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1. Introduction 

In hard disk drives (HDDs), vibrations caused by abrupt control input variations and other external 

disturbances would affect the servo performance seriously and limit the application of HDDs in modern 

multimedia devices. Nonlinear control techniques can be potentially applied to enhance servo 

performance of HDDs.  

One promising algorithm is to combine sliding mode controller and nonlinear PID controller to enhance 

the transient performance. When the tracking error is large, sliding mode control and nonlinear PID 

control work together to rapidly reduce the error; when the error is small, sliding mode control is turned 

off to ensure good steady state performance. As to the nonlinear PID, the tracking error signal will be 

utilized to tune the nonlinear integral gain and nonlinear derivative gain, aiming to (1) shorten the settling 

time, (2) reduce the peak error, and (3) keep the good steady state performance.  

Another promising algorithm is the pure discrete-time sliding mode control. Sliding mode control has 

strong robustness to large disturbance and model uncertainty. By unifying tasks such as track-seeking and 

track-following into one control scheme, sliding mode control would perhaps reduce possible vibrations 

caused by the switching between different control schemes. Furthermore, considering its high frequency 

property, sliding mode control can be a promising method to inhibit vibrations, if necessary computations, 

for example control law and state estimation, can be handled efficiently in HDDs. 

In most HDDs, the Position Error Signal (PES) sampling rate is highly restricted by the number of servo 

wedges/sectors, but the control signal can be updated at a faster rate. One potential approach would be to 

use multi-rate control techniques to increase the sampling rate of other aspects of the system, such as the 

control signal. Such a multi-rate approach can help mitigate vibrations and enhance the servo 

performance by reducing the change of control input at each sampling instance. Combining the 

aforementioned ideas together, multi-rate nonlinear control can be utilized for enhanced vibration 

rejection especially in the steady-state performances of HDDs. 
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This project aims at developing control schemes that can break current performance limitations during 

both track-seeking and track-following processes in HDDs. More specifically, by unifying different tasks 

into one control scheme, we aim to reduce the vibrations caused by abrupt control updates; by increasing 

the sampling rate of control signals, we seek to develop algorithms to break the bandwidth limitation so 

as to enhance the resistance to shocks, external vibrations, etc.,. Limited results on multi-rate nonlinear 

control exist in current research literatures. We plan to further develop the multi-rate nonlinear control 

technology and extend its application from single-stage to dual-stage HDD products, where the micro 

actuator has promising structural superiorities for control engineering. 
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2. Benchmark Model 

The control algorithm studied in this project is based on the Benchmark Model 
[1]

. The frequency 

response of the nominal model and the full-order model are illustrated as follows. 

 
a. Nominal Model                                               b. Full-order Model 

Figure 2.1 Bode Diagram of HDD Model from Benchmark 

The Benchmark Model also includes a disturbance profile, including the force disturbance, flutter 

disturbance, sensor noise and repeatable run-out (RRO) disturbance. The disturbances in both the 

frequency domain and the time domain are illustrated as follows. 

 

a. Frequency Domain                                               b. Time Domain 

Figure 2.2 Disturbance Data from Benchmark 
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The whole control system is shown as follow, which includes the plant, the controller and the state 

observer.  

PlantController
( )y t

ZOH
sT

State 

Observer

sT

Disturbace
( )r k

( )y k

 

Figure 2.3 Control System 

Some physical parameters in the Benchmark model are listed as in Table 2.1. 

Table 2.1 Parameters of the Benchmark Model 

PES sampling rate  53.7879 10  ssT    

Position measurement gain 6 -13.937 10 track myk     

Acceleration constant -2 -1951.2 ms Avk   

Rotational speed  7200r   

Number of servo sectors per track  220n   

Width of track  2.54 7 mpT e   

 

References 

[1] http://mizugaki.iis.u-tokyo.ac.jp/nss/ 
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3. Introduction to Sliding Mode Control (SMC) 

Sliding mode control is a central approach used in this project. This section provides a brief overview of 

the theoretical backgrounds.  

Consider the system 

 ( ) ( )e f e b e u   (3.1) 

where 

( 1)
(1) ( 1) 1 1

1 1 1 1 ( 1)
[ ... ] [ ... ]

n
n T T

n

de d e
e e e e e

dt dt





  , 1e  is PES, ( )f e and ( )b e  are nonlinear or linear 

functions, and u  is the control signal. 

Define 

 1

1( ; ) ( )nd
s e t e

dt
    (3.2) 

where   is a strictly positive constant. Specially, for 2n  ,  

 1 1( ; )s e t e e   (3.3) 

Noting that ( ; ) 0s e t  represents a linear differential equation whose unique solution is 1 0e  . Denote 

the set  as { | ( ; ) 0}S e s e t  . One of the advantages of sliding mode control is to transform an n
th
-order 

tracking problem over e into a 1
st
-order stabilization problem over s .  

The control signalu can be designed to realize that, when s is outside of S , 

 21
| |

2

d
s s

dt
   (3.4) 
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 where 0  . Equation (3.4) is known as the sliding condition. This implies the sliding surface  0s   

will be reached in a finite time shorter than | (0) | /s  .  That is, | (0) | /phaseIt s  . After hitting the 

sliding surface, the tracking error converges exponentially to zero, with a time constant ( 1) /n  .  

A boundary layer, defined by { :| | }s s   with thickness  , is usually introduced to inhibit the chatter 

caused by the sliding mode control. The relationship between the thickness of the layer and the magnitude 

bound of the actual errors can be obtained as follow: 

 ( )

0 0, | ( ) | , | ( ) | (2 ) , 0,1, 2, ... ,i it t s t t t e t i n           (3.5) 

where 
1/ n    . Detailed derivations are provided in Reference [1]. 

 

Figure 3.1 Approaching phases (Phase 1) and Sliding phase (Phase 2) 

Reference 

[1] Jean-Jacques E. Slotine, Werping Li, Applied nonlinear control, Prentice Hall, 1991 
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4. Nonlinear PID Combined with Sliding Mode Control 

4.1 Basic Idea 

Sliding Mode Control is well-known for its high-gain control nature and good robustness, but it has 

several disadvantages such as chatter and less direct control over steady-state performance. Therefore, in 

this section, the following combination of the SMC and the nonlinear PID control is proposed: when PES 

is large, the sliding mode control and the nonlinear PID control work together to rapidly reduce the error; 

when PES is small, the sliding mode control is turned off to ensure good steady state performance. As the 

PES becomes smaller, the nonlinear PID is reduced to a linear PID to keep the good steady state 

performance of a baseline PID control. The basic idea can be illustrated in Figure 4.1. 

 

Figure 4.1 Basic Idea of Nonlinear PID and Sliding Mode Control 

The whole controller structure can be expressed as 

 1 1 1( ) ( ) ( )n su u e e u e   (4.1) 

where 1e  is PES, 1( )nu e  is the nonlinear PID controller, 1( )su e  is the sliding mode controller, 1( )e  is a 

scaling coefficient to control the contribution of SMC, respectively. Based on the idea in the previous 

paragraph, we design 1( )e as follow 



10 
 

  
1

1

1 1

0 | ( ) |
( )

| ( ) | | ( ) |

e k e
e

e k e e k e



 




 
 

 (4.2) 

and we design ( )nu k  and ( )su k  as follows 

 1 1 1( ) ( ) ( ( )) ( ) ( ( )) ( )n p i i d du k K e k K e k e k K e k e k    (4.3) 

 ( ) ( ( ) / )s su k K sat s k   (4.4) 

where 1 1( ) ( ( )) ( ) ( )ds k c e k e k e k  ; 1 1( ) ( ( ) ( 1)) /d se k e k e k T    is the derivative of  1( )e k ; and

1

0

( ) ( )
k

i s

j

e k T e j


   is the integration of 1( )e k . 

Remarks: 

1. 1( ) 0e  when 1| ( ) |e k e , and 1( )su e is turned off when 1| ( ) |e k e . This can realize the smooth 

turn-off of the sliding mode control. 

2. The ( ( ))sign s k has been replaced by the ( ( ) / )sat s k  to inhibit chatter.  

3. 1 1( ( )) and ( ( ))i dK e k K e k  are selected  to be error based functions to obtain small overshoots and fast 

transient. 

4.2 Remarks on Parameter Tuning 

In this section, three parameters 1( ( ))iK e k , 1( ( ))dK e k , and 1( ( ))c e k are analyzed.  

First, consider the design of 1( ( ))iK e k  to yield small overshoot, fast transient, and good steady-state 

performance. Several literature results 
[1-2] 

have suggested the following design concept: when the 

tracking error is small, 1( ( ))iK e k  is preferred to be large; when error is large, 1( ( ))iK e k can be small. 

Therefore we choose 
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2

1 0 1( ( )) (1 sec ( / ( ) )i i i iK e k K h e k    (4.5) 

Denote
2

1 1( ( )) 1 sec ( / ( ) )i i ig e k h e k   . After 0iK  design, we would like to tune iK slightly through

1( ( ))ig e k . The relationship between 1( ( ))ig e k and 1( )e k  has been illustrated in Figure 4.2.  When 1( )e k  

is small, 1( ( ))ig e k is 1 and the nonlinear 1( ( ))iK e k  reduced to a constant 0iK . 

 

Figure 4.2 1 1( ( )) and ( )ig e k e k  

As to the design of 1( ( ))dK e k  to reduce the response time, 1( ( ))dK e k  is preferred to be large when error 

is large and increasing; 1( ( ))dK e k is preferred to be small when error is large and decreasing. Such a 

tuning rule is illustrated in Figure 4.3. Based on this idea, 1( ( ))dK e k is designed as 
[1]

: 

 

Figure 4.3 1( ( ))dK e k  
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 

 

2

0 1 1

1 2

0 1 1

1 sec ( / ( ) ) ( ) ( ) 0
( ( ))

1 sec ( / ( ) ) ( ) ( ) 0

d d d d

d

d d d d

K h e k if e k e k
K e k

K h e k if e k e k

 

 

  
 

 

 (4.6) 

     

Figure 4.4 1,2 1( )dg and e k  

Denote 
2

1 11 sec ( / ( ) )d d dg h e k    and
2

2 11 sec ( / ( ) )d d dg h e k   , as shown in Figure 4.4. 

When 1( )e k  is small, we can see that 1,2 1( ( ))dg e k  reduce to 1 and 
1( ( ))dK e k  becomes a constant

0dK . 

Additionally, ( )c k is designed as a error-based function,  

 
max 1 1

1

max

/ ( ) ( )
( ( ))

/

m

m

k u e k if e k c
c e k

k u c otherwise





 
 


 (4.7) 

where max, , andmk u c  are design parameters. 

To summarize, the whole controller can be expressed by the following equations: 

1 1 1( ) ( ) ( )n su u e e u e   

where  

1

1

1 1

0 | ( ) |
( )

| ( ) | | ( ) |

e k e
e

e k e e k e



 




 
 
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1 1 1( ) ( ) ( ( )) ( ) ( ( )) ( )n p i i d du k K e k K e k e k K e k e k    

( ) ( ( ) / )s su k K sat s k   

1( ) ( ) ( ) ( )ds k c k e k e k   

max 1 1

1

max

/ ( ) ( )
( ( ))

/

m

m

k u e k if e k c
c e k

k u c otherwise





 
 


 

2

1 0 1( ( )) (1 sec ( / ( ) )i i i iK e k K h e k    

 

 

2

0 1 1

1 2

0 1 1

1 sec ( / ( )) ( ) ( ) 0
( ( ))

1 sec ( / ( )) ( ) ( ) 0

d d d d

d

d d d d

K h e k if e k e k
K e k

K h e k if e k e k

 

 

  
 

 

 

4.3 Simulation Results  

1

( 1) / sz T z

/ ( 1)sT z  Controller Notch 
Filter

K 14-order 
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Force Disturbance

Large Disturbance
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Flutter Disturbance
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ZOHr 



y

Benchmark,
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Closed-loop Gain

Benchmark:PID

ADDED:
1. nonlinear PID
2. sliding mode A B

C D

 
 
 

 
Figure 4.5 Control System 

To examine the transient performance and the resistance against sudden large disturbance of the control 

algorithm, some simulation results are provided in this section. The whole system for simulation is shown 

in Figure 4.5. It includes the full-order model, the notch filters, and the disturbance profile from the 
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Benchmark. Additionally, large impulse input disturbance has been added to evaluate the performance. 

The simulation parameters are listed in Table 4.1. 

Table 4.1 Simulation Parameters  

Coefficient of sliding mode control 

1( )e  

0.05e   

Sliding mode controller 

su  

0.05   

2sK   

 

Sliding surface  

( )s k  

0.2c   

max 0.25u   

8mk   

 

Nonlinear PID control 

nu  

2pK   

0 0.05; 0.5; 2i i iK      

0 70; 0.2; 2d d dK      

 

For all the figures in this section, the X-axis unit is ‘time / s’ and the Y-axis unit is ‘position / track’. 

 (a) Effect of 1( ( ))iK e k  

To analyze how the nonlinear 1( ( ))iK e k  affects the performance, the simulation results for systems with 

nonlinear 1( ( ))iK e k  and constant 0iK are compared in Figures 4.6 and 4.7. It shows that the system with 

nonlinear 1( ( ))iK e k  has reduced response time in Figure 4.6; while it still keeps good steady-state 

performance in Figure 4.7. 
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Figure 4.6 Track-Seeking with step input 

 

Figure 4.7 Track-following with large input disturbance 

 (b) Effect of 1( ( ))dK e k  

Analogous to the previous paragraph, the simulation results of the systems with the nonlinear 1( ( ))dK e k  

and a constant 0dK  are compared in Figures 4.8 and 4.9. It is shown that the system with nonlinear 
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1( ( ))dK e k  has reduced response time and smaller overshoot in Figure 4.8, while it still keeps good 

steady-state performance in Figure 4.9.  

 
Figure 4.8 Track-Seeking with input 

  
Figure 4.9 Track-following with large input disturbance 
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sliding surface, linear PID plus SMC with time-varying sliding surface, and linear PID plus SMC with 

time-invariant sliding surface. The simulation results indicate that the nonlinear PID plus SMC with time-

varying sliding surface performs best in the track-seeking process, and keeps good robustness in the track-

following process. 

 

Figure 4.10 Track-Seeking Performance with Large Disturbance 

Figure 4.11 Track-Following Performance with Large Disturbance 
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Figure 4.12  Nonlinear PID combined with Sliding Mode Control
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In Figure 12, the overall tack-following and track-seeking performances have been compared between the 

PID controller and the nonlinear controller described in Equation (4.1). 

Some remarks are obtained from the simulation. 

1. Compared with the original PID controller, the nonlinear controller has stronger resistance to sudden 

disturbances. Furthermore, it can obtain smaller overshoot and faster response during the track-seeking 

process. 

2. The parameters in iK and dK should be tuned very carefully. If not, either the performance or the 

control signal may become worse.  

3. The stability proof is difficulty due to the nonlinearity of the controller. 

References  

[1] Basel M. Isayed and Muhammad A. Hawwa, “A Nonlinear PID Control Scheme for Hard Disk Drive 

Servo systems”,  2007 Mediterranean Conference on Control and Automation, July, 2007, Greece 

[2] Ying Li, Guoxiao Guo, and Youyi Wang, “A Nonlinear Control Scheme for Fast Settling in Hard 

Disk Drives”, IEEE Transactions on Magnetics, Vol. 40, No. 4, July 2004, 2086-2088 
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5. Discrete-time Sliding Mode Control  

5.1 Controller Design 

In this section, a pure sliding mode control is designed to unify the track-seeking task and track-following 

tasks into one control scheme, aiming to improve both the transient performance and steady-state 

performance of HDDs. 

The discrete-time nominal model from Benchmark can be written as 

 
( 1) ( ) ( ( ) ( ))

( ) ( )

e k Ae k B u k D k

y k Ce k

   


 (5.1) 

where 

2
1

2

( )1 / 2
, , [1 0], ( )

( )0 1

y s y v s

v s

e kk T k k T
A B C e k

e kk T

    
       
    

; ( )D k  denotes the model 

uncertainty and disturbance. The sliding surface ( ) 0s k   is designed as 

   1

1

2

( )
( ) ( ) ( ) ( ) 1 0

( )

e k
s k H k e k h k

e k

 
   

 
 (5.2) 

If the model is exactly known and there is no disturbance, which means ( )D k =0, the controller is 

designed as 

 1

1( ) ( ) [ ( ) ] [ ( ) (1 ) ( 1)] ( )su k u k H k B H k A q H k e k       (5.3) 

Plugging Equation (5.3) into Equation (5.1),  

 ( 1) (1 ) ( )s k q s k    (5.4) 

For 0 1q  , ( ) 0s k   as k  , which means the system will approach to the sliding surface and 

stay on it. 
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However, in the real case, ( )D k is always nonzero. Here it is assumed to be bounded by | ( ) |D k D .  

The controller is designed 
[2]

 as 

 1 2( ) ( ) ( )s su k u k u k   (5.5) 

 1

1( ) [ ( ) ] [ ( ) (1 ) ( 1)] ( )su k H k B H k A q H k e k      (5.6) 

 1

2( ) [ ( ) ] [ ( ) ] sgn( ( ))su k H k B D k s k     (5.7) 

where 2 ( )su k  is to compensate the uncertainties. Plugging Equations (5.6) and (5.7) into the system, we 

have 

 ( 1) (1 ) ( ) ( ( ))sgn( ( ))s k q s k k s k       (5.8) 

The parameters in Equations (5.5)-(5.7) should satisfy the following conditions 

 ( ) ( )k H k B   (5.9) 

 0   (5.10) 

 0 1q   (5.11) 

In Section 5.2, it will be shown that the controller (5.5) - (5.7) can make the system approach to and stay 

in a specific band centered at the sliding surface. 

Additionally, motivated by the idea of approximate time-optimal control, Reference [2] has suggested a 

method to modify the sliding surface, by setting 1h  an error-based function: 

 
max 1 1

1

max 1

2 / ( ( ) ) ( )
( )

2 / ( ) ( )

v y a

v y a a

k u k e k e k y
h k

k u k y e k y





 
 



 (5.12) 
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The relationship between 1( )h k  and 1( )e k is shown in Figure 5.1. Certain advantages can be shown in 

such a sliding surface. For example, by using 1 1( ) sgn( ( ))e k e k  instead of 1( )e k , ( )s k  will not become 

unexpected large, and thus the control signal would not become unexpected large. 

1e

1 1( , )h k e

0
ay

 
Figure 5.1 1( )h k  and 1( )e k  

5.2 Stability Analysis 

For discrete-time sliding mode control, there are several types of stability conditions from literature. 

1). ( ) ( ) 0s k s k    By Dote&Hoft,  1980  

2). ( 1) ( ) By Sarpturk,  , 1987s k s k et al   

23). ( 1) ( ) 0 with ( ) ( ) / 2v k v k v k s k     

Actually (1) is not enough to conclude Lyapunov stability. (2) and (3) are essentially equivalent. Each of 

them can be explained as this: if ( ) 0s k  , 2 ( ) ( ) 0s k s k    ; if ( ) 0s k  , 0 ( ) 2 ( )s k s k    . The 

two kinds of conditions can ensure that ( )s k  goes zero. However, it is rather difficult to design a 

controller to satisfy the conditions (2) or (3). Gao etc., proposed another kind of conditions in 1995 
[3]

, 

explained as follows. 
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If ( ) , then ( 1) ( )

4). If ( ) , then ( ) ( 1)

If | ( ) | , then | ( 1) |

s k s k s k

s k s k s k

s k s k

     


     
     

 

The above equations describe the following conditions 

A1. Starting from any initial point, the trajectory will move monotonically toward the switching plane and 

cross it in finite time 

A2. Once the trajectory has crossed the switching plane the first time, it will cross the plane again in 

every successive sampling period, resulting in a zigzag motion about the switching plane . 

A3. The trajectory stays within a specific band. 

It is easier to design a controller satisfying condition (4), to ensure that ( )e k is bounded. But it does not 

ensure that ( )s k converges to zero.  

Through plugging the controller of Equations (5.5)-(5.7) into the system, the following conclusion can be 

obtained: 

 

( ) ( ) ( ) ( 1) ( )

( ) ( )  ( ) ( 1) ( )

( ) ( ) 0 0 ( 1) ( )

0 ( ) ( ) ( ) ( 1) 0

s k k k s k s k

s k k s k s k k

k s k s k k

s k k k s k

      

      

       

       

 (5.13) 

which means ( )s k is bounded by ( )k , where  

 
( )

( )
1 1

k
k

q q

    
    

 
 (5.14) 

 ( ) ( ) ( )sgn( ( )) ( )k H k BD k s k D k       (5.15) 

The detailed proof of stability (Equation 5.13) is as follows: 

1
st
: We want to show ( ) ( )  ( ) ( 1) ( )s k k k s k s k        
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when 
( )

( ) ( ) 0
1

k
s k k

q

 
   


, sgn( ( )) 1s k  , Equation (5.8) becomes

( )
( 1) (1 ) ( ) ( ) (1 ) ( ) 0

1

k
s k q s k k q k

q

 
   


         


 

( 1) ( ) ( ) ( ) ( )s k s k qs k k s k        

Therefore 0 ( 1) ( )s k s k   . 

2
nd

: Similarly, ( ) ( )  ( ) ( 1) ( )s k k s k s k k        

3
rd

: We want to show | ( ) | ( ) | ( 1) | ( )s k k s k k       

(a) when 0 ( ) ( ),s k k     

( )
0 ( ) , sgn( ( )) 1, ( 1) (1 ) ( ) ( )

1

k
s k s k s k q s k k

q

 
 


       


 

Therefore 

( )
( 1) (1 ) ( ) 0

1

k
s k q k

q

 
 


     


  

Further,  

2 2

2

( ) 0

(1 ) ( ) 0 (1 ) ( ) ( ( )) ( ( ))

(1 ) ( ) ( ( )) ( ( )) ( ( ))

s k

q s k q s k k k

q s k k q k k

   

     



         

        

 

( ( ))
(1 ) ( ) ( ( ))

1

( ( ))
( 1) ( )

1

k
q s k k

q

k
s k k

q

 
 

 


     




     


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Therefore, 0 ( ) ( ) ( ) ( 1) 0s k k k s k        

(b) When ( ) ( ) 0k s k   ,  

( )
( ) 0, sgn( ( )) 1

1

k
s k s k

q

 
    


 

Therefore,  

( )
( 1) (1 ) ( ) ( ) (1 )( ) ( ) 0

1

k
s k q s k k q k

q

 
   


          


 

Further,  

( )
( ) 0 ( 1) ( ) ( ) ( ) ( ) ( )

1

k
s k s k s k qs k k k k

q

 
   


           


 

Therefore ( ) ( ) 0 0 ( 1) ( )k s k s k k         

Up to now, the stability proof has been done. The system of Equation (5.1) is stable with the controller of 

Equations (5.5) - (5.7), under certain constraints of Equations (5.9) – (5.11).  

5.3 State Observer 

To generate our control signal, we need not only the position signal but also the velocity signal. In real 

hard disk drives, the only signal we can obtain is PES. Therefore we need to design a state observer to 

obtain the velocity information.  

A full state observer usually has the following form 

 ˆ ˆ ˆ( 1| ) ( | 1) ( ) [ ( ) ( | 1)]x k k Ax k k Bu k L y k Cx k k        (5.16) 
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where ˆ( | )x i j  is the estimation for ( )x i based on the measurements up to time j .The eigenvalues of 

A LC should be all inside of the unit circle for asymptotic stability.  Note that the observer does not 

make use of ( )y k to estimate the state ( )x k .  

Another common state observer with predictor and corrector is introduced 
[4]

: 

Predictor ˆ ˆ( 1| ) ( | ) ( )Ts Tsx k k A x k k B u k    

Corrector ˆ ˆ ˆ( 1| 1) ( 1| ) [ ( 1) ( 1| )]Ts Tsx k k x k k L y k C x k k         

By combining the predictor and corrector, we have 

 
ˆ ˆ( 1| 1) ( ) ( | )

( ) ( ) ( 1)

x k k I LC Ax k k

I LC Bu k Ly k

   

   
 (5.17) 

5.4 Simulation Results 

The whole system for simulation is illustrated in Figure 5.1. The design of the controller is based on the 

nominal model of HDDs, but the simulation is done based on the full-order model including the notch 

filters and the whole benchmark disturbance profile.  

In the simulation, the reference signal is shown in Figure 5.2. We would like to check whether such a 

system has a good transient performance (smaller overshoot, short response time, etc), and a good steady-

state performance under such kind of reference.  The full simulation parameters are listed in Table 5.1. 
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Sliding Mode Controller Notch 
Filter

K 14-order 
Model

Force Disturbance
Sensor Noise

Flutter Disturbance

RRO

ZOHr 



y

Benchmark,
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Closed-loop Gain

A B

C D

 
 
 

State Observer

Figure 5.1 Control Scheme 

 

Figure 5.2 Position Reference and Velocity Reference 

Table 5.1 Simulation Parameters 

Force Disturbance Bound 0.001D   

Sliding Surface 0.9996; 1 / track; 0.0003ay     
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(a) 0s – 0.3s             (b) 0.0090s – 0.0135s       (c) 0.0110s – 0.0135s    

Figure 5.3 Sliding Surface Performance 

The simulation results in Figure 5.3 are based on the nominal model with only force disturbance. Figure 

5.3 indicates that ( )s k  approaches to the sliding surface ( ) 0s k  in finite time, and then stay in a 

specific band. Specifically, Figure 5.3 (c) indicates that ( )s k will change its sign every successive 

sampling period after the system approaches ( ) 0s k  .  

  
(a) 0s – 0.3 s                                                          (b) 0.0095s – 0.025s 

Figure 5.4 Position Signal (Transient Performance) 
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(a). Time Domain                               (b). Frequency Domain 

Figure 5.5 Position Signal (Steady State Performance) 

  
a. Transient Performance                         b. Steady-state Performance 

Figure 5.6 Control Signal 

The simulation is based on the full-order model from Benchmark with full disturbance profile. Figures 

5.4-5.6 compare the results of the sliding mode control and the PID controller provided in Benchmark. 

The results indicate that the sliding mode control has improved both the transient performance (overshoot 

and response time), and the steady-state performance (3Sigma value of PES). 
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6. Preliminary Study on multi-rate nonlinear control for HDDs   

In section 5, a discrete-time sliding mode control is designed; both the transient performance (smaller 

overshoot and reduced response time) and the steady-state performance (smaller 3Sigma value of PES) 

have been improved. In this section, we focus on the track-following process and try to improve the 

steady-state performance by implementing such a sliding mode controller into a multi-rate system.  

6.1 HDD system with increased servo sector numbers 

The motivation to study a HDD system with more servo sectors is to evaluate the discrete time sliding 

mode control scheme for different sampling periods. In the Benchmark Model, the servo sector number is 

220. In this section, we revise the model by increasing the servo sector number to 440. An increased servo 

sector number results in a higher PES sampling rate. The parameters for the original Benchmark model 

and the revised model are listed in Table 6.1. 

Table 6.1 System Parameters 

Number of servo sectors per track  440 servo sectors  

per track 

220 servo sectors  

per track  

Rotational Speed  7200r   

yk  6 -13.937 10 track myk     

vk  -2 -1951.2 ms Avk   

Width of Track  72.54 10 mpT e    

PES Sampling Rate  5

1 1.8939 10 ssT    
5

2 3.7879 10  ssT    

Force Disturbance Sampling Rate  
2 / 2sT  2 / 2sT  

RRO Sampling Rate  
2sT  2sT  

Sensor Noise Sampling Rate  
2sT  2sT  

Flutter Disturbance Sampling Rate  
2sT  2sT  
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First we try to find the equivalent system for different sampling rate. Considering the real dynamics of the 

system (Equation 5.17), we have 

 
( 1) ( ) ( )

( ) sgn( ( )) sgn( ( ))
s s s s

s k s k q k
s k s k s k

T T T T

  
     (6.1) 

where ( ) ( ) ( )sgn( ( )) ( )k H k BD k s k D k    . Note ( )k  contains uncertainty ( )D k . 

To ensure   

 
1 2

( 1) ( ) ( 1) ( )

s s

s k s k s k s k

T T

   
  (6.2) 

the following equation should be maintained: 

 1 2 1 2 1 2

1 2 1 2 1 2

( ) ( )
; ;

s s s s s s

q q k k

T T T T T T

   
    (6.3) 

The parameters for the two approximately equivalent systems are listed in Table 6.2. 

Table 6.2 Control Parameters 

Number of servo sectors 

per track 

440 servo sectors  

per track  

220 servo sectors 

per track 

Force Disturbance Bound 0.001D   

Sliding Surface  0.9996; 1 / track; =0.0003ay    

Plant Parameters  

1

1

1

2

1

1

1

0 1

/ 2

y s

Ts

y v s

Ts

v s

k T
A

k k T
B

k T

 
  
 

 
  
 

 

2

2

2

2

2

2

1

0 1

/ 2

y s

Ts

y v s

Ts

v s

k T
A

k k T
B

k T

 
  
 

 
  
 

 

Observer 
 

1 1 1 2 2 2

1

2{( ) } {( ) }Ts Ts Ts Ts Ts TsI L C A I L C A     

Controller  

Parameters  
1 2 / 2 0    2 1 5 0e     

1 20 / 2 0.0005 1q q     20 0.001 1q    
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1

1

1

( ) 0.019 0.001

max ( ) 0.019Ts

k

H k B

  

 
 

2

2

2

( ) 0.039 0.001

max ( ) 0.039Ts

k

H k B

  

 
 

 

Simulations have been done for the two systems with 220 servo sectors and 440 servo sectors respectively. 

As shown in Figure 6.1, the system with 440 servo sectors has a reduced 3Sigma value of PES. This 

implies that, if the sampling rate of the PES can be increased, the control signal could be updated faster, 

and the 3Sigma of PES can be reduced effectively.  

However, in the real HDD system, the PES sampling rate is highly restricted. Therefore, we would like to 

implement the discrete-time sliding mode control into a Multi-rate System. The basic idea, as shown in 

Figure 6.2, is to update the control signal faster than PES sampling rate. 

 
Figure 6.1 3Sigma Value of PES 
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Figure 6.2 Basic Idea for Multi-rate Control 

6.2 Multi-rate System and Multi-rate State Observer 

To update our control signal faster than PES sampling rate, a multi-rate system needs to be build. As 

shown in Figure 6.3, it includes a fast sampling segment (the controller and the state observer) and a 

slow-sampling segment (the plant).  

 

Figure 6.3 Multi-rate Control System 

This means, some information of PES at inter-sampled points is required to update the control signal. For 

example, if the control signal updating period cT  is half of the PES sampling period sT ,  i.e., 0.5c sT T , 

the PES information is required to update the control signal every cT . But PES is measured every sT . 

Therefore, a multi-rate state observer is necessary to obtain the PES estimation at the inter-sampled points. 
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Such an observer uses one-step prediction based on the nominal model to update our control signal. The 

whole equations are listed as follows. 

 
ˆ ˆ( 0.5 | ) ( | ) ( )

ˆ ˆ( 1| 1) ( ) ( | ) ( ) ( ) ( 1)

Tc Tc

Ts Ts Ts Ts Ts Ts Ts

x k k A x k k B u k

x k k I L C A x k k I L C B u k L y k

  

       
 (6.4) 

 
Figure 6.4 State Observer (Single-rate observer and Multi-rate observer) 

Figure 6.4 provides the simulation and indicates how such an observer works. It includes the measured 

PES, the observed PES by single-rate state observer, and the observed PES by multi-rate observer. As 

shown in the simulation result, better estimation of PES can be acquired through the multi-rate observer at 

most inter-sampled points, while even worse estimation of PES is acquired at other inter-sampled points. 
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7.  Conclusion  

In this project, two kinds of nonlinear algorithms have been proposed and analyzed. 

The first algorithm is nonlinear PID combined with the sliding mode control. The sliding mode control 

works when PES is large and is turned off when PES is small. Furthermore, the nonlinear PID is reduced 

to a linear PID as PES becomes small. Simulation results show that such an algorithm can obtain fast 

transient performance and good steady-state performance. However, this algorithm involves lots of efforts 

on parameter tuning. Stability analysis is also difficult for this algorithm. 

The second algorithm is a pure discrete-time sliding mode control. It combines the track-seeking task and 

track-following task into one control scheme. A boundary layer is introduced to mitigate the chatter and 

stability analysis is provided to ensure a bounded tracking error. Simulation results show that such a pure 

sliding mode control can also obtain a fast transient performance during the track-seeking process and 

keep the 3Signma value of PES small during the track-following process.  

Additionally, some preliminary study on multi-rate system has been done and a multi-rate observer has 

been designed. In the future, we would like to implement such a discrete-time sliding mode control into a 

multi-rate control system, to further enhance the track-following performance of HDDs.   

 


