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Abstract

It is shown that neither the Fluctuation-Dissipation theorem nor the conventional theory of
radiative heat transport are applicable to the analysis of heat exchange between bodies separated
by a nano-scale vacuum gap.

Further progress in nano-technology requires efficient thermal management at the nanoscale,

which is hardly possible without understanding the laws of heat transfer between nanoscale layers

and objects separated by a few nanometers. Since most of the heat transfer between separated

objects is due to electromagnetism, the theory of radiative heat transfer [1, 2] might be expected

to explain heat transfer across nanoscale gaps, but recent experiments [3] demonstrate significant

deviations from the classical theory of radiative heat transfer. This suggests that this theory has

flaws which show up in the nanoscale, and which need to be identified because otherwise any

modification of the theory will mislead further studies in a wrong direction.

To discuss the main features of radiative heat transport in the nanoscale it suffices to consider

a simple structure consisting of two homogeneous half-spaces separated by a vacuum gap, as shown

in Fig. 1.
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Figure 1: The conventional approach to radiative heat transport
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The conventional approach to radiative heat transport is based on the assumptions that objects

that emit or absorb heat may be treated as if they remain in thermal equilibrium at constant

temperatures, and that the ensembles of thermally excited electromagnetic fields in heat exchanging

objects are statistically uncorrelated. If these assumptions were correct then the net heat flux

between bodies A and B could be described in the usual way as the difference

Q = QA→B(TA)−QB→A(TB), (1)

where the symbol QX→Y (TX) represents the flux, which would be radiated from the body X at

temperature TX to the place occupied by the body Y , under the assumption that Y does not exist.

In larger scale systems this approach, combined with Planck’s law used to determine QA→B(TA)

and QB→A(TB), leads to so many well-tested results, such as the Stefan-Boltzmann law, that its

assumptions appear to be well-justified by experiments. Nevertheless, a closer look suggests that

these assumptions cannot be valid in cases when the distance H between heat exchanging bodies is

smaller than or even comparable with the dominant wavelength λ of the thermal radiation. Indeed,

the uncertainty principle applied to wave fields implies that a wave with the dominant wavelength λ

cannot be localized in a domain smaller or even comparable with λ. Therefore, if two bodies A and

B are separated by the distance H < λ, then it is impossible to distinguish which of them radiates

an electromagnetic field with the dominant wavelength λ. Correspondingly, if H < λ, then the

assumption of the conventional approach regarding the statistical independence of the radiations

from different bodies is violated and, therefore, this approach can not be reliably used.

Despite the transparency of the above reasoning explaining why thermal radiations from bodies

separated by a nanoscale gap are correlated, there is a common misconception [4] that the statistical

independence of such radiations follows from the Fluctuation-Dissipation theorem [5, 6, 7, 8], which

states that under certain conditions the cross-correlation of different components of thermally

excited currents in a body can be computed as

⟨Jl(r, ω)J∗
m(r1, ω)⟩ =

1

π
ϵ0ϵ

′′(ω)ωΘ(ω, T )δlmδ(r − r1), (2)

where the brackets ⟨·⟩ denote averaging, r and r1 are two points in the body, ω is the frequency of

the thermal radiation, Jl and Jm are different components of the thermally exited electric current,

∗ represents complex conjugate, ϵ0 is the permittivity of vacuum, ϵ is the frequency-dependent

relative permittivity of the matter, ϵ′′ = Im(ϵ) is the imaginary part of ϵ, and

Θ(ω, T ) = }ω
(
1

2
+

1

e}ω/κBT − 1

)
(3)

is the average energy of an oscillator at frequency ω in an equilibrium ensemble at temperature T .

It is easy to see that if (2) is valid, then the currents Jl(r, ω) and J∗
m(r1, ω) at the points

r ̸= r1 are uncorrelated, and, correspondingly, the radiations from r and r1 are also uncorrelated.

Then, assigning r and r1 to different bodies A and B, as shown in Fig. 1, one can derive that

the radiations from A and B are statistically independent. This suggests that the flow of energy
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passing from A to B is determined solely by the properties of the body A. Similarly, the flow of

energy from B to A is determined by properties of B. Finally, the net flux between A and B can

be represented as a difference of two directional fluxes as in (1).

So, while general considerations suggest that thermal radiations from slightly separated bodies

may be correlated, the Fluctuation-Dissipation theorem seems to imply that they are statistically

independent of each other, and that the analysis of radiative heat transfer between two bodies can

be reduced to computations by the formula (1), regardless of the scale of separation. However,

to be confident that the conclusion of a theorem is valid it is necessary to make sure that all of

its conditions are satisfied, which, in the case considered here, is not a simple task because the

Fluctuation-Dissipation theorem is rarely formulated as a mathematical statement with lists of

conclusions together with conditions and assumptions. Thus, in the widely cited monographs of

Rytov et al. [5, 6, 7, 8] some important conditions of the Fluctuation-Dissipation theorem are not

explicitly included into its formulation but, instead, are discussed in physical terms and, as a result

of the discussions, are included implicitly as something that may be taken for granted.

Two implicit assumptions of the Fluctuation-Dissipation theorem are obvious right from the

structure of the formula (2). Indeed, since this expression involves only one temperature T , it

is clear that the theorem is restricted to structures with a uniform temperature. Also, since (2)

involves the spectrum Θ(ω, T ) of a harmonic oscillator in an equilibrium ensemble, this implies that

the theorem is restricted to structures in thermal equilibrium.

When these implicit conditions are revealed, it becomes clear that the Fluctuation-Dissipation

theorem is useless for the analysis of radiative heat transport between slightly separated objects.

Indeed, since the entire system is supposed to be in equilibrium at temperature T , then, to study

the structure from Fig. 1 using this theorem, it is necessary to make sure that the temperature of

the half spaces are equal. But, if TA = TB, then there is nothing to study because the net flux

between the half-spaces obviously vanishes.

In a more interesting case when the objects A and B have different temperatures TA ̸= TB,

the Fluctuation-Dissipation theorem can be applied to each of A and B separately. This means

that in (2) both the points r and r1 must be located in the same domain. For example, when

this theorem is applied to the domain A, then both r and r1 must be in A, and it determines the

spatial correlation of thermally excited currents only inside A, but it gives no information about the

correlation between the currents in A with the currents in B. Similarly, if the theorem is applied to

the domain B, then it determines the spatial correlation of the currents within B but says nothing

about the correlation between the currents in A and B. As a result, the Fluctuation-Dissipation

theorem, if applied correctly, does not prove the independence of thermal radiations from different

domains, which is required for applications of the conventional theory of radiative heat transfer.

It must be emphasized that despite the fuzzy formulations, in [5, 6, 7, 8] the Fluctuation-

Dissipation theorem is never applied in those references beyond its range of assumptions. Moreover,

in [8] it is explicitly stated that this theorem is unsuitable for the analysis of radiative heat transport

because it can be justified only in cases when the heat transport can be neglected:
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“Clearly, stationary conditions are also not very difficult to achieve if the body tem-

perature is maintained at a constant level, the energy being supplied by some external

source as in the case, say, in the incandescent lamp. It is, however, clear that such a

stationary case is thermodynamically not equilibrium any way, since the body energy is

being converted in a one-way manner, and transport phenomena occur. (e.g. through

thermal conduction). Under these conditions, the use of equilibrium laws (includ-

ing FDT) is no longer quite rigorous, but still justified if, as often the case,

the role of the transport phenomena is as yet insignificant.” [8, Page 112].

Obviously, if the transport phenomena is neglected as being insignificant then no further study

is needed to conclude that the heat flux vanishes. Therefore, since the Fluctuation-Dissipation

theorem implicitly assumes that heat transport must be neglected, it is necessary to abandon this

theorem and revert instead the analysis of nanoscale radiative heat transport using the fundamental

laws of thermal physics.

The above reasoning eliminates any practical need to discuss other features of the Fluctuation-

Dissipation theorem prohibiting its application to the analysis of radiative heat transport in nano-

scale systems. Nevertheless, it is worth mentioning that this theorem is not applicable even for the

analysis of the equilibrium state of physical nano-scale systems.

Indeed, when (2) is applied to physical systems, then the δ-function in this expression may

not be considered in the mathematical sense, but should, instead, be considered as a function

normalized as
∫
δ(r)dr = 1 and spread over a finite domain |r| < ϵ of a small radius ϵ ≪ 1, usually

referred to as the correlation radius. In a real homogeneous medium, such as a large piece of a

pure material, this correlation radius is of the order of intermolecular distances, which is about a

few angstroms [8, 9, 3]. However, in a not perfect medium with sub-wavelength inhomogeneities:

“. . . For the sources of the fluctuational field, this gives a nonzero correlation radius

which has the same order of magnitude as the size of the nonlocality region in the

material equations.” [8, Pages 122-123]

This means that in such media the δ-function in (2) should be treated as a distribution over a domain

of the “same order of magnitude as size of the nonlocality region in the material equations”. But

the system of two half-spaces from Fig. 1 has an inhomogeneity of width H, and this means that

the carrier of the δ-function in (2) is spread over the domain of the size ∼ H comparable with

the distance between the half-spaces. Therefore, the Fluctuation-Dissipation theorem implies that

the currents on different sides of the gap of the width H are correlated, which violates the main

assumption of the conventional theory of radiative heat transport.

It follows from the above that the net flux of thermal radiation between bodies A and B

separated by a nanoscale gap cannot be represented by the difference (1) of uncorrelated quantities

QA→B(TA) and QB→A(TB), as predicted by the conventional theory, which assumes that different

bodies radiate heat independently of each other. To resolve this limitation we recently proposed a

novel approach [10] where the energy flows from A to B and from B to A are represented as functions
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QA→B(TA,Q) and QB→A(TB,Q) depending not only on the temperatures of the corresponding

bodies, but also on the net flux Q. Then, Q satisfies the equation

Q = QA→B(TA,Q)−QB→A(TB,Q), (4)

which couples the radiations from A and B through the unknown net flux Q and connects this

flux with the temperatures TA and TB. This approach is based on the extension of Planck’s law

of equilibrium thermal radiation to systems with a steady heat flux [11] and on the analysis of the

ensembles of thermally excited electromagnetic fields in layered structures with a steady net heat

flux [12]. The techniques developed in the cited papers make it possible to compute the terms in the

right-hand side of (4) and, thus, to reduce the problem to the numerical analysis of equation (4).

Therefore, this approach appears as a straightforward generalization of the conventional theory of

radiative heat transport obtained by the elimination of the invalid assumptions about independence

of thermal radiations from closely separated bodies.
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