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Abstract

This paper describes steady-state ensembles of thermally excited electromagnetic radiation
in nano-scale layered media with a constant non-vanishing heat flux across the layers. It is
shown that Planck’s law of thermal radiation, the principle of equivalence, and the laws of
wave propagation in layered media, imply that in order for the ensemble of thermally excited
electromagnetic fields to exist in a medium consisting of a stack of layers between two half-
space, the net heat flux across the layers must exceed a certain threshold that is determined by
the temperatures of the half spaces and by the reflective properties of the entire structure. The
obtained results provide a way for estimating the radiative heat transfer coefficient of nano-scale
layered structures.

1 Introduction

While heat conduction is usually described by the heat equation based on Fourier’s Law, this law

has been validated only for cases in which the kinetic theory applies. In particular, this theory

requires that the dimensions of the regions under consideration significantly exceed the mean free

path of heat carrying particles. In nano-scale applications these conditions are often not satisfied.

We are concerned here with heat transfer in layered systems in which the thicknesses of the layers

may be only a few nanometers, as for example in the proposed heat assisted magnetic recording

(HAMR) systems where the layers can be smaller than 5 nm. In these systems the Fourier Law

does not apply, and therefore, the heat transfer models used to design them must be re-examined.

It has long been established that heat can be carried by waves [1, 2]. Thus, in dielectric solids,

thermal energy is stored in lattice vibrations and heat is carried by waves of lattice vibrations, which

are essentially mechanical waves similar to those studied in seismology, acoustics, or structural

mechanics, for example. Heat carrying elastic waves are characterized by angular frequencies of the

order of ∼ 1012/s, wave speeds of the order of ∼ 103m/s, and wavelengths of the order of a few

nanometers. When the dimensions of the regions under consideration substantially exceed these

wavelengths the waves can form wave packets that can be treated by kinetic theory and hence the

heat conduction can be described by the heat equation based on Fourier’s Law.

Heat can also be carried by electromagnetic waves radiated by atoms performing thermal mo-

tion. Indeed, when the electric charges contained in atoms accelerate they radiate electromagnetic
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waves that pass part of their energy to other charged particles, which accelerate and heat the

medium around them. This mechanism of heat transfer is referred to as radiative transport, and

since electromagnetic radiation can propagate long distances even in vacuum, it dominates the

heat exchange between bodies separated by considerable distances. The heat carrying electromag-

netic waves radiated by a material at room temperature have angular frequencies of the order of

∼ 1015/s, wave speeds of about ∼ 3 × 108m/s, and wavelengths of the order of ∼ 0.5µm – 5µm,

which considerably exceeds the dimensions of nanoscale devices but is negligible compared even to

many micro-electronic devices.

If the intensity of a wave field has a negligible variance within a distance considerably exceeding

the dominant wavelength, then this field can be represented in terms of wave packets that appear

as localized particles of a dimension at least one order of magnitude bigger than the dominant

wavelength [3, 4]. In such cases the wave packets carry heat in a manner similar to particles of

an ideal gas studied in classical kinetic theory, [5]. However, since the kinetic theory is valid only

when the dimensions of the particles are considerably smaller than the characteristic dimensions of

the domains, the latter should be at least two orders of magnitude larger than the wavelengths of

heat carrying wave packets. Therefore, the kinetic theory, Fourier’s law, and the heat conduction

equation describe heat transport by elastic and electromagnetic waves only when the characteristic

dimensions are larger than ∼ 10−7m and ∼ 10−5m, respectively. Correspondingly, in order to

study radiative heat transport in domains smaller than a few microns, or to study heat transport

by elastic waves in domains smaller than about a hundred nanometers, it is necessary to take into

account specific features of the waves, which are lost in the wave-packet representations of wave

fields.

Both elastic and electromagnetic waves are described by the wave equation, which has been

studied for more than two centuries. However, most of the studies have been focused on single

waves, and little is known about statistical ensembles of heat carrying waves. In this work we

study the statistical ensembles of wave fields in a system of two half spaces separated by a stack of

layers of nanoscale thickness. For definiteness we consider only ensembles of electromagnetic waves

and hence we focus on thermal radiation, but all of the results can be extended to ensembles of

elastic waves, and therefore to thermal conduction.

The analysis starts from the description in Section 2 of ensembles of electromagnetic fields in

a homogenous space. First we summarize the results of [6] describing ensembles of plane waves

in a homogeneous space with a steady heat flux without a temperature differential. Plane waves,

however, are not suitable for the analysis of wave fields in layered structures because such waves

do not satisfy the interface conditions. So, in order to consider such structures, we also construct

ensembles of wave fields with a steady heat flux consisting of pairs of the plane waves, which easily

fit any interface conditions in a layered medium .

In Section 3 we study ensembles of electromagnetic waves in a layered structure consisting of

two half-spaces x > H and x < 0 separated by a stack of layers occupying the region 0 < x < H.

We assume that the half-space x > H has the temperature T = T+ and that the radiation in this

domain has a steady heat flux Q parallel to the x-axis. Using the results of Section 2 we model such

radiation by a statistical ensemble of the pairs of plane waves in x > H. Then, continuing each of

these pairs across the layers to the domain x < 0, we induce an ensemble of waves in x < 0, which

also has the same heat flux Q. Therefore, the question arises whether this induced ensemble can be
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identified with an ensemble of wave fields in x < 0 with a given heat flux Q and some temperature

T−. This question is studied in the main part of Section 3 where it is shown that such identification

is possible only when the temperature differential ∆T = T−−T+ reaches a certain level determined

by the heat flux Q. As a result, we get the description of an ensemble of electromagnetic waves in

a system of half-spaces separated by layers with a steady heat flux.

The main part of the paper heavily uses the theory of wave propagation in layered media that

is well described in acoustics, geophysics, radio science and mathematics literature [7, 8]. However,

since this theory is not commonly used in thermal science, its most important results for our needs

are summarized in two appendices.

Appendix 1 describes basic electromagnetic fields in a system of two half-spaces x < 0 and

x > H separated by a stack of layers. In the half-space x > H the basic fields can be represented

by a superposition of two plane waves propagating along the directions e = (ex, ey, ez) and e′ =

(−ex, ey, ez), with ex ≥ 0. Similarly, in x < 0, the basic fields consist of the pairs of plane waves

propagating along d = (dx, dy, dz) and d′ = (−dx, dy, dz), with dx ≥ 0. In order for the two pairs

of plane waves propagating in the different half-spaces to be part of a field in the entire space,

the parameters of these pairs must be connected by certain conditions, which are formulated in

terms of the reflection coefficient of the stack of layers. Since the reflection coefficient of a stack

of layers appears as a critical parameter determining the structure of electromagnetic fields in a

layered structure, Appendix 2 describes an efficient recursive algorithm [7], which makes it possible

to compute the reflection coefficient of an arbitrary stack of layers. The rest of this appendix

discusses several examples illustrating quantitative properties of this coefficient that are important

for understanding ensembles of electromagnetic fields in layered structures.

2 Ensembles of electromagnetic fields in a homogeneous space

It is well known that a thermally excited electromagnetic field in an unbounded homogeneous

medium can be represented in terms of plane waves with the electric field

E =

√
2

ϵ
P (ω, T )eiω(exx+eyy+ezz)/c+iβ−iωtn, (2.1)

where ϵ = ϵ(ω) and c are the dielectric function and the wave speed in the medium, β is a random

phase shift, e = (ex, ey, ez) is a random unit vector pointing in the direction of propagation, n is a

random unit vector (polarization) orthogonal to e, and

P 2(ω, T ) =
}ω

e}ω/κT − 1
(2.2)

is the average thermal energy of an oscillator at frequency ω that belongs to an equilibrium ensemble

at temperature T .

It is also known that a homogeneous lossless space has an infinite thermal conductance which

means that a heat flux may exist in such a space even if its temperature is uniform [9]. In particular

[6], in a homogeneous space with a constant heat flux Q ≪ 1 at the temperature T the average

thermal energy density of a plane wave propagating along the unit vector e has the first-order

approximation P 2(ωY (e,Q)), where ω is the frequency and

Y (e,Q) = 1− e ·Q
cE(T )

, (2.3)
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is a Doppler-like factor depending on the total density E(T ) of thermal energy. Correspondingly, the

ensemble of thermally excited fields in a space with a small constant heat flux can be represented

in terms of plane waves

E =

√
2

ϵ
P (ωY (e,Q), T )eiω(exx+eyy+ezz)/c+iβ−iωtn, (2.4)

where the random parameters e, n and β have the same meanings as in (2.1).

The average energy density E(T ) of the fields (2.4) can be represented as

E(T ) = 2

∫ ∞

0
P 2(ω, T )D(ω)dω, (2.5)

where the factor “2” accounts for the two polarizations of the electromagnetic waves, P 2(ω, T ) is

defined by (2.2), and D(ω)dω represents the number of plane waves of one polarization per unit

volume with frequencies from the band (ω, ω + dω). The density of states D(ω) of an arbitrary

domain may be rather difficult to compute, but for a homogeneous space it has the value D(ω) =

ω2/2π2c3, which reduces (2.5) to the expression E(T ) = π2κ4T 4/60c3~3, widely known as Planck’s

law of equilibrium radiation [10, 11, 5].

Plane waves do not form a convenient basis in domains other than a homogeneous medium

because the individual plane waves do not satisfy the interface conditions. However, since any wave

field can be decomposed into plane waves, the models discussed above can be adjusted to describe

ensembles of wave fields in a not-necessarily homogenous medium. In particular, an ensemble of

wave fields in a half-space x < 0 or x > H can be constructed from the electric fields

E =
(
Aneiexxω/c +Bn′e−iexxω/c

)
ei(eyy+ezz)ω/c−iωt, ex ≥ 0, (2.6)

composed of waves propagating in the directions e = (ex, ey, ez) and e′ = (−ex, ey, ez) with match-

ing polarizations n and n′, which can be defined by the formula (A1.3).

Consider first an equilibrium ensemble of the waves (2.6). The average energy density of each

of these waves can be computed by the thermodynamical expression (2.2) and also by the for-

mula (A1.4) coming from electrodynamics. Therefore, by equating these two representations the

coefficients A and B can be represented as

A = P (ω, T ) cos η(ω) eiβ+iα, B = P (ω, T ) sin η(ω) eiβ−iα, (2.7)

where α = α(ω) is a relative phase shift, β = β(ω) is a common phase shift, which will be suppressed

henceforth because it does not play any role, and η = η(ω) is a random angle distributed over the

interval 0 ≤ η ≤ π
2 in such a way that the average ⟨cos 2η(ω)⟩ = 0 vanishes implying that the waves

of the ensemble (2.6), (2.7) carry equal amounts of energy in the opposite directions and, thus, the

ensemble has no net energy flux. Correspondingly, an equilibrium ensemble of thermally excited

electromagnetic wave fields can be represented by a set of random waves

E =

√
2

ϵ
P (ω, T )

(
cos ηeiexxω/c+iαn+ sin ηe−iexxω/c−iαn′

)
ei(eyy+ezz)ω/c−iωt, (2.8)
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with a random relative phase shift α and a random number η whose distribution satisfies

⟨cos 2η⟩ = 0. (2.9)

It should be mentioned, that although α, β and η may depend on the frequency, we use the

abbreviated notation which does not show such dependence wherever it does not cause confusion.

In order to generalize (2.8) to the case when an ensemble of thermally excited wave fields has a

constant heat flux Q = Q x̂, it suffices to apply a Doppler-like transformation (2.3) to each of the

terms in (2.8) and thereby obtain the representations

A =

√
2

ϵ
P (ωY (e, Q), T ) cos ηeiα B =

√
2

ϵ
P (ωY (e′, Q), T ) sin ηe−iα, (2.10)

which can be conveniently re-written as

A =

√
2

ϵ
P (ω, T )a(Q, 0;ω) cos η eiα, B =

√
2

ϵ
P (ω, T )a(Q, 0;ω) sin η e−iα, (2.11)

where the coefficients

a(Q,∆T ;ω) =
P (ωY (e, Q), T +∆T )

P (ω, T )
· cos (ηY (e, Q))

cos η
,

b(Q,∆T ;ω) =
P (ωY (e′, Q), T +∆T )

P (ω, T )
· sin (ηY (e′, Q))

sin η
,

(2.12)

reduce to a = b = 1 when Q = ∆T = 0, but may significantly deviate from unity even when Q and

∆T are quite small.

It is important to note that a(Q,∆T ;ω) and b(Q,∆T ;ω) depend not only on the listed param-

eters but also on the temperature T , the direction of the heat flux Q, the direction e = (ex, ey, ez)

of the waves from (2.6), and on the wave speed c in the medium. None of these parameters can be

neglected, but for transparency we will suppress them whenever doing so does not cause confusion.

Finally, if Q ̸= 0 then a(Q,∆T ;ω) and b(Q,∆T ;ω) also depend on the parameter η = η(ω) which

is involved through the last factors in (2.12). As for the relative phase shift α = α(ω), although

it is also affected by the Doppler transform, it may be left unmodified, because its transformation

may always be compensated by the absolute phase shift β = β(ω), which does not show up in any

important formulas and, thus, may be be assigned any convenient value.

3 Ensembles of electromagnetic fields in a layered structure

The previous section implies that if the half-spaces x < 0 and x > H have the temperatures T−

and T+, respectively, then the ensembles of waves with a small heat flux Q can be represented in

these domains by random sets of waves (2.6) with the amplitudes (A−, B−) and (A+, B+) defined

independently of each other by the formulas (2.10). On the other hand, the theory of wave propa-

gation in layered media outlined in Appendix 1 implies that the pairs (A−, B−) and (A+, B+) are

not independent but are connected by the equations (A1.20). Therefore, since A± and B± depend

on the heat flux Q and the temperatures T+, T−, these three quantities appear to be connected by

the two equations, so that one of them may be represented in terms of the other two.
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In order to connect the statistical and thermodynamical characteristics of the ensembles of

waves in x < 0 and x > H we assume that these domains have the temperatures

T− = T +∆T , T+ = T, (3.1)

respectively, and that the heat flux in both half-spaces is directed along the x-axis, so that

Q− = Q+ = Q x̂. (3.2)

Then, as shown in Section 2, the wave ensemble in the domain x < 0 can be represented as a set

of waves (2.6) with the amplitudes

A− =

√
2

ϵ−
P (ω, T )a−(Q,∆T ;ω) cos η−e

iα− ,

B− =

√
2

ϵ−
P (ω, T )b−(Q,∆T ;ω) sin η−e

−iα− ,

(3.3)

and the ensemble in x > H can be represented as a set of waves (2.6) with the amplitudes

A+ =

√
2

ϵ+
P (ω, T )a+(Q, 0;ω) cos η+(ω)e

iα+ ,

B+ =

√
2

ϵ+
P (ω, T )b+(Q, 0;ω) sin η+(ω)e

−iα+ ,

(3.4)

where α± = α±(ω) are random phase shifts, η± = η±(ω) are random angles distributed in such

a way that ⟨cos 2η±(ω)⟩ = 0, and the pairs of coefficients a+, b+ and a−, b− are defined by the

formulas (2.12) applied to the media in x > H and x < 0, respectively. As follows from the results

of Appendix 1, if the fields (2.6) with the coefficients (3.4) and (3.3) continue across the half-spaces

to the entire structure, then the coefficients (3.4) and (3.3) are connected by the equations (A1.20),

which reduce, in a view of (A1.17), to the form

γ
(
a2− cos2 η− + b2− sin2 η−

)
(1−R2)

= (1 +R2)
(
a2+ cos2 η+ + b2+ sin2 η+

)
+ 2Ra+b+ sin 2η+ cos 2α+, (3.5)

γ
(
a2− cos2 η− − b2− sin2 η−

)
= a2+ cos2 η+ − b2+ sin2 η+, (3.6)

where η± and α+ are three unknowns, and

γ =
ν
√

1− ν2(1− cos2 θ+)

cos θ+
, ν =

c−
c+

, (3.7)

is a coefficient determined by the incidence angle θ+ in the half-space x > H and by the wave

speeds c+, c− in the half-spaces x > H, x < 0, respectively.

Since two equations for three unknowns typically have infinitely many solutions, there are, in

general, infinitely many triplets (η+, η−, α+) which satisfy (3.5), (3.6), and thus there is an infinite

set of electromagnetic fields compatible with given thermodynamical properties of the considered

layered structure. Then, assuming that the admissible triplets are random variables satisfying
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conditions ⟨cos 2η±⟩ = 0 we get a statistical ensemble of electromagnetic fields with the given heat

flux and temperatures of the half-spaces. The above implies that in order to describe such an

ensemble it suffices to formulate the conditions on the temperatures T± and the flux Q, which

guarantee that the equations (3.5), (3.6) have solutions, and then find these solutions.

To analyze equations (3.5), (3.6) we represent cos2 η± and sin2 η± in terms of cos 2η± and get

equivalent equations

γ(1−R2)(p− + s− cos 2η−) = (1 +R2)(p+ + s+ cos 2η+) + 2Ra+b+ sin 2η+ cos 2α+, (3.8)

γ(s− + p− cos 2η−) = s+ + p+ cos 2η+, (3.9)

where

p± =
1

2

(
a2± + b2±

)
, s± =

1

2

(
a2± − b2±

)
. (3.10)

Then, eliminating cos 2η− we obtain an equation

L cos 2α+ sin 2η+ +M cos 2η+ +N = 0, (3.11)

with the coefficients

L = 2p−a+b+R, (3.12)

M = p−s+(1 +R2)− s−p+(1−R2), (3.13)

N = p+p−(1 +R2)−
(
s+s− + γp2− − γs2−

)
(1−R2). (3.14)

It is worth mentioning that although the equation (3.11) does not involve η− explicitly, in cases

with Q ̸= 0 it involves this variable implicitly. Indeed, formulas (3.11) depend on p− and s−, which

are defined by (3.10) in terms of a− and b−, which, as mentioned in the end of Section 2, depend

on η− through the last factors of the (2.12). Therefore, in general, (3.11) cannot be considered

alone, but must be coupled with either of the equations (3.8) or (3.9). As a result we get a rather

complicated non-linear system of equations (3.9), (3.11), which can only be considered numerically.

However, to get a rough quantitative idea about the character of the solutions it suffices to analyze

(3.11) assuming that the coefficients (3.14) do not depend on η−.

Assuming that the equation (3.11) does not involve η−, we apply some trigonometric transfor-

mations and reduce (3.11) to a quadric equation

(N −M) tan2 η+ + 2L cos 2α+ tan η+ + (N +M) = 0, (3.15)

which can be satisfied by a pair (η+, α+) if and only if

L2 − (N −M)(N +M) = L2 +M2 −N2 ≥ 0. (3.16)

Indeed, (3.16) guarantees the existence of α+ satisfying cos2 α+ ≥ (N2 −M2)/L2, and for each of

such α+, the quadric equation (3.15) for tan η+ has real-valued solutions.

Consider first the equation (3.11) in the equilibrium case when Q = ∆T = 0. In this case

a± = b± = p± = 1, s± = 0, L = 2R, M = 0, N = 1 +R2 − γ(1−R2), (3.17)
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so that the equation (3.11) and the condition of solvability (3.16) reduce to

sin 2η+cos 2α+ = −R̃, | cos 2α+| > R̃, (3.18)

with

R̃ =
1 +R2 − γ(1−R2)

2R
. (3.19)

Obviously, these equations are solvable only when |R̃| ≤ 1. In particular, if R̃ = 1 or R̃ = −1, then

α+ = 0 or α+ = π
2 , respectively, and η+ = π

4 . In a more general case |R̃| < 1, there are infinitely

many solutions determined by the formulas

arcsin(R̃) ≤ 2η+ ≤ π − arcsin(R̃), 2α+ = arccos

(
−R̃

sin 2η+

)
. (3.20)

This expression essentially describes an equilibrium ensemble of thermally excited electromagnetic

waves at any temperature T = T− = T+ of the medium. It is worth mentioning that if γ = 1 which

corresponds to the case when the half-spaces x > H and x < 0 are made from the same material,

the condition of solvability (3.16) is automatically satisfied because in this case R̃ = R ≤ 1.

Next we consider a hypothetical non-equilibrium case with Q = 0 and ∆T ̸= 0. In this case

a+ = b+ = p+ = 1, s+ = 0, (3.21)

a− = b− = p− =
P (ω, T +∆T )

P (ω, T )
=

√
e}ω/kT − 1

e}ω/(κT+κ∆T ) − 1
, s− = 0, (3.22)

and the general equation (3.11) again reduces to the form (3.18), but this time R̃ is defined as

R̃ =
1 +R2 − γp−(1−R2)

2R
, (3.23)

which ensures that (3.18), (3.23) has no solutions at high frequencies ω. Indeed, if ∆T < 0, then

p−(ω) → ∞ as ω → ∞, and (3.18), (3.23) cannot be satisfied because its right-hand side increases

to infinity at high frequencies, but the left-hand side is bounded for all ω. If ∆T > 0, then at high

frequencies p−(ω) → 0, and R̃ → (1+R2)/2R > 1, which also makes it impossible to satisfy (3.18).

In the general case ∆T ̸= 0 and Q ̸= 0, the main equation (3.11) does not have any solutions for

some combinations of Q and ∆T , but it may have some solutions for other combinations. Indeed,

if ∆T ̸= 0, then, as shown above, this equation does not have solutions if Q = 0. On the other

hand, if Q ≫ 1, then the definitions of a± and b± imply the estimates

a± ≫ b±, p± ∼ s± ∼ a2±, L ∼ 2a2−a+b+R, M ∼ N ∼ a2−a
2
+R

2, (3.24)

which ensure the inequality (3.16) that guarantees the existence of the solutions of (3.15). This

implies that for every temperature differential ∆T ̸= 0, there is a minimal heat flux Q for which the

equation (3.15) has solutions determining an ensemble of wave fields in the system of half spaces

separated by a stack of layers.

The above analysis is illustrated in Fig. 1, which plots the function

F (Q;R) = ln
[
L2(Q) +M2(Q)

]
)− ln

[
N2(Q)

]
(3.25)
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for different temperature differentials ∆T and wavelengths of the radiation. We consider a five-layer

structure similar to that appearing in HAMR systems. These structures include a glass half-space

(ϵ = 5) covered by a 20 nm ferromagnetic layer (ϵ = 2) with a 2 nm carbon overcoat (ϵ = 2) and

separated by an air gap from another glass half-space (ϵ = 5), which models a transducer.

The top and the bottom plots correspond to the wavelengths λ = 0.5µm and λ = 5µm located

on the short-wave margin and in the middle of the spectrum of thermal radiation at temperature

300 ◦K, respectively. Each of these plots has five individual curves corresponding to five different

temperature differentials ∆T , selected as ∆T = 250, 350, 450, 600, 750 ◦K on the top plot, and

as ∆T = 10, 20, 35, 50, 75 ◦K, on the bottom plot. Each of the curves intersects the axis F = 0

at some point Q = Q∗, and since the inequality F (Q) ≥ 0 is equivalent the condition (3.16), this

implies that the non-equilibrium ensemble of wave fields with corresponding temperature differential

and frequency exists for any Q ≥ Q∗.
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For any given base temperature T+, temperature differential ∆T and wavelength λ, ensem-
bles of thermally excited electromagnetic fields with the heat flux Q exist if Q ≥ Q∗, where
Q∗ is the equation F (Q∗) = 0. The longer waves have higher threshold Q∗ because such
waves are less affected by the stack of layers of given thickness.

Figure 1: Illustration of the condition of solvability

These graphs confirm that for a fixed temperature differential the critical heat flux Q∗ increases

with the increase of the wavelength because longer waves should be less affected by a structure
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of fixed width. These graphs also confirm that the higher temperature differential corresponds

to the higher value of the critical heat flux. Finally, these graphs make it possible to estimate

the temperature differential needed to supply a certain heat flux to a half space with a pre-defined

temperature. Assume, for example, that the half-space x > H at the base temperature T+ = 700 ◦K

needs to the get a heat flux of the order Q ∼ 10MW/cm2. Then, the leftmost graphs from Fig. 1

suggest that if all the radiation has the dominant frequency then this heat flux is provided by

the temperature differential ∆T ∼ 10 ◦K, and if all the radiation has the frequency at the short-

wave margin, than ∆T ∼ 250 ◦K. Therefore, comparing these results we expect that for thermal

radiation with Planck’s spectrum, the heat flux Q ∼ 1011W/m2 may be provided by ∆T ∼ 100 ◦K,

and finally, since Fig. 1 considers only energy transfer by waves of normal incidence, which are the

most efficient carriers in the direction across the layers, we may expect that the natural radiation

in arbitrary directions would need to be of the order ∆T ∼ 300 ◦K.

4 Conclusion

The above analysis describes steady-state ensembles of thermally excited electromagnetic fields for

layered structures with a constant heat flux across the layers. This extends the results of [6] where

Planck’s law of equilibrium thermal radiation is generalized to a uniform space with a constant heat

flux, and it also extends the description of equilibrium ensembles of radiation in layered structures

obtained in [12]. This is accomplished by combining the results from [6, 12] with the theory of wave

propagation in layered media [7].

The obtained results for the steady-state ensembles of electromagnetic waves in layered struc-

tures establish connections between the temperatures of the boundary half-spaces, and this opens a

way for the estimations of the radiative thermal transport across such structures. In the examples

we considered only electromagnetic waves of one polarization propagating perpendicular to the

interfaces, but the methods of the analysis of these examples can be straightforwardly extended to

plane waves of any polarization propagating in any direction.

The approach to the analysis of steady-state ensembles of waves in layered structures was

introduced in [13, 14, 15], where it was applied to the phenomenon of interface thermal resistance

widely known as Kapitsa resistance, which is related with acoustic waves in a similar way as radiative

heat transport is related with electromagnetic waves. It was shown in [13, 14, 15] that the interface

thermal resistance could be analyzed by a rather general procedure consisting of three distinctive

steps: construct ensembles of eigenfields with constant heat flux in homogeneous media at uniform

temperatures, construct an equilibrium ensemble of eigenfields in a layered structure, then combine

the results of the first two steps and construct an ensemble of eigenfields in the layered structure

with a steady heat flux. In [13, 14, 15] these steps were proposed and tested in the simplest layered

structure consisting of two adjacent half-spaces. In order to extend these promising first results,

we first extended Planck’s law of equilibrium radiation to radiation with a constant heat flux [6].

Then we described equilibrium ensembles of thermal radiation in an arbitrary layered structure

[12], and here we complete the cycle by describing steady-state thermal radiation with a constant

heat flux in arbitrary layered media. These results build the foundation for understanding radiative

heat transfer in nanoscale layered structures, and they will be useful for the analysis and design of

practical devices.
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Appendix 1: Electromagnetic waves in two half-spaces connected by a stack of layers

Any electromagnetic wave in a homogeneous space occupied by a medium with the dielectric and

magnetic constants ϵ and µ can be represented as a linear combination of plane waves characterized

by the electric and magnetic fields

E = Eeiω(exx+eyy+ezz)/c−iωtn,

B =
E

c
eiω(exx+eyy+ezz)/c−iωt e× n =

i

ω
∇×E,

(A1.1)

where ω is the frequency, e = (ex, ey, ez) is the unit vector of the direction of propagation,

c =
1

√
ϵµ

(A1.2)

is the wave speed, and n is a unit vector of polarization. The polarization n may take any direction

orthogonal to the direction of propagation e, which implies that it can be represented as a linear

combination of two mutually orthogonal vectors

n⊥ ≡ e× x̂, or n∥ ≡ e× n⊥ , (A1.3)

the first of which is parallel to the plane x = 0, while both n⊥ and n∥ are orthogonal to the

direction of propagation e. Waves (A1.1) with n = n⊥ and n = n∥ are referred to as waves with

perpendicular and parallel polarizations with respect to the plane x = 0, respectively.

Any plane wave (A1.1), independently of its polarization, carries the average energy density

(energy per unit volume per cycle of oscillations)

E =
1

4

(
ϵ|E|2 + 1

µ
|B|2

)
=

1

2
ϵE2, (A1.4)

and the average energy flux (energy per unit time per unit area per cycle of oscillations)

S = Se, S =
1

µ
|E ×B| = cE , (A1.5)

which flows along the direction of wave propagation e.

We now consider a structure consisting of two half-spaces x < 0 and x > H separated by a

stack of layers 0 < x1 < · · · < xj < H whose properties are not relevant for our purposes.

Let ϵ− and ϵ+ denote the dielectric constants in x < 0 and x > H, respectively. Similarly, let c−

and c+ be the wave speeds in these half-spaces. Then, any electromagnetic wave in these domains

can be represented as a superposition of piece-wise plane waves with the electric components

E(x, y, z, t; e,d) =

{
E+(x, y, z; e)e

−iωt, x > H,

E−(x, y, z;d)e
−iωt, x < 0,

(A1.6)

where the directions e = (ex, ey, ez) and d = (dx, dy, dz) are connected by the Snell’s formulas

dz = νez, dy = νey, dx =
√

1− ν2(e2x + e2x), ν =
c−
c+

, (A1.7)
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and
E+(x, y, z;e) =

(
A+n+e

iexxω/c+ +B+n
′
+e

−iexxω/c+
)
ei(eyy+ezz)ω/c+ ,

E−(x, y, z;d) =
(
A−n−e

idxxω/c− +B−n
′
−e

−idxxω/c−
)
ei(dyy+dzz)ω/c− ,

(A1.8)

where (A−, B−) and (A+, B+) are complex-valued coefficients connected by the linear equations

A− = T11A+ + T12B+ ,

B− = T21A+ + T22B+ ,
(A1.9)

whose coefficients Tmn have a clear physical meaning as described below. As for the polarization

vectors, n± and n′
±, one of them may take arbitrary values and then the others become uniquely

defined. For definiteness, assume that n+ is independent. Then, n+ takes any of two values

defined by (A1.3), and n′
+ is defined by the same formula but with e replaced by e′ = (−ex, ey, ez).

Similarly, n− and n′
− are defined by the formula (A1.3) with e and e′ replaced by d and d′ =

(−dx, dy, dz), respectively. Since any of the vectors e′, d and d′ is completely defined by e, the

polarization vector n+ completely determines all polarization vectors involved in (A1.8).

To identify the coefficients Tmn it suffices to consider the fields

E− = n+e
iω(exx+eyy+ezz)/c− +B−n

′
+e

iω(−exx+eyy+ezz)/c− ,

E+ = A+n−e
iω(dxx+dyy+dzz)/c+ ,

(A1.10)

which appear as a particular case of (A1.8) with A− = 1 and B+ = 0. Then, treating the first

component of E− as an incident wave arriving at the interface x = 0 from the domain x < 0, we

identify the second component of E− as the wave reflected back to x < 0, and E+ as the wave

transmitted to x > H. Correspondingly, B− = R− and A+ = K− are identified as the reflection

and transmission coefficients R− and K− of the plane wave eiω(exx+eyy+ezz)/c− arriving from x < 0.

Similarly, A+ = K− can be identified with the transmission coefficient of this plane wave from the

domain x < 0 to the domain x > H. On the other hand, applying (A1.9) to the considered case

with A− = 1 and B+ = 0 we get the equations

1 = T11A+, B− = T12A+, (A1.11)

and, combining them using the above reasoning, we arrive at the representations

T11 =
1

K−
, T12 =

R−
K−

. (A1.12)

Then, complex-conjugating (A1.10) we readily find that

T22 = T ∗
11 =

1

K∗
−
, T21 = T ∗

12 =
R∗

−
K∗

−
, (A1.13)

where the asterisk denotes the operation of complex conjugation.

Since the reflection and transmission coefficients may be complex-valued, it is convenient to

represent them as

K− = |K−|eiϕK , R− = ReiϕR , R = |R−|, (A1.14)

13



and then re-arrange (A1.9) with the aid of (A1.12) and (A1.13), to the equations

|K−|A− = e−iϕKA+ +Rei(ϕK−ϕR)B+ ,

|K−|B− = eiϕKB+ +Re−i(ϕK−ϕR)A+ ,
(A1.15)

which insure that the waves (A1.8) are parts of an electromagnetic field defined in the system of

two half-spaces x < 0 and x > H separated by a stack of layers.

The reflection and transmission coefficients R− andK− depend on the polarization and direction

of the plane waves, as well as on the parameters of all layers. These coefficients can be computed

by standard methods of the theory of wave propagation in layered media [7], but for our purposes it

suffices to know only a few relationships that follow from the law of energy conservation. First, we

observe that independently of the structure of the layers in the domain 0 < x < H, the reflection

and transmission coefficients obey the inequality

ϵ−c−dx ≥ ϵ−c−dxR
2 + ϵ+c+ex|K−|2. (A1.16)

Indeed, the left-hand side of (A1.16) represents the energy arriving per unit of time at an unit

area of the interface x = 0 from x < 0; the first term of the right-hand side equals to the energy

leaving an unit area of x = 0 towards x < 0, and the second term of the right-hand side represents

the energy leaving an unit area of the interface x = H toward the domain x > H. Therefore, the

inequality (A1.16) immediately follows from by the law of energy conservation.

It is worth mentioning that the strict inequality in (A1.16) may occur even if all layers are

lossless. For example, for certain directions e, the field (A1.6) may excite surface waves propagating

parallel to the plane x = 0. Such waves take away some of the arriving energy, resulting in a strict

inequality in (A1.16). However, in this study we limit ourselves to the cases when the reflection

and transmission coefficients are connected by the identity

ϵ+|K−|2 = ϵ−γ
(
1−R2

)
, (A1.17)

where

γ =
c−dx
c+ex

=
ν
√

1− ν2(1− e2x)

ex
, (A1.18)

which follows from (A1.16) under the assumption that no energy stays in the layers.

Despite its general form, the last relationship provides valuable information about the reflection

and transmission coefficients. Consider, for example, the field (A1.6) in the case of full reflection.

Assume, for definiteness that c+ > c−, so that c+/c− > 1. Then, the Snell law (A1.7) implies that

if the direction d = (dx, dy, dz) of propagation in the domain x < 0 satisfies the condition

d2x < 1− ν2, (A1.19)

then the direction of propagation e = (ex, ey, ez) in x > H has an imaginary component ex = i|ex|.
In this case, the field E+ from (A1.8) exponentially decays as x → ∞, which implies that there

is no propagation along the x-axis, and that, therefore, the transmission coefficient vanishes, i.e.

K− = 0. Then, (A1.17) implies that there is full reflection, i.e., R = 1. This example shows that

if the half-spaces x < 0 and x > H have different wave speeds, then only part of the fields (A1.6)
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participate in the energy transfer between the half-spaces. In particular, if c+ > c−, then the fields

(A1.6) with dx satisfying (A1.19) do not participate in energy exchange between the half spaces.

It should finally be mentioned that the equations (A1.15) imply simple relationships

γϵ−
ϵ+

(1−R2)
(
|A−|2 + |B−|2

)
= (1 +R2)(|A+|2 + |B+|2) + 4Re

(
A+B

∗
+Rei(ϕR−2ϕK)

)
, (A1.20)

γϵ−
ϵ+

(1−R2)
(
|A−|2 − |B−|2

)
= (1−R2)(|A+|2 − |B+|2), (A1.21)

which guarantee that the field E+ from (A1.8) with given A+ and B+ can be continued to a field

E− from (A1.8) with some A− and B− satisfying (A1.20), (A1.21). Indeed, if the right-hand sides

of the last formulas are known then |A−| and |B−| are uniquely defined, and there exist phase shifts

α− and β− for which A− = |A−|eiβ−+iα− and B− = |B−|eiβ−−iα− .

Appendix 2: The reflection coefficient of the layered structure

The above results show that the structure of the ensemble of thermally excited electromagnetic fields

in a system of two half-spaces separated by a stack of nanoscale layers is essentially determined

by the reflection coefficients of plane incident waves arriving from one of the half-spaces with all

possible incidence angles . This implies that in order to study thermal conduction/resistance of

a nanoscale layered structure it is necessary to have an efficient method for the computations of

the reflection coefficients of such structures. For our purposes, it suffices to use a simple recursive

method discussed in detail in [7] and briefly summarized below.

Let the space be divided by the planes x = a1 = 0, x = a2, . . . , x = aJ−1 = H into J domains,

including two half-spaces x < 0, x > H and (J − 2) layers, as shown in Fig. 2. Let these domains

be enumerated by integers from j = 1 to j = J , with the numbers j = 1 and j = J assigned to the

half-spaces x < 0 and x > H, respectively. Finally, let hj , ϵj , µj and cj , where 1 ≤ j ≤ J , be the

thickness, permittivity, permeability and the wave speed of the j-th medium, so that h1 = hJ = ∞,

and to agree with the notation in the previous sections, we assume that ϵJ ≡ ϵ+, µJ ≡ µ+, and

cJ ≡ c+.

It is shown in [7] that the reflection coefficient of the described structure has the value

R =

∣∣∣∣Z1,J−1 − ZJ

Z1,J−1 + ZJ

∣∣∣∣ (A2.1)

where ZJ and Z1,J−1 are the impedances of the half-space x > H and of the stack of J −1 layers in

the domain x < H, which can be computed by the formulas described below. Thus, the impedance

of the j-th layer is defined by the formula

Zj =

{
Z0
j / cos θj , for the ⊥-polarization,

Z0
j cos θj , for the ∥-polarization,

(A2.2)

where

Z0
j =

√
µj

ϵj
, (A2.3)

is a material parameter of the j-th layer, widely known as its wave resistance, [7], and θj is the

angle of incidence in the j-th layer, which is related by the Snell law

sin θj
cj

=
sin θJ
cJ

, (A2.4)
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with the angle of incidence θJ = θ+ in the right half-space x > H. Finally, the impedance of the

stack of the first j layers can be computed by the recursive formulas

Z1,j = Zj
Z1,j−1 − iZj tan(ωhj/cj)

Zj − iZ1,j−1 tan(ωhj/cj)
, . . . , Z1,1 = Z1, (A2.5)

with the “initial value” corresponding to the degenerate structure consisting of two half-spaces.

x

j = 1:

h1 = ∞
(ϵ1, µ1)

j = 2:

h2

(ϵ2, µ2)
. . . . . .

j = J − 1:

hJ−1

(ϵJ−1, µJ−1)

j = J :

hJ = ∞
(ϵJ , µJ )

Figure 2: A layered structure

Although the above algorithm is valid for an arbitrary number of layers, it is instructive to

apply it first to a simple structure consisting of two half-spaces of identical materials separated

by a narrow layer of a different material. Indeed, the theory of wave propagation suggests that

as the layer’s width becomes negligible compared to the wavelength, the reflection coefficient of

the structure should also become negligible. In other words, a very narrow layer should not affect

thermal radiation, so that the thermal resistance of a layer of vanishing width should also vanish.

As an example we consider the reflection coefficient of a perpendicularly polarized electromag-

netic wave with the wave length λ = 2000 nm (in vacuum) propagating along the normals to the

surfaces of two half-spaces separated by a narrow gap with a width below 100 nm.

The left diagram in Fig. 3 illustrates the dependence of the reflection coefficient on the thickness

of a layer between two half-spaces made from the same material with the permittivity ϵ = 5, which

corresponds to a glass. Three different curves in this figure correspond to gaps with permittivities

ϵ = 1 (vacuum), ϵ = 2, and ϵ = 4. The graphs clearly show that independently of layer’s material,

when its width decreases its reflection coefficient approaches zero proportionally to the layer’s

width as H → 0. Therefore, since the reflected energy is proportional to the square of the reflection

coefficient, it is natural to expect that the heat transfer coefficient of a vanishing layer increases

proportionally to 1/H2, which agrees with recent experiments reported in [16] but disagrees with

the claim made there that such result breaks known physical laws.

The right diagram in Fig. 3 illustrates the dependence of the reflection coefficient on the width

of a vacuum gap (ϵ = 1) between a glass half-space with the permittivity ϵ = 5 and a half space

with a different permittivity. The three graphs in this figure correspond to the permittivity of the

second half-space set to ϵ = 5, ϵ = 10 and ϵ = 15. These curves show that if the half-spaces are

made from different materials then the reflection coefficient does not vanish even when the gap

collapses to an interface. It also shows that a bigger contrast between the half-spaces results in the

bigger reflection coefficient between them.

Fig. 4 illustrates the influence of the wavelength on the reflection coefficient of a narrow vacuum

gap. As in the previous figure, the left graph in Fig. 4 corresponds to the cases when both half

spaces have the same dielectric constant ϵ = 5, and the right graph corresponds to the cases when

the half-spaces have different permittivities, selected as ϵ = 5, ϵ = 10 and ϵ = 15. Three graphs in
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Figure 3: Dependence of the reflection coefficient on the thickness of a layer between two half-spaces
for different layer materials and different half-space materials.0 20 40 60 80 100
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Figure 4: Wavelength dependence of reflection coefficient of a layer between two half-spaces

each of the diagrams show the reflection coefficients of the gaps of widths H = 30nm, H = 50nm

and 150 nm. In all cases, the incident electromagnetic wave has a wavelength (in vacuum) from

150 nm to 3000 nm, and propagates along the normals to the interfaces with the perpendicular

polarization.

Fig. 4 confirms that the reflection coefficient of the gap between similar materials is generally

lower than the reflection coefficient of the gap between different materials. It also confirms the

prediction that if the wavelength λ is at least three times longer than gap’s width H, then the

reflection coefficient of the gap monotonically decreases as the ratio λ/H increases. However,

if λ . 3H, then the dependence of the reflection coefficient on the wavelength becomes more
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complicated, vanishing at certain frequencies and reaching noticeable levels at other frequencies.

Such dependence of the reflection coefficient on the ratio H/λ of the gap’s width to the wavelength

has significant implications on the intensity of the radiative heat transport across a narrow gap.

Indeed, thermally excited radiation has a broad spectrum whose important part has the wavelength

spanning, at room temperature, from approximately one to twenty microns with a peak at about

∼ 5µm. Therefore, for gaps narrower than ∼ 1µm, the reflection coefficient of thermally excited

radiation decays almost proportionally to the width H, and thus, as H → 0, the heat transport

should increase as 1/H2. However, the spectrum of thermal radiation at 3000 ◦K spans from

∼ 0.2µm to ∼ 30µm, with the maximum at ∼ 0.9µm. In this case, simple proportionality of the

reflection coefficient to the width H can be expected only for gaps narrower than ∼ 300 nm.

Next we consider a five-layer structure similar to that appearing in HAMR systems. These

structures include a glass half-space (ϵ = 5) covered by a 20 nm ferromagnetic layer (ϵ = 2) with a

2 nm carbon overcoat (ϵ = 2) and separated by an air gap from another half-space, which models

a transducer.

The left diagram in Fig. 5 shows the dependence of the reflection coefficient of this structure on

the material of the transducer. Thus, the bold solid line corresponds to the case when it is made from

the same material as the base, i.e. with ϵ = 5. The two graphs with higher reflection correspond

to denser base materials with ϵ = 10 and ϵ = 15, and the two other graphs show the reflection

coefficients in the cases with ϵ = 1.5 and ϵ = 3. Clearly, the reflection coefficient has a lower value

when the stack of layers is surrounded by materials with similar optical properties. The influence

of the wavelength on the reflective properties of different layered structures is also illustrated by the

right diagram in Fig. 5, which plots the reflection coefficient against the wavelength for structures

characterized by identical half-spaces (ϵ = 5) and by the varying width of the air gap. The solid

curve corresponds to 2 nm wide air gap, and the other curves correspond to 5 nm, 10, nm, 20 nm

and 30 nm-wide gaps. It is easy to see that for thermal radiation at room temperature, the narrower

gap within the considered range below 1µm corresponds to lower reflection.
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Figure 5: Reflection coefficients of a 5-layered structure similar to that in proposed HAMR systems
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