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Heat transfer in axially inhomogeneous nanotubes is known to be asymmetric with respect to the

direction of transfer. This phenomenon is known as the thermal rectification. We demonstrate that

thermal rectification in such nanotubes arises due to the interference of phonons excited in the

different parts of the nanotube. It is shown that the rectification does not vanish when the thickness

of nanotube increases, but it vanishes as the external diameter of nanotubes decreases to a few

nanometers. The understanding of the origin of thermal rectification opens a way to the design of

devices controlling heat flows that could perform as efficiently as their electronic counterparts

controlling electric currents. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4971390]

The widespread use of electronic devices such as diodes

that have electric conductance depending on the direction of

the voltage gradient inspires hopes that similar devices for

heat transfer, if fabricated, may improve the thermal manage-

ment in systems ranging from microelectronics to large refrig-

erators and even energy-efficient buildings. This hope is

based on experimental observations, the first of which, about

the asymmetric heat transport between copper and copper

oxide, was reported back in 1936.1 This phenomenon, called

the “thermal rectification,” was met with interest because the

classical theory of heat conduction based on the Fourier law

and heat equation does not predict it. Over the years, it has

been understood that thermal rectification can be provided by

several mechanisms determined by a large number of factors,

such as the material properties and geometry of heat exchang-

ing objects, imperfections of material boundaries and interfa-

ces, external conditions, and, especially, the value of the

temperature differential.2 Nevertheless, this phenomenon is

still not understood well enough for the development of new

technologies.

Some of the mechanisms of thermal rectification are

rather expected. Thus, since material properties of all real

materials are temperature dependent, some thermal rectifica-

tion appears in any inhomogeneous structure due to arising

nonlinearities.3 In order to observe the inevitability of ther-

mal rectification in inhomogeneous structures, it suffices to

consider the bi-material structures consisting of two parts

with different physical properties.4 Indeed, let A(T) and B(T)

denote material bodies A and B at the temperature T.

Then for T1 6¼ T2, the rate of heat transport in such two-body

structures with interchanged temperatures, denoted as

AðT1Þ !BðT2Þ and AðT2Þ !BðT1Þ, may not coincide because

these structures actually involve different pairs of materials.

It is clear that if at least one of the materials undergoes a

phase change when the temperatures are interchanged, then

even a small temperature differential DT ¼ jT1 � T2j may

cause such strong asymmetry that the structure may be used

as a “thermal switch.”5 If the temperature differential DT ¼
jT1 � T2j is large, then a high rate of thermal rectification

may occur without phase changes because the temperature

differential DT generally increases the dissimilarity between

the structures AðT1Þ !BðT2Þ and AðT2Þ !BðT1Þ with inter-

changed temperatures. Thus, Ref. 6 reports a strong rectifica-

tion of the radiative heat transfer between silicon and silicon

dioxide at temperature differentials up to DT¼ 1200 K. In

these cases, materials do not change phases, but Ref. 6 argues

that the asymmetry of heat transfer is caused by less visible

changes in the structures of electromagnetic resonances

affecting thermal radiation. The mechanism of asymmetric

heat radiation caused by the temperature dependence of radia-

tion spectra is widely discussed in the literature, e.g., in Refs.

7 and 8. A similar mechanism of thermal rectification in sol-

ids, where heat is carried by mechanical waves of lattice

vibrations, a.k.a. by phonons, is discussed in Refs. 4 and

9–11. In particular, Refs. 4 and 11 claim that the asymmetry

heat transport across heterojunctions in nanostructures

increases as the size of the structures decreases. This agrees

well with the concept that the rate of heat rectification

depends on the temperature dependence of the parts of the

structure. Indeed, in objects with dimensions comparable with

the wavelength of thermally excited waves, the spectra of

such waves are almost discrete, and the interchange of the

temperatures in the structure AðT1Þ !BðT2Þ may significantly

change the alignment of spectra in heat exchanging domains.

Since the properties of all real materials are temperature

dependent, the mechanisms of thermal rectification discussed

above are universally applicable to any system. However, in

many cases, including, but not limited to, the first reported

case of thermal rectification of a junction between the copper

and copper oxide,1 the observed asymmetry of heat transfer is

considerably greater than what can be explained by the temper-

ature dependence of the material parameters. Correspondingly,

special attention is needed for the understanding of thermal

rectification in cases when the temperature differential is not

sufficiently large enough to play a dominant role.

Recent advances in the fabrication of nanotubes have

led to the conclusion that nanotubes “are ideal materials for
exploring thermal rectification effects.”12 This is largely due

to a simple and nearly perfect molecular structure of nano-

tubes that allows one to ignore such side effects as those

caused by microscopic irregularities and defects of the
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materials. Previous to Ref. 12, other studies have demon-

strated that the thermal conductivity of carbon nanotubes is

dominated by phonons,13,14 and that of the uniform nano-

tubes, the thermal conductance is symmetric. However, Ref.

12 reports that modified nanotubes with non-uniform axial

mass distribution, obtained by depositing heavy molecules

on part of the nanotube’s lattice, demonstrate a thermal recti-

fication. This effect could not be explained by either the geo-

metric asymmetry of the modified nanotubes or by the

ordinary theory of heat transport by phonons, and it was con-

jectured as being due to solitons that might arise due to non-

linearities in the nanotubes.12

Although solitons and other non-linear effects may arise

in realistic structures, our analysis reveals that the rectifica-

tion of thermal transport arises in all structures that include

interfaces between dissimilar materials across which heat is

carried by waves, e.g., by photons or phonons, such as nano-

tubes with non-uniform axial mass distribution mentioned

above. This kind of rectification arises due to the distortion

of the spectra of thermally excited wave in the presence of a

heat flux.15 Such distortion causes an interference of heat

carrying waves that is neglected in usual macro-scale wave

theories of heat transport, but is shown to be important in

low micro and nano-scale heat transfer systems.16,17

The approach presented here provides a better under-

standing of this phenomenon. Consider a composite nanotube

with different material parameters in the domains x< 0 and

x> 0, referred to hereafter as A and B, as shown in Fig. 1. The

heat transfer in such structures is carried by phonons, i.e.,

waves of mechanical vibrations. We assume that the outer

diameter of nanotubes is in the range of 10–40 nm and that

their temperatures are about 300� K, as in Ref. 12. Since the

wall thickness of carbon nanotubes is comparable to or

smaller than one nanometer,18 and the wavelengths of pho-

nons at room temperature are about 1–2 nm, i.e., at least 15

times less that the circumference of a tube, the phonons in

such nanotubes may be treated as waves propagating in a x–y
plane that is tangent to a surface of the nanotube. In a two

dimensional elastic body, there are longitudinal and shear

waves propagating with different speeds cp and cS. However,

for transparency, we adopt here the Debye model convention

that waves of both polarizations propagate with the speed

c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=c2

p þ 1=c2
s

q
.

Let cA and cB be the average wave speeds in the domains

A and B of the tube. Then, the wave field at frequency x in

the domain A consists of elementary waves propagating in

the opposite directions

UþA ¼ aþeiðx cos hAþy sin hAÞx=cAþiaþ ;

U�A ¼ a�eið�x cos hAþy sin hAÞx=cAþia� ; (1)

where a6 is the arbitrary phase and a6 ¼ a6ðx; hAÞ is the

amplitude determined by statistical mechanics. Similarly, the

wave field in x> 0 consists of the waves

UþB ¼ bþeiðx cos hBþy sin hBÞx=cBþibþ ;

U�B ¼ b�eið�x cos hBþy sin hBÞx=cBþib� ; (2)

where b6 ¼ b6ðx; hBÞ are amplitudes determined by statisti-

cal mechanics, hB is related to hA by the Snell law

cB sin hA ¼ cA sin hB, and b6 are random phase shifts.

If there is no heat flux in the tube, then the system is in

thermal equilibrium, and the amplitudes of these waves are

described by the classical Planck’s law. If, however, there is

a heat flux Q, then these amplitudes are described by the gen-

eralization of Planck’s law to systems with a steady heat

flux,15 which provides the determinations

jaþj2 ¼ cAp2ðxð1� qA cos hAÞ; TAÞ;
jbþj2 ¼ cBp2ðxð1� qB cos hBÞ; TBÞ;
ja�j2 ¼ cAp2ðxð1þ qA cos hAÞ; TAÞ;
jb�j2 ¼ cBp2ðxð1þ qB cos hBÞ; TBÞ;

(3)

where c�, with �¼A, B, are constants determined by the

nature of the waves, p2ðx; TÞ ¼ �hx=ðe�hx=jT � 1Þ is the aver-

age energy of an oscillator at frequency x in equilibrium at

temperature T, and

q� ¼
Q

c�E�
; � ¼ A;B; (4)

where E� is the energy density of heat carrying waves in the

�-th part of the nanotube. Since c�E� represents the maximal

possible fluxes in the corresponding domains, it seems natu-

ral to refer to q� as relative fluxes.

Waves U6
A and U6

B are defined, so far, independently of

each other. However, unless the domains A and B together

form a homogeneous tube, none of these waves can exist

without interactions with the other waves. Thus, a wave UþA
propagating in A towards B generates reflected and transmit-

ted waves U�refl and Uþtran propagating in A and B, as illus-

trated in Fig. 2. Similarly, a wave U�B propagating in B
towards A generates secondary waves Uþrefl and U�tran propa-

gating in B and A, respectively. Therefore, the ensembles of

waves UþA and U�B uniquely define the ensembles of waves

U�A and UþB , which implies that since all four of these ensem-

bles are determined by (3) in terms of TA, TB, and Q, these

thermodynamical parameters must be connected.

In order for the wave fields to be compatible, their

amplitudes must satisfy the relations

a� þ R aþeig� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2
p

b�eiv� ;

bþ þ R b�eigþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2
p

aþeivþ ;
(5)

where v6 and g6 are arbitrary phases,

R ¼ lA cos hB � lB cos hA

lA cos hB þ lB cos hA

����
���� (6)

is the reflection coefficient, andFIG. 1. Composite nanotube.
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lA ¼ qAcA and lB ¼ qBcB; (7)

are the acoustic impedances of the parts of the tube, defined

as the products of the mass densities qA, qB and the wave

speeds cA, cB.

Observing that Equation (5) has the form X þ Yeig

¼ Zeiv, we conclude that thetriangle inequality (5) can be

satisfied if and only if the frequency and the incidence angle

satisfy the inequalities

F�ðqA cos hA; TA; xÞ � f ðqB cos hB; TB; xÞ
� FþðqA cos hA; TA; xÞ; (8)

and

F�ð�qB cos hB; TB; xÞ � f ð�qA cos hA; TA; xÞ
� Fþð�qB cos hB; TB; xÞ; (9)

where

F6ðq; T; xÞ ¼ jpðxð1þ qÞ; TÞ6R pðxð1� qÞ; TÞj; (10)

f6ðq; T; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2
p

pðxð1þ qÞ; TÞ: (11)

These inequalities together with the expression q�¼Q/c�E�,
where E�¼E�(T�) is the energy density of the heat carrying

waves in the �-th part of the nanotube, connect the two tem-

peratures TA, TB, and the heat flux Q, so that if two of these

parameters are known, the third can be computed.

Since a frequency-angle pair determines a wave vector,

the inequalities (8) and (9) may be considered as the definition

of the bands of wave vectors of waves that carry energy from

A to B and from B to A, respectively. If Q¼ 0 and TA¼ TB,

then qA¼ qB¼ 0 and these bands coincide, implying that there

are equal numbers of waves carrying heat in each direction. If

the heat flux Q deviates from zero, or the temperatures TA and

TB deviate from each other, the bands of the wave vectors (8)

and (9) become different, which thereby create a difference

between the numbers of waves carrying energy in the differ-

ent directions. This appears as an analog of a conduction band

of electrons. The analogy between heat transport by phonons

and that by electric current is not surprising because the

Helmholtz equation describing mechanical waves carrying

heat is similar to the Schr€odinger equation describing the

dynamics of electric charges. The similarity of the mathemati-

cal models suggests that there may be similarities between

heat transport in layered structures by waves and the electric

conductance across material junctions. In particular, it sug-

gests that the heat transport across interfaces and layered

structures may be asymmetric, as is the case with electric

transport in solid-state junction diodes.

The hypothesis that the structure of the bands (8) and (9)

implies the asymmetry of heat transfer by phonons in a com-

posite nanotube can be straightforwardly verified by analysis

of the inequalities (8) and (9).

Since q�¼Q/c�E�, where E� is the energy density of heat

carrying waves in the �-th domain, it is clear that these

inequalities are invariant under the interchange of the indices

A and B, accompanied by the reversal of the heat flux Q !
–Q and the interchange of the temperatures TA $ TB. This

invariance corresponds to a trivial fact that if the parts A and

B of the tube are interchanged without changing their temper-

atures, then the heat flux changes its direction. However, if

the reversal of the flux Q and the interchange of the tempera-

tures TA $ TB are not accompanied by the interchange of the

parts A and B of the tube, then the band determined by the

conditions (8) and (9) is not preserved, unless qA cos hA

¼ qB cos hB for all hA and hB connected by the Snell law,

which can only happen if cA¼ cB. Indeed, the energy density

of two-dimensional waves in the �-th part of the nanotube is

determined by the integrals

E� T�ð Þ ¼
1

2p

ð ð
p2 x; T�ð ÞD2 x; c�ð Þdxdh; (12)

where

D2 x; c�ð Þ ¼
x

pc2
�

; (13)

is the density of states of two-dimensional sound waves

propagating with the speed c. Therefore, the relative heat

fluxes q�¼Q/c�E� have the structure q�¼ c�QY2(T�), where

Y2(T) is some function of the temperature, which implies that

if cA 6¼ cB, then qA 6¼ qB.

The structure of the conduction bands and their depen-

dence on the direction of heat transfer are illustrated in Fig.

3. In these figures, the upper and lower boundaries of the

shadowed areas correspond to the right-hand and left-hand

sides of the inequalities (8) and (9), respectively. The dashed

lines correspond to the middle parts of these inequalities. For

definiteness, the incidence angle is fixed as h¼ 0, so that the

horizontal axes correspond to the frequency.

FIG. 2. Connections between the phonon spectra in A and B. Phonons UþA and U�B radiated from the domains A and B towards their boundaries, completely

determine fields U�A and UþB propagating into the interiors of these domains. However, the Planck law determines the spectra of waves U6
A and U6

B propagating

in all directions. Therefore, the spectra of U�A and UþB are determined twice: directly by the Planck law, and indirectly, through the spectra of UþA and U�B . The

comparison of two results makes it possible to compute the heat transport between A and B.

231905-3 B. V. Budaev and D. B. Bogy Appl. Phys. Lett. 109, 231905 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  128.32.123.174 On: Thu, 08 Dec 2016

17:48:06



In the equilibrium case with TA¼ TB and Q¼ 0, the

inequalities (8) coincide with (9), which means that the con-

duction bands in the opposite directions also coincide, result-

ing in a vanished net heat flux. The situation changes when

TA 6¼TB. In this case, the inequalities (8) and (9) that deter-

mine the conduction bands in the opposite directions do not

coincide, resulting in a non-vanishing net heat flux.

Thus, if TA ¼ T þ DT > TB ¼ T � DT, as shown in the

left-hand side of Fig. 3, the conduction band of phonons trav-

eling from A to B is larger than in the opposite direction, and

the heat flows towards B. In the opposite case TA ¼ T
�DT < TB ¼ T þ DT, illustrated in the right-hand side of

Fig. 3, the conduction band in the direction B ! A is larger

than that in the direction A ! B, but this difference is not

equal in the two cases. This asymmetric response of conduc-

tance bands on the interchange of the temperatures translates

into the asymmetry of heat transport known as the thermal

rectification.

It is instructive to observe that the conclusion about the

asymmetry of the heat conduction bands (8) and (9) that

causes a thermal rectification remains valid in cases when

heat is carried by three dimensional waves, when the density

of states D3ðx; cÞ ¼ 3x2=p2c3, but it fails in the one-

dimensional case with the density of states D1ðx; cÞ ¼ 1=2pc.

Indeed, the relative fluxes q�¼Q/(c�E�) with E� from (12),

have the structure

q� � q�ðQ; TÞ ¼ cd�1
� Q YðT�Þ; (14)

where d is the dimension of the space and Y(T) is a function

of T. Therefore, in the two and three dimensional cases

qA(Q, TA) 6¼ qB but in the one-dimensional case q�¼QY (T)

and the bands (8) and (9) interchange when DT and Q simul-

taneously change signs, which means the thermal rectifica-

tion vanishes. This shows that the thermal rectification effect

in nanotubes decreases as their circumference becomes com-

parable to the dominant wavelength of heat carrying pho-

nons, i.e., about 1–2 nanometers at room temperature.

The above analysis also shows that the rate of thermal

rectification of composite nanotubes of sufficiently large

diameter depends on the contrasts between the material

parameters of the different parts of the nanotube. Thus, if the

wave speeds in the parts A and B are equal, then it follows

from (14) that the conduction domain defined by (8) and (9)

does not change when Q ! –Q and TA $ TB, which means

that there is no thermal rectification. As the ratio of the wave

speeds c¼ cA/cB deviates from unity, then the interchanges

Q ! –Q and TA $ TB modify the conduction domain (8)

and (9), which results in the emergence of thermal

rectification.

However, the bands (8) and (9) depend not only on the

relative heat fluxes qA and qB but also on the reflection coef-

ficient R defined by (6) in terms of the acoustic impedances

lA and lB from (7). If the impedances are very dissimilar,

i.e., their ratio lA/lB approaches either zero or infinity, then

R ! 1 and the conduction domain (8) and (9) narrows,

implying that the heat conduction vanishes. On the other

hand, of the impedances come closer to each other, then R
! 0 and the heat conduction increases in either direction.

The comparison of the dependencies of heat transport

on the ratio of sound speeds and of the ratio of impedances

shows that in order to increase thermal rectification but still

maintain thermal conductance, it is desirable to increase the

contrast between sound speeds but to keep the acoustic impe-

dances close to each other. Since the sound speed in a solid

is usually defined by the formula c ¼
ffiffiffiffiffiffiffiffiffi
K=q

p
, where K is an

elastic modulus and the acoustic impedance (7) admits the

representation l ¼
ffiffiffiffiffiffiffi
Kq
p

. Therefore, in order to make a bet-

ter thermal rectifier from a bi-material structure, it is desir-

able to have the ratio of impedances lA=lB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KAqB=KBqA

p
as close to unity as possible and the same time to have the

ratio of wave speeds cA=cB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KAqA=KBqB

p
as far from

unity as possible. This means that the stiffer material must

be lighter and the weaker material must be heavier, but not

vice versa.

The understanding of the origin of thermal rectification

opens a way to design applications of this phenomenon,

which may play a key role in modern technology. The simi-

larity between the sources of thermal and electronic rectifica-

tions suggests that thermal rectifiers may eventually make

their way into devices controlling heat flow as efficiently as

their electronic counterparts control electric currents.
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