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Radiation heat transport across a vacuum gap between two half-spaces is studied. By consistently

applying only the fundamental laws of physics, we obtain an algebraic equation that connects

the temperatures of the half-spaces and the heat flux between them. The heat transport coefficient

generated by this equation for such structures matches available experimental data for

nanoscale and larger gaps without appealing to any additional specific mechanisms of energy

transfer. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4865404]

Let a vacuum layer 0< x<H separate two half spaces A
and B that are filled by identical materials and maintained at

the temperatures TA and TB, respectively. If TA 6¼ TB, then

there is a non-vanishing net heat flux ~Q ¼ QðH; TA; TBÞ~ex,

where~ex is a unit vector along the x-axis, as shown in Fig. 1.

The value of Q(H, TA, TB) is determined by the temperatures

TA and TB, by the width H, and by the material of the half-

spaces. If TA¼ TB, then Q(H, TB, TB)� 0. The heat transport

coefficient of the gap can be defined as

KðH; TBÞ ¼
@QðH; TA; TBÞ

@TA

����
TA¼TB

� QðH; TA; TBÞ
TA � TB

: (1)

This problem has attracted attention since the discovery

of the laws of thermal radiation. For a long time, it was

accepted that QðH; TA; TBÞ ¼ cr T4
A � T4

B

� �
, where r is a uni-

versal constant and c� 1 is a constant, characterizing the

materials. In the late 1960s, it was demonstrated that as H
decreases below the dominant wavelength of thermal radia-

tion, the heat transport coefficient increases towards infinity.1

The first studies of this phenomenon2,3 were followed by the

development of a rather general method that became the

foundation for the modern conventional approach to nano-

scale radiative heat transport.4

The method presented in Ref. 4 adopts the assumption

that the thermal radiation is caused by extraneous electric

and magnetic random currents whose statistical properties

are described by the Fluctuation-Dissipation theorem.5,6

This method has been applied to a number of problems, but

it inherits a controversy of using the equilibrium distribu-

tions to the analysis of heat transport, which does not exist in

equilibrium systems. This controversy is well-recognized,7,8

but the methods of handling it are not yet established. Also,

this method relies on a “manual” treatment of evanescent

waves, the number of which drastically increases in configu-

rations where the vacuum gap is replaced by a multi-layered

structure.

The above comments justify the quest for an approach

to radiative heat transport that does not rely on assumptions

about the mechanisms of heat radiation, but relies only on

fundamental laws of physics. Here, we propose an approach

that does not require any more principles than are needed to

derive Planck’s law or the Stefan-Boltzmann law.

To calculate the heat transfer coefficient, we employ the

following three-step procedure: (1) Assume that the tempera-

ture TA and the net flux Q are known and compute the heat

flux QA!BðTA;QÞ from A to B; (2) assume that TB and Q are

known and compute the heat flux QB!AðTB;QÞ from B to A;

and (3) write the equation

Q ¼ QA!BðTA;QÞ � QB!AðTB;QÞ; (2)

and solve it for Q under the assumption that TA and TB are

known.

It is shown in Ref. 9 that if there is a non-vanishing net

heat flux Q 6¼0 then the heat radiations inside A and B are not

isotropic, but depend on the (incidence) angle between the

direction of radiation and the vector ~ex. More precisely, the

results of Ref. 9 imply that if Q� 1, then inside A the ther-

mally excited electromagnetic waves of a single polarization

with the incident angle h has the power spectrum

Eðx; TA;Q; hÞ ¼
1

2
P

x
1þ qA cos h

; TA

� �
DðxÞsin h; (3)

where qA¼Q/cEA, c(x) is the phase velocity of electromag-

netic waves in the half-spaces, P(x, T) is the average thermal

energy of a harmonic oscillator at frequency x in an equilib-

rium ensemble at temperature T,

DðxÞ ¼ 4p
3

d

dx
x

2pcðxÞ

� �3

¼ x2

2p2c2ðxÞvðxÞ (4)

is the density of states of electromagnetic fields of one polar-

ization in an infinite half-space represented in terms of the

group velocity

vðxÞ ¼ c2ðxÞ=½cðxÞ � xc0ðxÞ�; (5)

and

EA ¼ 2

ð1
0

dx
ðp

0

Eðx; TA;Q; hÞdh (6)

is the energy density of thermally excited electromagnetic

waves of both polarizations (accounted for by the factor
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“2”), of all frequencies (accounted for by the integration

over x) and radiated in all directions (accounted for by the

integration over h). A small heat flux Q � 1 affects the

energy density (6) only in the second order, so that in the first

order approximation EA is determined solely by the tempera-

ture of the medium.

In order to study the heat exchange between A and B, it

is necessary to keep in mind that not all of the electromag-

netic waves excited inside one domain carry energy to the

other domain. Thus, although in A waves are radiated in all

directions, only the waves with 0 � h < p
2

propagate

towards B. Moreover, even a wave with 0 � h < p
2

does not

deliver all of its energy to B because part of it is reflected

back.

Let R�ðxH; hÞ be the Fresnel reflection coefficient of a

plane electromagnetic wave of frequency x that has the inci-

dence angle h and a �-polarization, where � ¼ ? or � ¼k.
Then, only the ð1� jR�ðxH; hÞj2Þ-th part of the energy of

this wave is transmitted to the domain B. Therefore, since

the flux along ~ex carried by a wave with the incidence angle

h and the energy density E has the value Q ¼ Ev cos h, the

total flux carried from A to B by waves of all polarizations,

frequencies, and incidence angles can be represented as

QA!BðTA;QÞ ¼
X
�¼?;k

ð1
0

ðp=2

0

vðxÞcos h

� Eðx; h; TA;QÞ 1� jR�ðxH; hÞj2
� �

dhdx:

(7)

Similarly, the heat flux QB!AðTB;QÞ radiated from B toward

A is given by the expression

QB!AðTB;QÞ ¼
X
�¼?;k

ð1
0

ðp=2

0

vðxÞcos h

� Eðx; h; TB;�QÞ 1� jR�ðxH; hÞj2
� �

dhdx;

(8)

which is obtained from (7) by the replacements of TA and Q
by TB and �Q, respectively. Finally, inserting (7) and (8)

into (2) and taking into account (3) with (4), we get the

equation

Q ¼
ð1

0

ðp=2

0

vðxÞsin 2hð1� R2ðxH; hÞÞ

�
(

P
x

1þ Q cos h=cðxÞEA
; TA

� �

�P
x

1� Q cos h=cðxÞEB
; TB

� �)
DðxÞdhdx; (9)

where

R2ðxH; hÞ ¼ 1

2
jR?ðxH; hÞj2 þ jRkðxH; hÞj2
n o

(10)

appears as the sole characteristic of the considered structure.

Equation (9) connects the temperatures TA and TB with

the heat flux Q. If Q and DT¼TA�TB are small then Eq. (9)

reduces to a linear equation,

Q ¼ ðTA � TBÞF0ðH; TBÞ � Q F1ðH; TBÞ þ oðQÞ; (11)

with the explicitly defined coefficients

F0 ¼
ð1

0

ðp=2

0

GðxH; hÞP0Tðx; TBÞ
2p2c2ðxÞ x2dhdx; (12)

F1 ¼
ð1

0

ðp=2

0

GðxH; hÞP0xðx; TBÞ
2p2c3ðxÞEB

x2 cos hdhdx ; (13)

where

GðxH; hÞ ¼ 1� R2ðxH; hÞ
	 


sin 2h: (14)

Therefore, assuming that TB and DT¼TA�TB are known, we

get the expression

KðH; TBÞ ¼
F0ðH; TBÞ

1þ F1ðH; TBÞ
; (15)

which explicitly defines the heat transport coefficient.

To use (12)–(15), it is necessary to know the phase ve-

locity c(x) and the reflection coefficients R?ðxH; hÞ;
RkðxH; hÞ of the vacuum gap of width H.

Let �0 and l0 be the permittivity and the permeability of

vacuum. Similarly, let � and l be the corresponding parame-

ters of the half-spaces. Then the phase speeds of electromag-

netic waves in vacuum and the medium have the values

c0 ¼ 1=
ffiffiffiffiffiffiffiffiffi
�0l0

p
; c ¼ 1=

ffiffiffiffiffi
�l
p

, and the reflection coefficients

R?ðxH; hÞ and RkðxH; hÞ of the plane waves propagating in

the half-spaces with the incident angles h can be computed

by the formulas10

jR�ðn; hÞj ¼
jðY2

� � Z2
�ÞsinðcnÞj

jðY2
� þ Z2

�ÞsinðcnÞ þ 2iZ�Y� cosðcnÞj ; (16)

where n�xH,

Z� ¼
cl=cos h;
cl cos h;

Y� ¼
c0l0=cos h0; if � ¼ ?;
c0l0 cos h0; if � ¼k;

��
(17)

and

FIG. 1. The problem.

061109-2 B. V. Budaev and D. B. Bogy Appl. Phys. Lett. 104, 061109 (2014)



c ¼ cos h0

c0

; cos h0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

0

c2
cos2 h

r
: (18)

In general, the dielectric parameters � and l have com-

plex values and depend on the frequency x, so that the com-

plex refractive index m(x)¼ c0/c(x) can be represented as

mðxÞ ¼ nðxÞ þ ikðxÞ, where n(x) and k(x) are usually

referred to as the refractive and absorption indices, respec-

tively. It is well known that n(x) and k(x) are related by the

Kramers-Kr€onig relations, which, in particular, imply that

the refractive index is constant if and only if the absorption

index vanishes.6

The refractive and absorption indices of common mate-

rials are well studied, tabulated, and interpolated. For exam-

ple, in Ref. 11, the indices of silica are interpolated for the

frequencies from the extreme ultraviolet to far infrared.

However, it is easy to see that the published data about the

refraction and absorption indices describes propagation

through a medium of electromagnetic waves generated by

some external sources, but it does not adequately describe

thermally excited electromagnetic fields inside bodies main-

tained at constant temperature.

Indeed, when an electromagnetic wave at frequency x,

such as a laser beam or a signal from a radar, propagates in a

medium with the absorption index k(x), the energy of the

wave decays as e�kðxÞxL=c0 , where L is the travelled distance.

The lost energy does not disappear but is transformed to

heat, so that an external electromagnetic wave passing

through a medium decays and heats the medium. On the

other hand, the thermal radiation in a body maintained at

fixed temperature neither gains nor looses energy. The elec-

trons and protons inside the body move and radiate electro-

magnetic waves. While these waves propagate, part of their

energy is absorbed by the matter, which means that it is con-

verted to the energy of other charged particles, which then

radiate other electromagnetic waves, etc.

In the steady state at constant temperature, the rate of

absorption of thermally excited electromagnetic waves

equals the rate of generation of such waves, so that these

waves do not decay. Therefore, the absorption index of such

waves vanishes and their refraction index becomes a

frequency-independent constant.6 The last statement implies

that the phase velocity of thermally excited electromagnetic

waves in half-spaces has a constant value which may be con-

sidered as a material parameter.

To verify the developed approach, we compare its out-

come with the experimental data from Ref. 12 about radia-

tive heat transfer between two closely separated bodies from

silica. Since it is extremely difficult to maintain a nanoscale

distance between two parallel plates, in these experiments

the heat transport was measured between a plate and micro-

spheres of 50 lm and 100 lm in diameter.

The bold dots in Fig. 2 show the results of the measure-

ments from Ref. 12 of the heat transport coefficient between

a plate and the sphere separated by H¼ 30 nm, 80 nm, and

200 nm. The thick line in Fig. 2 shows the heat transport

coefficient computed by the formulas (12)–(15) for the case

when the phase velocity of light in the half-spaces is set as

c¼ 0.45c0. Since our computations and the measurements

from Ref. 12 correspond to different structures, the results

cannot be directly compared to each other. However, as

explained in Refs. 12 and 13, the heat transport coefficient

between two plates separated by a nanoscale gap of the width

H is about two times higher that the heat transport coefficient

between a plate separated by the similar distance from a

sphere used in the experiments reported in Ref. 12.

Correspondingly, the dotted line in Fig. 2 is obtained by the

reduction of the bold line by a factor of two, and it is seen

that this line is in good agreement with the experimental

data.

The developed method of computation of radiative heat

transport across a vacuum gap can also be used for a qualita-

tive analysis of the heat transport coefficient. In particular, it

naturally explains the asymptotic behavior of K(H) at both

limits H! 0 and H!1.

Consider first, the limiting case of a vacuum layer of

thickness H¼ 0. In this case, since the materials are the

same, R? ¼ Rk ¼ 0, and Eq. (9) reduces to the form

Q ¼ 1

p2c2

ð1
0

½CAðQÞPðx; TAÞ � CBðQÞPðx; TBÞ�x2dx;

(19)

where, with the errors of the order o(Q),

CAðQÞ �
1

2
þ Q

2cEA
; CBðQÞ �

1

2
� Q

2cEB
: (20)

Then, incorporating (20) into (19) we get the equation

Q ¼ Qþ C	ðT4
A � T4

BÞ þ oðQÞ, which shows that to first-

order accuracy, the temperatures must coincide TA¼ TB

while the heat flux Q may take any value. This means that

the vacuum layer of zero thickness has an infinite heat trans-

port coefficient, which agrees with common sense and with

the observation that in a homogeneous space a finite heat

flux may exist without any temperature differential.14

In a case of a narrow vacuum gap with H� 1, the reflec-

tion coefficient admits the estimate RðxH; hÞ 
 H, which

makes it possible to reduce Eq. (19) to the form

C	ðT4
A � T4

BÞ þ H2½ f ðTA;Q;EAÞ
�f ðTB;�Q;EBÞ � þ oðQÞ ¼ 0; (21)

where

f ðT;Q;EÞ ¼ 1

2p2c2

ð1
0

ðp=2

0

R2ðxH; hÞ
H2

� P
x

1þ Q cos h=cE
; T

� �
x2 sin 2h dhdx;

(22)

remains finite as H ! 0. In this case, (21) implies that if

TA¼TB then Q¼ 0, and if TA 6¼ TB then Q 
 ðTA � TBÞ=H2,

so that the heat transport coefficient of the narrow gap is pro-

portional to 
1=H2, which agrees with the experiments from

Ref. 12.

As H increases to infinity, R2ðxH; hÞ becomes a highly

oscillating periodic function of x, which implies that if f(x)

is continuous, then, as H!1,
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ð1
0

R2ðxH; hÞf ðxÞdx! r2ðhÞ
ð1

0

f ðxÞdx; (23)

where r2(h) is the mean value of R2(x, h) over all x. This

shows that as H increases, the heat transport coefficient K(H)

becomes independent on H.

Despite the simplicity of the proposed method of com-

putation of the heat transport coefficient K(H), the results

presented in Fig. 2 not only agree with results from [Ref. 12,

Fig. 1(c)] and [Ref. 2, Fig. 4] but also naturally explain the

asymptotes of K(H) at two limits H! 0 and H!1 without

appealing to any specific mechanisms of energy transfer.

The proposed method is based on the extension of the

Planck’s laws of thermal radiation to systems with a steady

heat flux and on the observation that the thermally excited

electromagnetic field in the matter should be described in

terms of the dielectric functions with a vanishing imaginary

part. The proposed method is versatile and admits applica-

tions to other similar problems, such as the radiative heat

transport across a layered structure between half-spaces of

different materials,15 interface “Kapitsa” thermal resist-

ance,16 and phonon heat conductance across a sub-10 nm

vacuum gap, just to mention a few. The short format of this

initial report does not allow our consideration of all of these

important applications, but we expect that the demonstrated

result will encourage widespread applications of the devel-

oped method to such systems.
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FIG. 2. Heat transport coefficient K(H)

of the vacuum gap of the width H. In

Ref. 12, it is reported that K(H)

at H¼ 30 nm and at H ! 1 has the

values K¼ 2230 W/m2/K and

K¼ 3.8 W/m2/K, respectively. The val-

ues of K(H) at H¼ 80 nm and

H¼ 200 nm are read from Ref. 12,

Fig. 4.
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