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Abstract

We argue that the conventional concept of a complex valued wave speed adequately describe
propagation of signals, e.g. laser beams, but is not suitable for modeling thermal radiation in
absorbing materials. Signal carrying waves pass some of their energy to the medium. This energy
is eventually re-radiated, but in studies focused on the transmission of signals the re-radiated
fields can be ignored. In order to study thermal radiation in an absorbing material, the material
and the radiation must be considered together as a closed system whose energy is conserved,
as well as its distribution between the material and radiation. The paper proposes a model of
thermal radiation coupled with an absorbing medium to a closed, energy conserving system. This
radiation field has normal modes, that correspond to an effective speed. Assuming an absorbing
material and the radiation in it are in thermal equilibrium we show that deep inside the material
the average speed of photons is given by a frequency and temperature dependent expression, which
at high frequencies approaches the speed of light in vacuum while at low frequencies it approaches
the half of this value. We further show that closer to the boundary of the medium the speed of
thermal radiation depends in a complex way on the refractive index and the extinction coefficient
of the material, as well as the direction of propagation and the distance from the surface. Finally,
we discuss how the issues described here relate to radiation heat transfer in nanoscale systems.

1 Introduction

Charged subatomic particles in thermal motion generate electromagnetic fields that provide the

means for different forms of heat transport. The short-range quasi-static components of the electro-

magnetic fields are responsible for the mechanism of heat transport known as heat conduction, and

the long-range fields generated by accelerating charges are responsible for radiative heat transport

[1]. Thermal radiation is singled out from other mechanisms of heat transport by its ability to carry

noticeable heat across vacuum gaps wider than a fraction of a micron.

Since the late 1800s studies of radiative heat transport have used the concept of a “black body”,

which despite being an abstraction, often provides a reasonable approximation for real materials. A

black body is an idealistic material object that exchanges energy with the exterior world only through

electromagnetic radiation, absorbs all external radiation that reaches the body, and renders the

outgoing radiation completely uncorrelated with the absorbed incoming radiation. The importance
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of the black body concept is related to the universal character of its radiation spectrum, which is

determined solely by its temperature.

Assume that a black body at temperature T has a vacuum cavity with a large volume V . Then,

the spectrum of thermal radiation into the cavity is described by Planck’s formula

W (ω, T ) = 2D0(ω)M̃∗(ω, T )~ω, (1)

where W (ω, T )dω is the energy of the electromagnetic field in the cavity per unit volume with fre-

quencies from the band (ω, ω+dω); the factor “2” takes into account the presence of electromagnetic

fields of two different polarizations;

D0(ω) =
ω2

2π2c30
, (2)

is the density of states defined such that D0(ω)dω represents the number of normal modes of the

electromagnetic field of a single polarization in a unit volume of a large vacuum cavity; c0 is the

speed of light in vacuum; and

M̃∗(ω, T ) =
1

e~ω/κT − 1
, (3)

is the average energy level of a single normal mode at frequency ω considered as a quantum harmonic

oscillator in equilibrium with a medium at temperature T , and ~ω is the energy of one photon at

frequency ω. The energy of a quantum harmonic oscillator at frequency ω is known to take values

from the arithmetic series EM (ω) = E0(ω) +M~ω with the increment ~ω and a non-negative index

M ≥ 0. This index is referred to as the energy level of the oscillator, and it is customary to say that

an oscillator on the M -th level contains M indistinguishable oscillators, each carrying the energy ~ω.

The energy levels of normal modes at frequency ω of the radiative field in equilibrium at temperature

T randomly fluctuate around the average (3) provided by Planck’s theory, [2].

The Planck law (1) is universal in the sense that it is valid for any large vacuum cavity in any

“black body”. However, this formula provides no information about the radiation from a black body

into a cavity filled by a medium, as well as about the radiation field inside the black body itself,

which can be treated as a field in a cavity filled by the material of the black body. In order to see

why Planck’s law (1) cannot be straightforwardly applied to radiation into an arbitrary medium it

suffices to analyze a conventional derivation of this law [3, 4].

Any electromagnetic field in a cavity admits a decomposition into normal modes, each of which

can be treated as a harmonic oscillator at a certain frequency ω. If the normal modes are in thermal

equilibrium at temperature T , then the average energy of each mode at frequency ω has the value

E(ω, T ) = M̃∗(ω, T )~ω, with M̃∗(ω, T ) from (3) representing the average number of indistinguishable

photons carried by a single mode. The number of normal modes is provided by the Weyl asymptote
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[5, 6, 7] which states that as the volume of the cavity increases, the number density dN(k) of normal

modes of the reduced wave equation ∇2φ = −k2φ, with k in the interval (k, k + dk) is estimated as

dN ≈ k2dk

2π2
. (4)

Since in vacuum the wavenumber k and the frequency ω are related by k = ω/c0, the number density

of normal modes with frequencies from the range (ω, ω + dω) is estimated as

dN(ω) ≈D0(ω)dω. (5)

Finally, multiplying the average energy density of a single normal mode M̃∗(ω, T )~ω by twice the

number density dN(ω) of normal modes of a single polarization we get the Planck law (1).

The transition from (4) to (5) relies on the relation k = ω/c0 between the wave vector k and

the frequency ω of electromagnetic waves in vacuum. In the case of radiation into a medium with a

frequency-dependent speed c(ω), the wave number is defined as k = ω/c(ω), and (4) reduces to

dN(ω) =
ω2

2π2c2(ω)

d

dω

(
ω

c(ω)

)
dω =

ω2 dω

2π2c2(ω)v(ω)
(6)

where

v(ω) = 1

/
d(ω/c(ω))

dω
, (7)

is the group speed of light in the medium [8]. Therefore, the power spectrum of black body radiation

into a dispersive medium with the phase speed of light c(ω) is represented by the formula

W (ω, T ; c(ω)) = 2D(ω, c(ω))E(ω, T ), (8)

which is similar to (1), but with a more complex density of states

D(ω, c(ω)) =
ω2

2π2c2(ω)v(ω)
. (9)

Since the assumption c(ω) = c0 reduces (7) to v(ω) = c0 and then (8) to (1), we see that (8) appears

as an extension of Planck’s law describing black body radiation into a dispersive medium.

The extended Planck’s law (8) is derived for any differentiable phase speed c(ω) of light in a

medium accepting the radiation. Nevertheless, straightforward applications of (8) to practical cases

are not possible. Indeed, the conventional formula for the speed of light in a medium

c(ω) =
c0
n(ω)

, (10)

includes the refractive index n(ω), which is either a constant or has an imaginary part [8]. If n(ω) is

a positive constant then (8) reduces to (1) with c0 replaced by c = c0/n. However, if Im[n(ω)] 6= 0,
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then formulas (6) and (8) are meaningless because neither the number of the normal modes nor the

energy density can take complex values.

Since real materials have frequency-dependent refractive indices, the last observation indicates

that (8) may have no potential for applications. However, a comparison of the derivation of (8) with

the origin of (10) discussed in many textbooks, e. g. in [3, 8], reveals that the speeds of light in the

medium in (8) and (10) have different physical meanings, which implies that in order to use (8) it is

necessary to find an appropriate definition of the speed of light c(ω) in a medium. Thus, as discussed

in the next section, c(ω) from (10) characterizes the speed of propagation of electromagnetic signals

through a medium, but c(ω) that appears in (6) – (9) is used solely to compute the number density

of normal modes of the domain’s oscillations.

2 Electromagnetic signals vs thermal radiation

Let an electromagnetic wave excited by some source, such as a laser or a radio transmitter, propagate

through a medium. This wave interacts with atoms of the medium causing changes both in the

medium and in the wave itself. The classical theory of electromagnetic wave propagation through

a medium is based on an assumption that any material consists of positively charged nuclei and

negatively charged electrons that stay at rest in the absence of an external electromagnetic field,

start moving when such field is applied, and while moving radiate electromagnetic waves whose

interference with the initial field forms a total field in the material, [3, 8].

Since an electron is much lighter than any positively charged particle it is customary to ignore the

motion of the nuclei and focus on the motion of electrons considered as particles with the mass me

and the charge −qe, whose interactions with the electromagnetic field are governed by the Lorentz

theory of electrons, [9], based on a classical concept of a damped mechanical oscillator.

Let an electron be moved from rest at time t = t0 by an electric field

~E(ω, t) = A0η(t− t0) cos(ωt)~e, η(t) =

{
0, t < 0;

1, t ≥ 0,
(11)

with a constant amplitude A0 and with a polarization along a unit vector ~e. Then, the displacement

ξ(t) of the electron along ~E can be described by a Newtonian equation

me
d2ξ

dt2
= −A0qeη(t− t0) cos(ωt)−meω

2
0ξ −meΓ

dξ

dt
, (12)

where the first term on the right-hand side represents the force exerted on the electron by the

electric field, the second term represents the “spring” force proportional to a small displacement

of the electron from its resting position, and the last term represents frictional forces related with
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damping of the electron’s energy to interactions with nuclei and other electrons, which are not directly

involved in (12). The motion controlled by (12) converges to forced oscillations, [10],

ξ(t) =
−A0qe cos(ωt+ β)

me

√
(ω2 − ω2

0)2 + Γ2ω2
, β = arctan

(
Γω

ω2 − ω2
0

)
, (13)

which draw energy from the supplied field and convert it to heat at the average rate

I(ω;ω0,Γ) =
A2

0q
2
eΓω

2

2me

[
(ω2 − ω2

0)2 + Γ2ω2
] . (14)

Since the energy of oscillations (13) remains constant, the last expression also describes the rate

at which the supplied field looses its energy. The energy used to overcome the frictional forces

exerted on the electron by other particles is eventually re-radiated by these particles, but, since

the locations, speeds, masses and other parameters of the particles that caused the frictional forces

may be considered as random and independent of the applied field, the re-radiated field appears as

random noise, which cannot be identified as a part of the supplied field (11).

Let an electromagnetic wave ~E0(ω, t, x) = A0η(t) cos(ω[x/c0− t])~e0 arrive from vacuum and enter

an absorbing material at the point x = x0. As it moves through the material, the number of electrons

engaged in the motion controlled by (12) increases proportionally to the travelled distance L =

|x− x0|. Since every electron dissipates energy at the rate (14), which is proportional to the energy

of the wave at the electron’s locations, the energy of the propagating wave decays proportionally to

e−p0L, where p0 > 0 and L is the traveled distance. Since the energy density of a wave is proportional

to the square of its amplitude, the amplitude AL of the wave after passing a distance L inside the

material decays as AL = A0e
−σL, where σ = 1

2p0 > 0 characterizes the rate of absorption. Electrons

performing forced oscillations (13) radiate electromagnetic waves, but, unlike the noise, these waves

are correlated with the initial wave and interfere with it, forming a total field whose structure

A0e
−σL cos (ω[L/c− t])~emimics the structure of the incident wave, but has an exponentially decaying

amplitude and a different phase speed c, [3]. According to the outlined theory, a recognizable incident

wave ~E0(ω, t, x), which enters a material body at x = x0, is transformed to another recognizable wave

~E(ω, t, x) = e−σ|x−x0| cos (ω(|x− x0|/c(ω)− t])~e propagating inside the body with a different phase

speed c(ω) and with a decaying amplitude A0e
−σ|x−x0|. The waves propagating in the vacuum and

in the material are strictly correlated and can be considered as continuations of each other.

The propagation of signals carried by electromagnetic waves admits an alternative illustration in

terms of photons. In this model a spatially localized wave packet with the dominant frequency ω is

treated as a cloud of photons each carrying the energy ~ω. For simplicity we limit ourselves to a

one-dimensional case and assume that the packet at time t = 0 is localized around the point x and

contains m photons, so that the entire packet carries energy m~ω.
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In vacuum the photons travel uninterrupted with the speed c0, and the packet moves as a rigid

body, whose shape can be described by the function m(x/c0− t), as shown in the left part on Fig. 1.

When this packet enters a medium, individual photons can be absorbed and scattered. Let p0 be

the probability that a photon disappears from the packet before it travels a unit distance. Then the

number of photons in a packet traveling the distance x appears as a random variable distributed by

the Poisson law with the coefficient p0, which implies that on average the number density of photons

decays proportionally to e−p0x. Let τ be the average time during which a multiply scattered photon

travels a unit distance along the direction of the initial wave. Then, c = 1/τ < c0 represents the

average speed of the packet’s propagation through the medium. Taking into account that the number

of photons in the packet decays proportionally to e−p0x, we conclude that the shape of a packet is

described by the function e−p0xm(x/c− t), where c is the average speed of the packet and p0 is the

rate of absorption of photons traveling a unit distance.

Vacuum Medium

Figure 1: Disappearance of photons from the packet traveling through a medium

The above shows that the models of propagation of electromagnetic waves through a medium

in terms of plane waves and in terms of quasi particles agree in that the energy of waves decays

exponentially with the travelled distance and that the speed of propagation in a medium is different

than in vacuum. Such behavior admits a convenient description in terms of the exponential rep-

resentations of plane waves. Consider a monochromatic plane wave propagating in vacuum along

the x-axis and described by the amplitude u0(x, t;ω) = Re
(
eiω(x/c0−t)

)
. When this wave enters a

medium its exponentially decaying amplitude can be described by u(x, t;ω) = e−σx Re
(
eiω(x/c−t)

)
,

which is equivalent to

u(x, t;ω) = e−σx cos

(
ωx

c(ω)
− ωt

)
≡ Re

(
eiω(n(ω)x/c0−t)

)
, (15)
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where n = n′ + in′′ is a complex number related with σ and c by the formulas

c =
c0
n′
, σ =

ωn′′

c0
. (16)

The real and the imaginary components of n = n′+in′′ are usually referred to as the refraction index

and the extinction coefficient of the material, respectively.

Figure 2: Reduction of photon’s speed in a medium

In both considered models, electromagnetic waves change the state of the material, but in studies

focused on the propagation of waves, such as radio signals, the changes in the matter may often

be ignored, and (16) adequately describes the evolution of a signal in a medium with a complex

refractive index n = n′ + in′′. However, these interpretations of wave propagation and absorption

are not suitable for thermal radiation, which does not carry distinguishable signals.

In order to elaborate on the last statement we observe that subatomic particles, e.g. electrons

and nuclei, are never still, as assumed in the outlined Lorentz model of the response of matter

to an external electromagnetic field. On the contrary, subatomic charges permanently move and

sporadically radiate photons even if no external electromagnetic field is applied. These photons

have random frequencies, move in random directions and at random times they are absorbed by

the matter, which gets back the energy of the previously emitted photons. In thermal equilibrium

the rates of photon absorption and emission are equal, so that the average energy densities of the

electromagnetic field and of the medium remain constant. In this situation it is inappropriate to

talk about attenuation of thermal radiation because the average energy of the total field remains

constant, similarly to how the average energy of all particles of a gas remains constant while the

energies of individual particles change after each collision.
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Obviously, the average speed of photons in a model where photons are not grouped into distin-

guishable packets, cannot be defined by the formula (10) with a complex-valued refractive index,

which describes the evolution of groups of photons traveling together. It is still possible to treat any

photon as a sole representative of a group, and, therefore, to describe its evolution in terms of the

conventional model of interaction of an electromagnetic field with the matter. However, since ther-

mal radiation includes photons with arbitrary parameters, the number of individual photons makes

it impossible to consider each of them separately, which effectively makes it impossible to use the

conventional approach and forces us to rely on a statistical description of the ensemble of photons,

considered to be independent of each other, which eliminates chances to consider groups of photons

traveling together. This suggests that in order to analyze thermal radiation it is appropriate to model

the thermally excited electromagnetic field as a gas of photons with time independent distributions

of their energy, direction and the speed, and to study these distributions.

3 The average speed of thermally excited photons

Photons at frequency ω can be represented by plane-wave solutions of Maxwell’s equations that

are normalized to have the average energy density ~ω, [11]. In particular, such a photon can be

represented by a wave described by its scalar and vector potentials

φ = 0, A[1](x, t;ω, e,d, α) = d

√
~
ε0ω

cos
(ω
c
e · x− ω[t− α]

)
, (17)

where ε0 is the permittivity of vacuum, α is a time shift,
√
~/ε0ω is a normalization factor, e is a

unit vector along the direction of propagation, and d is a unit vector normal to e, which determines

the polarization. As for the subscript [1] it emphasizes that this formula represents a single photon.

Photons with different frequencies, polarizations, directions, and time shifts are distinguishable

from each other. However, photons with identical sets of these parameters appear as indistinguishable

particles whose collective behavior is governed by the Bose-Einstein statistics, [12, 13]. In order

to emphasize that indistinguishable photons must be considered together, we reserve the symbol

A[M ](x, t;ω, e,d, α) for a set of M indistinguishable photons with the parameters ω, e, d, and α.

Then, a gas of photons can be viewed as a superposition

∑
j,k,l,ν

A[M ](x, t;ωj , ek,dl, αν), M = M(ωj , ek,dl, αν), (18)

that includes groups of M(ωj , ek,dl, αν) indistinguishable photons with frequencies ωj , directions

ek, polarizations dl and phase shifts αν .
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In vacuum photons propagate freely and their superposition (18) remains unchanged over time.

In a medium these waves interact with atoms, which may absorb or emit photons. The absorption

of one photon corresponds to the replacement in (18) of the corresponding index M by M − 1.

Conversely, the emission of a photon corresponds to the replacement in (18) of the index M by

M + 1, and it is well known that a system with M indistinguishable photons has (M + 1)/M times

more chances to get a new photon than to lose one, [11]. This property makes it possible to estimate

the average speeds of photons in an absorbing material maintained at a fixed temperature.

Assume that the photon’s absorptions and emissions occur at random times distributed by the

Poisson’s law with the average rates of occurrences Pabs and Pemit, respectively, [14, 15]. Then,

the properties of the Poisson processes imply that the inverses 1/Pabs and 1/Pemit represent the

average times before the photon’s nearest absorption and re-emission. On the other hand, a photon’s

absorptions and emissions can be considered from a different prospective as the interruptions and the

beginnings of its motion. Adopting this point of view we see that 1/Pabs = τmove and 1/Pemit = τstop

can be interpreted as the average times of the photon’s motion until it stops and of the photon’s

stoppage time until it starts moving again. Then, assuming that a photon moves with the speed c0

between its re-emissions and absorptions, we represent the average speed of a photon as

c∗ =
c0τmove

τmove + τstop
=

c0Pemit

Pemit + Pabs
=

c0
1 + Pabs/Pemit

. (19)

The above mentioned property of photon statistics leads to the estimate

Pabs

Pemit
=

M̃∗

M̃∗ + 1
, (20)

where M̃∗ is the average number of indistinguishable photons with a fixed set of parameters (ω, e,d, α).

Assuming that the material and radiation are in thermal equilibrium at temperature T we represent

M̃∗ by (3) and reduce (19) to the expression

c∗(ω, T ) =
c0

1 + e−~ω/κT
, (21)

describing the average speed of photons at frequency ω in the black body at temperature T .

Obviously, the speed (21) is not constant. At the low frequency limit ω → 0 it approaches

the temperature-independent value c∗(0, T ) = 1
2c0, which means that low-frequency photons spend

equal times propagating and being absorbed by the matter. As the frequency increases, c∗(ω, T )

monotonically approaches another temperature-independent limit c∗(∞, T ) = c0, which conforms

with the expectation that extremely short waves go through the material without interruptions.
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It is often convenient to characterize electromagnetic waves by their wavelength λ0 in vacuum

instead of the frequency ω. Taking into account that ωλ0 = 2πc0 we convert (21) to the form

c∗(λ0, T ) =
c0

1 + e−2πc0~/λ0κT
. (22)

Then, the effective wavelength λ∗ of radiation inside a black body is estimated as

λ∗ ≡ λ∗(λ0, T ) =
λ0

1 + e−2πc0~/λ0κT
. (23)

Although (22) and (23) are merely equivalents of (21), the representations of the wave speed and

wavelength of thermally excited waves inside materials in terms of the wavelength in vacuum are

convenient for the characterization of the domain of applicability of the obtained formulas.

To get an idea about the potential implications of (22) and (23) we combine in Fig. 3 graphs

of power spectra of thermal radiation with graphs of the effective speed of thermal radiation. The

subfigure a) shows Planck’s spectra at temperatures 300K, 350K and 400K of black body radiation

into vacuum, plotted against the wavelength in vacuum; and the subfigure b) shows the effective

speed c∗(λ, T ) of thermal photons inside black bodies at temperatures 300K, 350K and 400K, which

are also plotted against the wavelength in vacuum. These subgraphs show that although the effective

speed of radiation inside a black body depends on the wavelength, in the dominant part of the spectra,

i. e. approximately from 3 to 20 microns, the reduction of the effective speed of radiation is limited

to about 16% to 23% of the maximal possible speed.

0 5 10 15 20 25 30 35 40
Wavelength  in vacuum ( in microns )

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

E
n

e
rg

y
 d

e
n

s
it
y
 s

p
e

c
tr

a
 (

J
/m

4
)

300
o
 K

350
o
 K

400
o
 K

0 5 10 15 20 25 30 35 40

Wavelength  in vacuum ( in microns )

1.5

2

2.5

3

3.5

E
ff
e
c
ti
v
e
 w

a
v
e
 s

p
e
e
d
 (

 m
/s

 )
 

10
8

400
o
 K

350
o
 K

300
o
 K

a) Energy density spectra (J/m4, per unit vol-
ume, per unit wavelength) of thermally ex-
cited photons as functions of the wavelength
(10−6m) at temperatures 300K, 350K, 400K

b) Effective speeds (m/s) of thermally ex-
cited photons as functions of the wavelength
(10−6m) at temperatures 300K, 350K, 400K.

Figure 3: Speed and energy spectra of thermally radiation in a black body
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4 Thermal radiation near a boundary of a medium in thermal equi-
librium

In the above we concluded that a thermally excited electromagnetic field inside an absorbing medium

can be modeled by an ensemble of photons propagating with the speed c∗ from (21) or (22), which

appears to be independent of the material. This conclusion is based on the assumption that each

photon is absorbed and re-emitted infinitely many times, which is certainly the case deep inside an

absorbing material, but which is not valid near its boundary. It is in this boundary layer that the

speed becomes dependent on the material.

Consider photons passing a point with Cartesian coordinates (x, 0, 0) located inside the half-space

x > 0 occupied by an absorbing material, as shown in Fig. 4. These photons can be subdivided into

two distinctive groups. The first group includes photons that reach the surface or arrive from it

in one excursion, without having been absorbed and re-emitted, but with possible scatterings that

merely change the photon’s speed. The second group includes photons that reach the boundary

or come from it after one or more absorptions and re-emissions. For simplicity we assume that

photons from the second group propagate with the speed c∗ from (21) or (22), derived for photons

experiencing many absorption and re-emissions, which eliminate chances to trace the trajectories of

individual photons. As for photons from the first group, they propagate without absorptions and

re-emissions, which means that they can be traced individually as signal carrying waves with the

speed c(ω) = c0/n
′(ω) determined by the refractive index of the material n′(ω). Since such photons

reach the boundary without having been absorbed, we assume, in agreement with the photon’s model

of signal carrying waves, that the amplitudes of waves represented by these photons do not decay.

Then, at the depth x inside the body the average speed of photons at frequency ω propagating at

the angle θ with respect to the x-axis can be represented as

v(x, ω, θ) = γ(ω,L)c(ω) + (1− γ(ω,L))c∗(ω), L =
x

cos θ
, (24)

where γ(ω,L) is the probability that a photon at frequency ω travels the distance L without having

been absorbed.

In order to estimate the probability γ(ω,L) in (24) we assume that photon’s absorptions as

random events occur with the probability p0∆L while a photon travels a small distance ∆L. Such

random processes are referred to as Poisson processes, [14, 15], and it is known that the probability

of traveling a distance L without absorption has the value e−p0L. On the other hand, as discussed in

Section 2, when a packet of photons travels through a material with the extinction coefficient n′′(ω),
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Figure 4: Photons near the boundary

the number of photons in a packet decays proportionally to e−2Lωn
′′/c0 . Therefore, the comparison

of the two observations suggests that the probability γ(ω,L) in (24) has the value

γ(ω,L) = e−2σ(ω)L, σ(ω) =
ωn′′

c0
. (25)

Finally, combining (24) and (25) we find that the average speed v(ω;x, θ) of photons at the depth

x under the surface of a material half-space can be estimated by

v(x, ω, θ) = c0

(
e−2ωn

′′(ω)x/c0 cos θ

n′(ω)
+

1− e−2ωn
′′(ω)x/c0 cos θ

1 + e−~ω/κT

)
, (26)

where θ is the incidence angle of the photons, while n′(ω) and n′′(ω) are the real and imaginary

components of the complex refraction index n(ω) = n′(ω) + in′′(ω) of the material.

The speed (26) of thermal radiation near the boundary of the medium depends in a rather

complex way on the refractive index and the extinction coefficient of the material, as well as on the

direction of propagation and the distance from the material’s surface. This speed is pushed towards

the universal, material-independent value (21) by any of the following changes of the parameters: the

extinction coefficient n′′(ω) increases; the distance x from the surface increases; the wavelength of

radiation λ = 2πc0/ω decreases; and the incidence angle θ increases. In the case when the extinction

coefficient vanishes, n′′ = 0, the complex refractive index n = n′ + in′′ takes the real value n ≡ n′

and (26) reduces to v = c0/n provided by the formula (10), which can be derived by the classical

method outlined in Section 1 and is limited to non-absorbing materials.

In order to illustrate the obtained results we consider silicon dioxide and gold, which are both

widely used in electronic devices but have very different properties. The refractive indices n′(λ0)

and extinction coefficients n′′(λ0) of these materials are plotted in Fig. 5 and Fig. 6 by dashed

and solid lines against the wavelength of light in vacuum λ0. Fig. 5 shows that the absorption of

silicon dioxide is very different in three distinctive parts of the spectrum: this material is almost

12



transparent for radiation with wavelengths between 0.14µm and about 7µm; is noticeably absorbing

in the wavelength bands around 9µm and 21µm; and is moderately transparent in other regions.

This suggests that in the band characterized by high absorption the effective wave speed of radiation

may deviate from the universal value only in a very thin boundary layer, and that in the other bands,

the transitional boundary layer may be considerably wider. On the contrary, the dependence of the

absorption of gold on the wavelength is rather straightforward: in the band λ < 500 nm it increases

almost monotonically, and in the band λ > 500 nm the increase becomes nearly linear. However, the

refractive index of gold has a noticeable dive below unity in the optical band between 0.5µm and

1µm, so that the phase speed of light in this band may exceed the speed of light in vacuum. Such

phenomenon is not unusual and often occurs in plasmas and in absorbing media near the resonance

frequencies, e. g. in silicon dioxide at non-optical bands around 0.05 nm, 6 nm and 20 nm. It does

not contradict the theory of relativity which sets the limit to the speed of propagation of signals,

while the phase speed describes the motion of wave crests, [8] It is also worth noting that while the

refractive index of silicon dioxide is bounded between n′ ≈ 0.4 and n′ ≈ 3, the refractive index of

gold spreads from n′ ≈ 0.16 at λ ≈ 0.06µm to values exceeding n′ ≈ 12 as the wavelength λ > 10.

The above observations suggest that in silicon dioxide the transitional boundary layer where the

effective wave speed of radiation noticeably deviates from c∗ represented by (22) values may be as

thin as few nanometers in the band characterized by high absorption, but in the two other bands the

thickness of this layer could be considerably wider, reaching several microns and going far beyond

in the nearly transparent bands, such as around λ ≈ 5µm. The thickness of the transitional layer

in gold is expected to be effectively limited by strong absorption of gold at all wavelengths, except

extremely short ones, however, due to the wide range of the refractive index of gold the effective speed

of radiation in this layer may vary from about an order magnitude below to an order of magnitude

higher than the speed of light of vacuum.

The above expectations for silicon dioxide are confirmed by the top and bottom sub-figures of

Fig. 7 for radiation in silicon dioxide in the absorbing band and weakly absorbing spectral bands,

respectively. The solid, dashed and dash-dotted lines in the top subfigure correspond to waves with

9.2µm, 21.3, µm and 10µm wavelengths, respectively, all of which belong to the highly absorbing

part of the spectra. Evidently, for radiation in these bands the transitional zone to the universal

value is short and does not exceed about ∼ 5 nm. The bottom subfigure is noticeably different. The

dash-dotted, horizontal line corresponds to radiation with a 5, µm wavelength, which has practically

no absorption. The speed of such waves remains constant through the entire body, and it does not

approach the universal speed in black bodies. The solid and dashed lines correspond to radiations
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Figure 5: Refractive index n′(λ) and extinction coefficient n′′(λ) of SiO2
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Figure 6: Refractive index n′(λ) and extinction coefficient n′′(λ) of Au

with the wavelengths 0.155µm and 100µm, which have low but still noticeable extinction coefficients.

Evidently, for these waves the transitional boundary layers are about 1µm wide, almost two orders

of magnitude wider than for radiation in the bands with high absorption.

The dependence of the transitional boundary layer in gold is shown in Fig. 8 and Fig. 9. The five

graphs of Fig. 8 correspond to radiation with wavelengths from 3µm to 30µm, all of which belong

to the part of the spectrum where the extinction coefficient and the refractive index monotonically
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Figure 7: Effective phase speeds near the surface of SiO2 for different wavelengths

increases with the increase of the wavelength. As expected, all graphs reach the asymptotes cor-

responding to the universal speed of thermal radiation at the distances from the boundary below

100 nm and reach the conventional values c0/n
′ at the surface of the material. Fig. 9 covers a part

of the spectra with wavelengths from 600 nm to 1200 nm, where the refractive index of gold dips

below unity. Since the absorption in this band remains high, all graphs of the figure approach the

universal value c∗ within 50 nm from the boundary. However, these graphs approach the asymptote

from the above, because due to the small values of the refractive indices the phase speeds of these

waves exceed the speed of electromagnetic radiation in vacuum.
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5 Discussion

Thermal radiation sharply differs from other forms of heat transfer by its ability to transfer heat

through vacuum and by its stronger than linear dependence on the temperature difference between

heat exchanging objects. Due to these features the interest in radiative heat transfer, for almost

all time since its inception in the 1700s, [16, 17, 18], has been mostly focused on long-range heat
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transfer through nearly transparent media, such as heating of the Earth by the Sun, and problems

involving very high temperatures, such as combustion or nuclear reactions. These two areas of

applications divide the modern theory of thermal radiation on two branches usually referred to as

thermal radiation into non-participating and into participating media, respectively.

Thermal radiation in participating media is usually described in terms of the radiative transport

theory (RTT) based on the radiative transport equation (RTE), [19, 20, 21], which is similar to the

Boltzmann transport equation [22] in the sense that it provides a statistical description of photons

considered as particles that move with the speed of light in vacuum between interactions with atoms.

This model has been successful in various situations [20, 21] which satisfy a number of conditions

formulated in [20, Sec. 9.1.1] with the comment that “. . . in the majority of works on the presentation

of the RTT fundamentals and application of the theory, the physical suppositions underlying this

theoretical presentation are as a rule neither discussed nor analyzed”. The conditions of applicability

of the radiation transport equation include the requirements that the wavelength of the radiation

must be essentially shorter than the scale of variations of the structural parameters of the medium.

This requirement cannot be relaxed because it is critical for the derivation of the radiative transport

equation which represents the balance of the electromagnetic energy in a domain that is much larger

than the dominant wavelength of radiation. Besides that, the derivation completely ignores the wave

nature of radiation, making it impossible to take into account the interference of waves radiated by

different parts of considered structures. Due to theses restrictions, the radiative transport theory

cannot be applied to the nanoscale heat transfer despite having been successfully used in a number

of other important areas [20, 21].

Since a non-participating medium does not absorb electromagnetic waves, it has a real-valued

refractive index, which makes it possible to describe the radiation into such media by the generaliza-

tion of Planck’s law, discussed in Section 1. Correspondingly, the radiative heat transport through

non-participating media can be studied by the methods developed for radiation through vacuum. In

order to compute the net heat flux between two bodies, these methods first describe radiations from

each of these bodies using Planck’s law, then the theory of wave propagation is used to compute the

rates of energy transmission in each direction, those difference represents the net flux of the radiated

energy. This approach has been successful in studying long distance thermal radiation, but it fails

in cases when the distance between the bodies is comparable or smaller than the wavelength of the

radiation, [23, 24]. However, this failure is not caused by fundamental deficiencies of the approach,

but results from its implementation, which needs a few adjustments to take into account specifics of

wave phenomena in small scales.
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It is well known that electromagnetic waves radiated by sources separated by a long distance

compared to their wavelength may be considered as uncorrelated, which means that the energy flux

of the superposition of these waves is almost equal to the sum of the fluxes of the individual waves,

[3]. This implies that the radiations from two bodies A and B separated by a large distance are

independent of each other to the extend that each of them can be considered as if the other one

does not exist. Due to this property the radiation from each of the bodies A and B is determined

solely by the corresponding temperature TA or TB. Evidently, this condition is not met in a system

of two bodies separated by a sub-micron distance and maintained at temperatures corresponding to

wavelengths exceeding 10 microns, which is the case at room temperature.

In such cases, spectra of radiation from each of the bodies A and B is described by the generaliza-

tion of the Planck’s law to systems with a heat flux, which involves the corresponding temperatures

TA or TB, as well as the heat flux Q, [25, 26, 27]. Another principal feature of nanoscale systems is

that their thermal radiation cannot include electromagnetic waves with certain wave vectors. This

happens because electromagnetic fields radiated by different bodies must continue each other to

a global field defined in the entire structure. It is shown in [28] that a global field may include

only waves whose wave vectors satisfy certain compatibility conditions, which determine “radiative

conduction bands”, similar to conduction bands in layered semiconductors devices.

If the spectra of thermal radiation in the presence of heat flux and the radiative conductance bands

are known, they determine the equation connecting the temperatures of the bodies with the heat flux

between them, which makes it possible to compute the flux corresponding to given temperatures.

Therefore, since the expressions of the spectra of radiation and the conduction bands are obtained

in [27, 28], we have all of the information needed to compute the radiative heat transport between

bodies separated by nanoscale gaps. However, the spectra of radiation and the inequalities describing

the conduction bands are defined in terms of the speeds of thermally excited electromagnetic waves,

which as discussed in Section 2 do not necessarily coincide with the speeds of the signal carrying

waves described by a conventional formula in terms of the refractive indices of the media.

6 Summary and Conclusions

We analyzed the concept of the wave speed of thermal radiation and proposed that in absorbing

materials it should be described by expressions that take real values and involve the material’s

temperature, its refractive index and extinction coefficient, as well as the direction of propagation

and the distance from the materials surface.

18



We first argue that Planck’s law can not be straightforwardly extended to radiation into an

absorbing medium because this law relies on a concept of the speed of light in a matter with a

complex valued refractive index that is designed to model signal carrying waves but is not suitable

for modeling thermal radiation. Electromagnetic waves which carry signals, such as radio waves, laser

beams or radiation from radars, decay in a medium because some of their energies are absorbed.

The absorbed energy is eventually re-radiated but these secondary waves appear as noise that is

uncorrelated with the original signal.

In order to study thermal radiation in an absorbing material, the material and the radiation

must be considered together as a closed system. The energy in such a system is conserved and its

distribution between the material and radiation does not change in time. The radiation in such

systems admits decomposition into normal modes, which makes it possible to extend Planck’s law

to radiation into absorbing materials.

The paper proposes a model of thermal radiation coupled with an absorbing medium. This radi-

ation field has normal modes, which correspond to an effective speed of thermal radiation. Assuming

an absorbing material and the radiation in it are in thermal equilibrium we show that deep inside the

material the average speed of photons is given by a frequency and temperature dependent expression

c∗ = c0/(1 + e−~ω/κT ), which does not depend on the material. In an ideal black body this result

remains valid everywhere inside the body all the way to its surface, but in realistic materials with

finite extinction coefficients, the effective wave speed of thermal radiation depends on the distance

from the material surface in a complex way, which involves the distance from the surface, the direc-

tion of propagation, as well as the refractive index and the extinction coefficient of the material. The

obtained expression gradually converges to expected results in the limiting cases, such as for waves

gliding along the surface, perfectly transparent materials, ultra short or ultra long wave radiations,

etc.
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