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Abstract

Periodicity frequently occurs in hard disk drives (HDDs) whose servo systems with periodic phenomena can

be usually modeled as linear periodically time-varying (LPTV) systems. This paper discusses optimal H∞ control

synthesis for discrete-time LPTV systems via discrete Riccati equations. First, an explicit minimum entropy H∞

controller for general time-varying systems is obtained. Subsequently, the developed control synthesis algorithm is

applied to LPTV systems and it is shown that the resulting controllers are periodic. The proposed control synthesis

technique is evaluated through both single-rate and multi-rate optimal H∞ track-following control designs. The

single-rate servo design shows that our proposed control synthesis technique is more numerically robust in calculating

optimal H∞ controllers for discrete-time linear time-invariant systems than the Matlab function of “hinfsyn”, while the

multi-rate servo design validates its ability of synthesizing multi-rate controllers to achieve the robust performance

of a desired error rejection function. Moreover, an experimental study—in which the developed control synthesis

algorithm on a real HDD with missing position error signal sampling data is implemented—further demonstrates its

effectiveness in handling LPTV systems with a large period and attaining desirable disturbance attenuation.
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1 Introduction

Linear periodically time-varying systems (LPTV) are frequently encountered in mechatronic systems [1] including

hard disk drives (HDDs), in which the rotation of the disks induces periodic dynamic phenomena. For example, HDD

servos with missing position error signal (PES) sampling data has been modeled as LPTV systems according to their

natural periodicity related to the disk rotation [2]. Moreover, as illustrated in this paper, HDD servo systems with

multi-rate sampling and actuation [3] can be easily represented as LPTV systems for control synthesis purposes. In

this paper, the control design of LPTV systems in HDDs will be considered.

Since there tend to be large variations in HDD dynamics [4] due to variations in manufacture and assembly, the

synthesized controller must guarantee the desired level of performance for a large set of HDDs. H∞ control is a popular

control design methodology to make control systems achieve the robust performance criterion that many several HDDs

simultaneously satisfy a desired minimum level of error rejection loop shaping [5]. These techniques are potentially

attractive in the design of mass-market mechatronic devices, especially HDDs, where consistent performance must be

attained among tens of thousands of units in a given product line [6]. Furthermore, as shown in this paper, it is useful

to extend these optimal H∞ control design techniques to LPTV systems in HDD servos.

Since the pioneering work of Zames in [7], significant progress has been made in the design of optimal H∞ control.

In [8], a state-space solution to standard H∞ control problems was given for continuous-time linear time-invariant

(LTI) systems. As stated in [9], even though H∞ control problems for discrete-time LTI systems can be solved by

using the well-known bilinear transformation, it is more beneficial to solve the problems directly in the discrete-time

domain. Peters and Iglesias [10] considered H∞ control synthesis techniques for discrete-time linear time-varying

systems via the minimum-entropy control paradigm. Using the results and ideas presented in [10], we derive explicit

and implementable solutions for optimal H∞ control of LPTV systems. These solutions via discrete Riccati equations

are often more computationally efficient and accurate than the counterpart using semi-definite programs (SDP) [11].

In order to evaluate the effectiveness of the developed optimal H∞ control synthesis algorithm, we first consider

the optimal H∞ track-following servo design for HDD servo systems with both single-rate and multi-rate sampling

and actuation. The single-rate servo design shows that our proposed control synthesis technique is more numerically

robust in calculating optimal H∞ controllers for discrete-time LTI systems than the Matlab function “hinfsyn”, while

the multi-rate servo design validates its ability of synthesizing multi-rate controllers to achieve robust performance in

terms of a desired error rejection function. Additionally, an experimental study, carried out on a real disk drive with

missing PES sampling data, demonstrates that the proposed control synthesis algorithm is also applicable to LPTV

systems with a large period.

This paper is organized as follows: Section 2 provides preliminary background for the results contained in the

paper. In Section 3, the optimal H∞ control synthesis algorithm for LPTV systems is explicitly determined. The
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developed control methodology is applied to design H∞ track-following controllers in Section 4. An experimental

study is provided in Section 5. Conclusions are given in Section 6.

2 Preliminaries

Here, we will consider general discrete-time linear periodically time-varying systems that admit a state-space realiza-

tion with periodically time-varying entries of the form

G∼


x(k+1)

z(k)

y(k)

=


A(k) B1(k) B2(k)

C1(k) D11(k) D12(k)

C2(k) D21(k) 0




x(k)

w(k)

u(k)

 (1)

where w(k) and u(k) are respectively the disturbance and control inputs; y(k) is the measurable output which is

accessible to the control system; z(k) is “performance monitoring” output, used in our optimization cost function. All

time-varying matrix entries in G are assumed to be periodic with period N, e.g. A(k) = A(k+N).

Throughout this paper, we will use the following notations, B(k) =
[

B1(k) B2(k)

]
, D1•(k) =

[
D11(k) D12(k)

]
,

C(k) =

C1(k)

C2(k)

, D•1(k) =

D11(k)

D21(k)

, and D(k) =

D11(k) D12(k)

D21(k) 0

.

Before providing our developed control algorithm for the LPTV system in (1), we have the following notations

and assumptions similar to the counterpart in [10]. The input disturbance w(k) is assumed to belong to ℓ2, the set

of all square summable sequences. In addition, the H∞ norm of linear time-invariant systems is generalized as the ℓ2

induced norm for discrete-time linear time-varying (LTV) systems. For an LTV system H with input w and output z,

its ℓ2 induced norm is defined as

∥H∥2←2 =

(
sup

www∈ℓ2\{0}

∑∞
k=0 zT (k)z(k)

∑∞
k=0 wT (k)w(k)

)1/2

.

A bold operator will denote a linear operator corresponding to a time-varying system. For example, if HHH is the

linear operator corresponding the time-varying system H, HHH has the matrix representation

HHH =



. . .
...

... . . .

· · · H0,0 H0,1 · · ·

· · · H1,0 H1,1 · · ·

. . .
...

...
. . .


. (2)
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Suppose now that, the LTV system H in (2) satisifies ∥H∥2←2 < γ . Then, the self-adjoint operator III− γ−2HHH∗HHH has

the spectral factorization

III− γ−2HHH∗HHH =MMM∗MMM

where MMM is a memoryless operator. The entropy of the LTV system H [10] is defined as

EEE(HHH,γ) :=−γ2diag
{

lndet(MT
k,kMk,k)

}∞
k=0 . (3)

Given the LPTV system defined in (1), the optimal H∞ control objective is to find a minimum γ > 0 and an optimal

linear time-varying compensator K with input y(k) and output u(k) so that the ℓ2 induced norm of the closed-loop

system Fℓ(G,K) that represents the closed-loop system with the input w(k) and the output z(k) as depicted in Fig. 1,

is less than γ , i.e.

minK,γ γ

s.t. ∥Fℓ(G,K)∥2←2 < γ . (4)

G

K
y(k) u(k)

z(k) w(k)

Figure 1: Block diagram of general LPTV control systems

3 H∞ Control Synthesis for Discrete-Time LPTV Systems

As mentioned in [10], there may exist many controllers that satisfy the inequality in (4) for a given γ . Using the

minimum entropy control framework allows us to choose one particular controller that satisfies the inequality in (4)

for given γ . The usefulness of this framework is that the optimal controller can be synthesized using two Riccati

equations. Also, the closed-loop entropy can be used to determine a bound on the closed-loop H2 norm, which means

that minimum entropy controllers tend to yield systems with small closed-loop H2 norms. Note that the entropy for a

time-varying system in (3) is defined as a memoryless operator. Unlike the minimum entropy for an LTI system, the

minimum entropy for an LTV system means that its average entropy is minimum.

In order to synthesize the optimal H∞ controller, we first need to check whether or not there exists a controller

satisfying the ℓ2 induced norm constraint in (4) for each γ , and then utilize a bi-section search method to find the
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minimum γ and the corresponding optimal controller. In the minimum entropy control synthesis methodology that

follows, for simplicity and without loss of generality, we will assume that γ = 1.

3.1 Minimum Entropy Control for General Discrete-Time LTV Systems

In this subsection, we will temporarily ignore the periodicity of the LPTV system in (1) and utilize the similar tech-

niques presented in [10] to synthesize the minimum entropy output-feedback control for general linear time-varying

systems. In [10], the solution to the output feedback control problem is obtained by transforming the output feedback

control problem to an output estimation control problem and then using duality to transform this problem into a distur-

bance feedforward control problem, which is solved using the solution of a full information control problem. However,

no explicit formulae are presented in [10] for controllers synthesized using these steps. Alternatively, this paper syn-

thesizes the output feedback minimum entropy control for general discrete-time LTV systems in the following three

steps:

(I) The output feedback control problem is transformed to an output estimation control problem.

(II) The output estimation control problem is reduced to the full control problem.

(III) The solution to the full control problem is obtained as the dual of the full information control problem, whose

solution is provided in [10].

The details of the proposed techniques for the output feedback control problem reduction is presented in [12].

Utilizing our proposed procedure yields the following unique stabilizing minimum entropy time-varying controller K

which satisfies the constraint in (4) and is given by the following state space realization:

 x̂(k+1) = Ā(k)x̂(k)+B2(k)u(k)+Ft(k)
(
C̄2(k)x̂(k)− y(k)

)
u(k) =−T−1

22 (k)C̄12(k)x̂(k)+Lt(k)
(
C̄2(k)x̂(k)− y(k)

) (5)

The parameters used to construct the controller in (5) are updated in the following steps:

1) Solve backwards in time the state feedback Riccati equation for all j:

X( j) = AT ( j)X( j+1)A( j)+CT
1 ( j)C1( j)−M( j)×(

R( j)+BT ( j)X( j+1)B( j)
)−1

MT ( j) (6)

where M( j) = AT ( j)X( j)B( j)+CT
1 ( j)D1•( j) and R( j) = DT

1•( j)D1•( j)−

I 0

0 0

, so that the solution X( j)(≽ 0)

is bounded for all j.
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After obtaining the solution X( j) for all j = 0,1,2, · · · , we continue to calculate the other parameters.

2) Define T (k) =

T11(k) 0

T21(k) T22(k)

 with T11(k)≻ 0 and T22(k)≻ 0, and compute T (k) using:

R(k)+BT (k)X(k+1)B(k) = T T (k)JT (k) (7)

where R(k) = DT
1•(k)D1•(k)−

I 0

0 0

, J =

−I 0

0 I

.

3) Get

F1(k)

F2(k)

=
(
R(k)+BT (k)X(k+1)B(k)

)−1 MT (k).

4) Calculate the following matrices for the filtering Riccati equation: Ā(k) = A(k)+B1(k)F1(k), C̄2(k) = C2(k)+

D21(k)F1(k), and C̄12(k) = −T22(k)F2(k). Let D⊥(k) be an orthogonal matrix of D12(k). In addition, define a

matrix W such that W T (k)W (k) = I− T T
11(k)T11(k) and W (k) has appropriate dimensions so that the following

matrix multiplication is well defined:

D̄111(k)

D̄112(k)

= D⊥(k)W (k)+D12(k)T21(k)

5) Update forwards in time the filtering Riccati equation solution with zero initial condition:

Y (k) = Ā(k)Y (k−1)ĀT (k)+B1(k)BT
1 (k)− M̃(k)×R̃(k)+

C̄12(k)

C̄2(k)

Y (k−1)

C̄12(k)

C̄2(k)


T
−1

M̃T (k) (8)

where Y (k)≽ 0 and

M̃(k) = Ā(k)Y (k−1)

C̄12(k)

C̄2(k)


T

+B1(k)

D̄112(k)

D21(k)


T

R̃(k) =

D̄112(k)

D21(k)


D̄112(k)

D21(k)


T

−

I 0

0 0

 .
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6) Define T̃ (k) =

T̃11(k) T̃12(k)

0 T̃22(k)

, with T̃11(k)≻ 0 and T̃22(k)≻ 0, and compute T̃ (k) using

R̃(k)+

C̄12(k)

C̄2(k)

Y (k−1)

C̄12(k)

C̄2(k)


T

= T̃ (k)J̃T̃ T (k) (9)

where J̃ =

−I 0

0 I

.

7) Obtain F̃1(k)

F̃2(k)

=

R̃(k)+

C̄12(k)

C̄2(k)

Y (k−1)

C̄12(k)

C̄2(k)


T
−1

M̃T (k) . (10)

8) Calculate the filter gains:

Lt(k) = T−1
22 (k)T̃12(k)T̃−1

22 (k),

Ft(k) = F̃T
1 (k)T̃12(k)T̃−1

22 (k)+ F̃T
2 (k) .

3.2 H∞ Control Synthesis Algorithm for LPTV Systems

It should be noted that, because we are solving an infinite horizon problem and the state feedback Riccati equation

given in Step 1) must be solved backwards in time, there is no methodology for determining the solution in general

[10]. Thus, the controller in (5) is not implementable for general time-varying systems. However, it is well known

that the bounded stabilizing solutions to the Riccati equations in Step 1) and Step 5) are unique [10]. Moreover, we

will show in Lemma 1, these solutions for LPTV systems are also periodic. As a result, the solutions to two Riccati

equations converge to the corresponding stabilizing solutions, which can be solved in a straightforward manner by

iteration, starting respectively from zero final and initial conditions.

Lemma 1. For LPTV systems with period N, the solutions to the Riccati equations in both Step 1) and Step 5) are

periodic with period N. Furthermore, the H∞ controller given by (5) is also periodic with period N.

Proof

First, we will show the periodicity of the solution to the discrete Riccati equation (6) in Step 1). Suppose (· · · ,X( j),X( j+1), · · ·)
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is a solution to the discrete Riccati equation in (6), which means that

X( j) = AT ( j)X( j+1)A( j)+CT
1 ( j)CT

1 ( j)−η j (X( j+1))

where

η j(X( j+1)) = M j (X( j+1))
(
R( j)+BT ( j)×

X( j+1)B( j))−1 MT
j (X( j+1))

and

M j (X( j+1)) = AT ( j)X( j+1)B( j)+CT
1 ( j)D1•( j).

Then, at the time of j+N, we have

X( j+N) = AT ( j+N)X( j+N +1)A( j+N)+

CT
1 ( j+N)C1( j+N)−η j+N (X( j+N +1)) .

By considering that the plant G in (1) is periodic with period N (i.e. A( j+N)=A( j), B( j+N)=B( j), C1( j+N)=

C1( j), and D1•( j+N) = D1•( j)), we have:

X( j+N) = AT ( j)X( j+N +1)A( j)+

CT
1 ( j)C1( j)−η j (X( j+N +1)) (11)

where

η j(X( j+N +1)) = M j(X( j+N +1))
(
R( j)+BT ( j)×

X( j+N +1)B( j))−1 MT
j (X( j+N +1)) .

Thus, the equation in (11) implies that (· · · ,X( j+N),X( j+N +1), · · ·) is another solution to the discrete Riccati

equation in (6). From [10], we know that the bounded stabilizing solution to the discrete Riccati equation in (6) is

unique, which implies X( j) = X( j+N).

As a result, all matrices Ā(k),

C̄12(k)

C̄2(k)

, and

D̄112(k)

D21(k)

 for (8) are periodic with period N.
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Moreover, the periodicity of the solution to the discrete Riccati equation (8) in Step 5), i.e. Y (k) = Y (k+N), can

be shown in a similar manner. Consequentially, the periodicity of X(k) and Y (k) implies that all of the parameters to

construct the H∞ controller in (5) are periodic with period N. Thus, the optimal H∞ controller for the linear periodically

time-varying system G is also periodic with period N.

The periodicity of H∞ controllers for LPTV systems provides a significant advantage, since the Riccati equations

in Step 1) and Step 5) can be solved backward and forward respectively with zero initial conditions by iteration and

their solutions will converge to the corresponding periodic solutions.

With Lemma 1, the optimal H∞ control synthesis algorithm for LPTV systems is developed as follows.

Algorithm 1. The following algorithm synthesizes optimal H∞ control for general LPTV systems.

S1. Choose a large initial interval and a large initial value γ .

S2. For a given value γ , calculate the minimum entropy controller:

• Solve the state feedback Riccati equation (6) in Step 1) with zero final conditions by iteration to obtain

X( j)( j = 0, . . . ,N−1).

• If X( j) ≽ 0 and the factorization in (7) exists for ∀ j = 0, . . . ,N− 1, continue to solve the filtering Riccati

equation in (8) with zero initial conditions by iteration to obtain Y (k)(k = 0, . . . ,N−1). Otherwise, stop.

• If Y (k)≽ 0 and the factorization in (9) exists for ∀k = 0, . . . ,N−1, continue to calculate the control param-

eters for the minimum entropy controller. Otherwise, stop.

S3. If the interval is small enough, stop. Otherwise, update the interval and γ and then go back to S2.

4 Design Examples for HDD Servo Systems

In order to evaluate our proposed optimal H∞ control design methodology in this paper, the algorithm will first be

tested via a simulation study that utilizes a single-stage HDD benchmark model developed by the IEEJapan technical

committee on Nano-Scale Servo (NSS) systems [13]. The nominal voice coil motor (VCM) model is indicated in

Fig. 2. In the simulations, we will assume that the PES sampling frequency is fs = 26400 Hz.

Notice that in this paper, we consider the real VCM plant with an output multiplicative uncertainty as

Gv = Gn
v(1+W△△), ∥△∥∞ < 1 (12)

where W△ is plant uncertainty weighting function.
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Figure 2: HDD benchmark VCM model

4.1 Optimal H∞ Track-Following Control for Single-Rate HDD Servos

We consider the block diagram shown in Fig. 3 for the optimal H∞ control design, where Gn
v , Wp, and Wu are respec-

tively the nominal VCM plant, loop-shaping performance weighting function, and control input weighting value. In

this example, we consider the case when the control actuation is performed at the same rate as the PES sampling rate.

Thus, it is well known that the single-rate servo system is an LTI system, which is equivalent to an LPTV system with

z1(k)

u(k)

w1(k)

Gv
n(z)

K(z)
y(k)

WWu

z3(k)

Wp

z2(k)

Figure 3: Control design formulation for single-rate HDDs

period N = 1. As a result, the corresponding control problem can be equivalently stated as:

minK,γ γ

s.t. ∥Tz←w1∥∞ < γ . (13)

Tz←w1 represents the transfer function matrix from w1 to z =
[

z1 z2 z3

]T

as shown in Fig. 3.

Notice that with N = 1, all of entries in the state-space realization of (1) are constant, and thus the Riccati equation
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solutions in (6) and (8) converge to constant steady-state solutions that can be computed via their corresponding

discrete algebraic Riccati equations (DAREs). Consequentially, the synthesized optimal H∞ controllers for LTI systems

are also time-invariant.

In order to investigate the accuracy of the control synthesis algorithm presented in this paper, we compare a

controller that is synthesized by Algorithm 1 to the one that is synthesized by the Matlab function of “hinfsyn” in the

Robust Control Toolbox using identical plant parameters and weighting functions. Notice that “hinfsyn” function in the

Matlab version of R2007b performs H∞ control synthesis for discrete-time systems by first mapping the discrete-time

plant to a continuous-time plant using the bilinear transformation, performing H∞ control synthesis in continuous-time

domain and then mapping the resulting H∞ continuous-time control back to discrete-time domain using the bilinear

transformation.

For the comparison, the weighting functions Wp and W△ and the weighting value Wu are selected so that the

developed H∞ control synthesis technique yields a solution to the minimization problem in (13) with γ ≤ 1. In this

paper, the continuous-time uncertainty weighting function is chosen as

W△(s) =
0.11s+767.8

s+9598
. (14)

In this section, Wu = 2× 10−5 was selected so that the achieved γ is less than or equal to 1 and simultaneously the

control actuation generated by the resulting controller is appropriate under the hardware constraints of real HDD servo

systems.

For the single-rate design, the magnitude Bode plot of the performance weighting function inverse is illustrated

in Fig. 4. With γ ≤ 1, the designed servo is able to achieve the robust performance that the magnitude Bode plot

of the designed error rejection transfer function is below that of |Wp(ω)|−1 for all uncertainties characterized by the

uncertainty weighting function W△ in (14).

The design results are illustrated in Fig. 5, which shows the magnitude Bode plot of the closed-loop error rejection

transfer functions when the H∞ controller is synthesized using the methodology proposed in this paper and when it

is synthesized using the Matlab function “hinfsyn”. As shown in the figure, the Matlab function “hinfsyn” failed to

synthesize a controller that could achieve the specified robust performance, while the synthesis technique proposed

in this paper produced an optimal H∞ controller that satisfied all constraints with a minimum γ∗ = 0.99. As stated

in [9], the successive uses of the bilinear transformation (discrete time to continuous time and then back to discrete

time) in the Matlab function “hinfsyn” may introduce numeric accuracy problems, particularly when the systems are

ill-conditioned.
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Figure 4: Magnitude Bode plots of performance weighting functions

Figure 5: Sensitivity functions for the single-rate HDD servo
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4.2 Optimal H∞ Track-Following Control for Multi-Rate HDD Servos

In this subsection, the effectiveness of the developed control synthesis algorithm will be evaluated by designing optimal

H∞ track-following controllers for multi-rate HDD servos. As discussed in [14, 15], increasing the control actuation

rate can improve both track-following control performance and robustness. In this subsection, we validate this idea by

comparing the single-rate H∞ controller that was designed in the previous section to a multi-rate H∞ controller, where

the actuation rate fa is three times higher than the PES sampling rate fs. In addition, since the higher rate actuation can

be exploited to improve the control performance, a more aggressive performance weighting function, shown in Fig. 4,

has been utilized for the multi-rate control design. Because of the higher actuation rate, it is necessary to discretize

the plant model and the weighting functions indicated in Fig. 3 at the actuation rate fa, i.e. at the faster rate. We

then assume that PES measurements are only available at the instances k ∈ {0,N,2N, · · ·} where N = 3. Thus, HDD

servo control systems with multi-rate sampling and actuation can be modeled by the block diagram shown in Fig. 6.

Here, d is the overall contribution of all disturbances [16] including torque disturbance, windage, non-repeatable disk

G
v
n

y(k)

W

K

PES(k)

0

d(k)

u(k)

Figure 6: The HDD servo system with unavailable PES samples

motions and measurement noise to PES. For the optimal H∞ control of such a mult-rate HDD servo system, we are

also interesting in designing a controller K satisfying the following conditions:

∥∥Ts ·Wp
∥∥

2←2
< 1, ∀∥△∥∞ ≤ 1 (15)

where Ts is the sensitivity function (i.e. error rejection transfer function) from d to PES, as shown in Fig. 6, while Wp

is the loop-shaping performance weighting function.

From the standard assumption for optimal H∞ control [12], the derived controller requires a condition D21(k)DT
21(k)≻

0 for all k. Unfortunately, the typical approach to enforce multi-rate sampling and actuation [14] will not work here

because this would result in D21(k)DT
21(k) being singular. In this paper, we consider the block diagram shown in Fig. 7

for the multi-rate optimal H∞ control synthesis. Here, we introduce a fictitious disturbance input w2 which will be in-

jected into the feedback signal y when the PES is unavailable so that the non-singularity assumption of D21(k)DT
21(k)

can be attained. Notice that if the gain of the resulting time varying controller K is zero when the PES measurement

is unavailable at the time of k, then this fictitious noise will not affect the minimum closed-loop induced norm and
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the resulting optimal H∞ controller. This expectation is achieved when the minimum entropy H∞ control synthesis

technique proposed in this paper is used, as will be discussed in detail later.

Unlike the standard H∞ control problem formulation [17], the performance weighting function here is moved to the

disturbance input side. By doing so, the feedback signal y is affected by a “colored” disturbance (Wpw1) more directly

when the sampling rate is lower than the actuation rate. In order to maintain the same H∞ constraints as those that

were used in Section 4.1, it is necessary to use the control synthesis architecture shown in Fig. 7, where the weighting

functions Wp and W△ are the same as the weighting functions in Section 4.1.

u(k)
Gv

n

K
y(k)

p

W

W Wp

G
2

Wu

z1(k)

w1(k)z3(k) z2(k)

w2(k)

Figure 7: Control design formulation for HDDs with multi-rate sampling and actuation

As a result, we can formulate the optimal H∞ control design problem in (4) by replacing the system G by G2, where

G2 is indicated by the dashed box in Fig. 7. Thus, G2 is the open-loop map from
[

w1 w2 u

]T

to
[

z1 z2 z3 y

]T

,

which can be represented by the following LPTV system with period N = 3:

G2 ∼


x(k+1)

z(k)

y(k)

=


A B1 B2

C1 D11 D12

C2(k) D21(k) 0




x(k)

w(k)

u(k)

 (16)

where [
C2(k) D21(k)

]
=


[
C2m

[
D21m 0

]]
PES is unavailable[

0
[

0 1

]]
otherwise

. (17)

Notice that all the matrices (16) are constants except C2(k) and D21(k). Since all the matrices involved in the

computation of the state feedback Riccati equation solution (6) in Step 1) are constant, the solution X(k) will con-

verge to a constant matrix which can be computed via its corresponding discrete algebraic Riccati equation (DARE).

Moreover, the parameters X , T and F that are computed in Step 1-3) are constant, which implies the parameters Ā(k)

and T−1
22 (k)C̄12(k) in the proposed controller (5) will also be constant. Additionally, the filtering Riccati equation so-

lution Y (k), which is computed forwards in time using (8) and a zero initial condition, will converge to a steady-state

periodic solution with period N, as demonstrated by Lemma 1. It turns out that the filter gains Ft(k) and Lt(k) will

also be periodic with period N. It can also be shown [12] that both T̃12(k) and F̃2(k) are equal to zero at the instance k
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Table 1: Simulation results for single and multi rate control designs

3σ PES (% of track)
Nominal Worst

Single-rate design 10.7 11.4
Multi-rate design 9.2 9.6

when the PES is unavailable. Thus, both Ft(k) and Lt(k) are also equal to zero at these instances, justifying the use of

the fictitious disturbance w2 in the control synthesis methodology. As a result, the minimum closed-loop ℓ2 induced

norm and the optimal H∞ controller are unaffected by the use of the fictitious disturbance w2 in the control synthesis.

With the zero gains of Ft(k) and Lt(k) at the instance when the PES is unavailable, the time varying control parameter

C̄2(k) =C2(k)+D21(k)F1 in (5) can be simply replaced by the constant parameter C̄2m =C2m+

[
D21m 0

]
F1 without

changing the controller. As a result, for the HDD servo systems with multi-rate sampling and actuation, all of the

control parameters of the minimum entropy H∞ controller shown in (5) are constant except Ft(k) and Lt(k).

Performing a multi-rate optimal H∞ control synthesis described above, produces a multi-rate H∞ controller that

returns the minimum ℓ2 induced norm of γ∗ = 1.0.

With the more aggressive performance weighting function shown in Fig. 4, the obtained optimal ℓ2 induced norm

of γ∗ = 1.0 implies that the multi-rate strategy has the ability to improve the control performance. In order to further

highlight the performance and robustness improvement that can be attained by the presented control synthesis algo-

rithm for a higher actuation rate, a time domain simulation study was performed using both the single-rate optimal

H∞ control designed in Section 4.1 and the multi-rate optimal H∞ control designed in this subsection. To evaluate the

robust performance of the two control designs, each controller was tested on 50 different plants, which were randomly

generated from (12) with the uncertainty weighting function in (14) by using Matlab function “usample”. Note that

the disturbance models for our time domain simulation are provided in [13].

Table 1 contains the root mean square (RMS) 3σ values of the PES for the nominal plant and the worst-case results

for each controller. These results indicate that a controller with a higher actuation rate is able to not only reduce the 3σ

PES by 14.0% for the nominal plant, but also improve the servo performance for the worst-case situation by 15.8%.

5 Experimental study

In order to further evaluate our proposed optimal H∞ control synthesis methodology, we used the proposed algorithm to

design a controller and then implemented the resulting controller on a real hard disk drive with missing PES samples.

The tested hard disk drive was provided by Western Digital Corporation. For this 3.5” disk drive, the number of servo

sectors is 256 and the spindle rotation speed is 7200 RPM. The servo patterns on some servo sectors at the inside
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diameter (ID) are unaccessible for the servo system to generate PES. Specifically, we found that PES is unavailable on

the following 51 servo sectors:

Mmiss = {0, 4, 8, 17, 21, 25, 34, 38, 42, 47, 51, 55, 59, 64, 68, 72, 81, 85, 89, 98, 102, 106, 111, 115, 119, 123, 128,

132, 136, 145, 149, 153, 162, 166, 170, 179, 183, 187, 192, 196, 200, 209, 213, 217, 226, 230, 234, 239, 243, 247,

251}.

Such a HDD servo with missing PES samples can be still represented as the block diagram in Fig. 6 and we also

consider the block diagram shown in Fig. 7 for the optimal H∞ control synthesis [2]. Then, the system shown in (16)

has a large period, i.e. N = 256.

As presented in [2], the nominal VCM model Gn
v(s) was identified to match the experiment frequency response

which was measured on the disk area where there are no missing PES samples. Note that in order to reduce the control

order, the nominal VCM plant was identified as an 8th order model. In addition, the weighting functions for the control

design formulation in Fig. 7 were determined as

W△(z) =
0.985z−0.693

z+0.041

Wp(z) =
0.156z5−0.666z4 +1.14z3−0.968z2 +0.41z−0.07

z5−4.933z4 +9.739z3−9.617z2 +4.75z−0.939

Wu =4 .

As a result, the VCM plant could have an unstructured uncertainty producing a ±28% gain variation at low frequency

and a ±175% gain variation at high frequency with the chosen W△, while the frequency response of W−1
p associated

with disturbance attenuation is shown in Fig. 9.

After applying our developed control algorithm, an optimal ℓ2 induced norm of γ∗ = 0.91 was obtained. We used

balanced truncation [18] to reduce the order of the resulting controller from 19 to 12. This allowed us to implement the

controller on the disk drive’s own processor by changing the firmware code. In addition, since control parameters Ft(k)

and Lt(k) in (5) are time-varying, we have to reduce the number of these control parameters for their implementation on

real HDDs. As demonstrated in [2], the non-zero time-varying parameters Ft(k) and Lt(k) have very small variations,

which motivates us to approximate these time-varying control parameter values using their average values over Mmiss.
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Finally, the controller was simplified as



x̂2i−1(k+1)

x̂2i(k+1)

=

0 a2i−1

1 a2i


x̂2i−1(k)

x̂2i(k)

+
 f2i−1(k)

f2i(k)

 ỹ(k)

+

1

0

u(k), i = 1, · · · ,5

x̂ j(k+1) = a j x̂ j(k)+u(k), j = 11,12

ỹ(k) = ∑12
i=1 cix̂i(k)− y(k)

u(k) = ∑12
i=1 mix̂i(k)−Dt(k)ỹ(k)

(18)

where

{ f1(k), · · · , f12(k),Dt(k)}=

 { f1,s, · · · , f12,s,Dt,s} k ∈Mmiss

{0, · · · ,0,0} otherwise

Figure 8: Control signal and PES in time domain

The time-domain control signal and PES for one revolution are shown in Fig. 8, where the servo sector with a

missing PES sample is marked by “*”. In the plot, when a missing PES sample occurs, the unavailable PES is approx-

imated by the previous available one. However, the control signal is always updated using (18) even when the PES is

unavailable. Figure 9 shows the magnitude frequency responses of W−1
p and the measured approximate error rejection

function [2]. Since the achieved optimal ℓ2 induced norm is less than 1, the measured approximate error rejection

function should be below the inverse of the performance weighting function at every frequency, which is verified by

the experimental result shown in Fig. 9. Thus, the experimental result demonstrates the effectiveness of our proposed

control synthesis algorithm in handling a large period (N = 256) for HDDs with missing PES samples. Moreover, the

experimental result confirms that the optimal H∞ controller synthesized by our proposed control algorithm achieved
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the desired disturbance attenuation.

Figure 9: Experiment result for the experimental approximate error rejection function

6 Conclusion

The optimal H∞ control synthesis via discrete Riccati equations for general discrete-time linear periodically time-

varying systems was studied in this paper. Using the results in [10], we first developed the optimal H∞ control synthe-

sis algorithm for general discrete-time linear time-varying systems. The control synthesis algorithm was subsequently

applied to LPTV systems, and it was verified that the resulting controllers are also periodically time-varying. The

presented control synthesis technique was evaluated by designing both single-rate and multi-rate optimal H∞ track-

following controllers for HDDs. In the case of single-rate control, the optimal H∞ controller designed using the

proposed synthesis technique was compared to the one designed using the Matlab function ‘hinfsyn”. Simulation

results suggested that the former technique is more numerically robust in calculating optimal discrete-time H∞ con-

trollers for discrete-time linear time-invariant systems than the latter. Simulation results further demonstrated the

presented control synthesis algorithm is also applicable to HDD servos with multi-rate sampling and actuation, while

the “hinfsyn” function in Matlab is only applicable for LTI plants. Moreover, an experimental study, which consisted

of implementing the developed control algorithm on a real disk drive with missing PES sampling data, demonstrated

its effectiveness in handling LPTV systems with a large period and attaining desirable disturbance attenuation.
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