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Abstract

This paper considers two novel controller synthesis methodologies using a feedforward control structure for

performing concentric self-servo track writing in hard disk drives. In the first methodology, it is assumed that a

conventional causal track-following controller has been designed and a non-causal feedforward controller, which

utilizes the stored error signal from writing the previous track, is designed using standard H∞ control synthesis

techniques, in order to prevent the track errors from propagating and to achieve good disturbance attenuation. In the

second methodology, both the track-following feedback controller and the feedforward controller are simultaneously

designed via a mixed H2/H∞ control scheme, which involves the solution of a set of linear matrix inequalities and

achieves good disturbance attenuation while preventing the propagation of track errors from the previous tracks.

Simulation results confirm that the two proposed control synthesis methodologies prevent error propagation from the

previously written tracks and significantly improve concentric self-servo track writing performance.

1



1 Introduction

Modern hard disk drive (HDD) servo systems require that servo patterns, which contain track positioning information,

should be embedded on the disk surface at specific locations called servo sectors. Afterwards, the servo patterns on

servo sectors are utilized to provide feedback signals for HDD servo systems to position read/write magnetic head. In

order to reduce track misregistration [4, 9] and increase track density [19], it is necessary to improve the precision of

the servo pattern writing process.

Conventionally, servo patterns are written by costly dedicated servowriting equipment [12] external to disk drives.

Self-servo track writing (SSTW) [2, 11] is an alternative method of writing servo patterns using the HDD’s own read-

ing and writing heads and servo system, in order to save the process cost and improve the servowriting quality. During

SSTW, the timing and radial information are obtained from the previously written track using the read head, while

timing and radial positioning servo patterns for the current track are being written using the write head. Consequen-

tially, the external equipment is no longer needed in the servo-pattern writing and thus the servo track writing does not

have to be carried out in any clean room environment. There are two most popular SSTW methodologies, spiral-based

SSTW [1, 16] and concentric-based SSTW. In this paper, we just focus on the compensation scheme for concentric

self-servo track writing. Specifically, the process of the concentric self-servo track writing generally involves the

following steps [18]:

1. Write one or more concentric servo sector tracks using conventional servowriting methodologies. These tracks

are used as the initial seed tracks, from which reference timing and radial position information is measured to

write the next (adjacent) track in a bootstrap manner, and can be pre-written on the disks before the disks are

assembled in the HDD.

2. Assume that the read-head to write-head position offset is equal to one track width [5]. Using the read head,

collect timing and radial information from the previously written seed track and use this information to generate

the position error signals to track follow the seed track, while the write head writes actual servo patterns for the

current track.

3. Use the track written in Step 2) as the new seed track and go back to Step 2) until all concentric tracks are

written.

However, several challenges arise with the concentric SSTW process such as the fact that radial position errors

from the previous track can propagate into the currently written track. This radial positioning error propagation will

lead to instability unless it is contained by guaranteeing that the magnitude for the error propagation term is sufficiently

attenuated. In order to contain the error propagation, iterative learning control (ILC) and 2-Dimensional H2 control

have been studied in [17] and [8] respectively. In [17], a feedforward based iterative learning control is designed in
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the lifted domain assuming zero initial conditions at the beginning of each track servo writing stage and the existence

of finite impulse-response (FIR) representations for the servo’s sensitivity and complimentary sensitivity functions.

However, we note that these assumptions are not strictly true for real HDDs. In [8], a novel 2-Dimensional H2 control

synthesis technique for SSTW is formulated to satisfy a sufficient rather than a necessary condition by making some

matrices be block diagonal in order to transfer the optimization to the form of linear matrix inequalities (LMI).

In this paper, we present two novel control synthesis methodologies for performing concentric self-servo track

writing in hard disk drives using a feedforward control structure [17, 13]. In the first methodology, a non-causal

feedforward controller, which utilizes the stored error signal [13] from writing the previous track, is designed given

a pre-defined causal track-following controller. Standard H∞ control synthesis techniques are used to avoid the prop-

agation of track errors from the previous tracks, while achieving sufficient disturbance attenuation. In the second

methodology, an analytic expression for the power spectrum density of track errors is derived and approximated. The

approximate expression is subsequently used to formulate the simultaneous design of both a feedback and a feedfor-

ward controller, using a mixed H2/H∞ control scheme, which ensures the containment of the error propagation and

the achievement of good disturbance attenuation and is solved via the solution of a set of LMIs. Neither of these

techniques utilizes the simplifying assumptions in [17]. Simulation results based on the HDD benchmark problem

developed in [10] show that the controllers synthesized by the proposed schemes outperform the controllers synthe-

sized by the techniques in [17], and offer levels of performance that are comparable to the 2-dimensional H2 control

technique in [8] while having a much simpler control structure.

The paper is organized as follows. Section 2 describes the non-causal feedforward control design by using standard

H∞ control. In Section 3, the analytical expression for the power spectrum density of track errors is derived. Section

4 presents the design of feedback and feedforward controllers by using a mixed H2/H∞ control scheme. Simulation

results are provided in Section 5. Finally, conclusions are given in Section 6.

2 NON-CAUSAL FEEDFORWARD CONTROL DESIGN VIA H∞ CON-

TROL

2.1 Feedforward-control structure based SSTW system

Figure 1 illustrates the block diagram of the concentric self-servo track writing system with a feedforward control

structure [13]. The system includes a feedforward controller F(z) and a standard track-following servo loop with the

VCM plant P(z) and the feedback controller C(z). In Fig. 1, i and k denote the track index and servo sector index

respectively, while△yi(k), wi(k), ri(k) and ni(k) denote the track error, windage, track runout due to disk vibrations,

and measurement noise, respectively, at the position of track i and servo sector k. Similar to [15], dn, dw, and dr are
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assumed to be white noises with unit variance. Moreover, since the feedforward controller F(z) utilizes the error signal

ei−1(k), which can be stored when writing the previous track, and hence the entire ei−1(k) sequence in (k) is available

when writing the current track, a non-causal feedforward controller F(z) is feasible for the control structure in Fig. 1.

Here, windage and measurement noise are modeled as white noises with the variance σ2
w and σ2

n respectively, while

the track runout caused by disk vibrations is modeled as a color noise generated by feeding a white noise dr input to

the filter Gr(z).

P- C
pesi(k)

ni(k)yi-1(k)
yi(k)

F
ei(k)

ei-1(k)

wi(k) ri(k)

Gr

dn(i,k)
dw(i,k) dr(i,k)

Figure 1: Feedforward control structure based SSTW system

Based on the block diagram in Fig. 1, we can get the following recursive expression for track errors:

△yi(k) = G1(z)△yi−1(k)+T (z)ni(k)

+S(z)di(k)−S(z)F(z)di−1(k) (1)

where T (z) = P(z)C(z)
1+P(z)C(z) , S(z) = 1

1+P(z)C(z) , di(k) = P(z)wi(k)+ ri(k), and G1(z) =
P(z)C(z)+F(z)

1+P(z)C(z) .

Notice that G1(z) becomes the key transfer function relating the previous and the current track errors.

2.2 Non-causal feedforward control design

Like the iterative learning control in [17] and [14], a feedback controller C(z) for track following is firstly designed

to achieve good disturbance attenuation. Here, C(z) is designed as an optimal H2 controller. In order to contain the

error propagation, the designed controllers must satisfy ∥G1(e jω)∥∞ < 1. Furthermore, in order to make the error

propagation converge as quickly as possible, we want ∥G1(e jω)∥∞ to be sufficiently small. From (1), we learn that the

current track error is also affected by the disturbances from the previous track. In order not to degrade the disturbance

attenuation performance of the track-following controller C(z), the magnitude of the filter F(z) needs to also be

sufficiently small. In all, the feedforward control F(z) must be designed to achieve the following target:

 ∥G1(z)∥∞ : sufficiently small and less than 1

∥F(z)∥∞ : sufficiently small
. (2)
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As a consequence, we consider the following optimization:

minF(z)

∥∥∥∥[G1(z) wt1F(z)

]∥∥∥∥
∞

(3)

where wt1 is a weighting value to be tuned to achieve the target in (2). The optimization in (3) is a standard H∞ control

problem, which can be easily solved, as shown later in this section. However, the solution to (3) can only produce a

causal compensator F(z) [7]. Obviously, a smaller objective value may be achieved if F(z) is allowed to be non-causal.

In order to design a non-causal filter F(z), we consider the following facts:

∥∥∥∥[G1(z) wt1F(z)

]∥∥∥∥
∞

=

∥∥∥∥[z−nd G1(z) wt1z−nd F(z)

]∥∥∥∥
∞

=

∥∥∥∥[ z−nd P(z)C(z)+F̃(z)
1+P(z)C(z) wt1F̃(z)

]∥∥∥∥
∞

(4)

where F(z) = znd F̃(z) and nd is a positive integer. Thus, the optimization in (3) can be transformed into the following

optimization:

min
F̃(z)

∥∥∥∥[ z−nd P(z)C(z)+F̃(z)
1+P(z)C(z) wt1F̃(z)

]∥∥∥∥
∞

. (5)

P(z)C(z)
-

F(z)

z

d2 wt1
uy

d1 d-nz

Figure 2: Block diagram for the interpretation of H∞ norm in (5)

By considering the block diagram in Fig. 2, we have Tz∞←d∞ =

[
z−nd P(z)C(z)+F̃(z)

1+P(z)C(z) wt1F̃(z)

]
, where d∞ =

[
d1 d2

]T

.

Note that the symbol TA←B represents the transfer function from signal B to signal A. Thus, the optimization in (5)

can be interpreted as an H∞ control problem for the linear fractional transformation (LFT) in Fig. 3 to minimize

∥Tz∞←d∞∥∞ . Here, G(z) is the transfer function matrix from
[

dT
∞ u

]T

to
[

zT
∞ y

]T

as shown in Fig. 2.

G(z)

F(z)
y u

[ ]
1 2

T

d d d=z

Figure 3: LFT for the H∞ control design problem
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Then, the standard H∞ control synthesis technique can be applied to the control problem as shown in Fig. 3 to

generate the controller F̃(z). Once a causal F̃(z) is designed, a non-causal feedforward controller can be constructed

from F(z) = znd F̃(z).

3 Track error analysis for the feedforward control based SSTW

3.1 Power spectrum density of track errors

In order to investigate the relationship between the current track error and disturbances from the previously written

tracks, we assume that the servo patterns on each track are written after the system reaches its steady state. Then,

based on the recursive form of track errors in (1), we have the following complete expression for track errors.

△yi(k) = Gi
1△y0(k)+

i

∑
l=1

Gi−l
1 T nl(k)+

i

∑
l=1

Gi−l
1 Sdl(k)

−
i−1

∑
l=1

Gi−1−l
1 SFdl(k)

=
i−1

∑
l=1

Gi−1−l
1 T [(T +SF)nl(k)−S(1−F)dl(k)]

+Gi
1△y0(k)+T ni(k)+Sdi(k)

=
i−1

∑
l=1

Gi−1−l
1 T [G1nl(k)−S(1−F)dl(k)]

+Gi
1△y0(k)+T ni(k)+Sdi(k) . (6)

Furthermore, we assume that the seed track error △y0, measurement noises and disturbances are uncorrelated with

each other and the track error on the seed track has a power spectrum density Φ△y0△y0
. Moreover, measurement noises

on different tracks are uncorrelated and have the same variance σ2
n , while disturbances on different tracks are also

uncorrelated and have the same power spectrum density Φdd(e jω). With these assumptions, we can get the following

power spectrum density for the track error on track i:

Φ△yi△yi
(e jω) =

i−1

∑
l=1
|G1|2(i−l−1)|T |2

(
|G1|2σ2

n + |S|2|1−F |2

·Φdd)+ |G1|2iΦ△y0△y0
+ |T |2σ2

n + |S|2Φdd . (7)
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When the track index i is quite large,
∣∣G1(e jω)

∣∣2i will be closed to zero, since
∣∣G1(e jω)

∣∣< 1. Then, for the large track

index i, we have:

Φ△yi△yi
(e jω) =

|T |2

1−|G1|2
[
σ2

n + |F̂ |2Φdd(e jω)
]

+|S|2Φdd(e jω) . (8)

In order to conveniently synthesize the mixed H2/H∞ control, which will be discussed in Section 4, we utilize the

parameterization G1(z) = 1+ F̂(z) and F̂(z) = S(z)(F(z)−1).

3.2 Discussion

From (8), we note that, in order to reduce track errors, not only a good track-following feedback controller is necessary,

but also both
∣∣G1(e jω)

∣∣ and
∣∣F̂(e jω)

∣∣ should be sufficiently small. However,
∣∣G1(e jω)

∣∣ and
∣∣F̂(e jω)

∣∣ can not be closed

to zero at the same time, since G1(z) = 1+ F̂(z). Intuitively, in order to accomplish a good tracking performance,

the H2 norm of the transfer functions from disturbances to track errors must be minimized and simultaneously an

appropriately small ∥G1(z)∥∞ must be guaranteed. This idea turns out to be a mixed H2/H∞ control problem, which

will be discussed in next section.

4 The design of feedback and feedforward control by using mixed H2/H∞

synthesis

4.1 Problem formulation

As discussed in Section 3, (8) educes the idea of a mixed H2/H∞ control design in order to achieve a good tracking

performance. Let’s rewrite (8) as:

Φ△yi△yi
(e jω) = |T |2

(
σ2

n

1−|G1|2

)
+ |F̂ |2

(
|T |2

1−|G1|2
×

Φdd(e jω)
)
+ |S|2Φdd(e jω) . (9)

Clearly, (9) demonstrates that the track error can be considered as the output of the system Ḡ2(z)=
[

T (z) F̂(z) S(z)

]
with the input of

[
ni

(1−|G1|2)
1/2

T

(1−|G1|2)
1/2 d̃i di

]T

. Here, d̃i’s are artificial disturbances, which are uncorrelated with

ni and di and have the same power spectrum density as di. Notice that the artificial disturbances d̃i’s are just introduced

to represent the second component of the track error power spectrum density in (9).

7



Since the weighting functions 1

(1−|G1|2)
1/2 and T

(1−|G1|2)
1/2 for ni and d̃i are not affine in G1(z) and T (z), the two

weighting functions are replaced by two weighting values wt2 and wt3 respectively, in order to conveniently construct

a linear system to represent the transfer function matrix from the input
[

ni d̃i di

]T

to △yi. Such substitution is

further validated by the fact that the magnitude frequency responses of both G1 and T are expected to be flat at low

and middle frequencies [17].

By considering the system denoted in Fig. 4 where dw, dr, dn, d̃w, and d̃r are assumed to be uncorrelated white

noises, we obtain the following expression for the power spectrum density of z2:

Φz2z2
(e jω) = |T |2w2

t2σ2
n + |F̂ |2w2

t3Φdd(e jω)+ |S|2Φdd(e jω) . (10)

Obviously, the power spectrum density of z2 is similar to that of △yi except the replacement of the weighting func-

tions in (9) with the corresponding weighting values in (10). Thus, with appropriate weighting values wt2 and wt3,

Φ△yi△yi
(e jω) can be approximated by Φz2z2

(e jω). As shown in Fig. 4, let G2(z)=

[
T

z2←
[
dw dr dn

]T wt3F̂ ∗T
d̃←

[
d̃w d̃r

]T

]

denote the transfer function matrix from
[

dw dr dn d̃w d̃r

]T

to z2. Therefore, in order to accomplish good track-

PC
z
2

G
r

d
n

d
w

d
r

P

G
r

d
r

d
w

-

Figure 4: Block diagram for the interpretation of G2(z)

ing error performance, we consider the mixed H2/H∞ optimization problem

minC(z),F(z) ∥G2(z)∥2

s.t. ∥G1∥∞ < γ0 < 1 (11)

to design C(z) and F(z) simultaneously. Here, γ0 is a given constant to guarantee good convergence for the track error

propagation and a good attenuation for the disturbances from the previously written tracks.

8



4.2 Mixed H2/H∞ synthesis via LMIs

A number of techniques [3] have been developed to formulate the mixed H2/H∞ control problems such as (11), and the

problems are frequently solved as solutions of linear matrix inequalities [15]. However, the mixed H2/H∞ optimization

in (11) is quite difficult to be solved, because both G1(z) and G2(z) not only include the feedback controller C(z) but

also the feedforward controller F(z). In order to simplify the synthesis, we utilize the parameterization of G1(z) =

1+ F̂(z). Then, with F̂(z) = S(z)(F(z)−1), the optimization in (11) can be reformulated as:

min
C(z),F̂(z)

∥G2(z)∥2

s.t. ∥1+ F̂(z)∥∞ < γ0 < 1 . (12)

The advantage of the formulation in (12) over the formulation in (11) is that the H∞ norm constraint only explicitly

depends on the parameterization filter F̂(z).

Obviously, G2(z) can be rewritten as G2(z) =

[
T

z2←
[
dw dr dn

]T 0 0
]
+ F̂ ∗

[
0 0 0 T

d̃←
[
d̃w d̃r

]T

]
.

Suppose that we have the following state space realizations:

C(z) ∼

 Ac Bc

Cc Dc

 (13)

[
T

z2←
[
dw dr dn

]T 0 0
]

∼

 Acl2 Bcl2

Ccl2 Dcl2

 (14)

[
0 0 0 T

d̃←
[
d̃w d̃r

]T

]
∼

 Ad Bd

Cd Dd

 (15)

F̂ ∼

 AF̂ BF̂

CF̂ DF̂

 ,G1 = 1+ F̂ ∼

 AF̂ BF̂

CF̂ 1+DF̂

 (16)
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F̂ ∗

[
0 0 0 T

z2←
[
d̃w d̃r

]T

]
∼

 Ā f B̄ f

C̄ f D̄ f



=


Ād 0 Bd

BF̂Cd AF̂ BF̂ Dd

DF̂Cd CF̂ DF̂ Dd

 (17)

G2 ∼

 Ācl2 B̄cl2

C̄cl2 D̄cl2

=


Ācl2 0 Bcl2

0 Ā f B̄ f

Ccl2 C̄ f Dcl2 + D̄ f

 . (18)

Then the optimization in (12) can be synthesized as the following optimization [3]:

min Ac,Bc,Cc ,Dc,CF̂ ,DF̂
trace(W )

s.t.


W C̄cl2 D̄cl2

∗ X2 0

∗ ∗ I

≻ 0 (19)


X2 X2Ācl2 P2B̄cl2

∗ X2 0

∗ ∗ I

≻ 0 (20)



X1 X1AF̂ X1BF̂ 0

∗ X1 0 CT
F̂

∗ ∗ I 1+DT
F̂

∗ ∗ ∗ γ2
0 I


≻ 0 (21)

where the symbol ”∗” denotes the transpose of the corresponding element at its transposed position. Since both X1

and X2 are coupled with AF̂ and BF̂ in (21) and (20) respectively, the filter F̂(z) is chosen as an FIR filter, which

means that AF̂ and BF̂ are known and thus (21) becomes an LMI. Moreover, in order to recover the convexity of

(19) and (20) by an appropriate nonlinear transformation [6], the matrix X2 is chosen as a block diagonal matrix, i.e.,

X2 = diag
{

X22,X f f
}

. As a result, the optimization involving (19), (20) and (21) is a convex optimization, which can

be easily solved. After synthesizing F̂(z), we can reconstruct the feedforward control by

F(z) = 1+S−1(z)F̂(z) = 1+(1+P(z)C(z))F̂(z) .
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5 Simulation Study

In order to evaluate the concentric SSTW design methodologies presented in this paper, they will be tested through

a simulation study that utilizes the benchmark model developed by the IEEJapan technical committee on Nano-Scale

Servo (NSS) system [10]. This model was also utilized to test the concentric SSTW design scheme presented in [17].

This benchmark model was originally developed to test track-following servos and must be modified to test servo

systems for self-servo track writing control. For the simulated drive, the servo sector number N is equal to 220 and the

disk rotation speed is 7200 RPM. Thus, the sampling frequency for this drive is fs = 220∗7200/60 = 26400 Hz.

5.1 Weighting value determination

Before using the presented two control synthesis methodologies, we have to determine the corresponding weighting

values wt1, wt2, and wt3. For the technique presented in Section 2, since the track error propagation term G1 may result

in instability (if ∥G1(z)∥∞ > 1), it is reasonable to choose a relatively small wt1. Intuitively, the selection of wt1 < 1

is desirable to emphasize G1. For the technique presented in Section 4, γ0 must be less than 1 and is required to be

closed to 1 so that the obtained H2 norm cost for track errors in (11) is not too conservative according to the H∞ norm

constraint. In addition, wt2 and wt3 are utilized to approximate 1

(1−|G1|2)
1/2 and T

(1−|G1|2)
1/2 respectively. As mentioned

in Section 4, the magnitude of T and G1 are flat at the low and middle frequencies and thus it is desirable to determine

wt2 and wt3 using the DC gains of T and G1. It is well known that in order to attenuate low-frequency disturbances,

T = PC
1+PC is usually designed to have a unit DC gain. Thus, wt2 and wt3 can be roughly selected by

wt2 = wt3 =
1(

1− (Expected DC Gain of G1)
2
)1/2 .

5.2 Control design results

An optimal H2 track following compensator C(z) was first synthesized and then a non-causal feedforward compen-

sator F(z) was designed using the H∞ control design methodology presented in Section 2, with the weighting value

wt1 = 0.16 and nd = 7. The designed control system achieves ∥G1(z)∥∞ = 0.9781 < 1 and ∥F(z)∥∞ = 1.3633. The

corresponding frequency response plots for the designed F(z), P(z)C(z)+F(z)
1+P(z)C(z) , 1

1+P(z)C(z) , and F(z)
1+P(z)C(z) are shown in

Fig. 5.

Subsequently, a feedforward compensator F(z) constructed from the FIR filter F̂(z) and a feedback compensator

C(z) were simultaneously designed using the mixed H2/H∞ control synthesis methodology in Section 4. The designed

control system achieves ∥G1(z)∥∞ = 0.9737 with the tuning parameters wt2 = 4, wt3 = 4 and γ0 = 0.98. The frequency
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Figure 5: Frequency responses for the non-causal feedforward control design via H∞ in Section 2

response plots for the resulting controllers are shown in Fig. 6.
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Figure 6: Frequency responses for the feedback and feedforward control designs using the mixed H2/H∞ synthesis
methodology in Section 4.

5.3 Time-domain simulation results

For the benchmark problem in [10], the modeled sensor noise has a sigma value of 1.5% of track pitch; that of the

track runout due to disk vibrations is 1.7% of track pitch; the contribution of the windage at PES has a sigma value

of 12.2% track width. The track error for the seed track is assumed to be a sigma value of 14% track width. In the

simulation, a total of 5000 servo tracks data was collected. In order to interpret the simulated results better, we also
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provide the time-domain simulation results for the 2-Dimensional H2 SSTW synthesis technique presented in [8]. The

sigma values of the first 5000 self-servo written tracks for the proposed two methods in this paper and for the 2-D

H2 system are depicted in Fig. 7. Obviously, the track error propagation is well contained for all the three design

methodologies.
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Figure 7: Time domain simulation results for track errors. Since the performance of the control design via H2/H∞ is
closed to that of 2-D H2 control, the green dashed line is almost covered by the red dotted line.

Meanwhile, by considering the relatively large variance of the seed track, we are also interested in checking how

fast the transition response caused by the seed track can converge. The zoomed in figure for the transition response is

illustrated in Fig. 8. The results demonstrate that the effect of the bad seed track on the subsequently written tracks by

the proposed controllers disappears very quickly. Specifically, the simulation results show that the transition responses

have disappeared after about 15 tracks.

We now consider another common performance index called AC squeeze in order to quantify the quality of written

tracks. The AC squeeze for track i is defined as:

ACsqueezei = min
k∈[0,N−1]

{1+△yi(k)−△yi−1(k)} (22)

where track errors △yi(k) and △yi−1(k) are normalized by the track width. When the AC squeeze is too small, two

adjacent tracks with narrow track spacing may interfere with each other and cause data corruption. The ideal value

of AC squeeze is 1 track width, which means the adjacent tracks are perfectly parallel to each other. The AC squeeze

values for the simulated self-servo written tracks are shown in Fig. 9. Moreover, the resulting average values of

σ (△yi−1(k)) and ACsqueezei are presented in Table 1. Note that the non-causal feedforward control design through

standard H∞ control achieves the best performance for track errors, while the feedback and feedforward control designs
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Figure 8: Zoomed in Fig. 7 to check the transition response caused by the seed track.

by using the mixed H2/H∞ control accomplish the best AC squeeze.
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Figure 9: Time domain simulation results for AC Squeeze. Since the performance of the control design via H2/H∞ is
closed to that of 2-D H2 control, the green dashed line is almost covered by the red dotted line.

In order to provide the better evaluation for our proposed control synthesis techniques, the simulation results

reported in [17] by using the iterative learning control in lifted domain are also listed in Table 1. Obviously, the

two proposed control design methodologies are able to improve both track errors and AC squeeze compared to the

ILC technique. Meanwhile, the two proposed control design techniques offer the comparable performances to the

2-Dimensional H2 control technique in [8] while having a much simpler control structure.
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Table 1: Simulation Results

Non-causal
feedforward

control
using

H∞ control

Control
designs

using mixed
H2/H∞

control

2-D H2
control

ILC in
lifted

domain
[21]

Average
of 1σ

track error
(% track)

2.11 2.50 2.27 2.88

Average
of AC

squeeze
(% track)

94.0 96.0 95.8 88

6 Conclusion

This paper discussed two novel controller synthesis methodologies for performing concentric self-servo track writing

in hard disk drives using a feedforward control structure. In the first methodology, it is assumed that a conventional

causal track-following controller has been designed and then a non-causal feedforward controller, which utilizes the

stored error signal from writing the previous track, is designed based on standard H∞ control synthesis techniques.

The designed controllers were used to prevent the track errors from previous tracks from propagating and to achieve

good disturbance attenuation. In the second methodology, an analytic expression for the power spectrum density of

track errors was approximately derived. The expression was subsequently used to formulate the simultaneous design

of both feedback and feedforward controllers, using a mixed H2/H∞ control scheme, which ensures the containment

of the error propagation and the achievement of good disturbance attenuation and was solved via the solution of a set

of LMIs. Neither of these techniques utilizes the simplifying assumptions in [17]. Simulation results using the HDD

benchmark problem developed in [10] showed that the controllers synthesized using the proposed schemes outperform

the controllers synthesized by the techniques in [17], and offer levels of performances that are comparable with the

2-dimensional H2 control technique in [8] while having a simpler structure. Moreover, the track error propagation

converges after about 15 tracks despite the seed track having a large track error.

Acknowledgment

The authors thank Western Digital Technologies for the motivation of this study. This work was performed with

funding support from UC Berkeley Computer Mechanics Laboratory (CML).

15



References

[1] D. Brunnett, Y. Sun, and L. Guo, “Method and apparatus for performing a self-servo write operation in a disk

drive using spiral servo information,” U.S. Patent 7230789B1, Jun., 2007.

[2] T. Chainer, M. D. Schultz, B. C. Webb, and E. D. Yarmchuk, “Self servowriting system with dynamic error

propagation reduction,” U.S. Patent 5793554, Aug. 11, 1998.

[3] X. Chen and K. Zhou, “Multiobjective H2/H∞ Control Design”, SIAM J. Control Optim., vol. 40, No. 2, pp.

628-660, 2001.

[4] R. Conway and R. Horowitz, “Robust track-following controller design in hard disk drives based on parameter

dependent lyapunov functions,” IEEE Trans. Magnetics, vol. 46, no. 4, pp. 1060-1068, 2010.

[5] D. Cribbs, M. Ellenberger, and J. Hassler, “self-servo writing disk drive and method,” U.S. Patent 5448429, 1995.

[6] M. C. De Oliveira, J. C. Geromel, and J. Bernussou, “Extended H2/H∞ norm characterization and controller

parametrizations for discrete-time systems,” Int. J. Control, vol. 75, No. 9, pp. 666-679, 2002.

[7] J. C. Doyle, K. Glover, P. Khargonekar, and B. Francis, “State-space solutions to standard H2 and H∞ control

problems,” IEEE Trans. on Automatic Control, vol. 34, no. 8, pp. 831-847, 1989.

[8] C. Du, L. Xie, J. N. Teoh, and G. Guo, “H2 Control for Head Positioning in Axial and Radial Dimensions for

Self-Servo Track Writing,” IEEE Trans. on Control Systems Technology, vol. 16, no. 1, pp. 177-181, 2008.

[9] S. Felix, J. Nie, and R. Horowitz, “Enhanced vibration suppression in hard disk drives using instrumented suspen-

sions,” IEEE Trans. Magnetics, vol. 45, no. 11, pp. 5188-5122, 2010.

[10] IEEJapan technical committee on Nano-Scale Servo (NSS) system. NSS homepage, 2006. URL

http://mizugaki.iis.u-tokyo.ac.jp/nss/.

[11] H.J. Kang, C.W. Lee, C.C. Chung, and H.S. Lee, “Control design for self-servo track writing using a state-space

disturbance observer,” IEEE Trans. Magnetics, vol. 45, no. 11, pp. 5148-5151, 2009.

[12] A. A. Mamun, G. Guo, and C. Bi, Hard disk drive: mechatronics and control, Boca Raton, FL: CRC Press, 2007.

[13] H. N. Melkote, R. McNab, B. Cloke, and V. Agarwal, “A study of radial error propagation and self-servowriting

in disk drives,” Proceedings of 2002 American Control Conference, pp. 1372-1377, 2002.

[14] H. Melkote and R. J. McNab, “Modeling and control for self-servowriting in hard disk drives: A repetitive

process approach,” Proceedings of the 2006 American Control Conference, pp. 2005-2010, 2006.

16



[15] J. Nie and R. Horowitz, “Design and Implementation of Dual-Stage Track-Following Control for Hard Disk

Drives,” Proceedings of the Dynamic Systems and Control Conference, Hollywood, California, 2009.

[16] J. Nie, E. Sheh, and R. Horowitz, “Optimal H∞ Control for Hard Disk Drives with An Irregular Sampling Rate,”

To appear in Proceedings of American Control Conference, San Francisco, California, 2011.

[17] S. Wu and M. Tomizuka, “An Iterative Learning Control Design for Self-Servowriting in Hard Disk Drives,”

Proceedings of the 17th World Congress, the IFAC, Seoul, Korea, 2008.

[18] H. Ye, V. Sng, C. Du, J. Zhang, and G. Guo, “Radial error propagation issues in self servo track writing technol-

ogy,” IEEE Trans. On Magnetics, vol. 38, no. 5, pp. 2180-2182, 2002.

[19] Z. Yuan, B. Liu, T. Zhou, C. Goh, C. Ong, C. Cheong, and L. Wang, “Perspetives of magnetic recording system

at 10 Tb/in2,” IEEE Trans. Magnetics, vol. 45, no. 11, pp. 5038-5043, 2009.

17


