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Abstract

The extended state observer, as a special case of the high-gain ob-
server, can estimate not only the state variables but also the unknown
disturbances. Such estimation works well for slowly time-varying/low-
frequency disturbances. To extend its performance to high-frequency
disturbance estimation, this report introduces a phase compensator
to recover the inherent phase loss in regular observers, and nonlinear
gains to deal with the ’peak phenomenon’ in traditional linear high-
gain observers. By combining the nonlinear extended state observer
with phase compensation and frequency-shaped sliding mode control,
high-frequency vibrations can be suppressed effectively. Simulation
on a hard disk drive demonstrates the efficiency of the proposed algo-
rithm.

This work has been submitted to the 2016 American Control Conference (ACC) July,
Boston, MA, USA



Contents

1 Introduction 3

2 Standard Extended State Observer 4
2.1 Augmented System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Observability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Standard Extended State Observer . . . . . . . . . . . . . . . . . . . . . . . 6

3 Phase Compensation in Nonlinear Extended State Observer 7
3.1 Phase Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Nonlinear Extended State Observer . . . . . . . . . . . . . . . . . . . . . . . 8

4 Frequency-shaped Sliding Mode Control 10

5 Simulation Results 12

6 Conclusion 17



LIST OF FIGURES CML Report 2015

List of Figures

1 Dynamic System from d to d̂ . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Frequency Responses of Gd and Gdc . . . . . . . . . . . . . . . . . . . . . . 8
3 Nonlinear Functions in Nonlinear ESO . . . . . . . . . . . . . . . . . . . . . 9
4 System Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 Full Order Model of HDD (IEEJ, 2007) . . . . . . . . . . . . . . . . . . . . 12
6 Disturbance Estimation by ESO (Single Tone) . . . . . . . . . . . . . . . . 13
7 Disturbance Estimation by ESO (Audio-vibrations) . . . . . . . . . . . . . . 14
8 Vibration Rejection by ESO (Audio-vibrations) . . . . . . . . . . . . . . . . 14
9 Vibration Rejection by FSSMC (Audio-vibrations) . . . . . . . . . . . . . . 15
10 Vibration Rejection by ESO and FSSMC (Audio-vibrations) . . . . . . . . . 15
11 Measured and Fitted Sensitivities from Vibrations to PES . . . . . . . . . . 16

2



CML Report 2015

1 Introduction

In hard disk drives (HDDs), the specification for positioning accuracy becomes more strin-
gent as the density of data storage becomes higher. Furthermore, mobile media opens a
new market for HDDs while introducing higher requirements for both accuracy and robust-
ness of control, especially when there are large external high-frequency disturbances. They
may excite high frequency resonances of HDDs and seriously affect the servo performance
during both the track-seeking and the track-following processes. Therefore, it is of funda-
mental importance to attenuate the influence of such high-frequency vibrations.

The extended state observer (ESO) is a promising method to estimate and suppress the
disturbances. It treats the disturbances as state variables, and design state observers to
estimate the disturbances. ESO is proposed by Han (2009), generalized and implemented
in discrete time by Miklosovic et al. (2006). The effectiveness of ESO for a large class
of disturbances was demonstrated by simulation and experiments Wang and Gao (2003);
Radke and Gao (2006); Yang and Huang (2009); Zheng et al. (2012). By utilizing the
robustness of high gains for disturbances, ESO has several good properties. It can deal
with not only linear time-invariant systems, but also time-varying and nonlinear systems.
It does not require an accurate plant or the inverse of the plant. An ESO can deal
with a large class of disturbances without changing the structure and parameters, and
provide good disturbance estimation both in time and frequency domains. Because of
such properties, ESO has been applied to many areas and combined with other controllers
Zheng and Gao (2010).

Existing ESO performs well for slowly time-varying disturbances; however, such property
is not obvious for fast time-varying/high frequency disturbances. The main reason for this
is the phase delay introduced by both the plant and ESO itself. For low-frequency dis-
turbances, the effect of a small delay can be trivial. However, in HDDs, the disturbances
usually include large high-frequency components, and a small delay may cause large es-
timation error. Motivated by such obstacles, this report extends the ESO’s performance
range from low frequencies to high frequencies. Specifically, a compensation filter is de-
signed to compensate the phase delay. Moreover, nonlinear gains are designed instead
of linear gains in ESO to reduce the ’peak phenomenon’ in linear high gain observers
Khalil and Praly (2014). The proposed compensated nonlinear ESO is combined with
a frequency-shaped sliding mode control (SMC) to suppress high-frequency vibrations in
HDDs.

The remainder of the report is organized as follows. Section II introduces the standard
ESO. Section III designs a phase compensator and nonlinear gains for the ESO. Section
IV combines the ESO with a frequency-shaped SMC algorithm. Section V demonstrates
the benefits through simulation. Section VI concludes the report.
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2 Standard Extended State Observer

2.1 Augmented System

Consider a general linear system describe by

ẋ = Ax+B(u+ d)

y = Cx
(2.1)

where x ∈ <n×1 is the state vector; y ∈ < is the output; u ∈ < is the control input; d ∈ <
is the unknown disturbance; A ∈ <n×n; B ∈ <n×1; and C ∈ <1×n. Assume that (C,A) is
observable, d and its derivative ḋ are bounded by δd and δ′d, respectively.

By treating d as a state variable, and ḋ as the unknown disturbance, the system is rewritten
as [

ẋ

ḋ

]
=

[
A B
0 0

] [
x
d

]
+

[
B
0

]
u+

[
0
1

]
ḋ

y =
[
C 0

] [x
d

] (2.2)

Denote

Ae =

[
A B
0 0

]
, Be =

[
B
0

]
, Bd =

[
0
1

]
Ce =

[
C 0

]
, xe =

[
xT dT

]T
Then

ẋe = Aexe +Beu+Bdḋ

y = Cexe
(2.3)

An state observer can be designed for the augmented system of Eq. (2.3) to estimate both
the disturbance d and the states x.

2.2 Observability Analysis

Before designing the observer for the system described by Eq. (2.3), the observability
needs to be analyzed. This section provides the necessary and sufficient condition for the
observability of system (2.2).
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Define the following function

Q(λ;A,C) =

[
A− λI
C

]
(2.4)

where I is an identity matrix with compatible dimension.

Theorem (PBH Test) Hautus (1969) System of Eq. (2.1) is observable if and only if
Q(λ;A,C) has rank n for all λ ∈ C.

Base on this, we have the following proposition.

Proposition: The system in Eq. (2.2) is observable if and only if the following two
conditions hold:
(a) (C, A) is observable;
(b) rank{Q(0;Ae, Ce)}= n+ 1, where

Q(0;Ae, Ce) =

A B
0 0
C 0

 (2.5)

(i) Sufficiency proof : we first prove that (a) and (b) imply the observability of system
(2.2). Given any λ ∈ C, the following two cases are considered. (1) If λ 6= 0: the
observability of (C, A) implies that rank {Q(λ;A,C)} = n, which further implies that
rank {Q(λ;Ae, Ce} = n+ 1. (2) If λ = 0: rank{Q(0;Ae, Ce)}= n+ 1. Therefore, ∀λ ∈ C,
rank{Q(λ;Ae, Ce)}= n+ 1, which implies that (Ce, Ae) is observable.
(ii) Necessary proof : we now prove that the observability of system (2.2) implies (a) and
(b). (1) The observability of (Ce, Ae) obviously implies the observability of (C,A). (2) The
observability of (Ce, Ae) implies that rank{Q(λ;Ae, Ce)}= n+ 1 (∀λ ∈ C), which further
implies that rank{Q(0;Ae, Ce}= n + 1 by setting λ = 0. Therefore, the observability of
augmented system (2.2) implies conditions (a) and (b).

Many systems can satisfy conditions (a) and (b), such as

A =


−an−1 1 0 · · · 0
−an−2 0 1 · · · 0

: : : : :
−a0 0 0 0 0

 , B =


bn−1
bn−2

:
b0

 ,
C =

[
1 0 0 · · · 0

]
As long as b0 6= 0, conditions (a) and (b) are satisfied.
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2.3 Standard Extended State Observer

The standard extended state observer (ESO) for System (2.1) is designed as follows, which
is actually a standard state observer for System (2.2),[

˙̂x
˙̂
d

]
=

[
A B
0 0

] [
x̂

d̂

]
+

[
B
0

]
u+[

Lx
Ld

]
(
[
C 0

] [x
d

]
−
[
C 0

] [x̂
d̂

]
)

(2.6)

where Lx = [β1 β2 ... βn]T and Ld = βn+1. From Eqs. (2.2) and (2.6),[
ėx
ėd

]
=

[
A− LxC B
−LdC 0

] [
ex
ed

]
+Bdḋ

ed = Cd
[
ex ed

]T (2.7)

where ex = x − x̂ is the state estimation error; ed = d − d̂ is the disturbance estimation
error; and Cd = [0 1]. ex and ed are preferred to be as small as possible in the presence

of unknown ḋ.

During the design of the observer in Eq. (2.6), ḋ is actually assumed as zero, i.e., ḋ = 0.
This explains why the standard ESO is effective for slow time-varying disturbances and
low-frequency vibrations.

Figure 1: Dynamic System from d to d̂

Let G
′

d denote the transfer function from ḋ to ed. From Eq. (2.7), we have

G
′

d = Cd(sI −
[
A− LxC B
−LdC 0

]
)−1Bd

= (s+ LdC(sIx −A+ LxC)−1B)−1
(2.8)

Let Gd denote the transfer function from d to d̂. The relationship among d, d̂ and ḋ is as
shown in Fig.1. From Fig. 1, we have

Gd = 1− sG
′

d

= 1− s(s+ LdC(sIx −A+ LxC)−1B)−1
(2.9)
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Denote Gx = C(sIx −A+ LxC)−1B, then

Gd = 1− s(s+ LdGx)−1 =
LdGx

s+ LdGx
(2.10)

Ideally, Gd = 1. This ideal case can be approximated by choosing a large Ld. If Ld � 1
such that ‖Ld(jw)Gd(jw)‖ � w, we have |Gd(jω)| ≈ 1 and ∠Gd(jω) ≈ 0◦. This explains
why the high gain (Ld) is required for ESO. In practice, Gd proximately performs as a
low-pass filter whose bandwidth depends on Ld. To ensure accurate state estimation,
Lx should also be large enough to reduce the effect of unknown ḋ. Usually we select
Ld > Lx,n > Lx,n−1 > ... > Lx,1 (i.e., βn+1 > βn > ... > β1).

3 Phase Compensation in Nonlinear Extend-

ed State Observer

3.1 Phase Compensation

This section extends the performance range of the standard ESO from low frequencies to
high frequencies based on the assumption that the majority of the disturbance’s power
focuses on high frequencies, for example, around ω0 Hz. Fig.2 provides the frequency
response of the transfer function from the actual disturbance to its estimate. It is noticed
that at low frequencies, the magnitude of Gd is approximately 1 and the phase of Gd
is approximately 0, and the disturbance estimation is good. As the frequency increases,
phase delay becomes larger, which would seriously degrade the accuracy of the estimation.
In this case, a phase compensator Gc needs to be introduced to the standard ESO, which
results in a compensated ESO.

Let d̂c denote the estimated disturbance from the compensated ESO. Let Gdc denote the
transfer function from d to d̂c, i.e.,

d̂c = Gdcd =
LdGxGc
s+ LdGx

d (3.1)

Gdc is desired to have zero phase at ω0. With this goal, Gc is designed as

Gc =
s+ ω0/α

s+ αω0
(α > 1) (3.2)

Based on Eq. (3.2), the phase compensated at ω0 is

ϕm = arcsin
α2 − 1

α2 + 1
(3.3)

where α is designed such that ∠Gdc(ω0) = 0, as shown in Fig. 2. Gc can be realized by

7
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Figure 2: Frequency Responses of Gd and Gdc

the following system:

˙̂z = Acẑ +Bcd̂

d̂c = Ccẑ +Dcd̂
(3.4)

where Ac = −αω0, Bc = ω0/α − αω0, Cc = 1, Dc = 1. From Equations (2.6) and (3.4),
the compensated ESO becomes: ˙̂x

˙̂z
˙̂
d

 =

A 0 B
0 Ac Bc
0 0 0

x̂ẑ
d̂

+

B0
0

u+

Lx(y − Cx̂)
0

Ld(y − Cx̂)


[
x̂

d̂c

]
=

[
I 0 0
0 Cc Dc

]x̂ẑ
d̂


(3.5)

3.2 Nonlinear Extended State Observer

As explained in Section II, the ESO belongs to the class of high-gain observers. If the
initial estimation error is large, such high gains may cause the ’peak phenomenon’ and
make the linear ESO impractical or even unsafe to use Khalil (2008); Khalil and Praly
(2014). Nonlinear gains are usually utilized to reduce such peak phenomenon. A nonlinear
function is proposed as follows in Han (2009), based on which nonlinear gains can be

8
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Figure 3: Nonlinear Functions in Nonlinear ESO

designed,

fal(ey) =


ey
δ1−α

, |ey| ≤ δ

|ey|αsign(ey), |ey| ≥ δ
(3.6)

where δ and α are design parameters; ey = y − Cx̂. Figure 3 illustrates this nonlinear
function. The following nonlinear gains for the ESO based on Eq. (3.6) are designed
as {

fx(ey) = Lx,iδ
1−αfal(ey) +Kx,iey, i = 1, ..., n

fd(ey) = Ldδ
1−αfal(ey) +Kdey

(3.7)

where Kx,i and Kd are small. A nonlinear extended state observer based on Eq. (3.5) is
proposed as  ˙̂x

˙̂z
˙̂
d

 =

A 0 B
0 Ac Bc
0 0 0

x̂ẑ
d̂

+

B0
0

u+

fx(ey)
0

fd(ey)


[
x̂

d̂c

]
=

[
I 0 0
0 Cc Dc

]x̂ẑ
d̂


(3.8)
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When the error is small (|ey| ≤ δ), high gains are implemented to obtain the robustness
to unknown dynamics and disturbances. When the error is large (|ey| > δ), high gains are
saturated to reduce large transient behaviors.

4 Frequency-shaped Sliding Mode Control

This section describes the controller design process. A frequency-shaped sliding mode
control (FSSMC) algorithm Zheng et al. (2014) based on the nonlinear compensated ESO
is introduced. The control system is shown in Fig.4.

Figure 4: System Structure

With the ESO designed in Eq. (3.8), noting edc = d− d̂c, Eq. (2.1) becomes

ẋ = Ax+B(u+ d̂c + edc)

y = Cx
(4.1)

Denote ū = u+ d̂c, we have

ẋ = Ax+B(ū+ edc)

y = Cx
(4.2)

The frequency-shaped sliding mode control (FSSMC) algorithm provides further enhance-
ment at the frequencies where the servo performance is seriously degraded by large dis-
turbances such as audio vibrations Zheng et al. (2014). Specifically, a peak filter Qf is
introduced to shape the sliding surface at the preferred frequencies. In this report, Qf is
designed as a peak filter,

Qf (p) =
B(p)

A(p)
=
p2 + 2bwdp+ w2

d

p2 + 2awdp+ w2
d

(4.3)

10
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where 0 < a < b < 1, p is the Laplace variable and wd is the peak frequency.

For system (4.2), in traditional SMC, the sliding variable s is usually defined as

s = Hx =
[
1 λ

] [x1
x2

]
where λ ∈ <1×(n−1), and x2 ∈ <(n−1)×1. In FSSMC, it is modified to

s = H

[
Qf{x1}
x2

]
= x1f + λx2 (4.4)

where x1f is the filtered error, i.e., x1f = Qf{x1}. Assume that Qf has the following
state-space realization:

ẋw = Awxw +Bwx1

x1f = Cwxw +Dwx1
(4.5)

Combining Eq. (4.1) and Eq. (4.5), the augmented system with Qf is represented as[
ẋ
ẋw

]
=

[
A 0

BwC Aw

] [
x
xw

]
+

[
B
0

]
(u+ d̂c + edc)

, Āxe + B̄(u+ d̂c + edc)

(4.6)

From Eqs.(4.4) and (4.5), the sliding variable becomes

s = x1f + λx2

= Cwxw +Dwx1 + λx2

= [Cw Dw λ][xw x1 x2]T , H̄xe

(4.7)

Then the FSSMC control law is proposed as

u = (H̄B̄)−1[−qs− H̄Āxe − γH̄B̄ sgn(s)]− d̂c (4.8)

where γ ≥ |edc|. Substituting Eq. (4.8) into Eq. (2.1), after some algebra, the following
approaching dynamics of the system is obtained

ṡ = −qs− (γ − edc)(H̄B̄)sgn(s) (4.9)

Through the standard analysis in SMC, s would converge to zero. A boundary layer can
be introduced to reduce chattering brought by the ’sign’ function. Write the controller in
Eq. (4.8) compactly as follows

u′ = g(x, xω, s(x, xω))− d̂c (4.10)

When the state variables are not directly available, x can be replaced by x̂ in Eq. (4.10),
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Figure 5: Full Order Model of HDD (IEEJ, 2007)

and the control law becomes

u = g(x̂, x̂ω, s(x̂, x̂ω))− d̂c (4.11)

where x̂w is the state variables of the system in Eq. (4.5) with replacing x1 by x̂1. The
controller in Eq. (4.11) guarantees the stability of the system in Eq. (2.1) in the pres-
ence of d, with desired frequency properties and good estimation and suppression of the
disturbance.

5 Simulation Results

The proposed control algorithm (the combination of the nonlinear extended state observer
with phase combination and a frequency-shaped sliding mode controller) is implemented
on the full-order benchmark plant IEEJ (2007) which can be approximately described
by

Ghdd(p) =
kykv
p2

+

4∑
i=1

(
wi

2

p2 + 2ξwip+ wi2

)
(5.1)

The bode plot for the HDD plant is shown in Fig. 5. The plant parameters are as follows:
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Figure 6: Disturbance Estimation by ESO (Single Tone)

the acceleration constant kv=951.2 m/(s2A); the position measurement gain ky=3.937 ×
106 track ·m−1; the four main resonance central frequencies wi’s (i = 1, ..., 4) are 4100
Hz, 8200 Hz, 12300 Hz, 16400 Hz, respectively; and the corresponding damping factor ξ is
0.02. In the following simulation, the gains of the extended state observers are nonlinear.

Figure 6 and Figure 7 compare the disturbance estimation between the ESO and the com-
pensated ESO. The disturbance source in Figure 6 is a sinusoid signal with the frequency
of 1000 Hz. It is observed that there is nearly no delay between the disturbance and its
estimation by the compensated ESO, while the standard ESO estimates the disturbance
with a phase delay. The disturbance source in Figure 7 is from actual experiments on
HDDs in the presence of strong audios, whose majority power is around 1000 Hz. Simi-
lar to Figure 6, Figure 7 shows that the compensated ESO has better estimation of the
disturbance than the standard ESO.

Figures 8 to 10 compare the PES spectrums among four different control systems: (a)
standard SMC without ESO; (b) standard SMC with the standard ESO; (c) frequency-
shaped SMC with the standard ESO; (d) frequency-shaped SMC with the compensated
ESO. The accumulative 3σ value of PES is calculated and shown at the top right corn of
each figure. As shown in Figure 8, comparing with system (a), the PES of system (b) below
500 Hz is reduced, which illustrates the effectiveness of ESO for low-frequency disturbance
estimation. Figure 9 compares (b) and (c), and the PES around 1000 Hz is reduced by
the frequency shaping technique in FSSMC. Figure 10 compares (c) and (d), and the PES
around 500 Hz is reduced by the compensation filter in the compensated ESO. Overall,
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Figure 7: Disturbance Estimation by ESO (Audio-vibrations)
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Figure 8: Vibration Rejection by ESO (Audio-vibrations)

the 3σ value of the PES has been reduced from 9.45% to 2.01%, with frequency shaping
techniques in both the controller and the observer.

14



CML Report 2015

0 500 1000 1500 2000 2500 3000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Freq / Hz

N
or

m
al

iz
ed

 A
m

pl
itu

de

 

 

SMC w/ ESO (3σ = 0.0538)

FSSMC w/ ESO (3σ = 0.0293)

Figure 9: Vibration Rejection by FSSMC (Audio-vibrations)
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Figure 10: Vibration Rejection by ESO and FSSMC (Audio-vibrations)
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Figure 11: Measured and Fitted Sensitivities from Vibrations to PES

The sensitivity from the disturbances to the PES is a key criterion to evaluate the servo
performance in HDDs. The systems discussed in this report are nonlinear, and there are
no analytical solutions of the sensitivity functions for those systems. Instead, Figure 11
provides both the measured and the fitted frequency responses of the sensitivity functions
in systems (a) to (d). It is shown that system (d) has better vibration suppression than
systems (a) (b) and (c), with insignificant sacrifice at other frequencies.
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6 Conclusion

The report proposed a phase compensator for the extended state observer. It compen-
sated the phase delay which exists in the standard extended observer, and provided more
accurate estimate for high-frequency disturbance. At the same time, nonlinear gains were
designed for the compensated extended state observer to reduce the peak phenomenon
and avoid large transient behaviors. A frequency-shaped sliding mode control algorithm
was implemented with the compensated nonlinear ESO to further suppress large peaks in
the vibrations. Simulation results validated the performance enhancement. Some future
work may include adaptive extended state observer design when the peak frequencies of
the disturbance is unknown.
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