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Abstract 

Bit Patterned media (BPM) recording is one of the potential technologies to be used in 

future disk drives in order to increase the areal density to 5 Tbit/in
2
. But one of the main 

obstacles for BPM is to achieve dynamic stability of the air bearing slider at the head-disk 

interface (HDI). In this paper we first use a direct simulation method to check the accuracy 

of our previously developed Homogenization Reynolds equation solution. After confirming 

the accuracy it is then implemented to study the slider’s flying attitude on BPM disks. Then 

we investigate the system’s parameters using a system identification method by 

simultaneously solving the equations of motion of the slider and the Homogenization 

Reynolds equation. We observe that the first pitch mode frequency of the air bearing 

increases with increase of pattern groove area ratio and pattern height. And the stiffness 

decreases when the pattern groove area ratio or pattern height increases. We conclude that a 

partially planarized BPM is preferred in order to maintain the dynamic stability of the HDI. 

 



Introduction 

In BPM recording the individual recorded bits are stored on distinct nano-scale 

magnetic islands in order to overcome the bit thermal stability problems caused by 

continuously increasing the areal density in hard disk drives beyond a stability limit. A few 

research works have been reported on the simulation of the slider’s flying characteristics 

over a BPM disk. Gupta et al. [1] applied the Homogenization method to simulate the static 

problem of the HDI with a BPM disk. Li et al. [2] investigated the flying characteristics of 

air bearing sliders over BPM disk using a direct simulation method. The above researches 

showed the effect of the pattern height and pattern area ratio on the slider’s flying height. 

However, they were all analyzed for steady conditions. Li et al. [3] studied a slider’s 

dynamics when it flies over a BPM disk, and they showed that a Taylor Expansion 

Homogenization method is an economical and accurate method for the BPM air bearing 

problem. Myo et al. [4] used the direct Monte Carlo method to study the air bearing 

characteristics on BPM, and they found that the bearing forces are reduced with increase of 

bit depth and total recess area ratio. Knigge et al. [5] performed experiments on a disk with 

a half normal media zone and a half patterned zone. They found similar results for the 

relationship between the flying height change and the pattern parameters. 

Li et al. [6] studied slider dynamics on a BPM disk with different pattern types on the 

data and servo zones. It was found that the effects of the bit aspect ratio and pattern 

arrangements can be ignored, and the flying characteristics during transition between the 

two zones depend on the pattern height and pattern area ratio. Hanchi et al. [7] investigated 

the effect of discrete track pattern orientation shifts at data-servo transitions on air bearing 

dynamic flying stability, and they found that the orientation shifts between data and servo 



sectors could give rise to perturbations in flying height. The dynamic characteristics of a 

slider flying over various servo patterns was studied in Li et al. [8]. They showed that the 

air-flow field is disturbed and causes flying amplitude modulation during the transitions.  

A system identification method applying the CML Dynamic Simulator with modal 

analysis was first proposed for the analysis of the dynamic characteristics of air bearings by 

Zeng et al. [9]. An improved method based on [9] that employed the multiple 

input/multiple output orthogonal rational fractional polynomial method to estimate the 

modal parameters was presented by Zeng et al. [10]. However, little work has been done to 

investigate the dynamic stability and system parameters of the air bearing between sliders 

and BPM disks. 

In this study we first perform a direct simulation method to check the accuracy of the 

Homogenization Reynolds equation. Then a system identification method that involves 

simultaneously solving the equations of motion of the slider and the Homogenization 

Reynolds equations is used to obtain the system’s parameters.  

 

  Numerical Modeling 

The model of a slider flying on a BPM disk that is defined by uniformly distributed 

cylinders on a flat disk is show in Fig. 1. The bit pattern parameters are shown in Fig. 2, in 

which h is the pattern height, ɛ is the wavelength and d is the diameter. So the area of one 

bit island is πd
2
/4.  



 
 

Fig. 1 Depiction of a slider flying on a BPM disk Fig. 2 Parameters of  BPM 

Assume the slider is a rigid body that vibrates near its steady state position, so the 

governing equations for the motion of the slider vibrating in 3 DOF can be expressed as: 
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In Eqns (1)-(3), ,m I and I  are the mass and inertia moments of the slider; z, ɵ and β 

are the slider’s vertical displacement (from the steady state) at the slider’s center, its pitch 

and roll; , , , ,z zk k k c c and c    are stiffness and damping coefficients of the 3-DOF 

model of the suspension in the three directions. ( ), ( ) ( )zf t f t and f t   are external 

excitation forces. p  and sp  are pressure profiles in the vibration state and steady state, 

governed by the Homogenization Reynolds equation developed in [3]: 
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where the homogenization coefficients are: 
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Here Q is the flow factor assuming the Fukui and Kaneko [11,12] correction and P, H and 

T are the dimensionless pressure, spacing and time.  is the bearing number vector and σ is 

the squeeze number. The functions ω1, ω2, 1 and 2 are 1-period solutions of the following 

local problems: 
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By simultaneously solving the equations of motion of the slider (1-3) and pressure 

equation (4) we obtain the vibration responses of the slider for given disturbances, and 

using the system identification method [10], we can get the air bearing system’s 

parameters. 

 

Simulation Results and Analysis 

 

(1) A direct calculation for checking the Homogenization method 

 

We first use the CML Dynamic Simulator [12] to check the Homogenization Reynolds 

equation simulation results. In this direct method, the bit patterns are defined as cylinder-

formed waviness. Because of the computing limitation, the pattern sizes in this simulation 

are chosen to be on the order of µm. While using the Homogenization method, the pattern 

sizes are chosen to be on the order of tens of nm.  



Fig. 3 shows a comparison of the simulated steady flying height using the direct method 

and the Homogenization method. From this figure we see that the spacing change tendency 

with change of pattern height and pattern area ratio is almost the same for these two 

methods except there is an offset of spacing. The simulated flying height using the direct 

method is slightly higher than the simulated flying height using the Homogenization 

method. Since the direct method uses a pattern size much larger than the pattern size used 

in the Homogenization method we also investigated the effect of the pattern size on the 

simulated steady flying height using the direct method; the results are shown in Fig. 4. In 

this simulation we studied the case with PH=0.75 and AR=0.25. We selected three different 

pattern sizes: 100 µm, 10 µm and 5 µm respectively. The right figure of Fig.4 is a partial 

zoom in of the left figure. The simulation results show that the average minimum spacing 

decreases as the pattern size decreases. We see that when the pattern size used in the direct 

method is reduced (approaching the real pattern size) the calculated flying height moves in 

the direction of the flying height calculated by the Homogenization method. Thus we can 

say, with some assurance, that the direct method guarantees the accuracy of the 

Homogenization method. Since the direct method takes approximately three hours for a 

simulation while the Homogenization method takes only about 0.5 hour we use the 

Homogenization method to do the rest of the dynamic simulations. 



 
Fig. 3 Comparison of steady flying height for direct method and Homogenization method 

 

 
Fig. 4 pattern size effects on simulated flying height for direct method 

 

(2) Slider dynamic stability  

 

In this section we investigate a slider’s dynamic stability on various pattern designs. 

The ABS design studied in this section is shown in Fig.5. We first use the Homogenization 

method to obtain the slider’s steady flying height on different pattern designs, the results of 

which are shown in Fig. 6. This figure shows that the minimum flying height decreases 

with increase of groove area ratio (1- πd
2
/4, refer Fig. 2); the flying height also decreases 

with increase of pattern height. The results also indicate that the minimum flying height is 

smaller if the pattern height is higher or the groove area ratio is larger. 
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Fig. 5 ABS design 

 
Fig. 6 The slider’s steady minimum flying height on various pattern designs 

 

Next we use the system identification method [10] to obtain the air bearing system 

parameters such as stiffness, mode shape, mode frequency, etc. In order to study the bit 

pattern effects on the system parameters we first study the case when the slider is flying 

over a smooth disk. The mode shapes and their corresponding frequencies are shown in 

Fig. 7, which shows that the first mode (numbered 1) is a pitch mode with frequency 177 

kHz and its nodal line is close to the trailing edge; the second mode is a roll mode with 

frequency 188 kHz with its nodal line located almost at the slider center line; the third 
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mode is nearly a pure pitch mode with frequency 362 kHz and its nodal lines is close to the 

leading edge.  

Then we studied the frequency and stiffness changes with the changes of pattern height 

and pattern area. The frequencies (kHz) of the first pitch mode are listed in Table 1, in 

which each row has different groove area ratios and each column has different pattern 

heights. To show the results more clearly, we plot the first two rows in the top figure of 

Fig.8 and plot the first column in the bottom figure. These results show that the first pitch 

mode frequency increases with increase of groove area ratio, and also increases with 

increase of pattern height. As shown in Fig.6, the minimum flying height decreases with 

increase of groove area ratio and pattern height. And the first pitch mode nodal line is close 

to the trailing edge where the minimum clearance occurs. So the increase of the first pitch 

mode frequency can be considered as an effect of further compression of the air film at the 

trailing edge. Referring back to Table 1, we see there are three frequencies, which are 

emphasized by bold font, that don’t follow the frequency increasing tendency. As shown in 

Fig. 9 the stiffness decreases as groove area ratio or pattern height increase. And 

continuous increase in the pattern height or groove area ratio leads to a negative stiffness 

which means that instability appears under these conditions. This indicates that a partially 

planarized patterned media is required in order to improve the dynamic stability of HDI. 



 
Fig. 7 Results when the slider is flying on a smooth disk 

 

 Table 1 First mode frequencies on BPM disks  

 

    

Fig. 8 First mode frequencies on BPM disks 
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Fig. 9 First mode stiffness on BPM disks 

 
 

Fig. 10 Third mode frequency on BPM disks 

 

  

Fig. 11 Second mode stiffness on BPM disks Fig. 12 Third mode stiffness on BPM disks 
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Fig. 10 shows that the frequency of the third mode decreases with increases of groove 

area ratio and pattern height. As the third mode nodal line is close to the leading edge, 

which has a relatively large minimum flying height, the effect of compression of the air 

film is not so obvious in this case. The decrease of frequency may indicate a decrease of 

stiffness.  Figs. 11 and 12 show the stiffness of the second and third modes when the slider 

is flying on different pattern designs. The results show that the stiffness decreases as 

groove area ratio increases and also decreases as pattern height increases. These results also 

indicate that a partially planarized pattern media is needed in order to maintain a steady 

HDI. 

 

 

Conclusion  

 

We first used a direct method to study the slider’s steady flying height over various bit 

pattern media disks and compared the results with those from the much less computation 

intensive Homogenization method to guarantee the accuracy of the latter method. Having 

found satisfactory confirmation and since the Homogenization method can significantly 

save computing time, we used this method to do the HDI dynamic stability investigation.  

We then used the system identification method to study the air bearing system’s 

stiffness, mode shape and frequency when the slider flies over different BPM disks. It was 

found that the first pitch mode frequency slightly increases with increase of groove area 

ratio and pattern height, which can be explained as the effect of further compression of the 

air film at the trailing edge. The stiffness decreases as groove area ratio or pattern height 

increases. Since negative stiffness can be realized for certain values of area ratio and 



pattern height we conclude that a partially planarized patterned media is needed in order to 

guarantee the dynamic stability of the HDI.  
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