Robust track-following controller design in hard disk é®/hased
on parameter dependent Lyapunov functions

Richard Conway, Jongeun Choi, Ryozo Nagamune, and Robertmnitz

Computer Mechanics Laboratory
Mechanical Engineering
University of California, Berkeley, CA, USA

December 28, 2011



Abstract

This paper presents a novel technique for designing rolraskifollowing output-feedback controllers in hard
disk drives (HDDs). In this paper, the manufacturing vanas of HDDs are modeled as polytopic parametric un-
certainties in linear time-invariant discrete-time syst® For this model, the robust track-following control pierin
is formulated as the worst-cagé, performance optimization. The optimization problem reduto the one with
bilinear matrix inequalities (BMIs), using the parameteapgndent Lyapunov functions and the extended LMI condi-
tion introduced by de Oliveira. Although the formulatedigeam is nonconvex, and thus it is difficult to ensure global
optimality, a numerical technique called;* K iteration” is applied for optimization to guarantee monato non-
increase of the worst-case performance during iteratidr®e proposed design technique will be useful in improving

the track-following performance, and thus increasing tteeagye capacity of HDDs.



1 Introduction

To increase the capacity of hard disk drives (HDDs), thektidensity has to be increased. Researchers in HDDs
industry estimate the track density for the future storagygsity to be about 500,000 track-per-inch (TPI), requidng
track mis-registration (TMR) budget of less thanm (3c). To achieve this future goal, higher control bandwidth is
necessary to gain sufficient positioning accuracy of thd/mdte head position with respect to the track which will
be referred to as the position error signal (PES) [1, 2]. Terceme this challenge, a class of dual-stage actuators for
HDDs has been proposed [3, 4, 5, 6, 7, 8]. A microactuator (MA)aced at the end of the suspension and moves the
slider/head relative to the suspension tip, increasingoseandwidth [9]. A dual-stage servo system using enhanced
active-passive piezoelectric actuators was proposed.ifR@liability evaluation of piezoelectric MAs in HDDs were
reported in [8]. A dedicated sensor system using pieza#desitain gages for detecting vibration on the sensor arm
directly has been developed in [10], which enables hightfemcy sampling and modal selectivity. Sensing techniques
for In Situ measurement of head-slider in both flying heigit aff-track directions have been developed in [11].

The control objective in robust track-following is to obta small RMS value of the PES against all undesirable
exogenous disturbance such as track runout, windage ansune@aent noise over all HDD products with dynam-
ics variations [12]. A method to achieve this objective igniathematically model such disturbance and dynamics
variations, and then to design a rob@st controller [13]. A parameter uncertainty identificatiohaique for ro-
bust?, control synthesis was reported in [14]. A tradeoff betweerigrmance and controller complexity in HDDs
was addressed by control-oriented modeling and robustadab]. An alternative approach that classifies the disk
drives into several sets depending on dynamics propeaesapplies a single robust controller to each set has been
proposed by [16]. Another way to deal with model uncertaisty use adaptive control schemes. An adaptive distur-
bance rejection scheme in HDDs has been introduced in [1Apukal-networks-based adaptive disturbance rejection
technique for HDDs has been developed in [18]. Online ibegatontrol has been used to cope with nonrepeatable
run-out disturbances in HDDs [19].

In this paper, we consider a single rob@st controller to deal with parametric uncertainties in HDDS8,[20].

The problem of designing an optimal full-order output-feack controller for polytopic uncertain systems can be
formulated as an optimization problem subject to a set afiddlr matrix inequalities (BMIs). However, in general,
the optimization subject to a set of BMIs, which is non-conus difficult to solve. In the case of a relatively high
order uncertain system, most of the global approaches tedflution of the BMI problem are not practical due to the
resulting large number of variables that enter bilineanlynatrix inequalities [21]. On the other hand, several local
search optimization algorithms have been proposed [22tH28]are computationally fast enough to deal with this
problem. A straightforward local approach takes advantddke fact that, by fixing a set of the bilinearly-coupled

variables, the BMI problem becomes a convex optimizatiabj@m in the remaining variables and vice versa. The



algorithm iterates among two LMI optimization problems.ekch LMI problem a set of bilinearly-coupled variables
is kept constant and the minimum is searched among theaiehiticonjugates. The iterative algorithm is stopped when
this search reaches a local minimum or a reasonably low peéioce cost is achieved. A coordinate descent method
that utilizes the dual iterative approach for BMI problemaswproposed in [23]. Unfortunately, the convergence
properties of this type of dual iteration approach is séestb the initial condition and the tolerances of the nurmedri
LMI solvers. Moreover, in general, these algorithms arequaranteed to converge to the globally optimal solution
nor to a locally optimal solution for the originally formuéd BMI problem. However, the dual iterative approach has
been successfully utilized to synthesize robust conti®fter track-following hard disk drive servo systems withatiu
stage actuators [12] and multirate and multi-sensing tfai&wing servo systems in HDDs [24, 25, 20]. Therefore,
in many applications these types of algorithms appear tdfbetie in the design of fixed order robust controllers for
parametrically uncertain systems with relatively highered

This paper presents a so-callag- K iteration technique for robust track-following contretldesign in HDDs.

In particular, this dual iterative descent algorithm isdzhen parameter dependent Lyapunov functions. The proposed
algorithm achieves better worst-case performance thaortbaised in [12, 24, 25] but requires more computational
power in solving controller design problems. Specificadly,obust output-feedback controller is optimized for the
worst-case performance of a linear time invariant (LTI)cdite-time system under convex polytopic parametric un-
certainties, based on the extended LMI condition with atrimsental variable §” introduced by de Oliveira [26].
Using this condition, a new dual iterative algorithm is gneted, which is henceforth called th@-K iteration” al-
gorithm as compared to the?- K iteration” used in [12, 24, 25]. It will be shown that this atghm updates the
controller parameters in order to guarantee monotonicinoreasing worst-case performance.

This paper is organized as follows. At the end of this se¢tvom first introduce notation which appears in the
paper. In Section 2, we introduce a nominal plant for a HDR@e&rith a translational MEMS actuator and parameter
variations. We also present the generalized plant thaistsraf the nominal plant and uncertain parameters for which
a single robust discrete-time robust controller needs tddsigned. In Section 3.1, polytopic parametric uncertain
LTI systems are introduced in a general context. Sectiofid@rAulates the worst-cageé, performance minimization
problem for a polytopic parametric uncertain LTI systemr #f@ formulated problem, descent algorithms calléd “

K iteration” and ‘G-K iteration” are presented in Section 3.3 to design robustrotbers based on LMI techniques.
An illustrative example is presented in Section 4, wherealgerithms discussed in Section 3 are used to design a
robustH, track-following controller for the dual-stage servo systith variations introduced in Section 2.

The notation in this paper is standalRl**™ is the set of reah x m matricesR" is the set of reahk dimensional
vectors.I, «, denotes the identity matrix of sizeand0,,«,, € R"*™ represents an x m zero matrix. The direct
sum of two matricest € R™*™ andB € R"*" is denoted as\ @ B := diag 4, B) € Rm+Tm)x(m+n) ‘which is a

block diagonal matrix, and having main diagonal blocks segumaatricesA and B, such that the off-diagonal blocks
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Figure 1: Schematic of a dual stage HDD servo system withreskational MEMS actuated slider.

are zero matrices. A transfer function of a discrete-timedystem is denoted by

.= D+ C(zI — A)'B. 1)
Cc|D

Other notation will be explained in due course.

2 Robust track-following control problem in HDDs

In this section, we first present a nominal plant for a HDD eawith a translational MEMS actuator and the associated
generalized plant that consists of the nominal plant anédain parameters. The plant model has been used in the
literature [20], and considered to be realistic enough.

We consider a specific example here, but the controller ddsichnique to be proposed in Section 3 is general
enough to cover track-following servo control problems ¥arious configurations in HDDs (such as single-stage,

suspension-actuated or slider-actuated dual-stage, alidsansing).

2.1 Dual-stage servo systemswith a translational MEM S actuator

We consider a dual-stage HDD servo system with a transktisfEMS actuated slider, the schematic and block

diagram of which are respectively shown in Fig. 1. and Fig. 2.



Figure 2: Block diagram of a dual stage HDD servo system withaslational MEMS actuated slider.

The control inputs are electrical signals to the voice caiton (VCM) and the microactuator (MA), denoted by
u,, andu,,, respectively. The airflow disturbance signals to VCM and M#,andw,,, respectively, are assumed to be
modeled as the normalized Gaussian white noise. The signads, v,, andy,, are respectively the read/write head
position, the output of a strain sensor mounted on the sgspgrthe suspension tip displacement, and the position
of the MA relative to the suspension tip displacement. Thekrunout signaly, models the desired head motion
relative to the tracks on the disk resulting from mechanicgderfections, D/A quantization noise, and power-amp
noise. ypggs is the position error signal (PES), which is defined as thétipasof the read/write head with respect
to the track. The controller has access to measuremengs 9f,, andyprg, €ach of which is contaminated by its
respective Gaussian white measurement noise signal. &hsfér functions for the VCM dynamicsy,, the MA

dynamicsG,s, and the coupling between the VCM and MA dynami&s, are respectively represented as

7 A,

GV(S) e ; 4‘92 T 2<iwi8 T win
A, 2
G (s) = 52 4+ 2(mwms + w?,’ @
2Cmwms + w?n
82+ 2CWms + w2,

whereA; and A, are static gain matrices f@¥y (s) andG,, (s) respectively given by

a’wv —Yp a’uu —Yp

A = forie {1,---,7}, Ap:=

awu —Yv auv —Yv

a’wm —Ym a’uwn —Ym



Table 1: Param(|e|ter variat|ions in the full model.
¢ w

Gy || £10% | £4%

Gy || £10% | £6%

The low-frequency nature of track runout is characterizgd b

2.8 x 10? n 1.2 x 10°
Wr
s24+800s+ 2.5 x 10° s+ 1.9x 103

r(s) = (s)

=:Wg(s)

wherew,(s) is normalized Gaussian white noise.

2.2 Parametric uncertaintiesin dual-stage servo systems

For the model introduced in (2), we assume that although aheeg of¢;, w;, andA; are known, the remaining pa-
rameters can vary up to the amounts shown in Table 1. Witlethesumptions, we express the parametric uncertainties

in the relevant continuous-time transfer function coeffits as

Gwr = G, W% = @%7
Gwi = CGwi(1 4 0.14)15), w? =@ (14+0.08)0;), i=2,...,7
Conwim = Cn@m (14 0.16 X1, w2 = @2 (14 0.12)c2m),

where parameters with “overbar” are nominal ones listedainld 2, and the values of the are unknown, but known

to lie in the interval—1, 1]. It should be noted that we introduced some conservatismitietmodel for th€'s in order

for the transfer function coefficients to depend affinely lo@ tinknown parameters. The resulting model, which we
will denotei}, is 19th-order with 14 parametric uncertainties.

To reduce the amount of computation time required to syimtbhescontroller and the complexity of the resulting
controller, it is necessary to simplify the model as muchassible before performing the controller design. Thus, we
only consider the first three terms @y, during control design and make the restrictions that = A\.13 = o2 =
Ae23 =: Ac and all other uncertainties are zero. These restrictiorth@parametric uncertainties correspond to the
assumption that the ratios between the quantiies(s, ws, andws are known. This technique was introduced in
[27] to reduce the number of uncertain parameters by expipihe correlation between physical parameters. With
these simplifying assumptions, the system modelit order and contains one parametric uncertaikty,Defining
A. := [-1,1], Fig. 3 shows the open-loop Bode plot framto y of this reduced model for 50 randomly selected

values of\. € A.. The resulting order of the reduced-order system will beotfuker of the synthesized controller.



Table 2: Nominal parameter values.

Parameter
q mode Cq | Wy | A4
- . 0 s
1 | rigid body and friction|| 0.5 376.99 4.461J 0 4.461]) x 10
2.644
4 8
2 butterfly 0.015 | 4.6533 x 10 [_4.626] [3.595 3.932}) x 10
7.636
4 _ 8
3 sway 0.015| 6.7272 x 10 _6.209| [79:596 2.185]) x 10
4 torsional 0.015| 3.3171 x 10* 2669152 [0 —2.78]) x 108
; 3.171
4 6
5 torsional 0.015 | 5.7499 x 10 _5.391] 0 6.255]) x 10
. 1.959
4 _ 8
6 torsional 0.015]| 8.1759 x 10 _33r0 [—3.822 0.717]> x 10
7 torsional 0.015| 9.5562 x 10* <[_22527§1] [3.411 0.362] ) x 10®
m miro-actuator 0.2 | 1.4162 x 10* [1.199  0.04] x 10°
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Figure 3: The Bode plot of the reduced-order, continuomegystem fromu to y for 50 random samples of, € A..

2.3 Generalized plant

The generalized plant that consists of the nominal planpandmetric uncertainties for the controller design is show

in Fig. 4. The inputs and outputs of the generalized planthosen as

Wy
Wy
YPES YPES
Wm Uy
Z = Uy , w = s Y= gm s u = R
npes . Um
0.01u,, Up
Nm
7
p
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Figure 4: The generalized plant with parametric uncerigsrfor the controller desigrg is the sampler and/ is the
zero-order hold.
wheregpgs, ¥m, andg, are output measurements, respectively corrupted by Gaussiite noise signalsprg, nm,

andn,, i.e,

JpES = YPES + NPES,
gm = Ym + N,

Up = Yp + np.

In the controlled output signal, the “weight”0.01 onw,,, was selected by trial and error.

2.4 Robust track-following control problem

The objective of our work is to design a singl& robust controller to attenuate the variances of the PES and ¢
trol efforts against the disturbance for the plant with tlaggmeter variations. The generalized plant along with the
controller for this purpose is formulated and shown as in Bigin order to design the discrete-time controller, we
discretize the continuous-time parameter uncertain systefollows. We first obtain corresponding system vertices
in the uncertain parameter space, and discretize thoseagto form the discrete-time uncertain systéif, Figure

5 shows the open-loop Bode plot framto y of the reduced model for 50 randomly selected values efA. In this

paper, we will design a single discrete-time robust coldrdbr the convex combination of the discrete-time system
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Figure 5: The Bode plot of the reduced-order, discrete-8gstem fromu to y for 50 random samples of € A.

vertices. The resulting discrete-time uncertain systelnbegielaborated further in the following section.

3 Worst-case H, performance minimization viaGg — K iteration

In this section, first, polytopic parametric uncertain Lystems are introduced in a general context. We then formu-
late the worst-casg{» performance minimization problem for a polytopic paraneatincertain LTI system. For the

formulated problem, descent algorithms are presenteddigiieobust controllers based on LMI techniques.

3.1 Polytopic parametric uncertain LTI systems

Let us consider a s&t” of the discrete-time LTI generalized plaf*| (z), shown in Fig. 6:

A(N) ‘ Bi(A)  Ba())
2= BN @)= | G | Du(y) Dia(y) | AEAL, )

Cy Dy, 0

where the vectok € RY represents an uncertain time-invariant parameter vectam uncertainty set. In Fig. 6,(of
dimensionn,) is the output of the systeny; (of dimensionn,,) is the disturbance to the system(of dimension,,)
is the control action ang (of dimensionn,) is the measured output. The sizes of matrices in (3) arere$to be
compatible with associated signal sizes.

Assumptions on the plant parameters are as follow.
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Figure 6: A generalized plant with an uncertain parametetore\ and a controlleis’.

Al (A(N), B2()), Cs) is stabilizable and detectable for eaclke A.

A.2 The setA is the unit simplex set:

N

=1
A.3 The matrix-valued functioQA4, B, Ba, C1, D11, D12)(A) is linear with respect to.

The assumption A.1 is necessary and sufficient for eachmyste? to be stabilizable with dynamic output
feedback. The assumption A.2 is without loss of generdlityd uncertain parameter set(©f, By, B2, C1, D11, D12)
forms a polytope. In fact, such a polytopic uncertain setalaays be reparameterized in the form of (3) using a unit
simplexA. The assumptions A.2 and A.3 guarantee that the set of @iteststem matrices can be represented as a

polytope with its vertices
(AiaBivBéaOivDilleiQ) = (AvBlvBQaOlaD113D12)(ei)7 1€ {17 .- '7N}a

wheree; is thei-th unit vector. The assumption A.3 is mathematically expeel as
(A7Bl7BQ,CI,D11,D12)()\):ZAi(AZ, i,Bé,Ci, 117 12)7 (4)

i=1

and necessary for the design of robust controller based drteédiniques.
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3.2 Worst-case H, performance minimization problem

For the set>® of parametric uncertain LTI systems in Eq. (3), we aim atgisisig a robust controllek :

A B
K(z) = |— 175 | A e R, )
Ck | Dk
such that thevorst-caseH, performance cost
Jo(A, K) = sup || T (A, K)||2. (6)
AeA

is to be minimized, wheré&,,(\, K') denotes the closed-loop transfer function from the distnce signalv to the
output signalz. Mathematically, thevorst-caseH, performance minimization probleis to solve the optimization
problem

min Jx(A, K), ™

wherelC is the set of all controllers that internally stabilize thesed-loop system for al € A.

3.3 Robust H, controller synthesis based on LMI techniques

Let us parameterize the controll&rin Eq. (5) by defining a matri® as

A B
o — K K c R(n-f-nu)><(n-ﬁ-ny)7 (8)

CK Dy

where the order of the controller is the same as that of thdufed-order) plant. Then, as in [28], the closed-loop

system matrix with\ € A can be written as an affine function 6f

4a(0,0) Ba(n0) | | 4 Bo(y) BN [ }
= + O| ¢ Do |- 9)
Cea(N\,©) Dy(A0O) Co(A) Dui(N) D12(N)

11



where

AN) Opxn Bi(\
oy = | B | T
0n><n 0n><n Onxnw
[ 0n><n B2(A)
) = | v onzm}; () = ; (10)

Inxn Onxnu

Onxnw

Dy,

€ = s Z1a(A) = { On.xn Di2(A) |; Za:=
02 Onyxn

Using the controller parameter matix the worst-casé{, performance minimization problem is rewritterf as

i TN, 0O)||2. 11
min max [T (4, ©)]2 (11)
This optimization problem is nonconvex, and therefores idlifficult to solve exactly in the globally optimal sense.
Next, we will explain a procedure to get a reasonable salutioa systematic way. This procedure involves two
iterative decent algorithms, callgét K iteration andG- K iteration, and is illustrated by a flowchart in Fig. 7. By a
number of numerical simulations, we have found that it isggalty most effective foG- K iteration to start with the

final robust controller synthesized B+ K iteration as its initial condition.

3.3.1 P-K lteration

The problem in Eqg. (11) can be solved by optimization sultie¢he standard LMI conditions fdk, norm. In this
paper, we refer to the dual iteration algorithm used in [¥2,25] based on the standard LMI conditions as Fhé

iteration algorithm. A reasonable initial controller isglgesized by a method proposed in [21].

3.3.2 G-K lteration

The problem in Eq. (11) is solved by optimization subjectte ¢xtended LMI conditions fak, norm introduced by
de Oliveira [26].

2

. min el
{W;:i=1,...,N},{P;:i=1,...,N},0,G,y (12)

subjectto M(W;, P;,0,G,7%,¢;) = 0,i=1,...,N,

Iwith abuse of notatior ., (A, ©) := Tew (A, K)

12
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Figure 7: The flowchart of designing a robust controller&id iteration.
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where M (W, P,©,G,~2, \) is given by

M(VVa Pagaga/yza A) =

W Cu(\©)G Du()0) P Ay(\©)G Bu()O)
(v> —tracdW)) @ | « G+G6T—P 0 ®| « g+67-P 0
* * I * * I

Here,x represents entries which follow from symmetry. tra®g(denotes the trace 8. P andW are matrices of
appropriate sizes satisfying = P7 andW = W7, G is a matrix of the same size & The closed-loop system
matricesA.;, B.;, C., and D, are defined in Eq. (9).

We will explain why the conditions in (12) guarantees the st@maseH, constraint||T%.,(\, ©)||2 < ~ for all

A € A. Suppose that the matrix inequalities in (12) hold. Thenafty A € A, we have

N
Z AlM(Wz, P, ®a g, 727 ei) - 0.
=1
Since the matrix-valued functioM (W, P,©,G,~2, \) is affine with respect td/, P, and), and sincerV:1 Ai =1,

this can be written as

N N N
M (Z /\sza Z)\ipi, @, g, ’)/2, Z/\iei> - 0, Ve A.

=1 =1 i=1

By introducing matrices

N N
Wy =Y AW, Pyi=Y»_ M\P, (13)
=1 =1

and noticing

N
trace W) = Z NitracgW;),
=1

we reach a condition

M (Wy, Pr,0,G,7%,A) =0, VA € A (14)

By Theoreml in [26], Eq. (14) implies the worst-cagé, constraint|T..,(\, ©)||2 < v forall A € A.
The optimization problem (12) is nonconvex, due to the cogpbetweerg and©. We thus use the following

coordinate descent algorithm for finding a sub-optimal stloontroller:

1. [Initial design of ©]: Obtain the initial controller based aB-K iteration. Setd! to the result of the initial

design. Also sej = 1.

2. [Design of G]: Fix © := ©7. Solve the convex optimization problemin Eq. (12) with ®sgoy?, {W; :i = 1,..., N},

{P;:i=1,...,N}andg. SetG’ to a solutiong.

14



3. [Design of ©]: Fix G := G7. Solve the convex optimization problemin Eq. (12) with esgoy?, {W; :i =1,..., N},
{P;:i=1,...,N}andO. Set®*! to a solutiond. Incremeny by one. Continue this iteration between step

2 and step 3 until? converges.

Since the value? has a lower bound which is 0 and is monotonically non-indrepduring the iterations, it will
converge to some positive number.

The robust controller is optimized based on parameter aipgrLyapunov functiond, := 2% Pz, where
x¢ represents the state of the closed-loop systemmnis from Eq. (14). For any\ € A, G-K iteration finds a
parameter dependent Lyapunov function, wherBaK iteration finds a common Lyapunov function for the entire
uncertain set\. That is whyP-K iteration normally yields a more conservative controllesign tharg-K iteration
does. Therefore, the optimization based on the extendeddddditions in Eq. (12) will improve the worst-case

performance as compared to the one based on the standardonlitions in [12, 24, 25].

4 Robust H, Controllersin the HDD Example

In this section, controllers were designed for a reduceldoHDD servo system, and they were evaluated for the
full-order system. UsingP-K iteration, the controllef »x was designed foE*. This controller was then refined

usingG-K iteration to produce the controlléfg i as suggested by the flowchart in Fig. 7.

4.1 Performance Evaluation

To analyze each controller, the control loop was closed &mheof 400 samples o£* which were generated by
randomly selecting values of € A. For each closed-loop system, stability was verified ankiilfiamargins were
computed when the loop was broken at each of three locatignss, 9m, andg,. Table 3 shows the nominal and
worst-case (in absolute value) stability margins for bathtoollers. Since negative gain margins correspond toghas
crossover frequencies at which the loop gain is larger tharedative gain margins mean that stability of the loop is
most sensitive to loop gain reduction. Negative phase maman be interpreted similarly. Although both controllers
achieve reasonable stability margif&; - achieves considerably larger nominal and worst-caselisgyabiargins. To
evaluate the robust performance of the closed-loop sydterRMS values of the PE%,,, andu,,, were computed
for each closed-loop system sample. Table 4 shows the nbaridavorst-case closed-loop RMS values of these three
signals for both controllers. Fdt px and K¢k, the degradation from the nominal RMS values of the relesigmals

to their worst-case values is less than 1.6% and 0.4%, ridgplgc This verifies that although the performance for
both controllers is robust in the time domaiiig i achieves performance which degrades much less)ogel. Also,

relative toKpg, Kgi achieves 6%, 7%, and 10% improvements in the worst case RM8svaf the PESy,,, and

15



U, respectively.

Fig. 8 shows the nominal closed-loop Bode plots of the seitgifunctions (fromr to the PES) for the systems
with Kpy and Kgi. The closed-loop system witR g has better runout rejection properties at low frequencies
and at high frequencies near the sensitivity peak. We nownmeathe perturbed sensitivity functions. Since the
plant has little uncertainties at low frequencies, it isyagmeaningful to examine the perturbed sensitivity plotsigih
frequencies. Fig. 9 shows the closed-loop sensitivitygpddthe systems witli p - and K¢ for 50 random samples
of A € A. Note that although has little effect on the closed-loop sensitivity functiorbioth closed-loop systems, the
closed-loop system witl g, has less variation in its sensitivity function overe A. Also note that the worst-case

closed-loop sensitivity crossover frequency is highentBa8 kHz in both cases.

Table 3: Comparison of nominal and worst-case stabilitygimsrwhen the loop is broken ébrs, 3., andy, for
P-K andG-K iteration for the reduced order systeéin.

Broken Design Gain Margin (dB)| Phase Margin<)
Loop Approach Nominal | W.C. | Nominal | W.C.

Jpes | P-K lteration 3.60 3.59 34.61 | 34.50
G-K lteration 5.17 5.15 3495 | 34.84
Um P-K lteration -5.58 -5.16 -26.73 | -25.86

G-K lteration 7.81 7.79 -48.87 | -45.18
Up P-K lteration || 10.95 | 10.18| -88.28 | -63.49
G-K lteration 11.27 11.10 00 -86.34

Table 4: Comparison of nominal and worst-case closed-Iddf Ralues ofv2T z, the PESyu, andu,, for P-K and
G-K iteration for the reduced order systéin.
Design VT2 PES (nm) Uy (V) Uy, (MV)
Approach Nominal [ W.C. || Nominal | W.C. | Nominal | W.C | Nominal | W.C
P-K lteration 9.47 9.51 8.83 8.85 1.12 1.13 324 329
G-K lteration 8.88 8.88 8.31 8.32 1.05 1.05 293 294

To further validate our design, we checked the performamdesofull 19th order model with the designed con-
trollers. To do this, we first chose 400 random sampl@cxocf, discretized each sample, and then closed the control
loop for each of these samples. The stability of each cldsep-system sample was verified and the RMS values of
the PESu,, andu,, were computed. Table 5 shows the nominal and worst-cased:losp RMS values of these
three signals for both controllers. Farpx and K¢, the degradation from the nominal RMS values of the relevant
signals to their worst case values is less than 12% and 6@gcteely. This verifies that although the performance for
both controllers is robust in the time domalig - achieves performance which degrades much less over thetaince
parameter set. Also, relative f0p -, K¢ achieves 11%, 5%, and 10% improvements in the worst case R8s

of the PESy,,, andu,,, respectively.
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Figure 8: Nominal closed-loop sensitivity plots for reddagder plants with controllers designed usiRgK and
G-K iteration.
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Figure 9: Closed-loop sensitivity plots for reduced ordangs with controllers designed usifiy X’ andG- K iteration
for 50 random samples of € A.

5 Conclusions

This paper presented tige K iteration technique for robust track-following controlffDDs. This approach utilized
robust controller design techniques for polytopic paraimetncertain LTI systems based on parameter dependent
Lyapunov functions. The robust output-feedback contrallas optimized for thé{, worst-case performance of a

discrete-time system under convex polytopic parametrettainties, based on the extended LMI condition introduce
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Table 5: Comparison of nominal and worst-case closed-lddf Ralues ofv/27 z, the PESyu, andu,, for P-K and
G-K iteration for the full order system.
Design VT2 PES (nm) uy (MV) Uy, (MV)
Approach Nominal [ W.C. || Nominal | W.C. | Nominal | W.C | Nominal | W.C
P-K lteration 9.52 10.52 8.88 9.92 1.14 1.16 324 333
G-K lteration 8.90 9.37 8.34 8.82 1.06 1.10 294 299

by de Oliveira [26]. Thej-K iteration algorithm was applied for optimization of the vsbcontroller to guarantee
monotonic non-increase of the worst-case performancagliterations. We have applied the synthesis algorithm to
design a robust, track-following controller for a dual-stage servo systentiDDs, which showed the improvement

of robust track-following performance as compared to orseslun [12, 24, 25].
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