
H2 Guaranteed Cost Control Design and Implementation for
Dual-Stage Hard Disk Drive Track-Following Servos

Jianbin Nie, Richard Conway, and Roberto Horowitz

Computer Mechanics Laboratory

Mechanical Engineering

University of California, Berkeley, CA, USA

January 2, 2012



Abstract

This paper discusses the design and implementation of H2 guaranteed cost control for dual-stage

hard disk drive track-following servo systems. The proposed approach is based on H2 guaranteed cost

analysis, in which an upper bound on the worst-case H2 performance of a discrete-time system with

gain-bounded unstructured uncertainty is determined via several Riccati equations. Subsequently, the

output feedback H2 guaranteed cost control synthesis algorithm is presented by exploiting Riccati equation

structure to reduce the number and complexity of the semi-definite programs (SDPs) that need to be

solved. The presented control synthesis methodology is then applied to a hard disk drive with a PZT-

actuated suspension. Experimental results on the actual disk drive validate our control design.
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1 INTRODUCTION

Since the first magnetic drive was invented in the 1950s by IBM, the areal density of hard disk drives (HDDs)

has been doubling roughly every 18 months [1], in accordance with Moore’s law. As the storage density is

pushed higher, the concentric tracks on the disk must be pushed closer together, which requires much more

accurate positioning control of magnetic read/write heads. The current goal of the magnetic recording

industry is to achieve an areal density of 4 terabits/in2, which implies that the track width is required to be

25 nm. As a result, the 3σ value of the closed-loop position error signal (PES) during track-following control

must be less than 2.5 nm.

In order to achieve the continuous increase of the data storage density, dual-stage actuation (DSA)—

which combines the traditional voice coil motor (VCM) and an additional micro-actuator (MA)—has been

proposed as a means of enhancing servo tracking performance by increasing the servo bandwidth [7]. The

configurations of dual-stage actuators can be categorized into three groups according to the location of the

secondary actuator: actuated suspension, actuated slider and actuated head. In this paper, we will focus on

the control design of DSA servo systems with actuated suspensions.

As mentioned earlier, the relevant performance metric in a HDD is the standard deviation of the PES.

Since the squared H2 norm of a system can be interpreted as the sum of variances of the system outputs

under the assumption that the system is driven by independent white zero mean Gaussian signals with unit

covariance, the H2 norm is a useful performance metric for HDDs. In addition, since there tend to be large

variations in HDD dynamics due to variations in manufacture and assembly, it is not enough to achieve the

desired level of performance for a single plant; the controller must guarantee the desired level of performance

for a large set of HDDs. Thus, we are interested in finding a controller which can produce as small H2 norm

of closed-loop systems as possible over a set of HDDs [3, 9]. To characterize the worst-case performance

of a set of HDDs, we use its H2 guaranteed cost—an upper bound on the worst-case H2 performance of

a system with unstructured uncertainty. Using this characterization, we focus on the H2 guaranteed cost

control synthesis. In [2], the authors developed two control synthesis algorithms respectively through the

solution of discrete Riccati equations (REs) and entirely based on the solution of a sequence of semi-definite

programs (SDPs). Since the control synthesis algorithm using discrete REs are often significantly more

computationally efficient and numerically robust than the one entirely using SDPs, we utilize the algorithm

via the solution of REs presented in [2] to synthesize H2 guaranteed cost control. For such a control synthesis

algorithm, the output feedback H2 guaranteed cost control problem is reduced to a full control problem by

exploiting Riccati equation structure to reduce the number and complexity of SDPs that need to be solved.

In order to evaluate the effectiveness of the presented control technique, we apply it to a hard disk drive
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with a PZT-actuated suspension. Moreover, the designed controller was implemented on this actual hard

disk drive with a laser Doppler vibrometer (LDV) to measure the feedback signal [8].

The paper is organized as follows. Section 2 describes our dual-stage HDD servo system. In Section 3,

the H2 guaranteed cost analysis is provided. The control synthesis algorithm is presented in Section 4. The

control implementation is discussed in Section 5. The conclusion is given in Section 6.

2 MODELING OF DUAL-STAGE HDD SERVOS

Figure 1 shows the picture of a PZT-actuated suspension provided by Hutchinson Technology, Inc. (HTI).

Two yellow PZT actuators are placed near the root of the suspension. They generate a push-pull action

when driven by differential voltages. Meanwhile, a leverage mechanism is utilized to convert and amplify

this small actuation displacement into large head motion.

Figure 1: A PICTURE OF A PZT-ACTUATED SUSPENSION (PROVIDED BY HUTCHINSON TECH-
NOLOGY, INC..)

2.1 System Identification

In this paper, the DSA servo system is modeled as the block diagram shown in Fig. 2 in the same way as [8].

In Fig. 2, the windage is modeled as a white noise with scaled wa; track runout r due to disk vibrations is

modeled as a color noise; the measurement noise is assumed to be a white noise with scaled wn. Notice that

wa, wr and wn have unit variance. The details of the modeling of σa, Gr and σn for the dual-stage servo

system are demonstrated in [8]. The two actuators are represented by a nominal dual-input-single-output

(DISO) system Gp with the output multiplicative uncertainty. W∆ is the uncertainty weighting function

and the unstructured uncertainty ∆ is bounded with ∥∆∥∞ ≤ 1.
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Figure 2: MODELING OF DUAL-STAGE HDD SERVO CONTROL SYSTEM
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Figure 3: VCM FREQUENCY RESPONSE
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Figure 4: PZT MICRO-ACTUATOR FREQUENCY RESPONSE

As illustrated in [8], we separately fitted a continuous-time model to each of these frequency responses of

the VCM and MA, which are shown in Fig 3 and Fig. 4 respectively. Then, we combined the fitted models

into a single model and used common mode identification [3] to eliminate redundant copies of the suspension

vibration modes. As a result, the continuous-time model for the nominal plant Gp is given by

Gp(s) =

[
−0.8 6.6

]
× 10−4 +

6∑
i=1

[
1 0

]sI −
2ζiωi 1

ω2
i 0




−1

Bi (1)

where the model parameters are as listed in Table 1.

2.2 Dual-stage Servo Control Systems

We rewrite the dual-stage servo system as the linear fractional transformation (LFT) shown in Fig. 5. In

Fig. 5, z2 is “performance monitoring” output with the control input weighting values of Wuv and Wup
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Table 1: Model PARAMETERS FOR Gp

mode, i ωi(×105) ζi Bi

1 0.0105 0.1270

[
−59.2235 0
2.3315e5 0

]
2 0.5172 0.0225

[
21.03 −19.2637

−2.9736e5 7.7326e5

]
3 0.5691 0.0151

[
13.5775 −32.4137
−1.7524e6 −2.0289e6

]
4 0.9235 0.0145

[
−4.2638 108.1704
2.1956e6 −3.5665

]
5 1.1067 0.0216

[
0.748 38.0032

3.4651e5 −1.9294e8

]
6 1.8435 0.0094

[
1.5431 37.9309
2.7582e5 −6.4101e6

]
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Figure 5: DUAL-STAGE HDD SERVOS IN LFT REPRESENTATION.

for VCM and MA respectively. Suppose, the open-loop system G and the controller K have the following

state-space realization:

G ∼



A B1 B2 B3

C1 D11 D12 D13

C2 D21 D22 D23

C3 D31 D32 0


, K ∼

 Ac Bc

Cc Dc

 . (2)

3 H2 GUARANTEED COST ANALYSIS

As mentioned in Section 1, it is desirable to design a controller to achieve robust performance, i.e. the

designed controller is able to guarantee an adequate level of performance for a set of hard disk drives. In

this section, we utilize the analysis of the robust H2 performance of an uncertain discrete-time linear time-

invariant (LTI) system in [2] to establish an upper bound on the worst-case H2 performance of an uncertain

system. Such an upper bound will be employed to formulate H2 guaranteed cost control problem in next
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Figure 6: UPPER LFT REPRESENTATION WITH UNCERTAINTY.

section.

3.1 H2 Guaranteed Cost

We consider the uncertain system Ḡ and its uncertainty ∆ as illustrated in Fig. 6. Throughout this paper,

we denote the upper LFT of Ḡ by ∆ as Fu(Ḡ,∆), as shown in Fig. 6. Suppose, ∆ is a norm-bounded

unstructured uncertainty with ∥∆∥∞ ≤ 1 and Ḡ has the state-space realization

Ḡ ∼


Ā B̄1 B̄2

C̄1 D̄11 D̄12

C̄2 D̄21 D̄22

 . (3)

From [4], we know that ∥Fu(Ḡ,∆)∥22 < γ, ∀∥∆∥∞ ≤ 1 if there exist τ > 0, P ≻ 0,W, V such that tr{W} < γ

and

MḠ(τ, P,W, V ) :=
P 0 V T

0 τI 0

V 0 W

−

Ā B̄1 B̄2

C̄1 D̄11 D̄12

C̄2 D̄21 D̄22


T 

P 0 0

0 τI 0

0 0 I



Ā B̄1 B̄2

C̄1 D̄11 D̄12

C̄2 D̄21 D̄22

 ≻ 0.

This sufficient condition for ∥Fu(Ḡ,∆)∥22 < γ, ∀∥∆∥∞ ≤ 1 motivates us to consider the following optimiza-

tion

Jτ (Ḡ) := inf
P,W,V

tr{W} s.t. P ≻ 0, MḠ(τ, P,W, V ) ≻ 0 . (4)

When (4) is infeasible for a particular value of τ > 0, we use the convention that Jτ (Ḡ) =∞. Then, Jτ (Ḡ)

turns out to be an upper bound of the worst-case H2 norm with the uncertainty, i.e.,

Jτ (Ḡ) ≥ sup
∥∆∥∞≤1

∥∥Fu(Ḡ,∆)
∥∥2
2
.
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In order to reduce the difference between the upper bound and the worst-case H2 norm, we consider the

following optimization to minimize the upper bound:

inf
τ>0

Jτ (Ḡ) . (5)

Notice that the square root of the value of (5) is called H2 guaranteed cost for the system Ḡ shown in Fig. 6.

In addition, the H2 guaranteed cost given by (5) is finite if and only if the system is robustly stable and this

can be checked using a single Riccati equation [2].

3.2 H2 Guaranteed Cost Computation

For a given system Ḡ in (3), we define

Q̄ := τC̄T1 C̄1 + C̄T2 C̄2, R̄ := τ(D̄T
11D̄11 − I) + D̄T

21D̄21

S̄ := τC̄T1 D̄11 + C̄T2 D̄21, Q̄W := τD̄T
12D̄12 + D̄T

22D̄22

S̄W := τD̄T
12D̄11 + D̄T

22D̄21, ϕ̄ := (Ā, B̄, Q̄, R̄, S̄)

ψ̄ := (B̄2, B̄1, Q̄W , R̄, S̄W )

Rϕ̄(P ) := ĀTPĀ+ Q̄− (ĀTPB̄ + S̄)(B̄TPB̄ + R̄)−1(B̄TPĀ+ S̄T )

Kϕ̄(P ) := −(B̄TPB̄ + R̄)−1(B̄TPĀ+ S̄T )

Aϕ̄(P ) := Ā+ B̄Kϕ̄(P )

In [2], we have developed an algorithm to compute the upper bound Jτ (Ḡ) as follows.

Algorithm 1 The following algorithm computes Jτ (Ḡ) under the assumption that A is Schur.

1. Find the stabilizing solution of the DARE P0 = Rϕ̄(P0)

2. Compute the Cholesky factorization LLT = −(B̄T1 P0B̄1 +R)

3. Ǩ = L\(B̄T1 P0B̄2 + S̄TW )

4. Jτ (Ḡ) = sum(P0 ◦ (B̄2B̄
T
2 )) + τ∥D̄12∥2F + ∥D̄22∥2F + ∥Ǩ∥2F

If either of the first two steps fail, then Jτ (Ḡ) =∞. �

Notice that “◦” represents the Hadamard product (i.e. element-wise multiplication) for two matrices, the

operator “sum” will take the sum of all elements of a matrix, and ∥ ∗ ∥F denotes the Frobenius norm of a
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matrix “*”. In addition, we say a matrix is Schur if all of its eigenvalues lie strictly inside the unit disk in

the complex plane.

In [2], we also have developed an algorithm to compute d
dτ (Jτ (Ḡ)) as follows.

Algorithm 2 The following algorithm computes d
dτ (Jτ (Ḡ)).

1. Use Algorithm 1 to compute P0, L, Ǩ, Jτ (Ḡ)

2. Kϕ̄(P0) = LT \(L\(B̄T1 P0Ā+ S̄T ))

3. Aϕ̄(P0) = Ā+ B̄1Kϕ̄(P0)

4. QLyap = (C̄1 + D̄11Kϕ̄(P0))
T (C̄1 + D̄11Kϕ̄(P0))−Kϕ̄(P0)

TKϕ̄(P0)

5. Solve the discrete Lyapunov equation

dP0

dτ
= Aϕ̄(P0)

T dP0

dτ
Aϕ̄(P0) +QLyap

6. Kψ̄(P0) = LT \Ǩ

7. Aψ̄(P0) = B̄2 + B̄1Kψ̄(P0)

8. d
dτ (Jτ (Ḡ)) = sum

(
dP0

dτ ◦
(
Aψ̄(P0)Aψ̄(P0)

T
))

+ ∥D̄12 + D̄11Kψ̄(P0)∥2F − ∥Kψ̄(P0)∥2F

�

For the control synthesis algorithm presented in next section, the following algorithm has been developed

in [2] to compute the H2 guaranteed cost in (5).

Algorithm 3 The following algorithm computes the H2 guaranteed cost of Ḡ.

1. Check Finiteness of the H2 Guaranteed Cost: Verify that the system is robustly stable using a

Riccati equation to check its H∞ norm.

2. Find Initial Interval: Choose α > 1. Starting from k = 0, iterate over k until a value of τ = αk

is found such that Jτ (Ḡ) ̸= ∞ and (d/dτ)(Jτ (Ḡ)) > 0. Denote this value of value of τ by τu; this

corresponds to an upper bound on the optimal value of τ . If τu = 1, then 0 is a lower bound on the

optimal value of τ , otherwise τu/α is a lower bound.

3. Bisection: Solve the equation (d/dτ)(Jτ (Ḡ)) = 0 over τ using bisection. Whenever Jτ (Ḡ) =∞, this

corresponds to a lower bound on the optimal value of τ .

In this algorithm, each evaluation of Jτ (Ḡ) is done using Algorithm 1 and each evaluation of (d/dτ)(Jτ (Ḡ))

when Jτ (Ḡ) ̸=∞ is done using Algorithm 2. �
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4 H2 GUARANTEED COST CONTROL SYNTHESIS

4.1 Control Problem Formulation

With the H2 guaranteed cost analysis results in Section 3, we are interested in finding a controller to

minimize the upper bound in (4) so as to achieve the optimal H2 guaranteed cost for the robust performance.

Consequently, the H2 guaranteed cost control design for the servo system shown in Fig. 5 can be transformed

to the following optimization

inf
K

inf
τ>0

Jτ (Fl(G,K)) . (6)

4.2 Full Information Control Algorithm

Before we present the output feedback control synthesis algorithm, we consider the optimal control (in terms

of Jτ ) of the interconnection shown in Fig. 7. In this diagram, we let Gfi have the state-space realization

Gfi ∼



A B1 B2 B3

C1 D11 D12 D13

C2 D21 D22 D23
I

0

0



0

I

0



0

0

I



0

0

0




. (7)

From the state-space realization in (7), we learn that the feedback controller has the full access to the plant

state and disturbances. Thus, the control design of Gfi is called full information control problem.

As discussed in [2], we consider the optimal full information control problem corresponding to solving

9



the optimization problem

Jfi,ϵ := inf
K
J(ϵ−1)(Fl(Gfi,K)) . (8)

A few quantities which will be important in this section are the combinations of state-space matrices

B[1,3] :=

[
B1 B3

]
, C :=

C1

C2

 , D1 :=

D11

D21


D2 :=

D12

D22

 , D3 :=

D13

D23

 , D[1,3] :=

D11 D13

D21 D23


and the parameters

Q := CT1 C1 + ϵCT2 C2, S := CT1

[
D11 D13

]
+ ϵCT2

[
D21 D23

]
Q̄ := DT

12D12 + ϵDT
22D22, S̄ := DT

12

[
D11 D13

]
+ ϵDT

22

[
D21 D23

]

R :=

DT
11D11 − I DT

11D13

• DT
13D13

+ ϵ

DT
21D21 DT

21D23

• DT
23D23


ϕ := (A, B[1,3], Q, R, S), ψ := (B2, B[1,3], Q̄, R, S̄)

Throughout this paper, the symbol “•” denotes the transpose of the corresponding element at its transposed

position.

In this section, we will make the following assumptions:

(A1) DT
3 D3 is invertible

(A2) (A,B3) is stabilizable

(A3) dim

Ker

A− λI B3

C D3


 = 0, ∀λ ∈ C satisfying |λ| ≥ 1.

Notice that the operator Ker(∗) represents the kernel (i.e. null space) of the matrix “*”. These regularity

conditions are analogous to those required for the design of a linear quadratic regulator or full information

H∞ controller using discrete Riccati equations [10].

With these formulas in place, we first present two algorithms which respectively compute Jfi,ϵ and its

derivative with respect to ϵ.
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Algorithm 4 The following algorithm computes Jfi,ϵ, the corresponding optimal controller, and the corre-

sponding optimal closed-loop system under assumptions (A1)–(A3).

1. Find the stabilizing solution of the DARE Rϕ(P ) = P

2. Compute the Cholesky factorization TT22T22 = BT3 P0B3 +DT
13D13 + ϵDT

23D23

3. T21 = TT22\(BT3 P0B1 +DT
13D11 + ϵDT

23D21)

4. Compute the Cholesky factorization TT11T11 = TT21T21 + I −BT1 P0B1 −DT
11D11 − ϵDT

21D21

5. Form the optimal controller gains:

Ko
x = −T22\(TT22\(BT3 P0A+DT

13C1 + ϵDT
23C2))

Ko
d = −T22\T21

Ko
w = −T22\(TT22\(BT3 P0B2 +DT

13D12 + ϵDT
23D22))

6. Form the closed-loop state-space matrices

Acl = A+B3K
o
x, Bcl1 = B1 +B3K

o
d , Bcl2 = B2 +B3K

o
w

Ccl1 = C1 +D13K
o
x, D

cl
11 = D11 +D13K

o
d , D

cl
12 = D12 +D13K

o
w

Ccl2 = C2 +D23K
o
x, D

cl
21 = D21 +D23K

o
d , D

cl
22 = D22 +D23K

o
w

7. Verify that Acl is Schur

8. Ǩ = TT11\
(
(Bcl1 )TP0B

cl
2 + (Dcl

11)
TDcl

12 + ϵ(Dcl
21)

TDcl
22

)
9. Jfi,ϵ = ϵ−1

(
sum(P0 ◦ [Bcl2 (Bcl2 )T ]) + ∥Dcl

12∥2F + ϵ∥Dcl
22∥2F + ∥Ǩ∥2F

)
If steps 1, 2, or 4 fail or if Acl is found to be not Schur in step 7, then Jfi,ϵ =∞ and there is no optimizing

controller. �

Algorithm 5 The following algorithm computes dJfi,ϵ/dϵ.

1. Use Algorithm 4 to compute the following quantities: P0, T11, T21, T22, K
o
x, K

o
d , K

o
w, A

cl, Bcl1 , Bcl2 ,

Ccl1 , Ccl2 , Dcl
11, D

cl
12, D

cl
21, D

cl
22, Ǩ, and Jfi,ϵ

11



2. Compute the quantities

Kdx = T11\
(
TT11\[(Bcl1 )TP0A+ (Dcl

11)
TC1 + ϵ(Dcl

21)
TC2]

)
Kdw = T11\

(
TT11\[(Bcl1 )TP0B2 + (Dcl

11)
TD12 + ϵ(Dcl

21)
TD22]

)

3. Compute the quantities

K̄x = Ko
x +Ko

dKdx

K̄w = Ko
w +Ko

dKdw

4. Compute the quantities

Aϕ(P0) = A+B1Kdx +B3K̄x, Aψ(P0) = B2 +B1Kdw +B3K̄w

Č = C2 +D21Kdx +D23K̄x, Ď = D22 +D21Kdw +D23K̄w

5. Using the MATLAB function dlyapchol, solve for the Cholesky factor U in the discrete Lyapunov

equation UTU = Aϕ(P0)
T (UTU)Aϕ(P0) + ČT Č

6. dJfi,ϵ/dϵ = ϵ−1(∥UAψ(P0)∥2F + ∥Ď∥2F − Jfi,ϵ) �

With these results in place, we can easily solve (8) using the following algorithm:

Algorithm 6 The following algorithm computes the optimal H2 guaranteed cost of the closed-loop system

along with an optimal controller.

1. Check Regularity Conditions: Verify that assumptions (A1)–(A3) hold.

2. Find Initial Interval: Choose α > 1. Check if Jfi,ϵ ̸=∞ and dJfi,ϵ/dϵ < 0 when ϵ = 1. If so, start

from k = 1 and increment k until either or these conditions fail to be met when ϵ = αk. Denoting the

corresponding value of ϵ as ϵu, there exists an optimal value of ϵ in the interval (α−1ϵu, ϵu).

If instead either Jfi,ϵ = ∞ or dJfi,ϵ/dϵ > 0 when ϵ = 1, start from k = 1 and increment k until

Jfi,ϵ ≠ ∞ and dJfi,ϵ/dϵ < 0 when ϵ = α−k. Denoting the corresponding value of ϵ as ϵl, there exists

an optimal value of ϵ in the interval (ϵl, αϵl).

3. Bisection: Solve dJfi,ϵ/dϵ = 0 over ϵ using bisection. Whenever Jfi,ϵ = ∞ for a particular value of

ϵ, this value of ϵ is an upper bound on the optimal value of ϵ.
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In this algorithm, each evaluation of Jfi,ϵ is done using Algorithm 4 and each evaluation of dJfi,ϵ/dϵ when

Jfi,ϵ ̸=∞ is done using Algorithm 5. �

4.3 Full Control Algorithm

In [2], the output feedback control problem in (6) is reduced to the following optimal full control problem

inf
K̃
J1(Fl(G4, K̃)) (9)

where G4 has the following the state-space realization

G4 ∼



A+B1Kdx B1T
−1
11 B2 +B1Kdw I 0

−T22K̄x −T22Ko
dT

−1
11 −T22K̄w 0 T22

0 0 0 0 0

C3 +D31Kdx D31T
−1
11 D32 +D31Kdw 0 0


(10)

where the parameters Kdx, Kdw, K̄x, and K̄w are defined in Algorithm 5.

It is not currently known whether or not the optimal full control problem can be solved using Riccati

equations. Therefore, to solve this problem, we will resort to the SDP approach. In particular, we have

proved that the optimization problem (9) is equivalent to the optimization problem

inf
P,W,V,L̂x,Lv

tr{W} s.t. (11a)

P • • • •

0 TT11T11 • • •

V 0 W • •

PǍ+ L̂xČ PB1 + L̂xD31 PB̌ + L̂xĎ P •

T22(LvČ − K̄x) T22(LvD31 −Ko
d) T22(LvĎ − K̄w) 0 I


≻ 0 (11b)

where  Ǎ B̌

Č Ď

 :=

 A+B1Kdx B2 +B1Kdw

C3 +D31Kdx D32 +D31Kdw

 . (12)

Consequentially, for any P,W, V, L̂x, Lv that satisfy (11b), an output feedback controller which achieves
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Jτ (Fl(G,K)) ≤ Jfi,ϵ + ϵ−1tr{W} can be reconstructed from

Ac = A+B1Kdx +B3K̄x + (P−1L̂x −B3Lv)(C3 +D31Kdx)

K ∼

 Ac P−1L̂x −B3Lv

Lv(C3 +D31Kdx)− K̄x Lv

 . (13)

4.4 Output Feedback Control Algorithm

This section gives a heuristic for solving (6) using the results presented so far in this paper.

Algorithm 7 The following algorithm is a heuristic for solving the optimal output feedback control problem

(6).

1. Find Initial Value of τ

(a) Full Information Controller Design: Using Algorithm 6, design an optimal full information

controller.

(b) Find Feasible Value of τ : Choose α > 0. For the final values determined during the last full

information controller design, solve (11) using an SDP solver. If the optimization was feasible,

reconstruct the corresponding output feedback controller K using (13). If the optimization was not

feasible, set τ ← ατ , design a full information controller for ϵ = τ−1 using Algorithm 4, and redo

this step.

(c) Closed-Loop System Analysis (Fixed K): Form the closed-loop system Fl(G,K) and analyze

its H2 guaranteed cost performance using Algorithm 3.

2. Controller Design

(a) Output Feedback Controller Design (Fixed τ): For the value of τ > 0 found in the previous

closed-loop system analysis step, solve (11) using an SDP solver and reconstruct the corresponding

controller K using (13).

(b) Closed-Loop System Analysis (Fixed K): Form the closed-loop system Fl(G,K) and analyze

its H2 guaranteed cost performance using Algorithm 3. Return to step 2a. �

In our implementation, we use α = 100. We use two stopping criteria in this algorithm. If the number

of output feedback controller optimizations (i.e. the number of times steps 1b and 2a have been executed)

exceeds 30 or if J
[i−1]
of /J

[i]
of − 1 < 10−4 where J

[i]
of is the cost reported the ith time step 2b executes, we

terminate the algorithm. We also terminate the algorithm if the SDP solver claims infeasibility in step 2a.
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5 CONTROL IMPLEMENTATION

5.1 H2 Guaranteed Cost Control Design

For the dual-stage track-following servo design shown in Fig. 2, we need to design a proper uncertainty

weighting functionW∆ so that the modeling of the uncertain plant, (1+W∆∆)Gp, covers all plant variations

but is not too conservative. Based on the servo system identification in [8], the uncertainty weighting function

was selected as shown in Fig. 8. The selected uncertainty weighting function demonstrates that the real plant

could have an unstructured uncertainty of a ±2% gain variation at low frequency and a ±54% gain variation

at high frequency respectively from the nominal plant.
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Figure 8: PLANT UNCERTAINTY WEIGHTING FUNCTION W∆

With the control input weighting values of Wuv = Wup = 0.04, the H2 guaranteed cost control is

synthesized by using Algorithm 7. As demonstrated in [4, 6], the proposed control algorithm, by exploiting

the Riccati equation structure to decrease the number and complexity of SDPs, is able to increase the

computation speed and accuracy compared to the approaches [5] solving LMIs.

5.2 Experimental Study

Figure 9 shows a picture of the experimental setup. A PZT-actuated suspension shown in Fig. 1 was

assembled to an arm of the E-block of a commercial 3.5” 7200 RPM disk drive. An LDV was utilized

to measure the absolute radial displacement of the slider. The resolution of the LDV is 2 nm for the

measurement gain of 0.5 µ/V. The control circuits include a Texas Instrument TMS320C6713 DSP board

and an in-house made analog board with a 12-bit ADC, a 12-bit DAC, a voltage amplifier to drive the MA,

and a current amplifier to drive the VCM. The DSP sampling frequency is 71.4 KHz in this paper. And the

input delay including ADC and DAC conversion delay and DSP computation delay is 6 µs. A hole was cut
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through the case of the drive to make laser go into the drive.
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LDV

DSP

PZT-actuated

suspension

Figure 9: DSA EXPERIMENT SETUP

Then, the synthesized controller was implemented on our experiment setup illustrated in Fig. 9. In

order to validate our control design, the closed-loop sensitivity function by using the sinusoidal sweeping

signal was measured. The observed sensitivity function is indicated by the black line in Fig. 10, while the

predicted one is indicated by the red line. Note that the predicted sensitivity function (Ts = 1
1+GpK

) was

calculated using the controller transfer function and measured open-loop plant transfer functions. From

the experiment results, we see the predicted and observed closed-loop sensitivity functions agree very well

especially at frequencies below 1 KHz. The predicted sensitivity function at frequencies above 1 KHz is very

noisy, because the measured MA frequency response is quite noise, as shown in Fig. 4. From the results

in Fig. 10, we also see that the observed sensitivity transfer function matches the base line (in the sense

of average) of the predicted one from 1 KHz to 3 KHz. In addition, the experiment results demonstrate

that the designed controller using our presented H2 guaranteed cost control synthesis algorithm produced a

relatively-high gain-crossover frequency of 3 KHz for the error rejection function.
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6 CONCLUSION

In this paper, we first presented an upper bound, H2 guaranteed cost, for the worst-case H2 performance of a

discrete-time system with a norm-bounded unstructured uncertainty. Based on the H2 guaranteed cost anal-

ysis and the corresponding optimal full information control, we reviewed the output feedback H2 guaranteed

cost control algorithm by exploiting Riccati equation structure to reduce the number and complexity of the

SDPs that need to be solved. Consequently, the presented control algorithm is able to increase the compu-

tation speed and accuracy compared to the approaches entirely based on semi-definite programs. Then, we

applied the proposed control algorithm to dual-stage HDD track-following servo systems. The experiment

results by implementing the synthesized controller on an actual disk drive with a PZT-actuated suspension

demonstrate the effectiveness of the presented H2 guaranteed cost control algorithm and validate our control

design. Specifically, the designed dual-stage servo by our proposed control synthesis algorithm attained a

relatively-high gain-crossover frequency of 3 KHz for the error rejection function.
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