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Executive Summary

This report presents handling of repetitive disturbances in the dual-
stage hard disk drives. The decoupled sensitivity design provides the basic
framework. The baseline controllers for voice coil motor(VCM) and Lead
(Pb) Zirconium Titanate (PZT) loops are designed by discrete Linear
Quadratic Gaussian/ Loop Transfer Recovery (LQG/LTR). Then two
enhanced Repetitive Disturbance Observer(RDOB) are added to the dual
stage structure separately for periodic disturbances rejection. Selective
band Q filter is designed separately for the VCM and PZT loops’ RDOB
so that VCM can work mainly in low frequency (0 – 1000Hz) range and
PZT works in the middle (1000Hz – 2000Hz) frequency range to avoid
saturation. The proposed design is evaluated by simulation.
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1 Introduction

Hard Disk Drives(HDDs) are the most commonly used data storage devices nowadays. The control
tasks in HDDs are categorized into two types. One is referred to as track seeking and the other
is track following. Track following requires that the Read/Write head can follow the center of the
data track as precisely as possible in presence of different kinds of disturbance. Due to increasing
data storage density, the control requirements in HDD track following are becoming more and more
stringent. The conventional single stage HDD control scheme by using voice coil motor (VCM)is
no longer able to satisfy the requirements because of its limited achievable bandwidth. So a second
actuator is introduced to complement the single actuation scheme. The Lead (Pb) Zirconium
Titanate (PZT) dual stage actuation is one of the techniques by re-designing the suspension to
accommodate an active component made from piezoelectric material. As a result, the control
scheme becomes a dual-input-single-output (DISO) system. Various control design architectures
have been proposed for this dual-stage servo structure (see ref [4]), which can be mainly classified
into two categories. One is based on the classical single-input-single-output (SISO) design technique
by properly design observers to decouple the control loop. Examples are master-slave(Koganezawa
et al., 1999) and decoupled sensitivity design approaches (Mori et al., 1991) , the PQ method
(Schroeck et al., 1999) and a direct parallel design approaches. The other is based on modern state-
space-based MIMO control methodologies. Examples are optimal and robust control techniques like
LQG/LTR , H-infinity and u-synthesis and so on (Suzuki et al., 1997; Hu et al., 1999; Hernandez
et al., 1999).

Besides, HDDs are subjected to periodic disturbances caused by either internal components
of the drive or sources external to the HDD. The periodic disturbance will have definite temporal
pattern and they remain the same every time the disks are spun. This causes the so-called repeatable
runout (RRO) during the track following controller’s operation. Repetitive control (RC) (see [8])
is a well-known servo design tool for systems that are subjected to periodic disturbances/reference.
An internal model 1

1−Z−N (N is the period of the disturbance/reference) is incorporated into the
feedback system such that errors in previous repetition can be used to improve the current tracking
or regulation performance. However, RRO signal is on top of the non-repeatable runout (NRRO)
present in the head-disk assembly and spindle-disk assembly. When the conventional RC is used,
due to limitations from Bode’s Integral Theorem, the improvement in repetitive frequencies will
come along with degradation in other frequencies which may include NRRO.

So in order to extend the bandwidth of single stage HDDs and at the same time address the
repetitive disturbance present in HDD without sacrifice of performance in other non-repetitive
frequencies, discrete time LQG/LTR design ( ref [5]) for dual stage HDDs track following control
with decoupled sensitivity design is used for faster loopshaping of the fundamental control frame.
Besides, the enhanced repetitive disturbance observer (ref [3]) is design as an add-on feature on
the dual-stage control structure to address the repetitive disturbance in low(0-2000Hz) and high
frequency(2000-5000Hz) range.

This report is organized as follows.

• Section 2: HDD plant models and Decoupled sensitivity design of dual-stage servo
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• Section 3: Baseline control design by discrete LQG/LTR

• Section 4: Disturbance observer(DOB) and enhanced repetitive disturbance observer(RDOB)

• Section 5: Simulation results

• Section 6: Conclusion

2 HDD plant models and Decoupled sensitivity design of
dual-stage servo

Hard Disk Drive(HDD) is used for massive media data storage extensively nowadays. Data in
an HDD are arranged in concentric circles or tracks and are read or written with a read/write
(R/W) head. The two main functions of the head positioning servomechanism in disk drives are
track seeking and track following. Track seeking moves the R/W head from the present track to
a specified destination track in minimum time using a bounded control effort. Track following
maintains the head as close as possible to the destination track center while information is being
read from or written to the disk. So the control task for track following requires high accuracy
and good disturbance rejection in high bandwidth while the control task for track seeking requires
short-span track seek with smooth and fast settling. The R/W head is actuated by Voice Coil
Motor (VCM) in single stage HDDs. However, with the ever increasing demand for larger storage
capacity in HDDs, piezoelectric-based (PZT) dual-stage actuator has been added to the single stage
VCM actuator to break the bottleneck of the single-actuator HDDs and some research on dual-stage
HDD emerge, such as [2]. In this enhanced mechanical structure, a micro-actuator is mounted on a
conventional VCM actuator for accurate positioning of the Read/Write head which is attached to
the end of the MA, as shown in Figure 1. In this so-called dual stage scenario, the VCM provides
coarse motion for the position servo depending on its wide range of motion while the added PZT
actuator provides faster and finer positioning due to its limited range of motion.

Another consideration for the controller design in dual stage HDDs is that, even though in
the dual-stage HDDs, the VCM and PZT are actuated together to generate the motion of the
Read/Write head, the only available measurement is the displacement of the Read/Write head
slider from embedded servo sector pattern on the surface of the HDDs. So the controller design
problem for the dual-stage HDDs becomes a control problem for a dual-input single-output (DISO)
system. If the relative displacement of the secondary stage actuator with respect to the VCM can
be somehow measured or estimated, the design for the DISO system will become easier and makes
the controller design for the VCM and PZT loop separately. Several structures in literature have
been proposed to simplified the design challenge for the dual-stage HDDs [6].

As mentioned before, a practical model for VCM in dual-stage HDD plant can be of more than
twenty orders, as shown in Figure2 from HDD benchmark package. The full model of VCM used
for Discrete LQG/LTR design is a double integrator with several resonance modes. And the full
model for PZT is a pure gain with two resonance mode which are at the same frequencies as for
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those for VCM. The transfer function for the VCM and PZT are expressed in the form below:

Gvcm(s) =
KV

s2
+

5∑
i=1

gviw
2
vi

s2 + 2ζviwvis+ w2
vi

(1)

Gpzt(s) = Kp +
2∑

i=1

gpiw
2
pi

s2 + 2ζpiwpis+ w2
pi

(2)

The parameter for the resonance modes are shown in Table. 1.

High frequency resonances are usually attenuated by notch filters which can be designed in-
tuitively. Considering the fact that it is very difficult to direct design controller using discrete
LQG/LTR based on such high-order model, during Discrete LQG/LTR design , a nominal model
which captures the central frequency properties can be considered as the control plant. For the
VCM loop, the lower-order model captures the central frequency properties can be described as[

xv1(k + 1)
xv2(k + 1)

]
= Av

[
xv1(k)
xv2(k)

]
+Bvuv (3)

where uv is the VCM actuator input, xv1 is the position of the VCM head in the unit of tracks, xv2
is the velocity, and

A =
[

1 T
0 1

]
B =

[
T 2 kykv

2
Tkykv

] (4)

T is the sampling time,kv is the acceleration constant, and ky is the position measurement gain.
For the PZT loop, the nominal model is a pure gain and can be described as follow:

xm(k + 1) = 0xm(k) +Kmum (5)

where xm is the position of PZT head in the units of track. Km is a constant gain which is determined
by the plant. um is the control signal for the PZT loop. The overall output of the system is the
overall position of VCM loop plus PZT loop, as described as follow:

y(k) = yv(k) + ym(k) = Cvxv(k) + Cmxm(k) (6)

The system parameters are set as follows:

rotation speed = 7200rpm

the number of servo sector = 220

the sampling time: T = 3.7879× 10−5sec

the acceleration constant kv = 951.2
m

(s2A)

the position measurement gain ky = 3.937× 106track ·m−1
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The bode diagram of the simplified nominal model is described in Figure 2.

One consideration for the controller design in dual stage HDDs is that, even though in the dual-
stage HDDs, the VCM and PZT are actuated together to generate the motion of the Read/Write
head, the only available measurement is the displacement of the Read/Write head slider from
embedded servo sector pattern on the surface of the HDDs. So the controller design problem for
the dual-stage HDDs becomes a control problem for a dual-input single-output (DISO) system. If
the relative displacement of the secondary stage actuator with respect to the VCM can be somehow
measured or estimated, the design for the DISO system will become easier and makes the controller
design for the VCM and PZT loop separately. The decoupled sensitivity design in Figure 3 is one
of the simple methods to allow for separated controller design. The open loop transfer function for
the structure can be derived as

CvPv + CvPvP̂mCm + CmPm (7)

So the sensitivity function is

1

(1 + CvPv)(1 + CmPm) + CvPvCm(P̂m − Pm)

≈ 1

(1 + CvPv)(1 + CmPm)

(8)

Note that, to guarantee the approximation above, at low frequency range,Pm = P̂m, at high fre-
quency range, since the loop shape of CvPv will be designed to roll off at high frequencies, the term
CvPvCm(P̂m − Pm) will also be small, so the approximation is guaranteed. Thus as long as the
individual controller for VCM and PZT loop are stable and proper-designed, the overall stability
can be guaranteed.

Figure 1: Actuators on dual-stage HDDs
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Figure 2: bode plot for nominal and full model of dual stage HDD

3 Baseline control design by discrete LQG/LTR

3.1 Introduction to Discrete Linear Quadratic Gaussian/ Loop Transfer
Recovery( LQG/LTR)

The linear quadratic (LQ) optimal control theory ensures the asymptotically stability and attrac-
tive robustness property of the optimal state feedback system under controllability and observabil-
ity(stabilizability and detectability) assumptions. Besides, the steady state Kalman Filter provides
an asymptotically stable stochastic state observer. The LQG method combines the optimal state
feedback controller and the least square Kalman Filter when there is noise in the control system.
However, when state estimator is included, the nice properties of either LQ systems or Kalman
filters are lost. In order to exploit the design benefit in LQ controller and Kalman filter (since when
regulation matrix (Q,R) and noise covariance (W,V) are specified, the controllers and estimators
can be machine computed), the loop transfer recovery (LTR) is introduced for its usefulness in the
sense of design.
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Figure 3: Decoupled sensitivity of dual stage HDDs

modes 1 2 3 4 5
VCM response

Frequency[Hz] 4100 5000 7000 12300 16400
Damping ratio 0.03 0.01 0.01 0.005 0.005

Gain -1 0.3 -1 1 -1
PZT response

Frequency[Hz] 4100 7000
Damping ratio 0.03 0.01

Gain 1 1

Table 1: Parameter comparison

The loop transfer recovery methodology for the linear quadratic gaussian problem is called
LQG/LTR. It allows the excellent robustness and sensitivity properties of the optimal state feedback
schemes to be almost recovered by the output feedback schemes. This method simplifies the use of
the LQG methodology and allows the practical feedback design to be attained with a reasonable
amount of effort. The asymptotic recovery approach requires only one pair of the cost weighting
matrix or noise covariance matrix to be designed and the other pair is automatically assigned during
the recovery process. This results in a tremendous reduction in the complexity of the design process.
While the continuous time LQG/LTR exists, this report utilizes the Discrete LQG/LTR method for
the design of the baseline controller. The mechanism by which the recovery is achieved is essentially
the same as in the continuous time case: the compensator cancels the palnt zeros and possibly some
of the stable poles, and inserts the controller (observer) zeros. So this will fail if the plant has zeros
outside the unit circle, since the compensator guarantees internal stability. The main theorem for
the recovery result is as follows:

Theorem 1. If the open loop transfer function for the system (13) has no finite zero in {z : |z| > 1}
and det(CB) 6= 0, then

lim
R→0

GpGLQG = GTFL (9)

where Gp = C(zI − A)−1B is the open loop transfer fucntion from control to output, and GLQG is
the LQG controller specified in (21) and GTFL is the target feedback loop specified in (16).
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3.2 Design details about Discrete LQG/LTR design in dual stage de-
coupled sensitivity structure

Utilizing the fact that the VCM loop and PZT loop can be decoupled in sensitivity function, so the
design of VCM and PZT controller can be separated. Therefore, single-input-single-output(SISO)
discrete LQG/LTR is intuitive and can be customized for the individual VCM and PZT loop
controller design easily. Since the design steps using discrete LQG/LTR will be the same for VCM
and PZT loop, only the process for VCM controller design will be illustrated below. Note that,
an enhanced repetitive disturbance observer(RDOB) will be incorporated into the servo so as to
improve the RRO compensation performance.

1. Decide the state space model for VCM plant which is

xv(k + 1) = Avxv(k) +Bvuv(k)

yv(k) = Cvxv(k)
(10)

Incorporate the desired controller property, which is a single integrator in this case:

uv =
Tz

z − 1
u (11)

where u is the real control input. So the overall design plant model(DPM) is[
xv(k + 1)
xc(k + 1)

]
=
[
Av BvCc
0 Ac

] [
xv(k)
xc(k)

]
+
[
BvDc
Bc

]
u(k)

yv(k) = [Cv 0]

[
xv(k)
xc(k)

] (12)

where subscript c denotes the model realization from real control input u to desired control
uv. A,B,C represent the corresponding state matrix.

2. Discrete time steady state Kalman Filter Design. Denote xe =
[
xv
xc

]
The augmented system with input noise w(k) and output noise v(k) is

xe(k + 1) = Aexe(k) +Beu(k) + Lw(k)

ye(k) = Cexe(k) + v(k)
(13)

where E(w(k)wT (k)) = 1 and E(v(k)vT (k)) = µ. L and µ are two design parameters in
Discrete LQG/LTR design. By choosing L and µ properly (L = B normally) and solve the
discrete algebraic Reccati equation (DARE) below

M = AeMAT
e − AeMCT

e (CeMCT
e + µ)−1CeMAT

e + LLT (14)

The Kalman filter gain can be obtained as

F = MCT
e (CeMCT

e + µ)−1 (15)

So the target feedback loop we want to recover is

GTFL = Ce(zI − Ae)
−1AeF (16)
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3. Solve the discrete time ‘cheap’ control problem where the cost function is

J =
1

2

∑
k

{xT (k)Qx(k) +Ru2(k)}

Q = CTC

(17)

The DARE for the ‘cheap’ control problem will be

P = ATPA+Q− ATPB(R +BTPB)−1BTPA (18)

so the feedback gain will be

K = −(R +BTPB)−1BTPA (19)

In summary, the Discrete LQG/LTR controller will be

GLQG = zK{zI − (I − FCe)(Ae − LK)}−1F (20)

The proof for this in Proposition. 1.

Proposition 1. The discrete LQG/LTR controller for design plant model as

xe(k + 1) = Aexe(k) +Beu(k)

ye(k) = Cexe(k)

can be written as

GLQG = zK{zI − (I − FCe)(Ae − LK)}−1F (21)

Proof. The state space representation for the Discrete LQG will be

u(k) = −Kx̂(k|k) (22)

x̂(k + 1|k + 1) = Ax̂(k|k) +Bu(k) + F (k + 1)[y(k + 1)− CAx̂(k|k)− CBu(k)] (23)

Substitute equation 22 into 23 , the transfer function from y(k + 1) to u(k) can be obtained as

Gy(k+1)→u(k) = K[zI − (Ae − LK)− FC(Ae − LK)]−1F (24)

Then advance for one step results in the transfer function from y(k) to u(k). So the final transfer
function is equation 21.

Remark 1. If it is impossible or not a good choice to use x̂(k|k), one can instead use x̂(k|k − 1)
for the control implementation, then the LQG/LTR controller will become

GLQG = K(I − FC)[zI − (A−BK)(I − FC)]−1(A−BK)F +KF (25)

where A,B,C are corresponding state space matrix of the design plant model. The control action is
expressed as

u(k) = −Kx̂(k|k − 1) (26)

Details can be seen in references [1] , [5] and [7].
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Gain Margin(dB) GM Frequency(Hz) Phase Margin (Degree) PM Frequency(Hz)
VCM 4.2766 4386 69.85 982
PZT 9.0726 13199 119.2927 1156.5

Table 2: Gain margin and phase margin for vcm loop and pzt loop

3.3 Baseline controller design result by Discrete LQG/LTR

A integrator is included in the vcm desired controller for extra disturbance regulation at low fre-
quency, and L is chosen as Be. The noise parameter µ = 108, then the cheap control R = 1e−13.
The final controller is the recovered control in series with the integrator. A gain k = 5000 is added
to the final controller for bandwidth extension. The final result can be seen in Fig 4a. The gain
margin can phase margin parameter is shown in Table 2.

For the PZT loop, the nominal model is just a pure gain, so a lag compensator is initialized at
first in the desired controller effort, then the LTR is carried out with L = Be and µ = 5e−5 and
R = 2e−4. Likewise, an extra gain k = 20 is added to the controller. Note that due to the pure gain
property of PZT plant, this LQG/LTR procedure is actually just automatically tuning a proper
loop shape for the PZT loop and the tuning parameter is actually the two turning frequencies of
the lag compensator at the first step. The result can be sen in Figure 4b with the gain margin and
phase margin in 2.

The individual sensitivity and overall sensitivity for the dual stage HDDs in shown in Figure 5.
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4 Disturbance observer(DOB) and enhanced repetitive dis-
turbance observer(RDOB)

4.1 Introduction to discrete disturbance observer(DOB) and repetitive
disturbance observer(RDOB)

In control of mechanical system, uncertainties exist like friction, varying load inertia, ignored dy-
namics, actuator saturation, backlash, sensor noise and so on. There are several ways to handle
uncertainties. They can be classified into two categories: robust control and adaptive control. Pop-
ular robust control techniques include sliding mode control, H∞ control and disturbance observer.
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Disturbance Observer is a clever approach for handling disturbance in motion control. It is intro-
duced by Ohnishi(1987) (Murakami and Ohnishi (1990)) and refined by Umeno and Hori(1991).
The discrete time version of disturbance observer is shown in Figure 7. To understand this struc-
ture, note that the signal coming into the Q filter is essentially delayed disturbance signal and some
model mismatch between P (z−1) and z−mPn(z−1). So after proper Q filtering, we can remove the
unwanted By rearranging the blocks, the structure in Figure 7 can be modified into the one in
Figure 8, so it can be seen clearly that the transfer function from d(k) to y(k) is

Gd(k)→y(k)(z
−1) =

P (z−1)

1 + 1
1−z−mQ(z−1)

Q(z−1)
Pn(z−1)

P (z−1)

=
(1− z−mQ(z−1))P (z−1)Pn(z−1)

(1− z−mQ(z−1))Pn(z−1) +Q(z−1)P (z−1)

≈ (1− z−mQ(z−1))P (z−1)

(27)

So by designing Q(z−1) properly, the desired dynamics can be incorporated into the plant.

Recall that the sensitivity function for linear feedback control systems is 1
1+Gopen(s)

, so a high gain

nature is expected in robust control systems for good performance. Repetitive control(RC) is a good
example of exploiting the idea of high gain control. It sets the open loop gain to infinity or a large
value at known frequencies of periodic disturbance by absorbing the internal model 1

1−z−N into the
open-loop transfer function. However, due to limitations from Bode’s Integral Theorem, the comb-
shape peaks in magnitude response of open loop transfer function created by this internal model is
not narrow as a result that disturbance in non-repetitive frequencies are amplified. Examples can
be seen in Figure 6. This problem becomes more severe if there are large non-periodic components
in the disturbance. Therefore, a modified version of the internal model of periodic disturbance
is proposed in [3] with an embedded tuning parameter α. As a result, the amplification can be
adjusted by the tuning parameter α. Combine with (27), if the Q filter can be designed as

1− z−mQ(z−1) =
1− z−N

1− αNz−N
(28)

Then considering the complete feedback system with DOB in Figure 9. if the reference signal is
zero(for regulation purpose), then the blcok diagram can be recast into the one shown in 10. Denote
the transfer function from e(k) to u(k) as Ceq(z

−1) (equivalent controller), then the transfer function
is

Ceq(z
−1) =

C(z−1) +Q(z−1)P−1n (z−1)

1− z−mQ(z−1)

where α ∈ [0, 1)

(29)

From the structure in 10, we can easily obtain the sensitivity function as

S(z−1) =
1

1 + P (z−1)Ceq(z−1)

=
1− z−mQ(z−1)

1 + P (z−1)C(z−1) + (PP−1n (z−1)− z−m)Q(z−1)

(30)
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Therefore, from equation (30), in the frequency range where the plant P (e−jω) is well modelled
by e−jmωPn(e−jω), we can obtain PP−1n (z−1) − z−m ≈ 0, so the sensitivity function in (30) can be
rewritten into

S(z−1) =
1− z−mQ(z−1)

1 + P (z−1)C(z−1)
(31)

Assume that the disturbance contains only periodic component that satisfies

(1− z−N)d(k) = 0 (32)

Then by the design in (29), the periodic disturbance will be attenuated at the repetitive frequen-
cies while the amplification in non-repetitive frequencies can be alleviated by tuning parameter α.
Magnitude response corresponds to different α can be seen in Figure 11 which is extracted from
reference [3].

Figure 6: Magnitude response of 1
1−z−10 with sampling frequency Ts = 1. Amplification in frequen-

cies other than comb center can be seen.
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Figure 7: Block diagram of discrete system plant with discrete added-on DOB, the plant model is
approximately P (z−1) ≈ z−mPn(z−1). The structure in the red curve is the DOB. m is the relative
degree of P (z−1). The Q filter needs to be designed properly to ensure good servo performance.

4.2 Enhanced repetitive disturbance observer on dual stage HDD servo

Saturation is a big concern in dual stage HDDs. In order to take advantage of the high bandwidth
property of the dual stage HDDs while at the same time try to avoid saturation, the VCM loop is
designed to handle the low frequency disturbance and the PZT loop is designed to handle the high
frequency disturbance. In this repetitive disturbance observer configuration, different frequency
range RDOBs can be added onto VCM loop and PZT loop separately. To add RDOB onto VCM
loop, note that a gain estimate of the PZT plant is used to estimate the VCM output, then the
standard way for estimating disturbance in DOB framework is used. The block diagram can be seen
in Figure 12. By proper manipulation, the block diagram can be simplified to Figure 13. Likewise,
to add RDOB onto PZT loop, it can be constructed as the one shown in Figure 14.

Recall the sensitivity decoupling result from equation (8), denote the equivalent controller for
PZT loop as Cm(eq), then according to Figure 14, the sensitivity for PZT loop is

1

Cm(eq)Pm + 1
(33)

where the equivalent controller is

Cm +QmP
−1
nm

1− z−mQm

(34)

where Qm is the Q filter for PZT loop DOB and P−1nm = z−mP−1m . Note that the notation (z−1) will
be omitted from now on for simplification. So the sensitivity function for PZT loop will be

Sm =
1− z−mQm

1 + PmCm + (PmP−1nm − z−m)Qm

(35)

15



Figure 8: Equivalent diagram of blcok digram in 7

Figure 9: Complete block diagram of a feedback system with add-on DOB

So the factor 1− z−mQm is incorporated into the sensitivity of PZT loop which we can then exploit
to handle the repetitive disturbance. Note the design procedure for VCM lop RDOB follows. The
only difference will be in plant inversion and design of Q filter for handling different frequency band
disturbance.

4.3 Design of Q filter

In the previous section, according to the periodic pattern of the DOB, Q filter is designed to be the
one in equation 29, so the Q filter can be derived as

Q(z−1) =
1− αNz−(N−m)

1− αNz−N
(36)

16



Figure 10: Equivalent block diagram of system in Figure 9

where m is the relative degree of the plant model. Since in the sensitivity function 30, to ensure the
approximation of equation (31) is right, one important condition is that (PP−1n (z−1)−z−m)Q(z−1) ≈
0. Since it is not possible to have a perfect model, so in frequency range where model mismatch is
big, Q(z−1) should be deigned to make the term small. So a basic lowpass filter should be designed
to Q. A zero-phase low pass filter can be used in this context since it won’t change the final structure
a low by being zero-phase. A choice of the zero-phase low-pass filter is

q0(z, z
−1) =

(1 + z−1)n0(1 + z)n0

4n0

(37)

Note to ensure causality in implementation, the additional forward steps n0 can be ‘borrowed’ from
the large delay in Q filter in (36). Besides, we want the RDOB on PZT loop to have selective
disturbance rejection only in restricted area to avoid use of PZT in unnecessary frequency range,
so an additional zero-phase bandpass filter is designed by butterworth filter. The butterworth
filter’s magnitude response is maximally flat in the passband and is monotonic in the passband and
stopband. The selective band is from 720Hz 3600Hz. If the bandpass filter is designed as bp(z−1),
then the zero phase butterworth bandpass filter is

bp(z, z−1) = bp(z)bp(z−1) (38)

The actual filter used in the simulation is

bpsim(z, z−1) =
0.07801− 0.156z−2 + 0.07801z−4

1− 2.838z−1 + 3.165z−2 − 1.694z−3 + 0.3816z−4
× 0.07801z4 − 0.156z2 + 0.07801

1− 2.838z + 3.165z2 − 1.694z3 + 0.3816z4

5 Simulation results

The above framework is simulated in a HDD benchmark simulink model. The sampling frequency
is fs = 26400Hz.The repetitive disturbance N is thus N = 60fs

RPM
= 220. The resulting sensitivity

17
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Figure 11: magnitude response of 1− z−mQ(z−1) and Q(z−1) with different values of α. see ref. [3]

with RDOB is shown is Figure. 15. With the designed selective band Q filter for PZT loop, the
sensitivity for PZT loop can be seen from Figure 16.

The compensation results without using RDOB on VCM or PZT loop are shown in figure 17b
and figure 18a, from the result, one can see that the dual stage structure improves the overall
performance and extends the bandwidth. When the RDOB on VCM loop or PZT loop is enabled,
the compensation result s improved. Some important cases are shown in figure. 17 and 18. The
frequency 0Hz 2000Hz is plotted. One can see that when dual stage and all the RDOBs are turned
on, the performance is the best. Besides, when all the disturbance are added to the servo, The
enhanced RDOB compensates the repetitive disturbance without sacrificing the performance in non-
repetitive frequencies. This is due to the repetitive narrow ‘trench’ created in the sensitivity function
by enhanced RDOB. So the repetitive disturbance is rejected while non-repetitive disturbance is
not enhanced so badly due to waterbed effects. As a result, the overall performance are improved
with the proposed framework.
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Figure 12: RDOB is added onto VCM loop only.

6 Conclusion

6.1 Conclusion of current work

In this project, the decoupled sensitivity structure for the dual stage HDDs is used as a baseline
design framework. Then by taking advantage of the design convenience brought by the decoupled
sensitivity structure, the discrete LQG/LTR is used as an efficient design method for the baseline
controllers of the VCM loop and PZT loop separately. In order to improve the structure’s capability
of handling one common disturbance- repetitive disturbance in HDD environment, the enhanced
RDOB are incorporated to the VCM loop and PZT loop separately with customized Q filter for
specific band disturbance handling. As a result, the VCM RDOB can be used in lower frequency
range while the PZT RDOB can be used only in higher frequency range to prevent unnecessary use
of PZT in low frequency range. Beside, due to the simple plant model of the PZT plant, the model
inversion for the RDOB on PZT loop is easier than that for the VCM plant, so the inclusion of
RDOB on PZT loop is easy and efficient. The simulation result validates the proposed framework
with improved PES with periodic and non-periodic disturbance.

6.2 Future work

Future works will include designing direct MIMO discrete LQG/LTR controllers for dual stage
HDDs to see whether there are other benefits and improvements compared to current framework.
The robustness of the structure will also be analyzed. Besides, since the disturbance fundamental
frequency may not be known in advance, the adaptive scheme for online disturbance frequency
identification will also be investigated.
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Figure 13: Equivalent blcok diagram for figure 12

Figure 14: RDOB is added to PZT loop only
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Figure 15: Overall sensitivity function with Discrete LQG/LTR controller and RDOB
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Figure 16: sensitivity function with Discrete LQG/LTR controller and RDOB for PZT loop
only. Can see that due to the addition of bandpass filter, the selective band is only restricted
to 720 3600Hz for PZT loop RDOB. Thus PZT won’t be used in unnecessary range.
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single w/o RDOB, PES: 0.066628
single w/ RDOB, PES: 0.054803; improved percent: 17.7472%

(a) Single stage HDD with only repetitive disturbance,
comparison between with and without RDOB
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single w/o RDOB, PES: 0.066628
dual w/o RDOB, PES: 0.059189; improved percent: 11.1651%

(b) HDDs with only repetitive disturbance, com-
parison between single stage and dual stage
without RDOB
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single w/o RDOB, PES: 0.066628
dual w RDOB, PES: 0.042079; improved percent: 36.845%

(c) HDDs with only repetitive disturbance, comparison be-
tween single stage and dual stage with RDOB
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single w/o RDOB, PES: 0.066628
single w RDOB, PES: 0.054803; improved percent: 17.7472%
dual w/o RDOB, PES: 0.063115; improved percent: 5.2725%
dual w RDOB, PES: 0.042079; improved percent: 36.845%

(d) HDDs with only repetitive disturbance, com-
parison between all the 3 cases

Figure 17: HDD servo with only repetitive disturbance. Compensation results between single stage
and dual stage, with and without RDOB cases.
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single w/o RDOB, PES: 0.10987
dual w/o RDOB, PES: 0.099553; improved percent: 9.3939%

(a) HDDs with all disturbance, comparison between single
stage and dual stage without RDOB
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single w/o RDOB, PES: 0.10987
dual w RDOB, PES: 0.095499; improved percent: 13.0842%

(b) HDD servo with repetitive and all other
types of disturbance. Comparison result be-
tween single stage no RDOB and dual stage with
RDOB

Figure 18: HDD servo with all disturbance. Compensation results between single stage and dual
stage, with and without RDOB cases.
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