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Abstract

In this paper we analyze heat transport by acoustic waves in arbitrary layered structures that
may include several vacuum layers. The analysis is based on our prior description of the spectrum
of thermally excited waves in systems with a heat flux, and on the new approach to the coupling
between acoustic fields in separated bodies and the description of the interference of thermally
excited waves. The developed method predicts correct results for all known special cases for both
large and closing gaps, agrees with available experiments, explains the phenomena of interface
thermal resistance and of thermal rectification (asymmetry of thermal transport). Numerical
examples demonstrate the applicability of the approach to the calculation of the heat transport
coefficient across nanoscale gaps due to acoustic waves.

1 Introduction

The data density of hard drives is rapidly approaching a limit after which further increase cannot

be achieved without radical modifications of the design that has been essentially evolutionary since

1956, when IBM unveiled its first HDD.

A significant change occurred recently by moving from the traditional parallel recording to

perpendicular recording. However, this change alone is not sufficient for reaching the projected

new data density levels of 10 Tb per square inch. It is expected that further increase in the

data density of hard drives will require that a bit of recorded information occupy a spot on the

disk smaller than 25 nm, and that this spot will get some form of energy assistance to lower the

medium’s coercivity to allow the write transducer to record the bit. In Heat Assistance Magnetic

Recording (HAMR) systems such assistance is provided by local heating of the magnetic medium

to its Curie temperature of about 400◦C. Therefore, any HAMR system inevitably includes closely

separated disks and read/write heads with different temperatures, and, consequently, the design

of such systems must include the analysis of heat exchange between bodies separated by a few

nanometers.

There are several mechanism of heat transport between bodies separated by a narrow air-gap:

heat can be carried by electromagnetic radiation, by “phonon tunneling” caused by intermolecular

interactions across the gap, and by heat conduction through the air. The first two of these mecha-

nisms are related with the processes of electromagnetic and acoustic wave propagation, respectively.
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Heat radiation across nanoscale gaps was studied in [1] by a novel method based on the extension

of Planck’s law from equilibrium systems to systems with a steady heat flux [2].

In [3, 4] this method was adapted to the analysis of heat transport across narrow gaps by

acoustic waves, which was made possible by modeling the coupling of lattice vibrations in separated

bodies through van der Waals/Casimir forces. This approach was further developed in [5], where

the intermolecular forces causing phonon coupling were studied in more detail and the rates of

heat transport by acoustic and electromagnetic waves between separated half-spaces of identical

materials were compared.

Here we expand the developments of [3, 4, 5] in several new directions. First, instead of a

vacuum layer between two indentical half-spaces we consider arbitrary layered structures that may

include several vacuum layers and have no restrictions on the materials in the different layers. In

particular, the technique developed here is applicable to the analysis of interface thermal resistance

between two contacting half-spaces. Another distinctive feature of this study is the formulation

of the boundary value problem for acoustic fields in separated half-spaces that takes into account

local variations of the width of the gap between them. Finally, unlike in previous studies, here we

take into account the interference of thermally excited waves coming from different bodies. It is

shown that such interference may significantly increase the heat transport and cause such effects

as “thermal rectification”, which is the asymmetry of heat transport in different directions.

The paper has three distinctively different parts. The first part develops a model that describes

how the van der Waals forces between the molecules from different bodies separated by a narrow

vacuum gap connect the acoustic field in these bodies. Then we compute the reflection coefficient

of a plane acoustic wave from an arbitrary layered structure, which may include several vacuum

gaps. Finally, we calculate the heat transport coefficient of some layered structures, that emulate

those which appear in actual structures found in HAMR systems and in other nanoscale devices

used for efficient thermal management.

2 A model of acoustic waves tunneling across a nanoscale gap

It is well recognized that heat conduction in solid dielectrics is mostly due to waves of molecular

vibrations. These vibrations are supported by intermolecular forces that keep molecules near their

equilibrium positions inside a material body. However, such forces are not restricted to be within

a material, indeed they can also act across vacuum gaps, implying that they can carry heat across

such gaps.

To illustrate how acoustic waves can carry heat across a gap, it suffices to consider the model

shown in Fig. 1 where two material half-spaces x < 0 and x > H are separated by a vacuum gap

0 < x < H, whose faces are maintained near the equilibrium positions x = 0 and x = H by some

external force. Due to thermally excited lattice vibrations in the half-spaces, their faces experience

small displacements making the separation between the faces not exactly the constant value H.

On the other hand, since intermolecular forces have a rather long range (tens of nanometers), the

motion of the atoms near the surface in a body may exert noticeable forces on molecules at distances

as far as several microns outside the body [6, 7]. Therefore, lattice vibrations in slightly separated

bodies interact and can transfer energy between bodies without their direct contact.
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Since the displacements caused by acoustic waves are small compared to the width of
the gap, the surfaces of the half spaces may be considered as flat, and the intermolec-
ular force between half-spaces may be considered to be orthogonal to their faces. This
force couples acoustic fields in separated media and thus provide heat transport.

Figure 1: A model of interaction of two acoustic media through a narrow gap

To develop the outlined concept of thermal interaction between separated bodies it is necessary

to adopt some simplifying assumptions about the lattice vibrations. First, we assume that the

materials are isotropic, homogeneous and can be described by a linear theory of elasticity that con-

siders the averaged characteristics of atomic motion computed over microscopic domains containing

sufficiently large numbers of atoms. This theory implies the existence of three types of elastic waves:

longitudinal waves propagating with the speed cp and two kinds of transverse waves with the lower

speed cs. Waves of different polarizations propagate inside the media independently of each other,

but they strongly interact at the boundaries causing significant complications of the total picture

of wave propagation. To eliminate difficulties caused by the boundary interactions of the different

kinds of elastic waves, we follow a common practice and describe the thermal properties of solids in

terms of the simpler Debye model, which assumes that all three types of thermally excited waves

are entirely independent of each other, have their frequencies in the band

0 < ω < ωD ≡
κTD
~

, (2.1)

where TD is the Debye temperature, considered as a material parameter, and they propagate in a

similar way as acoustic waves in a gas with the single wave speed cD determined by the equation

1

c3
D

=
1

3

(
1

c3
p

+
2

c3
s

)
, (2.2)

which presents 1/c3
D as a weighted average of 1/c3

p and 1/c3
s.

Acoustic waves with the speed cD can be described in terms of a pressure p that satisfies the

wave equation p̈ = c2
D∇2p, and defines the acoustic displacement ξ by the formula ξ̈ = −∇ p/ρ,

where ρ is the density of the medium in the unperturbed state [8].

In order to describe the oscillations of the surface layers of the half-spaces x < 0 and x > H it

is necessary to take into account the pressure on the open surfaces of these bodies caused by the

van der Waals interatomic forces that originate from the across-gap body.

It is well known that the wavelengths of thermally excited elastic waves in common materials at

room temperature are in the range 1–3nm. When such waves approach a plane surface x = const
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with incidence angle θ then the surface displacements have wavelengths in the range from 1nm to

infinity. Therefore, if the gap is narrower than 5nm then we can assume that it is narrower or

comparable with the characteristic wavelength on the surfaces.

Let x0 and xH = x0 + Hex be two points on the surfaces x = 0 and x = H located directly

across from each other. If H is comparable to or smaller than the characteristic wavelength on

the surfaces, the force of interaction between unit areas of the surfaces around x0 and xH may

be approximated by the van der Waals force between the half-spaces separated by the effective

distance

Heff = H +
〈
ξ(xH + ∆x)

〉
−
〈
ξ(x0 + ∆x)

〉
, ∆x ⊥ ex (2.3)

where ξ(x) is the displacements along the x-axis of a point x located on one of the open surfaces,

∆x is a an arbitrary vector parallel to x = 0, and
〈
·
〉

denotes the averaging over ∆x from an area

with a radius of the order of H.

Since H is small in comparison with the wavelength on the surface, the averages in (2.3) and,

subsequently, the effective distance (2.3) can be estimated as〈
ξ(xH + ∆x)

〉
≈ ξ(xH) + νH2∇2

⊥ξ(xH),
〈
ξ(x0 + ∆x)

〉
≈ ξ(x0) + νH2∇2

⊥ξ(x0), (2.4)

and

Heff = H + ξ(xH)− ξ(x0) + νH2
[
∇2
⊥ξ(xH)−∇2

⊥ξ(x0)
]
, (2.5)

where ∇2
⊥ is the Laplacian in the plane perpendicular to the x-axis, and ν is a constant that is de-

termined by the averaging procedure. For separation distances smaller than the surface wavelength,

this constant is of the order of ν ∼ 1
2 , and its value decreases as the separation increases.

In equilibrium domains A and B are bounded by flat surfaces x = 0 and x = H. Due to oscillations
points x∗

0 located near x0 on the surface x = 0 are displaced by the vectors ξ(x∗
0) and form a non-flat

surface. Points x∗
H located near xH on the surface x = H are displaced by the vectors ξ(x∗

H) and form
another non-flat surface. The interaction between these non-flat surfaces is approximated by the van
der Waals force between the average planes x = 〈ξ(x0)〉 and x = H + 〈ξ(xH)〉.

Figure 2: Computation of van der Waals forces
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It is well known that two material half-spaces separated by the distance H are attracted to each

other by the van der Waals force per unit area

f(H) =
A

6πH3
, A ∼ 10−19J, (2.6)

where A is the Hamaker constant with a typical value of about 10−19J for interactions across

vacuum, [7, Sec 11.1]. Therefore, setting H = Heft and assuming that the displacements ξ0 and

ξH are comparable to or smaller than the dominant wavelength of elastic waves and to interatomic

distances, we find, using (2.5) that the half-space x < 0 is attracted to the half-space x > H by a

force per unit area (pressure) that is parallel to the x-axis and has the value

F (H, [ξ]) = f
(
H + ξ(xH)− ξ(x0) + νH2

[
∇2
⊥ξ(xH)−∇2

⊥ξ(x0)
])
. (2.7)

Then, applying the Taylor expansion about H we approximate (2.7) by

F (H, [ξ]) = f(H) + γ(H)

(
ν
[
∇2
⊥ξ(xH)−∇2

⊥ξ(x0)
]

+
ξ(xH)− ξ(x0)

H2

)
, (2.8)

where

γ(H) ≡ H2|f ′(H)| = A

2πH2
. (2.9)

and f(H) is a static force which helps to keep the body in its equilibrium position and, thus does

not contribute to acoustic wave propagation, so that it is ignored hereafter.

From the above we see that the balance of forces on the open surfaces x = 0 and x = H can be

written in the form

p(x0) = F (H, [ξ]) = p(xH), (2.10)

which may be treated as interface conditions on the faces of the domains x < 0 and x > H.

3 Reflection coefficient of a vacuum layer between two half-spaces

Let the thermal oscillations depend on time by the exponential factor eiωt. Then the oscillations in

the half spaces are described by the Helmholtz equations

∇2p+
ω2

c2
p = 0, c =

{
cA, x < 0,

cB, x > H,
(3.1)

where cA and cB are the sound speeds (Debye) in the half-spaces and p(x, y, z) is the acoustic

pressure p connected with the displacement ξ(x, y, z) along the x-axis by the formula ξ = p′x/ρω
2,

where ρ is the mass density of the acoustic medium, ρ = ρA for x < 0 and ρ = ρB for x > H.

Since the van der Waals force between the faces of the bodies x < 0 and x > H depends on the

displacements of these faces, the Helmholtz equations (3.1) must be supplemented by the interface

conditions (2.10) which reduce to the form

p(0) = p(H) = νγ(H)
[
∇2
⊥ξ(0)−∇2

⊥ξ(H)
]

+
γ(H)

H2

[
ξ(0)− ξ(H)

]
, (3.2)

where the coordinates y and z are suppressed, so that p(x) ≡ p(x, y, z) and ξ(x) ≡ ξ(x, y, z).
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Let an incident plane wave eiω(x cos θ+y cos θy+z cos θz)/cA propagate in the domain x < 0. Due

to its interaction with the boundaries x = 0 and x = H this wave generates the reflected wave

RAeiω(−x cos θA+eyy+ezz)/cA , where e2
y + e2

z = sin2 θA, propagating in the domain x < 0, and the

transmitted wave WAeiω((x−H) cos θB+dyy+ezz)/cB , where d2
y + d2

z = sin2 θB, propagating in x > H.

These waves form the wave field

p(x, y, z) =

{
eiω(x cos θA+y cos θy+z cos θz)/cA +RAeiω(−x cos θA+eyy+ezz)/cA , x ≤ 0,

WAeiω((x−H) cos θB+dyy+dz)/cB , x ≥ H,
(3.3)

where θA and θB are connected by the Snell Law

sin θA
cA

=
sin θB
cB

. (3.4)

Then, straightforward calculations produce

p(0) = 1 +RA, ξ(0) =
i cos θA
ωρAcA

(1−RA), ∇2
⊥ξ(0) =

−ω2 sin2 θA
c2
A

ξ(0),

p(H) = WA, ξ(H) =
i cos θB
ωρBcB

WA, ∇2
⊥ξ(H) =

−ω2 sin2 θB
c2
B

ξ(H),

(3.5)

and they reduce (3.2) to algebraic equations for RA and WA:

1 +RA = WA,

1 +RA =
iC

ωH4

(
cos θA
ρAcA

(1−RA)− cos θB
ρBcB

WA

)
,

(3.6)

where

C ≡ C(ω,H) =
A

2π

(
1− νω2H2 sin2 θA

c2
A

)
, (3.7)

From these equations we get the reflection coefficient

RA =
C(µB cos θA − µA cos θB) + iωH4µAµB
C(µB cos θA + µA cos θB)− iωH4µAµB

. (3.8)

represented in terms of the specific acoustic impedances of the media

µA = ρAcA, µB = ρBcB. (3.9)

Obviously, if H →∞ then R → −1, which agrees with the expectation that an infinitely wide

gap has total reflection. In the opposite limit H → 0 we have

RA →
µB cos θA − µA cos θB
µB cos θA + µA cos θB

, (3.10)

which agrees with the reflection coefficient of a wave with incidence angle θA from an interface

between materials with acoustic impedances µA and µB.

The expression (3.8) for the reflection coefficient RA of a wave arriving from A allows com-

putations of all other reflection and transmission characteristics of the gap. Thus, to compute the
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reflection coefficient RB of the wave arriving from B it suffices to interchange in (3.8) indices A

and B. Remarkably, due to (3.4), this interchange does not alter C(ω,H) from (3.6). Then, the

first line of (3.6) implies that the transmission coefficients from A and from B can be computed as

WA = 1 +RA and WB = 1 +RB, respectively.

The reflection and transmission coefficients RA and WA are convenient for describing wave fields

of the type (3.3), which are generated by an incident wave arriving from A. Similarly, RB and WB

are convenient in cases when the field is generated by an incident wave arriving from B. However,

to analyze thermally excited waves in a system of two half-spaces A and B it is more convenient

to consider general fields

p =

{
U−eiω(x cos θA+y cos θy+z cos θz)/cA + V −eiω(−x cos θ+eyy+ezz)/cA , x < 0,

U+eiω((x−H) cos θB+y cos θy+z cos θz)/cB + V +eiω(−(x−H) cos θB+dyy+dzz)/cB , x > H,
(3.11)

where θA and θB satisfy the Snell law (3.4), while U±, and V± are indefinite coefficients restrained

by the linear conditions

T
(
U−

V−

)
=

(
U+

V+

)
, T =

(
T11 T12

T21 T22

)
, (3.12)

where the elements Tmn guarantee that the fields in (3.11) obey the interface conditions (3.2).

In order to compute the four matrix elements Tmn in terms of the four coefficients RA, RB, WA

and WB, we observe that (3.3) is a particular case of (3.11) with U− = 1, V − = RA, U+ = WA,

V + = 0, which means that these U± and V± must obey (3.12). Similarly, we find that (3.12) must

be satisfied when U− = 0, V − = WB, U+ = RB, V + = 1. These observations lead to the equations

T11 + T12 ·RA = WA,

T21 + T22 ·RA = 0,

T11 · 0 + T12 ·WB = RB,

T21 · 0 + T22 ·WB = 1,
(3.13)

and, then, to the representation

T =
1

1 +RB

(
1 +RA +RB, RB
−RA, 1

)
, (3.14)

It is worth mentioning that as the gap collapses, the reflection coefficient RB and transmission

matrix approach the limits

RB → −RA, T→ 1

1−RA

(
1, −RA
−RA, 1

)
, (3.15)

the first of which follows from (3.10). These identities connect the transmission matrix and the

reflection coefficients of the system of two contacting half-spaces, which may be considered as two

half-spaces separated by a vanishing gap.
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4 Reflection coefficient of a stack of acoustic and vacuum layers

The reflection coefficient of an arbitrary stack of acoustic layers admits an explicit representation

in terms of the layers’ thicknesses and of the reflection coefficients of the interfaces between them

[9]. Here we extend this representation to the case when the stack includes vacuum layers.

Let Gj with j = 1, 2, . . . , (m−1), be the layers xj < x < xj+1, squeezed between two half-spaces

x < x0 and x > xm, which will be referred to as G0 and Gm, respectively. We assume that some of

the domains Gj are occupied my acoustic media, while others are empty, as shown in Fig. 3. Let

cj and µj be the sound speed and the specific acoustic impedance of the material layer Gj . If Gj

is vacuum gap then we leave its parameters undefined.

For every material layer Gj we introduce two alternative representations of the wave field pj :

pj = U−j eiω[(x−xj) cos θj+eyy+ezz]/cj + V −j eiω[−(x−xj) cos θj+eyy+ezz]/cj ,

= U+
j eiω[(x−xj+1) cos θj+eyy+ezz]/cj + V +

j eiω[−(x−xj+1) cos θj+eyy+ezz]/cj ,
(4.1)

where the first representation will be used to describe the interaction of the domain Gj with its

left neighbor Gj−1, while the other representation will be used to describe interactions of Gj with

Gj+1. Since both formulas (4.1) represent the same field, it is obvious that their coefficients are

related by the linear expressions

U+
j = U−j eiω(xj+1−xj) cos θj/cj , V +

j = V −j eiω(xj−xj+1) cos θj/cj , (4.2)

which can be written in the form (
U+
j

V +
j

)
= Dj

(
U−j
V −j

)
, (4.3)

where

Dj =

(
eiωhj cos θj/cj 0

0 e−iωhj cos θj/cj

)
, hj = xj+1 − xj , (4.4)

may be treated as a “transmission matrix of the layer Gj”.

Since G0 is a half-space unbounded from the left, for the field p0 in this domain we use only the

first representation (4.1) in terms of the pair (U+
0 , V

+
0 ). Similarly, for the field pm in the half-space

Gm we use only the second representation from (4.1) in terms of the pair (U−0 , V
−

0 ). Then, the

transmission matrix T of the entire structure is defined by the relationship (3.12) with U± and V ±

replaced by U±0 and V ±m , respectively.

In order to compute the transmission matrix of the stack of layers Gj , 0 ≤ j ≤ m, we consider

first the case when the stack has no gaps, i.e. the case with only material layers. Then T can

computed step-by-step as the product

T = TmDmTm−1Dm−1 . . .T2D1T1. (4.5)

where Dj−1 is the transmission matrix (4.4) of the layer Gj , and Tj is the transmission matrix of

the interface between Gj−1 and Gj , which can be computed by the formulas (3.10), (3.15) with

Gi−1 and Gj considered as media A and B, respectively.
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Figure 3: To computation of the reflection coefficient of layered structure

Next, we consider the structure where Gn is a vacuum layer, as shown in Fig. 3. In this case,

the transmission matrices Tn and Tn+1 are not defined, and, (4.5) becomes meaningless. However,

in this case the results of the previous section imply that the pair (U+
n+1, V

+
n+1) can be computed in

terms of the pair (U+
n−1, V

+
n−1) multiplied by the transmission matrix of the vacuum gap Gn defined

by (3.14) and (3.8). For convenience we agree to denote this matrix by Tn and set Tn+1 = Dn ≡ 1.

Then we get the relationship (
U+
n+1

V +
n+1

)
= Tn+1DnTn

(
U−n−1

V −n−1

)
, (4.6)

which looks identical to the corresponding relationship in the case when Gn is a material layer. This

coincidence shows that the transmission matrix of an arbitrary stack of material and vacuum layers

can be represented by the product (4.5), where for every vacuum layer Gn we set Dn ≡ Tn+1 ≡ 1,

and define Tn as a transmission matrix of Gn.

Finally, using the first column of the second line of (3.12) we conclude that the reflection

coefficient RA of the entire stack of layers can be computed as

RA = −T21

T22
, (4.7)

where T12 and T22 are the elements of the matrix T from (4.5).

5 Thermally excited acoustic waves in the half-spaces

Let A and B be two half-spaces x < 0 and x > H occupied by acoustic media that are maintained

at temperatures TA and TB, respectively. We adopt the Debye model and assume that each of

these media supports acoustic waves of N = 3 different polarization, which do not interact with

each other. As in the previous section we assume that cA and ρA are the Debye sound speed and

mass density in A, while cB and ρB are the similar parameters in B.

Thermally excited acoustic waves have random amplitudes, directions and phase shifts. All

available information about such waves is reduced to the energy spectrum, which is described by

the classical Planck’s law in the case of thermal equilibrium, or by its generalization for systems

with a steady heat flux [2]. The latter states that in the presence of a small heat flux Q � 1 the
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thermally excited acoustic waves of a single polarization in A with frequencies from the interval

(ω, ω + dω) and with incidence angles from the interval (θA, θA + dθA) have the energy density

dEA(ω, θA;Q) = P

(
ω

1 + qA cos θA
, TA

)
ω2 sin θA

4π2c3
A

dθAdω, qA =
Q

QA
, (5.1)

where

P (ω, T ) =
~ω

e~ω/κT − 1
, (5.2)

and

QA = 2N

∫ ωD

0

∫ θ∗A

0
cAdEA =

N (1− cos θ∗A)

2π2c2
A

∫ ωD

0
P (ω, TA)ω2dω (5.3)

is the energy flux density of all thermally excited acoustic waves in A that contribute to heat

exchange between A and B. The flux (5.3) includes waves of all polarizations (accounted for by

the factor “N”), of all frequencies (accounted for by the integration over ω through the cut-off

frequency ωD) and with all incident angles (accounted for by the integration over θA) from the

intervals 0 ≤ θA ≤ θ∗A and π − θ∗A ≤ θA ≤ π, limited by the critical angle θ∗A.

It is known that an acoustic field in a medium with the density ρ and the sound speed c has

the energy density E = p2/2c2ρ, where p is the acoustic pressure [9, Sec. 2.3]. This implies that

any plane pressure wave

pA(ω, θA) =
√

2c2
AρAdEA(ω, θA) eiα eiω(x cos θA+eyy+ezz)/cA , (5.4)

with arbitrary α, ey, and ez constrained by the condition e2
y + e2

z = 1 − cos2 θA, has the energy

density dEA(ω, θA;Q) from (5.1). Therefore, the set of waves (5.4) with random α, θA, ey and ez

may be considered as a statistical ensemble of thermally excited wave fields with a small heat flux

Q along the x-axis in the medium A at temperature TA. Similarly, an ensemble of waves with a

heat flux Q� 1 in the domain B at temperature TB may be modeled as a set of plane waves

pB(ω, θB) =
√

2c2
BρBdEB(ω, θB) eiβ eiω(x cos θB+dyy+dzz)/cB , (5.5)

where β, θB, dy and dz take random values constrained by the condition d2
y + d2

z = 1− cos2 θB, and

dEB(ω, θB;Q) is defined by (5.1) with the index A replaced by B.

If the molecules of the media A and B interact, then acoustic waves in these domains are

not independent of each other. This implies that such statistical characteristics of the ensembles

of thermally generated waves in A and B as the temperatures TA, TB and the heat flux Q are

connected, so that if both temperatures are known then the heat flux is defined.

To compute the heat flux Q between half spaces A and B maintained at known temperatures

we employ the following plan: a) compute the flux Q+(Q) carried in A by the waves propagating

towards B; b) compute the flux Q−(Q) carried in A by the waves propagating outwards of B; c)

find Q as the solution of the equation

Q = Q+(Q)−Q−(Q). (5.6)
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In order to compute Q+(Q) we observe that the flux along the x-axis carried by the waves (5.4)

with frequencies from the interval (ω, ω+ dω) and incidence angles from the interval (θA, θA+ dθA)

has the value dQ+(ω, θA) = cA cos θAdEA(ω, θA). Then, combining this formula with (5.1) we find

that the total flux in A towards B carried by the waves (5.4) with N polarizations, all frequencies

and all incidence angles from the range 0 < θA < θ∗A can be represented as

Q+(Q) = N

∫ ωD

0

∫ θ∗A

0
dQ+(ω, θA) ≡ N

∫ ωD

0

∫ θ∗A

0
P (ω, TA; θA, qA)dΩA, (5.7)

where

P (ω, T ; θ, q) = P

(
ω

1 + q cos θ
, T

)
(5.8)

and

dΩA ≡ dΩA(ω, θ) =
ω2dωd sin2 θA

8π2c2
A

. (5.9)

The flux Q−(Q) carried in A outwards from B can be computed by two different ways. It can be

computed by (5.7) with the incident angle θA replaced by π−θA. However, since this representation

does not involve any parameters of the domain B, its substitution into (5.6) turns the latter into

a correct but useless identity, which does not connect Q with the temperature TB. In order to

represent Q−(Q) in terms of both domains we observe that there are two kinds of waves in A

propagating outward of B: the waves (5.4) originating in A and reflected back to A and the waves

(5.5) originating in B but transmitted to A. The waves of the first kind appear as the products

RA(ω, θA)pA(ω, π − θA), where RA(ω, θA) is the reflection coefficient of the wave pA(ω, π − θA).

The waves originating in B appear as the products WA(ω, θB)pB(ω, π − θB), where WA(ω, θB) is

the transmission coefficient of the plane wave (5.5).

The above implies that the ensemble of waves propagating in A outwards from B consists of

plane pressure waves Ueiω(−x cos θA+eyy+ezz)/cA with the amplitude

U = RA(ω, θA)eiα
√

2c2
AρAdEA(ω, θA) +WA(ω, θB)eiβ

√
2c2
BρBdEB(ω, θB), (5.10)

where α, β are random phase shifts, and θA, θB are incidence angles connected by the Snell law

(3.4). Then, the flux along the x-axis carried by the waves (5.10) with frequencies and incidence

angles from the intervals (ω, ω + dω) and (θA, θA + dθA), respectively, can be represented as

dQ−(ω, θA;Q) = dQA− + dQB− + dQAB− (5.11)

where

dQA− = cA cos θA|RA(ω, θA)|2 dEA(ω, θA) (5.12)

is the flux carried by the waves originated in A and reflected back to A,

dQB− = cos θA
c2
BρB
cAρA

|WA(ω, θB)|2 dEB(ω, π − θB) (5.13)

11



is the flux carried by the waves originated in B and transmitted into A, and

dQAB− = 2cB cos θA

√
ρB
ρA

∣∣RA(ω, θA)WA(ω, θA)
∣∣√dEA(ω, θA)dEB(ω, π − θB) cosχ, (5.14)

where χ = α−β+arg(RA)−arg(WA) is a random number, is the contribution of the interference of

waves originated in A and in B. If the waves radiated from A and B are not correlated, as happens

when these bodies are separated by a large distance, then the average of this term vanishes, and

since the heat transport is determined by statistical averages, the term (5.14) may be ignored.

However, if the radiations from A and B are correlated, which is the case when the gap between

them is smaller than a characteristic wave length of heat carriers, then the average of (5.14) may

be comparable to or even exceed (5.12) and (5.13), so that the contribution of (5.14) becomes

important for the analysis of heat transport.

The first term (5.12) can be computed using (5.1) and (5.8), (5.9), which immediately gives

dQA− = |RA(ω, θA)|2 P (ω, TA; qA, θA)dΩA. (5.15)

Similarly, for the term (5.13) we get the expression

dQB− = |WA(ω, θB)|2P (ω, TB; θB,−qB)
cAρB cos θA sin θBω

2 dωdθB
4π2c3

BρA
, (5.16)

but, since it is to be substituted into (5.11) it is convenient to modify it by representing sin θB and

dθB in terms of θA. To proceed, we derive from (3.4) that

sin θB =
cB
cA

sin θA, dθB =
cB cos θA
cA cos θB

dθA, (5.17)

and take into account the well-known identity(
1− |RA|2

) cos θB
cBρB

= |WA|2
cos θA
cAρA

, (5.18)

which connects the transmission coefficient WA(ω, θB) from B to A with the reflection coefficient

RA from A to A. Then, the substitution of (5.17) and (5.18) into (5.16) leads to the representation

dQB− =
(
1− |RA(ω, θA)|2

)
P (ω, TB; θB,−qB)dΩA, (5.19)

which has a close similarity with (5.15).

In order to compute the last term of (5.11) we first find that

√
dEA(ω, θA)dEB(ω, θB) = PAB(ω, θA, Q, TA, TB)

√
sin θA sin θBdθAdθB

c3
Ac

3
B

ω2dω

4π2
, (5.20)

where

PAB(ω, θA, Q, TA, TB) =

√
P

(
ω

1 + qA cos θA
, TA

)
P

(
ω

1− qB cos θB
, TB

)
. (5.21)

12



Then, from (5.17), we get the identities

dθAdθB =
cB cos θA
cA cos θB

(dθA)2, sin θA sin θB =
cB
cA

sin2 θA (5.22)

and reduce (5.20) to the form

√
dEA(ω, θA)dEB(ω, θB) = PAB(ω, θA, Q, TA, TB)

√
cos θA

cAcB cos θB

sin θAω
2dωdθA

4π2c2
A

. (5.23)

which leads, in view of (5.18), to the interference contribution to the heat flux in the form

dQAB− = 2|RA(ω, θA)|
√

1− |RA(ω, θA)|2PAB(ω, θA, Q, TA, TB) cosχ(ω, θA)dΩA. (5.24)

Finally, incorporating (5.15), (5.19) and (5.24) into (5.11), and integrating dQ−(ω, θA;Q) over

the frequencies and incidence angles we arrive at the equation for Q

Q = N

∫ ωD

0

∫ θ∗A

0

{(
1− |RA(ω, θA)|2

) [
P (ω, TA; θA, Q/QA)− P (ω, TB; θB,−Q/QB)

]
− 2|RA(ω, θA)|

√
1− |RA(ω, θA)|2 PAB(ω, θA, Q, TA, TB) cosχ(ω, θA)

}
dΩA, (5.25)

which involves an yet indefinite random phase function χ(ω, θA).

6 Applications

The general equation (5.25) admits considerable simplifications in special cases.

In the case when the reflection coefficient is small RA � 1, the last term in (5.25) can be

neglected so that (5.25) reduces to the form

Q = N

∫ ωD

0

∫ θ∗A

0

(
1− |RA(ω, θA)|2

) {
P (ω, TA; θA, Q/QA)− P (ω, TB; θB,−Q/QB)

}
dΩA, (6.1)

similar to that used in [1] for the analysis of heat radiation across a narrow, nanoscale vacuum gap.

In order to compute the heat transport coefficient K(TB) = limQ/(TA − TB), as TA → TB, we

assume that |Q| � 1 and TA ≈ TB, and applying the Taylor expansion

P (ω, T + ∆T ; θ, q) = P (ω, T )− qω cos θP ′ω(ω, T ) + P ′T (ω, T )∆T + o(q + ∆T ), (6.2)

reduce (6.1) to the linear equation

(1 + Λ)Q = Γ∆T , (6.3)

where ∆T = TA − TB,

Λ = N

∫ ωD

0

∫ θ∗A

0

(
1− |RA(ω, θA)|2

)
ωP ′ω(ω, TB)F+(θA, θB)dΩA, (6.4)

Γ = N

∫ ωD

0

∫ θ∗A

0

(
1− |RA(ω, θA)|2

)
P ′T (ω, TB)dΩA, (6.5)

13



and F+(θA, θB) is defined by the formula

F±(θA, θB) =
cos θA
QA

± cos θB
QB

, (6.6)

whose second option (with “−” sign) will be used below.

It is shown in [1] that as the gap’s width H between identical materials decreases towards zero

then (1 + Λ) → 0 at the rate (1 + Λ) ∼ O(H2), so that the heat transport coefficient diverges

as O(1/H2), in agreement with experimental data [10]. The analysis of [1] also shows that this

asymptote of the heat transport coefficient of a vanishing gap between identical materials, which is

provided by the term Λ, is due to the extension of Planck’s law to systems with a heat flux. Without

this term (6.3) reduces to the formula Q = Γ∆T arising in the so-called “acoustic mismatch”

method [11, 12] based on the assumption that the domains A and B radiate as if they are in

thermal equilibrium. This assumption leads to an obviously incorrect prediction that an imaginary

interface between identical materials has a finite thermal transport coefficient rather than an infinite

one, so that (6.3) appears as an improvement of the acoustic mismatch method. However, it is

obvious from (6.4) that Λ � 1 only when |RA| ∼ 1, which contradicts the condition |RA| � 1,

needed to reduce the general equation (5.25) to (6.1). Therefore, the above mentioned incorrect

prediction of the acoustic mismatch theory may not be surprising because it arrises in cases with

a small reflection coefficient when the strong reflection approximation of Λ is not justified.

Next we consider the opposite extreme case of almost total reflection, i.e. when |RA| ≈ 1,

which arises in the analysis of heat transport by phonon tunneling across a gap wider than a

few nanometers, as well as in the analysis of heat transport by acoustic or electromagnetic waves

between bodies with sharply different wave speeds.

In this case we get the estimate (1 − |RA|2) �
√

1− |RA|2, which makes it possible to ignore

the first term in equation (5.25) so that it reduces to the form

Q = −2N

∫ ωD

0

∫ θ∗A

0
r(ω, θA)PAB(ω, θA, Q, TA, TB) cosχ(ω, θA)dΩA, (6.7)

where

r(ω, θA) = |RA(ω, θA)|
√

1− |RA(ω, θA)|2 . (6.8)

Then, assuming that |Q| � 1 and |∆T | � 1 we use the Taylor expansion

PAB(ω, θA, Q, TA, TB) = P (ω, TB) +
1

2
P ′T (ω, TB)∆T − ω

2
P ′ω(ω, TB)F−(θA, θB)Q, (6.9)

and reduce (6.7) to the linear equation

Q = Γχ∆T + Υχ, (6.10)

whose terms

Γχ = −N
∫ ωD

0

∫ θ∗A

0
r(ω, θA)P ′T (ω, TB) cosχ(ω, θA)dΩA, (6.11)

Υχ = −2N

∫ ωD

0

∫ θ∗A

0
r(ω, θA)P (ω, TB) cosχ(ω, θA)dΩA, (6.12)
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involve random phase shifts χ(ω, θA) between radiations from different domains.

If χ(ω, θ) is fixed, then (6.10) appears as an equation for Q with given TA and TB. However,

when χ(ω, θ) changes the equation (6.10) also changes and defines another Q for the same TA and

TB. Therefore, since χ(ω, θ) is a random function, the solution Q of equation (6.10) depends on a

distribution of χ which cannot be specified without additional physical assumptions.

To specify χ(ω, θA) we adopt the principle of maximal entropy production [13] which requires

that in the presence of the temperature differential the heat flux takes the maximal possible value

in order to reach equilibrium as fast as possible. Based on this principle, the heat flux between

half-spaces at given temperatures TA and TB should be calculated as the maximal Q which can

satisfy (6.10) for arbitrary χ(ω, θ) constrained by the identity∫ ωD

0

∫ θ∗A

0
r(ω, θA)P (ω, TB) cosχ(ω, θA)dΩA = 0, (6.13)

which guarantees that the heat flux does not vanish unless the temperature differential also vanishes.

The above implies that the heat transport coefficient can be represented as

K = max
χ
{Γχ} , (6.14)

where the maximum is computed over all possible distributions of χ(ω, θA) constrained by the

condition (6.13). This is a standard linear optimization problem and it can be addressed by well-

developed algorithms [14, 15]. However, in this particular case, it admits an explicit solution

K =
N

8π2c2
A

∫ ωD

0

(∫ θ∗A

0
r(ω, θA) sin 2θAdθA

)
sign(ω − ω∗)ω2P ′T (ω, TB)dω, (6.15)

where ω∗ is selected from the condition∫ ωD

0

(∫ θ∗A

0
r(ω, θA) sin 2θAdθA

)
sign(ω − ω∗)ω2P (ω, TB)dω = 0, (6.16)

which is equivalent to the constraint (6.13) with cosχ(ω, θA) = sign(ω − ω∗).
To obtain (6.15) we first set cosχ(ω, θA) ≡ −1. This selection provides the absolute maximums

for K from (6.14) and for the left-hand side of the constraint (6.13), so that any change of the

preset values of cosχ(ω, θA) reduces K and pushes the left side of (6.13) closer to zero. Therefore,

to get the maximum of K under the constraint (6.13) it suffices to change cosχ(ω, θA) in such way

that affects (6.14) as slowly as possible, while changing (6.13) as fast as possible. Observing that

the ratio P (ω, T )/P ′T (ω, T ) monotonically decreases as ω increases we conclude that the best way

is to start changing cosχ(ω, θA) at ω = 0 and continue until (6.16) is satisfied.

In the general case, when the reflection is neither small nor almost total, we must consider the

general equation (5.25) retaining all its terms. However, assuming that |∆T | � 1 and |Q| � 1 we

still can apply Taylor expansions (6.2), (6.9) and reduce (5.25) to the linear equation

(1 + Λ− Λχ)Q = (Γ + Γχ)∆T + Υχ, (6.17)
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where

Λχ = N

∫ ωD

0

∫ θ∗A

0
r(ω, θA)ωP ′ω(ω, TB)F−(θA, θB) cosχ(ω, θA)dΩA, (6.18)

while the other coefficients are defined by (6.4), (6.5) and (6.11), (6.12). Then, the heat transport

coefficient can be represented as a product

K =
Q

∆T
= K0 (1 +K1), (6.19)

where

K0 =
Γ

1 + Λ
(6.20)

coincides with the solution of (6.1), which ignores the contribution of wave interference, while

K1 = max
χ

{
Γχ/Γ + Λχ/(1 + Λ)

1− Λχ/(1 + Λ)

}
(6.21)

represents the additional factor that takes into account the wave interference.

Remarkably, the last formula shows that the interference can only increase the heat transport

coefficient. Indeed, if all random parameters χ(ω, θA) have values such that cosχ(ω, θA) = 0, then

Λχ = Γχ = K1 = 0, and (6.19), (6.21) imply that K > K0.

Another interesting peculiarity of the expression (6.21) is its asymmetry with respect to the

interchange of the domains A and B. Indeed, observing that F−(θA, θB) defined by (6.6) obeys

the identity F−(θA, θB) = −F−(θB, θA) we see that Λχ from (6.18) changes sign when θA and θB

are interchanged. At the same time, taking into account the last identity in (5.9) we see that the

interchange of A and B does not affect any of the other parameters Λ, Λχ and Γ that appear in

(6.21). Therefore, while the ratio (6.20) is unchanged when A and B are interchanged, the ratio

(6.21) is different for the heat transport from A to B and from B to A.

The asymmetry of the heat transport is a well-known phenomenon usually referred to as “ther-

mal rectification”. It was first observed in 1936 [16], then its studies intensified in the 1960 – 1970s

and exploded in the 2000s, as described in the review [17]. Nevertheless, the phenomenon of ther-

mal rectification is not yet properly explained. Strikingly, in our analysis the thermal rectification

appears naturally, as a result of the interference of heat carrying waves.

7 Examples

To test the feasibility of the developed theory we apply it to layered structures resembling those

used in read/write heads in Heat Assistant Magnetic Recording systems (HAMR).

A typical structure used in HAMR consists of two “thick” multi-layered parts, one of those

is located on a read/write head and another is on a magnetic disk, which is separated from the

read/write head-disk interface by a few nanometers wide air gap. The part located on the head

includes a silicon substrate, an about 20 nm thick layer of gold, and an about 2 nm thin layer of

carbon overcoat. The part located on the disk includes a permalloy substrate, an about 20 nm

thick layer of ferromagnetic, and an about 2 nm thin layer of different type of carbon overcoat.

Taking into account that the dimensions of both parts considerably exceed the distance between
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Figure 4: A typical layered structure used in HAMR

them, it seems reasonable to consider a simplified structure which consists of two layered half-spaces

separated by a vacuum gap, as shown in Fig. 4.

It is shown above that the rate of heat transport by acoustic waves across a layered structure

is determined by its reflectivity: if it is weak then the heat transport coefficient can be computed

as K = Γ/(1 + Λ) with Γ and Λ from (6.4) and (6.5); if the reflectivity is strong then K can be

computed by (6.15), (6.16); and, in the general case K is represented by (6.19) – (6.21). Since we

are interested in structures with a non-vanishing gap that have strong reflectivity, here we limit

ourselves to computations of the heat transport coefficient by (6.15), (6.16).

In order to demonstrate how the parameters of the layered structure affect its thermal conduc-

tance we consider two basic structures with variable parameters. The first structure consists of a

vacuum gap of variable width between iron and gold half spaces coated by diamond-like carbon

layers of variable thickness. In the second basic structure the iron and gold half-spaces are replaced

by 20 nm layers of iron and gold backed by the silicon and nickel half-space, respectively.

The results of the computations are shown in Fig. 5 which has six graphs forming three distinc-

tive pairs. The top pair corresponds to structures without carbon overcoats, i.e. with overcoats of

zero thickness. The middle and the bottom pairs correspond to the structures with 0.25 nm and

2 nm carbon layers, respectively. In all pairs, the solid lines correspond to the structures with iron

and gold half-spaces, while the dashed lines correspond to the structures with iron and gold layers

on silicon and nickel substrates.

Fig. 5 shows that the heat transport coefficient is very sensitive to the thickness of the carbon

overcoats. This, however, is easily explained in terms of the reflection coefficient of acoustic waves.

Indeed, formulas (6.15), (6.16) imply that the heat transport coefficient is determined by the

function r(ω, θ) = |R(ω, θ)|
√

1− |R(ω, θ)|2, where R(ω, θ) is the reflection coefficient of the wave

with frequency ω and incidence angle θ. This quantity, averaged with the Planck’s function used

as a weight, is plotted in Fig. 6, where the two left subplots correspond to the structure with the

iron and gold half-spaces, while the right subplots correspond to the structures with iron and gold

layers on the silicon and nickel substrates. We see that the carbon overcoats drastically reduce the

average value of r(ω, θ), especially for the waves with other than normal incidence, which is not

surprising because the interfaces between carbon and the other used materials have high reflectivity

due to the sharp contrast between the sound speeds on the two sides of such interfaces.
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Figure 6: Reflection coefficients of layered structures with and without carbon overcoats

8 Conclusion

The proposed approach to nanoscale heat transport is applicable to the analysis of heat transport by

acoustic waves in a virtually arbitrary nanoscale layered structure which may or may not include

vacuum gaps. When this method is applied to special cases of large and closing gaps between

identical materials, it reproduces analytically correct results. When this method is applied to a
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system of two contacting half-spaces from different materials, it describes the interface thermal

resistance, widely referred to as Kapitsa resistance. When applied to structures with a vacuum

gap, it describes the phenomenon of heat transport by “phonon tunneling”, which has attracted

significant attention in recent years.

The developed method admits straightforward adaptation to the analysis of radiative heat trans-

port carried by electromagnetic waves, and in this case its predictions agree with exact solutions

for limiting cases, as well as with experiments [10]. Independently of whether heat is carried by

acoustic or electromagnetic waves, the proposed method naturally explains the asymmetry of heat

transport known as “thermal rectification”, which currently attracts considerable attention because

of the prospects of improving thermal management by the use of “thermal diodes”.

The developed approach to heat transport by waves is applicable to a broad range of problems

because it strictly follows the fundamental laws of physics and mathematics and avoids the use of

unjustified simplifications. Thus, since the transport phenomena a priori deal with non equilibrium

systems, this method describes spectra of thermal radiation by the generalization of the Planck law

to systems with a heat flux. The tunneling of acoustic waves through a narrow gap is described in

terms of the boundary value problem which takes into account van der Waals interactions of the

separated bodies. Such tunneling has been discussed in the literature for a long time [18], but the

possibility of its contribution to heat transport was proposed quite recently [3, 4] and then further

developed in [5]. However, previous studies did not take into account the phases of thermally

excited waves, which, as shown above, lead to the asymmetry of thermal transport interference of

thermally excited waves arriving from different bodies.

The proposed method can be further developed into a practical tool, which may be applied to

actual structures found in HAMR systems and in other nanoscale devices used for efficient thermal

management.
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