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Chapter 1

Abstract

This paper presents an adaptive repetitive controller for active tracking (rejecting) of un-
known periodic trajectories (disturbances). The proposed control law is based on a modified
filtered-x least mean squares (MFX-LMS) algorithm with a novel variable step size that
improves the convergence rate, and fades the steady state excess error in a stochastic envi-
ronment. A novel secondary path modeling scheme is also proposed to adaptively compensate
for the dynamic mismatches between the internal model of the MFX-LMS and the real dy-
namic system in an online fashion. We further discuss the application of this adaptive
controller in servo mechanisms for hard disk drives that use Bit Patterned Media Recording,
in which, full spectrum tracking of a periodic trajectory is crucial. Finally, comprehensive
numerical simulations and experimental implementations are presented for a hard disk drive
servo system that is subjected to periodic disturbances known as repeatable runout.
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Chapter 2

Introduction

Repetitive control was first introduced in 1980’s, and since then, has been widely used in
applications in which a task should be performed repeatedly, a periodic disturbance must
be attenuated or a periodic trajectory must be tracked. Repetitive control has been applied
in many robot manipulators applications, thermal cycling, milling machines and satellite
attitude control. This control methodology has also been applied in hard disk drives to
follow periodic trajectories (or reject periodic disturbances), in order to read/write data on
a magnetic disk surface. This is the application that will be considered in this paper.

Repetitive controllers are typically categorized into two types, namely internal and ex-
ternal model based controllers, based on how the cancellation signal is considered in the
algorithm. Internal model based repetitive controllers utilize an embedded signal generator
chew1989digital whereas external model based controllers view the cancellation signal as
being injected from outside of the plant-controller feedback loop messner1991new

In this paper, we will use the external model based approach and employ a stochas-
tic gradient descent method, which is known as the modified filtered-x least mean squares
(MFX-LMS) algorithm, to develop the parameter adaptation algorithm of the repetitive
controller. The MFX-LMS is a sophisticated version of the least mean squares (LMS) algo-
rithm bjarnason1992noise; kim1994constraint The main advantage of the MFX-LMS,
as compared to the LMS, is its high stability when the error signal is not correctly “aligned”
in time with the reference signal elliott1985application Indeed, the LMS algorithm is
generally unstable when the control signal and reference signal enters to a dynamic system
at distinct points. More formally, in a linear time invariant (LTI) framework, the LMS algo-
rithm diverges if the phase of the closed loop system from the control injection point to the
error signal exceeds or lags by 90 degrees at the actuation frequency range. On the other
hand, the MFX-LMS algorithm uses a secondary path to “align” the control signal and the
error signal by using an internal model of the closed loop system. We will be returning
to this concept later in section 3.1. Nevertheless, the MFX-LMS algorithm will diverge if
the internal model, used in the secondary path, does not match the actual closed loop dy-
namics very well. This divergence behavior happens when the phase mismatch between the
nominal model and real closed loop system exceeds 90 degrees at the excitation frequency
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range lopes2004behavior We propose a self-tuning secondary path identification scheme
in section 4 to compensate for these dynamics mismatches in an online fashion, in order to
prevent the divergence of the adaptive algorithm.

In many active disturbance cancellation or reference signal tracking applications, the
unknown signal that needs to be compensated for or tracked can be decomposed into a
product of a regressor vector and an vector of unknown constant parameters that need to
be estimated. The adaptive algorithms that identify the unknown parameter vector can be
categorized into two types based on whether the regressor signal is known a-priori, or has to
be generated from measurements in real time. The former type uses a known deterministic
regressor to learn and compensate for the disturbances. Such is the case of the repetitive
adaptive controller for tracking repeatable runout in hard disk drives (HDDs) that will be
presented in this paper, where it is known a-priori what are the frequency contents of the
repeatable runout spectrum that should be tracked. In the later type of adaptive algorithms,
it is necessary to use a sensor (e.g. a microphone or an accelerometer) to generate the
regressor signal in real time. Such is the case of noise cancelation applications and external
vibration compensation control systems in HDDs.

The repetitive control application that will be considered in this paper is track-following of
high frequency repeatable read/write tracks in computer magnetic hard disk drives (HDDs)
that use Bit Patterned Media Recording. The head positioning servomechanism in a HDD
moves the magnetic read/write head as quickly as possible from one track to another when
asked by the host system using track-seeking and track-settling control systems. Once the
head reaches the target track, its position relative to the track’s center is controlled by a track-
following servo system during the data reading and writing process. HDDs generate position
feedback signals from special magnetic patterns called servo patterns that are written at
designated areas on the disk surface known as servo sectors. The generated feedback signals
are called position error signals (PES) and are read by the magnetic read head, as it flies
over the servo sectors Abramovitch2002; al2007hard

In recent years, a potential breakthrough to increase the areal density of HDDs, known
as bit patterned media recording (BPMR), has been under development. In BPMR each
magnetic data bit is recorded on a single-domain magnetic island (one bit per island),
as opposed to storing bits in 20-30 magnetic grains within a continuous magnetic film
white1997patterned; ross2001patterned However, BPMR requires that the data tracks
be followed with significantly more accuracy than what is required in conventional contin-
uos media recording, since the read/write head has to be accurately positioned over the
single-domain magnetic islands to read or write data. The shape of each individual BPMR
servo/data track is patterned on the disk using some form of nano-lithography process, and
its variations relative to a perfect circular track result in written-in runout which becomes re-
peatable (periodic) due to the disk spinning. The BPMR written in repeatable runout, which
often contains high frequency components, must be accurately tracked by the servo-system.

Section 5 discusses a repetitive adaptive control system that is designed to track BPMR
written in repeatable runout and extends the results reported in our previous conference
papers shahsavari2014repeatable; shahsavari2014adaptive The effectiveness of the
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proposed controller is evaluated through a comprehensive numerical simulation study, as
presented in section 6. Furthermore, the controller was is implemented on a 2.5-inch “HGST-
a Western Digital company” hard disk drive that is subjected to high-frequency repeatable
runout, and the results are discussed in section 7.
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Chapter 3

Control Architecture

The adaptive repetitive controller proposed in this work is implemented in a plug-in fashion,
meaning that the repetitive compensator is used to augment an existing robustly stable closed
loop system. To clarify this notion, we use a very common plant-controller interconnection
shown in Fig. 3.1(top) as a running example. The blocks G and CF in the figure respectively
denote a linear time invariant (LTI) plant and a nominal LTI feedback compensator that is
used to stabilize the plant. This nominal controller can be either continuous or discrete time,
and it generally provides disturbance rejection across a broad frequency spectrum. On the
other hand, the plug-in adaptive repetitive controller, denoted by CA, is a non-linear discrete
time system that provides specialized compensation for disturbances appearing at selective
frequencies, which should be less than the Nyquist frequency of the repetitive controller.
Since our design does not depend on whether the plant/nominal controller are continuous
or discrete time, we assume that both G and CA are discrete time systems.

We consider a general stochastic environment for the system by appending input distur-
bance w, output disturbance n, and contaminating measurement noise m to our framework.
Generally, the nominal feedback controller is designed to compensate for these input and
output noises. The periodic disturbance that should be compensated by the adaptive con-
troller is denoted by r, and without loss of generality, we assume that it is applied to the
plant output.

An important point to make here is that our plug-in controller design is not limited to this
particular interconnection, and in general, it does not require any details about the individual
components of the closed loop system and their interconnections. Rather, our design is based
on an abstract LTI dynamics from the adaptive control (uA) injection point to the error signal
(e). A succinct representation of this framework is shown in Fig. 3.1(bottom). Indeed, our
design is only based on the dynamics of R which is a discrete time transfer function from
uA to e. Returning to our running example, these blocks and signals shown in the abstract
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Figure 3.1: Top: Closed loop system augmented by a plug-in adaptive controller. Bottom:
Succinct representation of the closed loop system.

form are defined by

S (z) : =
1

1 + CF (z)G (z)

R (z) : = G (z)S (z) (3.1)

ξk = R [wk] + S [nk +mk] ·

Here, the standard discrete-time z variable notation is used for the transfer functions, and
the time functionality of the signals is shown by the step index k. For a single-input single-
output transfer function T (z) and an input sequence ik ∈ Rm, m ≥ 1, the bracket notation
T [ik] represents the time domain response of the system operating on each element of the
input signal individually. For instance, the response of the transfer function R (z) to the
input disturbance w (k) is represented by R [wk]. The periodic disturbance in this block
diagram is replaced by an equivalent disturbance, d̄, which has the same effect as r on the
error signal,

R
[
d̄k
]

= S [rk] ·
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From a control point of view, this replacement is admissible since the disturbance is bounded,
periodic, and the system is linear; hence, it is possible to consider the periodic disturbance
at any other point, or multiple points in the closed loop system.

3.1 Adaptive Control Synthesis

We aim to synthesis an adaptive control law for generating uA in order to reduce the effect
of disturbance d̄ on the error signal e as is shown in Fig. 3.1(bottom). This objective can be
ideally achieved when the control signal is equal to the disturbance d̄. Since the disturbance is
unknown, our control objective is equivalent to learning disturbance in an adaptive manner.

In a spectral analysis framework, we present the disturbance signal as a summation of
sine and cosine functions with zero initial phases

d̄k =
n∑
i=1

[ai (αi sin (ωikT )) + bi (αi cos (ωikT ))]

= θTφk

(3.2)

where ωi’s and n respectively denote the frequencies and number of those components that
are desired to be removed from the spectrum of e, and T is the sampling time of the discrete
time system. The vector of parameters, denoted by θ, and regressor vector signal at time
step k, represented by φk, are defined as

θT := [a1, · · · , an, b1, · · · , bn] (3.3)

φTk := [α1 sin (ω1kT ) , · · · , αn sin (ωnkT ) , (3.4)

α1 cos (ω1kT ) , · · · , αn cos (ωnkT )] ·

Here, the regressor φk is a known signal since the frequencies ωi’s are known and αi’s are
positive weighting parameters that should be chosen by the designer. An explicit method
for choosing these parameters is given later in the paper. Using the representation given in
(3.2), learning the disturbance is equivalent to obtaining an estimation for the parameter
vector θ, and constructing the control signal uA at time step k as

uA,k = θ̂Tk φk (3.5)

where θ̂k denotes the estimated parameter vector at time step k. We use a modified filtered-
x LMS algorithm that is presented in the following subsection to iteratively identify the
parameter vector.
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Parameter Adaptation Algorithm

We deploy a modified filtered-x LMS algorithm to adaptively identify the parameter vector
θ by using the error signal as the feedback information. We represent the error signal as

ek = R
[
d̄k − uA,k

]
+ ξk = R

[
φTk θ − uA,k

]
+ ξk

= R [φk]︸ ︷︷ ︸
ψk

T θ −R [uA,k]−R[φk]︸ ︷︷ ︸
ψk

T θ̂k +R[φk]︸ ︷︷ ︸
ψk

T θ̂k + ξk

= ψTk θ − ψTk θ̂k + ξk −R [uA,k] + ψTk θ̂k·

(3.6)

We denote the signal ψk := R[φk] ∈ R2n as the filtered regressor. Suppose that the transfer
function R(z) is known; then, the filtered regressor is known as well and the error signal is
an affine function of our estimated parameter vector, θ̂k, if the last term on the right hand
side of (3.6) is omitted. This suggests defining an auxiliary error signal

ēk : = ek +R [uA,k]− ψTk θ̂k
= ψTk θ − ψTk θ̂k + ξk ,

(3.7)

which is explicitly an affine function of our estimated parameter vector. This auxiliary error
signal is a good measure of the the original error signal because they are equivalent when the
parameters converge. Suppose that the estimated parameter vector converges to θ̂ss. The
two signals will be equal because

ēk − ek = R[φTk θ̂ss]− ψTk θ̂ss
= ψTk θ̂ss − ψTk θ̂ss = 0 .

(3.8)

Accordingly, rather than minimizing the variance of the error signal ek, we use a gradient-
based algorithm to minimize the variance of auxiliary error signal ēk.

We deploy the least mean square algorithm – the most widely used method in adaptive
filtering – because it has low computational complexity, it converges in stationary environ-
ment, and under independence theory assumption – which is satisfied here – the parameters
converge in the mean to the Wiener solution. Moreover, this algorithm is suitable for the
specific application that we will be discussing in section 5 since it is shown that the LMS
algorithm has stable behavior when implemented with finite-precision arithmetic. Let θ̂ik
represent the i-th element of θ̂k. The LMS update equation enriched with a variable step
size µk and a scheduling binary variable γik, that will be both discussed in the following
subsections, is as follows:[

θ̂ik+1

θ̂i+nk+1

]
=

[
θ̂ik
θ̂i+nk

]
+ γikµk

[
ψik
ψi+nk

]
ēk, 1 ≤ i ≤ n· (3.9)
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Variable Step Size

Although the coefficient vector on average converges to Wiener solution, the instantaneous
deviation in the parameter vector, caused by the noise ξk, generate an excess mean squared
error (MSE) appearing in the variance of ēk. More important, this parameter oscillation
prevents the auxiliary error signal from converging to the error signal, the equality that was
shown in (3.8) under a steady state assumption.

We propose an adaptive law to adjust the step size based on an estimation of the total
mean squared error. The key idea behind this scheme is that, as the estimated parameters
get closer to the real ones, the step size becomes smaller and the parameters will be frozen
in time when a certain desired performance (in terms of the mean squared error) is attained.
This removes the excess error from the output and results in smaller steady state errors.
However, in a practical situation, the system dynamics or disturbance d̄ may be subjected to
variations, and it is required that the step size activates the adaptation whenever the error
becomes “large” due to these variations.

We use a moving average with a window width of h to estimate the auxiliary error power
at time step k

V h
k = V h

k−1 +
1

h

[
(ēk)

2 − (ēk−h+1)
2
]
. (3.10)

For a given desired MSE value, say V d, we define the step size law as

µ̄k = ρ
(
V h
k − V d

)
(3.11)

µk =


min(µ̄k, µmax) if (µ̄k > 0 ∧ µk−1 > 0)

∨(µ̄k > µub)

0 otherwise

(3.12)

Here, constant ρ is a positive scalar gain, and the variable µ̄k determines how far the current
error power is from the desired value V d. Since V h

k is not exactly equal to the auxiliary error
variance, the system may show chattering behavior around the switch line (i.e. V h

k = V d)
if µ̄k is used directly as the step size. To avoid this, we add a hysteresis behavior to the
step size, which is defined by (3.12). The logic condition represented in (3.12) define a dead-
band [V d, V ub] on the MSE surface, and represent a hysteresis behavior for the step size.
That is, the adaptation is active as long as the estimated error power is above the dead-
band (V h

k > V ub), and it is inactive whenever the error power falls behind the dead-band
(V h

k < V d). Moreover, if the approximated error power enters the dead-band from the above,
it stays active until it exits from the bottom (values smaller than V d), and if the power error
enters the dead-band from the bottom, it stays inactive as long it does not exceed the upper
limit V ub. To guarantee the convergence of the second moment of error, an upper limit µmax
is considered on the step size. It is well known that a sufficient condition for guaranteeing
MSE convergence is to choose µmax ≤ 2

3ψT
k ψk

for all values of k feuer1985convergence A

schematic for the step size hysteresis behavior is shown in Fig. 3.3.
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Figure 3.2: Adaptive repetitive controller block diagram.

Weighting Parameters, αi

Since the transfer function R(z) is LTI, the filtered regressor in a steady state, ψk, can be
simply calculated by knowing the frequency response of R(z)[

ψi,k

ψi+n,k

]
= miαi

[
sin (ωikT + δi)

cos (ωikT + δi)

]
, i ∈ {1, · · · , n}

mi = |R
(
ejωiT

)
|, δi = ∠R

(
ejωiT

)
.

(3.13)

Here, |x| and ∠x denote the magnitude and phase of a complex number x. It is well known
that the convergence rate of the LMS algorithm depends on the eigenvalue spread of the
regressor correlation matrix ungerboeck1972theory This fact suggests that the values of
αi’s in (3.3) should be chosen such that the amplitude of all sinusoidal elements in (3.13) are
equal – i.e. αi = c

mi
, where c is a constant scalar. This constant can be chosen to be one,

because the update equation (3.9) is related to the term ρc, and accordingly, it is possible
to fix one of these two variables.

Scheduling Parameters, γik

In the lack of a priori knowledge about the parameter values, the transient error may be large
if many parameters are being updated simultaneously. To solve this issue, the adaptation of
different parameters can be scheduled in time by using γik, as a binary variable, that is one
when the ith parameter should be updated and zero otherwise. An example for choosing
these parameters is given in section (4).
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Table 3.1: Adaptive Control Algorithm

1. Apply uA,k to the VCM

2. Calculate the auxiliary error: ēk = ek − ẽk
3. Calculate the step size

V h
k = V h

k−1 + 1
h
ē2k − 1

h
ē2k−h+1

µ̄k = ρ
(
V h
k − V d

)
µk =


min(µ̄k, µmax) if (µ̄k > 0 ∧ µk−1 > 0)

∨(V h
k > V ub)

0 otherwise

4. Update the estimated parameters θ̂ik+1 = θ̂ik + γikµkψ
i
kēk

5. Calculate uA,k+1 = φTk+1θ̂k+1

6. Calculate ẽk+1 = R [uA,k+1]− ψTk+1θ̂k+1

kµ

kµ

maxµ

ubµ

kµ
maxµ

h
kV

ubV
dV

Dead-band 

Figure 3.3: Adaptive variable step size with hysteresis behavior.

Uncertain System Dynamics

The adaptive controller proposed in section 3.1 uses the closed loop system transfer function,
R(z), to construct the auxiliary error as shown in (3.7). In practical applications, an exact
dynamics of the system, in general, is not available because of the uncertainties due to
unmodeled dynamics, variation over time and temperature, etc. Hence, we use a nominal
dynamics model, say R̄(z), in all occurrences of the actual transfer function R(z) throughout
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the algorithm

ψ̄k : = R̄[φk] (3.14)

ēk : = ek + R̄ [uA,k]− ψ̄Tk θ̂k (3.15)

θ̂k+1 = θ̂k + γkµkψ̄kēk· (3.16)

The explicit algorithm iteration is given in Table 3.1, and its block diagram is illustrated in
Fig. 3.2.

The robustness and performance of the MFX-LMS algorithm depends on the mismatch
between the model used in the secondary path, R̄ (z), and the actual transfer function,
R (z). When the step size is small, a sufficient condition for robustness to the secondary
path modeling mismatch is that the phase difference between these two systems should be
less than 90 degrees lopes2004behavior – i.e. Real

(
R̄ (ejω)) /R (ejω))

)
> 0.
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Chapter 4

Online Secondary Path Modeling

This section proposes an adaptive secondary path modeling architecture to stabilize the adap-
tive repetitive controller in case the phase mismatch between R(z) and R̄(z) does not satisfy
the aforementioned “90 degrees” criteria. Unlike the previous section, that we ignored the
internal structure of the closed loop dynamics R(z), we use our knowledge about the nominal
feedback controller and the internal interconnections to identify the uncertain plant. This
is an important distinction between this architecture and previous works eriksson1989use;
akhtar2006new in which, modeling of the closed loop system R (z) is studied. The order
of the closed loop dynamics is equal to the summation of plant and controller orders when
no pole-zero-cancellation occurs. Hence, the number of parameters required to identify the
plant is less than the closed loop system in general.

We first consider a simple system identification case that is depicted in Fig. 4.1. Let
G(q−1) be a finite dimension transfer function of G represented by the one step delay operator
q−1

G
(
q−1
)

=
B (q−1)

A (q−1)
=
b0 + b1q

−1 + · · ·+ bngq
−ng

1 + a1q−1 + · · ·+ angq
−ng

.

In the figure, Ĝ (z) is the estimated plant model and PAA denotes the parameter adaptation
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Figure 4.2: Adaptive repetitive controller with secondary path modeling (dashed box)

algorithm. A great deal of research effort has been focused on the design of PAA based
on the characteristics of input and output noises regalia1994adaptive; ljung1983theory
We will not focus on the design of PAA, and rather, make the following assumption.

Assumption 1 The parameter adaptation algorithm in Fig. 4.1 is converging and an ade-
quate tap-length is chosen such that the closed loop system

R̄k (z) =
Ĝk (z)

1 + CF (z) Ĝk (z)
· (4.1)

satisfies

lim
k→∞

(
max
0≤ω≤π

∠

(
R(ejω)

R̄k(ejω)

))
<
π

2
·

Based on this assumption we advance to the problem of secondary path modeling for
the adaptive repetitive controller. Figure 4.2 illustrates the proposed architecture, that uses
the same PAA as Fig. 4.1. As shown in the figure, the secondary path of the repetitive
controller is now using the estimated model given in (4.1).

Lemma 1 The existence of the repetitive controller in the loop cannot cause diverging
behavior in the modeling path. Since the adaptive control is known, we can think of the
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summation of the feedback control, adaptive control, and the injected noise, as a single exci-
tation signal that is known to us. Therefore, if we ignore filters 1 − z−N and signal d̄, the
estimated plant parameters in Fig. 4.2 converge if and only if they converge when there is
no adaptive repetitive controller in the loop. However, the periodic disturbance d̄k can cause
biased parameters convergence, and it is required to be filtered out to validate this statement.
The error signal in Fig. 4.2 is ek = θTg φg,k + dg,k + ξg,k where

θTg :=
[
a1, · · · , ang , b0, · · · , bng

]
(4.2)

φTg,k :=
[
ek−1, · · · , ek−ng , ūk, · · · , ūk−ng

]
(4.3)

dg,k := G
[
d̄k
]

(4.4)

ξg,k := G [wk] + nk +mk· (4.5)

Note that dg,k is periodic in steady state since d̄k is periodic and G (q−1) is a LTI system. In
the remaining, we ignore the transient state and assume that dg,k is periodic. This assumption
leads us to filter both ek and φg,k through 1− q−N and define

f̄k : = (ek − ek−N)− θ̂g,k (φg,k − φg,k−N)

= θ̃Tg,kφ̃g,k + ξ̃g,k
(4.6)

where φ̃g,k = φg,k − φg,k−N , θ̃g,k = θg − θ̂g,k and ξ̃g,k = ξg,k − ξg,k−N . Note that (4.6) gives a
suitable representation of an error variable to be used in an adaptive algorithm (c.f. (3.7)).

Corollary 1 The adaptive repetitive controller parameters converge eventually. Based on
the separation property given in the previous lemma, and our assumption, the phase mismatch
between R̄k(z) and R(z) can be decreased to less than 90 degrees if an adequate tap-length is
chosen for the modeling path. Accordingly, the convergence criteria for the adaptive repet-
itive controller will be satisfied. On the other hand, the excitation noise υk, is statistically
independent of the regressor signal to the adaptive repetitive controller, and it cannot cause
unbiased parameter convergence in the repetitive controller.

An important point to make is that, the adaptive control path does not converge as long
as the updated transfer function R̄ (z) has more than 90 degrees phase error relative to the
actual transfer function R (z). As a result when the initial parameters of Ĝ are not accurate,
we expect that the adaptive control parameters diverge quickly. Although the adaptive
controller becomes stable eventually – once the plant parameters get close enough (in terms
of phase error) – this behavior is not desirable in many applications since the transient error
may be very large, and accordingly the adaptive control requires a long time to recover. We
thus suggest using an initialization period prior to the simultaneous adaptation, in which
the adaptive controller is inactive till the secondary path modeling parameters converge.

Remark 1 In many applications the plant dynamics is well known at a frequency range,
say Ω. If such information is available, the frequency components of disturbance can be
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categorized into two sets I1 = {i|ωi ∈ Ω} and I2 = {i|ωi /∈ Ω}. The adaptation of parameters
θ̂i, i ∈ I1 and plant parameters can be done simultaneously since the plant model is exact at
that region. This can be done by choosing

γik =

{
0 i ∈ I2 and k ≤ P

1 otherwise
(4.7)

where P denotes the length of initialization period required for secondary path modeling.
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Figure 5.1: Schematic of servo tracks (dotted lines) and data tracks (solid lines) in conven-
tional and bit-patterned media HDDs

Chapter 5

Application to Bit Patterned Media
Recording

The HDD servo mechanism, operating in track-follow mode, is a nano-positioning system
that controls the read/write head to follow a predetermined data track profile. This system is
usually subjected to both repeatable (periodic) and non-repeatable (random) disturbances
that are due to the imperfection in both fabrication and assembly processes, as well as
windage induced and external vibrations, etc. As discussed in the introduction, the control
strategy in conventional HDDs, that use continuous media, is distinct from BPMR. In the
former technology, data is written on concentric circular tracks, whereas in BPMR, data
should be written on data tracks with unknown shapes, which are created by lithography
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on the disk. A schematic of the ideal trajectory for these two types of magnetic recording is
shown in Fig. 5.1. In the figure, servo tracks determine the desired trajectories to be tracked
in BPMR, and their deviation from an ideal circular shape is called repeatable runout (RRO).
Challenges in regards to control design for BPMR mainly arise due to the following RRO
specifications:

• the RRO profile is unknown and its frequency spectrum spreads beyond the bandwidth
of the servo system. Therefore, the tracking error will be amplified by the feedback
controller at high frequencies.

• the RRO spectrum contains many harmonics – approximately 200 in current HDDs –
of the spindle frequency that should be attenuated. In general, this requires computa-
tionally intensive control methods.

Accordingly, the servo control methodologies used for conventional drives kempf1993comparison;
sacks1995advanced; wu2006repeatable; chen2006iterative cannot be applied to BPMR.

Fig. 3.1 (top) can be adopted to abstract the block diagram of a single stage HDD servo
system. The blocks G and CF refer to a voice coil motor (VCM) and the nominal feedback
controller respectively. The signals w, r, n and m denote the airflow disturbance known as
windage, repeatable runout (RRO), non-repeatable runout (NRRO) and measurement noise
respectively. The actual position error signal (PES) and measured PES are respectively
referred by y and e in the figure. In the remaining, the term “PES” is used for referring to
the measured PES signal e.
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Chapter 6

Simulation Setup

Since BPMR HDDs have not been released yet, we do a realistic simulation study to validate
the effectiveness of our proposed algorithm for this type of hard disk drives. We expect that
the actuator and contaminating noises will be similar in both types of magnetic recording,
and accordingly, model the dynamics (i.e. G and CF ) and noises (i.e. w, n and m) of the
system based on a set of measurements on a conventional 2.5-inch hard disk drive that is
provided by HGST, a Western Digital company. We use the RRO data from a prototype BPMR
hard disk drive that is provided by Seagate Technology to create a realistic RRO profile for our
simulations. The proposed control algorithm is implemented in MATLAB, and simulation
results for 10 uncertain plant models and 100 revolutions of the disk are obtained. There
are 400 servo sectors on each track that provides position samples, and the control rate is
equal to the sampling rate. Therefore, the total number of time steps in our simulation is
40′000, and the error spectrum can contain up to 200 harmonics of the spinning frequency.
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Simulation Results

The baseline error variance, attained by perfect tracking, is 0.25nm2 in our simulations. We
chose a desired error variance, V d := 0.35 nm2, slightly larger than this limit of performance.
Approximated auxiliary error variance, V h

k , and variable step size, µk, for the 10 uncertain
systems are shown in Fig. 6.1 and Fig. 6.2. The RRO profile in the first and last 50 revolu-
tions, respectively, belong to a mid-diameter (MD) and an outer-diameter (OD) track on the
disk. As can be seen in these two figures, the auxiliary error variance enters the dead-band
in less than 10 revolutions. Figure 3.3 shows that he adaptation is automatically stopped
when V h

k reaches the desired value, and this along with (3.8) implies that the PES variance
is in the same level. In order to decrease the transient error, the adaptation for harmonics
1− 80 starts first, and after 7 revolutions the adaptation for harmonics 81− 190 begins (c.f.
Fig.6.1).

The spectrum of the steady state error is shown in Fig. 6.4. Since we chose a desired
performance, V d, larger than the baseline error variance, there is some leftover mostly located
between harmonic 1 and 40.

Lastly, we simulated the proposed secondary path modeling scheme to identify the plant
dynamics of VCM in an online fashion. Fig. 6.3 shows the phase mismatch between a fairly
inaccurate nominal closed loop plant model and the actual one, which exceeds 90 degrees (in
magnitude) at high frequencies. In order to identify the plant parameters, an extended recur-
sive least squares algorithm with the proposed filtering method was implemented. Figure 6.3
shows that the identified system phase matches the actual plant very well, guaranteeing the
adaptive repetitive controller convergence.
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Chapter 7

Implementation Results

The proposed control and modeling algorithms are tested on a conventional 2.5” HDD to
validate the presented analytical and simulation results. Modifications were made in the
HDD firmware to send out the PES to an OMAP-L138 development kit that runs our
adaptive control algorithm, and applies the control signal to the VCM through a digital to
analog converter (DAC).

Since the internal HDD controller already compensates the low frequency part of the
RRO, the major observed RRO peaks are located in mid frequency range. Considering the
limited available control in our setup, we focus on attenuating the 31 major PES frequency
components that are between the 12th and 42nd harmonics of the spinning frequency. In
our experimental implementation, a simple second order model is identified to approximate
the actual transfer function R(z) in the frequency range of interest. It is validated by an
accurate frequency analyzer that this model has less than 90 degrees phase mismatch with
R(z) in that frequency interval.
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Figure 7.2: EVOLUTION OF THE ESTIMATED PARAMETERS

Fig. 7.1 compares the error spectrum before and after applying the adaptive control.
The mid frequency range of spectrum is magnified in a box inside the figure, which demon-
strates that utilizing the adaptive controller results in a considerable attenuation of the RRO
frequency components in the excitation interval. The PES variance was computed for both
cases and the results show 26.63% improvement.

Fig. 7.2 shows the evolution of the estimated parameters. As can be seen in the figure,
most of the estimated parameters have converged after 16 revolutions of the disk. However
to reach the “desired” performance level, that is V d := 1.36nm2 in this particular drive, the
adaption remains active for approximately 26 revolutions with a small step size to ”fine-tune”
the parameters. This becomes more clear by considering the “approximated auxiliary error
variance” V h

k , and the variable step size µk, which are both plotted in Fig. 7.3. As shown in
the figure, the adaptive algorithm remains active until V h

k meets the “desired” performance
level (i.e.V h

k ≤ V d) and the adaption stops automatically by setting µk = 0.
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Chapter 8

Conclusions

An adaptive repetitive controller based on a modified filtered-x LMS algorithm is proposed
in this paper. We have illustrated how this method can be effectively used for rejecting
periodic disturbances or selective frequency attenuation by using a deterministic regressor.
Furthermore, an adaptive secondary path modeling scheme is proposed to identify and com-
pensate the dynamics mismatch between the actual and nominal closed loop systems. This
online modeling scheme prevents divergence of the repetitive controller at the frequencies
that the phase mismatch exceeds 90 degrees.

The application of the proposed algorithm in bit-patterned media recording is presented
and illustrative simulation and implementation results are provided to show the effectiveness
of this method.


