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Abstract

This chapter presents two new control synthesis approaches for dual-stage track-following servo sys-

tems. Both approaches are based on H2 guaranteed cost analysis, in which an upper bound on the worst-

case H2 performance of a discrete-time system with gain-bounded unstructured causal LTI uncertainty is

determined by solving either a semi-definite program (SDP) or several Riccati equations. We review the

results of a paper on H2 guaranteed cost analysis and a paper on optimal full information H2 guaran-

teed cost control and then use these results to develop two output feedback control synthesis approaches.

The first approach is based entirely on the solution of SDPs whereas the second approach exploits Riccati

equation structure to reduce the number and complexity of the SDPs that need to be solved. Throughout

the paper, we apply the analysis and control techniques to a hard disk drive model with a PZT-actuated

suspension and demonstrate that the approaches that exploit Riccati equation structure are faster and at

least as accurate as their SDP counterparts.
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Design and Control of a Dual-Stage Disk Drive Servo System with a

High-Aspect Ratio Electrostatic Microactuator

Kenn Oldham, Sarah Felix, Richard Conway, and Roberto Horowitz

Abstract— Dual-stage servo systems have been proposed as
a method for attaining increased bit densities from computer
hard disk drives. To aid in controller operation, the second-stage
microactuator used in a dual-stage system should operate at low
voltages, feature relative position sensing, and have dynamics
that interact well with the dynamics of the original drive servo.
This paper describes a high-aspect ratio electrostatic microactu-
ator modified to improve dynamic interactions, relative position
sensor performance, and device yield. A multi-rate, multivari-
able control design technique was used to evaluate the closed-
loop performance of a disk drive system with a microactuator
and relative position sensing. Closed-loop simulations reveal
that the proposed configuration can reduce off-track position
error. Addressing both hardware design and control design, this
paper demonstrates the success of an integrated mechatronic
approach to hard disk drive servo control.

I. INTRODUCTION

The continual increase of bit densities in computer disk

drives requires ever-improving performance from the me-

chanical systems within the drives. The data storage industry

is currently targeting disk drive bit densities of 1 terabyte

per square inch (Tbpsi). This will require read-write head

positioning with 3σ tracking errors of less than 5 nm. A

conventional disk drive is shown in Fig. 1. As the disk

spins, it causes turbulent airflow to move past the servo arm,

exciting the resonant vibrations of the E-block and flexible

suspension that support the read-write head over the disk. At

1 Tbpsi tracking errors, this high frequency airflow-induced

vibration is expected to become the dominant obstacle to

accurate servo system tracking.

A potential solution to airflow-induced vibration of the

servo arm is to install a second actuator at the tip of the

servo arm. Such a microactuator can have a higher bandwidth

than the conventional voice-coil motor (VCM) in the disk

drive, and can be located beyond the region of suspension

vibration. Various disk drive dual-stage servo configurations

place a microactuator in the flexible suspension [1] [2] [3]

[4], between the suspension and slider containing the read-

write head [5] [6] [7] [8], or inside the slider itself [9] [10].

These arrangements provide increasing bandwidth from the

microactuator in exchange for increasing design and process-

ing complexity. Microactuators described in the literature
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Fig. 1. Mechanical components of a typical hard disk drive

typically suffer from excessive voltage requirements and

undesirable interactions between the dynamics of the actuator

and of the servo arm when the actuator is installed. Previ-

ously reported designs have also tended to focus exclusively

on actuation performance, neglecting other capabilities useful

in a dual-stage system, such as relative-position sensing and

high-conductivity interconnects.

The microactuator described in this paper incorporates

many useful features that improve dual-stage servo perfor-

mance. Deep-trench isolation and deep-reactive ion etching

are used to provide high-force, low-voltage actuation, as

described in previous articles. A novel flexure configuration

allows in-plane and out-of-plane stiffness to be tailored

individually to balance requirements on microactuator dy-

namics during read-write head flight. The microactuator in-

cludes dedicated capacitive sensing arrays for high-resolution

relative position sensing, and the microactuator fabrication

process has been revised to greatly improve interconnect

quality and sensor performance. Completed microactuators

have been successfully installed on multi-piece suspensions

(Fig. 2) with improved vibration behavior over previous

models, permitting more aggressive dual-stage controller

designs.

Finally, complete system models were obtained based on

experimental responses of the microactuator and capacitive

sensor. The models were used to design a multi-input-

multi-output (MIMO), multi-rate controller. The controller

synthesis incorporated several constraints that reflect physical

limitations of the microactuator and relative position sensing

limitations. Closed-loop simulations provided insight into

how the device design affects closed-loop performance.

II. MICROACTUATOR DESIGN

The high-aspect ratio microactuator consists of a central

shuttle holding a pico slider and read-write head, driven
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Figure 1: Schematic of a typical HDD

1 Introduction

For several decades now, the areal storage density of hard disk drives (HDDs) has been doubling roughly

every 18 months, in accordance with Kryder’s law. As the storage density is pushed higher, the concentric

tracks on the disk which contain data must be pushed closer together, which requires much more accurate

control of the read/write head. Currently available hard drives can store 2 TB of data on a 3.5” drive

with three platters. This corresponds to an areal data density of 600 gigsbits/in2. The current goal of the

magnetic recording industry is to achieve an areal storage density of 4 terabits/in2. It is expected that the

track width required to achieve this data density is 25 nm. To achieve this specification for track-following

control, in which the read/write head is maintained as close to the center of a given data track as possible,

the 3σ value of the closed-loop position error signal (PES) should be less than 2.5 nm.

To help achieve this goal, the use of a secondary actuator has been proposed to give increased precision

in read/write head positioning. There are three classes of secondary actuators: actuated suspensions [6],

actuated sliders [7], and actuated heads [17]. Each of these proposed secondary actuator classes correspond

to a different actuator location in Fig. 1. In the actuated head configuration, a microactuator (MA) actuates

the read/write head with respect to the slider mounted at the tip of the suspension. In the actuated slider

configuration, an MA directly actuates the head/slider assembly with respect to the suspension. For both of

these configurations, it is difficult to design an MA which can be easily incorporated into the manufacture

and assembly of a HDD on a large scale. In the actuated suspension configuration, the MA actuates the

suspension with respect to the E-block. This secondary actuator scheme is the least difficult to design and

has been incorporated into some consumer products. We will use this secondary actuation scheme in this

paper.

Since there tend to be large variations in HDD dynamics due to variations in manufacture and assembly,

it is not enough to achieve the desired level of performance for a single plant; the controller must guarantee

the desired level of performance for a large set of HDDs. Thus, we are interested in finding a controller which
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gives robust performance over a set of HDDs. One framework for solving this problem is guaranteed cost

control. This methodology is a control design methodology whose objectives involve worst-case quadratic

time domain costs over a modeled set of parametric uncertainty. Both the state feedback synthesis problem

and the output feedback synthesis problem can be solved for discrete-time systems by using semi-definite

programs (SDPs)—convex optimization involving linear matrix inequalities (LMIs)—as is done in [14] and

[18], respectively.

As mentioned earlier, the relevant performance metric in a HDD is the standard deviation of the PES.

Since the squared H2 norm of a system can be interpreted as the sum of variances of the system outputs

under the assumption that the system is driven by independent white zero mean Gaussian signals with unit

covariance, the H2 norm is a useful performance metric for HDDs.

This chapter reviews the basic results of H2 guaranteed cost analysis [3], which use the techniques of

guaranteed cost control to yield an upper bound on the worst-case H2 performance of a system with dynamic

unstructured uncertainty. Using this characterization of performance, we then review the solution of the

corresponding full information control problem [4]—a generalization of the state feedback control problem—

and use the results to generate two heuristics for solving the output feedback control problem.

For all of the problems in this chapter, we consider two approaches: an approach based on solving SDPs

and an approach based on solving Riccati equations. Parallel to reviewing and developing the relevant

theory, we apply these techniques to the design and analysis of HDD track-following controllers. For all

numerical experiments in this paper, we use a 2.2 GHz Intel Core 2 Duo processor with 2 GB RAM running

MATLAB 7.4.0 (with multithreaded computation disabled) under 32-bit Windows Vista. We solve SDPs

two ways in this paper: using SeDuMi [16] with YALMIP [12] and using the mincx command in the Robust

Control Toolbox for MATLAB without YALMIP. Through these HDD track-following control examples, we

demonstrate the computational advantages of the approach based on Riccati equation solutions.

1.1 Preliminaries

In this chapter, we will denote the spectral norm (i.e. the maximum singular value) and the Frobenius norm

of a matrix M respectively as ‖M‖ and ‖M‖F . We will say that M is Schur if all of its eigenvalues lie

strictly inside the unit disk in the complex plane. The operator “diag” takes several matrices and stacks

them diagonally:

diag[M1, . . . ,Mn] =


M1 0

. . .

0 Mn

 . (1)
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Figure 2: Linear fractional transformations (LFTs)

Figure 3: Picture of the Vector model PZT-actuated suspension used in our experimental setup

Positive definiteness (resp. semi-definiteness) of a symmetric matrix X will be denoted by X � 0 (resp.

X � 0), and a • in a symmetric matrix will represent a block which follows from symmetry.

For given (A,B,Q,R, S), where Q = QT and R = RT , we define the functions

R(A,B,Q,R,S)(P ) := ATPA+Q− (ATPB + S)(BTPB +R)−1(BTPA+ ST ) (2a)

K(A,B,Q,R,S)(P ) := −(BTPB +R)−1(BTPA+ ST ) . (2b)

We will make the notation more compact in the remainder of the paper by respectively denoting these

functions as Rφ(P ) and Kφ(P ) where φ is an appropriately defined 5-tuple. Note that the equation Rφ(P ) =

P is a discrete algebraic Riccati equation (DARE). If Rφ(P ) = P = PT and A+BKφ(P ) is Schur, then P

is called a stabilizing solution of the DARE. Throughout the paper, we will implicitly use the property that

if a DARE has a stabilizing solution, it is unique [11].

A matrix pair (A,B) will be called d-stabilizable if ∃K such that A+BK is Schur. A matrix pair (A,C)

will be called d-detectable if ∃L such that A+LC is Schur. For a given stable and causal LTI system G, its

H2 and H∞ norms will respectively be denoted as ‖G‖2 and ‖G‖∞. For two causal LTI systems G1 and G2,

we denote the lower linear fractional transformation (LFT) of G1 by G2 (shown in Fig. 2a) as Fl(G1, G2).

We will denote the upper LFT of G1 by G2 (shown in Fig. 2b) as Fu(G1, G2).

2 Hard Disk Drive Model

In this section, we present the HDD model we will be using throughout this chapter. The HDD we are

considering has the PZT-actuated suspension shown in Fig. 3, which is a Vector model suspension provided

to us by Hutchinson Technology Inc. In our setup, we use a laser Doppler vibrometer (LDV) to measure the
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Table 1: HDD signals

Signal Description Units

r Disturbances on the head position [8] nm
up PZT actuator control signal V
uv Voice coil motor control signal V
wa Airflow disturbances (normalized)
wn PES sensor noise (normalized)
wr Disturbances on the head position (normalized)
y PES nm
yh Head displacement relative to the track

center
nm

absolute radial displacement of the slider. The control circuits include a Texas Instrument TMS320C6713

DSP board and an in-house made analog board with a 12-bit ADC, a 12-bit DAC, a voltage amplifier to

drive the MA, and a current amplifier to drive the voice coil motor. The DSP sampling period is 1.4×10−5 s

and the controller delay, which includes ADC and DAC conversion delay and DSP computation delay, is

6µ s. A hole was cut through the case of the drive to allow the LDV laser to shine on the slider. It should

be noted that these modifications affect the response of the drive and may have detrimentally affected the

attainable performance of the servo system.

The block diagram of our HDD setup is shown in Fig. 4 and the relevant signals and their units are

listed in Table 1. In this block diagram, we treat the dynamics from the two control inputs to the head

displacement as a single block to take into account the knowledge that both actuators can excite the same

vibration modes in the suspension. Exploiting this knowledge allows us to form a model which does not have

redundant states resulting from including two copies of the suspension vibration modes. The block ∆ is an

unknown stable causal LTI system which satisfies ‖∆‖∞ ≤ 1. This block, along with W∆, characterizes the

output dynamic multiplicative uncertainty on Gp.
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Table 2: Model parameters for Gp

mode, i

[
ai,1
ai,2

]
Bi

1

[
1.99607
−0.996286

] [
3.982 0
−6.262 0

]
2

[
1.474
−0.9680

] [
−1.415 1.263
1.368 −1.659

]

3

[
1.381
−0.9762

] [
−0.8049 2.338

2.082 −0.01339

]

4

[
0.5387
−0.9632

] [
0.1366 −4.740
−1.520 25.62

]

5

[
0.04209
−0.9353

] [
−0.06772 9.273
−0.1826 105.8

]

6

[
−1.653
−0.9527

] [
−0.09272 −1.618
−0.1086 −0.2218

]

To construct a discrete-time model of our system, we used the methodology of [13]. To find the model

of Gp, we first obtained frequency responses of our system from uv to y and up to y. Using weighted least

squares, we separately fit a continuous-time model to each of these frequency responses, which we then

combined into a single model and used common mode identification [2] to eliminate redundant copies of the

suspension vibration modes. We then discretized this model with the 6µ s delay on each of its two inputs to

yield the model for Gp. This model is given by

Gp(z) =

[
−0.6858 20.94

]
z−1 +

6∑
i=1

[
1 0

]zI −
 ai,1 1

ai,2 0



−1

Bi (3)

where the model parameters are as listed in Table 2. Because there are two poles at z = 0—one for each

input channel—the state-space model of Gp has 14 states. The poles at z = 0 were introduced by the

discretization of the continuous-time input delay. The six vibration modes in (3) are ordered from lowest to

highest resonance frequency. The Bode plot of this model is shown in Fig. 5.

The weighting for the dynamic multiplicative uncertainty of Gp, given by

W∆ =
0.9733− z
z − 0.465

, (4)

was chosen so that the uncertain model enveloped the experimental frequency response of Gp. The Bode

magnitude plot of W∆ is shown in Fig. 6a. Since ∆ is a SISO system, upper and lower bounds on the
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magnitude of each input/output pair in Gp can be easily computed one frequency at a time. Doing so yields

the upper and lower bounds on the Bode magnitude plots of Gp shown in Fig. 7. The values σa = 0.04854

and σn = 1.3 were determined by matching the power spectrum density of the open loop slider motion

respectively at low and high frequency. The disturbances on the head position are characterized by

Gr(z) =

[
1 0

]zI −
 1.964 1

−0.975 0



−1  −0.2574

0.25



+

[
1 1

]zI −
 0.9956 −0.0745

0 0.9956



−1  −0.9533

0.919

 . (5)

Figure 6b shows the Bode magnitude plot of Gr. In addition to capturing the effect of disturbances on the

head position, this model of Gr also captures the low-frequency drift in the LDV position measurements

resulting from integration of velocity measurements. The second-order mode near 1 kHz in this model

captures the effect of disk modes between 1 kHz and 3 kHz.

These disturbances, although realistic for our experimental setup, are larger than the disturbances typ-

ically found in a HDD. First of all, the measurement noise of the LDV is somewhat larger than the mea-

surement noise of the PES. Moreover, as we previously mentioned, the LDV has a significant low-frequency

drift. These two factors along with the mechanical modifications of the drive significantly deteriorate the

achievable level of closed-loop performance.

With some manipulation, the blocks in Fig. 4 can be grouped to form the LFT representation in Fig. 8.

In this form GH has 19 states. For the remainder of this chapter, we will use the balanced realization of GH

for analysis and control design.

3 H2 Guaranteed Cost Analysis

In this section, we review the results of [3] on H2 guaranteed cost analysis. In particular, we first present

an SDP for determining the H2 guaranteed cost performance of a given system and then show that this

convex optimization can be efficiently solved using nonlinear convex optimization involving Riccati equation

solutions. For the sake of brevity and clarity of presentation, we do not present the proofs here; interested

readers should read the paper cited above.
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3.1 Semi-Definite Programming Approach

Before considering systems with uncertainty, we first consider a given discrete-time LTI system G̃ with known

state-space realization

G̃ ∼

 AG̃ BG̃

CG̃ DG̃

 . (6)

A well-known characterization of the H2 norm is that ‖G̃‖22 < γ if and only if there exist P � 0 and W such

that

tr{W} < γ (7a)

W � BT
G̃
PBG̃ +DT

G̃
DG̃ (7b)

P � AT
G̃
PAG̃ + CT

G̃
CG̃ . (7c)

In this context, however, it is beneficial for us to consider an alternate characterization which says that

‖G̃‖22 < γ if and only if there exist P � 0,W, V such that

tr{W} < γ (8a) P V T

V W

 �
 AG̃ BG̃

CG̃ DG̃


T  P 0

0 I


 AG̃ BG̃

CG̃ DG̃

 . (8b)

It should be noted that eliminating V from (8b) using the matrix elimination technique (see, e.g., [1]) yields

(7b)–(7c). This alternate characterization is more suitable for two reasons. First, as will be discussed later

in this section, it will allow us to consider a richer set of system uncertainty models. Second, it will allow us

to use the matrix variable elimination technique to derive an optimal control scheme in Sect. 4, which will

be important in our approaches to the output feedback problem developed in Sect. 5.

We now turn our attention to analyzing the H2 performance of the system interconnection shown in

Fig. 9 where Ḡ has the state-space realization
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Ḡ ∼


Ā B̄1 B̄2

C̄1 D̄11 D̄12

C̄2 D̄21 D̄22

 (9)

and ∆ is a real matrix satisfying ‖∆‖ ≤ 1. Closing the loop yields

Fu(Ḡ,∆) ∼

 Ā+ B̄1(I −∆D̄11)−1∆C̄1 B̄2 + B̄1(I −∆D̄11)−1∆D̄12

C̄2 + D̄21(I −∆D̄11)−1∆C̄1 D̄22 + D̄21(I −∆D̄11)−1∆D̄12


=:

 A∆ B∆

C∆ D∆

 . (10)

We are thus interested in determining if ‖Fu(Ḡ,∆)‖22 < γ, ∀‖∆‖ ≤ 1. Using the characterization of the H2

norm given by (8), we would like to know if there exists P � 0,W, V such that tr{W} < γ and

 P V T

V W

 �
 A∆ B∆

C∆ D∆


T  P 0

0 I


 A∆ B∆

C∆ D∆

 , ∀‖∆‖ ≤ 1 . (11)

It should be noted that, although the state-space matrices are a function of ∆, the analysis variables (P , W ,

and V ) are not. Applying the S-procedure (see, e.g., [1]) to (11) yields the equivalent condition that there

exists τ > 0, P � 0,W, V such that tr{W} < γ and

M(τ, P,W, V ) :=


P 0 V T

0 τI 0

V 0 W

−

Ā B̄1 B̄2

C̄1 D̄11 D̄12

C̄2 D̄21 D̄22


T 

P 0 0

0 τI 0

0 0 I



Ā B̄1 B̄2

C̄1 D̄11 D̄12

C̄2 D̄21 D̄22

 � 0 . (12)
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By Schur complements, this is equivalent to the existence of τ, P,W, V such that

M̄(τ, P,W, V ) :=



P • • • • •

0 τI • • • •

V 0 W • • •

PĀ PB̄1 PB̄2 P • •

τC̄1 τD̄11 τD̄12 0 τI •

C̄2 D̄21 D̄22 0 0 I


� 0 . (13)

These two new conditions, which are equivalent to each other, remove the dependence of the matrices on ∆

at the expense of introducing an extra scalar parameter, τ . Since the matrices in the two new conditions do

not depend on ∆, they give us computationally tractable means to verify that γ is an upper bound on the

worst-case H2 performance of Fu(Ḡ,∆) when ∆ is a real matrix satisfying ‖∆‖ ≤ 1.

Rewriting these feasibility problems as an optimization problems to find the smallest upper bound of this

type yields

inf
τ>0,P�0,W,V

tr{W} s.t. M(τ, P,W, V ) � 0 (14)

inf
τ,P,W,V

tr{W} s.t. M̄(τ, P,W, V ) � 0 . (15)

We will refer to the square root of the value of these optimization problems as the H2 guaranteed cost

of Ḡ. Of these two optimizations, (14) is more useful for determining the H2 guaranteed cost of a given

system because its matrix inequalities are smaller in dimension and the optimization problem has fewer dual

variables. However, as we will see in Sects. 4 and 5, (15) will be more suitable for control design. Relaxing

the strict inequalities in either of these optimization problems to non-strict inequalities results in a SDP.

Thus, a reasonable way to solve the H2 guaranteed cost analysis problem is to relax (14) to a SDP then

solve the SDP using an appropriate solver.

From the derivation, it is obvious that the H2 guaranteed cost is an upper bound on the worst-case H2

performance of the interconnection in Fig. 9 when ∆ is a real matrix satisfying ‖∆‖ ≤ 1. What is not

immediately apparent, however, is that the H2 guaranteed cost is also an upper bound on the worst-case

H2 performance of the interconnection in Fig. 9 when ∆ is only known to be a causal LTI system satisfying

‖∆‖∞ ≤ 1.
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3.2 Riccati Equation Approach

We begin this subsection by noting that (14) can equivalently be expressed as

inf
τ>0

Jτ (Ḡ) (16)

where

Jτ (Ḡ) := inf
P�0,W,V

tr{W} s.t. M(τ, P,W, V ) � 0 . (17)

It can be shown that Jτ (Ḡ) is well-defined, i.e. for a fixed value of τ > 0, Jτ (Ḡ) is independent of the

realization of Ḡ.

Whenever the optimization problem (17) is infeasible for a particular value of τ , we will say that Jτ (Ḡ) =

∞. Defining

[
Q̄ S̄

]
:= C̄T2

[
C̄2 D̄21

]
+ τC̄T1

[
C̄1 D̄11

]
(18a)[

Q̄W S̄W

]
:= D̄T

22

[
D̄22 D̄21

]
+ τD̄T

12

[
D̄12 D̄11

]
(18b)

R̄ := D̄T
21D̄21 + τ(D̄T

11D̄11 − I) (18c)

φ̄ := (Ā, B̄1, Q̄, R̄, S̄) (18d)

ψ̄ := (B̄2, B̄1, Q̄W , R̄, S̄W ) (18e)

it was shown [3] that Jτ (Ḡ) 6= ∞ if and only if the DARE Rφ̄(P ) = P has a stabilizing solution, P0, such

that B̄T1 P0B̄1 + R̄ ≺ 0. In this case,

Jτ (Ḡ) = tr{Rψ̄(P0)} . (19)

It was also shown that if Jτ (Ḡ) 6=∞ for τ = τ0, then Jτ 6=∞ for all τ > τ0. Moreover, there exists a value

of τ such that Jτ (Ḡ) 6=∞ if and only if the interconnection in Fig. 9 is robustly stable over ‖∆‖∞ ≤ 1, i.e.

the H∞ norm of Ḡ from d to q is less than 1. This condition is in turn equivalent to the DARE Rρ(P ) = P

having a stabilizing solution P0 such that B̄T1 P0B̄1 + D̄T
11D̄11 − I ≺ 0 where

ρ := (Ā, B̄1, C̄
T
1 C̄1, D̄

T
11D̄11 − I, C̄T1 D̄11) . (20)

Thus, once we have verified that the optimization problem (16) is feasible by using the DARE Rρ(P ) = P ,

we can always find values of τ for which Jτ (Ḡ) 6=∞ simply by making τ increasingly large.

With this in mind, we would like to know how Jτ (Ḡ) varies as τ varies. First, since minimizing a convex

12



function of several variables over a subset of those variables produces a convex function of the remaining

variables, we see that Jτ (Ḡ) is a convex nonlinear function of τ . Second, since the stabilizing solution of a

DARE is analytic in its parameters [5] and Jτ (Ḡ) is an analytic function of the stabilizing DARE solution,

Jτ (Ḡ) is an analytic function of τ . We will therefore find the global optimal value of Jτ (Ḡ) by finding a

value of τ such that (d/dτ)(Jτ (Ḡ)) = 0.

Although the most straightforward way to find (d/dτ)(Jτ (Ḡ)) is by directly taking the derivative of the

relevant equations with respect to τ , as was done in [3], we will pursue a slightly different approach here

which is more computationally efficient. First, we define ε := τ−1 and

φ̂ := (Ā, B̄1, εQ̄, εR̄, εS̄) (21a)

ψ̂ := (B̄2, B̄1, εQ̄W , εR̄, εS̄W ) . (21b)

Multiplying the DARE by ε yields Rφ̂(εP0) = εP0. Also note that εRψ̄(P0) = Rψ̂(εP0). Taking derivatives

of these two equations yields, after some algebra, that

d

dε
(εP0) =

(
Ā+ B̄1Kφ̄(P0)

)T d

dε
(εP0)

(
Ā+ B̄1Kφ̄(P0)

)
+
(
C̄2 + D̄21Kφ̄(P0)

)T (
C̄2 + D̄21Kφ̄(P0)

)
(22a)

d

dε

(
εRψ̄(P0)

)
=

(
B̄2 + B̄1Kψ̄(P0)

)T d

dε
(εP0)

(
B̄2 + B̄1Kψ̄(P0)

)
+
(
D̄22 + D̄21Kψ̄(P0)

)T (
D̄22 + D̄21Kψ̄(P0)

)
. (22b)

The first of these equations is a discrete Lyapunov equation for (d/dε)(εP0). Since Ā + B̄1Kφ̄(P0) is stable

(by the definition of a stabilizing solution of a DARE), we see that there exists upper triangular Ū such that

ŪT Ū = (d/dε)(εP0) and we can directly solve for Ū using the dlyapchol function in MATLAB. Using this,

we express

tr

{
d

dε
(εRψ̄(P0))

}
= ‖Ū(B̄2 + B̄1Kψ̄(P0))‖2F + ‖D̄22 + D̄21Kψ̄(P0)‖2F . (23)

Using the chain rule, we see that

d

dε
(εRψ̄(P0)) = Rψ̄(P0) + ε

d

dε
(Rψ̄(P0)) . (24)

Thus, taking the derivative of (19) and applying the chain rule to the right-hand side yields

d

dτ
(Jτ (Ḡ)) = −τ−2tr

{
d

dε
(Rψ̄(P0))

}
= τ−1tr

{
Rψ̄(P0)− d

dε
(εRψ̄(P0))

}
. (25)

13
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Figure 10: Illustration of lower bound computation in H2 guaranteed cost analysis

Therefore, we have that

d

dτ
(Jτ (Ḡ)) =

1

τ

(
Jτ (Ḡ)− ‖Ū(B̄2 + B̄1Kψ̄(P0))‖2F − ‖D̄22 + D̄21Kψ̄(P0)‖2F

)
. (26)

In comparison to formulas given in [3], using (26) to compute the cost derivative is more computationally

efficient because it requires fewer matrix multiplications and additions.

The value and derivative of Jτ (Ḡ) is also useful for generating a lower bound on the optimal value of

(16). Consider Fig. 10, which shows a representative graph of Jτ (Ḡ) in which τ0 is known to be an upper

bound on the minimizing value of τ . By convexity, if τ1 is known to be a lower bound on the minimizing

value of τ , the value and derivative of Jτ (Ḡ) at τ0 gives us the lower bound Ĵ1. If instead, the value and

derivative of Jτ (Ḡ) at τ0 and τ2 is known, we have the lower bound Ĵ2. These lower bounds are respectively

given by

Ĵ1 = Jτ0 −m0(τ0 − τ1) (27a)

Ĵ2 =
m2[m0(τ0 − τ2)− (Jτ0 − Jτ2)]

m0 −m2
+ Jτ2 (27b)

where Jτi is interpreted as Jτ (Ḡ) evaluated at τ = τi and mi is (d/dτ)(Jτ (Ḡ)) evaluated at τ = τi. It should

be noted that the second of these lower bounds is less conservative when it is applicable.

With these results in place, we can easily solve (16) using the following methodology:

1. Check Feasibility: Check that the DARE Rρ(P ) = P has a stabilizing solution P0 such that

B̄T1 P0B̄1 + D̄T
11D̄11 − I ≺ 0.

2. Find Initial Interval: Choose α > 1. As previously noted, the DARE Rφ̄(P ) = P will have a

stabilizing solution with the required properties for τ = αk, for large enough k. Starting from k = 0,

iterate over increasing k until a value of τ = αk is found such that the DARE has a stabilizing solution

P0 that satisfies B̄T1 P0B̄1 + R̄ ≺ 0 and (d/dτ)(Jτ (Ḡ)) > 0. Denote this value of τ by τu. Note that

this corresponds to an upper bound on the optimal value of τ . If τu = 1, then 0 is a lower bound on

the optimal value of τ , otherwise τu/α is a lower bound.

14



3. Bisection: Solve the equation (d/dτ)(Jτ (Ḡ)) = 0 over τ using bisection. Use (26) for evaluating

(d/dτ)(Jτ (Ḡ)). Whenever the DARE Rφ̄(P ) = P does not have a stabilizing solution with the required

properties for a given value of τ , this corresponds to a lower bound on the optimal value of τ .

In our implementation, we use α = 100. Also, except when the lower bound on the optimal value of τ is 0,

we use the geometric mean instead of the arithmetic mean to better deal with large intervals in which the

optimal value of τ could lie. We use two stopping criteria in our implementation. If we define the relative

error as ν := 1− J/Jτ (Ḡ) where J is the lower bound computed by (27), we terminate the algorithm when

either ν < 10−10 or 30 iterations have been executed in steps 2–3.

3.3 Application to Hard Disk Drives

So far in this section, we have developed two methodologies for analyzing the robust performance of a system

with dynamic uncertainty—one based on the solution of a SDP and another based on nonlinear convex

optimization involving Riccati equation solutions. We will now use these two methodologies to examine the

performance of a closed-loop HDD system for a specified controller.

For the controller, we choose the controller returned by the MATLAB Robust Control Toolbox function

hinfsyn applied to the optimization problem

inf
K

∥∥∥Fl(ĜH ,K)
∥∥∥
∞

(28)

where ĜH := diag[0.001, 0.001, 1, 1, 1]GH . The controller returned by hinfsyn, Ko, contained 19 states and

achieved ‖Fl(ĜH ,Ko)‖∞ = 0.3831. For this controller, the nominal H2 norm of the interconnection in Fig. 8

(i.e. with ∆ = 0) was 11.6212.

We used three approaches to find the H2 guaranteed cost of the system Gcl := Fl(GH ,Ko): solving

the SDP (14) using the mincx command, solving (14) using SeDuMi and YALMIP, and solving (16) using

the methodology at the end of Sect. 3.2. We will refer to the latter of these approaches as the DARE

approach. Using these three approaches to analyze the performance of this 38th-order system yielded the

results listed in Table 3. Although all three approaches yielded similar values of the H2 guaranteed cost and

the corresponding value of τ , the DARE approach was more than 100 times faster for this system than the

other two approaches.

We now look more closely at the results of applying the DARE approach to this problem. In particular, we

are interested in the values of Jτ (Gcl) and (d/dτ)(Jτ (Gcl)) as functions of τ . Figure 11 shows a plot of these

two quantities for 50 linearly spaced points in the interval [2, 6] along with an estimate of (d/dτ)(Jτ (Gcl))

15



Table 3: Analysis of closed-loop HDD performance using three approaches

Approach Optimization Time
(s)

H2 Guaranteed
Cost

Optimal
τ

mincx 147.0465 17.3455 3.3997
SeDuMi 88.1718 17.345 3.3994
DARE 0.8112 17.3451 3.3995
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))

 

 

Computed derivative
Central difference approximation

Figure 11: Jτ (Gcl), the computed value of (d/dτ)(Jτ (Gcl)), and the central difference approximation to
(d/dτ)(Jτ (Gcl))

obtained by applying the central difference approximation to Jτ (Gcl). As we would expect, the curves are

smooth, (d/dτ)(Jτ (Gcl)) is monotonic non-decreasing, and the computed values of (d/dτ)(Jτ (Gcl)) agree

with the central difference approximations. It is interesting to note that as τ becomes large, (d/dτ)(Jτ (Gcl))

becomes constant and Jτ varies linearly with τ .

The H2 guaranteed costs computed so far reflect a combination of the “sizes” of the signals yh, uv, and

up. However, it is more meaningful to look at the “sizes” of these three signals separately. To do so, we

removed the outputs we are not interested in and computed the H2 guaranteed cost. For example, when we

were interested in the H2 guaranteed cost associated with yh, we removed the outputs uv and up from Gcl

and then computed the H2 guaranteed cost of the resulting system using the DARE approach. Doing this

for yh, uv, and up yielded the H2 guaranteed costs given in Table 4. So, for the controller Ko, there very

little control effort is used to achieve this level of robust position error performance.

Table 4: Closed-loop HDD performance

Signal H2 Guaranteed
Cost

yh 17.3450nm
uv 0.0440V
um 0.0052V
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Figure 12: LFT representation of H2 guaranteed cost control structure

4 Full Information H2 Guaranteed Cost Control

In this section, we show how to use the analysis results of the previous section to design controllers which

optimize the H2 guaranteed cost. The particular control design problem we consider is the full information

control problem in which the controller has access to the state of the system and the disturbances acting

on the system. We first present an SDP for determining an optimal controller and then show that, as in

the previous section, this convex optimization can be efficiently solved using nonlinear convex optimization

involving DARE solutions. The results in this section are taken from [4]. Again, for the sake of brevity and

clarity of presentation, we do not present the proofs here; interested readers should read the paper cited

above.

4.1 Semi-Definite Programming Approach

We begin by letting Gfi in Fig. 12, have the known state-space realization

Gfi ∼



A B1 B2 B3

C1 D11 D12 D13

C2 D21 D22 D23
I

0

0




0

I

0




0

0

I




0

0

0




. (29)

This corresponds to letting

yfi =


xfi

d

w

 (30)

in Fig. 12 where xfi is the state variable of Gfi. In this context, we are interested in finding a controller

Kfi that achieves the best possible H2 guaranteed cost using this information. We will refer to this as the

full information control problem.
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It has been shown for the full information control problem that, given any state-space controller, it is

always possible to construct a static gain controller which achieves the same H2 guaranteed cost. This allows

us, without any loss of closed-loop performance, to consider only controllers of the form

u = Kxx+Kdd+Kww (31)

where Kx, Kd, and Kw are static gains. Equivalently, we make the restriction Kfi = [Kx Kd Kw]. Thus,

we are interested in closed-loop systems of the form

Fl(Gfi,Kfi) ∼


A+B3Kx B1 +B3Kd B2 +B3Kw

C1 +D13Kx D11 +D13Kd D12 +D13Kw

C2 +D23Kx D21 +D23Kd D22 +D23Kw

 . (32)

In particular, we would like to find Kx, Kd, and Kw such that Fl(Gfi,Kfi) achieves the best possible H2

guaranteed cost.

Using the change of variables

P̂ := P−1 (33a)

V̂ := V P−1 (33b)

ε := τ−1 (33c)

K̂x := KxP
−1 (33d)

K̂d := τ−1Kd (33e)

with the H2 guaranteed cost characterization (15) applied to Fl(Gfi,Kfi) yields, after multiplying M̄ on

the left and right by diag[P−1, τ−1I, I, P−1, τ−1I, I], the optimization problem

inf
ε,P̂ ,W,V̂ ,K̂x,K̂d,Kw

tr{W} s.t. Mfi(ε, P̂ ,W, V̂ , K̂x, K̂d,Kw) � 0 (34)
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where

Mfi :=



P̂ • • • • •

0 εI • • • •

V̂ 0 W • • •

AP̂ +B3K̂x εB1 +B3K̂d B2 +B3Kw P̂ • •

C1P̂ +D13K̂x εD11 +D13K̂d D12 +D13Kw 0 εI •

C2P̂ +D23K̂x εD21 +D23K̂d D22 +D23Kw 0 0 I


. (35)

For any feasible ε, P̂ ,W, V̂ , K̂x, K̂d,Kw, a controller which achieves the squared H2 guaranteed cost tr{W}

(or better) is given by

Kfi =

[
K̂xP̂

−1 ε−1K̂d Kw

]
. (36)

If the strict inequality in (34) is relaxed to a non-strict inequality, the optimization becomes a SDP. Thus,

a reasonable way to solve the optimal full information control problem is to relax (34) to a SDP, solve the

SDP using an appropriate solver, and then reconstruct the controller using (36).

4.2 Riccati Equation Approach

In this subsection, we examine the optimal full information control problem when the following so-called

regularity conditions hold:

• DT
13D13 +DT

23D23 is invertible

• (A,B3) is d-stabilizable

• (Afi, Cfi) is d-detectable for all ε > 0 where

Afi := A−B3(DT
13D13 + εDT

23D23)−1(DT
13C1 + εDT

23C2) (37a)

Cfi :=

 C1

C2

−
 D13

D23

 (DT
13D13 + εDT

23D23)−1(DT
13C1 + εDT

23C2). (37b)

As in the previous section, we begin by writing the relevant convex optimization problem as a nested

optimization problem. In particular, we express (34) as

inf
ε>0

Jfi,ε (38)
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where

Jfi,ε := inf
P̂�0,W,V̂ ,K̂x,K̂d,Kw

tr{W} s.t. Mfi(ε, P̂ ,W, V̂ , K̂x, K̂d,Kw) � 0 . (39)

Whenever (39) is infeasible for a particular value of ε, we will say that Jfi,ε =∞. Note that, since ε = τ−1,

performing the optimization (39) is the same as optimizing Jτ (Fl(Gfi,Kfi)) via choice of Kfi for τ = ε−1.

Defining

[
Q S

]
:= CT1

[
C1 D11 D13

]
+ εCT2

[
C2 D21 D23

]
(40a)[

QW SW

]
:= DT

12

[
D12 D11 D13

]
+ εDT

22

[
D22 D21 D23

]
(40b)

R :=

 R11 •

R21 R22

 :=

 DT
11D11 − I •

DT
13D11 DT

13D13

+ ε

 DT
21D21 •

DT
23D21 DT

23D23

 (40c)

φ := (A, [B1 B3], Q,R, S) (40d)

ψ := (B2, [B1 B3], QW , R, SW ) (40e)

it was shown [4] that Jfi,ε 6=∞ if and only if the DARE Rφ(P ) = P has a stabilizing solution P0 � 0 such

that the factorization BT1

BT3

P0

[
B1 B3

]
+

 R11 •

R21 R22

 =

 TT21T21 − TT11T11 •

TT22T21 TT22T22

 (41)

exists with T11 and T22 invertible. In this case, Jfi,ε = ε−1tr{Rψ(P0)} and the optimal values of the controller

parameters are

[
Ko
x Ko

d Ko
w

]
:= −(BT3 P0B3 +R22)−1

[
BT3 P0 DT

13 εDT
23

]
A B1 B2

C1 D11 D12

C2 D21 D22

 . (42)

If the factorization (41) exists, then it can be formed using the following steps:

1. Perform the Cholesky factorization TT22T22 = BT3 P0B3 +R22.

2. Choose T21 = T−T22 (BT3 P0B1 +R21).

3. Perform the Cholesky factorization TT11T11 = TT21T21 −BT1 P0B1 −R11.

One of the key steps in deriving this result from (38) was using matrix variable elimination to eliminate the

controller parameters from the optimization problem. This would not have been possible if we had used the
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H2 norm characterization (7) instead of the characterization (8).

It was also shown [4] that if Jfi,ε0 6=∞, then Jfi,ε 6=∞ for all ε ∈ (0, ε0). Note that this corresponds to

Jfi,ε 6= ∞ for all ε−1 > ε−1
0 . Unlike the previous section, there is no Riccati equation result that allows us

to check whether or not there exists a value of ε such that Jfi,ε 6=∞. This is the case because the existence

of such a value of ε is equivalent to the solvability of a full information H∞ control problem which might

not be solvable via a Riccati equation. Despite this, if (34) is feasible, we can always find values of ε > 0 for

which the inner optimization problem in (38) is feasible simply by decreasing ε > 0 until Jfi,ε 6=∞.

With this in mind, we would like to know how Jfi,ε varies as ε varies. Using the same reasoning as in the

previous section, we see that Jfi,ε is an analytic function of ε. We will therefore find the global optimal value

of Jfi,ε by finding a value of ε such that (d/dε)(Jfi,ε) = 0. Implicitly differentiating the DARE Rφ(P0) = P0

and differentiating the expression for Rψ(P0) with respect to ε yields

d

dε
(P0) =

(
A+

[
B1 B3

]
Kφ(P0)

)T
d

dε
(P0)

(
A+

[
B1 B3

]
Kφ(P0)

)
+

(
C2 +

[
D21 D23

]
Kφ(P0)

)T (
C2 +

[
D21 D23

]
Kφ(P0)

)
(43a)

d

dε
(Rψ(P0)) =

(
B2 +

[
B1 B3

]
Kψ(P0)

)T
d

dε
(P0)

(
B2 +

[
B1 B3

]
Kψ(P0)

)
+

(
D22 +

[
D21 D23

]
Kψ(P0)

)T (
D22 +

[
D21 D23

]
Kψ(P0)

)
. (43b)

The first of these equations is a discrete Lyapunov equation for (d/dε)(P0). Since A + [B1 B3]Kφ(P0) is

stable (by the definition of a stabilizing solution of a DARE), we see that there exists upper triangular U

such that UTU = (d/dε)(εP0) and we can directly solve for U using the dlyapchol function in MATLAB.

Using this, we express

d

dε
(Jfi,ε) = −ε−2tr{Rψ(P0)}+ ε−1tr

{
d

dε
(Rψ(P0))

}
(44)

which implies that

d

dε
(Jfi,ε) = ε−1

(∥∥∥∥U (B2 +

[
B1 B3

]
Kφ(P0)

)∥∥∥∥2

F

+

∥∥∥∥D22 +

[
D21 D23

]
Kφ(P0)

∥∥∥∥2

F

− Jfi,ε

)
(45)

The value and derivative of Jfi,ε is also useful for generating a lower bound on the optimal value of (38).

Consider Fig. 13, which shows a representative graph of Jfi,ε in which ε0 is known to be a lower bound on

the minimizing value of ε. By convexity, if ε1 is known to be an upper bound on the minimizing value of ε,
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Figure 13: Illustration of lower bound computation in optimal full information H2 guaranteed cost control

the value and derivative of Jfi,ε at ε0 gives us the lower bound Ĵ1. If instead, the value and derivative of

Jfi,ε at ε0 and ε2 is known, we have the lower bound Ĵ2. These lower bounds are respectively given by

Ĵ1 = Jfi,ε0 + m̄0(ε1 − ε2) (46a)

Ĵ2 =
m̄2[m̄0(ε2 − ε0)− (Jfi,ε2 − Jfi,ε0)]

m̄2 − m̄0
+ Jfi,ε2 (46b)

where Jfi,εi is interpreted as Jfi,ε evaluated at ε = εi and m̄i is (d/dε)(Jfi,ε) evaluated at ε = εi. It should

be noted that the second of these lower bounds is less conservative when it is applicable.

With these results in place, we can easily solve (38) using the following methodology:

1. Find Initial Interval: Choose α > 1. Check if Jfi,ε 6= ∞ and (d/dε)(Jfi,ε) < 0 when ε = 1. If so,

start from k = 1 and increment k until either of these conditions fail to be met when ε = αk. Denoting

the corresponding value of ε as εu, there exists an optimal value of ε in the interval (α−1εu, εu).

If instead either Jfi,ε = ∞ or (d/dε)(Jfi,ε) > 0 when ε = 1, start from k = 1 and increment k until

Jfi,ε 6= ∞ and (d/dε)(Jfi,ε) < 0 when ε = α−k. Denoting the corresponding value of ε as εl, there

exists an optimal value of ε in the interval (εl, αεl).

2. Bisection: Solve the equation (d/dε)(Jfi,ε) = 0 over ε using bisection. Use (45) for evaluating

(d/dε)(Jfi,ε). Whenever, for a particular value of ε, the DARE Rφ(P ) = P does not have a stabilizing

solution P0 � 0 such that the factorization (41) exists for invertible T11 and T22, this value of ε is an

upper bound on the optimal value of ε.

3. Controller Construction: For the value of ε which yielded the smallest cost, reconstruct the corre-

sponding controller using (42).

In our implementation, we use α = 100 and, in the bisection step, we use the geometric mean instead of

the arithmetic mean. We use two stopping criteria in our implementation. If we define the relative error as

νfi := 1−Jfi/Jfi,ε where Jfi is the lower bound computed by (46), we terminate the algorithm when either

νfi < 10−10 or 30 iterations have been executed in steps 1–2.
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Table 5: Analysis of closed-loop HDD performance using three approaches

Approach Optimization Time
(s)

H2 Guaranteed
Cost

Optimal ε

DARE 0.37 5.9604 1
SeDuMi 4.4616 5.938 1.0005
mincx 27.5342 5.9604 1

4.3 Application to Hard Disk Drives

So far in this section, we have developed two methodologies for designing an optimal full information con-

troller in terms of itsH2 guaranteed cost—one based on the solution of a SDP and another based on nonlinear

convex optimization involving Riccati equation solutions.

Although we would like to apply these methodologies to the model GH introduced in Sect. 2, it is not in

the form of a full information control problem. However, we can create a full information control problem

by replacing the measurements generated by the model, y, by the vector [xT dT wTa wTr wTn ]T where x is the

state of GH . The model was not balanced after redefining the measurement vector.

We used three approaches to find optimal full information H2 guaranteed cost controllers for this system:

solving the SDP (34) using the mincx command, solving (34) using SeDuMi and YALMIP, and solving (38)

using the methodology at the end of Sect. 4.2. We will refer to the latter of these approaches as the DARE

approach. Using these three approaches on the model of GH with the redefined measurement vector yielded

the results listed in Table 5. Although the DARE approach and the mincx approach yielded similar accuracy,

the SeDuMi approach seemed to yield better accuracy. However, analyzing the closed-loop systems using the

DARE approach in Sect. 3.2 showed that the actual H2 guaranteed cost performance achieved by controller

designed using the SeDuMi approach was only 5.9671, whereas the other two controllers achieved the costs

stated in Table 5. Thus, for this system, SeDuMi actually had the worst numerical accuracy of the three

approaches. In terms of efficiency, the DARE approach was more than 10 times faster than the other two

approaches. The difference in computation time is less dramatic than the difference in Sect. 3.3 because the

closed-loop systems here have 19 states whereas the system analyzed in Sect. 3.3 had 38 states.

We now look more closely at the DARE approach to this problem. In particular, we are interested in the

values of Jfi,ε and (d/dε)(Jfi,ε) as functions of ε. Figure 14 shows a plot of these two quantities for 50 linearly

spaced points in the interval [0, 1.2] along with an estimate of (d/dε)(Jfi,ε) obtained by applying the central

difference approximation to Jfi,ε. As we would expect, the curves are smooth, (d/dε)(Jfi,ε) is monotonic

non-decreasing, and the computed values of (d/dε)(Jfi,ε) agree with the central difference approximations.

Also, for this particular example, Jfi,ε is monotonic decreasing over the chosen values of ε.
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Figure 14: Jfi,ε, the computed value of (d/dε)(Jfi,ε), and the central difference approximation to (d/dε)(Jfi,ε)

Table 6: Analysis of closed-loop HDD performance for each closed-loop signal

Signal H2 Guaranteed
Cost

yh 5.9551nm
uv 0.2439V
up 0.0635V

The H2 guaranteed costs computed so far reflect a combination of the “sizes” of the signals yh, uv, and

up. However, it is more meaningful to look at the “sizes” of these three signals separately. As in Sect. 3.3,

we remove the outputs we are not interested in and compute the relevant H2 guaranteed costs associated

with each output signal. Doing this for the closed-loop system designed using the DARE approach yields the

H2 guaranteed cost given in Table 6. Thus, we see that the control effort is rather small for this controller.

This suggests that we should deemphasize the control effort in the cost function in order to design controllers

which achieve a higher level of performance.

5 Output Feedback H2 Guaranteed Cost Control

In this section, we consider the optimal output feedback H2 guaranteed cost control problem. We first

present a non-convex optimization problem for determining an optimal controller and a solution heuristic

which is based on the solution of SDPs. We then give an algorithm which exploits Riccati equation structure

to give a more computationally efficient heuristic for finding an optimal controller. For the sake of brevity

and clarity of presentation, we do not give full proofs here; these will be presented in future papers.
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5.1 Sequential Semi-Definite Programming Approach

We now consider an optimal H2 guaranteed cost control problem of the form shown in Fig. 15a on p. 31 in

which G has the known state-space realization

G ∼



A B1 B2 B3

C1 D11 D12 D13

C2 D21 D22 D23

C3 D31 D32 0


. (47)

Note that we are choosing many of the state-space entries to be the same as in the previous section. The only

difference is the choice of information that is available to the controller. In this context, we are interested in

finding a controller K which achieves the best possible H2 guaranteed cost using only the measurements y.

We will refer to this as the output feedback control problem.

Using techniques similar to the one used in [4], it can be shown that, given any state-space controller, it

is always possible to construct a state-space controller with the same number of states as G that achieves

the same H2 guaranteed cost. This allows us, without any loss of closed-loop performance, to consider only

state-space controllers of the form

K ∼

 Ac Bc

Cc Dc

 (48)

where Ac has the same dimensions as A.

5.1.1 Coordinate Descent Approach

We are interested in solving the optimization problem

inf
τ>0,K

Jτ (Fl(G,K)) (49)

where K has the realization (48). Applying the Lyapunov shaping paradigm [15] to the characterization (15)

for the system Fl(G,K) yields the optimization problem

inf
τ,X,Y,W,V̂1,V̂2,Â,B̂,Ĉ,D̂

tr{W} s.t. M̌(τ,X, Y,W, V̂1, V̂2, Â, B̂, Ĉ, D̂) � 0 (50)
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where

M̌ :=



X • • • • • • •

I Y • • • • • •

0 0 τI • • • • •

V̂1 V̂2 0 W • • • •

M̌11 M̌12 M̌13 M̌14 X • • •

M̌21 M̌22 M̌23 M̌24 I Y • •

τM̌31 τM̌32 τM̌33 τM̌34 0 0 τI •

M̌41 M̌42 M̌43 M̌44 0 0 0 I



(51a)


M̌11 · · · M̌14

...
. . .

...

M̌41 · · · M̌44

 :=



AX +B3Ĉ A+B3D̂C3 B1 +B3D̂D31 B2 +B3D̂D32

Â Y A+ B̂C3 Y B1 + B̂D31 Y B2 + B̂D32

C1X +D13Ĉ C1 +D13D̂C3 D11 +D13D̂D31 D12 +D13D̂D32

C2X +D23Ĉ C2 +D23D̂C3 D21 +D23D̂D31 D22 +D23D̂D32


.

(51b)

For any feasible τ,X, Y,W, V̂1, V̂2, Â, B̂, Ĉ, D̂, a controller that achieves the squared H2 guaranteed cost

tr{W} (or better) is given by

K ∼

 N−1[Â− Y AX − B̂C3X − Y B3(Ĉ − D̂C3X)]M−T N−1(B̂ − Y B3D̂)

(Ĉ − D̂C3X)M−T D̂

 (52)

where M and N are chosen so that

MNT = I −XY . (53)

Although we use the QR decomposition to factorize I −XY in our implementation, a pivoted LU decompo-

sition would be equally suitable.

The optimization (50) is a nonconvex optimization because the matrix inequality is nonlinear in the

optimization parameters; the products τX, τĈ and τD̂ appear in the matrix inequality. Thus, the matrix

inequality is a bilinear matrix inequality (BMI) and the optimization (50) is a BMI optimization problem.

If the value of τ is fixed or the values of X, Ĉ, and D̂ are fixed, then the BMI becomes an LMI. In either of

these cases, if the strict inequalities in (50) are relaxed to a non-strict inequalities, the optimization becomes

a SDP. Thus, for a given initial guess for τ , a reasonable heuristic for solving (50) is to alternate between

solving (50) for fixed τ and solving (50) for fixed X, Ĉ, and D̂.
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There are two challenges in using this approach. The first difficultly we encounter is the difficulty of

selecting the initial value of τ ; since BMI optimization problems are non-convex, the selection of a “good”

initial iterate is especially critical. The second difficulty that we encounter is in reconstructing the controller

using (52). In particular, since the controller reconstruction depends on both M−1 and N−1, we see that

the controller reconstruction will be ill-conditioned if I−XY is ill-conditioned with respect to inversion. We

will show in the next two sections that it is possible to deal with both of these problem using semi-definite

programming.

5.1.2 Initial Controller Design

We now examine the problem of finding an initial value of τ . To deal with this problem, we follow the

approach used in [10] in which the solution of two SDPs yield initial values of all optimization parameters.

Since we are only interested in the initial value of τ , we will not explicitly construct initial values for the

remaining optimization parameters in this paper.

The first convex optimization is a state feedback control design. This is done by relaxing (34) to an SDP,

and then solving it with the additional constraints that K̂d = 0 and Kw = 0. This yields a state feedback

control law u = Kxx, where Kx is a static gain and x is the state variable of G.

In the second convex optimization, we first restrict the class of controllers to ones which have Cc = Kx

and Dc = 0. If the state variable of the controller is interpreted as an estimate of the state of G, this

restriction can be interpreted as imposing a “separation structure” on the controller. We then form a

realization of Fl(G,K) whose state is given by [xT (x − xc)T ]T where xc is the state variable of K. Using

the characterization (15) for this realization with the restriction P = diag[X̃, Ỹ ] and the change of variables

[
Ã B̃

]
:= Ỹ

[
Ac Bc

]
(54)
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yields the optimization problem

inf
τ,X̃,Ỹ ,W,V1,V2,Ã,B̃

tr{W} s.t.



X̃ • • • • • • •

0 Ỹ • • • • • •

0 0 τI • • • • •

V1 V2 0 W • • • •

M̃11 M̃12 M̃13 M̃14 X̃ • • •

M̃21 M̃22 M̃23 M̃24 0 Ỹ • •

M̃31 M̃32 M̃33 M̃34 0 0 τI •

M̃41 M̃42 M̃43 M̃44 0 0 0 I



� 0 (55)

where


M̃11 · · · M̃14

...
. . .

...

M̃41 · · · M̃44

 :=



X̃Acl −X̃B3Kx X̃B1 X̃B2

Ỹ Acl − Ã− B̃C3 Ã− Ỹ B3Kx Ỹ B1 − B̃D31 Ỹ B2 − B̃D32

τ(C1 +D13Kx) −τD13Kx τD11 τD12

C2 +D23Kx −D23Kx D21 D22


(56)

and Acl := A+B3Kx. Although it is not used by our algorithm developed here, it is worth mentioning that,

for any feasible τ, X̃, Ỹ ,W, V1, V2, Ã, B̃, a controller which achieves the squared H2 guaranteed cost tr{W}

or better is given by

K ∼

 Ỹ −1Ã Ỹ −1B̃

Kx 0

 . (57)

If the strict inequalities in (55) are relaxed to a non-strict inequalities, the optimization becomes a SDP.

The value of τ which results from solving this optimization problem is a suitable initial value of τ for the

BMI optimization problem (50).

5.1.3 Conditioning of the Controller Reconstruction Step

As mentioned in Sect. 5.1.1, we would like to make the matrix I − XY well-conditioned with respect to

inversion. Define

S :=

 X I

I Y

 . (58)

Since S � 0 for any feasible iterate of (50), we see by Schur complements that Y � 0 and X − Y −1 � 0 for

any feasible iterate of (50). In particular, Y and X−Y −1 are invertible. Exploiting the invertibility of these
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matrices yields

S−1 =

 (X − Y −1)−1 (I − Y X)−1

(I −XY )−1 Y −1 + Y −1(X − Y −1)−1Y −1

 . (59)

Since (I−XY )−1 explicitly appears in the expression for S−1, we see that if S is easy to invert then I−XY

must also be easy to invert. Since S is a positive definite matrix for any feasible iterate of (50), we would

therefore like to make the ratio of its largest eigenvalue to its smallest eigenvalue (i.e. its condition number)

as small as possible.

Since the condition number of S � 0 is less than κ if and only if there exists t > 0 such that I ≺ tS ≺ κI,

we see that a reasonable way to improve the conditioning of the controller reconstruction is to solve

inf
t,κ,tX,tY,tW,tV̂1,tV̂2,tÂ,tB̂,tĈ,tD̂

κ s.t. tM̌ � 0, I ≺ tS ≺ κI, tr{tW} < tγ (60)

where γ is some acceptable level of H2 guaranteed cost performance for the closed-loop system. Note that

we have fixed the value of τ and the level of H2 guaranteed cost performance in this optimization. Also

note that tM̌ � 0 implies that t > 0. Thus, this optimization problem minimizes the condition number of S

subject to a constraint on the closed-loop H2 guaranteed cost and a fixed value of τ .

When the strict inequalities in (60) are relaxed to non-strict inequalities, it becomes an SDP in the

variables t, κ, tX, tY , tW , tV̂1, tV̂2, tÂ, tB̂, tĈ, and tD̂. Thus, improving the conditioning of the the

controller reconstruction process for a fixed value of τ and a fixed closed-loop H2 guaranteed cost can be

solved using this SDP.

5.1.4 Solution Methodology

With the results of the previous sections in place, a reasonable methodology for trying to solve (49) is:

1. Find Initial Value of τ

(a) State Feedback Controller Design: Solve (34) with the additional constraints that K̂d = 0

and Kw = 0 using an SDP solver. From the resulting set of optimization parameter values,

reconstruct the state feedback gain Kx := K̂xP̂
−1.

(b) “Separation Principle” Controller Design: Solve (55) using an SDP solver.

2. Controller Design

(a) Controller Design (Fixed τ): Fix τ to be the value obtained in the previous optimization.

Solve (50) using an SDP solver.
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(b) Controller Design (Fixed X, Ĉ, D̂): Fix X, Ĉ, and D̂ to be the values obtained in the previous

optimization. Solve (50) using an SDP solver. If the stopping criteria have not been met (see

below), return to step 2a.

3. Conditioning: Choose a value of β > 0. Fix τ to be the value which yielded the smallest cost γ0 in

the preceding optimizations1and fix γ to be (1 + β)γ0. Solve (60) using an SDP solver.

4. Controller Reconstruction: Reconstruct the controller using (52).

In our implementation of the algorithm, although we choose the default β = 0.05, we allow this to be specified

by the user. This allows the user to trade off closed-loop performance versus conditioning in the controller

reconstruction step. We use two stopping criteria in step 2. If 6 total optimizations have been performed in

step 2 or if the cost has decreased less than 1% in the last two optimizations, we exit step 2 and move on to

step 3.

5.2 Riccati Equation and Semi-Definite Programming Approach

In this section, we consider the output feedback control problem when the regularity conditions of Sect. 4.2

hold. For now, we fix τ > 0 and consider the problem of optimizing Jτ (Fl(G,K)). The approach we follow

is similar to the approach taken in solving the discrete-time H∞ control problem [9]. However, since H2

guaranteed cost control does not have a frequency-domain interpretation, we directly manipulate Riccati

equations to establish the relevant results.

If there exists an output feedback controller which achieves a finite value of Jτ (Fl(G,K)), then there

exists a full information controller which achieves finite cost, i.e. Jfi,ε 6= ∞ for ε = τ−1. Thus, we begin

by solving the full information problem for ε = τ−1. We will denote the stabilizing solution of the DARE

Rφ(P ) = P (which is assumed to satisfy the relevant properties) as P0. In addition to the notation from

Sect. 4.2, we also define the notation

Kdx := T−1
11 T

−T
11 [BT1 P0A+DT

11C1 + εDT
21C2 + (BT3 P0B1 +R21)TKx] (61a)

Kdw := T−1
11 T

−T
11 [BT1 P0B2 +DT

11D12 + εDT
21D22 + (BT3 P0B1 +R21)TKw] (61b)

K̄x := Kx +KdKdx (61c)

K̄w := Kw +KdKdw . (61d)

1Although the value of the optimization problem should decrease every time steps 2a or 2b is executed, numerical inaccuracies
might cause this not to be the case.
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Figure 15: Three equivalent block diagrams for output feedback H2 guaranteed cost control structure

In this notation, it can be shown that

Kφ(P0) =

 Kdx

K̄x

 . (62)

5.2.1 Reduction to Output Estimation Problem

We now consider Fig. 15b where the state-space realizations of G1 and G2 are respectively given by

G1 ∼



A+B3Kx B1 +B3Kd B2 +B3Kw B3T
−1
22 0

C1 +D13Kx D11 +D13Kd D12 +D13Kw D13T
−1
22 0

C2 +D23Kx D21 +D23Kd D22 +D23Kw D23T
−1
22 0

−T11Kdx T11 −T11Kdw 0 0

0 0 I 0 0


(63a)

G2 ∼



A+B1Kdx B1T
−1
11 B2 +B1Kdw B3

− T22K̄x −T22KdT
−1
11 −T22K̄w T22

0 0 0 0

C3 +D31Kdx D31T
−1
11 D32 +D31Kdw 0


. (63b)

Note that, with these definitions of G1 and G2, the signal n is zero. Although n does not play a role in

the dynamics of the system, we will see later in this section that it serves a structural role. Using the fact

that A + [B1 B3]Kφ(P0) is Schur (by the definition of a stabilizing DARE solution), it can be shown that

combining G1 and G2 into a single block yields the block diagram in Fig. 15a. If we instead combine G2 and

K into a single block, G3, it yields the block diagram in Fig. 15c. Thus, the three block diagrams in Fig. 15

are equivalent.
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Now suppose that G3 has the realization

G3 ∼


Ã B̃1 B̃2

C̃ D̃1 D̃2

0 0 0

 . (64)

Note that although we are utilizing the fact that n = 0, we are not explicitly expoiting any other structure

of G3. With this in place, we are interested in evaluating Jτ (Fl(G1, G3)). It can be shown that

Jτ (Fl(G1, G3)) = Jfi,ε + ε−1J1(G3) (65)

where J1(G3) is interpreted as Jτ (G3) at τ = 1. Using the techniques of Sect. 3.2, J1(G3) = tr{Rψ̃(P̃0)}

where P̃0 is the stabilizing solution of the DARE Rφ̃(P ) = P such that B̃T1 P̃0B̃1 + D̃T
1 D̃1 − I ≺ 0 where

φ̃ := (Ã, B̃1, C̃
T C̃, D̃T

1 D̃1 − I, C̃T D̃1) (66a)

ψ̃ := (B̃2, B̃1, D̃
T
2 D̃2, D̃

T
1 D̃1 − I, D̃T

2 D̃1) . (66b)

It should be noted that (65) could only be written in such a compact form due to the placeholder signal

n; without that placeholder, G3 would only have one output and the expression Jτ (G3) would not be well-

defined.

The proof of (65) proceeds along the following lines. First, find a realization of Fl(G1, G3) with [xT1 x
T
3 ]T as

the state where x1 and x3 are respectively the states of G1 and G3 and then apply the techniques of Sect. 3.2.

This yields that Jτ (Fl(G1, G3)) = tr{Rψ̌(P̌0)} where P̌0 is the stabilizing solution of the DARE Rφ̌(P ) = P

such that the relevant matrix is negative definite. (The exact expressions of the relevant quantities are

omitted for brevity.) Using the matrix pencil method for analyzing DAREs [11], it can be shown that P̌0 has

the form diag[P0, ε
−1P22] for some matrix P22. Using this expression, the DARE Rφ̌(P ) = P can be written

 P0 0

0 ε−1P22

 =

 P0 0

0 ε−1Rφ̃(P22)

 . (67)

Thus, with a little more algebra, it can be shown that the existence of the stabilizing DARE solution such

that the relevant matrix is negative definite is equivalent to the existence of P̃0 with the relevant properties.

Moreover, P̌0 = diag[P0, ε
−1P̃0]. Plugging this into the expression for Rψ̌(P̌0) yields after some algebra that

Rψ̌(P̌0) = ε−1Rψ(P0) + ε−1Rψ̃(P̃0). This immediately gives (65).
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Figure 16: LFT representation of H2 guaranteed cost control structure

Using (65), we see that the optimization problem we are interested in solving is

inf
K
Jτ (Fl(G,K)) = inf

K
Jτ (Fl(G1,Fl(G2,K))) = inf

K

{
Jfi,ε + ε−1J1(Fl(G2,K))

}
= Jfi,ε + ε−1 inf

K
J1(Fl(G2,K)) . (68)

The remaining optimal control problem

inf
K
J1(Fl(G2,K)) (69)

is analogous to the output estimation problem in the H∞ literature.

5.2.2 Reduction to Full Control Problem

For H∞ control, the output estimation problem is solved by applying duality—transposing the closed-loop

system transfer function matrix—to transform the problem into a disturbance feedforward problem, reducing

this to a full information control problem, then applying the optimal full information controller. However, in

our approach, this approach does not work because there is no known duality result. Thus, we now diverge

slightly from the approach taken in [9].

At this point, we restrict the class of controllers to ones which can be expressed as K = Fl(K̂, K̃) where

K̂ ∼


A+ [B1 B3]Kφ(P0) 0 −I B3

K̄x 0 0 I

−(C3 +D31Kdx) I 0 0

 . (70)

For this control structure, the block diagrams in Figs. 16a and 16b are equivalent. Combining G2 and K̂ in

Fig. 16b into a single block, G4, yields Fig. 16c. Thus, the three block diagrams in Fig. 16 are equivalent for

this control structure.

The obvious question is whether or not this control structure worsens the level of achievable performance

of the closed-loop system. To answer this, we first note that, since A+ [B1 B3]Kφ(P0) is Schur, G4 has the
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realization

G4 ∼



A+B1Kdx B1T
−1
11 B2 +B1Kdw I 0

− T22K̄x −T22KdT
−1
11 −T22K̄w 0 T22

0 0 0 0 0

C3 +D31Kdx D31T
−1
11 D32 +D31Kdw 0 0


. (71)

Thus, we see that if we make the restriction u1 = B3u2 in Fig. 16c, we exactly recover the control problem

shown in Fig. 16a. This means that choosing this special control structure does not affect the achievable

performance of the closed-loop system. The remaining optimal control problem

inf
K̃
J1(Fl(G4, K̃)) (72)

is analogous to the full control problem in the H∞ literature.

5.2.3 Solving the Full Control Problem

Using techniques similar to the one used in [4], it can be shown that, given any state-space controller for the

block diagram in Fig. 16c, it is always possible to construct a static gain controller for the block diagram in

Fig. 16c that achieves the same performance in terms of J1(Fl(G4, K̃)). We therefore express

K̃ =

 Lx

Lv

 (73)

where Lx and Lv are static gains.

It is not currently known whether or not the full control problem can be solved using Riccati equations.

Therefore, to solve this problem, we will resort to the SDP approach. We first apply the change of variables

L̂x := PLx. Applying the characterization (15) with τ = 1 to Fl(G4, K̃) yields, after multiplying M̄ on the

right by Φ := diag[I, T11, I, I, T22, I] and on the left by ΦT , the optimization problem

inf
P,W,V,L̂x,Lv

tr{W} s.t.

 M̃ 0

0 I

 � 0 (74)
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where

M̃ :=



P • • • •

0 TT21T21 −BT1 P0B1 −R11 • • •

V 0 W • •

PǍ+ L̂xČ3 PB1 + L̂xD31 PB̌ + L̂xĎ3 P •

M̌1 M̌2 M̌3 0 BT3 P0B3 +R22


(75)

and



Ǎ B̌

Č1 Ď1

Č2 Ď2

Č3 Ď3


:=



A+B1Kdx B2 +B1Kdw

C1 +D11Kdx D12 +D11Kdw

C2 +D21Kdx D22 +D21Kdw

C3 +D31Kdx D32 +D31Kdw


(76a)

M̌1 := (BT3 P0B3 +R22)LvČ3 +BT3 P0Ǎ+DT
13Č1 + εDT

23Č2 (76b)

M̌2 := (BT3 P0B3 +R22)LvD31 +BT3 P0B1 +DT
13D11 + εDT

23D21 (76c)

M̌3 := (BT3 P0B3 +R22)LvĎ3 +BT3 P0B̌ +DT
13Ď1 + εDT

23Ď2 . (76d)

(Recall that, in these definitions, ε = τ−1.) Since diag[M̃, I] � 0 if and only if M̃ � 0, we see that (74) is

equivalent to

inf
P,W,V,L̂x,Lv

tr{W} s.t. M̃ � 0 . (77)

For any feasible P,W, V, L̂x, Lv, a controller which achieves J1(Fl(G4, K̃)) ≤ tr{W} is given by

K̃ =

 Lx

Lv

 =

 P−1L̂x

Lv

 . (78)

Putting this result together with (65) and the structure K = Fl(K̂, K̃) yields the following result: for any

feasible P,W, V, L̂x, Lv of (77), an output feedback controller which achieves Jτ (Fl(G,K)) ≤ Jfi,ε + tr{W}

is given by

K ∼

 A+B1Kdx +B3K̄x + (P−1L̂x −B3Lv)(C3 +D31Kdx) P−1L̂x −B3Lv

Lv(C3 +D31Kdx)− K̄x Lv

 (79)

If the strict inequality in (77) is relaxed to a non-strict inequality, the optimization becomes a SDP. Thus,

a reasonable way to solve the output feedback control problem (for fixed τ) is to relax (77) to a SDP, solve

the SDP using an appropriate solver, then reconstruct the output feedback controller using (79).
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5.2.4 Solution Methodology

With the results of the previous sections in place, a reasonable methodology for trying to solve (49) is:

1. Find Initial Value of τ

(a) Full Information Controller Design: Using the methodology of Sect. 4.2, design an optimal

full information controller.

(b) Find Feasible Value of τ : Choose α > 0. For the final values determined during the last full

information controller design, solve (77) using an SDP solver. If the optimization was feasible,

reconstruct the corresponding output feedback controller K using (79). If the optimization was

not feasible, set τ ← ατ , design a full information controller for ε = τ−1 using the methods of

Sect. 4.2, and redo this step.

(c) Closed-Loop System Analysis (Fixed K): Form the closed-loop system Fl(G,K) and analyze

its H2 guaranteed cost performance using the methodology of Sect. 3.2.

2. Controller Design

(a) Output Feedback Controller Design (Fixed τ): For the value of τ > 0 found in the previous

closed-loop system analysis step, solve (77) using an SDP solver and reconstruct the corresponding

controller K using (79).

(b) Closed-Loop System Analysis (Fixed K): Form the closed-loop system Fl(G,K) and analyze

its H2 guaranteed cost performance using the methodology of Sect. 3.2. Return to step 2a.

In our implementation, we use α = 100. We use two stopping criteria in this algorithm. If the number

of output feedback controller optimizations (i.e. the number of times steps 1b and 2a have been executed)

exceeds 30 or if J
[i−1]
of /J

[i]
of − 1 < 10−4 where J

[i]
of is the cost reported the ith time step 2b executes, we

terminate the algorithm. We also terminate the algorithm if the SDP solver claims infeasibility in step 2a.

We now take a minute to explain step 1b in above methodology. By the results in Sect. 3.2, Jτ (Fl(G,K)) 6=

∞ implies that Jτ̄ (Fl(G,K)) 6=∞ whenever τ̄ > τ . Therefore to find a value of τ for which there exists K

satisfying Jτ (Fl(G,K)) 6=∞, we should make τ increasingly large.

5.3 Application to Hard Disk Drives

So far in this section, we have developed two methodologies for designing output feedback controllers—

one based on solving a sequence of SDPs and another which exploits the solution of Riccati equations to
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Table 7: Closed-loop performance and cumulative optimization after each optimization step in SSDP ap-
proach

Step H2 Guaranteed
Cost

Cumulative Optimization
Time (s)

1a 6.255 10.811
1b 9.730 239.89
2a 8.095 561.74
2b 8.095 1188.12
2a 8.095 1552.77
2b 8.095 2091.08
3 8.257 3610.92

yield simplified SDPs. We will respectively call these approaches the SSDP approach and the DARE/SDP

approach. In this section, we will design controllers for the HDD model presented in Sect. 2. As we saw

in Sect. 4.3, the controllers designed for this HDD model tend to use very little control effort. In an effort

to boost the PES performance of the closed-loop system (at the expense of the control effort), we will

deemphasize the control effort in the cost function by applying our solution heuristics to the plant

ĜH := diag[1, 1, 0.01, 0.01, 1]GH . (80)

We first applied the SSDP approach in Sect. 5.1.4 to the design of an output feedback controller for

ĜH . Doing so yielded the results shown in Table 7, which breaks down the H2 guaranteed cost and the

cumulative optimization time at each optimization step. The first thing to note is that the SSDP approach

took just over 1 hour to design a controller for this system. The next thing to note is that, at steps 1b and

3, there are degradations in performance. However, these are both expected. At step 1a, since the designed

controller has direct access to the state of ĜH , it is likely that the cost reported after this step is smaller

than is achievable by an output feedback controller. In step 3, we allowed the cost to increase by up to 2%

in order to optimize the conditioning of the controller reconstruction process; the H2 guaranteed cost was a

design parameter rather than the objective function to be optimized.

Before performing step 3, we tried to reconstruct a controller which achieved the H2 guaranteed cost

8.095. However, the condition number of the matrix I−XY (i.e. the ratio of its largest and smallest singular

values) was 3.802 × 1022. This resulted in large numerical inaccuracies when reconstructing the controller,

which in turn resulted in an unstable closed-loop system. After performing step 3, the condition number of

the matrix I−XY was improved to 7.933×108. With the resulting values of the optimization parameters, a

controller was reconstructed which achieves the H2 guaranteed cost 7.958 (as computed by the methodology

in Sect. 3.2). Interestingly, this is 4% better than the cost reported by the solver in step 3. Figure 17 shows
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Figure 17: Bode magnitude plot of the nominal closed-loop sensitivity function from r to yh for the con-
troller designed using the SSDP approach along with its pointwise upper and lower bounds over all modeled
uncertainty
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Figure 18: Bode magnitude plot of the nominal closed-loop sensitivity function from r to yh for the controller
designed using the DARE/SDP approach along with its pointwise upper and lower bounds over all modeled
uncertainty

the Bode magnitude plot of nominal closed-loop sensitivity function from r to yh along with pointwise upper

and lower bounds on its Bode magnitude plot over modeled uncertainty. The nominal Bode magnitude plot

has the peak value 1.25dB and the upper bound on the Bode magnitude plot has the peak value 5.57dB.

Thus, even in the worst case, the Bode magnitude plot of the sensitivity function from r to yh has a low

peak.

After designing a controller using the SSDP approach, we designed a controller using the DARE/SDP

approach. The algorithm took 39.03 seconds to run and reported a closed-loop H2 guaranteed cost of 7.747.

By construction, this value of the closed-loop H2 guaranteed cost is exactly equal to the H2 guaranteed cost

computed by applying the methods of Sect. 3.2 to analyze the closed-loop performance. Thus, this controller

performs 2% better than the controller designed using the SSDP approach. Also note that the DARE/SDP

approach was more than 90 times faster than the SSDP approach.

Figure 18 shows the Bode magnitude plot of nominal closed-loop sensitivity function from r to yh along

with pointwise upper and lower bounds on its Bode magnitude plot over modeled uncertainty. The nominal

Bode magnitude plot has the peak value 1.01dB and the upper bound on the Bode magnitude plot has the

peak value 4.16dB. Thus, like the closed-loop system designed using the SSDP approach, the Bode magnitude

plot of the sensitivity function from r to yh has a low “hump” in both the nominal and worst case.
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Table 8: Worst-case standard deviation of closed-loop signals over 3000 random closed-loop samples with
controller designed using the DARE/SDP approach

Signal Standard Devia-
tion

yh 2.466nm
uv 0.316V
up 0.279V

It should be noted that the H2 guaranteed cost performance of a system is an upper bound on the

worst-case H2 performance of the system over all unmodeled uncertainty—not necessarily the actual worst-

case performance. It is thus useful to perform a Monte Carlo analysis of the closed-loop system. Using

the function usample in the Robust Control Toolbox, we fist chose 3000 random samples of the closed-loop

system with ∆ restricted to be a stable causal 3rd-order system satisfying ‖∆‖∞ ≤ 1. For each of the 3000

systems, we then found the standard deviation of each of the outputs by computing the relevant H2 norm.

The worst-case standard deviation of each signal is summarized in Table 8. We see that these results are

significantly smaller than predicted by H2 guaranteed cost analysis of the closed-loop system.

6 Conclusion

In this chapter, we have developed two heuristics for solving the output feedback H2 guaranteed cost control

problem. In the first method, a series of SDPs are solved to design a controller. The second method exploits

the solutions of Riccati equations to simplify the output feedback control problem (for a fixed value of τ) to

a full control problem, which can be solved using an SDP. These methods were applied to a track-following

HDD control problem in which the HDD had a PZT-actuated suspension. It was shown that although

both methods yielded controllers with a reasonable level of robust performance, the algorithm that exploited

Riccati equation structure was more than 90 times faster and yielded a slightly better value of the cost

function.
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[12] J. Löfberg. YALMIP : A toolbox for modeling and optimization in MATLAB. In Proc. IEEE Int. Symp.

Comput. Aided Control Syst. Des., pages 284–289, September 2004.

[13] Jianbin Nie and Roberto Horowitz. Design and implementation of dual-stage track-following control

for hard disk drives. In Proc. ASME Dyn. Syst. Control Conf., DSCC 2009, number PART B, pages

1477–1484, 2010.

[14] Ian R. Petersen, Duncan C. McFarlane, and Mario A. Rotea. Optimal guaranteed cost control of

discrete-time uncertain linear systems. Int. J. Robust Nonlinear Control, 8(8):649–657, July 1998.

40



[15] Carsten Scherer, Pascal Gahinet, and Mahmoud Chilali. Multiobjective output-feedback control via

LMI optimization. IEEE Trans. Autom. Control, 42(7):896–911, July 1997.

[16] Jos F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim.

Methods Software, 11:625–653, 1999.

[17] Hiroshi Toshiyoshi, Makoto Mita, and Hiroyuki Fujita. A MEMS piggyback actuator for hard-disk

drives. J. Microelectromech. Syst., 11(6):648–654, December 2002.

[18] L. Yu and F. Gao. Output feedback guaranteed cost control for uncertain discrete-time systems using

linear matrix inequalities. J. Optim. Theory Appl., 113(3):621–634, June 2002.

41


