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Abstract

Current Heat Assistance Magnetic Recording (HAMR) hard disk drive systems are designed
to heat a 20 nm writing spot on the disk to about 400◦C by a Near Field Transducer (NFT)
located within the slider and spaced a few nanometers from the disk. It is important for the
NFT to remain relatively cool to insure that it will not fail during the required lifetime of
the drive. Due to the nanometer scale separation between the heated spot and the NFT, the
heat exchange between them cannot be accurately calculated by conventional methods. This
paper first explains why the conventional models of heat transfer fail at the nanoscale. Then we
estimate the heat radiation and heat conduction due to phonon tunneling using an extension
of Planck’s law from equilibrium systems to systems with a non-vanishing heat flux [2]. It is
shown that the heat transport across a few nanometers wide gap is expected to be high enough
to provide significant back-heating of the NFT from the heated spot on the disk.

1 Introduction

The data density of hard drives is rapidly approaching a limit after which further increase cannot

be achieved without radical modifications of the design that has been essentially evolutionary since

1956, when IBM unveiled its first HDD.

A significant change occurred about a decade ago by moving from the traditional parallel

recording to perpendicular recording. However, this change alone is not sufficient for reaching the

projected new levels of 10 Tb per square inch. It is expected that further increase in the data

density of hard drives will require that a bit of recorded information occupy a spot on the disk

smaller than 20 nm in diameter, and that this spot must get some form of energy assistance to lower

the medium’s coercivity. In Heat Assistance Magnetic Recording (HAMR) systems such assistance

is provided by local heating by a laser source of the magnetic medium to near its Curie temperature

of about 400◦C. Therefore, any HAMR system inevitably includes a closely separated disk and

read/write head with different temperatures, and, consequently, the design of such systems must

include the analysis of heat exchange between bodies at different temperatures separated by a few

nanometers.

There are several mechanisms of heat transport between bodies separated by a narrow air-gap.

The heat can be carried by electromagnetic radiation, by “phonon tunneling” caused by intermolec-

ular interactions across the gap, and heat conduction through the air enhanced by convection. The
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first two of these mechanisms are associated with the processes of electromagnetic and acoustic

wave propagation, respectively, and, thus, can be studied by similar methods. Heat radiation

across nanoscale gaps was studied in [1] by a novel method based on the extension of the Planck’s

law for equilibrium systems to systems with a steady heat flux [2]. This method can also be applied

to the analysis of heat transport by acoustic waves, i. e. by phonon tunneling, and here we focus

on this method and its implications for the design of HAMR systems.

Current designs of HAMR systems employ lasers to heat the required ∼ 20 nm spot on a

disk. Since such lasers produce radiation with the wavelength of > 500 nm the spot size is far

below the diffraction limit so it is not possible to use an optical lens to focus the light. To go

around this difficulty, currently designed HAMR systems focus laser radiation using a Near Field

Transducers (NFT). Such transducers couple light from a laser to plasmonic oscillations, which

are the oscillations of the electromagnetic field coupled with electrons in the material. Plasmonic

oscillations have a wavelength short enough to be focused down to ∼ 20 nm at the tip of the NFT,

located within a few nanometers from the disk.

The design of a light delivery and heating system using a plasmonic NFT must take into account

multi-physics phenomena, including the distribution of electromagnetic fields, their interaction with

electrons in the materials of the NFT and of the disk, as well as heat exchange between the NFT

and the disk. Such complex problems are often solved by NFT designers by using commercial

codes, such as COMSOL or ANSYS, to design structures that, according to the solutions obtained,

heat the writing spot on the disk to 400◦C while keeping the NFT at a relatively cool temperature

below 100◦C.

Despite the promising results of multi physics numerical simulations of the light delivery struc-

tures, the prototypes of HAMR drives are reported to have short lifetimes because of NFT failure,

which is not acceptable for real devices. The causes of NFT failure are not yet identified, but

overheating is considered to be a major factor. Therefore, it is necessary to analyze every step of

the NFT modeling and identify possible flaws of the employed techniques.

2 Shortcomings of the conventional approaches for nanoscale heat transfer

The theory of heat transfer considers three means of heat transport: conduction, radiation and

convection, each of which is governed by its own mathematical model.

Heat convection in HAMR systems may play a role because of the airflow between the NFT

and the disk, but it is not expected to be the major cause of NFT heating, so here we focus on the

other two mechanisms, which are not associated with mass flow.

Heat conduction is observed in most materials and follows the Fourier law Q = −κ∇T , which

states that the heat flux Q is negatively proportional to the gradient of the temperature T . The

coefficient κ is referred to as the thermal conductivity, and it is considered to be a basic material

parameter. The Fourier Law implies that the time evolution of the temperature distribution in a

spacial domain is governed by the heat/diffusion equation

∂T

∂t
= α∇2T, α =

κ

cpρ
, (1)

where α is the “thermal diffusivity“, ρ is the mass density and cp is the specific heat of the material.
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Heat radiation is normally considered as the only means of heat transport in vacuum, and it

may also dominate heat transport through gases. The conventional theory of thermal radiation

is based on Planck’s law which states that the density of radiation of a single polarization from

a black body at temperature T in the directions characterized by the spherical angles from the

intervals (θ, θ + dθ) and (φ, φ+ dφ) has the power spectrum

E(T, ω) =
1

4π
Θ(ω, T )D(ω), (2)

Θ(ω, T ) =
~ω

e~ω/kT − 1
, D(ω) =

ω2

2π2c3
, (3)

where ~ and k are the Planck and Boltzmann constants.

Planck’s law makes it possible to estimate the radiation of a “black body” half-space x < 0

maintained at temperature T into the half-space x > 0 as∫ ∞
0

∫ π/2

0
E(T, ω) c cos θ sin θ dθdω = σT 4, (4)

where σ is a constant. Then, the heat flux between two half-spaces maintained at temperatures TA

and TB is computed by the Stefan-Boltzmann formula

Q = σ(T 4
B − T 4

A), (5)

which does not involve the distance H between the half-spaces, so according to this formula H

could be millions of miles or one nanometer.

The outlined theories of heat conduction and radiation have been verified by an enormous

amount of experiments dealing with heat exchange in high-micrometer and larger scales. However,

these theories do not agree with measurements in low-micrometer and nanoscale domains. These

failures are often considered as surprising, but a closer look reveals that they are inevitable because

the conventional theories implicitly assume that all characteristic dimensions, such as the sizes

of heat exchanging bodies and the distances between them, are limited from below by certain

thresholds.

The heat equation (1) is also known as the diffusion equation because it describes the diffusion

of randomly moving particles which interact with each other by collisions. This coincidence suggests

that heat conduction may be caused by diffusion of some carriers, and this suggestion is supported

by the fact that a phenomenological Fourier law is actually derivable from basic principles only

in the cases when the heat transport is modeled by the random motion of some “particles”. In

gases the Fourier law is provided by a random motion of gas molecules, while in conducting solids

it is provided by the random motion of free electrons, and, in dielectric solids, it is provided by a

random motion of wave-packets formed by acoustic waves, which are considered as quasi-particles

called “phonons”, so that the acoustic field can be treated as a gas of phonons.

The kinetic theory of heat conduction explained by diffusion of some carriers can only be

applied in domains that are considerably larger than the carriers and their mean free paths between
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collisions. This, obviously, sets limitations on the applicability of the theory of heat conduction

based on the Fourier law.

Since the size of and the mean free path of air molecules are about a few ångstroms and ∼65 nm,

respectively, the heat conduction in air may not be expected to follow the Fourier Law and the

heat equation in domains smaller than, at least, a hundred nanometers in all directions.

To estimate the applicability of the Fourier Law to heat conduction by phonons we observe

that the wavelengths of thermally excited acoustic vibrations in solids at room temperature are

of the order of a couple of nanometers. On the other hand, the size of a wave packet is always

considerably larger that the dominant wavelength of the involved waves. The above implies that

wave packets formed by thermally excited acoustic vibrations have the size of the order of ∼10 nm

and higher, so that such quasi-particles, which are often incorrectly called “phonons”, can diffuse

only in domains not smaller than several tens of nanometers in all directions. This estimate agrees

well with numerous experimental reports that the heat transport in nanostructures start deviating

from the Fourier Law when one of the structure dimensions falls below 100 nm, [3].

We also observe that as the scale is reduced, the radiative heat transport must also start

deviating from the classical theory.

Indeed, at moderate temperatures, below a thousand degrees Kelvin, heat radiation is domi-

nated by electromagnetic waves with wavelengths of several hundreds of nanometers. Therefore,

general principles suggest that properties of such waves in domains smaller than a few microns

cannot be similar to their properties in larger domains.

In order to illustrate this general principle consider the Stefan-Boltzmann formula (5) which

describes radiative heat transport between to two half spaces A and B made from identical ma-

terials separated by a vacuum gap. This formula assumes that the half-spaces are maintained by

thermostats at local equilibriums at well-defined temperatures TA and TB. However, the concept of

local equilibriums in the bodies maintained at different temperatures and separated by a nanoscale

gap may not be defined at all. Indeed, if the distance between the bodies reduces below the domi-

nant wavelength of heat radiation then, as the separation approaches zero, the influence of such a

gap must vanish, so that thermal radiation propagates as in a single uniform medium. But a sin-

gle uniform medium cannot be in thermal equilibrium with different temperatures in the different

parts. Since the collapse of two media to a single one cannot occur abruptly, it is clear that the

classical theory of heat radiation, including the Stefan-Bolzmann formula, must start failing as the

separation between bodies reduces below a few microns.

The failures of the conventional approach to heat transport at the nanoscale were noticed back

in the 1960s when [4] reported an unexpectedly high heat transport coefficient between bodies sep-

arated by less than a few microns. The first explanations of these experiments were soon developed

into the now conventional approach to radiative heat transport across micro and nanoscale gaps

[5]. The predictions of this approach could be made to match the experiments from [4], but it

needed to incorporate specific assumptions about the sources of thermally excited radiation, which

undermined the predictive capability of this theory.

After more than four decades since the publication of [5], the theory of nanoscale radiative heat

transport remains unsettled, which suggests that this theory may have flaws in its foundations,

which show up only in nanoscale structures.

To find the flaw in the the contemporary approach to radiative heat transport we start from

the observation that it assumes that thermal radiations from the bodies are additive, so that the

process of heat exchange is calculated as described in [5, Sec.V]:
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“We first consider the fields set up by the noise sources in the medium at z < 0 and calculate
the (averaged) Poynting vector in the z direction at the point d+, i.e. just inside the second
medium. This is the heat transferred to the second medium due to thermal radiation from the
first. In the same way we calculate the Poynting vector in the −z direction at z = 0−, due to
sources in the second medium. The difference of the two expressions is the net energy transfer
due to the temperature difference of the two bodies.”

and in [6, Sec.2]

“Since the sources of the thermal fluctuations in media 1 and 2 are statistically independent,
both fields are incoherent, and it is this which causes the additivity of fluxes . . . ”,

These assumptions imply that the net heat flux between bodies A and B can be represented as

Q = QA→B(TA)−QB→A(TB), (6)

where QA→B(TA) is the flux originated in A, determined by TA and delivered to B, while QB→A(TB)

is the flux originated in B, determined by TB and delivered to A. Then, the analysis of heat

transport between A and B reduces to the computations of thermal radiations from each of the

domains A and B, which is considered as a routine problem.

However, it is easy to see that there is a flaw in the reasoning leading to (6). Indeed, consider

the assumption about maintaining heat exchanging bodies at local equilibrium at different temper-

atures. If the bodies A and B exchange heat then these bodies interact. Therefore, as explained in

the very beginning of [7, Sec.1-1], the interacting bodies A and B must be considered together as

a single thermodynamical system. In this case, if the system’s parts are in local equilibriums, then

the entire structure is in equilibrium. This means the temperature must be uniform over the entire

system and the net heat flux must vanish everywhere in the system. Therefore, TA = TB and there

is no heat transport between A and B.

Despite the transparency and generality of the above reasoning there is a common misconception

[5] that the net heat flux between the bodies A and B can be represented by (6), and that it can

be rigorously justified by the Fluctuation-Dissipation theorem, which appears as the centerpiece of

the description of thermal radiation in terms of Fluctuational Electrodynamics [7, 8, 9].

Fluctuational Electrodynamics is a phenomenological theory based on an assumption that ther-

mal radiation from a domain V filled by an absorbing material is generated by stochastic extra-

neous currents J(x, ω) and J(y, ω) whose Cartesian components Jp(x, ω) and Jq(y, ω) satisfy the

Fluctuation-Dissipation theorem [8, 9], which states that if the domain V is maintained at

thermal equilibrium at uniform temperature T , then for all x ∈ V , y ∈ V〈
Jp(x, ω)Jq(y, ω)

〉
=Cωε′′(ω)Θ(ω, T )δpqδ(x−y), (7)

where ε′′(ω) is the imaginary part of the relative dielectric parameter of the medium, C is a universal

constant, δpq and δ(x) are the standard δ-functions.

However, this theorem explicitly requires that the temperature be constant over the entire

considered structure, and, thus, this theorem can only be used in the situations when “. . . the role

of the transport phenomena is as yet insignificant”, [8, Page 112], i. e. in situations when the net

heat transport vanishes a priori.
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3 Extensional of the Planck’s law to systems with a net heat flux

The above discussion shows that the conventional theory of heat radiation employs the concept of

“local thermal equilibrium” which implicitly assumes that the separation between “local” domains

A and B is sufficiently large to consider these domains as not interacting with each other, so that

the spectra of radiations from A and B may be computed by the Planck’s formula, which is limited

to closed systems in thermal equilibrium. Therefore, this theory is ultimately inconsistent because

it represents a non-vanishing net flux using the formula which is valid only when flux vanishes.

In some cases such inconsistency may be tolerable and lead to rather accurate approximations.

However, an inconsistent theory may not always produce acceptable results, so that its persistent

disagreements with experiments is not surprising and should stimulate effort to eliminate the major

inconsistencies of the theory.

The observation that the conventional theory computes a non-vanishing heat flux using the

Planck’s law which is valid only when this flux vanishes, suggests that extension of the theory of

radiative heat transport can be improved by the extension of the Planck’s law from equilibrium

systems to systems with a non-vanishing net heat flux.

The required extension of the Planck’s law is derived in [2], where it is shown that if there is

a net heat flux Q 6= 0 then the radiation from a black body is not isotropic, as in the equilibrium

case, but depends on the direction of propagation.

More precisely, the results of [2] imply that if the ensemble of thermally excited waves has the

net flux |Q| � 1, then the average energy density of a single wave from this ensemble propagating

along the unit vector e has the power spectrum

Θ(ω, TA;Q, θ) = Θ

(
ω

1 +Q · e/cE
, T

)
, (8)

where c is the wave speed, ω is the frequency, Θ(ω, T ) is the Planck function (3), and E is the energy

density of thermally excited acoustic waves of all polarizations, all frequencies and all directions of

propagation.

To derive (8) it suffices to consider the system in an auxiliary frame that moves with the speed

v = Q/E relative to the reference frame, where the system has the net flux Q, as shown in Fig. 1.

In the moving frame the system has no net flux, which implies that the average energy of a single

wave is described by the Planck’s function Θ(ω, T ) from (3). Then, applying the Doppler transform

we return to the reference frame and get (8).

4 Phonon tunneling across nanoscale gaps

The extension of the Planck’s law to systems with a non-vanishing heat flux provides a means for

routine calculations of the heat transport coefficient caused by propagating waves, including but

not limited to both electromagnetic and acoustic waves.

To illustrate the power of the proposed technique we first consider heat transport by acoustic

waves, i. e. by phonon tunneling, between two half-spaces x < 0 and x > H occupied by identical

materials.
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If Q is the flux in the frame R, then in the moving
frame M with v = Q/E there is no flux and radi-
ation has Planck’s spectrum. Spectra in M and R
are related by Doppler shift

Figure 1: Modification of the Planck Law for systems with a heat flux

To demonstrate how acoustic waves can carry heat across a gap, it suffices to consider the

model shown in Fig. 2 where two material half-spaces x < 0 and x > H are separated by a vacuum

gap 0 < x < H, whose faces are maintained near the equilibrium positions x = 0 and x = H by

some external force that depends on the current position of the faces. Due to thermally excited

lattice vibrations in the half-spaces, their faces experience the displacements of lattice vibrations

making the separation between the faces not exactly the constant value H. On the other hand,

since intermolecular forces have a rather long range relative to the atomic spacing, the motion of

the atoms near the surface in a body may exert time dependent forces on molecules at distances

as far as several microns outside the body [10]. Therefore, lattice vibrations in slightly separated

bodies interact across the gap and thus can transfer energy between bodies.

Figure 2: Interaction of two acoustic media separated by narrow gap

To develop the outlined concept of thermal interaction between separated bodies and obtain a

quantitative description, it is necessary to adopt some simplifying assumptions about the lattice

vibrations. First, we assume that the materials are isotropic, homogeneous and can be described by

a linear theory of elasticity that considers the averaged characteristics of atomic motion computed

over microscopic domains containing sufficiently large numbers of atoms. This theory implies the

existences of three types of elastic waves: longitudinal waves propagating with the speed cp and

two kinds of transverse waves with the lower speed cs. Waves of different polarizations propagate
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inside the media independently of each other, but they strongly interact at the boundaries causing

significant complications of the total picture of wave propagation. To eliminate difficulties caused

by the existence of the different kinds of elastic waves, it is common to describe the thermal

properties of solids in terms of the simpler Debye model, which assumes that all three types of

thermally excited waves are entirely independent of each other, have their frequencies in the band

0 < ω < ωD ≡ κTD/~, where TD is the Debye temperature, considered as a material parameter,

and they propagate as acoustic waves in a compressible fluid or gas with the single wave speed c

determined by the equation 1/c3 = (1/c3p + 2/c3s)/3.

It is well known that acoustic waves with the speed c can be described in terms of a scalar

velocity potential ψ that satisfies the wave equation ψ̈ = c2∇2ψ, and defines the pressure p and the

acoustic displacement vector ξ by the formulas p = −ρ0ψ̇, and ξ̇ = ∇ψ, where ρ0 is the density of

the medium in the unperturbed state [11].

Let the oscillations of the media depend on time by the exponential factor eiωt. Then the

oscillations in the half spaces are described by the Helmholtz equations

∇2ψ +
ω2

c2
ψ = 0, x < 0, x > H, (9)

where cD is the sound speed in the half-spaces and ψ is the velocity potential which determines the

pressure p and the displacement ξ(x, y, z) along the x-axis by the formulas

p = −iωρψ, ξ =
ψ′x
iω
, ξ̈ = iωψ′x. (10)

Since the van der Waals forces between the open faces of the bodies x < 0 and x > H depend

on the displacements of these faces, the Helmholtz equations (9) are not complete and must be

supplemented by the interface conditions

p(x, y, z) = F (H, ξ(x, y, z)) = p(x+H, y, z), (11)

where F (H, ξ(x), ξ(x+H)) is the van der Waals force between two half-spaces separated by distance

D = H + ξ(x+H)− ξ(x).

Let an incident wave eiω(x cos θ+y cos θy+z cos θz)/c propagate in the domain x < 0. Due to the

interaction of this wave with the boundaries x = 0 and x = H, it generates the reflected wave

Reiω(−x cos θ+y cos θy+z cos θz)/c

propagating in the half-space x < 0, and transmitted wave

Keiω((x−H) cos θ+y cos θy+z cos θz)/c

propagating in the half-space x > H. As follows from [1], in order to estimate the coefficient of heat

transport by acoustic waves across a vacuum gap it suffices to compute the reflection coefficient R

of the plane wave with an arbitrary incident angle θ.
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To compute the reflection coefficient determined by the equations (9) and (11) we approximate

the van der Waals forces by the expression from [10] and get the result

R =
−ωρ

ωρ+ 2iα
, α =

A

H2c

(
ω2 sin2 θ

2c2
− 1

H2

)
, (12)

where A is the Hamaker constant with a typical value of about 10−19 J, [10, Sec 11.1].

It is easy to see that at the limit H → ∞ we have α → 0 and R → −1, which agrees with the

expectation that wide gaps reflect all incoming waves. In the opposite limit H → 0, we have α→∞
and R → 0, which agrees with the expectation that a vanishing gap between identical materials

does not reflect. In the general case R in (12) is bounded as |R| ≤ 1 and must be computed

numerically.

Let the half spaces A and B be maintained at the temperatures TA and TB, respectively. If

TA 6= TB then there is a non-vanishing net heat flux Q = Q(H,TA, TB) carried by acoustic waves

and determined by TA and TB, by the width H, and by the material of the half-spaces. The heat

conduction coefficient of the gap is defined as

K(H;TB) ≈ Q(H,TA, TB)

TA − TB
, TA → TB. (13)

As shown above, heat conductance across a narrow gap can be described by wave equations and

interface conditions that are similar to those arising in the analysis of heat radiation [1]. Therefore,

in order to estimate the heat conductance coefficient of a gap it suffices to adopt the method

developed in [1] and proceed along the following steps: 1) assume that TA and the net flux Q are

known and compute the heat flux QA→B(TA, Q) from A to B; 2) assume that TB and Q are known

and compute the heat flux QB→A(TB, Q) from B to A; 3) write the equation

Q = QA→B(TA, Q)−QB→A(TB, Q), (14)

and solve it for Q, assuming that TA and TB are known.

It is shown in [2] that if there is a net heat flux Q 6= 0 then the conduction of thermally excited

acoustic waves inside A and B is not isotropic, but depends on the direction of propagation. More

precisely, the results of [2] imply that if Q� 1, then inside A a thermally excited acoustic wave of

a single polarization propagating in the direction characterized by the spherical angles (θ, φ) has

the power spectrum

E(ω, TA, Q, θ) = Θ

(
ω

1 + qA cos θ
, TA

)
D(ω)

4π
, (15)

where qA = Q/cEA, c is the wave speed in the half-spaces, and

EA =
3

2

∫ ωD

0
dω

∫ π

0
E(ω, TA, Q, θ) sin θdθ (16)

is the energy density of thermally excited acoustic waves of all three polarizations (accounted for

by the factor “3”), of all frequencies (accounted for by the integration over ω through the cut-off

Debye frequency ωD) and radiated in all directions (accounted for by the integration over θ). A
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small heat flux Q� 1 affects (16) only in the second order, so that in the first order approximation

EA is determined solely by the temperature of the medium.

In order to study the heat exchange between A and B it is necessary to keep in mind that

although in A waves propagate in all directions, only the waves with 0 ≤ θ < π
2 propagate towards

B. Moreover, even a wave with 0 ≤ θ < π
2 does not deliver all of its energy to B because part of it

is reflected back.

Let RH(ω, θ) be the Fresnel reflection coefficient of a plane wave of frequency ω that has the

incidence angle θ. Then, only the
(
1− |RH(ω, θ)|2

)
-th part of the energy of this wave is transmitted

to the domain B. Since the flux across the gap carried by a wave with the incidence angle θ has

the value Q = cE cos θ, the total flux carried from A to B by waves of all polarizations, frequencies

and incidence angles can be represented as

QA→B(TA, Q) = 3c

∫ ωD

0

∫ π/2

0
cos θ sin θE(ω, θ, TA, Q)

(
1− |RH(ω, θ)|2

)
dθdω. (17)

Then, replacing TA by TB and Q by −Q we convert (17) to a similar expression for QB→A(TB, Q),

and, finally, taking into account (15), we get the equation

Q =
3c

2

∫ ωD

0

∫ π/2

0

(
1− |RH(ω, θ|2

)
sin 2θ {E(ω, θ, TA, Q)− E(ω, θ, TB,−Q)}dθdω. (18)

This equation connects the temperatures TA and TB with the heat flux Q. If TA and TB ≈ TA
are fixed, then it can be easily solved for Q numerically, after which the heat transport coefficient

can be estimated as (13).

5 Thermal radiation and conduction across nanoscale gaps and numerical results

To estimate heat transport across nanoscale gaps due to phonon tunneling we applied the developed

method to the material with the mass-density ρ = 10400 kg/m3 and the Debye sound speed c =

1817 m/sec corresponding to Silver. The bold solid and dashed lines on Fig. 3 show the heat

transfer coefficients computed by the formula (13) for the base temperatures TB = 700◦K and

TB = 500◦K, respectively.

For comparison, Fig. 3 also shows the heat transport coefficients due to thermal radiation, which

was computed by the method presented in [1]. The thin solid line marked by circles corresponds

to TB = 700◦K and the thin dashed line marked by stars corresponds to TB = 500◦K. As shown

in [1], the heat transport coefficient due to radiation increases as H → 0 at the rate ∼ 1/H2, and

it approaches a constant asymptote (the Stephan-Boltzman value) as H →∞. The heat transport

coefficient due to phonon tunneling vanishes at the limit H → ∞, but when H → 0 it increases

faster than ∼ 1/H4, so that at smaller separations phonon conductance dominates radiation, while

at larger separations most of heat is carried by radiation. It is seen in Fig. 3 that phonon tunneling

exceeds radiation for H less than about 4 nm for the base temperature of 700◦K, but this cross-over

occurs at about 2 nm for 500◦K.
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Figure 3: Heat Transport Coefficients

6 Summary and Conclusion

Current HAMR systems are designed for a writing spot of about 20 nm in diameter that must

be heated to about 400◦C by a Near Field Transducer (NFT), whose tip should be as small as

the heated spot, should deliver the power with the density ∼1011W/m2, should be placed within a

couple of nanometers from the heated spot, and should remain sufficiently cool to avoid destruction

of the read/write heads, as well as of itself.

It is easy to see that the design of a HAMR system illustrated in Fig. 4 must take into account

such processes as: direct heating of the disk and of the NFT by a passing laser energy whose density

is sufficient to destroy many materials [12, 13, 14]; heat transport by the air between the NFT and

the disk; back-heating of the NFT by phonon tunneling due to van der Waals forces between the

molecules in the disk and NFT, and back-heating of NFT by thermal radiation from the hot spot

on the disk.

The left figure depicts the initial NFT in which the tip is flat and it delivers heat to a similar

area on the disk. The right figure depicts the heat damaged NFT after several hours of use in

which the corners have been rounded, the disk heated area is larger, the disk temperature is lower

and the NFT to disk spacing is larger. It also depicts the back heating of the NFT from the disk.

This damage could be due to the laser supplied energy flux and/or the back heating.

The simultaneous analysis of all of these processes already makes a rather complex problem,

but it is further aggravated by the low-nanoscale size of the device, which undermines fundamental

assumptions of the conventional theories of radiative heat transport and heat conduction discussed

in the Introduction.
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Figure 4: The NFT supplies the energy flux ∼1011W/m2 to the writing spot. The left figure
depicts the initial NFT in which the tip is flat. The right figure depicts the damaged NFT after
several hours of use in which the corners have been rounded, the disk heated area is larger, the disk
temperature is lower and the NFT to disk spacing is larger. It also depicts the back heating of the
NFT from the disk.

Here we considered only heat radiation and heat conduction due to phonon tunneling. Both

of these mechanisms of nanoscale heat transport are related with wave propagation processes and

can be studied using the extension of Planck’s law from equilibrium systems to systems with a

non-vanishing heat flux [2]. It was shown that when the gap between the media reduces below

a micrometer, the thermal radiation increases as ∼1/H2 and at H ∼ 4 nm the radiative heat

transport coefficient reaches the level of 105 W/m2. Moreover, as H reduces below ∼10 nm, the

heat conduction due to phonon tunneling starts increasing at the faster rate ∼1/Hp, with p ≈ 4,

so that this form of heat transport becomes dominating and at H ∼2 nm the corresponding heat

transport coefficient exceeds 107 W/m2.

Although this study is limited to only two mechanism of heat transport it shows that it may

not be possible for the NFT to remain “cool” when the media spot within a few nanometers from

it is heated to 400◦C because of back heating.
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