.0

The target for this term specifies, in grams, what value of integrated sub–ambient pressure is

desired at each evaluation point. The motivation for including this term is the reduction of cavity

contamination buildup.

The final weighting is for the altitude sensitivity term. An example of the lines that define this

term are:

Altitude insensitivity term weighting (nm)
1.0

This term represents the sum of maximum difference in fly height at each evaluation point due

to changes in altitude, i.e., if more than two altitudes are specified in the altitude definition sec-

tion then the fly heights at all altitudes for a given evaluation point are compared to find the high-

est and lowest values.

ii. Output

Six output files are written by the program. The file that tracks the progress of the optimization

is entitled opti_res. This file writes the current annealing temperature, for both the parameters

and the cost, the number of configurations generated so far, the number of configurations accept-

ed and the current optimal value of all the parameters used in the optimization. Because it is

inconvenient to write these values into the appropriate file (either rail.dat and/or steady.def), the

current optimal parameters are written into the files rail.dat.opt and steady.def.opt every time

a new optimum is found. So, if the program is terminated prematurely, these files will be avail-

able for use in the simulator code. The remaining three files contain information about the code

that simplify plotting progress of the optimization. The cost.dat file contains information about

11

every feasible configuration that is generated by the optimization program. The cost.dat file has

13 fields. The fields are defined as follows:

1. total cost

2. difference in fly height term

3. difference from target term

4. roll term

5. pitch term

6. vertical sensitivity term

7. pitch sensitivity term

8. roll sensitivity term

9. sub–ambient pressure term

10. altitude sensitivity term

11. cost temperature

12. parameter temperature

13. number of feasible designs generated

The files nacost.dat and optcost.dat have one additional field:

14. number of accepted designs

The file nacost.dat keeps a record of all accepted configurations and optcost.dat only keeps track

of optimal configurations, i.e., it is only updated when a configuration is found that improves

on the current best configuration.

12

Section 3. How to run the program

i. How to compile

Create a new directory that will hold the simulator program. Copy all the files in the distribution

to this directory. Usually this will be done by untarring a tar file. The distribution file is entitled:

optiv1_5.tar. The command to untar it would be:

tar –xvf optiv1_5.tar

Most UNIX machines come with the “make” utility. If this is the case on your machine, simply

type “make” at the UNIX prompt. If not, then you need to enter a command that will compile

all of the files. The following is an example:

cc –O –o opti anneal.c cost.c cost_status.c config_status.c init_config.c
myrandom.c newconfig.c opti.c readconstraint.c readrails.c readsteady.c
rel_distances.c results.c write_rail.c write_steady.c –lm

This will create the executable file opti.

ii. quick300

In order for the optimization program to work properly, the CML Air Bearing Design program

needs to be running, specifically, the version quick300. All the files that are necessary to run

quick300 are necessary for the optimization program as well, specifically, rail.dat, steady.def,

tol.dat, multcase.dat. The tol.dat and multcase.dat files should be formatted so that the simula-

tion program will be run only once.

iii. Setting up a problem and running the program

The simplest way to keep track of different optimizations is to create a different subdirectory

for each case. Make sure that quick300 and opti are in the search path of the computer so that

they can be run from any directory. Copy the files necessary to run quick300 into the newly

13

created directory and copy a skeleton of the constraint.dat file from the directory where the opti-

mization program was created. At this point, the easiest way to create the constraints is to print

out a copy of the rail design from the static design code and draw the constraints. Using this,

fill out the constraint.dat file including appropriate values for the parametric constraint section,

the geometric constraint section, the evaluation points section and the weighting section. At this

point, the program is ready to run. To run simply type opti at the UNIX prompt.

Section 4. Example problem

This section uses an example problem to display all of the main features of the CML Air Bearing

Optimization Program. To complete the first section of constraint.dat file, a decision has to be

made regarding which parametric constraints to include in the optimization. The example bear-

ing chosen is a 50% slider, i.e., 2.00mm x 1.6mm, with a fixed load of 3 grams. This implies

that the upper val. and lower val. of the load constraint line will be equal. The position of the

loading force on the slider will also be taken as fixed in the “x” and “y” direction. The taper

length is fixed but the taper height will be allowed to vary from 2.0 to 3.0 µm, which implies

a range of taper angles between 10.0 and 15.0 mrad. The recess depth will be allowed to vary

from a minimum of 4.0 µm, to a maximum of 8.0 µm. Based on this information, the first part

of the constraint.dat file is:

Format for non–geometric constraints:
variable name lower value upper value initial value
load(kg) 3.0e–3 3.0e–3 3.0e–3
x offset 0.5 0.5 0.5
y offset 0.0 0.0 0.0
taper length 1.0e–1 1.0e–1 1.0e–1
taper height 2.0e–6 3.0e–6 2.0e–6
recess depth 4.0e–6 8.0e–6 6.0e–6

Now, the geometry of the bearing is considered. Take the following air bearing as the nominal

design (Fig. 3.). Note that the air bearing has only symmetric constraints and that it has two inde-

14

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

ÈÈÈ
ÈÈÈ
ÈÈÈ
ÈÈÈ
ÈÈÈ

ÈÈÈ
ÈÈÈ
ÈÈÈ
ÈÈÈ
ÈÈÈ

ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ

ÈÈ
ÈÈ
ÄÄ
ÄÄ

vertex constrained to move
in 2 directions

2mm

1.6mm

taper
area

positive pressure
bearing areavertex that will move

symmetrically

vertex constrained
to move only in
x direction

Fig. 3. Example air bearing

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

relatively constrained
vertices

relatively constrained
vertices

relatively constrained
vertex

pendent constraints applied to the same vertex. The first constraints to be considered will be

the only two–dimensional original constraint. The combination of these two constraints creates

a box about the vertex. The vertices that are directly adjacent to this vertex and form a rectangle

with it will be specified as relative constraints, i.e., they will maintain the same relationship

throughout the course of the optimization. The vertex that symetrically opposes the first

constraint will be specified as a symmetric constraint. The symmetry will be maintained in both

the x and y direction (corresponding to the direction of flow and transverse to the direction of

flow). The vertices that surround this vertex (symmetric to the vertices described above) will

be specified as relative constraints. It is important that these be specified as relative constraints

and not symmetric constraints because the order of updating for vertices is:

i. original constraints,

ii. symmetric constraints,

iii. relative constraints.

15

Therefore, if the vertices on the rail with the symmetric constraint were also specified as sym-

metric, they would not be updated. This is because the originally constrained vertex would be

updated first, then the symmetric constraints would be updated which would not move these ver-

tices since the relative constraints on the rail with the original constraint have not yet been up-

dated.

The second section of the constraint.dat file will have the following format based on the number-

ing given in Fig. 3. and Fig. 4.

2

3 4
5 6

78
910

1112

Fig. 4. Rail numbering

1 2
...

1
2

3
4

1

rail 1

rail 2

rail 3

16

Format for original geometric constraints:
rail# vertex# dir low val. up val. init val.
1 10 x 0.3 0.4 0.35
1 10 y 0.15 0.2 0.175
3 2 x 0.85 0.9 0.9
Format for symmetric constraints
rail# vertex# dir to be symmetric with: rail# vertex#
2 3 x 1 10
2 3 y 1 10
Format for relative constraints
rail# vertex# to be moved relative to: rail# vertex#
1 3 1 10
1 4 1 10
1 9 1 10
2 4 2 3
2 9 2 3
2 10 2 3
3 3 3 2

Note that all of these values are in normalized coordinates.

The third section of the constraint.dat file specifies constraints on variation of individual rail

heights. The following will be used in this example:

Format for rail height constraints
rail# low val. (m) up val. (m) init val. (m)
Format for relative rail height constraints
rail# rail# to be moved relative to

This means that none of the rails will vary in height during the optimization.

The fourth section of the constraint.dat file is controlled by the radius of curvature of the suspen-

sion and actuator arm and the zero skew point. For this example, three evaluation points with

the following values will be used:

Format for evaluation points (from inner radius out):
radius(meters) skew(degrees)
0.015 1.0
0.019 –8.0
0.031 –15.0

17

Note that the radii values are given in meters and that the the positive skew values occur when

the slider is at the inner radius. (This skew definition is currently contrary to the IDEMA stan-

dard.)

The next section of the constraint.dat file deals with the altitude sensitivity term. This optimiza-

tion will not include the altitude sensitivity term, therefore, no altitudes will be specified in the

altitude section.

Altitudes in meters (one entry per line) (STP is always evaluated)

The final section of the constraint.dat file will determine the composition of the objective func-

tion. Choosing the default of 1.0 for the maximum difference weighting is a good initial value.

The remaining weights can be normalized to this. The initial weighting for the difference from

target fly height term should also be 1.0. The target fly height will be taken to be 50.0nm. Note

that in the constraint.dat file, the target fly height should be entered in nanometers. In this exam-

ple, the roll minimization term will be included. A weighting of 1.0 is a reasonable initial value

so that it will not predominate the calculation. A value of zero will be used for the pitch term.

This corresponds to the assumption that the pitch does not have a direct impact on the air bear-

ing’s performance. Although this may not necessarily be the case, we will still neglect it in this

instance. The weighting for the stiffness terms will each be set to 1.0. Frequently, these terms

can predominate a calculation when the fly height terms (maximum difference and difference

from target) approach their minimum values of zero. In that instance, the weighting for non–sen-

sitivity terms should be adjusted upwardly or a higher target value should be used. The problem

lies in the fact that, feasibly, other terms can go to zero, but clearly the sensitivity can never go

to zero. The sub–ambient pressure and altitude sensitivity terms will not be employed in this

example.

Using the above weightings, the final section would be:

18

Weightings for objective function:
weighting for maximum difference in fly height (nm):
1.0e0
weighting for difference between average and target fly height(nm):
1.0e0
target fly height (nm):
50.0e0
weighting for sum of |roll values (urad)|:
1.0e0
weighting for sum of (pitch – pitch cutoff) (urad):
0.0e0
pitch cutoff (urad):
175
weighting for sum of vertical sens. sum(|eval. pt. value – target(nm/g)|):
1.0
vertical sensitivity target (nm/g):
10.0
weight for sum of pitch sensitivities:
1.0
pitch sensitivity target urad/(g–mm):
10.0
weight for sum of roll sensitivities:
1.0
roll sensitivity target urad/(g–mm):
10.0
weighting for sum of sub–ambient pressures term sum(|neg. press – tar-
get(g)|):
0.0
sub–ambient pressure target (g) (note: give as absolute value)
3.0
Altitude sensitivity term weighting (nm)
0.0

Section 5. Hints For Successful Optimization

The example problem illustrates one of the subtleties of optimization––choosing the weighting

for the terms in the objective function properly. A general rule is to weight the items of greatest

concern most heavily. While this may seem obvious, it should be executed with some care. For

example, if the most important characteristics of a specific design are that it fly completely flat

over the radius of the disk and at the target fly height, then those terms need to be weighted rough-

ly five times as heavily as the other so that in the course of the optimization, the other terms,

19

specifically the sensitivity terms, will not be minimized at the expense of these terms. This is

a difficulty that is inherent in multi–objective optimization and cannot be avoided.

Also be aware that certain configurations that are created by the Optimization Program (within

the constraints defined by the user) may not fly. If it turns out that an inordinate number of con-

figurations are not flying, then the limits of the constraints should be narrowed. Typically, this

helps to limit the number of configurations that will not fly from being created.

By summarizing the results of the optimization, we can gain further insight into the simulated

annealing process.

Figure 5 shows that the value of the objective function starts to level off near the conclusion of

the optimization. This figure is a plot of the value of the objective function versus the number

of feasible designs generated. There are three lines in this plot. The line that bounds the other

two from above is the objective function value of each design that is created. The abscissa of

this plot is the number of feasible configurations generated. The line that bounds the other two

from below is the current optimum value. As the optimization procedure progresses, the de-

crease of the objective function can be tracked via this line. The final line is a plot of currently

accepted configurations. This is a feature of the simulated annealing algorithm. Notice that the

accepted configuration plot actually goes up over the course of the optimization. This allows

the algorithm to overcome locally optimal solutions in the search for the global optimum.

We can conclude from this two graph that a nearly optimal value is achieved, normally, when

the objective function starts to level off.

Finally, a practical consideration to keep in mind is that when the optimization is performed, the

CML Air Bearing Design Program is run multiple times. Each time it is run, it creates a stream

of output. If you run the optimization program as a batch job, be aware that if you redirect the

20

output of the program to a file, the file created may become extremely large. Two different solu-

tions to this problem are

i. run the job in an xterm or otherwise “detachable” window, or,

ii. run in batch mode but redirect the output to /dev/null.

The first case will allow you to monitor the progress of the optimization more closely, e.g., if

you are having problems with configurations that are repeatedly crashing, and the second will

dispose of all the output information. Note that it is not necessary to monitor the progress of the

optimization normally because all useful information will be written into output files.

The example case that was run for this manual used the command

opti > /dev/null &

where opti is the name of the optimization program and “> /dev/null” is the redirection

command to dispose of all output.

Fig. 5. Objective function vs. current number of feasi-
ble configurations

feasible configurations

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

0 50 100 150 200 250
1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

21

[1]M. A. O’Hara, Global Optimization of Slider Designs, Master’s Report, UC Berkeley, De-
cember, 1994

[2]S. Lu, and D. B. Bogy, “CML Air Bearing Design Program User’s Manual,” Technical Re-
port No. 95–003, Computer Mechanics Laboratory, U.C. Berkeley

22

Appendix A: Example listing of constraint.dat file

Format for non–geometric constraints:
variable name lower value upper value initial value
load(kg) 3.0e–3 3.0e–3 3.0e–3
x offset 0.5 0.5 0.5
y offset 0.0 0.0 0.0
taper length 1.0e–1 1.0e–1 1.0e–1
taper height 2.0e–6 3.0e–6 2.0e–6
recess depth 4.0e–6 8.0e–6 6.0e–6

Format for original geometric constraints:
rail# vertex# dir low val. up val. init val.
1 10 x 0.3 0.4 0.35
1 10 y 0.15 0.2 0.175
3 2 x 0.85 0.90 0.9
Format for symmetric constraints
rail# vertex# dir to be symmetric with: rail# vertex#
2 3 x 1 10
2 3 y 1 10
Format for relative constraints
rail# vertex# to be moved relative to: rail# vertex#
1 3 1 10
1 4 1 10
1 9 1 10
2 4 2 3
2 9 2 3
2 10 2 3
3 3 3 2

Format for rail height constraints
rail# low val. (m) up val. (m)
init val. (m)
Format for relative rail height constraints
rail# rail# to be moved relative to

Format for evaluation points (from inner radius out):
radius(meters) skew(degrees)
0.015 1.0
0.019 –8.0
0.031 –15.0

Altitudes in meters (one entry per line) (STP is always evaluated)

Weightings for objective function:
weighting for maximum difference in fly height (nm):
1.0e0
weighting for difference between average and target fly height(nm):
1.0e0
target fly height (nm):
50.0e0
weighting for sum of |roll values (urad)|:
1.0e0

23

weighting for sum of (pitch – pitch cutoff) (urad):
0.0e0
pitch cutoff (urad):
175
weighting for sum of vertical sens. sum(|eval. pt. value – target(nm/g)|):
1.0
vertical sensitivity target (nm/g):
10.0
weight for sum of pitch sensitivities:
1.0
pitch sensitivity target urad/(g–mm):
10.0
weight for sum of roll sensitivities:
1.0
roll sensitivity target urad/(g–mm):
10.0
weighting for sum of sub–ambient pressures term sum(|neg. press – tar-
get(g)|):
0.0
sub–ambient pressure target (g) (note: give as absolute value)
3.0
Altitude sensitivity term weighting (nm)
0.0

24

Appendix B: Example listing of original rail.dat file

 3 1
 12 1 2
 0.0000e+00 0.0000e+00
 2.5000e–01 0.0000e+00
 3.5000e–01 2.5000e–02
 5.0000e–01 2.5000e–02
 6.0000e–01 0.0000e+00
 8.0000e–01 0.0000e+00
 8.0000e–01 2.0000e–01
 6.0000e–01 2.0000e–01
 5.0000e–01 1.7500e–01
 3.5000e–01 1.7500e–01
 2.5000e–01 2.0000e–01
 0.0000e+00 2.0000e–01
 0.0000e+00 3.0000e–03
 0.0000e+00 6.0000e–06
 12 1 2
 0.0000e+00 6.0000e–01
 2.5000e–01 6.0000e–01
 3.5000e–01 6.2500e–01
 5.0000e–01 6.2500e–01
 6.0000e–01 6.0000e–01
 8.0000e–01 6.0000e–01
 8.0000e–01 8.0000e–01
 6.0000e–01 8.0000e–01
 5.0000e–01 7.7500e–01
 3.5000e–01 7.7500e–01
 2.5000e–01 8.0000e–01
 0.0000e+00 8.0000e–01
 0.0000e+00 3.0000e–03
 0.0000e+00 6.0000e–06
 4 1 2
 1.0000e+00 2.8000e–01
 9.0000e–01 3.2000e–01
 9.0000e–01 4.8000e–01
 1.0000e+00 5.2000e–01
 0.0000e+00 3.0000e–03
 0.0000e+00 6.0000e–06
 6.000000e–06 0.000000e+00
1.000000e–01 2.000000e–06
1.000000e–08 0.000000e+00 0.000000e+00
1.000000e+00 9.873000e–01 9.746000e–01 0.000000e+00
4.000000e–01 4.000000e–01 2.000000e–01 0.000000e+00

25

Appendix C: Example listing of original steady.def file

 ************Problem Definition Menu************
 hm h0(/hm) hs xl yl(/xl)
 1.0000e–07 2.0000e+01 0.0000e+00 2.0000e–03 8.0000e–01
 disk ske ra rpm ityact
 1.0000e+10 1.0000e+00 1.5000e–02 5.4000e+03 0
 dact vact yact xact isolv
 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 1
 f0 xf0 yf0 xfs(g–mm) yfs(g–mm)
 3.0000e–03 5.0000e–01 0.0000e+00 0.0000e+00 0.0000e+00
 *************Solution Control Menu************
 istiff akmax emax p0 al
 0 1.000000e–07 1.000000e–03 1.013500e+05 6.350000e–08
 **************Grid Control Menu **************
 iadpt isymmetry ioldgrid nx ny nsx nsy nest
 1 0 0 100 100 1 1 4
 xnt(i),i=2,nsx
 0.000000e+00
 nxt(i),i=2,nsx
 0.000000e+00
 dxr(i),i=1,nsx
 1.000000e+00
 ynt(i),i=2,nsy
 0.000000e+00
 nyt(i),i=2,nsy
 0.000000e+00
 dyr(i),i=1,nsy
 1.000000e+00
 ************** Non–Newtonian Menu *****************
 incom icnst vis1 vis2 cindex
 0 0 1.8060e–05 0.0000e+00 1.0000e+00
 clambda gammac sigma devol beta
 1.0000000e–07 9.9999997e–06 138000.0 2.0000000e–02 1000.000
 ***************** Expert Menu ******************
 ievl ipress itnon idisc
 0 0 1 1
 iqpo difmax decay ipmax
 5 40.000 40.000 0
 ***************** End of Input Data************

