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Abstract

This paper presents, for discrete-time LTI systems with unstructured dynamic uncertainty, a method-

ology for designing full information controllers which minimize the upper bound on robust H2 performance

given in [2]. It is first shown that this optimal control problem can be cast as a semi-definite program.

Then, it is shown that this optimization problem can be solved efficiently and accurately using discrete

algebraic Riccati equations.
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1 Introduction

The H2 norm has long been the most widely-used measure of performance for stable discrete-time LTI

systems. There are two reasons why this is the case. From a computational standpoint, the H2 norm is

easy to calculate because it only requires the solution of a single Lyapunov equation and standard matrix

manipulations. From an intuitive standpoint, the squared H2 norm of an LTI system can be interpreted as

the trace of the steady-state system output covariance under the assumption that the system is driven by

white Gaussian noise with unit covariance. Since many disturbances of interest can be modeled as Gaussian

noise (either white or filtered), this makes the H2 norm a particularly useful measure of performance when

the system and its disturbances are well-characterized.

However, it is often the case that the system and/or its disturbances are not well-characterized. In this

case, it is customary to model the uncertainty in the system model and express the resulting model as a

linear fractional transformation (LFT) of a known state space system and an unknown transfer function

with a H∞ norm bound which represents the uncertainty in the model.

In this framework, we are interested in determining the worst-case H2 performance of the discrete-time

system over all modeled uncertainty. In general, the unknown part of the system could have some structure,

such as in µ-synthesis. Necessary and sufficient conditions for robust H2 performance in this case are derived

in the frequency domain in [7]. The resulting conditions need to be checked at every frequency (or at least

a fine grid of frequencies) and then integrated across frequency. In that paper, these conditions are then

extended to state space systems and the resulting optimization problem is reduced to a convex optimization

problem involving a finite number of linear matrix inequalities (LMIs). However, in both of these approaches,

there is a significant amount of conservatism that arises because they do not make any assumptions on the

causality of the unknown part of the system.

A related approach for guaranteeing robust performance of a system over model uncertainty is guaranteed

cost control [9]. The analysis results of this framework are different than the previous framework in two ways.

First, they are time domain analysis results instead of a frequency domain results. Second, the analysis only

applies to systems with parametric uncertainty.

In [2], the techniques of guaranteed cost control were used to derive an upper bound on the worst-

case H2 performance of a discrete-time LTI system over unstructured norm-bounded LTI uncertainty. The

problem of finding the best H2 guaranteed cost performance was formulated as a semi-definite program

(SDP), which can be solved using solvers such as SeDuMi [11] or by using the mincx command in the Robust

Control Toolbox for MATLAB. An efficient algorithm for solving this convex optimization problem was

then developed which uses the solutions of discrete algebraic Riccati equations (DAREs). This algorithm
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is analogous to the algorithm developed for continuous-time systems in [10]. It was then shown that the

resulting algorithm is faster and tends to be more accurate than using general convex optimization routines

to solve the SDP.

This paper considers optimal full information (FI) controller design in terms of this upper bound on

robust H2 performance. As in [2], we will formulate the optimal control design as a SDP and then propose

an efficient algorithm for solving this optimization problem using the solutions of discrete algebraic Riccati

equations (DAREs). We then show that the resulting algorithm is faster and tends to be more accurate than

using general convex optimization routines to solve the SDP.

Throughout the paper, we will use the following notation and definitions. A matrix will be called Schur

(resp. anti-Schur) if all of its eigenvalues lie strictly inside (resp. strictly outside) the unit disk in the complex

plane. A matrix pair (A,B) will be called d-stabilizable if ∃K such that A+BK is Schur. A matrix pair (A,C)

will be called d-detectable if ∃L such that A+LC is Schur. Positive definiteness (resp. semi-definiteness) of

a symmetric matrix X will be denoted by X � 0 (resp. X � 0), and a • in a matrix will represent a block

which follows from symmetry.

2 Preliminaries

2.1 Inertia of matrices

We begin by reviewing some basic facts about the inertia of symmetric matrices. For a symmetric matrix,

X, we define the functions ν+(X), ν0(X), and ν−(X) to respectively be the number of positive, zero, and

negative eigenvalues of X counted with multiplicity. The inertia of the symmetric matrix X is then defined

as

N (X) := (ν+(X), ν0(X), ν−(X)) .

The following result is the fundamental result on the inertia of a symmetric matrix (see, e.g., [5]).

Proposition 2.1. If X is a symmetric matrix and M is an invertible matrix, then N (X) = N (MTXM).

Based on this result, we can construct the following two corollaries which will be useful in §4.

Corollary 2.2. Let X11 and X22 be symmetric matrices and define X :=

X11 X12

XT
12 X22

. Then each of the
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equations

N (X) = N (X11 −X12X
−1
22 X

T
12) +N (X22)

N (X) = N (X22 −XT
12X

−1
11 X12) +N (X11)

hold when the relevant inverses exist.

Proof. Define Ψ1 := X11 −X12X
−1
22 X

T
12, Ψ2 := X22 −XT

12X
−1
11 X12,

X :=

X11 X12

XT
12 X22

 , M1 :=

 I 0

−X−1
22 X

T
12 I

 M2 :=

I −X−1
11 X12

0 I


and note that M1 and M2 are invertible. Thus, by Proposition 2.1,

N (X) = N (MT
1 XM1) = N (diag(Ψ1, X22)) = N (Ψ1) +N (X22)

N (X) = N (MT
2 XM2) = N (diag(X11,Ψ2)) = N (Ψ2) +N (X11)

which concludes the proof.

Corollary 2.3. Let P = PT , R = RT , assume that BTPB + R is invertible, and define Ψ := P −

PB(BTPB +R)−1BTP . Then N (Ψ) +N (BTPB +R) = N (P ) +N (R).

Proof. Define X :=

 P PB

BTP BTPB +R

 and M :=

I −P †PB

0 I

 where P † denotes the Moore–Penrose

pseudoinverse of P . Recall that PP †P = P . Noting that M is invertible, we use Proposition 2.1 to

see that N (X) = N (MTXM) = N (diag(P,R)) = N (P ) + N (R). Since, by Corollary 2.2, N (X) =

N (Ψ) +N (BTPB +R) this concludes the proof.
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2.2 Discrete algebraic Riccati equations

We first introduce some notation we will be using throughout the paper. For given (A,B,Q,R, S), where

Q = QT and R = RT , we define

R (A,B,Q,R,S)(P ) := ATPA+Q− (ATPB + S)(BTPB +R)−1(BTPA+ ST )

A(A,B,Q,R,S)(P ) := A−B(BTPB +R)−1(BTPA+ ST )

L(A,B,Q,R,S)(P ) :=

ATPA+Q− P ATPB + S

• BTPB +R

 .
We will make the notation more compact in the remainder of the paper by respectively denoting these

quantities as R φ(P ), Aφ(P ), and Lφ(P ) where φ is an appropriately defined 5-tuple. Note that the equation

R φ(P ) = P is a DARE. If R φ(P ) = P = PT and Aφ(P ) is Schur (resp. anti-Schur), then P is called a

stabilizing (resp. anti-stabilizing) solution of the DARE.

We now present a few basic results which can be proved using straightforward algebra.

Proposition 2.4. Let R be invertible and define

φ := (A,B,Q,R, S)

φ̄ := (A−BR−1ST , B, Q− SR−1ST , R, 0).

Then R φ(P ) = R φ̄(P ) and Aφ(P ) = Aφ̄(P ). Moreover, Aφ(P ) = (I +BR−1BTP )−1(A−BR−1ST ).

Proposition 2.5. Let R be invertible and define φ := (A,B,Q,R, S). If R φ(P ) = P then A = Aφ(P )

satisfies

 A−BR−1ST 0

−Q+ SR−1ST I


I
P

 =

I BR−1BT

0 (A−BR−1ST )T


I
P

A. (1)

Conversely, if A−BR−1ST is invertible and P,A satisfy Eq. (1), then R φ(P ) = P and Aφ(P ) = A.

With these two propositions in place, we can now state and prove the main result of this subsection,

which relates a class of DARE solutions to a class of LMIs.
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Theorem 2.6. Let Q and R be invertible and define

φ := (A, B, CTQ−1C, R, 0)

ψ := (AT , CT , −BR−1BT , −Q, 0).

If the DARE R φ(P ) = P has a stabilizing solution P0, then P0 ≺ P for any P � 0 which satisfies Lψ(P−1) ≺

0.

Proof. We first make the additional assumptions that A and P0 are invertible; we will relax these as-

sumptions in the final part of the proof. For convenience, we define X0 := P−1
0 . Noting that Aφ(P0) =

(I +BR−1BTP0)−1A (by Proposition 2.4), we see that Aφ(P0) is invertible. By Proposition 2.5,

 A 0

−CTQ−1C I


 I
P0

 =

I BR−1BT

0 AT


 I
P0

Aφ̂(X0)

⇒

 AT 0

BR−1BT I


 I

X0

 =

I −CTQ−1C

0 A


 I

X0

 Ā
where Ā = X−1

0 (Aφ(X0))−1X0. Since Ā and (Aφ(X0))−1 are related by a similarity transformation, we see

that Ā is anti-Schur. Thus, since AT is nonsingular, we apply Proposition 2.5 again to see that X0 is the

anti-stabilizing solution of the DARE R ψ(X) = X.

Let P � 0 satisfy Lψ(P−1) ≺ 0. We will now show that P0 ≺ P . For convenience we define X := P−1 � 0.

By Schur complements, CXCT −Q ≺ 0 and R ψ(X)−X ≺ 0. With some algebra, it can be shown that

(X0 −X)− ĀT (X0 −X)Ā = (R ψ(X)−X) + (L0 − L)
(
CXCT −Q

)
(L0 − L)T

where L0 := −AX0C
T (CX0C

T −Q)−1 and L := −AXCT (CXCT −Q)−1. Since the right-hand side of this

equation is negative definite and Ā is anti-Schur, we conclude by Lyapunov equation theory that X0−X � 0.

Thus, 0 ≺ X ≺ X0 ⇒ 0 ≺ P0 ≺ P .

We now relax the invertibility assumptions that we made at the beginning of the proof. We will show

that P0 ≺ P by perturbing P0 by a small amount to produce Pε which satisfies P0 ≺ Pε ≺ P . Note that, for

∆ � 0 with sufficiently large minimum eigenvalue, ∃C̃ such that ∆−P0Aφ(P0)− (Aφ(P0))TP0 = C̃T C̃ � 0.

6



G1

G2
(a) LOWER LFT

G1

G2

(b) UPPER LFT

Figure 1: Linear fractional transformations

Choose such values of ∆ and C̃. We now define

Aε := A+ εI, Ĉε :=

 C

√
εC̃

 , Q̂ :=

Q 0

0 I

 ,
φε := (Aε, B, Ĉ

T
ε Q̂
−1Ĉε, R, 0),

ψε := (ATε , Ĉ
T
ε , −BR−1BT , −Q̂, 0).

Note that Lψε(X)|ε=0 =

Lψ(X) 0

0 −I

 ≺ 0. Thus, for sufficiently small ε > 0, Lψε(X) ≺ 0. Also note

that φε|ε=0 = φ. Since the stabilizing solution of a DARE is analytic in its parameters [3], ∃ε̄ > 0 such that

∀ε ∈ (−ε̄, ε̄), the DARE R φε(X) = X has a stabilizing solution Pε and, moreover, Pε is an analytic function

of ε. Note in particular that Pε|ε=0 = P0. Implicitly differentiating the DARE R φε(Pε) = Pε with respect

to ε and denoting the derivative of Pε as P ′ε , we obtain after some algebra that

P ′ε = (Aφε(Pε))
T
P ′ε (Aφε(Pε)) + Pε(Aφε(Pε)) + (Aφε(Pε))TPε + C̃T C̃

⇒ P ′ε |ε=0 = (Aφ(P0))T (P ′ε |ε=0) (Aφ(P0)) + ∆.

Since Aφ(P0) is Schur and ∆ � 0, we see by Lyapunov equation theory that P ′ε |ε=0 � 0. Thus, ∃ε̂ > 0 such

that Aε and Pε are invertible and Lψε(X) ≺ 0, ∀ε ∈ (0, ε̂). By the first part of the proof, 0 ≺ Pε ≺ P ,

∀ε ∈ (0, ε̂). Therefore, since P ′ε |ε=0 � 0, we obtain that P0 ≺ Pε ≺ P for sufficiently small ε > 0.

2.3 Analysis of robust H2 performance

Let G1 and G2 be causal, finite dimensional LTI systems. In this paper, we will make frequent use of the

linear fractional transformations (LFTs) shown in Fig. 1. We will notate the lower LFT of G1 by G2 as

Fl(G1, G2) and the upper LFT of G1 by G2 as Fu(G1, G2). The H∞ and H2 norms of G1 will be denoted

respectively by ‖G1‖∞ and ‖G1‖2. We now turn our attention to analyzing the interconnection Fig. 2 where
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∆
dq

p wG

∆
dq

p w
uG

Figure 2: System structure for analysis Figure 3: System structure for control

G has the realization

G ∼


A B1 B2

C1 D11 D12

C2 D21 D22

 (2)

and ‖∆‖∞ ≤ 1. We now define the functions

M(W,V, P, τ,G) :=


P 0 V

• τI 0

• • W

−

A B1 B2

C1 D11 D12

C2 D21 D22


T 

P 0 0

• τI 0

• • I



A B1 B2

C1 D11 D12

C2 D21 D22


Jτ (G) := inf

W,V,P
tr{W} s.t. P � 0, M(W,V, P, τ,G) � 0

J(G) := inf
τ>0

Jτ (G).

It can be shown for invertible T that P � 0,M(W,V, P, τ,G) � 0 ⇔ TTPT � 0,M(W,V T, TTPT, τ, Ĝ) �

0, where Ĝ and G are equivalent realizations related by the state transformation xĜ = T−1xG. This means

that the values of Jτ (G) and J(G) are not affected by changing the realization of G.

The following proposition summarizes a few useful properties of J(G) and Jτ (G).

Proposition 2.7. If G by given by Eq. (2), then

1. J(G) ≥ sup∆ ‖Fu(G,∆)‖22 subject to ‖∆‖∞ ≤ 1.

2. J(G) 6=∞⇔ the interconnection in Fig. 2 is robustly stable.

3. If Jτ (G) 6=∞, then Jατ (G) 6=∞, ∀α ≥ 1.
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Ḡ

dq

p w

1√
τ
I

G

∆

Figure 4: Uncertainty scaling

4. Define B1,τ := 1√
τ
B1,

[
Cτ D1,τ D2,τ

]
:=

 √τC1 D11
√
τD12

C2
1√
τ
D21 D22

 ,
φ := (A, B1,τ , C

T
τ Cτ , D

T
1,τD1,τ − I, CTτ D1,τ ),

ω := (B2, B1,τ , D
T
2,τD2,τ , D

T
1,τD1,τ − I, DT

2,τD1,τ ).

If the DARE R φ(P ) = P has a stabilizing solution P0 such that BT1,τP0B1,τ +DT
1,τD1,τ − I ≺ 0, then

Jτ (G) = R ω(P0). If not, then Jτ (G) =∞.

5. Jτ (G) 6=∞⇔

∥∥∥∥∥∥∥
 A Bτ1

Cτ Dτ
1


∥∥∥∥∥∥∥
∞

< 1.

6. Jτ (G) = J1(Ḡ) where Ḡ is as depicted in Fig. 4.

Proof. Statements 1–3 are explicitly proven in [2]. Statement 4 is a trivial restatement of the result in [2].

Statement 5 is proved by noting that the solvability of the DARE in statement 4 is equivalent to the relevant

H∞ norm condition. Statement 6 is proved by noting that the expressions in statement 4 are the same for

Jτ (G) and J1(Ḡ).

3 SDP approach to FI control

In this section, we consider the optimal control (in terms of J) of the interconnection shown in Fig. 3, where

it is assumed that the control, u, is generated by a controller which has causal access to d, w, and the state

of G. For this paper, we will restrict the controller to lie in the set K, which we define to be the set of

controllers which are LTI and have finite order. We also define the set K0, which only contains controllers
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which are a static gain. To simplify notation, we will introduce the realization

GFI ∼



A B1 B2 B3

C1 D11 D12 D13

C2 D21 D22 D23
I

0

0




0

I

0




0

0

I




0

0

0




(3)

so that the closed loop performance can be written J(Fl(GFI ,K))), where K ∈ K. (G in Fig. 3 corresponds

to only considering the first two outputs of GFI .) The dimensions of the signals w, d, and u are respectively

nw, nd, and nu.

We begin by proving that optimizing over dynamic controllers is equivalent to optimizing over static

controllers.

Theorem 3.1. If GFI is given by Eq. (3) and we define

γ := inf
K∈K

J(Fl(GFI ,K)), γ0 := inf
K̄∈K0

J(Fl(GFI , K̄))

then γ = γ0.

Proof. Since K0 ⊂ K, we trivially have the inequality γ ≤ γ0. Thus, it only remains to prove that γ ≥ γ0.

Since this is trivial if γ is infinite, we assume that γ is finite. Fix ε > 0 and then choose K ∈ K so that

J(Fl(GFI ,K)) < γ + ε. Now let K and Fl(GFI ,K) respectively have the realizations

K ∼

 AK BK1 BK2 BK3

CK DK
1 DK

2 DK
3



⇒ Fl(GFI ,K) ∼



A 0 B1 B2

0 0 0 0

C1 0 D11 D12

C2 0 D21 D22


+



0 B3

I 0

0 D13

0 D23


 BK1 AK BK2 BK3

DK
1 CK DK

2 DK
3



=:


Acl Bcl1 Bcl2

Ccl1 Dcl
11 Dcl

12

Ccl2 Dcl
21 Dcl

22
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and choose τ > 0, P � 0,W, V such that tr(W ) < γ+ε andM(W,V, P, τ,Fl(GFI ,K)) � 0. We now partition

P and V respectively as

P11 P12

PT12 P22

 and

[
V1 V2

]
where P11 and V1 have as many columns as A and

define K̄ := [DK
1 −CKP−1

22 P
T
12 DK

2 DK
3 ] ∈ K0, P̄ := P11−P12P

−1
22 P

T
12, and V̄ := V1−V2P

−1
22 P

T
12. Note that,

by Schur complements (applied to P ), P̄ � 0. It can also be shown that M(W, V̄ , P̄ , τ,Fl(GFI , K̄)) � 0.

Thus, Jτ (Fl(GFI , K̄)) ≤ γ + ε, which in turn implies that γ0 ≤ J(Fl(GFI , K̄)) ≤ γ + ε. Since the choice of

ε was arbitrary, we conclude that γ ≥ γ0.

With this theorem in place, we can now formulate the problem of finding the best controller as an

optimization problem.

Theorem 3.2. Solving inf(ε>0,K∈K) J(ε−1)(Fl(GFI ,K)) is equivalent to solving

inf
W,V̂ ,Q,ε,K̂x,K̂d,Kw

tr{W} s.t. (4a)

Q • • • • •

0 εI • • • •

V̂ 0 W • • •

AQ+B3K̂x εB1 +B3K̂d B2 +B3Kw Q • •

C1Q+D13K̂x εD11 +D13K̂d D12 +D13Kw 0 εI •

C2Q+D23K̂x εD21 +D23K̂d D22 +D23Kw 0 0 I


� 0. (4b)

Moreover, for any feasible iterate of the latter optimization problem, the controller

K =

[
K̂xQ

−1 ε−1K̂d Kw

]
(5)

achieves the performance J(Fl(GFI ,K)) < tr{W}.

Proof. By Theorem 3.1, we make the restriction (without any loss in closed loop performance) K ∈ K0. We

now let K have the form K = [Kx Kd Kw] and note that

Fl(GFI ,K) ∼


A+B3Kx B1 +B3Kd B2 +B3Kw

C1 +D13Kx D11 +D13Kd D12 +D13Kw

C2 +D23Kx D21 +D23Kd D22 +D23Kw

 .

Note that J(ε−1)(Fl(GFI ,K)) < γ ⇔ ∃P � 0,W, V such that tr{W} ≤ γ, M(W,V, P, ε−1,Fl(GFI ,K)) � 0.
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By Schur complements, this is equivalent to ∃W,V, P such that tr{W} ≤ γ and



P • • • • •

0 ε−1I • • • •

V 0 W • • •

A+B3Kx B1 +B3Kd B2 +B3Kw P−1 • •

C1 +D13Kx D11 +D13Kd D12 +D13Kw 0 εI •

C2 +D23Kx D21 +D23Kd D22 +D23Kw 0 0 I


� 0.

Since the matrix Φ := diag(P−1, εI, I, I, I, I) = ΦT is invertible, we multiply the preceding matrix inequality

on the left and right by Φ to see that these conditions are in turn equivalent to ∃W,V, P such that tr{W} ≤ γ

and Eq. (4b) holds, where V̂ := V P−1, Q := P−1, K̂x := KxP
−1, and K̂d := εKd. (Note that K can be

reconstructed from K̂x, K̂d, and Kw using Eq. (5).) Thus, J(ε−1)(Fl(GFI ,K)) = infW,V,P tr{W} subject to

Eq. (4b). Since optimizing over K is equivalent to optimizing over K̂x, K̂d, and Kw, we see that the the two

optimizations are equivalent.

If the strict inequality is relaxed to a non-strict inequality in the preceding theorem, Eq. (4) becomes a

SDP. Thus, a reasonable way to solve the optimal FI control problem is a relax Eq. (4) to a SDP, solve the

SDP using an appropriate solver, then reconstruct the controller using Eq. (5).

4 DARE approach to FI control

In the previous section, we showed how to perform the optimization infK∈K J(Fl(GFI ,K)) using a SDP. In

this section, we instead solve the equivalent problem

inf
ε>0

inf
K∈K

J(ε−1)(Fl(GFI ,K)). (6)

It should be noted that, since simultaneously performing both optimizations is a convex optimization prob-

lem, performing the optimizations sequentially are both convex optimization problems [1]. In particular,

this is useful because, given a method for quickly solving the inner optimization problem, the remaining

optimization over ε > 0 is convex.

In this section, we will first show that the inner optimization problem can be solved using a single DARE

when ε = 1. Then, using this result, we show that the inner optimization problem can be solved using a

single DARE for any fixed value of ε > 0. Finally, we present a methodology for solving Eq. (6) which
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exploits this structure.

A few quantities which will be important in this section are

B[1,3] :=

[
B1 B3

]
,

[
C D3

]
:=

 C1 D13

C2 D23

 ,
[
Qε Sε

]
:= CT1

[
C1 D11 D13

]
+ εCT2

[
C2 D21 D23

]
,[

Q̄ε S̄ε

]
:= DT

12

[
D12 D11 D13

]
+ εDT

22

[
D22 D21 D23

]
,

Rε :=

DT
11D11 − I DT

11D13

• DT
13D13

+ ε

DT
21D21 DT

21D23

• DT
23D23

 ,
φε := (A, B[1,3], Qε, Rε, Sε),

ωε := (B2, B[1,3], Q̄ε, Rε, S̄ε).

(7)

The assumptions and notation that we will be using at various points in the section are:

(A1) GFI is given by Eq. (3) and the notation in Eq. (7) is used

(A2) DT
3 D3 is invertible

(A3) (A,B3) is d-stabilizable

(A4) (Â, Ĉ) is d-detectable, where

Â := A−B3(DT
13D13 + εDT

23D23)−1(DT
13C1 + εDT

23C2)

Ĉ := C −D3(DT
13D13 + εDT

23D23)−1(DT
13C1 + εDT

23C2).

4.1 Optimizing J1

In this subsection, we consider the special case of optimizing J1, i.e. optimizing J(ε−1) when ε = 1. We will

begin by stating (without proof) a standard proposition involving matrix inverses.

Proposition 4.1. Let M33 be an invertible matrix and define

M̄11 M̄12

M̄21 M̄22

 :=

M11 M12

M21 M22

−
M13

M23

M−1
33

[
M31 M32

]

13



Then M11−
[
M12 M13

]M22 M23

M32 M33


−1 M21

M31

 = M̄11−M̄12M̄
−1
22 M̄21 whenever either side of the equation

is well-defined.

We will now use the methodology of [4] to simplify Eq. (4) (for ε = 1) to a more convenient form.

Lemma 4.2. Suppose assumptions (A1)–(A2) hold. Choose U to be a matrix so that its columns form an

orthonormal basis for ker(DT
3 ) and define

D1 :=

D11

D21

 , D2 :=

D12

D22

 , D[1,3] :=

[
D1 D3

]
,

Ā := A−B[1,3]R
−1
1 DT

[1,3]C,

[
C̄ D̄1

]
:= UT

[
C D1

]
,

ψ := (ĀT , C̄T , −B[1,3]R
−1
1 BT[1,3], D̄1D̄

T
1 − I, 0).

If R1 is invertible, then infK∈K J1(Fl(GFI ,K)) = infW,Q tr{W} subject to Q � 0, Lψ(Q) ≺ 0, and

W −DT
2 D2 +DT

2 D[1,3]R
−1
1 DT

[1,3]D2 •

B2 −B[1,3]R
−1
1 DT

[1,3]D2 Q+B[1,3]R
−1
1 BT[1,3]

 � 0. (8)

If R1 is not invertible, then infK∈K J1(Fl(GFI ,K)) =∞.

Proof. It can be shown that UUT = I −D3(DT
3 D3)−1DT

3 . We first define for convenience D̄2 := UTD2 and

[
Ã B̃1 B̃2

]
:=

[
A B1 B2

]
−B3(DT

3 D3)−1DT
3

[
C D1 D2

]
.

Similar to [4], the columns of the matrix

 I 0

−D3(DT
3 D3)−1BT3 U

 form a basis for the null space of the

matrix [BT3 DT
3 ]. Thus, using the methodology of [4] to eliminate the matrix variable [K̂x K̂d Kw] from

Eq. (4) (with ε = 1) yields the equivalent optimization problem infW,V̂ ,Q tr{W} subject to



Q • • • •

0 I • • •

V̂ 0 W • •

ÃQ B̃1 B̃2 Q+B3(DT
3 D3)−1BT3 •

C̄Q D̄1 D̄2 0 I


� 0,

Q 0

0 I

 � 0.
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Note that since the second of these inequalities is redundant, we are left with just the first matrix inequality.

Using this methodology a second time, we then eliminate V̂ to yield the equivalent optimization problem

infW,Q tr{W} subject to



I • • •

0 W • •

B̃1 B̃2 Q+B3(DT
3 D3)−1BT3 •

D̄1 D̄2 0 I


� 0



Q • • •

0 I • •

ÃQ B̃1 Q+B3(DT
3 D3)−1BT3 •

C̄Q D̄1 0 I


� 0.

By Schur complements, this optimization problem is equivalent to infW,Q tr{W} subject to Q � 0 and


I − D̄T

1 D̄1 • •

−D̄T
2 D̄1 W − D̄T

2 D̄2 •

B̃1 B̃2 Q+B3(DT
3 D3)−1BT3

 � 0 (9a)

Q+B3(DT
3 D3)−1BT3 •

0 I

−
ÃQ B̃1

C̄Q D̄1


Q−1 0

0 I


ÃQ B̃1

C̄Q D̄1


T

� 0. (9b)

Note that if I−D̄T
1 D̄1 is singular, this optimization problem is infeasible. Since, by Corollary 2.2, R1 is invert-

ible⇔ D̄T
1 D̄1−I is invertible, we see that the optimization problem is infeasible (i.e. infK∈K J1(Fl(GFI ,K)) =

∞) if R1 is not invertible.

For the remainder of the proof, we assume that R1 is invertible. We now note that, by Proposition 4.1,

Ā = A−B[1,3]R
−1
1 DT

[1,3]C = Ã− B̃1(D̄T
1 D̄1 − I)−1D̄T

1 C̄

B2 −B[1,3]R
−1
1 DT

[1,3]D2 = B̃2 − B̃1(D̄T
1 D̄1 − I)−1D̄T

1 D̄2

B[1,3]R
−1
1 BT[1,3] = B̃1(D̄T

1 D̄1 − I)−1B̃T1 +B3(DT
3 D3)−1BT3

I −D[1,3]R
−1
1 DT

[1,3] = U
[
I + D̄1(I − D̄T

1 D̄1)−1D̄T
1

]
UT .

(10)

By Eq. (10) and Schur complements, the inequality Eq. (9a) is equivalent to the inequalities I−D̄T
1 D̄1 � 0 and

Eq. (8). We now define the matrix M2 :=

I −B̃1D̄
T
1 (D̄1D̄

T
1 − I)−1

0 I

 and note that D̄T
1 (D̄1D̄

T
1 −I)−1 =

15



(D̄T
1 D̄1 − I)−1D̄T

1 . Multiplying Eq. (9b) on the left and right respectively by M2 and MT
2 and applying

Eq. (10) yields with a little algebra that Eq. (9b) is equivalent to Lψ(Q) ≺ 0. Thus Eq. (9) is equivalent to

the system of inequalities Lψ(Q) ≺ 0, I − D̄T
1 D̄1 � 0, and Eq. (8). However, the constraint I − D̄T

1 D̄1 � 0

is redundant because the constraints Lψ(Q) ≺ 0 and Q � 0 imply that I − D̄1D̄
T
1 � C̄QC̄T � 0.

With this lemma in place, we can now state and prove the main result of this subsection, which expresses

the optimal controller and its associated cost in terms of a DARE solution.

Theorem 4.3. Suppose assumptions (A1)–(A2) hold and P0 is a stabilizing solution of the DARE R φ1
(P ) =

P such that P0 � 0 and N (BT[1,3]P0B[1,3] +R1) = (nu, 0, nd). Then

inf
K̄∈K

J1(Fl(GFI , K̄)) = J1(Fl(GFI ,K)) = tr{R ω1
(P0)}

K :=

[
Kx Kd Kw

]

:= −(BT3 P0B3 +DT
3 D3)−1

[
BT3 P0 DT

3

]A B1 B2

C D1 D2

 .

Proof. We will first show that the controller K achieves the cost tr{R ω1(P0)}. To this end, we define the

closed loop state space matrices and tuples

Acl Bcl1 Bcl2

Ccl Dcl
1 Dcl

2

 :=

A B1 B2

C D1 D2

+

B3

D3

[Kx Kd Kw

]

φcl := (Acl, Bcl1 , (Ccl)TCcl, (Dcl
1 )TDcl

1 − I, (Ccl)TDcl
1 )

ωcl := (Bcl2 , B
cl
1 , (Dcl

2 )TDcl
2 , (Dcl

1 )TDcl
1 − I, (Dcl

2 )TDcl
1 ).

By Proposition 4.1 and a little algebra, R φ1(P0) = R φcl(P0), R ω1(P0) = R ωcl(P0), and Aφ1(P0) =

Aφcl(P0). Therefore, P0 is the stabilizing solution of the DARER φcl(P ) = P . Also, since BT3 P0B3+DT
3 D3 �

DT
3 D3 � 0, Corollary 2.2 implies after a little algebra that (Bcl1 )TP0B

cl
1 + (Dcl

1 )TDcl
1 − I ≺ 0. Thus, by

Proposition 2.7, we see that J1(Fl(GFI ,K)) = R ωcl(P0) = R ω1(P0).

It now only remains to show that the performance achieved by the controller K is optimal. Defining

Φ := P0 − P0B[1,3](B
T
[1,3]P0B[1,3] +R1)−1BT[1,3]P0, we see by Corollaries 2.2 and 2.3 that

N (Φ) +N (BT[1,3]P0B[1,3] +R1) = N (P0) +N (R1) = N (P0) +N (D̄T
1 D̄1 − I) +N (DT

3 D3).

16



Since ν+(BT[1,3]P0B[1,3] + R1) = ν+(DT
3 D3), we see that ν+(Φ) ≥ ν+(P0). Similarly, ν0(Φ) ≥ ν0(P0). Thus,

since P0 and Φ have the same dimension, N (Φ) = N (P0). Therefore, N (BT[1,3]P0B[1,3] + R) = N (R),

which implies that R1 is invertible, which in turn implies that D̄T
1 D̄1 − I is invertible. We now define

φ̄ := (Ā, B[1,3], C̄
T (I− D̄1D̄

T
1 )−1C̄, R1, 0). Note that, by Proposition 2.4 and the last identity in Eq. (10),

P0 is the stabilizing solution of the DARE R φ̄(P ) = P .

We now choose Q � 0,W such that Lψ(Q) ≺ 0 and Eq. (8) holds (where ψ is as defined in Lemma 4.2).

By Theorem 2.6, we see that P0 ≺ Q−1. If P0 is invertible, we see that Q ≺ P−1
0 ⇒ 0 ≺ Q+B[1,3]R

−1
1 BT[1,3] ≺

P−1
0 + B[1,3]R

−1
1 BT[1,3] ⇒ Φ = (P−1

0 + B[1,3]R
−1
1 BT[1,3])

−1 ≺ (Q + B[1,3]R
−1
1 BT[1,3])

−1. If P0 is not invertible,

replace P0 by P0 + εI for small ε > 0, repeat the same arguments, then let ε → 0 to conclude that

Φ � (Q+B[1,3]R
−1
1 BT[1,3])

−1. Thus, from Eq. (8),

W � DT
2 D2 −DT

2 D[1,3]R
−1
1 DT

[1,3] + B̄T2 (Q+B[1,3]R
−1
1 BT[1,3])

−1B̄2

� DT
2 D2 −DT

2 D[1,3]R
−1
1 DT

[1,3] + B̄T2 ΦB̄2

= R (B̄2, B[1,3], D
T
2 D2−DT2 D[1,3]R

−1
1 DT

[1,3]
, R, 0)(P0)

where B̄2 := B2 −B[1,3]R
−1DT

[1,3]D2. Using Proposition 2.4, we see that the last of these expressions equals

R ω1(P0). Thus, W � R ω1(P0)⇒ tr{W} > tr{R ω1(P0)}.

In the preceding theorem, we assumed the existence of a DARE solution with several relevant properties.

The next theorem gives a set of conditions which guarantee that the DARE solution has a solution with the

required properties.

Theorem 4.4. Suppose (A1)–(A4) hold for ε = 1. Then ∃K ∈ K such that J1(Fl(GFI ,K)) 6= ∞ ⇔ the

DARE R φ1(P ) = P has a stabilizing solution P0 � 0 such that N (BT[1,3]P0B[1,3] +R1) = (nu, 0, nd).

Proof. (⇐) This is trivial by Theorem 4.3.

(⇒) By Proposition 2.7, we know that if J1(Fl(GFI ,K)) is finite, then ‖Fl(GFI ,K)[Ind 0]T ‖∞ < 1. By

standard discrete-time H∞ theory (see, e.g., [8]), this implies that the DARE R φ1
(P ) = P has a stabilizing

solution P0 � 0 such that the factorization

BT[1,3]P0B[1,3] +R1 =

T11 0

T21 T22


T −Ind 0

0 Inu


T11 0

T21 T22


exists where T11 and T22 are invertible. By Proposition 2.1, this implies that N (BT[1,3]P0B[1,3] + R1) =

(nu, 0, nd).
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4.2 Optimal FI control

In this subsection, we use the results of the previous subsection with statement (6) of Proposition 2.7 to

solve infK∈K J(ε−1)(Fl(GFI ,K)). Based on this, we then propose a methodology to solve Eq. (6).

Theorem 4.5. Let ε > 0 and suppose that(A1)–(A2) hold. If P0 is a stabilizing solution of the DARE

R φε(P ) = P such that P0 � 0 and N (BT[1,3]P0B[1,3] +Rε) = (nu, 0, nd), then

inf
K∈K

J(ε−1)(Fl(GFI ,K)) = J(ε−1)(Fl(GFI ,Kε)) = ε−1 tr{R ωε(P0)}

Kε :=

[
Kx,ε Kd,ε Kw,ε

]

:= −(BT3 P0B3 +DT
13D13 + εDT

23D23)−1

[
BT3 P0 DT

13 εDT
23

]
A B1 B2

C1 D11 D12

C2 D21 D22

 .

Proof. By statement (6) in Proposition 2.7, we are interested in J1(Gclε ) where Gclε is the scaled closed loop

system given by

Gclε ∼


A

√
εB1 B2

1√
ε
C1 D11

1√
ε
D12

C2
√
εD21 D22

+


B3

1√
ε
D13

D23


[
Kx

√
εKd Kw

]
.

Thus, we equivalently reformulate the optimization problem as infKx,Kd,Kw J1(Gclε ). Define

φ̄ := (A, B[1,3]T, ε
−1Qε, ε

−1TRεT, ε
−1SεT )

ω̄ := (B2, B[1,3]T, ε
−1Q̄ε, ε

−1TRεT, ε
−1S̄εT )

where T := diag(
√
εI, I). Note that (A2) is equivalent for J1(Gclε ) and J(ε−1)(G

cl
1 ) because invertibility

of DT
13D13 + DT

23D23 is equivalent to invertibility of ε−1DT
13D13 + DT

23D23. Therefore, by Theorem 4.3, if

the DARE R φ̄(P ) = P has a stabilizing solution P̄0 � 0 such that N (TBT[1,3]P̄0B[1,3]T + ε−1TRεT ) =

(nu, 0, nd), then infKx,Kd,Kw J1(Gclε ) = tr{R ω̄(P̄0)}. It is straightforward to show that R φ̄(ε−1P0) =

ε−1R φε(P0) = ε−1P0 and Aφ̄(ε−1P0) = Aφε(P0). Therefore ε−1P0 � 0 is the stabilizing solution of the

DARE R φ̄(P ) = P . Also note that, since N (BT[1,3]P0B[1,3] + Rε) = N (ε−1T (BT[1,3]P0B[1,3] + Rε)T ), we

have that infKx,Kd,Kw J1(Gclε ) = tr{R ω̄(ε−1P0)}. Since R ω̄(ε−1P0) = ε−1R ωε(P0), we have established the

optimal cost of the optimization. Returning to Theorem 4.3, since P̄0 = ε−1P0, we see after some algebra
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that this performance is achieved by the scaled controller [Kx
√
εKd Kw] = [Kx,ε

√
εKd,ε Kw,ε].

In the preceding theorem, we assumed the existence of a DARE solution with several relevant properties.

The next theorem gives a set of conditions which guarantee that the DARE solution has a solution with the

required properties.

Theorem 4.6. Let ε > 0 and suppose that (A1)–(A4) hold. Then ∃K ∈ K such that J(ε−1)(Fl(GFI ,K)) 6=

∞⇔ the DARE R φε(P ) = P has a stabilizing solution P0 � 0 such that N (BT[1,3]P0B[1,3] +Rε) = (nu, 0, nd).

The proof of this theorem, although omitted for brevity, it straightforward upon noticing that performing

the scaling in the proof of Theorem 4.5 does not change (A1)–(A4); we just apply Theorem 4.4 to the scaled

system.

Now we present a result which makes it especially easy to find values of ε for which the optimal J(ε−1) is

finite.

Theorem 4.7. Let GFI be given by Eq. (3) and denote Gcl(K) := Fl(GFI ,K). If infK∈K J(ε−1)(G
cl(K)) 6=

∞, then infK∈K J((αε)−1)(G
cl(K)) 6=∞, ∀α ∈ (0, 1].

Proof. If J(ε−1)(G
cl(K)) 6=∞, then, by statement 3 of Proposition 2.7, J((αε)−1)(G

cl(K)) 6=∞, ∀α ∈ (0, 1].

Therefore, infK∈K J((αε)−1)(G
cl(K)) 6=∞, ∀α ≥ 1.

We now analyze how the optimal cost varies as ε is varied. As in [2], we do so by taking derivatives of all

relevant quantities with respect to ε. To simplify the following discussion, we will denote the optimal value

of J(ε−1)(Fl(GFI ,K)) as Jo. We will also denote the optimal value of ε (assuming it exists) as εo. Defining

Ĉ := C2 −
[
D21 D23

](
BT[1,3]P0B[1,3] +Rε

)−1 (
BT[1,3]P0A+ Sε

)
D̂ := D22 −

[
D21 D23

](
BT[1,3]P0B[1,3] +Rε

)−1 (
BT[1,3]P0B2 + S̄ε

)

the relevant derivatives are given by

P ′0 = Aφε(P0)TP ′0Aφε(P0) + ĈT Ĉ (11a)

R ωε(P0)′ = Aωε(P0)TP ′0Aωε(P0) + D̂T D̂ (11b)

(Jo)′ = ε−1(tr{R ωε(P0)′} − Jo). (11c)

(Equation (11a) is obtained by implicitly differentiating the DARE R φε(P0) = P0.) It should be noted that,

due to the stability of Aφε(P0), we can always solve the discrete Lyapunov equation in Eq. (11a) for P ′0
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Figure 5: Illustration of lower bound computation

once we have determined P0 for a particular value of ε. For the best numerical properties, we should do

so by solving for its Cholesky factor (e.g. using dlyapchol in MATLAB). We then use the Cholesky factor

to evaluate R ωε(P0)′ using Eq. (11b). It should be noted that exploiting this structure guarantees that

R ωε(P0)′ � 0 even in the face of numerical errors. Finally, the derivative of the optimal cost is given by

Eq. (11c). It should be noted that if Jo exists and (Jo)′ < 0 for a particular value of ε, then ε < εo. If these

conditions do not hold, then ε ≥ εo.

The value and derivative of Jo is also useful for generating a lower bound on the optimal value of Eq. (6).

Consider Fig. 5, which shows a representative graph of Jo in which ε0 is known to be an lower bound on εo.

By convexity, if ε1 is known to be a upper bound on εo, the value and derivative of Jo at ε0 gives us the

lower bound Ĵ1. If instead, the value and derivative of Jo at ε2 are known, we have the lower bound Ĵ2. It

should be noted that the second of these lower bounds is less conservative when it is applicable.

With these results in place, we can easily solve Eq. (6) using the following methodology:

Step 1—Find Initial Interval: Choose α > 1. Check whether or not 1 < εo. If so, start from k = 1 and

increment k until αk ≥ εo. Denoting this upper bound as εu, we see that εo ∈ (α−1εu, εu). If instead

1 ≥ εo, start from k = 1 and increment k until α−k < εo. Denoting this lower bound as εl, we see that

the optimal value of ε lies in the interval (εl, αεl).

Step 2—Bisection: Use bisection to find the optimal value of ε.

In our implementation, we use α = 100 and, in the bisection step, we use the geometric mean instead of the

arithmetic mean. We use two stopping criteria—defining the relative error as ν := 1 − f/ tr{W0} where f

is the lower bound depicted in Fig. 5, we terminate the algorithm when either ν < 10−10 or the number of

iterations (for both steps combined) exceeds 30.

5 Numerical experiments

In this section, we consider the application of the developed methodologies to randomly generated FI H2

guaranteed cost control problems. In particular, we consider three approaches—using the DARE approach
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Figure 6: Time required to solve randomly generated FI H2 guaranteed cost control problems

outlined in §4, solving Eq. (4) using SeDuMi (parsed using YALMIP [6]), and solving Eq. (4) using the mincx

command in the Robust Control Toolbox. The last two of these methods will be collectively called the LMI

methods. It should be noted that YALMIP was not used when using mincx because YALMIP causes mincx to

run more slowly. All numerical experiments were performed in MATLAB (with multithreaded computation

disabled) on a computer with a 2.2 GHz Intel Core 2 Duo Processor and 2 GB of RAM.

To generate the random systems in our numerical experiments, we first generated a random stable

discrete-time state space system using drss in MATLAB, designed an optimal (non-robust) FI H2 controller,

and then multiplied the closed loop system by the inverse of its H∞ norm (computed by norm). This

system was then multiplied by a random number generated from a uniform distribution on [−1, 1]. The

resulting system corresponded to generating random values of A,B1, C1, and D11 for a robustly stable system.

The FI H2 control step was used as a heuristic to make the control design problems less well-conditioned.

(In particular, this tends to result in systems which are “closer” to not being robustly stabilizable.) We

then generated random values of B2, B3, C2, D12, D13, D21, D22, D23,Kx, and Kd from independent normal

distributions. Finally, we set A← A+B3Kx, B1 ← B1+B3Kd, C1 ← C1+D13Kx, and D11 ← D11+D13Kd.

Note that this corresponds to “shifting” the system by a randomly chosen control scheme; although the

resulting system is not guaranteed to be stable, it is guaranteed that an FI control scheme exists which

robustly stabilizes the system. For all of the numerical experiments, we chose the signal dimensions to be

nq = 8, np = 7, nd = 6, nw = 5, nu = 4.

In the first experiment, we tested the speed of the methodologies over several values of nx, the dimension

of the plant state. The results of this test are shown in Fig. 6. In particular, note that the DARE method

is faster than the LMI methods for all of the randomly generated problems. For instance, for the 24th-

order system, it respectively took the DARE approach, the mincx approach, and the SeDuMi approach 0.27

seconds, 14.59 seconds, and 457.60 seconds to compute the optimal achievable performance and construct

the optimal controller. Also note that the DARE method appears to have a complexity of O(n3
x) whereas the
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SeDumi method appears to have a complexity of O(n4
x). The curve which corresponds to the mincx method

is not smooth because the number of iterations required to solve the problem often changes dramatically

from problem to problem, unlike the other two methods. Nonetheless, solving the problem using mincx

appears to have a complexity of at least O(n4
x) also. Thus, the difference in computational speed between

the DARE approach and the other two approaches becomes more pronounced for larger values of nx.

In the second experiment, we tested the accuracy of the DARE approach compared to the LMI approaches

for 100 randomly generated analysis problems with nx = 20. To this end, we first define fd, fm, and fs as the

H2 guaranteed cost performance (determined using the algorithm of [2]) for the optimal closed loop systems

respectively computed using the DARE approach, mincx, and SeDuMi. The criterion we will be using to

compare the accuracy of the relevant methods is the relative error, i.e. we use the criterion νm := fm/fd− 1

to compare the accuracy of the mincx approach to the DARE approach and the criterion νs := fs/fd − 1 to

compare the accuracy of the SeDuMi approach to the DARE approach. For 98 of the random systems used

in this paper, |νm| < 10−10, i.e. mincx almost always achieved comparable accuracy to the DARE approach.

For the other two systems, the relative error was 0.03% and 4%. (Note that these two cases correspond

to mincx getting “stuck” in a suboptimal solution.) SeDuMi, however, tended not to be quite as accurate.

As shown in Fig. 7, the SeDuMi method frequently gets “stuck” in a suboptimal solution due to numerical

problems. For one of the random systems, SeDuMi returned a controller which did not robustly stabilize

the system. Also, for 99 of the random systems used in this paper, νs > 0 (i.e. SeDuMi achieved inferior

accuracy). For the one remaining system, νs = −13%. However, upon closer examination, we found that

this was a numerical error arising in the analysis algorithm, not the synthesis algorithm developed in this

paper. When we made a small perturbation on the initial condition for the analysis algorithm, it certified

that both closed loop systems achieved comparable performance. Thus, we conclude that the accuracy of

the DARE method is equivalent or superior to that of the LMI methods.
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6 Conclusion

In this paper, we formulated the problem of finding the best full informationH2 guaranteed cost controller of a

discrete-time system with dynamic norm-bounded unstructured uncertainty as a SDP. We then demonstrated

that exploiting the structure of this optimization by using the solution of DAREs increases the speed and

accuracy with which we can solve these problems.
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