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Abstract

This paper presents a novel technique for designing robust track-following output-feedback controllers in hard

disk drives (HDDs). In this paper, the manufacturing variations of HDDs are modeled as polytopic parametric un-

certainties in linear time-invariant discrete-time systems. For this model, the robust track-following control problem

is formulated as the worst-caseH2 performance optimization. The optimization problem reduces to the one with

bilinear matrix inequalities (BMIs), using the parameter dependent Lyapunov functions and the extended LMI condi-

tion introduced by de Oliveira. Although the formulated problem is nonconvex, and thus it is difficult to ensure global

optimality, a numerical technique called “G-K iteration” is applied for optimization to guarantee monotonic non-

increase of the worst-case performance during iterations.The proposed design technique will be useful in improving

the track-following performance, and thus increasing the storage capacity of HDDs.
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1 Introduction

To increase the capacity of hard disk drives (HDDs), the track density has to be increased. Researchers in HDDs

industry estimate the track density for the future storage density to be about 500,000 track-per-inch (TPI), requiringa

track mis-registration (TMR) budget of less than5 nm (3σ). To achieve this future goal, higher control bandwidth is

necessary to gain sufficient positioning accuracy of the read/write head position with respect to the track which will

be referred to as the position error signal (PES) [1, 2]. To overcome this challenge, a class of dual-stage actuators for

HDDs has been proposed [3, 4, 5, 6, 7, 8]. A microactuator (MA)is placed at the end of the suspension and moves the

slider/head relative to the suspension tip, increasing servo bandwidth [9]. A dual-stage servo system using enhanced

active-passive piezoelectric actuators was proposed in [7]. Reliability evaluation of piezoelectric MAs in HDDs were

reported in [8]. A dedicated sensor system using piezoelectric strain gages for detecting vibration on the sensor arm

directly has been developed in [10], which enables high-frequency sampling and modal selectivity. Sensing techniques

for In Situ measurement of head-slider in both flying height and off-track directions have been developed in [11].

The control objective in robust track-following is to obtain a small RMS value of the PES against all undesirable

exogenous disturbance such as track runout, windage and measurement noise over all HDD products with dynam-

ics variations [12]. A method to achieve this objective is tomathematically model such disturbance and dynamics

variations, and then to design a robustH2 controller [13]. A parameter uncertainty identification technique for ro-

bustH2 control synthesis was reported in [14]. A tradeoff between performance and controller complexity in HDDs

was addressed by control-oriented modeling and robust control [15]. An alternative approach that classifies the disk

drives into several sets depending on dynamics properties,and applies a single robust controller to each set has been

proposed by [16]. Another way to deal with model uncertaintyis to use adaptive control schemes. An adaptive distur-

bance rejection scheme in HDDs has been introduced in [17]. Aneural-networks-based adaptive disturbance rejection

technique for HDDs has been developed in [18]. Online iterative control has been used to cope with nonrepeatable

run-out disturbances in HDDs [19].

In this paper, we consider a single robustH2 controller to deal with parametric uncertainties in HDDs [13, 20].

The problem of designing an optimal full-order output-feedback controller for polytopic uncertain systems can be

formulated as an optimization problem subject to a set of bilinear matrix inequalities (BMIs). However, in general,

the optimization subject to a set of BMIs, which is non-convex, is difficult to solve. In the case of a relatively high

order uncertain system, most of the global approaches to thesolution of the BMI problem are not practical due to the

resulting large number of variables that enter bilinearly in matrix inequalities [21]. On the other hand, several local

search optimization algorithms have been proposed [22, 23]that are computationally fast enough to deal with this

problem. A straightforward local approach takes advantageof the fact that, by fixing a set of the bilinearly-coupled

variables, the BMI problem becomes a convex optimization problem in the remaining variables and vice versa. The
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algorithm iterates among two LMI optimization problems. Ineach LMI problem a set of bilinearly-coupled variables

is kept constant and the minimum is searched among their bilinear conjugates. The iterative algorithm is stopped when

this search reaches a local minimum or a reasonably low performance cost is achieved. A coordinate descent method

that utilizes the dual iterative approach for BMI problems was proposed in [23]. Unfortunately, the convergence

properties of this type of dual iteration approach is sensitive to the initial condition and the tolerances of the numerical

LMI solvers. Moreover, in general, these algorithms are notguaranteed to converge to the globally optimal solution

nor to a locally optimal solution for the originally formulated BMI problem. However, the dual iterative approach has

been successfully utilized to synthesize robust controllers for track-following hard disk drive servo systems with dual-

stage actuators [12] and multirate and multi-sensing track-following servo systems in HDDs [24, 25, 20]. Therefore,

in many applications these types of algorithms appear to be effective in the design of fixed order robust controllers for

parametrically uncertain systems with relatively high orders.

This paper presents a so-called “G-K” iteration technique for robust track-following controller design in HDDs.

In particular, this dual iterative descent algorithm is based on parameter dependent Lyapunov functions. The proposed

algorithm achieves better worst-case performance than theone used in [12, 24, 25] but requires more computational

power in solving controller design problems. Specifically,a robust output-feedback controller is optimized for the

worst-case performance of a linear time invariant (LTI) discrete-time system under convex polytopic parametric un-

certainties, based on the extended LMI condition with an instrumental variable “G” introduced by de Oliveira [26].

Using this condition, a new dual iterative algorithm is presented, which is henceforth called the “G-K iteration” al-

gorithm as compared to the “P -K iteration” used in [12, 24, 25]. It will be shown that this algorithm updates the

controller parameters in order to guarantee monotonic non-increasing worst-case performance.

This paper is organized as follows. At the end of this section, we first introduce notation which appears in the

paper. In Section 2, we introduce a nominal plant for a HDD servo with a translational MEMS actuator and parameter

variations. We also present the generalized plant that consists of the nominal plant and uncertain parameters for which

a single robust discrete-time robust controller needs to bedesigned. In Section 3.1, polytopic parametric uncertain

LTI systems are introduced in a general context. Section 3.2formulates the worst-caseH2 performance minimization

problem for a polytopic parametric uncertain LTI system. For the formulated problem, descent algorithms called “P -

K iteration” and “G-K iteration” are presented in Section 3.3 to design robust controllers based on LMI techniques.

An illustrative example is presented in Section 4, where thealgorithms discussed in Section 3 are used to design a

robustH2 track-following controller for the dual-stage servo system with variations introduced in Section 2.

The notation in this paper is standard.R
n×m is the set of realn×m matrices.Rn is the set of realn dimensional

vectors.In×n denotes the identity matrix of sizen and0n×m ∈ R
n×m represents ann ×m zero matrix. The direct

sum of two matricesA ∈ R
m×m andB ∈ R

n×n is denoted asA ⊕ B := diag(A,B) ∈ R
(m+n)×(m+n), which is a

block diagonal matrix, and having main diagonal blocks square matricesA andB, such that the off-diagonal blocks
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Figure 1: Schematic of a dual stage HDD servo system with a translational MEMS actuated slider.

are zero matrices. A transfer function of a discrete-time LTI system is denoted by






A B

C D




 := D + C(zI −A)−1B. (1)

Other notation will be explained in due course.

2 Robust track-following control problem in HDDs

In this section, we first present a nominal plant for a HDD servo with a translational MEMS actuator and the associated

generalized plant that consists of the nominal plant and uncertain parameters. The plant model has been used in the

literature [20], and considered to be realistic enough.

We consider a specific example here, but the controller design technique to be proposed in Section 3 is general

enough to cover track-following servo control problems forvarious configurations in HDDs (such as single-stage,

suspension-actuated or slider-actuated dual-stage, and multi-sensing).

2.1 Dual-stage servo systems with a translational MEMS actuator

We consider a dual-stage HDD servo system with a translational MEMS actuated slider, the schematic and block

diagram of which are respectively shown in Fig. 1. and Fig. 2.
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Figure 2: Block diagram of a dual stage HDD servo system with atranslational MEMS actuated slider.

The control inputs are electrical signals to the voice coil motor (VCM) and the microactuator (MA), denoted by

uv andum respectively. The airflow disturbance signals to VCM and MA,wv andwm respectively, are assumed to be

modeled as the normalized Gaussian white noise. The signalsyh, yp, yv, andym are respectively the read/write head

position, the output of a strain sensor mounted on the suspension, the suspension tip displacement, and the position

of the MA relative to the suspension tip displacement. The track runout signal,r, models the desired head motion

relative to the tracks on the disk resulting from mechanicalimperfections, D/A quantization noise, and power-amp

noise. yPES is the position error signal (PES), which is defined as the position of the read/write head with respect

to the track. The controller has access to measurements ofyp, ym, andyPES , each of which is contaminated by its

respective Gaussian white measurement noise signal. The transfer functions for the VCM dynamicsGV , the MA

dynamicsGM , and the coupling between the VCM and MA dynamicsGC , are respectively represented as

GV (s) :=

7∑

i=1

Ai

s2 + 2ζiωis+ ω2
i

,

GM (s) :=
Am

s2 + 2ζmωms+ ω2
m

,

GC(s) :=
2ζmωms+ ω2

m

s2 + 2ζmωms+ ω2
m

,

(2)

whereAi andAm are static gain matrices forGV (s) andGm(s) respectively given by

Ai :=






awv→yp
auv→yp

awv→yv
auv→yv




 for i ∈ {1, · · · , 7} , Am :=

[

awm→ym
aum→ym

]

.
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Table 1: Parameter variations in the full model.
ζ ω

GV ±10% ±4%
GM ±10% ±6%

The low-frequency nature of track runout is characterized by

r(s) :=

[
2.8× 109

s2 + 800s+ 2.5× 105
+

1.2× 105

s+ 1.9× 103

]

︸ ︷︷ ︸

=:WR(s)

wr(s)

wherewr(s) is normalized Gaussian white noise.

2.2 Parametric uncertainties in dual-stage servo systems

For the model introduced in (2), we assume that although the values ofζ1, ω1, andAi are known, the remaining pa-

rameters can vary up to the amounts shown in Table 1. With these assumptions, we express the parametric uncertainties

in the relevant continuous-time transfer function coefficients as

ζ1ω1 = ζ̄1ω̄1, ω2
1 = ω̄2

1 ,

ζiωi = ζ̄iω̄i(1 + 0.14λc1i), ω2
i = ω̄2

i (1 + 0.08λc2i), i = 2, . . . , 7

ζmωm = ζ̄mω̄m(1 + 0.16λc1m), ω2
m = ω̄2

m(1 + 0.12λc2m),

where parameters with “overbar” are nominal ones listed in Table 2, and the values of theλs are unknown, but known

to lie in the interval[−1, 1]. It should be noted that we introduced some conservatism into the model for theζs in order

for the transfer function coefficients to depend affinely on the unknown parameters. The resulting model, which we

will denoteΣ
Λc

c , is 19th-order with 14 parametric uncertainties.

To reduce the amount of computation time required to synthesize a controller and the complexity of the resulting

controller, it is necessary to simplify the model as much as possible before performing the controller design. Thus, we

only consider the first three terms inGV during control design and make the restrictions thatλc12 = λc13 = λc22 =

λc23 =: λc and all other uncertainties are zero. These restrictions onthe parametric uncertainties correspond to the

assumption that the ratios between the quantitiesζ2, ζ3, ω2, andω3 are known. This technique was introduced in

[27] to reduce the number of uncertain parameters by exploiting the correlation between physical parameters. With

these simplifying assumptions, the system model is11th order and contains one parametric uncertainty,λc. Defining

Λc := [−1, 1], Fig. 3 shows the open-loop Bode plot fromu to y of this reduced model for 50 randomly selected

values ofλc ∈ Λc. The resulting order of the reduced-order system will be theorder of the synthesized controller.
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Table 2: Nominal parameter values.
Parameter

q mode ζ̄q ω̄q Aq

1 rigid body and friction 0.5 376.99

([
0

4.461

]
[
0 4.461

]
)

× 108

2 butterfly 0.015 4.6533× 104
([

2.644
−4.626

]
[
3.595 3.932

]
)

× 108

3 sway 0.015 6.7272× 104
([

7.636
−6.209

]
[
−9.596 2.185

]
)

× 108

4 torsional 0.015 3.3171× 104
([

2.612
0.95

]
[
0 −2.78

]
)

× 106

5 torsional 0.015 5.7499× 104
([

3.171
−5.391

]
[
0 6.255

]
)

× 106

6 torsional 0.015 8.1759× 104
([

1.959
−3.359

]
[
−3.822 0.717

]
)

× 108

7 torsional 0.015 9.5562× 104
([

−2.271
2.571

]
[
3.411 0.362

]
)

× 108

m miro-actuator 0.2 1.4162× 104
[
1.199 0.04

]
× 109
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Figure 3: The Bode plot of the reduced-order, continuous-time system fromu to y for 50 random samples ofλc ∈ Λc.

2.3 Generalized plant

The generalized plant that consists of the nominal plant andparametric uncertainties for the controller design is shown

in Fig. 4. The inputs and outputs of the generalized plant arechosen as

z :=









yPES

uv

0.01um









, w :=



















wr

wv

wm

nPES

nm

np



















, y :=









ŷPES

ŷm

ŷp









, u :=






uv

um




 ,
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
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





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

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
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ŷp
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Figure 4: The generalized plant with parametric uncertainties for the controller design.S is the sampler andH is the
zero-order hold.

whereŷPES , ŷm, andŷp are output measurements, respectively corrupted by Gaussian white noise signalsnPES , nm,

andnp, i.e,

ŷPES = yPES + nPES ,

ŷm = ym + nm,

ŷp = yp + np.

In the controlled output signalz, the “weight”0.01 onum was selected by trial and error.

2.4 Robust track-following control problem

The objective of our work is to design a singleH2 robust controller to attenuate the variances of the PES and con-

trol efforts against the disturbance for the plant with the parameter variations. The generalized plant along with the

controller for this purpose is formulated and shown as in Fig. 4. In order to design the discrete-time controller, we

discretize the continuous-time parameter uncertain system as follows. We first obtain corresponding system vertices

in the uncertain parameter space, and discretize those vertices to form the discrete-time uncertain system,ΣΛ. Figure

5 shows the open-loop Bode plot fromu to y of the reduced model for 50 randomly selected values ofλ ∈ Λ. In this

paper, we will design a single discrete-time robust controller for the convex combination of the discrete-time system
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Figure 5: The Bode plot of the reduced-order, discrete-timesystem fromu to y for 50 random samples ofλ ∈ Λ.

vertices. The resulting discrete-time uncertain system will be elaborated further in the following section.

3 Worst-case H2 performance minimization via G −K iteration

In this section, first, polytopic parametric uncertain LTI systems are introduced in a general context. We then formu-

late the worst-caseH2 performance minimization problem for a polytopic parametric uncertain LTI system. For the

formulated problem, descent algorithms are presented to design robust controllers based on LMI techniques.

3.1 Polytopic parametric uncertain LTI systems

Let us consider a setΣΛ of the discrete-time LTI generalized plant
[
Σλ
]
(z), shown in Fig. 6:

ΣΛ :=







[
Σλ
]
(z) :=









A(λ) B1(λ) B2(λ)

C1(λ) D11(λ) D12(λ)

C2 D21 0









, λ ∈ Λ







, (3)

where the vectorλ ∈ R
N represents an uncertain time-invariant parameter vector in an uncertainty set. In Fig. 6,z (of

dimensionnz) is the output of the system,w (of dimensionnw) is the disturbance to the system,u (of dimensionnu)

is the control action andy (of dimensionny) is the measured output. The sizes of matrices in (3) are assumed to be

compatible with associated signal sizes.

Assumptions on the plant parameters are as follow.
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



A(λ) B1(λ) B2(λ)

C1(λ) D11(λ) D12(λ)
C2 D21 0





K

wz

y u

Figure 6: A generalized plant with an uncertain parameter vectorλ and a controllerK.

A.1 (A(λ), B2(λ), C2) is stabilizable and detectable for eachλ ∈ Λ.

A.2 The setΛ is the unit simplex set:

Λ :=

{

λ ∈ R
N :

N∑

i=1

λi = 1, λi ≥ 0, i = 1, · · · , N
}

.

A.3 The matrix-valued function(A,B1, B2, C1, D11, D12)(λ) is linear with respect toλ.

The assumption A.1 is necessary and sufficient for each system in ΣΛ to be stabilizable with dynamic output

feedback. The assumption A.2 is without loss of generality if the uncertain parameter set of(A,B1, B2, C1, D11, D12)

forms a polytope. In fact, such a polytopic uncertain set canalways be reparameterized in the form of (3) using a unit

simplexΛ. The assumptions A.2 and A.3 guarantee that the set of uncertain system matrices can be represented as a

polytope with its vertices

(Ai, Bi
1, B

i
2, C

i
1, D

i
11, D

i
12) := (A,B1, B2, C1, D11, D12)(ei), i ∈ {1, . . . , N},

whereei is thei-th unit vector. The assumption A.3 is mathematically expressed as

(A,B1, B2, C1, D11, D12)(λ) =

N∑

i=1

λi(A
i, Bi

1, B
i
2, C

i
1, D

i
11, D

i
12), (4)

and necessary for the design of robust controller based on LMI techniques.
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3.2 Worst-case H2 performance minimization problem

For the setΣΛ of parametric uncertain LTI systems in Eq. (3), we aim at designing a robust controllerK:

K(z) :=






AK BK

CK DK




 , AK ∈ R

n×n, (5)

such that theworst-caseH2 performance cost

J2(Λ,K) := sup
λ∈Λ

‖Tzw(λ,K)‖2. (6)

is to be minimized, whereTzw(λ,K) denotes the closed-loop transfer function from the disturbance signalw to the

output signalz. Mathematically, theworst-caseH2 performance minimization problemis to solve the optimization

problem

min
K∈K

J2(Λ,K), (7)

whereK is the set of all controllers that internally stabilize the closed-loop system for allλ ∈ Λ.

3.3 Robust H2 controller synthesis based on LMI techniques

Let us parameterize the controllerK in Eq. (5) by defining a matrixΘ as

Θ :=






AK BK

CK DK




 ∈ R

(n+nu)×(n+ny), (8)

where the order of the controller is the same as that of the (reduced-order) plant. Then, as in [28], the closed-loop

system matrix withλ ∈ Λ can be written as an affine function ofΘ






Acl(λ,Θ) Bcl(λ,Θ)

Ccl(λ,Θ) Dcl(λ,Θ)




 :=






A0(λ) B0(λ)

C0(λ) D11(λ)




+






B(λ)

D12(λ)




Θ

[

C D21

]

, (9)
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where

A0(λ) :=






A(λ) 0n×n

0n×n 0n×n




 ; B0(λ) :=






B1(λ)

0n×nw




 ;

C0(λ) :=

[

C1(λ) 0nz×n

]

; B(λ) :=






0n×n B2(λ)

In×n 0n×nu




 ;

C :=






0n×n In×n

C2 0ny×n




 ; D12(λ) :=

[

0nz×n D12(λ)

]

; D21 :=






0n×nw

D21




 .

(10)

Using the controller parameter matrixΘ, the worst-caseH2 performance minimization problem is rewritten as1

min
Θ

max
λ∈Λ

‖Tzw(λ,Θ)‖2. (11)

This optimization problem is nonconvex, and therefore, it is difficult to solve exactly in the globally optimal sense.

Next, we will explain a procedure to get a reasonable solution in a systematic way. This procedure involves two

iterative decent algorithms, calledP -K iteration andG-K iteration, and is illustrated by a flowchart in Fig. 7. By a

number of numerical simulations, we have found that it is generally most effective forG-K iteration to start with the

final robust controller synthesized byP -K iteration as its initial condition.

3.3.1 P -K Iteration

The problem in Eq. (11) can be solved by optimization subjectto the standard LMI conditions forH2 norm. In this

paper, we refer to the dual iteration algorithm used in [12, 24, 25] based on the standard LMI conditions as theP -K

iteration algorithm. A reasonable initial controller is synthesized by a method proposed in [21].

3.3.2 G-K Iteration

The problem in Eq. (11) is solved by optimization subject to the extended LMI conditions forH2 norm introduced by

de Oliveira [26].

min
{Wi:i=1,...,N},{Pi:i=1,...,N},Θ,G,γ2

γ2,

subject to M(Wi, Pi,Θ,G, γ2, ei) � 0, i = 1, . . . , N,

(12)

1With abuse of notation,Tzw(λ,Θ) := Tzw(λ,K)
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Figure 7: The flowchart of designing a robust controller viaG-K iteration.
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whereM(W,P,Θ,G, γ2, λ) is given by

M(W,P,Θ,G, γ2, λ) :=

(γ2 − trace(W )) ⊕









W Ccl(λ,Θ)G Dcl(λ,Θ)

? G + GT − P 0

? ? I









⊕









P Acl(λ,Θ)G Bcl(λ,Θ)

? G + GT − P 0

? ? I









.

Here,? represents entries which follow from symmetry. trace(W ) denotes the trace ofW . P andW are matrices of

appropriate sizes satisfyingP = PT andW = WT . G is a matrix of the same size asP . The closed-loop system

matricesAcl, Bcl, Ccl andDcl are defined in Eq. (9).

We will explain why the conditions in (12) guarantees the worst-caseH2 constraint‖Tzw(λ,Θ)‖2 < γ for all

λ ∈ Λ. Suppose that the matrix inequalities in (12) hold. Then, for anyλ ∈ Λ, we have

N∑

i=1

λiM(Wi, Pi,Θ,G, γ2, ei) � 0.

Since the matrix-valued functionM(W,P,Θ,G, γ2, λ) is affine with respect toW , P , andλ, and since
∑N

i=1 λi = 1,

this can be written as

M
(

N∑

i=1

λiWi,

N∑

i=1

λiPi, Θ, G, γ2,

N∑

i=1

λiei

)

� 0, ∀λ ∈ Λ.

By introducing matrices

Wλ :=

N∑

i=1

λiWi, Pλ :=

N∑

i=1

λiPi, (13)

and noticing

trace(Wλ) =

N∑

i=1

λitrace(Wi),

we reach a condition

M
(
Wλ, Pλ,Θ,G, γ2, λ

)
� 0, ∀λ ∈ Λ. (14)

By Theorem1 in [26], Eq. (14) implies the worst-caseH2 constraint‖Tzw(λ,Θ)‖2 < γ for all λ ∈ Λ.

The optimization problem (12) is nonconvex, due to the coupling betweenG andΘ. We thus use the following

coordinate descent algorithm for finding a sub-optimal robust controller:

1. [Initial design of Θ]: Obtain the initial controller based onP -K iteration. SetΘ1 to the result of the initial

design. Also setj = 1.

2. [Design of G]: FixΘ := Θj . Solve the convex optimization problem in Eq. (12) with respect toγ2, {Wi : i = 1, . . . , N},

{Pi : i = 1, . . . , N} andG. SetGj to a solutionG.
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3. [Design ofΘ]: Fix G := Gj . Solve the convex optimization problem in Eq. (12) with respect toγ2, {Wi : i = 1, . . . , N},

{Pi : i = 1, . . . , N} andΘ. SetΘj+1 to a solutionΘ. Incrementj by one. Continue this iteration between step

2 and step 3 untilγ2 converges.

Since the valueγ2 has a lower bound which is 0 and is monotonically non-increasing during the iterations, it will

converge to some positive number.

The robust controller is optimized based on parameter dependent Lyapunov functionsVλ := xT
clPλxcl, where

xcl represents the state of the closed-loop system andPλ is from Eq. (14). For anyλ ∈ Λ, G-K iteration finds a

parameter dependent Lyapunov function, whereasP -K iteration finds a common Lyapunov function for the entire

uncertain setΛ. That is whyP -K iteration normally yields a more conservative controller design thanG-K iteration

does. Therefore, the optimization based on the extended LMIconditions in Eq. (12) will improve the worst-case

performance as compared to the one based on the standard LMI conditions in [12, 24, 25].

4 Robust H2 Controllers in the HDD Example

In this section, controllers were designed for a reduced-order HDD servo system, and they were evaluated for the

full-order system. UsingP -K iteration, the controllerKPK was designed forΣΛ. This controller was then refined

usingG-K iteration to produce the controllerKGK as suggested by the flowchart in Fig. 7.

4.1 Performance Evaluation

To analyze each controller, the control loop was closed for each of 400 samples ofΣΛ which were generated by

randomly selecting values ofλ ∈ Λ. For each closed-loop system, stability was verified and stability margins were

computed when the loop was broken at each of three locations:ŷPES , ŷm, andŷp. Table 3 shows the nominal and

worst-case (in absolute value) stability margins for both controllers. Since negative gain margins correspond to phase

crossover frequencies at which the loop gain is larger than 1, negative gain margins mean that stability of the loop is

most sensitive to loop gain reduction. Negative phase margins can be interpreted similarly. Although both controllers

achieve reasonable stability margins,KGK achieves considerably larger nominal and worst-case stability margins. To

evaluate the robust performance of the closed-loop system,the RMS values of the PES,uv, andum were computed

for each closed-loop system sample. Table 4 shows the nominal and worst-case closed-loop RMS values of these three

signals for both controllers. ForKPK andKGK , the degradation from the nominal RMS values of the relevantsignals

to their worst-case values is less than 1.6% and 0.4%, respectively. This verifies that although the performance for

both controllers is robust in the time domain,KGK achieves performance which degrades much less overλ ∈ Λ. Also,

relative toKPK , KGK achieves 6%, 7%, and 10% improvements in the worst case RMS values of the PES,uv, and
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um, respectively.

Fig. 8 shows the nominal closed-loop Bode plots of the sensitivity functions (fromr to the PES) for the systems

with KPK andKGK . The closed-loop system withKGK has better runout rejection properties at low frequencies

and at high frequencies near the sensitivity peak. We now examine the perturbed sensitivity functions. Since the

plant has little uncertainties at low frequencies, it is only meaningful to examine the perturbed sensitivity plots at high

frequencies. Fig. 9 shows the closed-loop sensitivity plots of the systems withKPK andKGK for 50 random samples

of λ ∈ Λ. Note that althoughλ has little effect on the closed-loop sensitivity function in both closed-loop systems, the

closed-loop system withKGK has less variation in its sensitivity function overλ ∈ Λ. Also note that the worst-case

closed-loop sensitivity crossover frequency is higher than 3.3 kHz in both cases.

Table 3: Comparison of nominal and worst-case stability margins when the loop is broken atŷPES , ŷm, andŷp for
P -K andG-K iteration for the reduced order systemΣλ.

Broken Design Gain Margin (dB) Phase Margin (◦)
Loop Approach Nominal W.C. Nominal W.C.

ŷPES P -K Iteration 3.60 3.59 34.61 34.50
G-K Iteration 5.17 5.15 34.95 34.84

ŷm P -K Iteration -5.58 -5.16 -26.73 -25.86
G-K Iteration 7.81 7.79 -48.87 -45.18

ŷp P -K Iteration 10.95 10.18 -88.28 -63.49
G-K Iteration 11.27 11.10 ∞ -86.34

Table 4: Comparison of nominal and worst-case closed-loop RMS values of
√
zT z, the PES,uv andum for P -K and

G-K iteration for the reduced order systemΣλ.
Design

√
zT z PES (nm) uv (V) um (mV)

Approach Nominal W.C. Nominal W.C. Nominal W.C Nominal W.C

P -K Iteration 9.47 9.51 8.83 8.85 1.12 1.13 324 329
G-K Iteration 8.88 8.88 8.31 8.32 1.05 1.05 293 294

To further validate our design, we checked the performance of the full 19th order model with the designed con-

trollers. To do this, we first chose 400 random samples ofΣ
Λc

c , discretized each sample, and then closed the control

loop for each of these samples. The stability of each closed-loop system sample was verified and the RMS values of

the PES,uv, andum were computed. Table 5 shows the nominal and worst-case closed-loop RMS values of these

three signals for both controllers. ForKPK andKGK , the degradation from the nominal RMS values of the relevant

signals to their worst case values is less than 12% and 6%, respectively. This verifies that although the performance for

both controllers is robust in the time domain,KGK achieves performance which degrades much less over the uncertain

parameter set. Also, relative toKPK , KGK achieves 11%, 5%, and 10% improvements in the worst case RMS values

of the PES,uv, andum, respectively.
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Figure 8: Nominal closed-loop sensitivity plots for reduced order plants with controllers designed usingP -K and
G-K iteration.
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Figure 9: Closed-loop sensitivity plots for reduced order plants with controllers designed usingP -K andG-K iteration
for 50 random samples ofλ ∈ Λ.

5 Conclusions

This paper presented theG-K iteration technique for robust track-following control inHDDs. This approach utilized

robust controller design techniques for polytopic parametric uncertain LTI systems based on parameter dependent

Lyapunov functions. The robust output-feedback controller was optimized for theH2 worst-case performance of a

discrete-time system under convex polytopic parametric uncertainties, based on the extended LMI condition introduced
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Table 5: Comparison of nominal and worst-case closed-loop RMS values of
√
zT z, the PES,uv andum for P -K and

G-K iteration for the full order system.
Design

√
zT z PES (nm) uv (mV) um (mV)

Approach Nominal W.C. Nominal W.C. Nominal W.C Nominal W.C

P -K Iteration 9.52 10.52 8.88 9.92 1.14 1.16 324 333
G-K Iteration 8.90 9.37 8.34 8.82 1.06 1.10 294 299

by de Oliveira [26]. TheG-K iteration algorithm was applied for optimization of the robust controller to guarantee

monotonic non-increase of the worst-case performance during iterations. We have applied the synthesis algorithm to

design a robustH2 track-following controller for a dual-stage servo system in HDDs, which showed the improvement

of robust track-following performance as compared to ones used in [12, 24, 25].
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