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Abstract

In this report, a discrete-time frequency-shaped sliding mode con-
trol (FSSMC) is proposed for audio-vibration rejection in Hard Disk
Drives (HDDs). Such vibrations cause significant degradation of the
servo performance and have become a major concern in the HDD in-
dustry. The proposed FSSMC involves the frequency-shaped sliding
surface design based on peak filters, aiming to provide frequency de-
pendent control allocation in sliding mode control (SMC). Compared
to standard SMC, FSSMC provides additional design flexibilities in
the frequency domain, and improves vibration rejection during track-
following in HDDs. Those benefits are validated by simulation based
on benchmark models and actual vibration data.

This work is sponsored by Western Digital Corporation and Computer Mechanics Labo-
ratory at University of California, Berkeley.

This work has been presented at the 19th IFAC World Congress in Cape Town, South
Africa, August 2014 [Zheng et al. (2014)].
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1 Introduction

In hard disk drives (HDDs), the increase of data track density necessitates to reduce the
position error signal (PES) and improve the servo performance. Sophisticated algorithms
have been proposed to control the transient during the track-seeking process. One current
challenge for steady-state performance improvement comes from high-frequency vibra-
tions, which may even excite system resonances. Nowadays audio vibrations have become
one of the most important vibrations to deal with. They are induced by audio sounds
when HDDs are equipped in modern multimedia personal computers.

Sliding mode control has been applied to HDD systems due to its fast convergence and
good robustness to unknown disturbance. Lee et al. (2000) applied sliding mode control
algorithm to HDDs and achieved fast track-seeking performances. Zhang and Guo (2000)
proposed a time-optimal sliding mode control algorithm with a time-varying sliding sur-
face and realized smooth transition from the track-seeking process to the track-following
process. Zhou et al. (2001) improved the algorithm to further reduce the settling time
during track-seeking. Hu et al. (2009) also proposed a sliding mode control for HDDs
based on a time-optimal sliding surface and improved both the transient performance and
the steady-state performance. Sliding mode control has been considered as a promising
technique for HDDs.

Aiming to extend the design of sliding mode control from time domain to frequency do-
main, motivated by the frequency-shaped linear quadratic regulator (LQR), Young and
Ozguner (1993) proposed frequency-shaped sliding mode control (FSSMC) with a new
switching plane and applied it to a flexible robot manipulator. Many authors then ex-
tended, improved and applied frequency-shaped sliding mode control to different areas.
Nonami et al. (1996) designed a FSSMC based on H∞ and µ synthesis theory for a flex-
ible arm. Moura et al. (1997) provided a conventional sliding surface that can be made
equivalent to the frequency-shaped one, and applied FSSMC to a single degree of freedom
robot with a flexible appendage. Yanada and Ohnishi (1999) added a low-pass filter to
the control input to suppress chatter in SMC. Koshkouei and Zinober (2000) discussed
the design of the frequency-shaped sliding surface based on LQR weighting functions to
improve the transient performance. Wu and Liu (2005) designed a FSSMC with an inverse
notch filter to control the flying height of the pickup head in optical disk dives. Mehta
and Bandyopadhyay (2009) designed a FSSMC based on output sampled measurements
to damp the vibration amplitude of a smart beam at its resonance frequencies.

In most of the aforementioned literature, FSSMC is motivated by the frequency-shaped
LQR control problem with frequency-varying weighting functions, aiming to attenuate the
excitation of undesired system dynamics and enhance the robustness. In this report, the
proposed FSSMC is directly motivated by performance enhancement. Specifically, to have
customized control allocation for attenuating the large spectral peaks in audio vibrations,
the proposed FSSMC increases the ’local gain’ of sliding mode control at the frequencies
where the servo performance is degraded by audio vibrations. Peak filters are utilized for
significant performance improvement of audio-vibration rejection. It is proved that, for
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the proposed second-order peak filters, as long as the filter poles and zeros are stable, the
sliding surface and the full closed-loop system will be stable. For higher-order filter design,
the stability condition is more involved (although there are still strong design flexibility).
Analysis based on root locus is provided for intuitive design and easy stability analysis.
Control algorithms and filter design are provided in discrete-time, whose analysis is more
complex than the continuous-time case, but is directly implementable on actual HDDs.

The remainder of the report is organized as follows. Section 2 provides the description of
HDD model and the frequency-shaped SMC algorithm. Section 3 provides the stability
analysis including both the approaching and the sliding phases of SMC. Section 4 provides
the details of peak filter design. Simulation results based on the HDD benchmark package
by IEEJ (2007) are provided in Section 5. Section 6 concludes the report.
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2 Model Description and Controller Design

2.1 Model Description

The control of a practical model for a single-stage HDD plant can be higher than ten, as
shown in Figure 1 (HDD benchmark package by IEEJ, 2007). High frequency resonances
are usually attenuated by notch filters.
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Figure 1: Full Order Model of HDD (IEEJ, 2007)

A double-integrator nominal model that captures the central low-frequency characters is[
ẏ
ky v̇

]
=

[
kyv
kykvu

]
(2.1)

where u is the actuator input, y is the position of the head in the unit of tracks, v is the
velocity, kv is the acceleration constant, and ky is the position measurement gain.

Denote e1 = y − yr, and e2 = ė1 = kyv − ẏr. In HDD track-following control, yr(k)
and ẏr(k) are zero. From equation (2.1), the discrete-time error dynamics with unknown
bounded disturbance is

e(k + 1) = Ae(k) +B(u(k) + d(k)) +Bava(k) (2.2)
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where

e(k) =

[
e1(k)
e2(k)

]
, A =

[
1 T
0 1

]
, B =

[
T 2kykv/2
Tkykv

]
, Ba =

[
1
0

]
,

T is the sampling time, |d| ≤ D is the input force disturbance, and |va| ≤ Va is the audio
vibrations lumped at the output of the plant.

2.2 Frequency-shaped Sliding Mode Control

In this section, a frequency-shaped sliding mode control (FSSMC) algorithm is proposed to
provide enhancements at the frequencies where the servo performance is seriously degrad-
ed by large disturbance such as audio vibrations. With this motivation, a peak filter Qf is
introduced to shape sliding surface at the preferred frequencies. Qf can be regarded as a
weighting function to allocate the control effort in the frequency domain: at the frequen-
cies where the weight is large, it is expected that the controller allocates more energy in
the input. In this report, the peaks of Qf are selected at the frequencies where PES is large.

Based on this idea, we have a different definition for the sliding surface in FSSMC, as
shown in Figure 2. In traditional definition of sliding surface st(k) = 0, st(k) is defined as
st(k) = He(k) =

[
1 h2

]
e(k) (h2 > 0). In the frequency-shaped sliding surface s(k) = 0,

s(k) is modified to

s(k) = H

[
Qf{e1(k)}
e2(k)

]
= ef (k) + h2e2(k) (2.3)

where ef is the filtered position error, i.e., ef = Qf{e1}.

(a) Traditional 

Sliding Surface Definition
(b) Frequency-shaped

Sliding Surface Definition

e1 

e2 H
st 

e1 

e2 
Qf 

ef 

H
s 

Figure 2: Sliding Surface Definition

Assume that Qf has the following state-space realization:

ew(k + 1) = Awew(k) +Bwe1(k)

Qf{e1(k)} = Cwew(k) +Dwe1(k)
(2.4)

Combining equation (2.2) and equation (2.4), the augmented system can be represented
as

Ẽ(k + 1) = ÃẼ(k) + B̃(u(k) + d(k)) + B̃ava(k) (2.5)
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where
Ẽ(k) = (eTw(k), eT (k))T (2.6)

Ã(k) =

Aw Bw 0
0 A11 A12

0 A21 A22

 , B̃(k) =

 0
B1

B2

 , B̃a =

 0
Ba1

Ba2

 (2.7)

The FSSMC control law is proposed as

u(k) = (H̃B̃)−1[(1− qT )s(k)− H̃ÃẼ(k)− (εT + β) sgn(s(k))] (2.8)

where β = H̃B̃D + H̃B̃aVa, H̃ = [Cw Dw h2], q > 0, 1 − qT > 0, and 0 / ε < 1.
s(k) defines the sliding dynamics for Ẽ(k), and it is yet to be designed. Substituting
equation (2.8) into equation (2.2), after some algebra, the approaching dynamics of the
system is represented as

s(k + 1) = (1− qT )s(k)− (εT + γ(k))sgn(s(k)) (2.9)

where
γ(k) = β − H̃B̃d(k)sgn(s(k))− H̃B̃ava(k)sgn(s(k)) (2.10)

with 0 ≤ γ(k) ≤ 2β = γ.
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3 Stability Analysis

Sliding mode control needs to satisfy two conditions to ensure the stability: (a) Approach-
ing condition: the trajectory s(k), starting from any initial point, reaches to the sliding
surface s(k) = 0 in finite time; and (b) Sliding condition: after the trajectory reaches the
sliding surface, it stays on it. This means that the sliding surface s(k) = 0 should define
stable dynamics for Ẽ(k), which ensures the boundedness of the tracking error e1(k) and
e2(k) when s(k) is bounded. Therefore, the overall stability analysis for system (2.2) with
controller (2.8) includes both the approaching phase and the sliding phase.

3.1 Approaching Phase

This part shows that the sliding surface (switching plane) s(k) = 0 will be reached in fi-
nite time if the approaching dynamics satisfies equation (2.9). Discrete-time sliding mode
control analysis is known to be more complex than the continuous-time case. Gao et al.
(1995) proposed several stability conditions for a general class of discrete-time approach-
ing dynamics: (a) starting from any initial point, the trajectory will move monotonically
toward the switching plane and cross it in finite time; (b) once the trajectory has crossed
the switching plane for the first time, it will cross the plane again in every successive sam-
pling period, resulting in a zigzag motion about the switching plane; and (c) the trajectory
stays in a band.

In the following, we prove that under equation (2.9), conditions (a)-(c) are satisfied. That
is, s(k) will converge to and stay in the band [−∆, ∆], where

∆ =
εT + γ

1− qT
≥ εT + γ(k)

1− qT
= ∆(k) > 0 (3.1)

From equation (2.9), we have

s(k + 1) = (1− qT )|s(k)|sgn(s(k))− (εT + γ(k))sgn(s(k))

= (|s(k)| −∆(k))(1− qT )sgn(s(k))

When |s(k)| > ∆(k), sgn(s(k+ 1)) = sgn(s(k)) and |s(k+ 1)| = (|s(k)|−∆(k))(1− qT ) <
|s(k)|, which implies that s(k) would move towards the band monotonically; similarly,
when |s(k)| < ∆(k), sgn(s(k+1)) = −sgn(s(k)) and |s(k+1)| = (∆(k)−|s(k)|)(1−qT ) <
∆(k), which implies that s(k) will go across the switching plane, change its sign at every
step and stay in the band thereafter.

In summary, controller (2.8) can drive system (2.2) towards the sliding surface s(k) = 0
with the approaching dynamics (2.9) in finite time, and make it stay in the band [−∆, ∆]
centered around the sliding surface thereafter. In practical implementation, the discontin-
uous function sgn is usually replaced by a saturation function sat(s(k)/φ) to inhibit the
chatter phenomenon.
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3.2 Sliding Phase

To guarantee the stability of the overall system, the convergence of s(k) is not sufficient.
In this section, we derive conditions for both e1(k) and e2(k) to converge to zero when
s(k) converges to zero. Consider first the continuous-time sliding surface s = 0, where

s = ef + h2e2 = Qf{e1}+ h2ė1 (3.2)

Assume that Qf has the transfer function realization: Qf (p) = B(p)/A(p), where p = d
dt .

Then, the dynamics between s and e1 is

e1 =
1

B(p)
A(p) + h2p

s (3.3)

which can be realized by the block diagram in Figure 3.

s
1
e

2
h p

B p

A p

1f f

2 2 fh e s e

Figure 3: Dynamics of Sliding Surface

Notice that the open-loop transfer function in Figure 3 is

G(p) =
1

h2

B(p)

A(p)

1

p
(3.4)

and the closed-loop characteristic equation comes from

1 +
1

h2

B(p)

A(p)

1

p
= 0 (3.5)

Given h2 > 0, if all of the closed-loop poles are in the left half plane, the systems from
s to e1 and from s to e2 are stable; thus any bounded s yields bounded e1 and bounded
e2. We have thus transformed the stability analysis (in sliding phase) into a root-locus
problem: as 1/h2 changes from 0 to +∞, the poles of (3.3) are on the root loci from the
open-loop poles to the open-loop zeros and −∞.
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For the discrete-time case,

s(k) = ef (k) + h2e2(k) = Qf{e1(k)}+ h2
2

T

z − 1

z + 1
e1(k) (3.6)

where Qf has the transfer function realization Qf (z) = Bd(z)/Ad(z), which is the dis-
cretized version of Qf (p) via Tustin transformation:

p =
2

T

z − 1

z + 1
(3.7)

Then the discrete-time dynamics between s(k) and e1(k) is

e1(k) =
1

Bd(z)
Ad(z) + h2

2
T
z−1
z+1

s(k) (3.8)

and the closed-loop characteristic equation comes from

1 +
1

h2

T

2

z + 1

z − 1

Bd(z)

Ad(z)
= 0 (3.9)

A root locus analysis similar to the continuous-time case can be performed. Alterna-
tively, noticing that the Tustin transformation preserves stability of the poles and zeros
by the mapping of equation (3.7) (where the left-half plane is mapped to the inside of the
unit cycle), we can directly conclude that (3.8) is stable if and only if its continuous-time
equivalent (3.3) is stable.
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4 Filter Design

This section discusses the design of a family of peak filters for FSSMC.

4.1 Peak Filter with Single Peak (PFSP)

A continuous-time PFSP is

Qf (p) =
B(p)

A(p)
=
p2 + 2bwdp+ w2

d

p2 + 2awdp+ w2
d

(4.1)

with 0 < a < b < 1.

In the following, it will be shown that if h2 > 0, the closed-loop poles of system (3.3)
with (4.1) will always be stable; namely, FSSMC has a guaranteed stable sliding surface.

Open-loop Poles

Open-loop Zeros

Arrow Direction: h2 varying from +∞ to zero

Im

Re

-bwd -awd

Figure 4: Root Locus with a PFSP

Figure 4 sketches the root loci of the closed-loop system (3.3) with (4.1) as h2 changes
from +∞ to zero, which are always in the left half plane. More specifically, if both the
open-loop poles and zeros are in the stable region, a closed-loop pole can never be on the
imaginary axes (except the one at origin), or the root loci will never enter the unstable
region. To prove this point, suppose there exit such a pole at p = γj(γ 6= 0). It must
satisfy

1 +
1

h2

B(γj)

A(γj)

1

γj
= 0 (4.2)
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Using (4.1), this means

∠
(w2

d − γ2) + 2bwdγj

(w2
d − γ2) + 2awdγj

1

γj
= (2n+ 1)π (4.3)

or

arctan

 2bwdγ
w2

d−γ2 − 2awdγ
w2

d−γ2

1 + 2bwdγ
w2

d−γ2
2awdγ
w2

d−γ2

 = −π
2

(4.4)

This means that
(

1 + 2bwdγ
w2

d−γ2
2awdγ
w2

d−γ2

)
is 0, which does not take place. The root loci thus

will never cross the imaginary axes.

Actually, in the single peak filter case, the sliding surface is a 3rd-order system, and
the stability can be directly checked. Combining equation (3.3) and equation (4.1), we
have

e =

[
p2 + 2awdp+ w2

d

h2p3 + (1 + 2awdh2)p2 + (h2w2
d + 2bwd)p+ w2

d

]
s (4.5)

The closed-loop poles satisfy

h2p
3 + (1 + 2awdh2)p2 + (h2w

2
d + 2bwd)p+ w2

d = 0 (4.6)

Note that the coefficients h2 > 0, (1 + 2awdh2) > 0, (h2w
2
d + 2bwd) > 0, w2

d > 0. From
Routh test, the system is stable, if and only if (1 + 2awdh2)(h2w

2
d + 2bwd) − h2w

2
d > 0,

which clearly holds as (1 + 2awdh2) > 1 and (h2w
2
d + 2bwd) > h2w

2
d.

In summary, we obtain the strong stability result for FSSMC with a PFSP: as long as
both the zeros and poles of (4.1) are stable, the sliding surface will be stable.

The corresponding discrete-time version of (4.1) based on Tustin transformation is

Qf (z) =
Bd(z)

Ad(z)
(4.7)

where Bd(z) = 4(z−1)2+4Tbwd(z−1)(z+1)+T 2w2
d(z+1)2, Ad(z) = 4(z−1)2+4Tawd(z−

1)(z + 1) + T 2w2
d(z + 1)2. With such a filter, the discrete-time sliding surface described

in equation (3.6) is stable if and only if both the zeros and poles of the corresponding
continuous-time filter (4.1) are stable.

4.2 Peak Filter with Multi-peaks (PFMP)

Usually there are more than one peak in audio vibrations. Such cases can be handled by
FSSMC with a PFMP

Qf (p) =

n∏
i=1

Bi(p)

Ai(p)
(4.8)
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where Bi(p) = p2 + 2bwdip+ w2
di, and Ai(p) = p2 + 2awdip+ w2

di. Analogous to previous
discussion, a general dynamics between s and e1 with a PFMP can be represented as

e1 =
1∏n

i=1
Bi(p)
Ai(p)

+ h2p
s (4.9)

and the closed-loop characteristic equation is

1 +
1

h2

n∏
i=1

Bi(p)

Ai(p)

1

p
= 0 (4.10)

Although all the open-loop zeros and poles (except the one at origin) are in the left half
plane, the closed-loop root loci may cross the imaginary axes. In this case, the proposed
root locus method provides us a way to decide the filter parameters a, b, and the sliding
surface parameter h2 in the p plane. For example, if we would like to design a three-peak
filter with n = 3, a = 0.03, b = 3, w1 = 900Hz, w2 = 1170Hz, w3 = 2500Hz, the root
locus can be numerically calculated and plotted, as shown in Figure 5. For this particular
design, FSSMC always stabilizes the system when h2 > 0. The sliding surface can be
further refined by selecting a suitable h2 based on the transient performance.
For implementation, the equivalent discretized Qf (by Tustin Transform) is

Qf (z) =

n∏
i=1

Bdi(z)

Adi(z)
(4.11)

where Bdi(z) = 4(z−1)2 + 4Tbwdi(z−1)(z+ 1) +T 2w2
di(z+ 1)2, and Adi(z) = 4(z−1)2 +

4Tawdi(z − 1)(z + 1) + T 2w2
di(z + 1)2. The discrete dynamics between s(k) and e1(k) is

described as

e1 =
1∏n

i=1
Bdi(z)
Adi(z)

+ h2
2
T
z−1
z+1

s (4.12)

with the closed-loop characteristics equation

1 +
1

h2

T

2

z + 1

z − 1

n∏
i=1

Bdi(z)

Adi(z)
= 0 (4.13)

(4.12) is stable if and only if (4.9) is stable.

In most cases, it is not known in advance at which frequencies the servo performance
is most degraded. Such frequency ranges may be identified in real time through process-
ing the error signal e1(k) by an adaptive notch filter with an adjustable notch frequencies.
Some discussions on this are in Chen and Tomizuka (2010, 2012, 2013).
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Figure 5: Root Locus with a PFMP

4.3 Frequency Estimation in Filter Design

In most cases, when designing filters, it is unknown around which frequencies the servo
performance is degraded, i.e., where PES of HDDs is large. This means that the frequency
parameter wd is unknown. One common identification method for wd minimizes a specific
cost function defined based on the servo performance that we are interested in.

A notch filter Qn can be introduced to define such a cost function. One notch filter
structure is Qn = 1/Qf . Actually, the selection of Qn is not limited to 1/Qf . For simpler
adaptive law design, another kind of notch filter is utilized to identify wd. For single-peak
case, we propose to use

Qn =
z2 − 2bn cos(2πωdT )z + b2n
z2 − 2an cos(2πωdT )z + a2

n

, (4.14)
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where 0 < an < bn < 1. Denote ep = Qn{e1}, and Ω = cos(2πwdT ), then the adaptive
law for Ω can be derived through the following optimization problem

min
Ω
J = min

Ω

∑k

1

1

2
e2
p(i) (4.15)

There exit some works on adaptive algorithms for such filters (with both single-peak and
multi-peaks): e.g., Chen et al. (1992), Li (1997), Chen and Tomizuka (2010). Note that
0 ≤ 2πwdT < π, or 0 ≤ wd < 0.5/T . This is the frequency range we can identify based on
notch filter (4.14). Figure 6 shows the overall control scheme with identification of wd.

 yr

FSSMC Plant

Differentiator

Peak Filter Qf (wd)

Notch Filter Qn(wd)              
Audio 

Vibration va

 y

e1

e2

s

H

ep

ef

u

Figure 6: Overall Control Scheme with Adaptive Filter
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5 Simulation Results

The proposed frequency-shaped sliding mode control is implemented on the full-order
benchmark system in Figure 1. The system parameters are set as follows: rotation speed
= 7200 rpm, the number of servo sector = 220, the sampling time T=3.7879 × 10−5

sec, the acceleration constant kv=951.2 m/(s2A), and the position measurement gain
ky=3.937×106 track ·m−1. Three sets of audio vibrations are injected into the plant with
peak frequencies around 1200Hz, 900Hz, 2500Hz respectively. Two control algorithms are
compared: the traditional sliding mode control without a peak filter, and the proposed
frequency shaped sliding mode control. To make the comparison of the two controllers
meaningful, all the parameters in the controller such as q (0.1/T) and ε (1× 10−4) are set
the same.
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Figure 7: PES Spectrum with Audio Vibration 1

Figures 7 to 9 show the spectrum of PES under the three sets of audio vibrations. The
accumulative 3σ value of PES is calculated and shown at the top right corn of each fig-
ure. As shown in Figure 7, the accumulative 3σ value of PES has been reduced from
0.37447 to 0.31265 by frequency shaping, approximate 20% reduction; the amplitude re-
duction around the peak frequency is approximate 50%. Similar results for the other two
sets of audio vibrations are shown in Figure 8 (approximate 26% reduction of accumu-
lative 3σ value of PES and 50% amplitude reduction around the peak frequency) and
Figure 9 (approximate 13% reduction of accumulative 3σ value of PES and more than
50% amplitude reduction around the peak frequency). Figure 10 provides the ’measured’
frequency response plot of the sensitivity function when the excitation is under vibration 3.

In summary, simulation results demonstrate the benefits of the proposed FSSMC: reduc-
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Figure 8: PES Spectrum with Audio Vibration 2

tion of the overall 3σ value of PES, and reduction of the amplitude of the PES spectrum
at specific frequencies, with very small performance sacrifice at other frequencies.
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6 Conclusion

This report proposed a frequency-shaped sliding mode control algorithm for the track fol-
lowing of HDDs. It aimed to inhibit high-frequency audio vibrations in the error spectrum.
Simulation results validated the benefits of the proposed FSSMC. From the theoretical
viewpoint, this report provided stability analysis and a guideline for filter design based
on root-locus method, which provides great flexibility and convenience in the frequency-
domain controller design. A nice property of the proposed PFSP design is that: as long
as both the poles and the zeros of the shaping filter are stable, the sliding surface will be
always stable. This property will be used in future work on FSSMC with adaptive shaping
filters.
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