Dynamic 5 user manual

A GPU version of CMLAIr

Tholfagar (Dolf) Mardan and David B. Bogy
Computer Mechanics Lab.

Mechanical Engineering

University of California, Berkeley

April 26, 2016

Table of contents

SR A S

List of symbols and acronyms.

Introduction to GPU Dynamic 5.0.

Features added.

Why GPU and Cuda FORTRAN?

Why Dynamic 5.07?

Computer system’s requirements and installation.
a. Hardware requirements.
b. Software requirements.

Test results on example sliders.

. Comparison between the two slider designs

Results discussion and conclusion.

List of symbols and acronyms

Vocabulary Meaning

GPU Graphical Processing Unit

DLL Dynamic Link Library

NVIDIA GPU manufacturing company located in San Jose

Cuda Fortran Version of Fortran able to communicate with GPU

Kernel Special subroutine in Cuda Fortran to link
between Fortran 90 and GPU hardware

Cuda cores Processors inside the GPU card

GDDRS5 memory

Graphics Double Data Rate memory version 5

CC

A number refers to GPU Compute Compatibility

OpenAcc directives

A new method of rapping codes sent to GPU

Introduction to GPU Dynamic 5.0

Dynamic code version 5.0 is an upgrade from the Dynamic 4 code. It is
more intelligent yet faster than Dynamic 4. It has its unique internal structure
utilizing the computing power of a Graphical Processing Unit (GPU) efficiently for
scientific heavily mathematical calculations. The main concept behind the
dramatic speed improvement (2.6x in some complex slider designs) is the division
of the task into a smaller portions and computing them in a synchronized and
parallel manner rather than computing serially. Parallel computing has proven its
superiority and speed efficiency over sequential computing.

GPU Dynamic 5.0 has new features that are not used in GPU Quick 5 called
OpenAcc directives. It’s a new method that is easier to use and more accurate
with fewer errors to rap portion of the code intended to be sent to run on GPU
hardware. This method shows more efficiency over the traditional GPU kernels.
The Dynamic code implemented both methods to enhance both speed and
accuracy.

Dynamic 5.0 has the same input files, and same output files as Dynamic 4.
Since it runs on a different hardware structure than the conventional hardware
such as computer CPU and RAM it needs a special DLL (dynamic link library) file to
run successfully. This DLL is already included in the latest release of CMLAIr8.4.
The new Dynamic code has been tested successfully on the NVIDIA GeForce 960
GPU card. It can also run on any NVIDIA GPU card with CC (Compute
Compatibility) of 3.5 or higher. We will talk about compatible GPU’s in more detail
in a later section of this manual.

The new CMLAIr8.4 includes both the Dynamic solvers and the required DLL
to run Dynamic 5.0. There is no need to download them separately; however,
when you install CMLAir, the default Dynamic solver is Dynamic 4. If you have the
proper NVIDIA hardware and software installed in your system and want to use
Quick 5.0 instead, you need to go to the solver section in CMLAir and manually
select GPU Dynamic 5.0 solver.

Features added

The following features and improvements have been added to the
Dynamic code to create the newest and fastest Dynamic code version 5.0:

® 500 lines have been modified using the OpenACC directives method.

® 2 new OpenACC modules have been added to enhance portability of data
handled by the code and gain optimum memory utilization.

e 2 files have been migrated from Fortran 77 to Fortran 90 to support Cuda
FORTRAN.

Why GPU and Cuda FORTRAN?

GPU supports parallel processing.
® |t has more processors than the latest CPU.

® |t has a more reliable, robust, easy to use and control multi-processing
module than CPU.

® |t works separately from CPU since it has its own hardware.
® |t supports the implementation of multi GPU’s.
® |t is available and more affordable than additional CPU.

® Cuda C (by NVIDIA) and Cuda FORTRAN (by Portland group, 2007) are the
two languages provided to communicate with NVIDIA GPU’s.

Why Dynamic 5.0?

The essential part of the new Dynamic code version 5.0 runs on the
GPU architecture. Furthermore, depending on the shape and initial
conditions of the air bearing slider, one can realize different speed
improvement characteristics compared to Dynamic code version 4. This can
vary with the slider design, as shown in the examples and figures in a later
section: 23% for a traditional and simple or moderate air bearing slider
designs to as much as 60% (2.5X faster) for more complex designs.

Computer system’s requirements:

Hardware requirements

During the testing and implementation on the new GPU Dynamic 5.0,
we used a Dell desktop computer model: XPS 8500. It has powerful core i7-
3770 processors, 3.4 GHz (two processors on a chip), 16 GB of DDR3 RAM
and a PCl express slot version 3.0 where you attach the GPU to the
motherboard and get maximum speed transferring data in and out of the
GPU. A decent power supply on board is required since the GPU, during
calculations, consumes a relatively large amount of DC power. Each GPU
has its rated max power that needs to be noted and accommodated. Inside
the Dell XPS 8500 we installed the following NVIDIA graphic card model:
GeForce 960, which is a medium level GPU with powerful features and
compelling price that is used by many video game enthusiasts. The only
exception in this case, in CML and for the first time, we will be using it
purely for scientific problem solving. A picture of the GPU is shown in Fig. 1.
It has the interesting technical specifications given in Table 1.

Figure 1. NVIDIA GeForce 960 GPU card

Coda Cores 1024

Base Clock (MHz) 1127

Boost Clock (MHz) 1178

Memory Size (GB) 2

Memory interface width 128-bit GDDR5
Memory bandwidth (GB/sec) 112

Interface Bus support

PCI Express 3.0

Power dissipation (Watts)

20 idle, 120 maximum

Minimum power supply size (Watts)

400

Dimensions (Inch)

9.5 length x 4.38 height x 1.5 width

Price (SUS)

220

Compute Compatibility (CC)

5.2

Table 1. NVIDIA GeForce 960 specifications chart.

As seen in Table 1 above, the GeForce GPU card has quite interesting
characteristics that could be utilized for CML math calculations. It has 1024
cores running at 1.1 GHz speed. In addition it has 2 GB of fast GDDR5
memory with 128-bit attached and divided among the 1024 processors.
This unigue memory reduces the need for transferring data back and forth
between the GPU and CPU and ultimately reduces the heap (memory
reserved for intermediate calculations) and obviously speeds up problem
solving. Having a PCl express version 3.0 bus takes data transfer to a new
level compared to older GPUs. That explains the ultra-fast transfer rate of
112 GB/second between the GPU and CPU and its peripherals. On the other
hand, such a GPU needs substantial power to perform its operations when
running simulations. The reasons why we chose the Dell XPS 8500 are: first,
it has the minimum required power supply by the GeForce 960, second, it
has a PCl express 3.0 bus interface on its motherboard and ultimately, its
case and the inside space is more than enough to accommodate
comfortably the GeForce 960. It is recommended not to use the DVD/CD
for playing or burning while using GPU Dynamic 5.0 to protect the power
supply from overheating. No further action is needed in regards to the heat
generated by the card when working at its maximum capacity since the
GPU has a large centralized fan on top of the main chip specially designed
for this task, as illustrated in Figure 1. Price wise, the GeForce 960 priced at
$220 is in the medium level between the high end, super expensive Tesla
K40 cards (priced at $2,600 US) and low end older GeForce models such as
GeForce 460 (priced at $120) with fewer and slower processors and smaller
memory.

b. Software requirements

After obtaining the right hardware, a medium form factor desktop
computer such as Dell XPS 8500 or equivalent computer, a GPU such as the
GeForce 960 or above, you can directly and easily install the GPU and replace the
already installed generic graphic card. Install the hardware into the desktop
computer with the proper precautions such as discharging any electrostatic
charges off your hands and trying not to apply too much pressure while installing
the GPU into the proper slot, which could lead to damage to the motherboard
and off course a malfunctioning GPU.

The GPU card comes with an installation DVD to install the card drivers,
however, it is recommended to go to the www.nvidia.com website and download

the latest GPU driver software. This way you are sure of getting the best
compatibility and bug free driver software. As of the time of writing this manual,
the latest GeForce driver is version 361.91. The installation of the latest GPU
driver is a straight forward process, just follow the installation instructions and it
will take no longer than a few minutes.

Regarding the installation of the GPU Dynamic 5.0 solver executable, there
are two ways to do it: directly by installing the latest CMLAIir8.4 which includes
GPU Dynamic 5.0, or via downloading the solver from the CML website along with
one required run time Cuda FORTRAN DLL file.

If you would like to try a different GPU than GeForce 960, please let Dolf
know. He will make sure the correct compiled GPU Dynamic 5.0 fits the CC
requirements for your GPU.

Test results on example sliders

In this section we discuss the example sliders used and the results and
corresponding speed improvements obtained by using the GPU Dynamic 5.0
solver.

Testing the new GPU Dynamic code version 5.0 was a substantial task. So
we tried to use multiple sliders, both simple and complex slider designs, to ensure
variety and accuracy of results. All the sliders have been tested with high
complexity GPUs. In this section we show 2 sliders as examples for the test. They
are either sliders borrowed from CML students or from CMLAIr users in the hard
disk industry. All sliders under discussion have been tested on a GeForce 960. For
each example slider, we show the rail design in addition to the corresponding
speed performance.

Example Sliders: Slider 1

0 Rails - OEN
Rad Ponds. 1
i Y s mnte s,.m_| .MrmlJ __Gu.je| _zumj Cldel _SpmeJ _Disw J L Unds | 4
Doao aeesl 0 r 5
pe neest o Show Walls ¥ Length [men]
oss1 o7 0 e
o am 0 0

& Ramp 1524 1524 14

§s-o-%

Rai Index Base lecess lum)
=t N
Hve = [! 651

Fiad Maripuation
Step Size ﬂ
o 4= =
I Backgiound Giid ,H
™ Snapto Nodes

Expand Ral Insert Mode
Shiink Ral Round Comer

Preview Geomety | [On Cunent Rectangular Grid) _

Lecation: 0.00000, 0.00000 Distance: 0.00000 Single click selects a point, double click selects a rail, click and drag selects a region

Table 2. GeForce GPU solver vs Dynamic 4 solver

Dynamic Solver Dynamic 5 Dynamic 4 Speed increase

Execution time 20 minutes 29 minutes 31%

Figure 2a. CMLAir example slider 1 rails

<] Command Prompt = = = Command Prompt - oiEN

num
nunbs
he:

numbs
nunhe
-199@50
B.199180E
8.199158

ration 18 t E £
ation h L -1866 E 5| B.199850E

tion - 8 il 99¢
numnhe r nunber

OF TRAMSIENT f END TRANS I ENT

IMULATION D
TMULATION EMDED A

SIMULATION START

STMULATION ENDED 15:18:55
ning: e_inexact s igne : c gnaling

ORTRAN § 0

ktc

Figure 2b. Dynamic 5 output vs Dynamic 4 output, slider 1 case.

Slider 2

0 Rails - o lEN

Riail Points

Symm Mirar Guide | Zoom Circle Spline Draw
i)Y fmn) et rmber (o |]} [zcom | o] Feswt | ow| i | | il
046 032805 O ™ ShowWalks % Length fmm)

0.655 0328039 0
06335 037295 0

045 037234 3 02280 0300
0.700
0.600 -
Delate
Rail T -
ail Type y. |00
@ Step FRecess Height (um) %
€ Ramp [16758 i
d 0.400 -
t
Rail Index Base Recsss (um) l"}:ml
) =
=1 o [[rsess il

Rail Manipulation
Step Size ﬂ

e e
I BackgomdBid |

™ Snap to Nodes

0.100 -
Expand Rad | Insert Node |
Shiink R ‘ Round Corneri
0.000-
Preview Geometry | (On Current Rectangular Grd)
Location: 0.00000, 0.00000 Distance: 0.00000 Single click selects a point, double click selects a rail, click and drag selects a region |

Figure 3a. CMLAIr Slider 2 rails

Dynamic Solver GeForce 960 GPU | Dynamic 4 Speed increase

Execution time 26 minutes 65 minutes 60 % (2.5X)

Table 3. GeForce 960 GPU solver vs Dynamic 4 solver

= Command Prompt - Ol - Command Prompt - o

©. 996 IAE
96438

number
nunber
nunber

PEELLTE
5 AR E

Qe
e
L%

A
A
A

nunber
number

.95 B
8. 1000NPE-@ 3
- 100816 i number

188808
1 @BA1 8

END OF TRANSIENT END OF TRAMNSIENT

SIMULATION STARTE
SIMULATION ENDED

Figure 3b. Dynamic 5 output vs Dynamic 4 output, slider 2 case.

Comparison between the two slider designs

= Rails Side rails - o .
Rail Points s Mi Guide J 2, | Citcle] Spli | o 4]
x lm] v [m] ohara b rnm WTOr ui 00m ncl phne Ay
00001 06881 ™ ShowWalls #: Length [mm,

0.700

0.600 -
| o
0.208 um

— Rail Type v 0.500

" Step Recess Height (um) o

& Ramp [1524 1524 14 ;
L d o400

Rail Index Base Recess um) | (N Block z

i‘l‘r o [T |1.651 e rails
-. Rail Manipulation

Step Size

1|
O ‘_I = 0.200 -
I~ Background Grid JL |

I Snapto Nodes

0.100
Expand Rail 1 Inzernt Node |
Shiink. R ail] Round ComelJ
0.000 -
Preview Geometry I [On Cumnent Rectangular Grid)
Location: 0.00000, 0.00000 Distance: 0.00000 Single click selects a point, double click selects a rail, click and drag selects a region A

Figure 4a. CMLAIr Slider 1 rails with etching depths

= = o < - O EEN
= Rails Cylinder rails

Rail Points

Sfom) o) profie » Symm] Mirror l Guide l Zoom | Circle Spline Draw nd Fed

0.46 0.32805 O I~ ShowWalls »: Length [mm)

0.655 0.32809
06395 0.37295
0.45 0.37234

woo

0.300

{0.700

{0.600 -
i | [Celete] updere]| 0.2235 um

Rail T : 500 - .
o _ ‘3l | Corner rails 1.676 um
= Step Fecess Height (um) o
 Ramp [15764 i

d o.400
Rail Index Base Recess (um) [m"'ml
=H7T o« = 18200 -

- Rail M anipulation
Step Size ﬂ |
'ﬁ“"‘—‘ o) _ti :—! {0.200
I~ Background Grid il

™ Snap to Nodes

{10.100
Expand Rail | Insert Node |
Shiink Rail | Found Comer |
0.000 -
Preview Geometry | (On Cunent Rectangular Grid)
Location: 70.00000, 0.00000 Distance: 0.00000 Single click selects a point, double click selects a rail, click and drag selects a region >

Figure 4b. CMLAIr Slider 2 rails with etching depths

Looking at tables 2 and 3, we can see clearly that using GPU Dynamic code
gives a much faster speed of convergence. We can also see that there is big
difference between speed improvement between table 2 (slider 1 design)
compared to table 3 (slider 2 design). In the second case (table 3, slider 2) we
have achieved 2.5X speed increase over the traditional Dynamic 4. In order to
better understand the reason behind the difference in performance, we decided
to examine the two sliders in more detail. We show each slider design along with
its recess depth. Figures 4a and 4b illustrate those rail designs.

Slider 1 has two rails that look like a bar along the x axis between the
trailing edge and leading edge as shown in figure 4a (side rails). Those two rails
are ramp type rails. Slider 2 does not have such rails. Moreover, slider 2 has two
rails in a shape of a cylinder as shown in figure 4b (cylinder rails). Slider 1 has no
such cylinder type rails. Additionally, slider 1 has block rails as shown in figure 4a
near the leading edge, while slider 2 does not have those. Finally, slider 2 has
corner rails near the leading edge as shown, but slider 1 does not have such rails.

Each color in each slider corresponds to a rail/rails profile and a certain
etching depth as shown. There are differences between etching depths between
the two cases. For example, Figure 4a shows the base recess depth of slider 1 to
be 1.651 um, while figure 4b shows a base recess of 1.8288 um for slider 2. There
is a 0.2 um difference in base recess between the two cases in study. Additionally,
the slider 1 design has a rails with an etching depth of 1.14 um, while slider 2 has
equivalent rails but with etching depth of 1.676 um. There is a 0.536 etching
depth differences for these rails. Moreover, slider 1 design has a rail with depth of
1.35 um, while slider 2 has a rail in the same location but with etching depth of
1.676 um.

The differences in the two discussed slider designs and etching depths
above could explain why the speed improvement is not the same in these two
sliders. All the above factors participated in making slider two converge much
faster than slider 1.

Results discussion and conclusion:

The figures and results are self-explanatory. As can be seen in the first
slider, the speed increase over Dynamic 4 is only 33%. Slider 1 design is not as
complex as slider 2 design, as we can see in table 2 and table 3. While for other
complex sliders, such as slider 2 which has different rails designs and etching
depths, the speed increase was 2.5X faster compared with running same slider
design using Dynamic 4. For that reason, GPU is recommended for complex slider
designs, which are the common case in the new hard disk drives.

Accuracy is an essential factor when looking at the results. Figures 2b and
3b show that the accuracy of GPU Dynamic 5 was as close and comparable to
results of Dynamic 4 as possible. There is almost a negligible difference in
residuals between the two slider cases under study.

If you are not decided to buy a relatively expensive $2,200 Tesla K40 GPU
along with minimum of $1,500 high power tower desktop with multiple PCI
express slots, our recommendation is to buy the more affordable, $220 GeForce
960 GPU. It does the job well without the higher price of Tesla K40.

In conclusion, as we see in the example cases along with their output results, the
GPU Dynamic 5.0 is a significantly faster solution for complex modern slider
designs.

