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Abstract

This paper presents a methodology for analyzing the H2 guaranteed cost performance of a discrete-

time LTI system with unstructured dynamic uncertainty. Using the methods of guaranteed cost control, an

upper bound on H2 guaranteed cost performance over unstructured parametric uncertainty is formulated

in terms of feasibility of a linear matrix inequality. It is then shown that the feasibility of this inequal-

ity also guarantees the same level of performance also over unstructured dynamic uncertainty. This is

then used to formulate the problem of finding the best upper bound on H2 guaranteed cost performance

over unstructured causal dynamic uncertainty as a semi-definite program. Finally, it is shown that this

optimization problem can be solved efficiently and accurately using discrete algebraic Riccati equations.
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1 Introduction

The H2 norm has long been the most widely-used measure of performance for stable discrete-time LTI

systems. There are two reasons why this is the case. From a computational standpoint, the H2 norm is

easy to calculate because it only requires the solution of a single Lyapunov equation and standard matrix

manipulations. From an intuitive standpoint, the squared H2 norm of an LTI system can be interpreted as

the trace of the steady-state system output covariance under the assumption that the system is driven by

white Gaussian noise with unit covariance. Since many disturbances of interest can be modeled as Gaussian

noise (either white or filtered), this makes the H2 norm a particularly useful measure of performance when

the system and its disturbances are well-characterized.

However, it is often the case that the system and/or its disturbances are not well-characterized. In this

case, it is customary to model the uncertainty in the system model and express the resulting model as a

linear fractional transformation (LFT) of a known state space system and an unknown transfer function

with a H∞ norm bound which represents the uncertainty in the model.

In this framework, we are interested in determining the worst-case H2 performance of the discrete-time

system over all modeled uncertainty. In general, the unknown part of the system could have some structure,

such as in µ-synthesis. Necessary and sufficient conditions for robust H2 performance in this case are derived

in the frequency domain in [7]. The resulting conditions need to be checked at every frequency (or at least

a fine grid of frequencies) and then integrated across frequency. In that paper, these conditions are then

extended to state space systems and the resulting optimization problem is reduced to a convex optimization

problem involving a finite number of linear matrix inequalities (LMIs). However, in both of these approaches,

there is a significant amount of conservatism that arises because they do not make any assumptions on the

causality of the unknown part of the system.

A related approach for guaranteeing robust performance of a system over model uncertainty is guaranteed

cost control [8]. The analysis results of this framework are different than the previous framework in two ways.

First, they are time domain analysis results instead of a frequency domain results. Second, the analysis only

applies to systems with parametric uncertainty.

This paper uses the techniques of guaranteed cost control to derive a condition which yields an upper

bound on robust H2 performance of a discrete-time LTI system over unstructured norm-bounded parametric

uncertainty. It is then shown that the same condition also guarantees robust H2 performance over causal

unstructured dynamic uncertainty with the same H∞ norm bound. The problem of finding the best H2

guaranteed cost performance is then formulated as a semi-definite program (SDP), which can be solved

using solvers such as SeDuMi [10] or by using the mincx command in the Robust Control Toolbox for
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MATLAB. An efficient algorithm for solving this convex optimization problem is then developed which

exploits the structure of the problem by using the solutions of discrete algebraic Riccati equations (DAREs).

This algorithm is analogous to the algorithm developed for continuous-time systems in [9]. It is then shown

that the resulting algorithm is faster and tends to be more accurate than using general convex optimization

routines to solve the SDP.

Throughout the paper, we will use the following notation and definitions. A matrix will be called Schur if

all of its eigenvalues lie strictly inside the unit disk in the complex plane. A matrix pair (A,B) will be called

d-stabilizable if ∃K such that A + BK is Schur. Positive definiteness (semi-definiteness) of a symmetric

matrix X will be denoted by X � 0 (X � 0), bullets in a matrix will represent elements of a matrix which

follow from symmetry, and the maximum singular value of a matrix M will be denoted ‖M‖. Finally, the

H2 norm and H∞ norm of a stable causal LTI system G(z) will be denoted respectively by ‖G(z)‖2 and

‖G(z)‖∞.

2 Riccati equations and linear matrix inequalities

2.1 Discrete algebraic Riccati equations

We start by defining

φ := (A,B,Q,R, S)

Rφ(P ) := ATPA+Q− P − (ATPB + S)(BTPB +R)−1(BTPA+ ST )

Kφ(P ) := −(BTPB +R)−1(BTPA+ ST )

Aφ(P ) := A+BK(P )

for given values of A,B,Q,R, and S where Q and R are symmetric and A is square. These quantities will

play a pivotal role in the developments of this section and section 4. For a given value of φ, the equation

Rφ(P ) = 0 is a DARE. We will say that P is a stabilizing solution of the DARE if Rφ(P ) = 0, P = PT ,

and Aφ(P ) is Schur. We will say that P is a maximal solution of the DARE if Rφ(P ) = 0 and P � P̄ for

any other DARE solution, P̄ .

In this section, we review two standard results on DAREs. Although, for brevity, we do not prove either

of these results, both proofs can be constructed using only discrete Lyapunov equations, Sylvester equations,

and elementary matrix manipulations. The following proposition is a trivial corollary of Proposition 13.5.1

in [5].
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Proposition 2.1. If a DARE has a stabilizing solution, then it is unique.

The following proposition, which is a trivial corollary of Theorem 13.1.3 in [5], is a standard result in the

design of LQR controllers and Kalman filters.

Proposition 2.2. If (A,B) is d-stabilizable and

 Q S

ST R

 � 0 then the DARE Rφ(P ) = 0 has a maximal

stabilizing solution P0 � 0.

2.2 Minimal LMI solutions via DAREs

We begin by defining Lφ as

Lφ(P ) :=

ATPA+Q− P ATPB + S

• BTPB +R


with the vector space of symmetric matrices as its domain. Note that because Lφ(P ) − Lφ(0) is a linear

function of P , constraining Lφ(P ) to be positive or negative definite or semi-definite is an LMI. We now

establish necessary and sufficient conditions for the feasibility of the LMI Lφ(P ) � 0 under the condition

that (A,B) is d-stabilizable.

Lemma 2.3. Let (A,B) be d-stabilizable. The DARE Rφ(P ) = 0 has a stabilizing solution P0 such that

BTP0B +R � 0⇔ ∃P such that Lφ(P ) � 0. Moreover, Lφ(P ) � 0⇒ P0 � P .

Proof. (⇒) Let P0 be the stabilizing solution of the DARE satisfying BTP0B + R � 0. This implies

that Aφ(P0) is Schur. Now we choose a Lyapunov function for Aφ(P0), i.e. let X � 0 satisfy X −

Aφ(P0)TXA(P0) � 0 and then define Y (t) := P0 − tX. Note that Rφ(Y (0)) = 0 and, after some alge-

bra,

dRφ(Y (t))

dt

∣∣∣∣
t=0

= X −Aφ(P0)TXAφ(P0) � 0.

Thus, for sufficiently small t > 0, we see thatRφ(Y (t)) � 0 and BTY (t)B+R = (BTP0B+R)−tBTXB � 0.

By Schur complements, these two conditions are equivalent to Lφ(Y (t)) � 0.

(⇐) Choose any ∆ = ∆T such that Lφ(∆) � 0 and define Q̄, R̄, and S̄ as

 Q̄ S̄

S̄T R̄

 :=

AT∆A+Q−∆ AT∆B + S

• BT∆B +R

 = Lφ(∆) � 0.

Also define φ̄ := (A,B, Q̄, R̄, S̄). By Proposition 2.2, the DARE Rφ̄(P̄ ) = 0 has a stabilizing solution

P̄0 � 0. Defining P0 := P̄0 +∆, we see that BTP0B+R = BT P̄0B+ R̄ � 0. Similarly, Rφ(P0) = Rφ̄(P̄0) = 0
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and Aφ(P0) = Aφ̄(P̄0). This implies that P0 is the stabilizing solution of the DARE Rφ(P ) = 0. Since

P0 −∆ = P̄0 � 0, we see that P0 � ∆. Since the choice of ∆ was arbitrary, this concludes the proof.

With this in place, we can now establish necessary and sufficient conditions for the feasibility of the LMI

L(P ) ≺ 0 under the condition that (A,B) is d-stabilizable.

Theorem 2.4. Let (A,B) be d-stabilizable. The DARE Rφ(P ) = 0 has a stabilizing solution P0 such that

BTP0B +R ≺ 0⇔ ∃P such that Lφ(P ) ≺ 0. Moreover, Lφ(P ) ≺ 0⇒ P0 ≺ P .

Proof. Defining φ̄ := (A,B,−Q,−R,−S) we see that Lφ̄(−P ) = −Lφ(P ). Thus, ∃P such that Lφ(P ) ≺ 0

if and only if ∃P̄ such that Lφ̄(P̄ ) � 0. By Lemma 2.3, this is equivalent to the DARE Rφ̄(P̄ ) = 0 having

a stabilizing solution P̄0 such that BT P̄0B + R̄ � 0. Defining P0 := −P̄0, we see after a little algebra that

Rφ(P0) = −Rφ̄(P̄0) = 0, Aφ(P0) = Aφ̄(P̄0), and BTP0B + R = −(BT P̄0B + R̄) ≺ 0 which establishes the

required equivalency.

Now let Lφ(P ) ≺ 0. This implies that Lφ̄(−P ) = −Lφ(P ) � 0, which in turn implies that −P ≺ P̄0 by

Lemma 2.3. Therefore, P � P0.

Remark 2.5. Since the stabilizing solution of a DARE is unique, Theorem 2.4 yields a test for checking

whether or not the LMI Lφ(P ) ≺ 0 is feasible. First, try to find the stabilizing solution of the DARE

Rφ(P ) = 0 using a software package such as MATLAB. The LMI is feasible if and only if the stabilizing

solution P0 exists and satisfies BTP0B +R ≺ 0.

The previous theorem established equivalence of a stabilizing DARE solution and feasibility of the LMI

Lφ(P ) ≺ 0. The following corollary establishes that this DARE solution is the minimal solution of the

nonstrict LMI Lφ(P ) � 0.

Corollary 2.6. Let (A,B) be d-stabilizable and let the DARE Rφ(P ) = 0 have a stabilizing solution P0 such

that BTP0B +R ≺ 0. Then P0 is the minimal solution of the LMI Lφ(P ) � 0.

Proof. Using Schur complements, it is easily verified that P0 is a solution of the LMI, i.e. Lφ(P0) � 0.

Let Lφ(P ) � 0. By Theorem 2.4, we now choose ∆ = ∆T such that Lφ(∆) ≺ 0. Now define Y (λ) :=

λP + (1− λ)∆. Note that

Lφ(Y (λ)) = λLφ(P ) + (1− λ)Lφ(∆) ≺ 0, ∀λ ∈ [0, 1).

Using Theorem 2.4 again, we see that P0 ≺ Y (λ), ∀λ ∈ [0, 1). The continuity of Y (λ) implies that P0 �

Y (1) = P .
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3 LMI approach to H2 guaranteed cost analysis

In this section, we use the techniques of guaranteed cost control to analyze the robust H2 performance of

a discrete- time LTI system with unstructured parametric uncertainty. We then show that the resulting

optimization problem of finding the smallest bound on the H2 guaranteed cost can be formulated as an SDP.

We begin with a proposition that will facilitate later proofs.

Proposition 3.1. ∃W,V such that

M11 M12(V )

• W −M22

 � 0 if and only if M11 � 0.

Proof. (⇒) Trivial.

(⇐) LetM11 � 0 and choose any value of V . By Schur complements, W = I+M22+M12(V )TM−1
11 M12(V )

satisfies the matrix inequality.

We now consider a given discrete-time LTI system G(z) with the realization

G(z) ∼

 Ā B̄

C̄ D̄

 .
The following lemma establishes sharp upper bounds on the H2 norm of G(z) under the assumption that its

state space realization is known.

Lemma 3.2. The following are equivalent:

1. ||G(z)||22 < γ.

2. ∃P � 0,W such that γ > tr{W}, W − B̄TPB̄ − D̄T D̄ � 0, and P − ĀTPĀ− C̄T C̄ � 0.

3. ∃P � 0,W, V such that γ > tr{W} and

 P V

V T W

−
Ā B̄

C̄ D̄


T P 0

0 I


Ā B̄

C̄ D̄

 � 0.

Proof. Since the LMI characterization of the H2 norm is now considered a standard result in the literature,

we only prove the equivalence of the final two conditions. Note that

 P V

V T W

−
Ā B̄

C̄ D̄


T P 0

0 I


Ā B̄

C̄ D̄

 =

P − ĀTPĀ− C̄T C̄ V − ĀTPB̄ − C̄T D̄

• W − B̄TPB̄ − D̄T D̄

 .
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Figure 1: LFT representation of uncertain system

Thus, condition 3 trivially implies condition 2. Conversely, if condition 2 is satisfied, we can always choose

V = ĀTPB̄ + C̄T D̄ to satisfy condition 3.

The previous lemma gave a sharp upper bound on the H2 performance of a known system. We now

remove the restriction that G(z) is known. In particular, we let G(z) be represented as an LFT of a known

state space system and an unknown LTI system ∆(z) as shown in Fig. 1. The system is thus governed by

the equations


xk+1

qk

pk

 =


A B1 B2

C1 D11 D12

C2 D21 D22



xk

dk

wk

 , d(z) = ∆(z)q(z)

where xk ∈ Rnx , qk ∈ Rnq , pk ∈ Rnp , dk ∈ Rdx , and wk ∈ Rnw . We now define the static and dynamic

uncertainty sets respectively as

∆s := {∆ ∈ Rnd×nq : ‖∆‖ ≤ 1}

∆d := {∆(z) ∈ RHnd×nq
∞ : ‖∆(z)‖∞ ≤ 1}

where RH∞ is the set of scalar real proper transfer functions with no poles outside the unit circle. We will

regard the elements of ∆d as causal systems. Since the system is robustly well-posed over ∆ ∈ ∆s if and

only if ‖D11‖ < 1, we will make that assumption throughout the remainder of this section.

We now examine the system under the restriction that ∆ ∈ ∆s. In this case, G(z) has the realization

G(z) ∼

 A+B1Φ1,∆ B2 +B1Φ2,∆

C2 +D21Φ1,∆ D22 +D21Φ2,∆

 =:

 A∆ B∆

C∆ D∆


Φ1,∆ := (I −∆D11)−1∆C1, Φ2,∆ := (I −∆D11)−1∆D12.
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For convenience, we define the quantity

M(τ, P,W, V ) :=


P 0 V

• τI 0

• • W

−

A B1 B2

C1 D11 D12

C2 D21 D22


T 

P 0 0

0 τI 0

0 0 I



A B1 B2

C1 D11 D12

C2 D21 D22

 .

This quantity will play a pivotal role in the remainder of this section and the next section. Using the standard

techniques for guaranteed cost control [8], the following theorem gives an upper bound for ‖G(z)‖22 under

the assumption that ∆ ∈ ∆s.

Theorem 3.3. The condition

 P V

V T W

−
A∆ B∆

C∆ D∆


T P 0

0 I


A∆ B∆

C∆ D∆

 � 0, ∀∆ ∈ ∆s (1)

holds if and only if ∃τ > 0 such that M(τ, P,W, V ) � 0. Moreover, if P � 0 and these conditions hold, then

‖G(z)‖22 < tr{W} ∀∆ ∈ ∆s.

Proof. First note that if (1) holds, it will still hold if we replace W by W − εI for small enough ε > 0. Thus,

if P � 0, we define γ := tr{W} > tr{W − εI} and conclude by Lemma 3.2 that ‖G(z)‖22 < tr{W},∀∆ ∈ ∆s.

To prove the equivalence of the required statements, we first define for convenience

L :=


P 0 V

0 0 0

V T 0 W

−
A B1 B2

C2 D21 D22


T P 0

0 I


A B1 B2

C2 D21 D22

 .

It is easily verified that (1) holds if and only if


I 0

Φ1,∆ Φ2,∆

0 I


T

L


I 0

Φ1,∆ Φ2,∆

0 I

 � 0, ∀∆ ∈ ∆s.

Letting v1 and v2 be appropriately sized vectors and defining ξ∆ := Φ1,∆v1 + Φ2,∆v2, the previous condition
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holds if and only if


v1

ξ∆

v2


T

L


v1

ξ∆

v2

 > 0, ∀∆ ∈ ∆s,

v1

v2

 6= 0. (2)

We now characterize ∆s. Note that

ξ∆ = (I −∆D11)−1∆

CT1
DT

12


T v1

v2

 ⇒ ξ∆ = ∆


CT1

DT
11

DT
12


T 

v1

ξ∆

v2

 .

Thus, ξ∆ corresponds to a value of ∆ ∈ ∆s if and only if

ξT∆ξ∆ ≤


v1

ξ∆

v2


T 

CT1

DT
11

DT
12



CT1

DT
11

DT
12


T 

v1

ξ∆

v2

 .

With that characterization of ∆s in place, we now use the S-procedure (see, e.g. [1]) to say that (2) holds

if and only if ∃τ > 0 such that


v1

ξ∆

v2


T

L


v1

ξ∆

v2

 > τ



v1

ξ∆

v2


T 

CT1

DT
11

DT
12



CT1

DT
11

DT
12


T 

v1

ξ∆

v2

− ξT∆ξ∆
 ∀

[
vT1 ξT∆ vT2

]
6= 0.

With a little algebra, it can be shown that this is equivalent to M(τ, P,W, V ) � 0.

The previous theorem only considered the case when ∆ ∈ ∆s. However, the next theorem tells us that

if τ > 0, P � 0, and M(τ, P,W, V ) � 0, we can conclude a much stronger result—robust performance is

guaranteed over all ∆(z) ∈ ∆d.

Theorem 3.4. If τ > 0, P � 0, and M(τ, P,W, V ) � 0, then ‖G(z)‖22 < tr{W}, ∀∆(z) ∈ ∆d.

Proof. Fix ∆(z) ∈ ∆d. We now define xi,0 := 0, wi,0 := ei, wi,k := 0,∀k ∈ Z>0, i = 1, . . . , nd, where ei is
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the ith standard Cartesian basis vector. Recall that the H2 norm can be interpreted in the time domain as

‖G(z)‖22 =

nd∑
i=1

∞∑
k=0

[pTi,kpi,k]
xi,k+1

qi,k

pi,k

 =


A B1 B2

C1 D11 D12

C2 D21 D22



xi,k

di,k

wi,k

 , di(z) = ∆(z)qi(z).

Since M(τ, P,W, V ) � 0, we see that


xi,k

di,k

wi,k


T 

P 0 V

• τI 0

• • W



xi,k

di,k

wi,k

 ≥

xi,k+1

qi,k

pi,k


T 

P 0 0

0 τI 0

0 0 I



xi,k+1

qi,k

pi,k


where we have used the equations governing G(z). Summing both sides from k = 0 to N yields, after a bit

of simplification,

eTi Wei ≥ xTi,N+1Pxi,N+1 +

N∑
k=0

[pTi,kpi,k + τ(qTi,kqi,k − dTi,kdi,k)].

Since ‖∆(z)‖∞ ≤ 1 and ∆(z) is causal, we see that
∑N
k=0[qTi,kqi,k − dTi,kdi,k] ≥ 0. Also, P � 0 ⇒

xTN+1PxN+1 ≥ 0. Therefore,

eTi Wei ≥
N∑
k=0

[pTi,kpi,k], ∀N ∈ Z≥0

⇒ eTi Wei ≥
∞∑
k=0

[pTi,kpi,k]

⇒ tr{W} =

nd∑
i=1

eTi Wei ≥
nd∑
i=1

∞∑
k=0

[pTi,kpi,k] = ‖G(z)‖22.

To recover the strict inequality, note thatM(τ, P,W − εI, V ) � 0 for sufficiently small ε. Thus, applying the

above argument yields tr{W − εI} ≥ ‖G(z)‖22 ⇒ tr{W} > ‖G(z)‖22. Since ∆(z) is arbitrary, this concludes

the proof.

With this in place, a reasonable way to determine an upper bound on the robust H2 performance of G(z)

10



over all ∆(z) ∈ ∆d is to solve the SDP

min
τ,P,W,V

tr{W}

s.t. τ ≥ 0, P � 0, M(τ, P,W, V ) � 0

(3)

using a solver such as SeDuMi [10] or the mincx function in the Robust Control Toolbox for MATLAB.

Note that we have relaxed the strict inequalities to nonstrict inequalities. If the unrelaxed problem is

feasible (i.e. if problem (3) is strictly feasible), then this is acceptable because any point that satisfies the

constraints in (3) can be perturbed by an arbitrarily small amount to create a point that strictly satisfies

those constraints. Thus, by the continuity of tr{W}, we conclude that if τ, P,W, V satisfy the constraints in

(3), then ‖G(z)‖22 ≤ tr{W},∀∆(z) ∈ ∆d.

It is thus important to determine when (3) is strictly feasible. The following theorem establishes that

robust stability over ∆d is a necessary and sufficient condition for (3) to be strictly feasible.

Theorem 3.5. Define φ̂ := (A,B1, C
T
1 C1, D

T
11D11 − I, CT1 D11). The following are equivalent:

1. ∃τ > 0, P � 0,W, V such that M(τ, P,W, V ) � 0.

2. A is Schur and

∥∥∥∥∥∥∥
 A B1

C1 D11


∥∥∥∥∥∥∥
∞

< 1.

3. A is Schur and the DARE Rφ̂(P ) = 0 has a stabilizing solution P0 such that BT1 P0B1+DT
11D11−I ≺ 0.

Proof. Since the equivalence of the last two conditions is standard in the literature, we only prove the

equivalence of the first two conditions. Under the assumption that A is Schur, note that for sufficiently small

ε > 0 ∥∥∥∥∥∥∥
 A B1

C1 D11


∥∥∥∥∥∥∥
∞

< 1 ⇔

∥∥∥∥∥∥∥
 AT CT1

BT1 DT
11


∥∥∥∥∥∥∥
∞

< 1

⇔

∥∥∥∥∥∥∥
 AT CT1 εCT2

BT1 DT
11 εDT

21


∥∥∥∥∥∥∥
∞

< 1 ⇔

∥∥∥∥∥∥∥
 AT ε−1CT1 CT2

BT1 ε−1DT
11 DT

21


∥∥∥∥∥∥∥

2

∞

< ε−2.

Defining τ := ε−2, we use the LMI representation of the H∞ norm (see, e.g. [3]) to see that this is equivalent
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to the existence of P � 0 (for sufficiently large τ > 0) such that

0 ≺

P 0

0 τI

−


A B1

√
τC1

√
τD11

C2 D21


T 

P 0 0

0 I 0

0 0 I




A B1

√
τC1

√
τD11

C2 D21



=

P 0

0 τI

−

A B1

C1 D11

C2 D21


T 

P 0 0

0 τI 0

0 0 I



A B1

C1 D11

C2 D21

 .

Since this matrix inequality is the first two rows and columns of the condition M(τ, P,W, V ) � 0, applying

Proposition 3.1 concludes the proof.

Thus, we can find an upper bound on the robust H2 performance of G(z) over all ∆(z) ∈ ∆d by verifying

condition 3 in Theorem 3.5 and then solving (3).

4 DARE approach to H2 guaranteed cost analysis

In the previous section, we demonstrated how an upper bound on robust H2 performance of G(z) over all

∆(z) ∈ ∆d could be determined using convex optimization. In this section, we use the results of section 2

to show that the optimization problem can be solved using DAREs with parameters

B := B1, Q := τCT1 C1 + CT2 C2,

R := τ(DT
11D11 − I) +DT

21D21, S := τCT1 D11 + CT2 D21.

We first examine the strict feasibility of (3) for a fixed value of τ .

Theorem 4.1. Let τ > 0 be given. ∃P � 0,W, V such that M(τ, P,W, V ) � 0 if and only if A is Schur and

the DARE Rφ(P ) = 0 has a stabilizing solution P0 such that BTP0B +R ≺ 0. Moreover, when A is Schur,

M(τ, P,W, V ) � 0⇒ P � P0 � 0.

Proof. (⇒) Let M(τ, P,W, V ) � 0, P � 0. Looking at the upper left block of this inequality, we see that

P −ATPA � Q � 0 which implies that A is Schur. Note in particular that (A,B) is trivially d-stabilizable.

Removing the third row and column of M(τ, P,W, V ) � 0, we see that Lφ(P ) ≺ 0. By Theorem 2.4, the

DARE Rφ(P̄ ) = 0 has a stabilizing solution P0 such that BTP0B + R ≺ 0. By Corollary 2.6, this means
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that P � P0. We now note that the dare can be written

P0 −ATP0A = Q− (ATP0B + S)(BTP0B +R)−1(BTP0A+ ST )

� Q � 0.

Since A is Schur, this implies that P0 � 0.

(⇐) Let A be Schur and the DARE have a stabilizing solution such that BTP0B +R ≺ 0. Since (A,B)

is trivially d-stabilizable, we apply Theorem 2.4 to conclude that ∃P such that Lφ(P ) ≺ 0. The upper left

block of this inequality tells us that P −ATPA � Q � 0. Since A is Schur, this implies that P � 0. Noting

that Lφ(P ) ≺ 0 is the first two rows and columns of the condition M(τ, P,W, V ) � 0, we apply Proposition

3.1 to finish the proof.

The following Theorem establishes that, for a fixed value of τ , the optimization over the remaining

parameters to find the best upper bound of H2 guaranteed cost performance can be solved using a single

DARE.

Theorem 4.2. Let τ > 0 be given and assume that ∃P � 0,W, V such that M(τ, P,W, V ) � 0. Let P0 be

the stabilizing solution of the DARE Rφ(P ) = 0 and define

S13 := ATP0B2 + τCT1 D12 + CT2 D22

S23 := BTP0B2 + τDT
11D12 +DT

21D22

S33 := BT2 P0B2 + τDT
12D12 +DT

22D22

V0 := S13 − (ATP0B + S)(BTP0B +R)−1S23

W0 := S33 − ST23(BTP0B +R)−1S23.

Then

tr{W0} = min
P,W,V

tr{W}

s.t. P � 0, M(τ, P,W, V ) � 0

and an optimizer is given by (P,W, V ) = (P0,W0, V0).

Proof. First note that the existence of P0 is guaranteed by Theorem 4.1 and satisfies P0 � 0. We begin by
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proving that the claimed optimizer is feasible. Note that

M(τ, P0,W0, V0) =


P0 −ATP0A−Q −ATP0B − S V0 − S13

• −BTP0B −R −S23

• • W0 − S33

 .

Since symmetrically permuting the rows and columns of a symmetric matrix do not affect the positive

semi-definiteness of the matrix, we exchange the second and third rows and columns and note that the

Schur complement of −(BTP0B + R) is 0. Since −(BTP0B + R) � 0 and its Schur complement is positive

semi-definite, this implies that M(τ, P0,W0, V0) � 0. Thus, the claimed optimizer is feasible.

Now we show that it is, indeed, optimal. Let P̄ � 0, W̄ , V̄ satisfy M(τ, P̄ , W̄ , V̄ ) � 0. By Theorem 4.1,

P̄ � P0. Eliminating the first row and column of M(τ, P̄ , W̄ , V̄ ), we see that

0 ≺

τI 0

0 W̄

−

B1 B2

D11 D12

D21 D22


T 

P̄ 0 0

0 τI 0

0 0 I



B1 B2

D11 D12

D21 D22



�

τI 0

0 W̄

−

B1 B2

D11 D12

D21 D22


T 

P0 0 0

0 τI 0

0 0 I



B1 B2

D11 D12

D21 D22


=

−BTP0B −R −S23

• W̄ − S33

 .
By Schur complements, this implies that W̄ �W0, which implies that tr{W̄} > tr{W0}. Now let P � 0,W, V

satisfyM(τ, P,W, V ) � 0 and define Pλ := λP̄ +(1−λ)P , Wλ := λW̄ +(1−λ)W , and Vλ := λV̄ +(1−λ)V .

Note that Pλ � 0, ∀λ ∈ (0, 1] and

M(τ, Pλ,Wλ, Vλ) = λM(τ, P̄ , W̄ , V̄ ) + (1− λ)M(τ, P,W, V )

� 0, ∀λ ∈ (0, 1].

By the same argument as was used to prove that W̄ � W0, we see that Wλ � W0, ∀λ ∈ (0, 1]. Since

Wλ is continuous in λ, we conclude that Wλ � W0 when λ = 0, i.e. W � W0. This in turn implies that

tr{W} ≥ tr{W0}.
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Note that we can reformulate (3) as the nested optimization

min
τ≥0

 min
P,W,V

tr{W}

s.t. P � 0, M(τ, P,W, V ) � 0

 . (4)

By the properties of convex optimization, the outer optimization is a nonlinear convex optimization [2] and,

by the preceding theorem, the inner optimization can be performed using a single DARE. Now we present

a result which makes it especially easy to find feasible values of τ .

Proposition 4.3. Let τ̄ > 0 be given. If ∃P � 0,W, V such that M(τ̄ , P,W, V ) � 0, then ∀τ ≥ τ̄ , ∃P �

0,W, V such that M(τ, P,W, V ) � 0.

Proof. Let M(τ̄ , P,W, V ) � 0 and choose α ≥ 1. Note that


αP 0 αV

• ατ̄I 0

• • αW

 �

A B1 B2

C1 D11 D12

C2 D21 D22


T 

αP 0 0

0 ατ̄I 0

0 0 αI



A B1 B2

C1 D11 D12

C2 D21 D22



�


A B1 B2

C1 D11 D12

C2 D21 D22


T 

αP 0 0

0 ατ̄I 0

0 0 I



A B1 B2

C1 D11 D12

C2 D21 D22

 .

Thus, M(ατ̄ , αP, αW,αV ) � 0, ∀α ≥ 1.

We now analyze how tr{W0} (as defined in Theorem 4.2) varies as τ is varied. Since the stabilizing

solution of a DARE is analytic at any point at which it exists [4], P0 (and, hence, tr{W0}) is an infinitely

differentiable function of τ at any value of τ for which the DARE admits a stabilizing solution. In particular,

by implicitly differentiating the DARE Rφ(P ) = 0, it can be shown that the derivative of P0 with respect

to τ satisfies the discrete Lyapunov equation

P ′0 = Aφ(P0)TP ′0Aφ(P0)−Kφ(P0)TKφ(P0) + (C1 +D11Kφ(P0))T (C1 +D11Kφ(P0)). (5)

Since Aφ(P0) is Schur, this Lyapunov function can always be uniquely solved for P ′0. We can then compute

the derivative of the upper bound on the H2 guaranteed cost performance with respect to τ as

tr{W0}′ = tr
{

(B2 +B1K23)TP ′0(B2 +B1K23) + (D12 +D11K23)T (D12 +D11K23)−KT
23K23

}
K23 := −(BTP0B +R)−1S23.

(6)
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f(τ)

f̂1

f̂2

Figure 2: Illustration of lower bound computation

Since (4) is a convex optimization, tr{W0}′ is a monotonic nondecreasing function of τ . Also, the condition

tr{W0}′ = 0 is sufficient to guarantee optimality.

The value and derivative of tr{W0} is also useful for generating a lower bound on the optimal value of

(4). Consider Figure 2, which shows a graph of a convex function f(τ) in which τ0 is known to be an upper

bound on the minimizing value of τ . By convexity, if τ1 is known to be a lower bound on the minimizing

value of τ , the value and derivative of f at τ0 gives us the lower bound f̂1. If instead, the value and derivative

of f at τ0 and τ2 is known, we have the lower bound f̂2. It should be noted that the second of these lower

bounds is less conservative when it is applicable.

With these results in place, we can easily solve (4) using the following methodology:

Step 1—Check Feasibility: Use condition 3 of Theorem 3.5 to determine whether or not (4) is strictly

feasible.

Step 2—Find Initial Interval: Choose α > 1. By Proposition 4.3, the DARE Rφ(P ) = 0 will have a

stabilizing solution with the required properties for τ = αk, for large enough k. Starting from k = 0,

iterate over k until a value of τ = αk is found such that the DARE has a stabilizing solution P0 that

satisfies BTP0B + R ≺ 0 and tr{W0}′ > 0. Denote this value of value of τ by τu. Note that this

corresponds to an upper bound on the optimal value of τ . If τu = 1, then 0 is a lower bound on the

optimal value of τ , otherwise τu/α is a lower bound.

Step 3—Bisection: Solve the equation tr{W0}′ = 0 over τ using bisection. Whenever the DARE Rφ(P ) =

0 does not have a solution with the required properties for a given value of τ , this corresponds to a

lower bound on the optimal value of τ .

In our implementation, we use α = 100. Also, except when the lower bound on the optimal value of τ is

0, we use the geometric mean instead of the arithmetic mean to better deal with large intervals in which

the optimal value of τ could lie. In the bisection step, we use two stopping criteria; if we define the relative

error as ν := 1 − f/ tr{W0} where f is the lower bound computed as shown in Figure 2, we terminate the
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Figure 3: Time required to solve randomly generated H2 guaranteed cost performance analysis problems

algorithm when either ν < 10−10 or the number of iterations (including the iterations required to find the

initial interval) exceeds 30.

5 Numerical experiments

In this section, we consider the application of the developed methodologies to randomly generated H2 guar-

anteed cost performance problems. In particular, we consider three approaches—using the DARE approach

outlined in section 4, solving (3) using SeDuMi (parsed using YALMIP [6]), and solving (3) using the mincx

command in the Robust Control Toolbox. The last two of these methods will be collectively called the

LMI methods. It should be noted that YALMIP was not used when using mincx because YALMIP causes

mincx to run more slowly. All numerical experiments were performed in MATLAB (with multithreaded

computation disabled) on a computer with a 2.2 GHz Intel Core 2 Duo Processor and 2 GB of RAM.

To generate the random systems in our numerical experiments, we first generated a random stable

discrete-time state space system using drss in MATLAB and then multiplied the system by the inverse of

its H∞ norm (computed by norm). This system was then multiplied by a random number generated from a

uniform distribution on [−1, 1]. The resulting system corresponded to generating random values of A,B1, C1,

and D11 for a robustly stable system. The entries of B2, C2, D12, D21, and D22 were generated randomly

from independent normal distributions. For all of the numerical experiments, we chose the signal dimensions

to be nq = 5, nd = 6, np = 7, nw = 8.

In the first experiment, we tested the speed of the methodologies over several values of nx. The results of

this test are shown in Figure 3. In particular, note that the DARE method is faster than the LMI methods

for all of the randomly generated problems. For instance, for the 43rd-order system, it respectively took the

DARE approach, the mincx approach, and the SeDuMi approach 1.27 seconds (averaged over several runs),

947.75 seconds, and 307.76 seconds to compute the upper bound on the H2 guaranteed cost performance.
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Figure 4: Histogram of νm when mincx reports smaller cost than DARE approach

Also note that the DARE method appears to have a complexity of O(n3
x) whereas the SeDumi method

appears to have a complexity of O(n5
x). The curve which corresponds to the mincx method is not smooth

because the number of iterations required to solve the problem often changes dramatically from problem to

problem, unlike the other two methods. Nonetheless, since the computational time required for the mincx

method is similar to that required by the SeDuMi method, it appears to have a complexity of roughly O(n5
x)

also. Thus, the difference in computational speed between the DARE approach and the other two approaches

becomes more pronounced for larger values of nx.

In the second experiment, we tested the accuracy of the DARE approach compared to the LMI approaches

for 400 randomly generated analysis problems with nx = 20. To this end, we first define fd, fm, and fs as the

upper bounds on the H2 guaranteed cost performance for a given system respectively computed using the

DARE approach, mincx, and SeDuMi. The criterion we will be using to compare the accuracy of the relevant

methods is the relative error, i.e. we use the criterion νm := |1−fm/fd| to compare the accuracy of the mincx

approach to the DARE approach and the criterion νs := |1− fs/fd| to compare the accuracy of the SeDuMi

approach to the DARE approach. For both comparisons, the results are split into two categories—cases in

which the LMI approach reports a smaller cost and cases in which the DARE approach reports a smaller

cost.

Figure 4 shows the histogram of νm for the cases in which mincx reports a smaller cost than the DARE

approach. Note that all of these values are small, i.e. the mincx approach never significantly beats the DARE

approach in terms of accuracy. Figure 5 shows the histogram of νm for the cases in which mincx reports

a larger cost than the DARE approach. This figure shows that the DARE approach often report a much

smaller cost than the mincx approach. Since both of these methods require all of the iterates to be feasible,

we conclude that the DARE approach had better accuracy in these cases and the difference in reported

cost is due to mincx getting “stuck” due to numerical problems. Figure 6 shows the histogram of νs for

the cases in which SeDuMi reports a smaller cost than the DARE approach. Unlike the mincx approach,

the SeDuMi approach generates significantly smaller costs than the DARE approach for 14 cases. However,

for each of these 14 cases, the cost of the nominal system computed by the norm function in MATLAB
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Figure 6: Histogram of νs when SeDuMi reports smaller cost than DARE approach

is larger than the H2 guaranteed cost determined by SeDuMi. Since this is a contradiction, we conclude

that these results correspond to cases in which SeDuMi failed. In particular, since SeDuMi uses infeasible

path-following algorithms, not all of the iterates are guaranteed to be feasible. In these 14 cases, the final

iterate was not feasible. Since, in infinite precision, the feasibility of one iterate implies feasibility of the

next iterate for these infeasible path-following algorithms, it is likely that SeDuMi failed to find any feasible

iterates for these 14 cases. Figure 7 shows the histogram of νs for the cases in which SeDuMi reports a

larger cost than the DARE approach. This figure shows that, like the mincx method, the SeDuMi method

sometimes gets “stuck” due to numerical problems. Based on this, we conclude that the accuracy of the

DARE method is generally superior to that of the LMI methods.
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Figure 7: Histogram of νs when SeDuMi reports larger cost than DARE approach
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6 Conclusion

In this paper, we formulated the problem of finding the best upper bound on H2 guaranteed cost perfor-

mance of a discrete-time system with dynamic norm-bounded unstructured uncertainty as a SDP. We then

demonstrated that exploiting the structure of this optimization by using the solution of DAREs increases

the speed and accuracy with which we can solve these problems.
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