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Abstract

In linear feedback control, the attenuation of disturbances at the

designer-selected frequencies is subjected to the fundamental limita-

tion of undesired error ampli�cations at other frequencies, due to the

"waterbed" e�ect that is induced from Bode's Integral Theorem. In the

presence of unknown disturbances with high-frequency wide-spectrum

peaks, such undesired error ampli�cations severely degrades the closed-

loop servo performance, and are extremely di�cult to control using

traditional loop shaping techniques. In this paper, a direct adaptive

control approach is proposed based on adaptive loop shaping and dis-

turbance observer (DOB). The proposed algorithm o�ers more �exi-

bilities in controlling the "waterbed" e�ect, to achieve enhanced at-

tenuation of the unknown wide-spectrum disturbances. Veri�cation of

the proposed algorithm is provided by simulations of hard disk drives

(HDDs) for audio vibration suppression.

The work has been submitted to The 2016 American Control Con-

ference, July 6�8, Boston, MA, USA.
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1 Introduction

Precision motion systems such as hard disk drives (HDDs), commonly en-
counter various external disturbances that must be suppressed to achieve the
highest positioning accuracy and best servo performance. According to the
frequency characteristics, the external disturbances can be categorized into
two di�erent groups: 1) narrow-band disturbances where the energy of the
signals are highly concentrated at several known or unknown frequencies, as
shown in Fig. 1(a), and 2) wide-spectrum disturbances whose spectral peaks
are much wider, as shown in Fig. 1(b). Moreover, the frequency characteris-
tics of such disturbances can be time-varying and/or environment/product-
dependent. The spectral peaks also might occur at frequencies beyond the
open loop servo bandwidth [1, 2]. For example, for the audio vibrations in
modern HDDs, both the center frequencies and the widths of spectral peaks
change in di�erent operation environments and in di�erent products; and
the spectral peaks can appear at frequencies greater than 1000Hz [3]. Such
disturbances with wide spectral peaks at high frequencies are di�cult to
suppress by traditional feedback control, due to the well-known �waterbed�
e�ect [4]. As the system uncertainties become large at high frequencies, error
ampli�cations that accompany the suppression of high-frequency diturbances
will deteriorate the robustness of the closed loop and even cause system in-
stability.
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Figure 1: Examples of di�erent disturbance signals
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The attenuation of such band-shaped vibrations have attracted great at-
tention of researchers. For the narrow-band case, extensive algorithms such
as the peak �lter [5, 6], Youla-parameterized compensator [7, 8, 9], adaptive
notch �lter [10, 11], and narrow-band disturbance observer (DOB) [12, 13, 14]
have been developed and achieved good performance. Based on the internal
model principle (IMP) [15], these works adaptively generate deep but nar-
row notches in the closed-loop sensitivity functions at the frequencies where
the disturbances dominates, therefore the closed loops are shaped �locally�
without bringing signi�cant in�uences to other frequencies. In the presence
of wide-spectrum vibrations, however, it is di�cult to tune for the optimal
notch widths in these algorithms. A narrow notch cannot provide su�cient
attenuation to the wide-spectrum disturbances; yet a wide notch will bring
large error ampli�cations at other frequencies and hence compromises the
achievable performance. To address this problem, Chen et. al proposed to
place a group of pre-designed poles and zeros [16] in the Q �lter design and
an o�ine optimization-based design approach is derived in [17]. Sun et. al
[18] developed an adaptive DOB with a lattice-form IIR (In�nite Impulse
Response) notch �lter, which can automatically tune the width of the notch
�lter online for an optimal overall performance.

In this paper, a direct adaptive controller based on adaptive loop shaping
and DOB is proposed. By introducing more adaptation freedom in the Q �l-
ter, this approach o�ers more �exibilities in controlling the "waterbed" e�ect.
Attenuation of disturbances at the designer-selected frequencies are achieved
with reduced error ampli�cations at other critical frequencies. Therefore, the
overall performance for disturbance attenuation is enhanced. Veri�cation is
given in Section 5 by simulation results of a benchmark problem in HDDs
for wide-spectrum audio vibration suppression.

2 Controller Structure

Figure 2 shows the controller structure with DOB for disturbance suppres-
sion in a regulation problem. P (z−1) is the sampled plant and C(z−1) is an
existing feedback controller that stabilizes the system and provides a baseline
servo performance. m, Pn(z−1) and Pan(z−1), respectively, represent the rel-
ative degree of P (z−1), its nominal model and the delay-free nominal model,
i.e., z−mPan(z−1)=Pn(z−1)≈P (z−1). Therefore, P−1an (z−1) is causal. To make
P−1an (z−1) stable, stable inverse techniques such as Zero-Phase-Error (ZPE)
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inverse [19] can be used if the plant is non-minimum phase. Q(z−1) is the Q
�lter to be designed to o�er loop shaping ability and robustness. The signals
d(k), e(k), u(k), y(k) and n(k) are, respectively, the lumped input distur-
bance signal, the position error signal (PES), the control signal, the output
signal and the measurement noise in the system.

P (z−1)

P−1an (z−1)z−m

C(z−1)

Q(z−1)

+

e(k)

−

d̂(k)

−
c(k)

u(k) d(k)r = 0 y(k)

−
n(k)

DOB

Figure 2: Block diagram of the controller structure with DOB

From Fig. 2, it is derived that d̂(k) is a contaminated and delayed estimate
of d(k), given by

d̂(k) = P−1an (q−1)
{
P (q−1) [u(k)+d(k)] +n(k)

}
−q−mu(k)

≈ d(k −m)+P−1an (q−1)n(k),
(1)

where q−1 denotes the one-step delay operator in time domain. Therefore, to
construct a compensation signal c(k) that cancels out d(k), i.e., c(k)≈d(k),
Q(z−1) needs to o�er 1)m-step phase compensation and 2) frequency �ltering
ability that can maximally recover d(k) from the noise-contaminated d̂(k).
To see the role of Q(z−1) from the loop-shaping perspective, the sensitivity
function S(z−1) (i.e., the output disturbance-rejection function) in Fig. 2 is
computed as

S=
1− z−mQ

1 + PC +Q (PP−1an − z−m)
. (2)

Recalling z−mPan(z−1)≈P (z−1), S(z−1) is simpli�ed to

S≈
(
1− z−mQ

)
/ (1 + PC) =

(
1− z−mQ

)
S0,

where S0=1/ (1+PC) is the baseline sensitivity function corresponding to
the baseline controller C(z−1). As a small S(z−1) corresponds to strong
attenuation of d(k), the term 1−z−mQ thus serves as an add-on frequency
shaping term on top of S0(z

−1), to enhance the performance of the con-
troller for disturbance suppression. For example, letting e−jωmQ(e−jω)=1
gives S(e−jω)≈0, i.e., perfect disturbance rejection at frequency ω.

6



To suppress the aforementioned band-shaped disturbances in Fig. 1,
1−z−mQ(z−1) should introduce small gains at frequencies where the spectral
peaks appear. Assume that f0 is the center frequency of one peak, then
based on IMP, 1−z−mQ(z−1) should contain the internal model of d(k), i.e.,
1−2 cosω0z

−1+z−2 (ω0=2πf0), so that (1−q−mQ(q−1)) d(k)≈0. Therefore,
we consider the following design

1−z−mQ(z−1)=
AN(1, z−1)

AN(α, z−1)
J(z−1)

Q(z−1)=
BQ(z−1)

AN(α, z−1)

(3)

where AN(1, z−1)/AN(α, z−1),N(z−1) is a lattice-form IIR notch �lter, with
AN(γ, z−1)=1− (1+γ) cosω0z

−1+γz−2, γ= {1, α}. This special notch �lter
N(z−1) provides 1) a notch at frequency f0 and 2) symmetric gains w.r.t f0
[18, 20]. If there are multiple spectral peaks in d(k), for example, n peaks at
frequencies fi(i=1, · · · , n), AN(γ, z−1) can be extended to

AN(γ, z−1)=
n∏
i=1

(
1− (1+γ) cosωiz

−1+γz−2
)
, ωi=2πfi,

with γ= {1, α}. The design parameter α∈(0, 1) controls the notch widths of
N(z−1) at fi and the magnitude of N(z−1) at other frequencies. As α ap-
proaches 1, the approximate notch width NW=2 arctan 1−α

1+α
becomes small

and the DC/Nyquist-gain 2/(1 + α) gets close to 1, namely, AN(1, z−1)/AN(α, z−1)
approximates a perfect notch �lter.

Recalling (2), the shape ofN(z−1) and J(z−1) on the right-hand side of (3)
will be directly re�ected in the new sensitivity function S(z−1). Multiplying
AN(α, z−1) to both sides of (3), we have

AN(α, z−1)=z−mBQ(z−1)+AN(1, z−1)J(z−1), (4)

which is a Diophantine equation. Given z−m, AN(1, z−1), and AN(α, z−1),
the unknown BQ(z−1) and J(z−1) can be solved by matching the coe�cients
of z−i. The minimum-order solution of (4) gives the desired Q �lter in (3) if{

deg (AN(α, z−1))≤m+ deg (BQ(z−1))

deg (BQ(z−1)) +m= deg (J(z−1)) + deg (AN(1, z−1)) = deg (AN(α, z−1)) +m−1
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is satis�ed. Such minimum-order solution, however, o�ers no freedom in
designing the structure of BQ(z−1) since it is internally determined by the
algebraic equation. The minimum-order Q(z−1) can work well for the prob-
lem of narrow-band disturbance rejection, where N(z−1) is a narrow notch
�lter with |N(e−jω0)| ≈ 0 and |N(e−jω)|≈1, ω 6=ω0, so that little ampli�cation
is induced in S(z−1) at other frequencies. As the notch width becomes wider
for wide-spectrum disturbance rejection, |N(e−jω)| at ω 6=ω0 becomes larger
and cannot be neglected anymore. Therefore, to adaptively control the �loca-
tion� of the undesired gain ampli�cations, more design freedom to the term
J(z−1) should be introduced, which equivalently transforms into more design
freedom in BQ(z−1) according to (4).

Thus, the new BQ(z−1) in the proposed algorithm is set as

BQ(z−1)=BQm(z−1)BQa(z
−1) (5)

where BQm(z−1) represents a minimum-order polynomial in z-domain with
deg (BQm(z−1)) = deg (AN(1, z−1))−1; andBQa(z

−1) provides additional loop
shaping freedom. The order of BQ(z−1) is denoted as r and should satisfy
r> deg (AN(1, z−1))−1 for solving the Diophantine equation.

Figure 3 shows an example design of introducing more freedom inBQ(z−1).
In Fig. 3, BQa(z

−1)=1−z−1 provides small gains of Q(z−1) at low frequen-
cies, which, in the loop-shaping prospective, makes the low-frequency gains
of 1−z−mQ(z−m) be close to 1, i.e., gain ampli�cations at low frequencies in
S(z−1) will be reduced compared to the minimum-order design (the dash-
dotted curve).
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Figure 3: An example design of introducing additional loop shaping freedom
in BQ(z−1)

3 Direct Adaptive Loop Shaping for Wide -

spectrum Vibration Suppression

As previously discussed, if the additional zeros in BQ(z−1) in (5) are pre-
designed o�ine, the control structure cannot e�ectively deal with distur-
bances with varying frequency characteristics. Therefore, the additional free-
doms introduced in BQ(z−1) should adaptively shape the frequency charac-
teristic of the add-on term 1−z−mQ(z−1). By such adaptation in real time,
disturbances at the spectrum-peak frequencies can be maximally attenuated
and the error ampli�cations at other critical frequencies can be minimized.
In this section, the adaptation of the proposed controller in Section 2 will be
addressed.

9



3.1 Adaptive DOB structure with enhanced loop shap-
ing

Figure 4 presents the proposed direct adaptive controller based on DOB and
enhanced loop shaping. Here, the central Q �lter is equipped with adapt-
able parameters in BQ(z−1). Recalling (5) and representing BQ(z−1) in a
polynomial form, we get

BQ(z−1)=BQm(z−1)BQa(z
−1)

=b0+b1z
−1+b2z

−2+ · · ·+brz−r,
r> deg

(
AN(1, z−1)

)
−1.

(6)

P (z−1)

P−1an (z−1)z−m

C(z−1)

Q(z−1)

Pan(z
−1)S0n(z

−1)

PAA

+−

d̂(k)

ds(k)

−
c(k)

u(k) d(k)e(k)r = 0 y(k)

−
n(k)

Figure 4: Block diagram of the proposed adaptive DOB structure with en-
hanced loop shaping

Similar to most regulation problems, our goal is to minimize ‖e(k)‖ in
the presence of the band-limited d(k), particularly those with wide spectral
peaks. Note that d̂(k) is a contaminated and delayed estimate of d(k) as
derived in (1), and that z−mPan(z−1)≈P (z−1), S(z−1)≈ (1− z−mQ)S0. The
output e(k) can be expressed as (if n(k) is small compared to d(k))

e(k)=−P (q−1)S(q−1)d(k)

≈−q−mPan(q−1)
(
1−z−mQ(z−1)

)
S0n(q−1)d(k)

=−
(
1−z−mQ(q−1)

)
Pan(q−1)S0n(q−1)d(k −m)

≈−
(
1−z−mQ(q−1)

)
Pan(q−1)S0n(q−1)d̂(k)

=−
(
1−z−mQ(q−1)

)
ds(k),

(7)
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where S0n(q−1) is the nominal baseline sensitivity function given by

S0n(q−1)=1/
(
1+Pn(q−1)C(q−1)

)
.

ds(k) is the signal as shown in Fig. 4. Thus, minimizing ‖e(k)‖ is equivalent
to minimizing ‖(1−q−mQ(q−1)) ds(k)‖ where the parameters of BQ(q−1) can
then be updated online.

Remark 1: Practically, the e�ect of n(k) will not cause severe problems
to the adaptation and the convergence of the parameters. Most precision-
motion systems have small gains at high frequencies where the noise usually
dominates, namely, |Pan(e−jω)| is small at high frequencies. Therefore, pass-
ing d̂(k) through Pan(z−1)S0n(z−1) will �lter out n(k).

3.2 Adaptation algorithm

As a direct adaptive control scheme, we need to de�ne an error equation
that re�ects the di�erence between the optimal parameters of BQ(z−1) and
the current ones [7]. Assume that at time index k, the updated BQ(z−1)

is B̂Q(k, z−1), then based on (3) and (7), the output signal y(k + 1) (in
regulation problem, y(k+1)=−e(k+1)) in Fig. 4 is given by

y(k + 1)=

(
1−q−m B̂Q(k, q−1)

AN(α, q−1)

)
ds(k + 1). (8)

Note that the relationship in (3) holds for both the current and the optimal
BQ(z−1). Reordering terms and substituting (3) into (8), we obtain (the
index q−1 is omitted here due to space limit)

y(k+1)=

(
q−m

BQ

AN(α)
+
AN(1)

AN(α)
J − q−m B̂Q(k)

AN(α)

)
ds(k+1)

=
(
BQ−B̂Q(k)

) q−m

AN(α)
ds(k+1)

+
AN(1)

AN(α)
J ds(k+1),

(9)

where the signal AN (1,q−1)
AN (α,q−1)

J(q−1)ds(k+1)=v(k+1) will asymptotically con-

verge towards zero since AN (1,q−1)
AN (α,q−1)

J(q−1) is designed to include the internal
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model of main components in ds(k) (i.e., the disturbance signal with spec-
trum peaks). Therefore, y(k+1) can be used as the a priori error ε0(k+1)
for adaptation. De�ning

w(k)=
q−m

AN(α, q−1)
ds(k+1),

θ= [b0, b1, · · · , br]T ,

θ̂(k)=
[
b̂0(k), b̂1(k), · · · , b̂r(k)

]T
,

Φ(k)= [w(k), w(k−1), · · · , w(k−r)]T ,

(10)

and recalling (8), we can simplify the relationship between the a priori error
ε0(k+1) and the adaptive parameters θ̂(k) to

ε0(k+1)=ds(k+1)−θ̂T (k)Φ(k). (11)

For the adaptation of θ̂, the Recursive-Least-Square (RLS) based param-
eter adaptation algorithm (PAA) is:

θ̂ (k + 1) = θ̂ (k) + F (k)Φ(k)
ε0(k+1)

1 + ΦT (k)F (k)Φ(k)
(12)

ε0(k + 1) = y(k + 1) (13)

F (k+1)=
1

λ(k+1)

{
F (k)− F (k)Φ(k)ΦT (k)F (k)

λ(k+1)+ΦT (k)F (k)Φ(k)

}
(14)

λ(k + 1) = λend − [λend − λ(k)]λ0 (15)

in which the exponentially decreasing forgetting factor λ(k) ∈ (0, 1] in (15)
is introduced to improve the convergence speed [21].

Remark 2: In the proposed algorithm, it is assumed that A(α, z−1)
(the denominator of Q(z−1)) is designed based on prior knowledge on the
center frequencies of the spectral peaks in d(k) and remains �xed, namely,
AN(α, z−1)=1− (1+α) cosω0z

−1+αz−2. Such con�guration will guarantee
the stability of Q(z−1) during the adaptation. If no prior knowledge of the
center frequencies is available, online frequency identi�cation techniques such
as [22, 13] can be employed �rst to estimate this information and then Q(z−1)
can be designed.

Remark 3: Actually, the direct adaptation of BQ(z−1) help relax the
requirement for accurate center frequencies. The simulation results in Section
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5 show that the proposed algorithm enhances the performance robustness in
the presence of uncertainties in the center frequencies.

4 Stability analysis

4.1 Stability of the controller

This section discusses the stability of the proposed control scheme in Section
3. Based on previous discussion, we have

• The baseline controller C(z−1) stabilizes the closed-loop system, i.e.,
all poles of 1/ (1+P (z−1)C(z−1)) are stable;

• Within ω ∈ [0, 2π×2000], P (e−jω)≈e−jωPan(e−jω) holds, i.e., the mis-
match between the plant and its nominal model is negligible;

• Q(z−1) is stable for all possible B̂Q(z−1) since its denominatorAN(α, z−1)
remains stable;

Therefore, when P (z−1)≈z−mPan(z−1) satis�es, the structure in Fig. 4 is es-
sentially a special Youla parameterization [23] and the stability is automati-
cally guaranteed with stable Q �lters. When P (z−1)6=z−mPan(z−1), namely,
the plant model is subject to certain bounded uncertainty 4(z−1) such that
P (z−1)=z−mPan(z−1) (1+4 (z−1)), robust stability analysis will apply. Re-
calling (2), the closed-loop characteristic equation is reduced to

1+P (z−1)C(z−1)+Q(z−1)z−m4 (z−1)=0. (16)

Therefore, the closed-loop system is stable in the presence of 4(z−1) if

|Q(e−jω)|<
∣∣∣∣1+P (e−jω)C(e−jω)

4(e−jω)

∣∣∣∣ , ∀ω. (17)

4.2 Stability of the PAA and parameter convergence

Based on (9) and (10), the a posteriori error ε(k+1) of the adaptation algo-
rithm is de�ned as

ε(k+1)=
(
θT−θ̂T (k+1)

)
Φ(k)+v(k+1). (18)
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The relationship between the a posteriori error and the a priori error is given
by

ε(k+1)=
ε0(k+1)

1 + ΦT (k)F (k)Φ(k)
. (19)

Moreover, the PAA listed in (12)-(15) uses series-parallel-predictor struc-
ture [24], the stability (in the sense of Popov hyperstability) of which can be
proved by constructing an equivalent feedback system with a strict positive
real (SPR) linear feedforward block and a nonlinear feedback block that satis-
�es the Popov inequality [25]. The linear block is constant (1−max (λ(k)) /2)>0
in this case. The signal v(k+1) in ε(k+1) (as shown in (18)) is a vanishing
input signal in the equivalent feedback system and will not in�uence the
stability of the adaptation process.

Therefore, the a posterior error asymptotically approaches 0, namely,

limk→∞ ε(k+1)=0 and limk→∞

(
θ̂T (k+1)−θT

)
Φ(k)=0. One can also remark

that the signal w(k+1) in (10) is bounded due to the bounded ds(k+1) and
�xed A(α, z−1). The vector regressor Φ(k) is thus also bounded, which con-
cludes limk→∞ ε

0(k+1) = limk→∞ ε(k+1)
(
1+ΦT (k)F (k)Φ(k)

)
= 0.

From the asymptotic convergence of ε(k+1), we also get

lim
k→∞

[
r∑
i=0

(
bi − b̂i(k+1)

)
q−i

]
w(k − i)=0, (20)

which means that either of the following two conditions is satis�ed: (1)

limk→∞ b̂i(k) = bi, i = 0, 1, · · · r and (2)
∑r

i=0

(
bi − b̂i(k+1)

)
q−i includes

all the modes of w(k) (a �ltered version of the disturbance d(k) as de�ned
in (10)). Recall that r> deg (AN(α, z−1)) = 2n where n is the number of the
spectral peaks in d(k). For narrow-band disturbances as shown in Fig. 1(a),
the order of the internal model of d(k) is also 2n. Therefore in such cases, the
second condition might be true and as a result, the parameter convergence
condition (limk→∞ b̂i(k)=bi, i = 0, 1, · · · r) cannot be guaranteed. In the
case of wide-spectrum disturbances, however, the second condition is practi-
cally hard to satisfy. The wide-spectrum disturbances contain rich frequency
components except for those at the spectrum-peak frequencies, namely, the
order of the internal model of d(k) is much greater than deg (AN(α, z−1))
(actually, additional structured zeros are provided by the optimal J(z−1)).
Therefore, with proper selection of r, the only condition to satisfy (20) is

14



limk→∞ b̂i(k)=bi, i = 0, 1, · · · r, which means that the parameter convergence
can be achieved.

5 Case Study

In this section, the proposed adaptive control scheme is applied to a HDD
benchmark problem [26] for suppression of wide-spectrum audio vibrations.

5.1 Hard disk drive system

A single-stage HDD plant in track-following mode is used in this simulation.
In such HDD systems, the read/write arm is actuated by a voice coil motor
and the goal is to regulate the arm in the presence of various external vibra-
tions. With a sampling frequency of Fs=26400Hz, Fig. 5 shows the frequency
responses of the discrete-time full-order plant P (z−1)1 and its nominal model
Pn(z−1). The relative degree of the plant ism=3 and P (e−jω)≈Pn(e−jω) holds
for frequencies up to 2kHz. A PID controller C(z−1) stabilizes the system
and provides a baseline closed-loop servo performance with a bandwidth of
about 800Hz. Beyond the servo bandwidth, the closed-loop system has lim-
ited performance for disturbance rejection with |S0(e

−jω)| close to or greater
than 1.

1Several notch �lters have been incorporated into the plant for resonance attenuation.
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Figure 5: Frequency responses of the full-order plant and nominal model of
the HDD

Audio vibration is a typical type of external disturbances that can severely
in�uence the performance of the HDD. They mainly come from the audio
systems in computers. As discussed in Section 1, the audio vibrations in
HDD system often have varying wide-spectrum peaks, and the spectral peaks
can appear beyond the servo bandwidth, as shown in Fig. 1.

5.2 Simulation results

Figure 6 shows the spectra of the PES, respectively, with the baseline con-
troller (Fig. 6(a)), with the minimum-order Q �lter for compensation (Fig. 6(b))
and with the proposed direct adaptive control for compensation (Fig. 6(c)).
Both the minimum-order Q �lter and the proposed controller can e�ec-
tively attenuate the vibration at the peak frequency of about 1172Hz. The
minimum-order Q �lter, however, has brought larger error ampli�cations
at low frequencies, as shown in Fig. 6(b) and Fig. 6(d). Such error am-
pli�cations compromised the control performance with 3σ=45.15% track.
The proposed approach, on the other hand, has achieved better performance
with 3σ=38.26% track. By introducing additional loop shaping freedom in
BQ(z−1), it has adaptively �placed� the undesired error ampli�cations at
other frequencies that will not cause signi�cant increase of the error signal
(Fig. 6(e)). Therefore, the overall position error is further reduced.
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Figure 6: Frequency domain of PES w/ and w/o compensation

Figure 7 gives the frequency responses of the converged Q �lter and the
corresponding shaping term 1−z−mQ(z−1). We can see that the shaping
term with the proposed approach has much smaller gains (close to 1) at
low frequencies, i.e., the good low-frequency-vibration-rejection ability of the
baseline controller has been maximally preserved. Figure 7 also shows the
evolution of the adaptive parameters (r=5, six parameters). Note that the
convergence speed is fast. For example, if the disk is spinning at 7200rpm
(revolution per minute), it only takes about 0.5 revolution (4×10−3s) for the

17



parameters to converge.
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Figure 7: The Q �lters and parameter convergence

As mentioned in Remark 3.2, the proposed approach allows uncertainties
in the center frequencies of the vibration spectral peaks. Figure 8 shows
the PES in time domain and in frequency domain, for the cases with the
minimum-order Q �lter and the proposed direct adaptive Q �lter, respec-
tively. With the actual center frequency at 1172Hz, the f0 in A(γ, z−1) in
(3) has been set to be 900Hz. Such uncertainty signi�cantly degrades the
achievable performance of the minimum-order solution, which generates a
wrong notch at 900Hz in the corresponding shaping term 1−z−mQ(z−1).
Thus, little attenuation to the actual disturbance at 1172Hz was achieved.
The proposed approach, however, enhances the robustness of the local loop
shaping technique with much better performance. The converged shaping
term 1−z−mQ(z−1) o�ers a more accurate notch at 1140Hz and therefore
the spectral peak of the vibration in PES has been e�ectively suppressed.
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Figure 8: Performance robustness enhancement with the proposed controller

6 Conclusion

A direct adaptive control scheme based on DOB and �exible loop shaping
was proposed. By introducing more freedom in the Q �lter, the local loop
shaping technique for narrow-band disturbance rejection has been extended
to attenuate wide-spectrum disturbances. The proposed controller not only
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reduced the �waterbed� e�ect but also enhanced the performance robustness
with respect to uncertainties in the center frequencies. Simulation results
on a HDD benchmark problem for audio vibration suppression veri�ed the
e�ectiveness of the proposed algorithm.
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