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Chapter 1

abstract

This paper considers robust controller design for track-following in hard disk drives (HDD)
with irregular sampling of the position error signal (PES) but regular (clock-driven) control
updates. This sampling and actuation behavior is modeled by applying a novel discretization
method to a continuous-time model of a HDD, resulting in a discrete-time linear periodically
time-varying model. Then, the controller design is performed using optimal H∞ control for
periodic systems, and uses a generalization of the disk margin criterion to quantify the
robustness of the closed-loop system. To show the effectiveness of the proposed method,
the design methodology is applied to a hard disk drive model and the resulting controller
is validated by examining its nominal performance in terms of the root mean square of
the standard deviation of the PES, and robustness in terms of disk margin. Since the
proposed controller has too many parameters to be implementable on an HDD due to memory
limitations, we use a vector quantization method to approximate the entire parameters set
of the designed controller by a smaller set of parameters.
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Chapter 2

Introduction

Sampling time in hard disk drive (HDD) servo systems is not always constant over a rev-
olution of the disk. The position of the read/write head is attained when it passes over
the servo sectors written on the disk al2007hard Hence, when the servo sectors are not
placed equidistantly on the tracks the sampling will be time-varying during one revolution
of the disk. However, since the disk is rotating, the irregularity in sampling intervals will
be N -periodic, where N is the number of servo sectors on each track. There are different
factors that can make the sampling time irregular. For instance, when the center of servo
tracks does not exactly coincide with the center of disk rotation, there can be large variations
in the sampling rate. Another factor resulting in irregular sampling rate is the existence of
missing sectors as a result of false PES demodulation .ehrlich2005methods Furthermore,
during the manufacturing and testing processes of some HDDs, PES sampling rates can be
more than 10 times that of the normal servo loop bandwidth guo2010servo and, because
track accuracy is not strongly gated, this may result in the servo system missing half of the
PES samples.

When HDDs areal density is low, ignoring the variation in sampling rate and using a linear
time invariant (LTI) controller usually results in acceptable performance and robustness
hirata1992head However, the areal density of HDDs has had 40% annual increase during
the last 6 years, and is expected to reach 2.5 Tb/in2 by 2014, which will require writing
data on 19 × 13.5 nm2 bit cells fontana2012technology For this high areal density,
ignoring the sampling time irregularity and utilizing an LTI controller might not lead to
the desired level of performance and robustness shahsavari2013limits Therefore, a design
methodology that deals with irregularity in the sampling rate is necessary. Two meaningful
schemes for updating the control signal can be considered for a system with irregular sampling
shahsavari2013limits In the first scheme, the controller is event-driven, i.e. the control
is updated as quickly as possible after receiving a new measurement. In the second scheme,
the controller is clock-driven and the control action is updated at a regular rate regardless
of the sampling time variation. As illustrated in shahsavari2013limits a system with
irregular but periodic sampling time can be modeled as a linear periodically time-varying
(LPTV) system and exploiting the latter scenario results in better limits of performance in
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such a system. Moreover, since the control action is usually passed through one or more
oversampled notch filters before being applied to the actuator(s), in order to prevent the
excitation of actuator high frequency resonance modes semba2001method the second
control scheme is more attractive because it decouples the design of the notch filters from
the sampling rate variation. Due to these two significant advantages, our design methodology
is based on the latter control scheme. Using this control method, there might be arbitrary
number of measurements between two successive control updates shahsavari2012robust
In section 4 it is presented how our proposed controller accommodates the varied number of
measurements between successive control updates.

It is worth noting that this type of servo mechanism can be considered as a network
control system (NCS) with two main sources of delay. Firstly, updating the control signal
may be computationally expensive and time consuming. Secondly, since the control update
and sampling time are not synchronized, there usually exists time differences between the
measuring instants and the scheduled control update instants. NCSs with event-driven
(irregular) control are considered in yu2005sampled where it is assumed that the control
is updated at the sampling instants. The same control update scheme for NCSs when the
control is updated with a delay after each sampling is considered in gao2008new In both of
these works it is assumed that the sampling is clock-driven and the case when the feedback
signal arrives irregularly is not considered.

Performance and robustness are the most important specifications that should be consid-
ered in control design for HDDs. In particular, since the resulting controller must achieve a
high level of performance when applied to any unit in the product line, it must have sufficient
robustness margins. Traditional H∞ control design techniques for linear time invariant (LTI)
systems can attenuate error well even under a set of plant variations huang2005robust
One goal of this paper is to extend the H∞ control design methodology to systems with
periodic irregular sampling. In nie2012optimal the H∞ control problem for a HDD with
irregular sampling rate caused by missing PES data is considered. The time interval between
any two subsequent successful measurements in nie2012optimal is a positive integer multi-
plier of the nominal sampling time, while in this work it can be any positive value. Therefore,
the control design proposed in that work can only be exploited for a specific type of sam-
pling time irregularity (e.g. the results of nie2012optimal cannot be utilized for a HDD
having disk eccentricity, in which the sampling time is a trigonometric function of time). To
quantify the robustness of our closed-loop system, which will be modeled as a LPTV system,
we extend the idea of disk margins blight1994practical to LPTV systems by proposing a
novel idea based on H∞ norm of a modified open loop system. We then maximize the disk
margin of the closed loop system by choosing a few shaping functions and solving an optimal
H∞ control problem for the LPTV model of the servo system.

It is illustrated in aruga2007study that almost all disturbances in higher rpm HDDs
can be reduced by sealing the drive and filling it with a light weight gas (e.g. Helium).
This advantage of using light weight gases has guided the HDD industry toward producing
Helium filled drives. The H∞ control problem presented in this work includes performance
weighting functions which are usually chosen based on the system noise model. Therefore,
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the proposed control design method can be exploited for the next generation of HDDs by
knowing basic information about their noise model. Furthermore, it is shown in the paper
that the complexity of the controller depends on the complexity of the performance weighting
functions. Hence, using light weight gases can benefit this control design since smaller
disturbances can be ignored or modeled with simpler dynamics.
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Chapter 3

Modeling of the HDD

In this section, we will describe a sampling and actuation scheme presented in shahsavari2013limits
in which the time interval between two subsequent successful measurements is time-varying
while the control update rate is constant (i.e. the controller is clock-driven). Since the servo
sectors are written during the manufacturing process, the time interval between reading any
two particular consecutive servo sectors is constant, but it changes from sector to sector.
Hence, the time intervals between two consecutive samplings can be known and used in con-
trol design. Throughout this section, the continuous-time state space model of the system
is given by

ẋc(t) = Acxc(t) +Bcuc(t) (3.1)

yc(t) = Ccxc(t) +Dcuc(t). (3.2)

The signals, xc(t), uc(t), and yc(t) respectively have dimension nx, nu, and ny. We assume
that an event-driven zero-order holder (ZOH) is used to hold the output of the discrete-time
controller for the plant. For a positive real value of period, say T , the state dynamics matrices
for the discrete time system with period T are

Ad(T ) = eAcT , Bd(T ) =

(∫ T

0

eAcτdτ

)
Bc. (3.3)

We denote the time that the control signal will be updated at time step k as tu,k. Assum-
ing that the control update rate is regular with period T , and tu,0 = 0, the control update
instances, tu,k, can be characterized as

tu,k = kT, k ∈ Z. (3.4)

The computational delay associated with the controller will be denoted as δ, and we
will assume for simplicity that δ < T . In particular, since the controller has to update the
control signal at scheduled moments rather than as soon as receiving a feedback signal, we
need to treat the computational delay as the constraint that the controller cannot use the
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measurements arriving in the time interval (tu,k−δ,∞) in the calculation of uk. Equivalently,
the value of uk will be updated at time step k + 1 by measurements that arrive in the time
interval

Sk := (tu,k − δ, tu,k+1 − δ]. (3.5)

We now define

xk := xc(tu,k) (3.6)

uk := uc(tu,k). (3.7)

Since the controller is clock-driven and it updates the control signal regularly, we can dis-
cretized the state dynamics of (3.1) as

xk+1 = Ad(T )xk +Bd(T )uk. (3.8)

It is noteworthy that the state dynamics of the discrete-time system is time invariant. In
other words, since the states and control of the system are updated regularly in time, regard-
less of the irregularity in the sampling time, the matrices representing the state dynamics
are time-invariant. It will be shown later that this LTI dynamics results in requiring less
memory for storing the controller parameters. We now find the representation of a measure-
ment at a time instant t̄ ∈ Sk. There are two cases to consider. The first case corresponds
to t̄ ≥ tu,k. In this case, we obtain

y(t̄) = Ccxc(t̄) +Dcuc(t̄)

= [CcAd(t̄− tu,k)]xk + [CcBd(t̄− tu,k) +Dc]uk. (3.9)

The second case corresponds to t̄ < tu,k. In this case, we note that

xc(t̄) = Ad(t̄− tu,k−1)xk−1 +Bd(t̄− tu,k−1)uk−1
= Ad(t̄− tu,k−1)A−1d (T )[xk −Bd(T )uk−1]

+Bd(t̄− tu,k−1)uk−1. (3.10)

For notational convenience, we define

Ā := Ad(t̄− tu,k−1)A−1d (T )

B̄ := Bd(t̄− tu,k−1)− Ad(t̄− tu,k−1)A−1d (T )Bd(T )

so that the previous expression can be written as

xc(t̄) = Āxk + B̄uk−1.

This yields

y(t̄) = Ccxc(t̄) +Dcuc(t̄)

= CcĀxk + CcB̄uk−1 +Dcuk.
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Since this expression depends on uk−1, we need to augment the state vector, i.e. we write
the state dynamics of the discrete-time system as[

xk+1

uk

]
= Â

[
xk

uk−1

]
+ B̂uk (3.11)

Â :=

[
Ad(T ) 0

0 0

]
, B̂ :=

[
Bd(T )

I

]
.

Again, these dynamics are LTI and do not depend on the measurement characteristics of the
system. The output at time instant t̄ ∈ Sk corresponds to

y(t̄) = C̄

[
xk

uk−1

]
+ D̄uk (3.12)

where

Ĉ(k) =

{
[CcĀ, CcB̄], t̄ ∈ (tu,k − δ, tu,k)
[CcAd(t̄− tu,k), 0], t̄ ∈ [tu,k, tu,k+1 − δ]

(3.13)

D̂(k) =

{
Dc, t̄ ∈ (tu,k − δ, tu,k)
CcBd(t̄− tu,k) +Dc, t̄ ∈ [tu,k, tu,k+1 − δ]

(3.14)

Although (3.13) and (3.14) describe the output at an arbitrary time instance, these rela-
tionships do not fully describe the system output corresponding to a given time index. In
particular, since there is no fixed relationship between the times at which measurements are
obtained and the times at which the control is updated, the number of samples in the time
interval Sk is not necessarily constant over k. For simplicity, we will consider a situation
in which 0, 1, or 2 measurements may be made in any time interval Sk. We thus have
three cases to consider. In all three cases, we will force the discrete-time model to have two
outputs. We begin by considering the case when, for a particular value of k, there are two
measurements made in the time interval Sk; we denote the time instances corresponding to
these measurements as t̄1 and t̄2. In this case, we choose

yk =

[
y(t̄1)

y(t̄2)

]
. (3.15)

Note that yk captures all of the information that the controller can use to update the
value of uk to uk+1. We now consider the case when, for a particular value of k, there are
no measurements made in the time interval Sk. In this case, the controller should accept
no inputs at time step k. Equivalently, the input into the controller should be zero. This
motivates choosing

yk =

[
0

0

]
. (3.16)
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Choosing this form for yk allows the system to have a time-invariant structure; yk is acting
here as a placeholder so that the discrete-time model has two outputs, even at time steps
when the controller has no inputs. Finally, we consider the case when, for a particular value
of k, there is one measurement made in the time interval Sk; we denote the time instance
corresponding to this measurement as t̄. In this case, we choose

yk =

[
y(t̄)

0

]
. (3.17)

As in the previous case, we are using zeros as placeholders so that the discrete-time model
has two outputs, even at time steps when the controller only has only one input. Under
the assumption that the sampling of the system is periodic, (3.11)-(3.17) define an LPTV
discrete-time state space model. This model describes the continuous-time model (3.1)-(3.2)
under a zero-order hold on the input with sampling and actuation conditions described at
the beginning of this section. However, there is one subtle detail that remains: with the
convention we have chosen for defining yk, we cannot use any arbitrary control scheme to
control this model. In particular, for continuous-time causality to hold, uk can only depend
on, yk−1, yk−2, ..., y0, i.e. a discrete-time controller satisfies continuous-time causality if and
only if it is strictly causal in the discrete-time domain.
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Chapter 4

Control Design

In this section, we present an optimal H∞ control design for a HDD model that is discretized
by using the method discussed in section 3. Our control objective throughout this paper is
to maximize the stability margins while keeping the position error signal, PES, as small as
possible, in order to achieve high areal densities and low-readout error rates. We first define
the metrics for performance evaluation of a LPTV system and specifically a HDD that is
discretized as a LPTV system, and then proposes a method for robustness evaluation of such
a system. Finally, the architectures used for control design and performance calculation are
presented.

Performance Analysis

If the entire system is adequately modeled as a stochastic system, i.e., all external distur-
bances can be considered as random signals with Gaussian distribution, the tracking perfor-
mance is normally characterized by the 3σ value of the PES huang2005robust When all
the disturbance sources are normalized through proper weighting functions, this root-mean-
square (RMS) value is then equivalent to the H2 norm of the transfer function from those
normalized disturbances to the PES, i.e.,

RMS(PES) = ‖Gd→PES‖2

where Gd→PES is the transfer function from the Gaussian input disturbance to the PES.
For a LPTV system although the output signals will not be stationary, the second-order
statistics will be periodic, with period N . Hence, the 3σ value of PES at each sector of a
HDD modeled as a LPTV system is constant and can be computed by

σk(PES) = ‖Gk
d→PES‖2, k ∈ {1, · · · , N}

where Gk
d→PES is the closed loop system from N input disturbance vectors during one revo-

lution to the PES at sector k. A good way to capture the performance of a controller in a
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Controller
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w r n1 n2
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U

Figure 4.1: Closed loop system for performance calculation.

HDD modeled as a LPTV system is to compute the RMS and maximum 3σ values of PES
over a revolution of disk

RMS(PES) = RMS
k=1,··· ,N

[σk (PES)] (4.1)

σmax = max
k∈{1,··· ,N}

[σk (PES)]. (4.2)

Equations (4.1)-(4.2) can be computed by using the solution of a periodic Lyapunov equa-
tion. Fig. 4.1 shows a block diagram of the closed-loop system with all relevant disturbances.
The signals Y1, Y2, U , r, w, n1 and n2 are respectively first and second measurement sig-
nals, control signal, independent white noises with unit variance that respectively model
the effect of the non-repeatable run-out (NRRO), windage, and measurement noise for the
two measurement signals. NRRO is the random lateral movement of the disk caused by the
mechanical contacts in the bearing motor, and windage is the off track motion at the head
caused by the turbulent nature of the air between the disk and the actuator al2007hard
The NRRO, σn and σw blocks in Fig. 4.1 are respectively the NRRO model, the standard
deviation of measurement noise, and the standard deviation of the windage. We use the
same idea as section 3 to discretize the NRRO model, i.e. we find a continuous-time model
for the NRRO and then discretize it as a LPTV system. Accordingly, the NRRO model has
two outputs similar to the plant model.

Control Design

To quantify the robustness of the closed-loop systems, we would like to use gain and phase
margins. However, since computing the gain and phase margins of a LPTV system is difficult
(or impossible), we quantify the robustness of the system by generalizing an idea known as
disk margin blight1994practical For LTI systems, the disk margin is a more rigorous
measure of robustness than gain and phase margins because it quantifies how close the
open-loop frequency response (e.g. the Nyquist plot) comes to -1 in all directions, rather
than just along the real axis and the unit circle (as quantified respectively by the gain and
phase margins). For a particular plant and a designed controller the disk margin can be
found by adding a new input and output signal to the system and calculating the H∞ norm
from the new input to the new output channel. This idea is shown in Fig. 4.2. In this figure,
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PlantController

M
d Z

Figure 4.2: Modified close loop system for disk margin calculation.

the block M is a matrix given by

M :=

[
1
√

2√
2 1

]
.

This matrix M is included in the block diagram so that the H∞ norm from d to Z represents
the disk margin of the closed-loop system by the following relations

DGM =


∞ β ≤ 1

(β + 1)/(β − 1) 1 < β <∞
1 β =∞

(4.3)

DPM =


π
2

β ≤ 1

cos−1
(
β2−1
β2+1

)
1 < β <∞

0 β =∞
(4.4)

where DGM , DPM and β are respectively the disk gain and phase margins of the closed
loop system, and the H∞ norm from d to Z. Since the computation of the disk margin
only requires the computation of a single H∞ norm, the concept and method of computation
easily generalizes to LPTV systems.

The architecture we use for control design is shown in Fig. 3. The blocks Wp1, Wp2, Wu

and τ are design parameters; they are respectively the performance weighting functions for
the sensitivity functions corresponding to the first and second measurements, a control effort
weighting value, and a static uncertainty scaling parameter, as appears in the D-K iteration
heuristic for µ-synthesis. Note that the H∞ norm from d3 to z3 represents the disk margin
of the closed-loop system.

According to (4.3) and (4.4) minimizing the H∞ norm from d3 to z3 maximizes the disk
margins of the closed loop system. However, we need to keep the performance of the system
larger than predefined values. In other words, we want to satisfy the following two constraints

3σPES ≤ 3σreq

3σPESmax ≤ 3σreqmax

where 3σPES, 3σPESmax are the RMS and maximum 3σ values of PES, and 3σreq and 3σreqmax are
the required values, e.g. the RMS and maximum 3σ values achieved by existing controllers.
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Figure 4.3: Block diagram for control design.

Finally, we can formulate the optimization problem that aims to maximize the robustness
subject to the aforementioned constraints as

min
K

‖Gcl(K)‖∞ (4.5)

subject to

3σPES ≤ 3σreq (4.6)

3σmax ≤ 3σreqmax

where K and Gcl(K) are the controller and the closed loop system shown in Fig. 4.3. Since
the solution of the optimization problem strongly depends on the design parameters (e.g.
weighting functions) we use the following 3-step algorithm to find the desired controller

1. Choose design parameters (Wp1, Wp2, Wu and τ)

2. Solve (4.5) (ignore the constraints)

3. If (4.6) is

a) satisfied: exit and use the K found in 2.

b) not satisfied: return to step 1.

Once proper values have been chosen for all design parameters in step 1, in step 2 the
controller can be designed using optimal H∞ control in the following form

AK(k) = Â− B̂

[
LB1(k)

LB2(k)

]
− Lc(k)Ĉ(k) (4.7)

BK(k) = Lc(k), CK(k) = −LB2(k), DK(k) = 0

where AK(k), BK(k), CK(k) and DK(k) are state space matrices of the controller. Matrices
LB1(k) , LB2(k) and Lc(k) can be calculated by the solution of periodic Riccati equations
nie2012optimal
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Controller Parameters Order Reduction

The control synthesis algorithm described in the previous section results in a periodically
time varying controller with a large period. The total number of sets of controller matrices
(given in (4.7)) to be stored in the memory of servo controller is equal to the number of
servo sectors in one data track (mostly between 300 and 400 in current HDDs). In a physical
HDD, there is a limited amount of memory available to store the controller parameters and
it is almost impossible to reserve so much memory for storing all of these values. As a result,
the current designed controller is not directly suitable for implementation.

In this paper we introduce two different approaches to reduce the number of controller
parameters required to be stored in memory. The first approach is introducing an innovative
discretization method by making the control action regular, which eliminates the time varia-
tion in controller parameters Â and B̂. The second approach is to use a vector quantization
technique to approximate time-varying controller parameters by a reduced set of matrices,
i.e. by replacing Ĉ(k), LB1(k), LB2(k), and Lc(k) with approximate values.

Vector quantization is a well-known and efficient algorithm in signal processing, which
is based on the competitive learning paradigm. It works by dividing a large set of points
(vectors) into groups. Each group is represented by its centroid point, as in k-means and
some other clustering algorithms.

The basic idea of the algorithm which we have used to approximate the time varying
parameters is as follows: the mean of the data set (e.g. the first column of Lc(k)) is obtained,
and is split into two points, which will respectively be the centroids of two new clusters. The
Euclidean distance of each point from these centroids is calculated, and each one is associated
with the cluster having the closest centroid. The centroid of each cluster is subsequently
replaced by the mean of the vectors in the cluster. If the total distance of vectors from the
new centroids is not improved substantially, the centroids are split again. This continues until
either the required number of clusters is reached or the improvement remains inadequate.

In our case we would like to get an approximation of Ĉ(k), LB1(k) , LB2(k) and Lc(k)
such that the overall performance of the closed loop system remains in predefined limits.
Our simulation results show that it is more effective if we apply vector quantization to each
column or row of these matrices separately and combine the approximated parameters at
the end.
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Chapter 5

Results

This section presents numerical results to show the effectiveness of the proposed optimal
H∞ controller for track-following in a hard disk drive with irregular sampling. Our simulation
is based on a model for a single stage 3.5-inch hard disk drive.

Plant Model

As mentioned in section 3, the required continuous-time plant model should be discretized
by the proposed method in that subsection. To obtain this continuous-time model, we
first measured the discrete time frequency response of the voice-coil motor (VCM) in the
aforementioned HDD, and then found a continuous-time model such that its discrete time
frequency response fits the measured response. The particular setup used in this study has
very regular sampling time intervals, which let us discretize the system in the fitting process
by using the MATLABr c2d function with the ZOH method. It should be noticed that this
discretization is just for the fitting process, and the model for control design or performance
analysis should be discretized by the method presented in section II.

The continuous-time model, Gc, found by the frequency response fitting process is in the
form of

Gc = Ge

(
1

s2
+Gr1 + · · ·+Gr6

)
where Ge models a low pass filter embedded in the electronic circuit of the servo amplifier
part. Gr1 to Gr6 captures the first six important second-order resonance modes appeared in
the frequency response, i.e.

Gri =
gi

s2 + 2ζωs+ ω2
, i = 1, · · · , 6.

In order to validate the accuracy of the continuous-time plant model used for the chosen
HDD, we compared the 3σ value of PES computed based on real PES measured in the HDD
with the corresponding value simulated based on our plant model. Since we had access to
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Figure 5.1: Normalized sampling time in one revolution.

the PES during track following in this particular setup, we were able to find the 3σ value of
PES in this HDD.

Due to disturbances during servo track writing, the created reference for the track-center
deviates from being perfectly circular in shape. These deviations in the track reference
constitute the repeatable runout (RRO) for the head positioning servo mechanism. We
measured PES at 32000 consecutive sectors during track-following and computed the RRO
at each sector by averaging all of the PES values measured at that sector. Once the RRO
was computed, we subtracted it from the PES data to form the NRRO, and then found the
3σ value of the NRRO. For this particular setup, this value was 4.95% of the track width.
Since we are interested in comparing the actual 3σ value with the simulated one based on
our plant model, we used the track-following controller provided by our industry partner to
calculate the 3σ value of the closed-loop PES. This value in our model is 8% less than the
value calculated based on measurement, which validates the accuracy of our model. We used
the ratio of the simulated to measured performance, which is 0.92, to compensate the plant
model inaccuracy in the performance analysis. Finally, we discretized Gc by the proposed
method in section 3.

Eccentricity and Limit of Performance

As mentioned before, if the center of data tracks, disk and rotation are not exactly coincident,
the sampling time over one revolution of the disk will be varying. It is easy to show that
when the servo tracks are written radially on the disk and the data tracks are concentric
circles having a center coinciding with the rotation center, the time interval between i-th
and (i+ 1)-th sampling, denoted as ∆ti, can be calculated by the following two relations:

∆ti = (θi+1 − θi) /ω, i ∈ 0, · · · , N − 1

cos (θi) = cos

(
2πi

N

)√
1−

(
e sin

(
2πi

N

))2

where e and ω are respectively the normalized eccentricity between the disk and rotation
centers, and the rotation speed. We use e = 0.7 to calculate the sampling time interval
vector. Although this eccentricity ratio is very large, we use it to show the effectiveness of
the proposed methods even though the sampling time intervals vary significantly. For this
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Figure 5.2: Closed loop sensitivity function at the output of the controller.

Table 5.1: Control Signal and PES Performances

Controller 3σu 3σumax 3σPES(nm) 3σPESmax (nm)

Type

Limits of 1.00 1.70 2.57 2.85

Performance

H∞ controller 1.30 2.21 2.90 3.04

Quantized H∞ 1.44 2.47 2.93 3.06

controller

particular chosen value, the peak to peak variation of sampling time is equal to 50% of the
average value. Fig. 5.1 shows the sampling time vector when it is normalized by the nominal
sampling time, which is equal to the average value of the irregular sampling times.

Two of the required parameters to perform our control design are σreq and σreqmax in (4.6).
To choose reasonable values for them, we first determined the limits of performance for this
particular setup as discussed in shahsavari2013limits We then chose σreq and σreqmax as
15% larger than their corresponding limits.

The limits of performance are listed in TABLE 5.1, where 3σu and 3σumax are respectively
the RMS and maximum 3σ values of control signal. These characteristics of the control
signal are also metrics for evaluating controller performances.

Since the system is LPTV, frequency response methods do not apply. Despite this, we
quantified the performance of the closed-loop system by using what we call an “empirical
Bode magnitude plot,” which uses a swept-sine approach to find an approximate frequency
response magnitude. The assumption here is that inputting a sine wave into the system
produces a negligible response at other frequencies. Note that for a LTI system, the both
empirical Bode magnitude plot and Bode magnitude plot are equal.
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Table 5.2: Number of Clusters for Controller Parameters Quantization

1st row 2nd row All rows All rows 1st col. 2nd col.

of Ĉ of Ĉ of LB1 of LB2 of LC of LC

16 2 1 1 16 2

Controller Design

We used the architecture shown in Fig. 4.3 to construct the controller. According to this
figure, the open loop system consists of the plant and weighting functions. Hence, the number
of states needed to define this system in a state space form is equal to the summation of
states of these elements. The H∞ optimal controller designed by the method discussed in
section 3 will have the same number of states as the open loop system. So, it is desirable to
select weighting functions with small orders. After some iteration, we chose constant values
of Wp1, Wp2 and Wu resulted in a controller that achieved good performance in terms of
the 3σ values of PES (i.e. it satisfies (4.6)) and adequate robustness in terms of the disk
margin. The RMS and maximum 3σ values of the PES attained by this controller are listed
in TABLE 5.1. The disk margin of the close loop system is 0.39, which guarantees a gain
and phase margin of at least 7.2dB and 43◦ respectively. Fig. 5.2 shows the empirical Bode
magnitude plot for the sensitivity function of this system, measured at the output of the
controller.

Quantization of Controller Parameters

Since our controller has a large number of time varying matrices (i.e. Ĉ(k), LB1(k) , LB2(k)
and Lc(k) ), we need to use vector quantization to reduce the number of parameters, as dis-
cussed in subsection 4. The number of clusters was chosen such that the quantized controller
satisfies the memory constraints and still has a reasonable performance. The performance
of this controller and number of clusters are listed in TABLE 5.1 and TABLE 5.2 respec-
tively. Using the novel discretization method we presented in section II and the quantization
method with the number of clusters listed in TABLE 5.2, we were able to reduce the number
of parameters that needed to be stored by a factor of about 181, while the performance is
reduced by only 1%.
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Chapter 6

Conclusions and future work

In this paper, we considered robust controller design of HDDs with irregular sampling but
regular control updates. We modeled this sampling and actuation behavior by applying
a novel discretization method to a continuous-time model of the HDD. Once we had an
appropriate discrete-time model of the HDD, we used LPTV H∞ control to design a robust
controller. Unlike other papers using H∞ to design HDD controllers, we did not use a
weighted uncertainty model to quantify the robustness of the closed-loop system. Instead,
we used the disk margin. The benefit of using this measure of robustness is that it can be
used to compute lower bounds on the gain and phase margins, thus putting our robustness
margins into a framework more commonly used by the HDD industry.

Once we designed a controller, we evaluated its robustness by checking the disk margin
at the control signal. We also checked the performance using a model of the system that
included a detailed model of the stochastic disturbances acting on the system. The per-
formance of the controller we designed is only 13% smaller than the limits of performance,
while it achieves high level of robustness in term of disk margin.

Since the designed controller had too many parameters to be implementable on an HDD
due to memory limitations, we used vector quantization to approximate the parameters of the
designed LPTV controller by a smaller set of parameters. The approximate controller needs
181 times less memory and its performance is only 1% lower than the original controller. In
the future, we will use the methods of nie2012optimal to do loop-shaping designs for this
control architecture. This will be done by simply incorporating an appropriate frequency
weighting function into our H∞ design to directly specify an upper bound on the closed-loop
sensitivity function.


