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Abstract 

A new local adaptive grid-generating algorithm is developed and integrated with the 

multi-grid control volume method to simulate the steady flying state of the air bearing 

sliders in HDDs (Hard Disk Drives) accurately and efficiently. Local finer meshes (mesh 

dimension decreases to half) are created on the nodes of the current finest grids that have 

pressure gradients or geometry gradients larger than a pre-defined tolerance after the 

pressure distribution has been obtained on the initial uniform mesh. In this way the 

pressure or geometry sensitive regions have higher resolution, leading to more accurate 

results without inefficiently larger meshes. Two sliders are used to demonstrate the 

applicability of this method. It is found that this new local adaptive grid-generating 

method improves the stability and efficiency of the simulation scheme.  

 

Introduction 

In modern HDDs the head disk spacing has decreased to sub-3 nm to meet the 

demand of higher storage density. Various technologies such as TFC (Thermal Fly-height 



Control), BPM (Bit Patterned Media) and HAMR (Heat-Assisted Magnetic Recording) 

have been proposed to achieve this objective. Besides the requirement of the small 

spacing the slider is also required to have a stiff air bearing and constant flying height 

over the entire radius of the disk. To satisfy all these requirements the ABS (air bearing 

surface) designs used in current hard disk drives have complicated rail shapes, multiple 

etch depths and highly recessed regions between the rails. Thus the pressure distribution 

between the slider and disk varies greatly in the head-disk interface. Accurate and 

efficient simulation of the air bearing pressure is a key issue in the design of sliders. 

Therefore a robust numerical scheme is required to efficiently solve the generalized 

lubrication equation, which is used to model the air bearing between the slider and disk. 

There are several numerical methods available in the literature for solving the 

generalized lubrication equation [1-6], such as finite difference methods, finite element 

methods and finite volume methods. The finite difference method has been widely used 

because of its efficiency if uniform meshes are suitable for the ABS design. However, for 

sliders with quite complicated ABS designs, generating good structured meshes becomes 

very difficult. So the finite element or finite volume method is preferred. The finite 

element method is often chosen due to its easily generated unstructured meshes and its 

ability to capture arbitrary rail geometries. But it is hampered by its large memory 

required for the unstructured meshes. The finite volume method avoids this memory 

problem, and it is good at maintaining mass conservation of the thin film between the 

slider and disk. Therefore, we use the finite volume method in the present study. 

Lu [3] implemented a control volume method in the CML (Computer Mechanics 

Laboratory) Air Bearing Simulator to solve the lubrication equation. In this scheme a 

http://www.acronymfinder.com/Heat_Assisted-Magnetic-Recording-%28HARM%29.html


pressure profile is first obtained on an initial uniform rectangular mesh.  Then the grid 

lines are redistributed according to the pressure gradient or geometry gradient so that the 

grid is more concentrated on the areas that have high gradients of pressure or recess 

depth.  The implementation of an adaptive grid with a multi-grid method enhances 

significantly the accuracy and stability of the simulation. This simulator is powerful and 

has been widely used in the HDD industry. However, in this scheme a local grid 

redistribution of a discretization cell causes the modification of all the discretization cells 

along those grid lines, which may lead to a dense mesh on some areas where only 

sparse meshes are needed, and it thereby increases the computation time without 

benefit. Wu et al. [6] developed an unstructured adaptive triangular mesh generation 

technique, which is integrated with the control volume method and multi-grid method to 

form an efficient air bearing simulator. The unstructured triangular mesh makes it easy to 

locally refine the mesh at critical regions. However, the storage of the unstructured mesh 

requires a large computer memory, thereby reducing its efficiency. Lu et al. [7] 

constructed an adaptive grid-generating algorithm and integrated it with the multi-grid 

method to form a numerical scheme that suits slider air bearing simulation. In this 

scheme rectangular finer meshes are constructed over nodes of the current finest grid 

where the global error exceeds a predetermined tolerance. Since it uses different criteria 

in the multi-grid method and the local adaptive method this scheme becomes time 

consuming. This scheme also uses a multi-grid method but the grid level stops increasing 

only when the global error is smaller than a predefined tolerance, so the final grid level 

can be as high as 10-30, making the final mesh very dense, which requires a longer time 

to finish the simulation. 



 In this study we implement a new local adaptive grid-generating algorithm with the 

CML Air Bearing Simulator to study the steady state flying conditions of some current 

complicated slider designs. An initial uniform rectangular mesh is generated to obtain the 

pressure profile. Then two criteria, based on pressure gradient and geometry gradient, are 

applied to refine the local mesh on some critical areas. Finally, two sliders are used to 

demonstrate the accuracy and efficiency of this method.            

 

 Numerical Modeling 

     (1) The Governing Equation and the Control Volume Method (CVM)  

The governing equation for the steady state gas lubricated bearing between a slider 

and a disk is the Generalized Reynolds equation, which can be written as: 
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where appP /  , mhhH / , LxX / , LyY /  are the dimensionless pressure, 

bearing clearance, and coordinates in the slider‘s length and width directions, 

respectively; ap is the ambient atmospheric pressure; mh  is the reference clearance at the 

trailing edge center; L is the length of the slider; 
2

6

ma

x
hp

UL
  and  

2

6

ma

y
hp

VL
  are the 

bearing numbers in the x and y directions; μ is the viscosity of the air; U and V are the 

velocity components of the rotating disk surface in the x and y directions. Q is the 

Poiseuille flow factor, using the F-K correction [9, 10].  

The control volume method of Patankar [11] is employed to solve the generalized 

Reynolds equation. The integration of (1) over the control volume in Fig. 1 gives, 
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where eJ  and wJ  are YJ x  evaluated at the control volume faces e and w respectively; 

nJ  and sJ  are XJ y  evaluated at the control volume faces n and s respectively; xJ  and 

yJ  are: 
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So the final form of the equation at grid point P is written [3]: 

bPaPaPaPaPa SSNNWWEEPP  .                                (5)   

 

Fig. 1 Illustration of the control volume (after Patankar [11])  

 

(2) Multi Grid Method  

When solving Eq. (5), a large number of grid points is needed, in order to obtain a 

high accuracy the air bearing pressure, which also requires a large computation memory. 

So it is practical to use an iterative method. In this study we applied the FMG-FAS (full 

multi grid-full approximation storage) method used by Lu [3] and Shyy and Sun [8], 

which was designed to deal effectively with nonlinear problems.  



Eq. (5) can be expressed in the matrix form: 

  bPA  .                                                        (6)   

The above equation involves two levels of iterations: the inner iteration updates P  for 

fixed  A  and b , while the outer iteration updates  A  and b using the most recent

P . The computation is carried out over a series of five grids kG , with the corresponding 

solutions kP , where k=1, 2,3,4,5, with k=5 representing the finest mesh. The FMG-FAS 

method can be understood by considering two levels of grid, h (fine mesh level) and H 

(coarse mesh level). The solution for hP  on grid hG  satisfies the equation 

  hhh bPA  .                                                       (7)   

At convergence  hA  and hb  are based on the final solutions of hP . During the 

iteration procedure they are estimated based on the most recent values of hP . We denote 

them with an over bar, and so the pressure correction is hhh PPe  . Unless the 

approximate solution hP satisfies Eq. (7) exactly, there is a residual hR , which is 

given by:  

  hhhh PAbR  .                                                 (8) 

Combining Eq. (7) and (8), we write the fine grid form as:  

    hhhhhhhh RbbPAePA  .                              (9) 

Then we can transfer the above equation to grid H by applying a restriction operator  H

hI  

that transmits the information from a fine grid to a coarse grid. Then Eq. (9) can be 

written as:  
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After Eq. (10) is solved, the correction He can be transferred to the fine grid hG , and the 

fine grid pressure is updated using:  

H
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where 
h

HI  is the interpolation operator that transfers the correction from the coarse grid to 

the fine grid. This procedure can be performed recursively to form the multi-grid V-

cycle.  

 

(1) Local Adaptive Method 

Different from the adaptive method in [3], in which the node number doesn‘t change 

during the mesh adaptation, this adaptive method produces new local nodes. After the 

pressure distribution is obtained on an initial uniform grid the pressure gradient or 

geometry gradient on node N is calculated on each node, and we denote it as ɛ(N):  
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where /N NdP dx  is the pressure gradient in the x direction and /N NdP dy  is the pressure 

gradient in the y direction, and similarly for the geometry criterion. We first set a pre-

defined tolerance Tol 1, which is usually equal to a ratio number multiplied by the 

maximum pressure or geometry gradient:  

   ))(max(1 NrTol  .                                               (13) 

If the gradient is larger than Tol 1 a finer mesh (mesh dimension decreased by half) gets 

created on this node. So the local adaptive criterion is:  



( ) 1N Tol  .                                                        (14) 

To demonstrated more clearly we plot a sample region in Fig.2; nodes 1, 2, 3, 4, 5 and 6 

satisfy Eq. (14), so the local meshes are produced on these six nodes (see the right 

figure). There are three types of nodes on this refined mesh: interior nodes, interior 

boundary nodes and global boundary nodes. For the interior nodes the CVM form of Eq. 

(7) is still applicable. However, for the interior boundary nodes, Eq. (7) cannot be applied 

directly. Instead, an interpolation method needs to be used. The pressure on this type of 

node is interpolated from the pressure of those adjacent nodes. 

 

Fig. 2 A typical two consecutive mesh structure 

 

(2) Local Adaptive Multi-grid CVM 

The local adaptive method is integrated with the CVM and multi-grid method to form 

a complete local adaptive multi-grid control volume algorithm. The flow chart is shown 

in Fig. 3.  After the simulation starts an initial uniform grid is generated, and the pressure 

is obtained after solving the Reynolds equation. The pressure gradient or geometry 



gradient is calculated (depending on the criterion option) on each node. If any of the 

gradients is larger than a pre-defined tolerance (Tol 1), the mesh then gets locally refined.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 A Flow chart of local adaptive multi-grid CVM 
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After the new mesh is created a new pressure profile is obtained by solving the Reynolds 

equation on this new mesh. The total force, including the air bearing force, contact force, 

intermolecular force, etc., is calculated to determine how well it balances the suspension 

force. Newton iteration is applied to reduce the difference between the simulated force 

and suspension force until it is smaller than a predefined tolerance (Tol 2). Then the 

simulation is finished after adapting the mesh only once, otherwise we again follow the 

same steps used in the first adaptation. 

 

Results and Analysis 

In this section we consider two different slider designs to test this local adaptive code 

and compare the results with Lu‘s method [3] to study its accuracy and efficiency.  

1.  First Slider 

For the first slider we use three different calculations to test this Local Adaptive 

Multi-grid CVM.   

(1.1) Case 1: uniform mesh 

If we set the ―r‖ in Eq. (13) larger than 1 in the new local adaptive mesh code, no 

local mesh will be generated, which means the final mesh is a uniform grid. For Lu‘s 

method we can also switch off the adaptive option so that the final mesh is a uniform 

grid. We compared the simulation results of Lu‘s method and this local adaptive method 

when both simulators finally employ uniform meshes. The results are shown in Table 1. 

From the comparison we see that the two simulation results (the slider‘s minimum flying 

height, nominal flying height, pitch and roll) have negligible differences. Thus, we 

conclude that this new local adaptive method code can also be used to simulate the air 

bearing problem in hard disk drives when there is no need for adaptive local mesh. 



Table 1. Comparison with Lu‘s method when the final meshes are uniform grid 

grid size: 145 Min FH (nm) Nominal FH (nm) Pitch (μrad) Roll (μrad) 

Lu‘s method 13.4686 10.878958 98.039114 6.5934417 

Local adaptive 13.4687 10.879094 98.042139 6.5949570 

 

(1.2) Case 2: pressure criterion  

In order to test the accuracy of the local adaptive method of simulating the slider‘s 

flying attitude we first need to get a reference flying height. Fig.4 shows the minimum 

flying height as a function of grid size using Lu‘s method. It shows the minimum flying 

height increases as the grid size increase and finally converges to a value, which we take 

as the reference flying height, since the simulation result is usually more accurate when 

the grid size is larger. For this case, we choose the reference flying height to be 13.6 nm.   

 

Fig. 4 Minimum flying height with different grid size using Lu‘s method 

 

Next we investigate the accuracy of the local adaptive method by setting different 

tolerances (Eq. (13)), which leads to different local meshes. Here we use a much smaller 

grid size than the final mesh in Fig. 4.   The result is shown in Fig. 5. The x-axis is ―r‖ in 
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Eq. (13) and smaller r indicates more local meshes. The solid line shows that the 

minimum flying height increases as the tolerance decreases. The dashed line shows the 

percentage of the minimum flying height difference from the chosen reference flying 

height. It shows the minimum flying height difference decreases with a decrease of 

tolerance. And the difference is very small (less than 0.1%). These results indicate that 

this new local adaptive method can give very accurate results with a much smaller grid 

size. The corresponding final mesh for r=0.7 is plotted in Fig. 6. We see that the local 

meshes are generally produced close to the trailing edge center where there is high 

pressure and small flying height. 

  

Fig. 5 Minimum flying height and its error for different tolerances (Pressure criterion) 
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Fig. 6 Corresponding local mesh for r=0.7 in Fig. 5 

(1.3) Case 3: geometry criterion 

In this case we use the same reference flying height of 13.6 nm as in case 2. However, 

here we use the geometry criterion to produce the local meshes, which means that if the 

geometry gradient at a node is larger than Tol 1 then a local mesh is created on that node. 

The results are plotted in Fig.7. We draw the same conclusion as before, i.e., an accurate 

result can be obtained by using this local adaptive method with a much smaller grid size. 

The corresponding final mesh for r=0.7 is shown in Fig. 8. The local meshes are 

generally produced at the positions with a large flying height (or recess depth) change, so 

it captures the ABS features very well. 

r=0.7 

Center line 



  

Fig. 7 Minimum flying height and its error for different tolerances (Geometry criterion) 

 

 

 

 

 

Fig. 8 Corresponding local mesh for r=0.7 in Fig. 7 
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From the above three cases we conclude that this new local adaptive method can give 

very accurate results whether there are local meshes or not. So it can be used to simulate 

the slider air bearing problem. In this section, we examine its efficiency, and the results 
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the slider we used in this study. It also shows that when using the geometry criterion a 

longer time is required than when using the pressure criterion. That‘s mainly because the 

geometry criterion needs a smaller tolerance to get the same accuracy, which means more 

local meshes must be produced (see Fig. 6 and Fig. 8). So it is suggested to start by using 

the pressure criterion. However, for some very complicated ABS designs the geometry 

criterion may converge better than the pressure criterion. We will demonstrate this in the 

next section using a different slider design.  

 

Table 2. Computation time of Lu‘s method and local adaptive method with the same accuracy 

 
  

2. Second Slider 

The second slider considered has a rather complicated ABS design (we call it 

C_slider). We first use Lu‘s method to simulate the slider‘s flying condition. The slider‘s 

minimum flying height and the corresponding computation time with grid size is shown 

in Fig.9. It shows that the minimum flying height doesn‘t converge very well as the grid 

size increases.  Moreover, the computation time is longer than what is required for most 

other ABS designs. We plotted the final mesh for the case with grid size 497 in Fig. 10. It 

can be seen that the grid lines are concentrated near the trailing edge, slider center, outer 

and inner rails. For other parts there are only a few grid lines and the aspect ratio 

becomes very large (such as the zoom in part). This may be one of the reasons why the 

simulation doesn‘t converge very well. We also simulated the slider‘s flying condition 

using Lu‘s method without adaptive mesh, which means that the final mesh is uniform, 



and the results are shown in Fig. 11. The minimum flying height doesn‘t converge very 

well using this method either. So Lu‘s method is not very suitable for this ABS design. 

However, from Fig. 9 and Fig. 11 it appears that this slider‘s final steady minimum flying 

height is around 13 nm because the simulation takes shorter time when the result 

converges to this value. 

Then we used the new local adaptive method with the two criteria (pressure and 

geometry) to simulate the flying height of the same ABS design and analyzed its 

convergence. 

 
 

Fig. 9 Flying height and computation time with different grid size using Lu‘s method 
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Fig. 10 Final mesh with grid size 497 for C_slider using Lu‘s method 

 
Fig. 11 Flying height and computation time with different grid size using Lu‘s method without 

adaptive mesh 
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tolerance. The corresponding final mesh for r=0.2 is shown in Fig. 13. The local meshes 

are generally produced close to the trailing edge center where there is high pressure and 

small flying height. The final mesh doesn‘t have large aspect ratio, but it still cannot 

capture the high recess depth on the slider surface. 

 

Fig. 12 Minimum flying height with different tolerances 

(Pressure criterion for C_ slider)  

 

  

Fig. 13 Corresponding local mesh for r=0.2 in Fig. 12 
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(1.2) geometry criterion 

The local adaptive simulated minimum flying height and the corresponding 

computation time with different tolerance when using the geometry criterion are shown in 

Fig. 14. It shows that the minimum flying height converges very well with the reduction 

in the tolerance. When looking at the computation times it shows that the computation 

efficiency improves significantly compared to the Lu‘s method (Fig. 9 and 11). So for 

this slider the local adaptive method with the geometry criterion is a better choice. The 

corresponding final mesh for r=0.2 is shown in Fig. 15. The local meshes are generally 

produced at the positions with large recess depth transitions. 

 
Fig. 14 Minimum flying height with different tolerances 

(Geometry criterion for C_ slider)  
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Fig. 15 Corresponding local mesh for r=0.5 in Fig. 14 

 

Conclusion  

 

In this study we first developed a new Local Adaptive Multi-grid Control Volume 

Method using multi-grids to study the air bearing problem in hard disk drives. Then two 

ABS designs are used to test this method. For the first ABS design three cases are 

considered: without a local adaptive mesh, with a local adaptive mesh using the pressure 

criterion and with a local adaptive mesh using the geometry criterion. These simulations 

indicate that this local adaptive method saves computation time as well as produces a 

higher accuracy. In most cases it is suggested to not use the geometry gradient, because a 

smaller tolerance is required in order to obtain an accurate result and thus a longer 

computation time is required. However, for some designs, such as the second ABS (more 

complicated design), it can be seen that the local adaptive method with the geometry 

criterion is a better choice since the produced local meshes can capture most of the 

geometry sensitive regions. 
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