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Abstract

It is expected that further increases in the data density of hard disk drive magnetic recording
systems will require that the read-write head be placed as close to the magnetic media as about
3 or 4 nm, and that it will get some assistance to lower the media’s required high coercivity
to permit writing. Such assistance could be provided by local heating of the media to about
400◦C, and presently much industrial effort is focused on the realization of the heating by a laser.
The use of laser optics is well developed for optical recording, but its adaptation to magnetic
recording is not straightforward because the light from currently available lasers cannot be
efficiently focused down to the required spot of less than 30 nm, and because of the design,
integration and reliability issues.

In this paper we compare different mechanisms of heat transport across nano-scale gaps and
suggests that local heating for HAMR with sub-5nm spacing can be more efficiently achieved by
a Joule heater that is simpler to fabricate than laser-based optical systems and is less destructive
for the nano-scale transducers than laser radiation which may lead to their structural damage
and short duration life of nanoscale transducers. This paper also outlines a rigorous approach
to the analysis of heat transport in nano-scale layered structures like those arising in the HAMR
systems and elsewhere.

1 Introduction

Heat Assisted Magnetic Recording (HAMR) requires heating of a small, about 25×25nm, spot on a

disk surface located within a few nanometers from a flying head slider. Since the disk should not be

scratched, any HAMR system must include a transducer providing contactless delivery of energy

to the disk. In most existing prototypes of HAMR systems such transducers include plasmonic

devices that convert the electromagnetic energy generated by a laser to collective oscillations of

electrons that are coupled with the electromagnetic field on the disk surface. So far, considerable

progress has been achieved in understanding the mechanisms of the conversion of the laser energy

to plasmons. However, the mechanism of the energy passage across a nano-scale gap between the

transducer and the disk is still not adequately studied.
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It is certain that the energy flow between the transducer and the disk is due to electromagnetism.

However, this flow cannot be computed by the conventional theory of radiative heat transfer because

several of the key assumptions of this theory are not valid in the nanoscale, and also because the

radiation is not the only mechanism of heat transfer provided by electromagnetic phenomena.

It is easy to see that the macroscopic Maxwell equations and Ohm’s law, formulated in terms

of the permittivity and permeability of the media, are not always valid for nanoscale metallic

structures. Indeed, as pointed out in [24, §45,§56,§67], these equations are obtained by the averaging

of the exact microscopic Maxwell equations, which is an operation that can only be justified when

the fields remain essentially constant within distances comparable to the mean free paths traveled

by electrons between collisions and in one cycle of oscillations. However, this condition “is, in fact

the first to be violated in metals as the frequency increases” [24, §45]. Thus, infrared electromagnetic

radiation penetrates good conductors like gold within the depth of the skin layer which is of the order

∼ 30 nm, comparable with the mean free path traveled by conduction electrons in gold between

collisions at room temperature. This phenomenon, known as the anomalous skin effect, implies

that inside the skin layer the interaction of infrared radiation with gold at room temperature does

not follow the macroscopic Maxwell equations and Ohm’s law. When the frequency increases to

the visible band, the field gets appreciably changed in the surface layer of thickness comparable

with the mean free path traveled by conduction electrons in one cycle of oscillations [27]. In the

middle of the visible band this mean free path is of the order f◦ ∼ 3 nm, which implies that the

macroscopic Maxwell equations and Ohm’s law are not valid within a few nanometers from the

surface of the metal, and thus they cannon be applied to analyze the electromagnetic processes

inside a 20 nm thick gold transducer integrated into a HAMR head.

The failure of the macroscopic Maxwell equations is not the only nanoscale-related inconvenience

which complicates the understanding of heat delivery in a HAMR system.

Another difficulty arises from the impossibility of computing the net heat flux between two

bodies at different temperatures by a formula based on the difference of two Planck’s expressions

representing the radiations from each of the bodies. As discussed in [5], such an approach is

generally incorrect because Planck’s law is valid only in equilibrium, i.e., when the net heat flux

vanishes a priori [16,17,23,30]. It is well known that the error of this approach is negligible if the

width of the gap considerably exceeds the characteristic wavelength of thermal radiations [18], but

this is not the case in HAMR systems.

Finally, it is important to emphasize that although all of the heat transport between narrowly

separated bodies is provided by electromagnetism, it is not accurate to say that all heat is carried

by the electromagnetic radiation. Indeed, as explained in [17, Lecture 31]] the electromagnetic

field generated by a moving charge consists of both the radiative component that dominates far

away from the source and a quasi-static field that dominates near the source. The latter field gives
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rise to intermolecular forces [20] that keep a solid together, prevents molecules from direct contact

during collisions, provides interaction between slightly separated bodies, and is responsible for the

elastic properties of materials, including their ability to support lattice vibrations. Due to these

forces the lattice ions and electrons from different sides of a narrow gap exchange momenta, and

thus provide additional channels of heat transport between bodies [8], which are negligible if the

separation exceeds 20 nm, but which become extremely powerful for gaps narrower than 10 nm.

The above suggests that heat transfer in nanoscale structures relevant to HAMR cannot be

explained by conventional approaches to thermal radiation based on the macroscopic Maxwell

equations and Ohm’s law, as well as by Planck’s law of equilibrium thermal radiation. On the

other hand, to design a reliable HAMR device it is necessary to understand the mechanisms of heat

transfer across the head-disk interface. Therefore, the development of new methods for the analysis

of nanoscale heat transfer appears as an important scientific problem required to determine the

success of the HAMR project. Since the development of a complex set of new methods may not

happen within a few months and requires substantial research in a new area it seems practical to

start with an asymptotic analysis that captures the main features of the involved processes and

produces insightful quantitative order-of-magnitude estimates that may later evolve into accurate

computational procedures. An overview of such asymptotes and of their underlying ideas are

presented below.

2 Near-field of a moving charge and its role in heat transfer across a gap

It is well known that the propagation of an electromagnetic field through a material can be viewed

as a multi-step process [17], where the incident field excites the motion of charged particles in the

material, and then the moving charges generate a secondary field which interferes with the original

field thereby creating a total field whose averaged characteristics are described by the Maxwell

equations for continuous media. In order to understand the structure of the electromagnetic field

near the transducer it suffices to consider the near field of a single charge and then analyze the

superposition of the fields from many charges.

Let a charge q vibrate near an equilibrium position X0 = (x0, y0, z0). For transparency we

assume that the charge moves only along the x-axis, so that its position at time t is described by

the one dimensional harmonic vibration formulas

x = x0 + d sin(ωt− α), y = y0, z = z0, (2.1)

where

0 ≤ d < 1 nm, (2.2)

which means that the amplitude of the vibration is comparable to the interatomic distance. Then,
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the electric field at O has the value [17]

E =
q

4πϵ0

[
er
r2

+
r

c

d

dt

(er
r2

)
+

1

c2
d2er
dt2

]
, (2.3)

where c is the speed of light and r = r(t′) is the distance from O to the position of the charge X(t′)

at the retarded time t′, i.e. when the signal reaching the observer O at the moment t was emitted.

Since the charge moves considerably slower than light, the retarded time can be approximated as

t′ ≈ t− r(t)/c, and if we additionally assume that the observer is located close to the charge, then

the delay ∆t = r(t)/c can be neglected, resulting in the approximations t′ ≈ t and r = r(t′) ≈ r(t).

Similarly, although er is defined as the unit vector in the direction from the center O to the point

X(t′), in the considered case er can be viewed as a unit vector in the direction from O to X(t).

Observing that er = (ex, ey, ez), where

ex =
x0
r

+
d sin(ωt− α)

r
, ey =

y0
r
, ez =

z0
r
, (2.4)

and taking into account (2.2), we find that the excited electric field can be represented as

E = E0 +E1 +E∞, (2.5)

where the first term

E0 =
q(x0i+ y0j + z0k)

4πϵ0r3
=

q

4πϵ0

er
r2

(2.6)

represents the static Coulomb field, the second term

E1 =
qdω cos(ωt− α)i

4πϵ0cr2
, (2.7)

corrects the Coulomb field by including into consideration the retardation caused by the finiteness

of the speed of light, and the third term

E∞ =
qdω2 cos(ωt− α)i

4πϵ0c2r
(2.8)

describes the radiation.

To understand the relative importance of the components of (2.5) we introduce the wavelength

λ = 2πc/ω, and observe that (2.6)–(2.8) together with (2.2) imply the estimates

|E1| <
2πd

λ
|E0|, |E∞| < 4π2rd

λ2
|E0|, (2.9)

where d is the amplitude of oscillations defined by (2.2).

Let the wavelength be in the range of 500–900 nm, and let the distance between the charge

and the observer be about r ≈ 25 nm, corresponding to the longest distance between a point on a

4



25 nm wide bottom of the transducer and a point on its footprint on the disk separated from the

transducer by a 5 nm gap typical for a modern hard drive. Then, (2.2) implies the estimates

|E1| ≪ 0.01|E0|, |E∞| ≪ 0.005|E0|, (2.10)

which show that at a short distance r ≤ 5 nm the electric field generated by a charge vibrating with

an optical frequency is essentially reduced to its static Coulomb field.

The above implies that if two material bodies are separated by a narrow gap then, due to non-

radiative short range intermolecular forces, the motion of electric charges in one body is transmitted

to the motion of electric charges in the other body, and this means that the intermolecular forces

cause heat transfer between closely separated bodies. The mechanism of heat transfer provided by

short-range intermolecular forces is different from the radiative heat transfer caused by long-range

electromagnetic radiation. Moreover, intermolecular forces provide heat transport between metals

by two different channels: by excitation of lattice vibrations and by excitation of conducting elec-

trons. Indeed, in metals the negatively charged conduction electrons freely move between positively

charged ions, which form a vibrating lattice. External electric fields originating in the neighbor-

ing body affect the motion of the ions forcing additional lattice vibrations and also excite lighter

electrons, which eventually pass the gained energy to the lattice, thus contributing to heat transfer

across the gap. This schematic overview makes it obvious that as the distance between closely sep-

arated bodies vanishes, the rate of heat conduction between them rapidly increases, approaching

the rate of heat exchange between parts of a continuum metal. Such a smooth transition from a

gap to a continuum body is necessary for any model of heat transport across the gap. However,

conventional approaches don’t meet this requirement, but its natural appearance in our approach

provides confidence that it captures most characteristic features of nanonscale heat transfer.

3 Transmission of lattice vibrations across a nano-scale vacuum gap

To understand how intermolecular forces provide heat conduction between separated bodies it

suffices to consider a one-dimensional mass spring model of a crystalline solid with a nanoscale gap.

Consider first a uniform chain shown in Fig. 1, where equal masses m = ρa are connected by

springs with elastic modulus γ and equilibrium spacing a > 0, so that ρ represents the mass density

of the chain. Let ξ(xn) ≡ ξt(xn) be the displacement at time t of the particle identified by its

equilibrium position xn = an. Then the motion of these particles is described by the equation

ρa2ξ̈(xn) = γ [ξ(xn+1) + ξ(xn−1)− 2ξ(xn)] . (3.1)

When a → 0 while the density ρ remains constant, the nodes xn become continuously spread over

the real line and these equations converge to the wave equation ξ̈(x) = v2∇2ξ(x), where x is a

continuous coordinate and v =
√

γ/ρ is the sound speed determined by the elastic modulus γ and

by the mass density ρ = m/a of the continuum.
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Figure 1: Simple chain.

1

Figure 1: Mass-spring models of a continuum medium

Generalizations of this model can accurately describe any feasible anisotropic elastic medium,

but to estimate the heat carrying capability of lattice vibrations it suffices to use Debye’s theory

[16,25], which treats any solid as an isotropic continuum supporting propagation of scalar acoustic

waves with the wave speed v determined by the material. In this theory the energy flux carried by

thermal vibrations at room or higher temperature T can be characterized by the value

Qac ≈ 3vNκBT, (3.2)

where κB ≈ 1.4 · 10−23m2kg/s2 is the Botlzmann constant, N = ρ/Arua is the number of atoms

per unit volume represented in terms of the mass density ρ, atomic weight Ar and the atomic mass

unit ua = 1.7 · 10−27kg, which is essentially the weight of a single proton. For gold Ar ≈ 200,

ρ ≈ 2 ·104kg/m3, v ≈ 2 ·103m/s, and (3.2) shows that gold’s lattice at room temperature may carry

flux up to the order of ∼ 1.5 · 1012 (W/m2), which is sufficient for HAMR purposes [10,12,34].

The mass-spring model of the continuum can be extended to a more complex case describing

two continuous half-spaces separated by a narrow, but non-vanishing gap.

Consider next the chain shown in Fig. 2 where the masses m− = ρ−a are located at the nodes

xn = an < 0 and the masses m+ = ρ+a are located at xn = h + an, where n ≥ 0 and h > 0.

Assume that the springs inside the half-chains x < 0 and x > h have the elastic moduli γ− and γ+,

respectively, and the spring connecting x−1 and x0 has the modulus γh.

m
−

m
−

m
−

m+ m+ m+

γ
−

γ
−

γh γ+ γ+

a h a

Figure 1: Two separated chains

1

Figure 2: Mass-spring models of two media separated by a narrow gap

The motion of this chain is described by equations similar to (3.1) that control the motion of

all particles with n ̸= −1 and n ̸= 0, and by two additional equations for the particles at the ends

of the uniform half-chains

ρ−aξ̈(0) =
γh
h

[
ξ(h)− ξ(0)

]
+

γ−
a

[
ξ(−a)− ξ(0)

]
,

ρ+aξ̈(h) =
γh
h

[
ξ(0)− ξ(h)

]
+

γ+
a

[
ξ(h+ a)− ξ(h)

]
.

(3.3)

If a → 0 but h remains finite then (3.3) reduce to the interface conditions

γ−
∂ξ(x)

∂x

∣∣∣∣
x=0

= γ+
∂ξ(x)

∂x

∣∣∣∣
x=h

= γh
ξ(h)− ξ(0)

h
, (3.4)

which compliment the wave equations describing the motions in the homogenous domains.
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If the interconnection 0 < x < h is very strong in the sense that γh/h → ∞ then (3.4) reduce

to the single condition ξ(h) = ξ(0), which implies that the boundaries x = 0 and x = h are firmly

connected to each other so that the motion of one of them exactly copies the motion of the other. In

the opposite case of a very weak connection when γh/h → 0, conditions (3.4) reduce to Neumann

boundary conditions ξ′(0) = ξ′(h) = 0, which imply that the domains x < 0 and x > h move

independently of each other.

The latter one-dimensional model can be generalized to a three-dimensional model of two half

spaces separated by a narrow gap of width h. In this model heat is carried by lattice vibrations

described in terms of the pressure p(r) related to the displacement vector field ξ(r) by ρξ̈ = −∇p.

The pressure satisfies the wave equations

∂2p

∂t2
= c2±∇2p, c± =

{√
γ−/ρ−, x < 0,√
γ+/ρ+, x > h,

(3.5)

describing the motions in the homogenous half-spaces and it also obeys the interface conditions

γ−
∂2p

∂x2

∣∣∣∣
x=0

= γ+
∂2p

∂x2

∣∣∣∣
x=h

=
γh
h

(
∂p

∂x

∣∣∣∣
x=h

− ∂p

∂x

∣∣∣∣
x=0

)
(3.6)

which generalize (3.4) and describe the interaction between separated half-spaces. Is should be

noticed that the pressure field p is defined in the half-spaces x < 0 and x > h but is not necessarily

defined inside the gap 0 < x < h.

To estimate the energy flux that can be carried by lattice vibrations between separated half-

spaces, we first observe that it has the order of

Qac
h ∼ |Kh|2

⟨
Eac

± v±
⟩
, (3.7)

where
⟨
Eac

± v±
⟩
is the mean value of the products of the energy density and the wave speed in the

half-spaces x < 0, x > h, and Kh is the transmission coefficient of a gap of width h, which can be

computed by the methods of the theory of wave propagation in layered media [1, 15]. This theory

implies that if the gap is wider than the wavelength Λ of thermally excited lattice vibrations, which

is about 1nm at room temperature, then

|K| ≈ γhΛ

γ0h
,

(
h ≫ Λ ≈ 1nm

)
, (3.8)

where γ0 is the average elastic moduli of the half-spaces, and γh is the elastic modulus of the

vacuum gap. Also, if h is large compared to the intermolecular distance then γh can be estimated

as

γh = h
∣∣F ′(h)

∣∣ , (3.9)

where F (h) is the resultant of van der Waals forces acting between molecules belonging to the

different half-spaces separated by the distance h. This force, predicted in 1948 [9], has been
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intensively studied, and, as shown in [20,24], for sufficiently small h it has the asymptote

F (h) ≈ C

h3
, h ≪ λ0 ≈ 500nm, (3.10)

where λ0 ≈ 500nm is the dominant wavelength of the electromagnetic thermal radiation. Corre-

spondingly, the modulus γh has the asymptote

γh ≈ γ0
a3

h3
, (3.11)

where the factor γ0a
3 is determined by an assumption that as h reduces to the interatomic distance

a, then γh should approach the average γ0 of the elastic moduli of the half-spaces.

Finally, combining formulas (3.7)–(3.11) we conclude that the heat flux carried by lattice vi-

brations across a gap of width h is of order

Qac
h ∼

(a
h

)8
(
Λ

a

)2 ⟨
Eac

± v±
⟩
, (3.12)

where C is a constant determined by a temperature differential and Λ is the typical wavelength of

thermal lattice vibrations.

As mentioned in Section 2, intermolecular forces provide heat transport between slightly sep-

arated metallic bodies not only by pushing and attracting lattice ions, but also by pushing and

attracting conduction electrons. Since conduction electrons are mobil and almost 1800 times lighter

than ions, their reaction on electric fields is much stronger than that of ions, and this explains

why thermal conductivity of metals is almost three orders of magnitude higher than of dielectrics

(∼ 400W/mK for Cu or Ag, and ∼ 1W/mK for glass or porcelain). Indeed, while metals and

dielectrics have comparable lattice conduction, in metals, mobil and light electrons carry about

two orders of magnitude more heat that lattice vibrations. If the metals are separated by a gap,

then, since electrons cannot cross it, there is no direct electrical current between metals. However,

if the gap is sufficiently narrow, then the electrons react to the intermolecular forces exerted from

the opposite side and, without a chance to flow, move chaotically producing heat and passing it

to the lattice. Since the motion of electrons between lattice ions is described by the Schrödinger

equation with a periodic potential, which has similar properties to those described by the wave

equation controlling lattice vibrations, their contribution of electrons to heat transfer across the

gap can be estimated by methods similar to that developed for the analysis of lattice vibrations. As

a result the heat flux across the gap between metals provided by electrons appears to be about two

orders of magnitude higher than that described the formula (3.12). It is worth mentioning that the

outlined model of heat transfer between slightly separated metals implies that as the width of the

gap approaches the interatomic distance, the total heat transfer across the gap approaches the heat

transfer in a continuous medium. Although such merge appears to be natural and mandatory for

any model of heat transport across the gap, it, nevertheless, is not met by conventional approaches.
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4 Estimates of the thermal conductance between a HAMR disk and slider

The lattice vibrations discussed in the previous section have sharply different properties from those

of the thermal electromagnetic radiation: lattice waves have wavelengths of a few nanometers and

cannot cross gaps wider than a few nanometers, electromagnetic radiation has wavelengths of several

hundreds of nanometers and can propagate millions of kilometers in vacuum. Despite such contrast,

the contributions of lattice vibrations and electromagnetic waves to the thermal conductivity of a

nanoscale gap can be described by a unified method, which, however, is not a method customarily

used in the theory of radiative heat transport.

To see why conventional methods of radiative heat transport can not be applied to the analysis

of heat transfer across a narrow gap it suffices to observe that such methods predict that an

imaginary, vanishing, gap between identical materials of a continuous body has a finite thermal

resistance, which obviously contradicts the laws of thermodynamics and common sense. Indeed,

the conventional approach to radiative heat transfer between bodies A and B maintained at the

temperatures TA and TB is based on the assumption that the net heat flux can be represented as

Q = QA(TA)−QB(TB), (4.1)

where the outflux QA(TA) radiated from A to B depends only on temperature TA and other prop-

erties of the body A, but is not affected by any properties of the body B, including its temperature

TB. Similarly, the outflux QB(TB) from B to A does not depend on any properties of A. When

this assumption is applied to the case of two bodies A and B of the same material separated by

an imaginary vanishingly narrow gap, it shows that the net flux Q between A and B is determined

only by the temperatures TA, TB and is independent on the properties of A and B. Therefore,

there are only two options: either Q = 0 always, even when TA ̸= TB, or Q ̸= 0 even when TA = TB

and A and B are made from the same material. Since neither of these options can be valid, we see

that conventional theory of radiative heat transfer has a systematic flaw that cannot be ignored in

the nanoscale.

It should be mentioned that the assumption (4.1) gives reasonable approximations if the heat

carrying waves are much shorter than the width of the gap, so that these waves may be decomposed

into wave packets that have dimensions much smaller than the width of the gap [17,18]. However,

if the bodies are separated by a 5 nm or smaller gap then neither the lattice vibrations nor the

electromagnetic waves discussed above are short enough to form wave packets that have the above

mentioned properties required to justify the conventional approach based on (4.1).

The above implies that although thermally excited lattice vibrations and electromagnetic waves

have drastically different length scales, from the point of view of propagation across a 5 nm gap

these waves belong to the same category, and their contributions should be described by a unified

method, which, unlike conventional methods of radiative heat transport, takes into account the wave
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properties of these waves. The development of this method was started in papers [2, 4] devoted to

the analysis of the interface thermal resistance caused by a mismatch of the material properties of

the contacting media. Then, in [6] this method was used to explain the divergence of the radiative

heat transport across a vanishingly narrow gap between half-spaces of identical materials. Analysis

of the obtained results made it clear that the suggested method admits a far reaching generalization

that can be uniformly applied to virtually arbitrary nanoscale layered structures without explicitly

accounting for intermolecular interactions, which certainly play an important role at the nanoscale.

The first two steps of the rigorous approach to the nanoscale heat transport carried by waves

include the generalization of Plank’s law of thermal radiation from strictly equilibrium systems

to systems with a steady heat flux [5] and the description of the equilibrium ensembles of waves

in layered structures [3]. Then the non-equilibrium ensembles can be described by the method

outlined in [4]. This approach can be used to compute the contributions to heat transport between

separated half-spaces by any type of waves, including the electromagnetic radiation and lattice

vibrations discussed in Section 3. However, the complete theory is not needed for the purpose

of getting order-of-magnitude estimates, which may be obtained by a simple qualitative analysis

discussed below.

First we estimate the heat transport coefficient carried by electromagnetic radiations. Recent

papers [31,33] report measurements of this coefficient between SiO2 surfaces at room temperature

separated by a gap wider than 30nm. It is also known that when the gap’s width h reduces below

the wavelength then as h → 0 the heat transport coefficient diverges as 1/h2 [6, 31, 33]. Therefore,

the experimental data from [31, 33] can be extrapolated to the domain h < 30nm resulting in the

solid line in Fig. 3. Next we recall from the previous section (see also [8]), the contributions to

the heat transfer coefficient of the electromagnetic and lattice vibration waves become equal when

the width of the gap drops to approximately h ≈ 5nm. This information determines the point of

intersection of the graphs of these coefficients and makes it possible to extrapolate the heat transfer

coefficient of the lattice vibration wave using its expected 1/h8 dependence on the width d. Finally,

the contribution of electrons whose thermal motion is driven by the same intermolecular forces

that drive lattice vibrations is expected to follow the same trend but be as much as two orders of

magnitude higher because of electron’s higher mobility and suspensibility to the applied force. The

resulting curves are shown in Fig. 3 by a dashed line and a dotted lines.

The graphs in Fig. 3 illustrate the observations of the late 1960s that heat transport between

bodies separated by sub-micron gaps considerably exceeded the limit predicted by the conventional

theory of radiative heat transfer [13, 14, 19] corresponding to the horizontal asymptote for large

gaps of the dotted line in Fig. 3. More recent experiments demonstrated that heat transport

across 30nm gaps may exceed conventional predictions by three orders of magnitude [31, 33]. The

first theoretical explanation of this phenomenon [29] was based on fluctuational electrodynamics
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Figure 3: Components of the heat transfer coefficient of a narrow gap

[32], which had also been employed for the analysis of van der Waals intermolecular forces [24].

Later, this theory was enhanced by inclusion into consideration of specific surface waves which

may propagate along interfaces between certain materials. Thus, since an interface between polar

dielectrics (e.g. SiO2 and SiC) supports propagation of surface phonon-polaritons (formed due to

the coupling of electromagnetic and electron waves), it was proposed that the larger amount of

heat transfer across a narrow gap (see Fig. 4a) between such materials is caused by tunneling of

phonon-polaritons propagating along different sides of the gap [31,33]. This explanation, however,

is not convincing because it is limited to special materials while heat transfer across a vanishing

gap between any materials must approach the rate of heat transfer through direct contact as the

gap vanishes, which is many orders of magnitude higher than can be provided by radiation. Also,

tunneling of surface waves does not explain the observed enhancement of heat transfer between

a structure with non-parallel surfaces, such as shown Fig. 4b, where a plate is approached by a

perpendicularly oriented very small radius probe [22,26,28].

a) Two parallel plates b) A probe and a plate

Enhanced thermal conductance in these structures is caused
by direct intermolecular interaction.

Figure 4: Common nano-structures with enhanced thermal conductance
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Higher than expected (from the conventional theory) thermal conductance in nanoscale struc-

tures like those shown in Fig. 4 is often attributed to different causes, including but not limited to

surface roughness, conduction through air and moisture, tunneling of surface and evanescent waves,

as well as by electromagnetic fluctuations studied by fluctuational electrodynamics [32]. These fac-

tors certainly affect the process of heat transport, but our analysis suggests that the principal part

of the increased thermal conductance of gaps smaller than a few microns can be explained by two

primary mechanisms. If the gap’s width is smaller than a few microns but larger than about ten

nanometers, then the analysis of thermal transport must be based on Planck’s formula modified

to systems with a heat flux [5]. Then, for even narrower gaps, it is necessary to take into account

intermolecular interactions between separated bodies [7, 8]. Curiously, this statement agrees with

the expectations that experiments with heat transport across nanoscale gaps “can also shed light

on the thermal contribution to the Casimir force” [33]. Indeed, our analysis suggests that the

enhancement of heat conductance across extremely narrow gaps is caused by Casimir and closely

related van der Waals forces, which, therefore, directly contributes to thermal transport.

5 Conclusion: implications for HAMR

The above suggests that the heating of the hard drive magnetic media in HAMR systems can be

achieved by use of a Joule heater placed within in a few nanometers from the magnetic layer. To get

an idea about the feasibility of such an approach to HAMR we estimate the heat transfer coefficient

(heat flux per unit area per unit temperature differential) between the slider and the magnetic layer

required to raise the temperature of the recorded spot by 400◦C and then compare it with the heat

transfer coefficients that can be achieved in practice.

It is generally accepted that the heat transfer coefficient of the gap between the slider and

the disk should be as much as 108W/m2K. Therefore, we next check the feasibility of such heat

conductance.

In the experiments reported in [33] the heat transfer coefficient between two surfaces separated

by a 30nm gap reaches 2.5 · 103W/m2K, which is four orders of magnitude less than required

for HAMR purpose. However, the h = 30nm separation between surfaces reported in [33] is

considerably larger than the physical spacing between the bottom layer of the head slider and the

top layer of the disk, which in modern disk drives may be as small as 2nm [11]. To extrapolate

the measured results from [33] to smaller separations we first recall that if h = 30nm then almost

all heat is carried by electromagnetic radiation, and as h decreases this kind of heat transport

increases at the rate 1/h2. Therefore, when the gap between the heater and the disk overcoat

reduces from 30 nm to 2 nm then the radiative heat flux is expected to increase by a factor of 225,

thereby boosting the EM heat transfer coefficient to about 6 · 105W/m2K. Moreover, as shown

above, when the gap narrows below 10 nm then, in addition to electromagnetic radiation, much
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more heat is also carried across a gap due to short range quasi-static intermolecular forces which

couple lattice vibrations and electron’s motion on both sides of the gap providing contribution

to heat conductance that scales as 1/h8. In this case the required level of total heat transport

across the gap from a Joule heater is certainly realistic. In fact, the required level of heat transfer

coefficient in a similar structure consisting of the tip of an AFM and a substrate has been reported

in [26], where, however, it was attributed to conduction through the air.

The addition of a Joule heater near the inductive write pole should be relatively straight forward.

Indeed, one heater is already supplied in existing heads in the vicinity of the read/write transducer

in order to control the 2 nm spacing through thermal flying-height control. The Joule heater for

HAMR can be placed at the location proposed for laser heating in current HAMR concepts. It

could be a straight heater core heated by a resistive coil placed on a larger element that tapers to

the size of the data bit at the interface, similar in dimension as the write pole tip. Alternatively,

it could be a core element that is heated without a coil by attaching heater wires at the top and

close to the bottom of the element. It may even be possible to use the same pole for the inductive

write element and the heater element thereby having the magnetic write flux and the heat flux

emanate from the same pole tip. While there may need to be some insulating material around

the heater to keep the heat from escaping along its sides, all of the required modifications from

present perpendicular write heads should be manageable using existing head fabrication methods,

thereby providing a great advantage over what is required to integrate a laser and a near-field

optical transducer in the head.

Finally, we note that Joule heating for HAMR has been proposed previously in [21, 35]. These

patents focused on the structural fabrication of the system, but they gave no analysis of the heat

transport in layered nano-scale structures and the gap spacing limitations. At the time of this

patent the spacing between the slider and disk was more than 10 nm, which is beyond the range

where our analysis shows Joule heating can be effective. If this assertion is correct then it implies

that the HAMR systems can be made significantly simpler and cheaper by resistive heating than

by laser heating.
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