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1. Introduction

In hard disk drives (HDDs), vibrations caused by abrupt control input variations and other external
disturbances would affect the servo performance seriously and limit the application of HDDs in modern
multimedia devices. Nonlinear control techniques can be potentially applied to enhance servo

performance of HDDs.

One promising algorithm is to combine sliding mode controller and nonlinear PID controller to enhance
the transient performance. When the tracking error is large, sliding mode control and nonlinear PID
control work together to rapidly reduce the error; when the error is small, sliding mode control is turned
off to ensure good steady state performance. As to the nonlinear PID, the tracking error signal will be
utilized to tune the nonlinear integral gain and nonlinear derivative gain, aiming to (1) shorten the settling

time, (2) reduce the peak error, and (3) keep the good steady state performance.

Another promising algorithm is the pure discrete-time sliding mode control. Sliding mode control has
strong robustness to large disturbance and model uncertainty. By unifying tasks such as track-seeking and
track-following into one control scheme, sliding mode control would perhaps reduce possible vibrations
caused by the switching between different control schemes. Furthermore, considering its high frequency
property, sliding mode control can be a promising method to inhibit vibrations, if necessary computations,

for example control law and state estimation, can be handled efficiently in HDDs.

In most HDDs, the Position Error Signal (PES) sampling rate is highly restricted by the number of servo
wedges/sectors, but the control signal can be updated at a faster rate. One potential approach would be to
use multi-rate control techniques to increase the sampling rate of other aspects of the system, such as the
control signal. Such a multi-rate approach can help mitigate vibrations and enhance the servo
performance by reducing the change of control input at each sampling instance. Combining the
aforementioned ideas together, multi-rate nonlinear control can be utilized for enhanced vibration

rejection especially in the steady-state performances of HDDs.



This project aims at developing control schemes that can break current performance limitations during
both track-seeking and track-following processes in HDDs. More specifically, by unifying different tasks
into one control scheme, we aim to reduce the vibrations caused by abrupt control updates; by increasing
the sampling rate of control signals, we seek to develop algorithms to break the bandwidth limitation so
as to enhance the resistance to shocks, external vibrations, etc.,. Limited results on multi-rate nonlinear
control exist in current research literatures. We plan to further develop the multi-rate nonlinear control
technology and extend its application from single-stage to dual-stage HDD products, where the micro

actuator has promising structural superiorities for control engineering.



2. Benchmark Model

The control algorithm studied in this project is based on the Benchmark Model ™. The frequency

response of the nominal model and the full-order model are illustrated as follows.
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Figure 2.1 Bode Diagram of HDD Model from Benchmark

The Benchmark Model also includes a disturbance profile, including the force disturbance, flutter
disturbance, sensor noise and repeatable run-out (RRO) disturbance. The disturbances in both the

frequency domain and the time domain are illustrated as follows.
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Figure 2.2 Disturbance Data from Benchmark



The whole control system is shown as follow, which includes the plant, the controller and the state

observer.

Disturbace l

r(k)
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T
State y(K)

S
g Observer
]

Figure 2.3 Control System

Some physical parameters in the Benchmark model are listed as in Table 2.1.

Table 2.1 Parameters of the Benchmark Model

PES sampling rate T, =3.7879x10° s
Position measurement gain k, =3.937 %x10° track - m™
Acceleration constant k, =951.2 ms?A™
Rotational speed r=7200
Number of servo sectors per track n=220
Width of track T,=254e-7m

References

[1] http://mizugaki.iis.u-tokyo.ac.jp/nss/




3. Introduction to Sliding Mode Control (SMC)

Sliding mode control is a central approach used in this project. This section provides a brief overview of

the theoretical backgrounds.
Consider the system

é= f(e)+b(e)u (3.1)

de, d" Ve

PTG ', e is PES, f(e)and b(e) are nonlinear or linear

where e=[e, ¢ ...e "] =[g,

functions, and U is the control signal.

Define
s(e;t) = (i+/1)”‘1e (3.2)
’ dt ' '

where A is a strictly positive constant. Specially, for n=2,
s(e;t) =€, + 1e (3.3)

Noting that s(e;t) =0 represents a linear differential equation whose unique solution is e =0. Denote

the set as S [1{e|s(e;t) = 0}. One of the advantages of sliding mode control is to transform an n"-order

tracking problem over e into a 1°-order stabilization problem over .

The control signal u can be designed to realize that, when Sis outside of S,

1d ,
——S"<-|S 3.4
> a0t nls| (3.4)



where 77 > 0. Equation (3.4) is known as the sliding condition. This implies the sliding surface s=0
will be reached in a finite time shorter than | s(0) | /7. Thatis, t <|s(0) | /7 . After hitting the

* “phasel

sliding surface, the tracking error converges exponentially to zero, with a time constant(n—1)/ A .

A boundary layer, defined by {s:| s |= @} with thickness ¢, is usually introduced to inhibit the chatter

caused by the sliding mode control. The relationship between the thickness of the layer and the magnitude

bound of the actual errors can be obtained as follow:

vt>t,,[s(t)Kg= Vt>t,|e(t)|<(21)'¢,i1=0,1,2,...,n (3.5)

where & =¢/ A", Detailed derivations are provided in Reference [1].

€,

Phase 1: t(77)
phase 2:1(A)
s(0) Desired Point 2!

Figure 3.1 Approaching phases (Phase 1) and Sliding phase (Phase 2)

Reference

[1] Jean-Jacques E. Slotine, Werping Li, Applied nonlinear control, Prentice Hall, 1991



4. Nonlinear PID Combined with Sliding Mode Control

4.1 Basic ldea

Sliding Mode Control is well-known for its high-gain control nature and good robustness, but it has
several disadvantages such as chatter and less direct control over steady-state performance. Therefore, in
this section, the following combination of the SMC and the nonlinear PID control is proposed: when PES
is large, the sliding mode control and the nonlinear PID control work together to rapidly reduce the error;
when PES is small, the sliding mode control is turned off to ensure good steady state performance. As the
PES becomes smaller, the nonlinear PID is reduced to a linear PID to keep the good steady state

performance of a baseline PID control. The basic idea can be illustrated in Figure 4.1.

Sliding + Nonlinear PID u_ +u,

r
/\
PES [\
[
f \ o smooth
Nonlinear PID 1, f

Monlinear PID
becomes
linear PID

Figure 4.1 Basic Idea of Nonlinear PID and Sliding Mode Control

The whole controller structure can be expressed as

u=u,(e)+pe)u(e) (4.1)
where €, is PES, u,(€,) is the nonlinear PID controller, u,(€,) is the sliding mode controller, p(e;) isa
scaling coefficient to control the contribution of SMC, respectively. Based on the idea in the previous

paragraph, we design p(e,) as follow



(e)_{ 0 le®Ice, “2)
Sl (ORI |
and we design u, (k) and u, (k) as follows
u,(k) =K e (k) + K;(e (k))e (k) + K, (&, (k))e, (k) (4.3)
u, (k) = K,sat(s(k) / ¢) (4.4)

where s(k) =c(e (k))e, (k) +e, (k) ; e,(k)=(e(k)—e(k—1))/T, is the derivative of e (k) ; and

k
e (k) =T, > e (j) isthe integration of e (K).

j=0
Remarks:

1. p(e,) =0when | e, (k) |=e;, and u,(e ) is turned off when | g (K) |<e;. This can realize the smooth

turn-off of the sliding mode control.

2. The sign(s(k)) has been replaced by the sat(s(k) / ¢) to inhibit chatter.

3. K;(e,(k)) and K (e,(k)) are selected to be error based functions to obtain small overshoots and fast

transient.

4.2 Remarks on Parameter Tuning

In this section, three parameters K, (,(k)), K, (e,(k)), and c(e,(k)) are analyzed.

First, consider the design of K, (e (k)) to yield small overshoot, fast transient, and good steady-state
performance. Several literature results ™ have suggested the following design concept: when the

tracking error is small, K, (e, (k)) is preferred to be large; when error is large, K, (e (k))can be small.

Therefore we choose

10



K; (e, (k)) =K, (-, sech(B / e,(k)?) (4.5)

Denote g, (e,(k)) =1-«; sech(3 / e,(k)?) . After K, design, we would like to tune K slightly through
g, (e,(k)) . The relationship between g; (e, (k)) and e, (k) has been illustrated in Figure 4.2. When ¢, (k)

is small, g;(e,(k)) is 1 and the nonlinear K; (e, (k)) reduced to a constant K, .

. \
. [\
/ \

0.6 / \

0.5

g,e()

0.4
5 -4 -3 2 B

1 2 3 4 5

e(ok)
Figure 4.2 g;(e,(k)) and e, (k)

As to the design of K, (e (k)) to reduce the response time, K, (€, (k)) is preferred to be large when error

is large and increasing; K, (g,(Kk))is preferred to be small when error is large and decreasing. Such a

tuning rule is illustrated in Figure 4.3. Based on this idea, K (e, (k)) is designed as ™

Figure 4.3 K, (e (k))
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Kao (1+a,sech(B, 1,(k)?)) if e (k)e, (k) >0
Ky (&, (k) = (4.6)
Kdo(l_ad sech(B, /e,(k)?) )if e (k)e, (k) <0

94, (e(K)
A
N

9y(e(k)

Figure 4.4 g, , and e (k)

Denote g,, =1+, sech(, /e, (k)?) andg,, =1—a, sech(s3, /e (k)?), as shown in Figure 4.4,

When ¢, (k) is small, we can see that g, , (€ (k)) reduce to 1and K (g (k)) becomes a constant K, .

Additionally, c(k) is designed as a error-based function,

kmumax /|e1(k)| If |el(k)| > C5

] (4.7)
k,U.,/Cs  otherwise

c(e, (k) ={

where K, U, and C; are design parameters.

m? Ymax
To summarize, the whole controller can be expressed by the following equations:
u=u,(e)+p(e)u,(e)

where

0 le(k)<e,

p(el):{||e1(k>|—e5| e, (e,

12



0, (K) = K., () + K (&, (K))e, (K) + K, (& (K))e, (K)
u, () = K sat(s(k) / ¢)
s(K) = c(k)e, (K) +e, (k)

KnlUno /[&(K)] i [e,(K)|>C,
K, Unx /Cs  Otherwise

c(e, (k) ={

K, (&,(K)) = K, (L-a; sech(B /& (k)?)

Ko (1+ g sech(B, /2 (k))) if & (k)e, (k) >0

K, (e (K)) = S
Kyo (1-ay sech(B, /€7 (k) ) if e (K)e, (k) <O

4.3 Simulation Results

Large Disturbance

)

Flutter Disturbance

Sensor Noise
Force Disturbance

Benchmark:PID

v=

Notch 14-order
Filter Model

Closed—loop Gain

Controller

ADDED :
1. nonlinear PII

2. sliding mode [A B]

Benchmark,
denoted as C D

Figure 4.5 Control System

To examine the transient performance and the resistance against sudden large disturbance of the control
algorithm, some simulation results are provided in this section. The whole system for simulation is shown

in Figure 4.5. It includes the full-order model, the notch filters, and the disturbance profile from the

13



Benchmark. Additionally, large impulse input disturbance has been added to evaluate the performance.

The simulation parameters are listed in Table 4.1.

Table 4.1 Simulation Parameters

Coefficient of sliding mode control e, =0.05
p(e)
Sliding mode controller #=0.05
U K,=2
Sliding surf % =02
iding surface _
s(K) Upax = 0.25
k,=8
K =2

Nonlinear PID control

U K, =0.05 ¢, =0.5; B =2

Kio =70,y =0.2; B, =2

n

For all the figures in this section, the X-axis unit is ‘time / s’ and the Y-axis unit is ‘position / track’.
(a) Effect of K. (e, (k))
To analyze how the nonlinear K (e, (k)) affects the performance, the simulation results for systems with

nonlinear K; (,(k)) and constant K,,are compared in Figures 4.6 and 4.7. It shows that the system with

nonlinear K;(e;(k)) has reduced response time in Figure 4.6; while it still keeps good steady-state

performance in Figure 4.7.

14
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Figure 4.6 Track-Seeking with step input
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Figure 4.7 Track-following with large input disturbance

Analogous to the previous paragraph, the simulation results of the systems with the nonlinear K, (¢, (k))

and a constant K, are compared in Figures 4.8 and 4.9. It is shown that the system with nonlinear
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K, (e,(k)) has reduced response time and smaller overshoot in Figure 4.8, while it still keeps good

steady-state performance in Figure
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Figure 4.8 Track-Seeking with input
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Figure 4.9 Track-following with large input disturbance

As mentioned before, the track-seeking performance can be further improved if c(e (k)) is designed

properly. Simulation results among different controllers are compared in Figures 10 and 11: linear PID,

nonlinear PID plus SMC with time-varying sliding surface, nonlinear PID plus SMC with time-invariant

16



sliding surface, linear PID plus SMC with time-varying sliding surface, and linear PID plus SMC with

time-invariant sliding surface. The simulation results indicate that the nonlinear PID plus SMC with time-

varying sliding surface performs best in the track-seeking process, and keeps good robustness in the track-

following process.
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Figure 4.10 Track-Seeking Performance with Large Disturbance
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Figure 4.11 Track-Following Performance with Large Disturbance

17



Large Disturbance

0.014

o012~

Disturbance
°
4

0.006 [—

T T T T T

L L L L L

0.1

0.2

0.3 0.4 0.5 0.6 0.7
time

(a) Large Input Disturbance

linear & nonlinear control

T T T T T

position

reference
— performance for linear PID
performance for nonlinear control

[ [ [ [ [

0.1

0.2

lingar & noniiear control

0.3 0.4 0.5 0.6 0.7
time

(b) Position Signal (from Os to 1s)

linear & noriingar contol

position

[

[

T

T T T T T

4l
i 006

(c) Position Signal (from 0.04s to 0.16s )

008

[

time

T

T T T

e
—— pemare e P
— petmace e ol

1 [ [

c
9
]
0
a
I+
e N
—— peomaee frlesr PD
—— prtmence b o contl
Tl
L L [ [
o o 0 [ 02

0% 03 0
time

Figure 4.12 Nonlinear PID combined with Sliding Mode Control

(d) Position Signal (from 0.29s to 0.43s)
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In Figure 12, the overall tack-following and track-seeking performances have been compared between the

PID controller and the nonlinear controller described in Equation (4.1).

Some remarks are obtained from the simulation.

1. Compared with the original PID controller, the nonlinear controller has stronger resistance to sudden
disturbances. Furthermore, it can obtain smaller overshoot and faster response during the track-seeking

process.

2. The parameters in K;and K, should be tuned very carefully. If not, either the performance or the

control signal may become worse.
3. The stability proof is difficulty due to the nonlinearity of the controller.
References

[1] Basel M. Isayed and Muhammad A. Hawwa, “A Nonlinear PID Control Scheme for Hard Disk Drive

Servo systems”, 2007 Mediterranean Conference on Control and Automation, July, 2007, Greece

[2] Ying Li, Guoxiao Guo, and Youyi Wang, “A Nonlinear Control Scheme for Fast Settling in Hard

Disk Drives”, IEEE Transactions on Magnetics, Vol. 40, No. 4, July 2004, 2086-2088
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5. Discrete-time Sliding Mode Control
5.1 Controller Design

In this section, a pure sliding mode control is designed to unify the track-seeking task and track-following
tasks into one control scheme, aiming to improve both the transient performance and steady-state

performance of HDDs.
The discrete-time nominal model from Benchmark can be written as

e(k +1) = Ae(k) + B(u(k) + D(k))

y(K) = Ce(k) e

1 kT kkT?/2 k
where A= yeB=l VY ! ,C=[1 0],ek) = &(k) ; D(k) denotes the model
0 1 kT, e,(k)

uncertainty and disturbance. The sliding surface s(k) =0 is designed as

k
s(k) = H (k)e(k) = (h, (k) 1)(:1;(;) =0 (5.2)

If the model is exactly known and there is no disturbance, which means D(k) =0, the controller is

designed as
u(k) = ug (k) =—[H (K)BI"[H (k) A— (L~ a)H (k ~D)Je(k) (5.3)

Plugging Equation (5.3) into Equation (5.1),

s(k+1) = (1—-q)s(k) (5.4)

For 0<g<1, s(k) >0 as k — oo, which means the system will approach to the sliding surface and

stay on it.

20



However, in the real case, D(k) is always nonzero. Here it is assumed to be bounded by | D(K) |< D .

The controller is designed @ as

(k) = Uy (K) + Uy, (K) (55)
U, (k) = H ()BT [H () A (L-G)H (k ~De(K) (5.6)
U, (k) =—[H (B [D(K) + ] sgn(s(K)) (5.7)

where U, (K) is to compensate the uncertainties. Plugging Equations (5.6) and (5.7) into the system, we

have

s(k+1) = 1-0q)s(k) - (s + y(k))sgn(s(k)) (5.8)

The parameters in Equations (5.5)-(5.7) should satisfy the following conditions

p(k) > ||H(k)B|| (5.9)
>0 (5.10)
0<qg<1 (5.11)

In Section 5.2, it will be shown that the controller (5.5) - (5.7) can make the system approach to and stay

in a specific band centered at the sliding surface.

Additionally, motivated by the idea of approximate time-optimal control, Reference [2] has suggested a

method to modify the sliding surface, by setting h, an error-based function:

2k I (k, |e,(k k
o | V2Kt G 00D K>, 512
J2kau, [(ky,) e ®|<y,

21



The relationship between h, (k) and e, (k) is shown in Figure 5.1. Certain advantages can be shown in

such a sliding surface. For example, by using |e1(k)| sgn(e, (k)) instead ofe, (k), s(k) will not become

unexpected large, and thus the control signal would not become unexpected large.

Gy

0 ya |el|
Figure 5.1 h (k) and ¢ (k)

5.2 Stability Analysis

For discrete-time sliding mode control, there are several types of stability conditions from literature.

1). s(k)- As(k) <0 By Dote & Hoft, 1980
2).|s(k+1)|<|s(k)| By Sarpturk, et al, 1987

3). v(k +1) —v(k) < 0 with v(k) = s?(k) / 2

Actually (1) is not enough to conclude Lyapunov stability. (2) and (3) are essentially equivalent. Each of
them can be explained as this: if s(k) >0, —2s(k) <As(k) <0; if s(k) <0, 0<As(k) <—-2s(k). The
two kinds of conditions can ensure that s(k) goes zero. However, it is rather difficult to design a

controller to satisfy the conditions (2) or (3). Gao etc., proposed another kind of conditions in 1995 &,

explained as follows.

22



If s(k) > A, then —A <s(k+1) <s(k)
4).<1f s(k) <—A, thens(k) <s(k+1) <A
If | s(k)|< A, then|s(k+1) |< A

The above equations describe the following conditions

Al. Starting from any initial point, the trajectory will move monotonically toward the switching plane and
cross it in finite time

A2. Once the trajectory has crossed the switching plane the first time, it will cross the plane again in
every successive sampling period, resulting in a zigzag motion about the switching plane .

A3. The trajectory stays within a specific band.

It is easier to design a controller satisfying condition (4), to ensure that e(k) is bounded. But it does not

ensure that s(k) converges to zero.

Through plugging the controller of Equations (5.5)-(5.7) into the system, the following conclusion can be

obtained:

s(k) > A(K) = —A(K) < s(k +1) < s(K)
s(k)<—AK) = s(k)<s(k+1) <A(K)

—A(k) <s(k) <0=0<s(k+1) <A(k) 5.13)
0<s(k)<Ak) = —Ak)<s(k+1)<0
which means s(k) is bounded by A(k), where
Ay = E7K) p ety (5.14)
1- 1-q
7 (k) =—H(k)BD(k)sgn(s(k)) + Dp(k) < (5.15)

The detailed proof of stability (Equation 5.13) is as follows:
1*: We want to show s(k) > A(k) = —A(K) <s(k+1) <s(k)
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when s(k) > A(k) = %yék) >0, sgn(s(k)) =1, Equation (5.8) becomes
s(k+1)=@A-a)s(k)—&—r(k) > (1—Q)%y;k)—€—7(k) =0

s(k+1) =s(k) —gs(k) —&—y (k) <s(k)

Therefore 0 < s(k +1) < s(k).
2" Similarly, s(k) <—A(k) = s(k) <s(k+1) < A(K)
3 We want to show | s(k) [< AK) = | s(k+1) |< AK)

(@) when 0<s(k) < A(k),
0<s(k) < %73() sgn(s(k)) =1, s(k +1) = A-q)s(k) —&—y(k)
Therefore
s(k+1) < (1—q)%7;k)—g—y(k) =0

Further,

s(k)>0
= (1-g)*s(k) > 0= (1-q)*s(k) — (e + 7(K)) > —( + ¥(K))
= (1-0)*s(k) — (e + y(K)) +a(e + y(K)) > ~(e + y(K))

= @-a)s(9 (e + () > - 17

= s(k+1) > ——(EIV L)Y
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Therefore, 0 <s(k) <A(k) = —A(k) <s(k+1) <0

(b) When —A(k) <s(k) <0,

—51+—7/(k) <s(k) <0,sgn(s(k))=-1

Therefore,
s(k+1) =@1—-q)s(k)+e+y(k)>@1- q)(—%y((]k)) +e+y(k)=0

Further,

s(k) <0 => s(k +1) = s(k) — qs(k) + & + 7(K) < & + (k) < ‘91+—7(k) = A(K)

Therefore —A(k) <s(k) <0 = 0<s(k+1) <A(k)

Up to now, the stability proof has been done. The system of Equation (5.1) is stable with the controller of

Equations (5.5) - (5.7), under certain constraints of Equations (5.9) — (5.11).
5.3 State Observer

To generate our control signal, we need not only the position signal but also the velocity signal. In real
hard disk drives, the only signal we can obtain is PES. Therefore we need to design a state observer to

obtain the velocity information.
A full state observer usually has the following form

R(k +1| k) = AR(k | k =1) + Bu(k) + L[ y(k) — C&(k | k =1)] (5.16)
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where X(i| j) is the estimation for x(i) based on the measurements up to time j .The eigenvalues of

A— LC should be all inside of the unit circle for asymptotic stability. Note that the observer does not

make use of y(k)to estimate the state x(k) .
Another common state observer with predictor and corrector is introduced :

Predictor R(k +1| k) = A &(k | k) + B,.u(k)

Corrector X(K+1|K+1) = R(k +1| K) + Ly, [y(k +1) —C, (K +1| K)]

By combining the predictor and corrector, we have

R(k +1|k +1) = (1 — LC)AR(k | k)

(5.17)
+(1 = LC)Bu(K) + Ly(k +1)

5.4 Simulation Results

The whole system for simulation is illustrated in Figure 5.1. The design of the controller is based on the
nominal model of HDDs, but the simulation is done based on the full-order model including the notch

filters and the whole benchmark disturbance profile.

In the simulation, the reference signal is shown in Figure 5.2. We would like to check whether such a
system has a good transient performance (smaller overshoot, short response time, etc), and a good steady-

state performance under such kind of reference. The full simulation parameters are listed in Table 5.1.
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Table 5.1 Simulation Parameters

Force Disturbance Bound

D =0.001

Sliding Surface

o =0.9996; y, =1/ track; ¢ = 0.0003

Controller

0<q

c=1e-5>0
=0.001<1
p(k)=0.04 > max(|| H (k)B||) =0.039

27




X’ i’ x10°

3 T T T T T T T T T T T T T T T 4 [ T T T T T
—s ) — —s
2 —Deta —Dela —Deta
-Deta ) Dela 3 -Deta
1 1610 780 €10
(fmrat AN
2 |-
1 1
2 2 1
3
3 ) \NW\/\/\/\/\M | \ W \N\(\/ ‘ A
4 WA
4
5 Ak
5
6 L r r r r L L r r L r r L L r r r L r r

0 005 01 05 02 05 03 0B 0.0095 001 0.0105 0.01L 00115 0.012 00125 0013 0.013 0.0115 0012 00125 0013 0.0135
ime / sec fime / sec time / sec

(a) Os — 0.3s (b) 0.0090s — 0.0135s  (c) 0.0110s — 0.0135s

Figure 5.3 Sliding Surface Performance

The simulation results in Figure 5.3 are based on the nominal model with only force disturbance. Figure

5.3 indicates that s(k) approaches to the sliding surface s(k) =0 in finite time, and then stay in a
specific band. Specifically, Figure 5.3 (c) indicates that S(k) will change its sign every successive

sampling period after the system approachess(k) =0.

12 T T T T T T T F\\ T T T
10+~ 4 it e L T Y 5 u g - 10+ i " \,,Ww S |
8- E sl |
X | X
Q Q
© 6 N ]
=] 5 6¢ E
~ ~
[} [}
w 4r 7 w
o o gt i
2 Position Signal of PID control A Position Signal of PID control
Position Signal of sliding mode control 9l Position Signal of sliding mode control | |
Reference | Reference
o« Reference +/- 0.1 track ] }‘ Reference +/- 0.1 track
[ 4
_2 r r r r r L r r L il
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.01 0.015 0.02 0.025
time / sec time / sec
(@) 0s-0.3s (b) 0.0095s — 0.025s

Figure 5.4 Position Signal (Transient Performance)



Control Signal

3 U U T 3 U T 3 U

— PID control signal

-0.04

(S r r r r r r r L El

0.0095 0.01 0.0105 0.011 0.0115 0.012 0.0125 0.013 0.0135
time / sec

0.025

3 T T 3 T T

Control Signal

105y ’ 36 = 0046282
— Position Signal of PID control — 3¢ = 0.042303
104} Position Signal of sliding mode control |
Reference 0.02 1
103 Reference +/- 0.1 track b
$ 102 1 0.015 1
g
r I
~ 101 i -
N O ‘
0 H M f 0
m /“4 \ w iy | w\ﬂiﬁ‘w ok - ]
TR
TR
9.9 8 .
0.005 b
98 b
971 1
0.018 0.02 0.022 0.024 0.026 0.028 0.3 0.032 0.034 0.036 00 2000 4000 6000 8000 10000 12000 14000
time / sec
(@). Time Domain (b). Frequency Domain
Figure 5.5 Position Signal (Steady State Performance)
X 10°
003 Control Signal of Sliding Mode Control || 251 Control Signal of Sliding Mode Control

— PID control signal

0.1234 0.1236 0.1238 0.124 0.1242 0.1244 0.1246 0.1248
time / sec

a. Transient Performance b. Steady-state Performance
Figure 5.6 Control Signal

The simulation is based on the full-order model from Benchmark with full disturbance profile. Figures
5.4-5.6 compare the results of the sliding mode control and the PID controller provided in Benchmark.
The results indicate that the sliding mode control has improved both the transient performance (overshoot

and response time), and the steady-state performance (3Sigma value of PES).
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6. Preliminary Study on multi-rate nonlinear control for HDDs

In section 5, a discrete-time sliding mode control is designed; both the transient performance (smaller
overshoot and reduced response time) and the steady-state performance (smaller 3Sigma value of PES)
have been improved. In this section, we focus on the track-following process and try to improve the

steady-state performance by implementing such a sliding mode controller into a multi-rate system.

6.1 HDD system with increased servo sector numbers

The motivation to study a HDD system with more servo sectors is to evaluate the discrete time sliding

mode control scheme for different sampling periods. In the Benchmark Model, the servo sector number is

220. In this section, we revise the model by increasing the servo sector number to 440. An increased servo

sector number results in a higher PES sampling rate. The parameters for the original Benchmark model

and the revised model are listed in Table 6.1.

Table 6.1 System Parameters

Number of servo sectors per track 440 servo sectors 220 servo sectors
per track per track
Rotational Speed r=7200
K, k, =3.937x10° track-m*
k, k, =951.2 ms?A*
Width of Track Tp =254ex10" m
PES Sampling Rate T, =18939x10°s T, =3.7879x107 s
Force Disturbance Sampling Rate T,/2 T,/2
RRO Sampling Rate T, T,
Sensor Noise Sampling Rate T, T,
Flutter Disturbance Sampling Rate T, T,
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First we try to find the equivalent system for different sampling rate. Considering the real dynamics of the

system (Equation 5.17), we have

s(k+1)—s(k) _

S

s(k) £ sgn(s() - (k )sgn(s(k»

S

where y(k) =—H(k)BD(k)sgn(s(k)) + Do(k) . Note y(k) contains uncertainty D(K).

To ensure

s(k+1) - s(k) _

s(k +1) —s(k)

the following equation should be maintained:

Tsl TsZ
4@ _%.& _8&. 7(K)
sl TSZ sl TsZ Tsl

~ 7,(K)

s2

The parameters for the two approximately equivalent systems are listed in Table 6.2.

Table 6.2 Control Parameters

(6.1)

(6.2)

(6.3)

Number of servo sectors
per track

440 servo sectors
per track

220 servo sectors
per track

Force Disturbance Bound

D =0.001

Sliding Surface

a =0.9996; y, =1/ track; $=0.0003

Plant Parameters

1 k[T
_ y 'sl
weo 1)

. [kykggl /2}
S

1 kT
— y 's2
Ao 1)

B, [Mhn;/zJ

vas vasz
Observer 1
(1 =Ly Co )AL 3= (M1 - L, Cr )AL 3)?
Controller &=¢6,12>0 =1e-5>0
Parameters
0<q,=0,/2=0.0005<1 0<q,=0.001<1
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pi(k) =0.019+0.001 p,(k)=0.039+0.001
>max||H, (k)B, | =0.019 | >max|H,(k)B, | =0.039

Simulations have been done for the two systems with 220 servo sectors and 440 servo sectors respectively.
As shown in Figure 6.1, the system with 440 servo sectors has a reduced 3Sigma value of PES. This
implies that, if the sampling rate of the PES can be increased, the control signal could be updated faster,

and the 3Sigma of PES can be reduced effectively.

However, in the real HDD system, the PES sampling rate is highly restricted. Therefore, we would like to
implement the discrete-time sliding mode control into a Multi-rate System. The basic idea, as shown in

Figure 6.2, is to update the control signal faster than PES sampling rate.
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Figure 6.2 Basic Idea for Multi-rate Control

6.2 Multi-rate System and Multi-rate State Observer

To update our control signal faster than PES sampling rate, a multi-rate system needs to be build. As

shown in Figure 6.3, it includes a fast sampling segment (the controller and the state observer) and a

slow-sampling segment (the plant).

Disturbace
r(k) ©
N - - ) Wi

- Controller r —-17.(_)H |——| Plant l—}

[ sme | ¥R

Observer
T I5=2Tc
Fast-sampling segment Slow-sampling Segment

Figure 6.3 Multi-rate Control System

This means, some information of PES at inter-sampled points is required to update the control signal. For

example, if the control signal updating period T, is half of the PES sampling period T,, i.e., T, =0.5T,

the PES information is required to update the control signal every T.. But PES is measured everyT,.

Therefore, a multi-rate state observer is necessary to obtain the PES estimation at the inter-sampled points.
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Such an observer uses one-step prediction based on the nominal model to update our control signal. The

whole equations are listed as follows.

R(k +0.5|k) = A _R(k | k) + B,.u(k)

R(k+ 11K +1) = (1 = Ly, Cry ) AL &(K [ K) + (1 = L Cr)BLu(k) + Ly y(k +1) o

sliding mode control (multi)

0.1F 13 T 3 13 13 13 T =
observed PES (multi-)
observed PES (single-)
measured PES

0.05

o

-0.05

PES & observed PES

)
&

-0.15= r r r r r r r -
0.0102 0.0104 0.0106 0.0108 0.011 0.0112 0.0114

time / sec
Figure 6.4 State Observer (Single-rate observer and Multi-rate observer)

Figure 6.4 provides the simulation and indicates how such an observer works. It includes the measured
PES, the observed PES by single-rate state observer, and the observed PES by multi-rate observer. As
shown in the simulation result, better estimation of PES can be acquired through the multi-rate observer at

most inter-sampled points, while even worse estimation of PES is acquired at other inter-sampled points.
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7. Conclusion

In this project, two kinds of nonlinear algorithms have been proposed and analyzed.

The first algorithm is nonlinear PID combined with the sliding mode control. The sliding mode control
works when PES is large and is turned off when PES is small. Furthermore, the nonlinear PID is reduced
to a linear PID as PES becomes small. Simulation results show that such an algorithm can obtain fast
transient performance and good steady-state performance. However, this algorithm involves lots of efforts

on parameter tuning. Stability analysis is also difficult for this algorithm.

The second algorithm is a pure discrete-time sliding mode control. It combines the track-seeking task and
track-following task into one control scheme. A boundary layer is introduced to mitigate the chatter and
stability analysis is provided to ensure a bounded tracking error. Simulation results show that such a pure
sliding mode control can also obtain a fast transient performance during the track-seeking process and

keep the 3Signma value of PES small during the track-following process.

Additionally, some preliminary study on multi-rate system has been done and a multi-rate observer has
been designed. In the future, we would like to implement such a discrete-time sliding mode control into a

multi-rate control system, to further enhance the track-following performance of HDDs.
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